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Abstract

The study of bifurcation of high codimension singularities and cyclicity of related
limit periodic sets has a long history and is essential in the theory and applications of
differential equations and dynamical systems. It is also closely related to the second part
of Hilbert’s 16th problem.

In 1994, Dumortier, Roussarie and Rousseau launchgd a program aiming at proving
the finiteness part of Hilbert’s 16th problem for the quadratic vector fields. For the pro-
gram, 125 graphics need to be proved to have finite cyclicity. Since the launch of the
program, most graphics have been proved to have finite cyclicity, and there are 40 chal-
lenging cases left. Among the rest of the graphics, there are 4 families of HH-graphics
with a triple nilpotent singularity of saddle or elliptic type.

Based on the work of Zhu and Rousseau, by using techniques including the normal
form theory, global blow-up techniques, calculations and analytical properties of Dulac
maps near the singular point of the blown-up sphere, properties of quadratic systems

and the generalized derivation-division methods, we prove that these 4 families of HH-

iv



graphics (IL,), (I}5), (I3,) and (I};,) have finite cyclicity. Finishing the proof of the
cyclicity of these 4 families of HH-graphics represents one important step towards the

proof of the finiteness part of Hilbert’s 16th problem for quadratic vector fields.
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1 Introduction

The study of the bifurcation of singularities and cyclicity of limit periodic sets is essential
in the theory and applications of differential equations and dynamical systems, and it is
also closely related to the second part of Hilbert’s 16th problem.

The second part of Hilbert’s 16th problem. [25] For any n € N, find a uniform
upper bound H(n) < 0o and relative positions of limit cycles for the planqr polynomial
vector fields

0 0
Pn(xy y)% + Qn(x) y)a_y)

where P, (z,y) and Qn(z,y) are polynomials of degree n.

The second part of Hilbert’s 16th problem is still open even for n = 2 and till
now we only know that H(2) > 4 [3,47]. However, this problem has inspired sig-
nificant progress in the geometric theory of planar differential equations, bifurcation
theory, normal forms, foliations and some topics in algebraic geometry. For the intro-
duction and recent progress of Hilbert’s 16th problem, one may look at the surveys and

books [28, 30,35,43].



For the quadratic vector fields

0 0
P2(x)y)8_x + QQ(xay)—@y

where Py(z,y) and Qq(z,y) are quadratic polynomials, in 1994, Dumortier, Roussarie
and Rousseau launched a program [DRR program] aiming at proving the finiteness part
of Hilbert’s 16th problem for the quadratic vector fields. The DRR program aims to
prove that H(2) is finite.

In [15], Dumortier, Roussarie and Rousseau proved the following theorem using the

compactness arguments based on the ideas of Roussarie [39].

Theorem 1.0.1. There exists a uniform bound for the number of limit cycles of quadratic

vector fields if and only if all limit periodic sets surrounding the origin inside the family

T =Ax—uy+ a;z? + axzy + a3y2,
(1.0.1)

¥ = pz+ Ay + biz? + bozy + bsy?

with (\, p) € S and (a4, az, as, by, ba, b3) € S® have finite cyclicity.

The above theorem is important and significant. It transfers the global problem into

a local problem of proving the finite cyclicity of all limit periodic sets in family (1.0.1).

Definition 1.0.2. [22] Let X, be any family of vector fields. A limit periodic set I is a
nonempty compact set invariant by X, such that there exists a sequence {\,}nen and
for each \,,, Xy, has alimit cycle ~y,, with the property: \,, — Ao and disty(T',7,,) — 0

for n — oo.



Definition 1.0.3. [2] A limit periodic set " of a vector field X\, inside a family X\ has
finite cyclicity in X if there exist N € Nande > 0, § > 0 such that X with |\—Xo| < §
has at most N limit cycles +; with disty (T, ;) < €. The minimum of such N when € and

d tend to zero is called the cyclicity of T" in X which we denote by Cycl(T").

A limit periodic set surrounding the origin inside the family (1.0.1) can be a periodic
orbit, a graphic or the origin itself [15]. It was shown that the center-type singularity
and the periodic orbit have finite cyclicity in [2] and [22], respectively. Therefore, in
order to prove the finiteness part of Hilbert’s 16th problem for the quadratic vector fields,
according to Theorem 1.0.1, one needs to

o list all the graphics surrounding the origin inside the family (1.0.1);

e show that each graphic has finite cyclicity. |

In [15], all the possible graphics inside the family (1.0.1) were listed and named,
and there are a total of 125 graphics. For the DRR program, these 125 graphics are
needed to be proved to have finite cyclicity. The program is progressing well since 1994
when the program was launched, and lots of works have been done towards the program
[10-12,14,18,19,21,26,36-38,40,41,44,46,53]. We summarize the DRR progress in
Table 1.1.

A graphic of planar quadratic vector fields can be an elementary graphic, a nilpotent
graphic or a degenerate graphic. A graphic is elementary if all singular points of the

graphic are elementary, i.e., hyperbolic saddle or semi-hyperbolic point (one nonzero

3



eigenvalue). A graphic is nilpotent if there is a nilpotent singularity in the graphic. A

graphic is degenerate if it contains a line or circle of singular points.

Table 1.1: The progress of the DRR program

Class of graphics Done Open My work
Hyperbolic graphics 10

Elementary non-hyperbolic graphics 47 1

Nilpotent graphics of saddle type 2 1* +1
Nilpotent graphics of elliptic PP-type 20

Nilpotent graphics of elliptic HP-type 6 4

Nilpotent graphics of elliptic HH-type 10 1*+1
The four additional cases 4

Nilpotent graphics of saddle-node type 4

Degenerate graphics 2 11

Total=125 85 36 4

For the elementary graphics, some essential progresses have been made towards the
understanding of the bifurcation and cyclicity of elementary graphics through the works
of Roussarie [40,41], Mourtada [37,38], Morsalani and Mourtada [36], II’yashenko [26],

Dumortier, Roussarie and Rousseau [14], II’yashenko and Yakovenko [29], Kotova and

*Finite cyclicity was proved when the nilpotent singularity is of codimension 3 [53].
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Stanzo [33], Dumortier, El Morsalani and Rousseau [12], El Morsalani [21] and Du-
mortier, Guzmén and Rousseau [10]. For the DRR program, nearly all elementary graph-
ics have been proved to have finite by these works, and only the cyclicity of the graphic
(I1,) is still open.

For the graphics with nilpotent singularity, it presents analytic difficulties for the tran-
sition maps near the nilpotent singularity compared to the elementary graphics. In [18],
Dumortier, Roussarie and Sotomayor studied the cuspidal loop by an analytic and geo-
metric method based on the global blow-up techniques for the unfolding [4,7,42], which
desingularizes the nilpotent graphic of families of vector fields into elementary graphics
of foliated local vector fields. Their work was the first study of a graphic with a nilpo-
tent point, and made the study of finite cyclicity of nilpotent graphics possible. Later,
Zhu and Rousseau refined and developed the ideas in [18] to study the finite cyclicity
of several graphics passing through a nilpotent point of saddle or elliptic type of codi-
mension 3 [46, 52, 53]. They proved that more than 20 nilpotent graphics have finite
cyclicity. Recently, Roussarie and Rousseau studied and proved finite cyclicity of 4 fam-
ilies of nilpotent graphics of elliptic PP-type surrounding a center by using the Bautin
Ideal [44].

For the degenerate graphics, only the graphics (DFy,) and (DF,) were proved to
have finite cyclicity by Dumortier and Rousseau [19], and the cyclicity of the rest 11

degenerate graphics are still open.



The study of the finite cyclicity of graphics can not only give a deep understanding of
the existence of limit cycles of planar polynomial vector fields, but also promote inven-
tions of new mathematical tools and development of nonlocal bifurcations for dynamical
systems.

For the graphics with a nilpotent singular point of multiplicity 3, they can be one of
the following types:

e graphic through a nilpotent saddle: Fig. 1.1;

e graphic through a nilpotent elliptic point: Fig 1.2.

S 3=

(a) Convex (b) Concave

Figure 1.1: Graphics through a nilpotent saddle

A graphic through a nilpotent saddle can happen in two cases: convex HH-graphic
and concave HH-graphic. For the quadratic vector fields, since any non-degenerate
graphic is convex, so only the convex HH-graphic through a nilpotent saddle appears

in the quadratic vector fields.

A graphic through a nilpotent elliptic point can happen in three cases: PP-graphic,
6



(a) PP-graphic (b) HP-graphic (c) HH-graphic

Figure 1.2: Nilpotent graphics with an elliptic point

HP-graphic and HH-graphic. Following the convention in [33, 53], we use PP to denote
a graphic going out of a parabolic sector to a parabolic sector, HP to denote a graphic
going out of a hyperbolic sector to a parabolic sector, and HH to denote the graphic going
~out of a hyperbolic sector to a hyperbolic sector.

Among these 125 graphics, there are 4 families of HH-graphic with a nilpotent sad-
dle. They are (I,), (IL), (F}) and (I},), where the graphics (I1,) and (I{;) surround a
focus, and the graphics (F3) and (I,) surround a center.

There are 12 families of HH-graphics with a nilpotent elliptic point. Among these
12 families of HH-graphics, there are 4 families of graphics (H}), (H3), (H3,) and
(H3,) which are hemicycles, there are 6 families of graphics (H3), (Fz,), (Hi3), (Ig,)s
(H3,) and (H3,) which surround a center, and the rest 2 graphics are (I3,) and ()
surrounding a focus.

In the thesis, we will prove that 2 families of convex HH-graphics of saddle type (13,),



(I};) and 2 families of HH-graphics of elliptic type (Ig,), (/1) have finite cyclicity.
For these 4 families of HH-graphics, each family of HH-graphics surrounding a focus
has an invariant parabola and a triple nilpotent singularity at infinity which could be of
codimension 3 or 4 as shown in Fig. 1.3. There is an additional attracting saddle-node
on the invariant parabola for the graphic (I1;) and (I},,), respectively.

For the graphics (I,) and (I3,), if the nilpotent singularity is of codimension 3, it
has been done by Zhu and Rousseau [53]. Therefore, we only need to study these two

graphics when the nilpotent singularity is of codimension 4.

SR,

(a) (I35)(15,) (Tgp) (®) (I3)(I1a)T1w)
©) (I32) (d) (I1s)

Figure 1.3: Graphics for which-we prove finite cyclicity



To prove the finite cyclicity of graphics (I1,), (I1;), (I%,) and (I},,), one basic ingre-
dient is the blow-up of families developed in [18]. Some mathematical tools have been
introduced and developed for the study of the cuspidal loop [18] and nilpotent singularity

of saddle or elliptic type [52, 53]. These tools include:

1. aspecial normal form for a family with a nilpotent singularity;

2. blow-up of the family to allow the calculations of the transition maps near the

nilpotent singularity;
3. the list of limit periodic sets in the blown-up family of vector fields;

4. calculations of different types of Dulac maps in the neighborhood of the singular

points of the blown-up sphere;
5. Poincaré maps and displacement functions;

6. generalized derivation-division methods.

Since the nilpotent singularity can be of codimension 4 in these 4 families of graphics,
some generic properties of the related maps fail which brings more difficulties in our
study. Therefore, besides the above tools, we also need to make use of some techniques

and special properties of the specific graphics for the proof which include:

1. first integral of Hamiltonian systems;




2. calculation of Poincaré first return map and the second derivative of the transition

map along the invariant parabola;

3. fixed connection along the equator.

With the above tools, techniques and special properties of the specific graphics, we
prove that the 4 families of HH-graphics (I1,), (I1;), (I3,) and (I},,) with a triple nilpo-
tent singularity of saddle or elliptic type have finite cyclicity.

The thesis is organized as follows. In Chapter 2, we introduce some basic concepts,
theorems and mathematical tools which are fundamental and required for the proof of
the finite cyclicity of graphics. In Chapter 3, we prove the finite cyclicity of (I},). The
finite cyclicity of (I,) is proved in Chapter 4. We prove the finite cyclicity of (I3,) in
Chapter 5. In Chapter 6, we prove the finite cyclicity of (I7,,) except the cyclicity of
Ehh3e in which the nilpotent elliptic point is of codimension 4. Finishing the proof of
the cyclicity of these 4 families of HH-graphics represents one important step towards

the proof of the finiteness part of Hilbert’s 16th problem for quadratic systems.
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2 Preliminaries

In this chapter, we introduce some basic concepts, theorems and mathematical tools

which are fundamental and required for the proof of the finite cyclicity of graphics.

2.1 General finite cyclicity theorems

For the graphics with a nilpotent singular point of an analytic vector field, Zhu and

Rousseau [53] proved the following theorems.

Theorem 2.1.1. A convex HH-graphic through a triple nilpotent saddle of codimension
3 has finite cyclicity if the graphic is generic, i.e., the associated Poincaré first return

map P satisfies P'(0) # 1.

Theorem 2.1.2. An HH-graphic through a triple nilpotent elliptic point of codimension
3 has finite cyclicity if the graphic is generic, i.e., the associated Poincaré first return

map satisfies P'(0) # 1.
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2.2 Transition maps
2.2.1 Derivative of a regular transition map
Theorem 2.2.1. [1] Consider the vector field

0 0

Let & = {(z,9) = (fi(5),9:(s))} and £ = {(z,9) = (2(5),92(8))} be two arcs

transverse to the same orbit T'(t). Let R(s) be the transition map from S to ¥. Then

RN C) e
R'(s) = XAG) exp (/0 de(P(t))dt) , (2.2.1)

where T(s) is the time to go from (fi(s), g1(s)) to (f2(R(s)), f2(R(s))) along the orbit

I'(t) starting at (f1(s), 91(s)) for t =0, and

AGs) = P(fi(s), a1(s)) fi(s) A= P(f2(3),92(3)) £i(3)

Q(f1(s), 91(s)) g1(s) Q(f2(5),92(5))  92(3)

2.2.2 Dulac map near a hyperbolic saddle in the plane

Definition 2.2.2. For a planar vector field, a singular point is elementary if it has at least
one nonzero eigenvalue. It is hyperbolic (resp. semi-hyperbolic) if the two eigenvalues

are not on the imaginary axis (resp. exactly one eigenvalue is zero).

Definition 2.2.3. The hyperbolicity ratio at a hyperbolic saddle is r = —i—;, where

A1 < 0 < Ay are the two eigenvalues.
12



Let X\, A € A, be a C™ family of planar vector field defined in a neighborhood
of a hyperbolic saddle at the origin, where A is the parameter space. Assume that the
coordinate axes are the invariant manifolds of the saddle point. Let r be the hyperbol-
icity ratio of X, at the origin. By normal form theory, for any fixed ¥ € N, up to a
C*k-equivalence, the vector field X can be written into some explicit expressions of the

normal form [27,48].

e Ifry is irrational, Vk € N, the vector field X), is C*-equivalent to

T =z,
y = _T(A)ya

for A in a neighborhood W of the origin in parameter space.
e Ifro € Q,letry = %’, (p,q) = 1. Then Vk € N, X, is C*-equivalent to

T =z,
N(k)

i =y[=n+ Y anMEy],
i=0

for ) in a neighborhood W of the origin in parameter space, and a;(\) = r(\) —7y.

Let &, = {y = yo} and S, = {z = xo} be two sections transverse to the vector
field X as shown in Fig. 2.1, where xg, 3o > 0 are constants. The flow of X, induces a
transition map D, (-), also called a Dulac map:

D)‘Zil —)ig
13



4

Figure 2.1: Dulac map near a hyperbolic saddle in the plane

forall A e W.

The Dulac map is C* for z > 0. The following theorem describes its behavior near

z =0.
Proposition 2.2.4. [37] The Dulac map D) can be written as
Di(z) = 2V[c(A) + ¥(z, V)], (2.2.2)

where c()\) = 25, ¥(x, X) is C for (z, X) € (0, 20] x W. Furthermore, 1) satisfies the
Zo
following properties (I$°):

(Ig°): Vn €N, lir%x”g—;f—(x, A) =0 uniformly for A\ € W. (2.2.3)

Furthermore,

(1) ifrg ¢ Q theny =0;
(2) if ro = 1, the expression (2.2.2) is in general not fine enough for proving the cyclicity.
14



Definition 2.2.5. [34, 40] The Leontovich-Andronova-Ecalle-Roussarie compensator of

the vector fields X is defined as

=2l ifay £0,

w(z,ay) = (2.2.4)

—Inz ifa; = 0.
The Dulac map in Proposition 2.2.4 is not fine enough to prove the cyclicity for the

case 79 = 1. In [40], using the compensator, Roussarie has an additional refinement:

Proposition 2.2.6. [40] If ro = 1, the Dulac map D) has a well-ordered asymptotic

expansion:

Di(z) =ai(Nzw+---]+ BNz
(2.2.5)
+ay(N)[z’w+ -]+ + oAz w + -] + il N),
where a;(X) = r(\) — 1, a;()\) and B(X) are smooth functions of the parameters \. 1y,

is a C* function, k—flat with respect to z = 0.

2.2.3 Transition map near a semi-hyperbolic singularity

Let X, be a family of planar vector fields sufficiently differentiable with respect to
((z,y),A) € R?2 x A. Suppose that the vector field X, has a semi-hyperbolic singu-
lar point at the origin of codimension m and the coordinate axes are its local invariant

manifolds. In [27], it was proved that for any & > 2m, the family X, can be written up

15



to a C* equivalence form

z = F(z,\),
(X))

Z) =Y
for )\ in a neighborhood W of the origin in parameter space, where
m—1
F(z,)) = cN)z™ (1 + c(Nazmir (V™) + D (V'
=0

The «;()\) are smooth functions of the parameters A with ;(0) = 0for0 <: < m —1

and ¢(0) # 0. The quantity ag,,.1(0) is the formal invariant of the germ of X} at the

origin.
y y %
(6
Y T
o * - _
0) T ).
(a) Central transition (b) Stable-centre transition

Figure 2.2: Two types of transitions near a semi-hyperbolic point

e Central transition

For some values of the parameters, the vector field Xy may have no singular points.

This yields possible transitions along the center manifold {y = 0} from ¢ = {z =

16



—Zo,—Yo <y < yo} to T = {& = 29, —y1 <y < y1} where zg, Yo, y1 > 0 are chosen
such that the transition Dy (y) is defined from o to 7, and A € Op := {\ € W| F(z,\) #

0, Vz € [—2o, Zo|}
Proposition 2.2.7. [14] The transition map D, (y) is linear and

Dy(y) =m(N)y  with  m()\) =exp (— /zo —ﬁ(d%,(j) : (2.2.6)

2o
The function m(\) is continuous and non-zero on Of and has a continuous extension

m(\) =0 for A € 90k.
e Stable-centre transition

Take sections 0 = {y = yo,—%o < z < zo}and 7 = {z = 2o, —yo < y < o}
where o > 0 and yo > 0. For A = 0 and z,, y, sufficiently small, we have a transition
Dy(z) from ot = {(z,y) € o|z > 0} to 7 along the trajectories of Xy. This transition
can be extended for any value of A for some subinterval oy C o to 7 in a transition
D(z, \) which is also denoted by D,(z). The subinterval o is defined as follows.

(i) If A € Op, then 0, = [—x0, Zp)-

(i) If A ¢ Op and z(2) is the largest root of F'(z, \) = 0 with —zo < 2()\) < zo and
2(0) = 0, then o, = [2()), zo). We extend D, () continuously at z(A) by Dy(2()\)) = 0.
The domain of Dy(z) is C = Uy{o, A} C [0, Zo] X W.

The stable-centre transition map D(z, ) satisfies the following flatness property.
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Proposition 2.2.8. [14] For the stable-centre transition map D(z,)\) defined above,
Vp,n€NandV (ig, 11, -+ ,in) Withig + i1 + - - - + iy = n, we have

a"D(z, \)
DTN - N

—O0(lz\P), V(o)) €C. 2.2.7)

2.3 Normal forms near nilpotent singularities of multiplicity 3

A family containing a triple nilpotent singularity of elliptic or saddle type can be written

as [17]

T =y,
(2.3.8)
§ =12 + Mz + A +y(s + bz + €257 + 22h(z, A)) + ¥2Q(z, 9, N),
where for the saddle case €; = 1 (Fig. 2.3(a)); for the elliptic case 3 = —1,b > 22
(Fig. 2.3(b)), A = (A1, g, A3) are the parameters, h(z, A) is C* in (z,)), Q(z,y, A) is
C* in (z,y, ) and of arbitrarily high order in (z,y, A). For any value of &,, they have
the same topological type.
For the purpose of studying the passages in the neighborhood of the nilpotent singu-

larity, a new normal form to unfold the nilpotent singularity of saddle or elliptic type was

developed in [53].
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(a) Saddle case (b) Elliptic case

Figure 2.3: The different topological types

Theorem 2.3.1. [53] The family (2.3.8) is C*°-equivalent to

X =Y +p+a(p)X?

Y =+ Y (s + X +EX2+ X3h(X, ) + Xha(X, p) + Y2Q(X, Y, ),

(2.3.9)
where €, = —ag €9, and
o for the saddle case: a(0) € (—1,0),
ifa(0) = —%, the unfolding is of codimension 4 which corresponds to the case

b=0in(2.3.8);

e for the elliptic case: a(0) € (0, 3),

ifa(0) = %, the unfolding is of codimension 4, type 2, which corresponds to the

case €5 = 0in(2.3.8).
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p = (W1, pa, u3) is the parameter, hi(X, p), ho(X, 1) = &a + O(p) + O(X) and

Q(X,Y, ) are C* and Q(X,Y, p) is of arbitrary high order in (X,Y, j1).

We denote A = [—2,0) for the saddle case, and A = (0, ;) for the elliptic case.

2.4 Blow-up of the family

We are interested in the family for a € A and (z,y, 1) in a neighborhood U x A of

((0,0),(0,0,0)). Taking A as a sphere, we make the change of parameters
pr = VP01,  pa=V'ha, ps = Vs, (2.4.10)

where i = ({1, fiz, fis) € S? and v € (0,15). Adding the equation # = 0 to system

(2.3.9), we have
(

T =y+ i+ az?,

gy =Vh+y [Vﬁg + z + £92% + 2’y (z, Vﬂ)]

X4 (2.4.11)
+£L’4h2(.’lf, Vﬁ‘) + yzQ(w7 Y, I/ﬁ),
r =0.
We then make the weighted blow-up
T=r1%, yYy=r%, v=rp, 2.4.12)

where r > 0 and (Z, 7, p) € S°.
By the blow-up (2.4.12), we have a C* family X = %X’ . Note that for each (a, i),

the foliation given by {v = rp = const} is preserved by Y(G,ﬁ):
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(a) The saddle case (b) The elliptic case

Figure 2.4: The stratified set {rp = 0} in the blown-up

e For {rp = v} with v > 0, the leaf is a regular manifold of dimension 2.

e For {rp = 0}, we get a stratified set in the critical locus. As shown in Fig. 2.4,

there are two strata of 2-dimensional manifolds:
- F; = S' xRt the blow-up of the fiber 1 = 0,
- Dp={Z+§+p*=1, p>0}.
On ﬁ',; = {p = 0}, (2.4.12) is just the common blow-up of the nilpotent point:
T=r%, y=r4 (2.4.13)

By the blow-up (2.4.13), we get a vector field with four singular points P; (z = 1, 2, 3, 4).
P; and P, are hyperbolic saddles, P, and P; are saddles (resp. nodes) in the saddle (resp.
elliptic) case as shown in Fig. 2.5.

The four points P; on the circle 22 + y*> = 1, 7 = p = 0 are studied in the charts

PR1 z= —1,(7’1,[)1,371), and PR2 z= 1, (T‘g,pg,'yz),
21



(a) The saddle case (b) The elliptic case

Figure 2.5: Common blow-up of the nilpotent singularity

while the upper part of the sphere r = 0, p > 0 is studied in the chart
FR. p=1,(7,7,r)

yielding

\ ¥=p1+ (B3 +2)§ +rh(Z, 7,7, B), (24.19)

where h(Z, ,, i) is C*® in (Z, g, 7, ii). Especially, on {r = 0}, we have

_ & = fig + § + ai?,
Xp=1: (2.4.15)
Y= 1+ (A3 + Z)7F.
In [53], the complete bifurcation analysis of (2.4.15) was given and phase portraits
for the different values of i € S? were studied and presented. Together with the regular

part of the graphics, we have a list of limit periodic sets for which finite cyclicity must be
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proved. In [53], Zhu and Rousseau listed all the possible limit periodic sets of HH-type
for the saddle case, and PP-type, HP-type and HH-type for the elliptic case. As the limit
periodic sets of HH-type for the saddle case and elliptic case will be needed in our proof,

so we recall them in the following Table 2.1 and Table 2.2.

=

family Sxhhl1 family Sxhh2 family Sxhh3 family Sxhh4

-

family Sxhh5 family Sxhh6 family Sxhh7 family Sxhh8

=

family Sxhh9 family Sxhh10

@

=9

S

Table 2.1: Convex limit periodic sets of HH-type for the saddle case [53]
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family Ehhl family Ehh2 family Ehh3 family Ehh4
family EhhS family Ehh6 family Ehh7 family Ehh8
family Ehh9 family Ehh10 family Ehh11 family Ehh12

Table 2.2: Limit periodic sets of HH-type for the elliptic case [53]
2.5 Dulac maps near P, (: = 1,2,3,4)

For saddle and elliptic case, the family of vector fields at each point P, (i=1, 2, 3,4)
has the same form. Due to the special form of the family, after dividing by a C* positive
function, the system is linear in 7 and p. If necessary, one can reverse the time (¢t — —t),

so that one will have two negative eigenvalues and the third eigenvalue is positive. So
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for the three eigenvalues at each point, there are only two possibilities

-1, 1, —o(a)
or
1, -1, —o(a)
|%|, atPl and Pz,
where o(a) =
2(1 - 2(1), at P3 and P4.
By exchanging the roles of r and p, one only need to consider the following system
(
T o= -,
Xaw § p =p, (2.5.16)
L y = —‘0'(0,)9 + f(a,ﬁ)(ra Py g))
where

fany(T, 0, )

—(1—2a)§+25% +§le2r +isp+2202 — 12k (r,rp, )| +i10° +TRo(r,r p,8) + 52 Q4 (r,0,7,i8)

= U(a)g+ atg+Hizp?

with the parameters (a, i) € A x 2.

Remark 2.5.1. For the quadratic systems, we have hy = 0 in (2.5.17).

2.5.17)

Proposition 2.5.2. [53] Consider the family X q ) in the form of (2.5.16) with param-

eters (a,i) € A X S ThenV(ag,i) € A x S*> andVk € N, there exists Ay C A, a
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neighborhood of ag, N (k) € N and a C*—transformation

\Il(a.,ﬁ) : ('I", P, g) - ("'a P ¢(a,ﬁ)(r7 P, g)))
where
,"/}(a,ﬁ)(ri o g) = g + 0(|(T7 P, g)l)

such that¥(a, 1) € Ao x S% the map v, sy transforms X, ) into one of the following

normal forms:

[ ] lfO'(ao) ¢Q,

o= -,
Xem§ p =p, (2.5.18)
y =—-5(a, vy,

o ifo(a) =2€Q

(
r = -,
)"(’(a’ﬁ) lp = p (2.5.19)
1 N(k)
L y = KgrP + a[ —D + Z ai+1(a’7ﬁ'7 V)(ppyq)z]y,
i=0
where v =1p > 0 and
a(a,fi,v) = o(a) — ao(a, i, v),
N(k)
ao(a, B v) = 3w (2520
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where y;(a, [i), o; and k are smooth functions defined for (a, i) € A x S?. Especially,

k=0forq>2.

Notation 2.5.3. For convenience in the notation, in the following sections and chapters,

let ro, po and yo be positive constants, and we always use

E>i :{Tiz/r()}) 1= 1)27374;
II; = {pz = P0}> 1= 1) 2)3,47
(2.5.21)
7 ={¥% = w}, 1=1,2;
Ti = {gz = —yO}) 1= 3)4a

to denote the sections in normal form coordinates (r;, p;, §;) in the neighborhood of the

singular points P; (1 = 1,2,3,4).

In order to study the transition maps near the singular point P,(: = 1,2,3,4), one
only need to consider )Z'(a, 5 with eigenvalues —1, 1, —o(a) in the normal forms (2.5.18)

or (2.5.19) and consider the following two types of Dulac maps:

Aem =(d,D): ¥ —1I,
Owm =(§,8): 7 —1I
where ¥ = {r = o}, I1 = {p = po} and 7 = {y = yo} are sections in the normal form
coordinates.
The properties and explicit expressions of the two types of Dulac maps are given in
the following two theorems, which were studied by Zhu and Rousseau in [53].
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d, D ()
Y : )$ ~ T : T

A .0

(a) The first type (b) The second type

Figure 2.6: Two types of Dulac maps

Remark 2.5.4. To simplify the notation, for all the maps and vector fields, we will drop

the index (a, [i). For example, the Dulac map A(v,y) means A 5y (v, y).

Firstly we study the first type of Dulac map A = (d, D). If we parameterize the
sections ¥ and II by (v, y) with the obvious relation p = - on Yandr = plo on II, then

we have

Theorem 2.5.5. [53] For any ay € A and i € S% consider the family X(a,ﬁ) with
eigenvalues —1,1,0(ag) in normal form (2.5.18) or (2.5.19). Then VY, € R, there exist
Aoy C A, a neighborhood of ao, and vy > 0 such that Vv € (0,v1) and (a,[i,y) €

Ag x §? x [0, Yo), the Dulac map A(v,y) = (d(v,y), D(v,y)) has the form

d(v,y) =v,
(2.5.22)

Dly) =l —a) + (=) [u+ ol —an).v)],
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where vy = Topo > 0 is a constant and

ifola) ¢Q, n=9¢=0;
if 0(a0) €Q\N, 1n=0;
Fola)=peN,  nu(L —a) = sriu(Z, —ar)(2);
if 0(ao) =2€Q p,q€Nand (p, q) = 1, then ¢(v,w( %, —au),y) is C* and
¢ = 0wt (%, —0o1)In %),
g—‘;’ = 0(Puwi(%, —a1) In &),
L = O(yﬁ(lﬂ“l"z—?l)wq—ﬂlﬂl’:—zl(%, —a)n LV;) j>2,

(2.5.23)

where

q&(a,"u), (03] 2 07

1l
Il

D, a; <0

Also all the partial derivatives with respect to the parameters (a, i) are of order

O(Vﬁwq(yio, —a;)In Vio)

Now we consider the second type Dulac map © = (¢,Z). If we parameterize 7
by (r,p) and II by (v,y) with the relation rp = v and r = - on the two sections

respectively, then we have

Theorem 2.5.6. [53] For any ag € A, consider )A{:(a,ﬁ) with eigenvalues —1,1, —o(ap)
in the normal form (2.5.18) or (2.5.19). Then for r, p > 0 sufficiently small, there exist
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Ay C A, a neighborhood of ay, and v, > 0 such thatV(a, i) € Ag x S? and v € (0,1,),

the Dulac map ©(r, p) has the form

{(’r,p) =V,

(2.5.24)
Er,p) = n(v,w(£,m))+ (L) lyo + 6(r, (L, —an))),
Po Po

where

o ifo(a) ¢ N, thenn =0; ifo(ag) = p € N, then

n=—vPw(L, a);

s Po
o ifo(ar) ¢ Q then6 = 0; ifo(ao) = 2 € Q then O(r, p,w(£, —a1)) is C* in

(a,) and (r, p,w(£, —1)), and also satisfies

0 =0 (pul et +m(s, —a)]),

P =0 (ppw(pﬂo,al))[1 + nr”wz(ﬁ,—al)]) > 1

(2.5.25)

which are uniformly valid for (a, i) € Ay x S andr, p > 0 sufficiently small.

Remark 2.5.7. For the quadratic systems, we have n(v,w(;=, —a1)) = 0in (2.5.22) and
n(v, w(;%, a1)) = 0in (2.5.24). For the second type Dulac map, the inverse of © has the

same form and properties as (2.5.24) and (2.5.25).
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3 Finite cyclicity of (I3,)

For the graphic (I],), it is an HH-type graphic with a nilpotent saddle of multiplicity 3 at

infinity and an invariant parabola as shown in Fig. 3.1.

Figure 3.1: The graphic (I};).

In this chapter, firstly we prove the general theorem 3.1.1 for the finite cyclicity of a
convex graphic through a nilpotent saddle of multiplicity 3 in section 3.1-3.3. According
to the general theorem, to prove the finite cyclicity of (I},), we only need to check that
the first return map P along the invariant parabola satisfies P’(0) # 1, which is given in

section 3.4.
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3.1 Main theorem

Theorem 3.1.1. A convex graphic through a nilpotent saddle of multiplicity 3 has finite

cyclicity provided that the derivative of the first return map P'(0) # 1.

For the nilpotent saddle of multiplicity 3, it can be of codimension 3 or 4. The
theorem with codimension 3 nilpotent saddle was proved in [53]. When ¢y = —%, the

nilpotent saddle is of codimension 4. In this special case, only the limit periodic set

Sxhhl used the hypothesis ap # —%, so we only need to treat the case Sxhhl with

D=

ap = —

The finite cyclicity of the upper boundary graphic of Sxhh1 was proved in [53], and
Cycl(Szhhla) < 1. Therefore, we need to prove that the intermediate graphics and
the lower boundary graphic of Sxhh1 have finite cyclicity, and the proof is given in the

section 3.2 and section 3.3.

3.2 Preliminaries

Let I' be any intermediate or lower boundary graphic of Sxhhl. To study its cyclicity,
as shown in Fig. 3.2, take sections I, = {p; = po} in the normal form coordinates

(75, pi, %) in the neighborhood of the singular point P;(i = 3,4). We will study the
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Figure 3.2: Transition maps for the HH-graphics of saddle type

displacement map
L: I, — I3
L=R1'-T,

where R : TI; — Il is the transition map along the regular orbit in the normal form
coordinates, and 7' : II; — I3 is the transition map passing through the blown-up
singularity. We will study the maximum number of small roots of L = 0.

For the transition map R, it has been studied in [53], and we recall it here as a propo-
sition.
Proposition 3.2.1. [53] For any k € NandVay € A = (—3,0), there exist Ay C A,

a neighborhood of ag and vy > 0 such that ¥(a, f) € A x S and Vv € (0,1y),
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R(V, 373) = (RI(V’ 373)7 RZ(V) 53)) is C* and Rl(”; 173) =V, Rz(’/; 373) takes the following

form
(1) ifao ¢ Q
Ra(v,§s) = mo(V)(L)_&“ + (7" +O(vIn £))ds
G2.1)
ZO(V D)5 + 03+
2)ifao €Q

Ry(v,§3) = %0(v, w(— —B1)) +Z% (v, w( —ﬁl))y3+0(~k+1), (3:22)

=1

where

’Yo=m0(’/)(ui) C Ry (v - Dw (—7—:51))+H30(V&3w2(1,—f31)),

0 14 14

=7+ 0(in ) + 0(Hu( S, ~f)In ),
Vg 140

O(Vln—) +O(Vp3(l+[’q32])wcn+l —i+qs[2 (1,—ﬂ1)ln1) i> 9
Yo Yo

Here v* = P'(0) and B, = ps — 53(a)gs. Also R;*(v,44) is C* and has the same form

as Rs.

Remark 3.2.2. The above proposition was proved in [53] by straightforward calcula-

tions of the transition map R, which can be decomposed as
R=A;'oRoA;,

where A; : II; — X,(i = 3,4) are two Dulac transition maps of the first type in the

34



normal form coordinates near Ps and Py, respectively. R : Y3 — X, is the regular

transition map, and we can write it as

Rl(ua :53) =V,
(32.3)

Ry (v, 9s) = mo(v) + ma(v)gs + O(43),
where my(0) = 0, and m1(0) = v* + O(v).

In the proof, only the fact 03(a) = 2(1 — 2a) > 0 was used. So as long as a < 1, the

three maps A3, Rand A4 keep the same expressions as the case for ag € (— %, 0). There-

fore, the interval A = (—%, 0) in the above proposition can be extended to (—co, 3).

Hence, if ag € (—00, 1), Ry(v,7s) has the same form as (3.2.1) or (3.2.2).

Figure 3.3: Transition maps for the lower boundary graphic Sxhhlc

In this chapter, we use V € S? to denote the set of the parameter f in which the

family Sxhh1 exists. Family Sxhh1 has a lower boundary graphic Sxhhlc which passes
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through a hyperbolic saddle point as shown in Fig 3.3. Let A, be the hyperbolicity ratio
at this saddle point when r = 0 for iz = jip and a = ay.

For the case A\ # 1, it was treated in [53], so we restrict ourself to the case Ay = 1
i.e., the divergence of system X ,—; in (2.4.15) vanishes. Note that ag = — %, so we have
fis = 0. Then in this case family Sxhhl1 exists if and only V = {z € S?|a3 = 0}.

Let the saddle point be (Zo, §o). After translating the singular point to the origin, by
a linear transformation and C* changes of coordinates, we can bring the system (2.4.14)

in the neighborhood of the saddle point into a normal form

( .
i = i,
N(k)
{ v= y[ —1+ Y alr, a)(ri.v))l], (32.4)
=0
= 0.

\

Take sections 3, = {§ = 1} and ¥ = {Z = 1} in the normal form coordinates. Let
D(v,%) = (D1(v, %), Da(v, %)) : £; — X, be the transition map. Then D, (v, %) = v,
and D,(v, %) is the Dulac map in the neighborhood of the saddle point. There exist V4, a
neighborhood of iy, and € > 0, vy > 0 sufficiently small, such that Va € (—% — g, % +

£) C A, Vv € (0,p) and V i € Vp, D(v,%) : £; — I, can be written as

Dy(v, %) = v,
(32.5)

Dy(v,%) = ay(V)[Fw + - | + T+ (W) [FPw+ -]+,

where o; are functions of (v, fi, a) givenin (3.2.4), a1 (v) = A(v)—1and w = w(Z, a1 (v))

is the Leontovich-Andronova-Ecalle-Roussarie compensator defined in (2.2.4).

36



Let ﬁ I, — %; and ’ﬁz : ¥, — II3. They are the compositions of normal form

coordinate changes and regular transition maps. Therefore, T’ (v, §4) can be written as

fn(V, 7s) = v,

(3.2.6)
Ti2(v, §s) = eo(v) + e1(v)fa + O(43),
and T5(v, j) can be written as
f21 (VJ g) =V,
(3.2.7)

Too (v, §) = bo(v) + b1(v)ii + O(7?),
where ey(0) = 0, b(0) = 0, e1(0) > 0 and b,(0) > 0.
In the following, we study the lower boundary graphic Sxhhlc and intermediate
graphics Sxhhl1b.

3.3 Proof of the main theorem

We treat the lower boundary graphic Sxhhlc and intermediate graphics Sxhhlb sepa-

rately.

3.3.1 The lower boundary graphic Sxhhlc

For the transition map 7', we have

T=TyoDoT,.
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Performing a change of parametrization on II, the displacement map L : II; — II3

will be defined as

L(v,Ya) = R\, Yo+ ((v) = T(v, V), (33.8)

where ((v) = T3} (v,0) with ¢(0) = 0,and T = Ty 0 D o S;. For 5y, we have

§11 (V, Y’:;) =7,
(3.3.9)

S, Ya) = 6()Ya + &(v)YE + O(Y),
where €;(0) = e;(0) > 0.

By (3.2.5), (3.2.7) and (3.3.9), for T we have

)
Ti(v,Ys) = v,

8 Tow, V) = bo(v) + 8 ()b (V) on () [Vaw(Fa, 1) + - - -] (3.3.10)

\ +a )b ()¥a+ -

By (3.2.2), (3.3.8) and (3.3.10), we have

Ll(l/aﬁl) = 0,
(3.3.11)
Lo, Y2) = ao(v) + c1() [Yaw(Ya,00) + - -] + (@) Va + -+ -,

where
cov) = 70(,,,&,(”10, —B1)) + O(C(w)) — bo(v),

a(v) = - V)b (V) (v),

xv) = = + O, =) In ) + O(C(¥) = E4(1)br(v),

In order to prove the cyclicity of Sxhhlc, we need the follow lemma.
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Lemma 3.3.1. €,(0)b,(0) = 1 for v =0, fizo = O and ap = —3.

Proof. To calculate é;(v)b(v) for v = 0, fizp = 0 and ag = —%, we can restrict ourself
on the blown-up sphere r = 0 to study maps ﬁ(O, -} and ﬁ(O, ).
Since ag = —%, and fizp = 0, in the chart F.R. on r = 0,we have system Yp=1, which

becomes
(
T=[a+y— 37 = P(,7),

. (3.3.12)

—~

\ §=p1+2z7:= Q7).

We can use the quasi-homogeneous compactification

4

==,

. o (i=3,4), (3.3.13)
~ _ Ui

L Y= ;:_Za

to study the singularities P; and P, at infinity of system (3.3.12), and obtain the normal
forms in the neighborhood of P; and P in the chart FR. on 7 = 0. Near P; = (0, 1), we

have
§

P3 = —p3)
< (3.3.14)

s = —4f3 + K3p3,

\
where k3 is the function of fi. Similarly, in the neighborhood of P; = (0, 1), we have

,

p4 = P4,
! (3.3.15)

\ U4 = 434 — Kap§.

Let m; = {p; = po}(i = 3,4) be the two line sections in the chart F. R.on 7 = 0

parameterized by §;(i = 3, 4), respectively. Let 5; = {§ = 1} and 6, = {Z = 1} be the
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two line sections near the saddle point in the chart F. R. on r = 0 parameterized by Z and

7, respectively. Then we are reduced to study the one dimensional transition maps

T2(0,54) : 74 —> & and T2(0,§) : 53 — 7.

Figure 3.4: Transition maps for Sxhhlc in the chart FR.on7 = 0

To calculate the maps T35(0, 74) and Th,(0, §), we introduce two auxiliary line sec-
tions #; = {p; = poo} in the normal form coordinates (p;, J;) near P;( = 3,4) with

0 < poo < po, Which are expressed as follows.

(3.3.16)
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where ¢(z) = O(x?), ¥3(poo, ¥3) = O(|poo, ¥3|) and ¥4(p00, ¥a) = O(|poo, Jal)-

We also introduce another two auxiliary line sections 61 = {§ = dgo} and 62 = {Z =
doo} in the normal form coordinates (Z, §) with 0 < dgo < 1.

As we know, after translating the singular point to the origin, by a linear transforma-

th to
tion T = and C* normal change of coordinates, we can bring the system

t3 t4

(3.3.12) into normal form near the saddle point (Zo, 7). Hence, on the blown-up sphere

r = 0, 6, and 65 can be expressed in the original coordinates (Z, ) as follows.

61 ={(z,9)|Z = f1(Z) = To + LT + tadeo + dooO(ZT, doo) + O(7?),
7= 91(Z) = Yo + t3% + tadoo + dooO(Z, doo) + O(3%)},
62 = {(&,9)|Z = fo(§) = To + tadoo + 27 + deoO(doo, 7) + OF?),
§ = g2(§) = o + tadoo + t4§ + dooO(doo, 7) + O(7%)}-

Therefore, the map Tm(O, Ua) : M4 — &1 can be calculated by the decomposition
T12(0,5a) = Ti o Ty 0 Ty(§a),

where T : 14 —> #t4, T; : 74 — 61 and T} : 6 — T, are one dimensional regular

transition maps. The map T22(0, ) : o — m3 can be calculated by the decomposition

T52(0,9) = T, o T, 0 T,(§),

where T, : T3 — &9, T, : 62 — 73 and T, : T3 — 73 are one dimensional regular

transition maps.
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For T} and T,, form (3.3.14) and (3.3.15), we have

9a = Ti(fa) = (%)4174 — K3ppo In (%), (3.3.17)
gz = T(93) = (%)4@3 + K3ppIn (%). (3.3.18)

For Tl and T,_, using the formula in Theorem 2.2.1, we have
T/(0) = doo and T"(0) = dg. (3.3.19)

Next, we study transition maps T,: 7y —> 61 and T, : 69 —> 3.
Let

P(£4(0), 94(0)  f1(0 5 P(f1(0),:1(0)) fi(0
ALD) = (£4(0), 94(0)  f4(0) and Ky(0) = (f()g())f())

Q(£4(0), 94(0)) g4(0) Q(£(0),5:(0)) ¢(0)

by the formula in Theorem 2.2.1, we have

T, 0) = g,_gg;_e)(p(/;(,»,4_,&1)de(rY(t))'(ss.lz)dt)

1.4
3P0 [1 + O(poo)]

N exp(0), 3.3.20

[tata — (t1ta + tats)To — titafo)doo + O(d3,) xp(0) ( )

where T'(#, — &,) denotes the time taken to travel along the lower graphic I' from 74 to

AD) = P(£2(0),92(0) £3(0) and &.(0) = P(f3(0), 95(0))  £1(0)

Q(£2(0),92(0)) g5(0) Q(£3(0),95(0)) g4(0)
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Similar to T7(0), for T'.(0) we have

= A, (0) ‘
T = = X
r(0) A,(0) P (/71(52_.;,3) divX(1(t) )|(3.3.12)dt)
[tsta — (t1ts + tats)To — t1tado)doo + O(dZ,)
3P0 [1 + O(poo)]

xp(0), (3.3.21)

where TG, — 73) denotes the time taken to travel along the lower graphic I from & to

~

3.

From (3.2.6) and (3.2.7), we have

_ T15(0,0) 8T5»(0,0)

él (O)bl (0) =€ (O)bl (0) ag4 ag

Therefore, by (3.3.17), (3.3.18), (3.3.19), (3.3.20) and (3.3.21), we have

aOpi(0) = lim  T(OT,(0)T(0) T(0)T(0)T7(0) = 1.

(po0,doo)—(0,0)

End of proof for Sxhhlc

From (3.3.11), we have

OLy(v,Ys)

%, =01(1/)[*0.)(}7470[1)4_...]+Cz(y)+... )

Here we use the symbol * to replace any continuous function of (v, i, a), which is

nonzero at (v, i,a) = (0, i, ag)- Let

oy . OL(n,Yy) vl (Vs 1)

*1 4 .- 1
Y, = =
El(y’ 4) oY, *1 4 .-

AAE T w(fs,a)

+ .-

=c1 (V) + c2(v)
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The zeros of %}2&1 are zeros of the function &;(v,Y;) in a small neighborhood of
Y, =0.

Differentiate &; (v, }74) with respect to Y,, and we have

Y, ) 7 SRR |
—851(1/: ) = xcy(v) 2 ki = +oe
an *1+... U.)2()/4,a1)
Let
g R AR
V1) = (Y, 1) — LU
& Ye) =w (s ) N 7N SER:) 71

then we have

LW, Yy) =xc(v) + - . (3.3.22)

Since v* # 1, 50 ¢5(0) = v — &(0)0(0) = & —1 # Oforv = 0, figo = 0

and ay = —;. Because the remainder in (3.3.22) is o(1). Hence, there exist Ay, a

3
neighborhood of ag, V4, a neighborhood of fig, and v, > 0, such that V(a, i) € Ay X Vo
and Vv € (0, 1), we have & (v, Y,) # 0 in a small neighborhood of Y3 = 0.

By Rolle’s Theorem, ¥(a, i) € Ag x Vj and Vv € (0,1,), the map Ly(v,Y,;) = 0 has

at most 2 zeros in a small neighborhood of Y, =0,ie., Cycl(Szhhlc) < 2.

3.3.2 The intermediate graphics Sxhhlb

For the intermediate graphics Sxhh1b, we can write the regular transition map 7" as

I (U7 g‘l) =V,
(3.3.23)

T(v, §a) = co(v) + c1(v)da + O(F3),
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where ¢;(0) = 0 and ¢;(0) # 0.
Hence, by (3.2.2) and (3.3.23), the displacement map L = R~! — T has the following

form

.

L2(V7 54) = ’70(’/)‘*)(1,10) _53)) + l:;/lt + O(I/’73w’13(%, _ﬂl) In ulo)} g4 (3324)

+0(3i) — [co(v) + c1(¥)da + O(F1)]-

\

In order to prove the cyclicity of Sxhh1b, we need the follow lemma.
Lemma 3.3.2. T5(0, §4) is an identity for v = 0, figo = 0 and ag = —3.

Proof. Just as we did for Sxhhlc, let m; = {p; = po}(i = 3, 4) be the two line sections in
the chart F. R. on r = 0 parameterized by ;(i = 3, 4), respectively. Then we are reduced

to study the one dimensional transition map
TQ(O,@;) Mg — 3.

To calculate the map T5(0, 74), again we introduce two auxiliary sections #; = {p; =
poo }{i = 3,4) in the normal form coordinates in the chart F.R. on 7 = 0 with 0 < py <

po- Then the map T5(0, §4) can be calculated by the decomposition

T2(07 374) = Tr o T o T‘l(g4)7

where T} : my — 71y, T : 4 — 73 and T, : w3 — w3 are one dimensional regular

transition maps as shown in Fig 3.5.
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Figure 3.5: Transition maps for the family Sxhh1b in the chart FR.onr =0

The transition maps T; and T, have been explicitly given in (3.3.17) and (3.3.18).
Next, we study the transition map T : #, — 3. For sections 73 and 74, we can
write them in the original coordinates (Z,7) with 73 = {Z = f3(93),7 = 93(9s)},

Ty = {Z = fa(94),7 = 94(74) }. Here, f3(3)s 93(93), fa(9s) and 94(7s) are given in

(3.3.16).

System (3.3.12) is Hamiltonian with the first integral

1 1
H(z,§) = ~iZ + fnf + 57" — 53°9;

so we have H(fa(4), 94(94)) = H(f3(73), 93(J3)). Let poo — 0, then we have

(1 G+ $(50)) G+ o(50)) = (1 + G + 6(5) G5 + Gs(39)).
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By implicit function theorem, when §j is in a small neighborhood of g4 = 0, we have
g3 = T(a) = Ya- (3.3.25)

Therefore, by (3.3.17), (3.3.18) and (3.3.25), we have
T5(0,94) = T; o T 0 Ty(fia) = -

So T3(0, §4) is an identity for v = 0, i3 = 0 and ap = —3.

End of proof for Sxhh1b

Hence, for the displacement map L = R™! — T, by (3.3.24), we have

OLy(v,§a) _ 1 p3, a3( Y _ v n
% = = caa(v) + O(v, VPw (Vo’ 51)111’/0)4‘0(3/4)'

From Lemma 3.3.2, we have ¢;(0) = 1 for v = 0, iz = 0 and ap = —3. Since v* # 1,
so there exist Ay, a neighborhood of ag, V4, a neighborhood of fig, and 4, > 0, such that
Y(a, ) € Ao x Vp and Vv € (0,v4), we have @%g";ﬂl # 0 in a small neighborhood of
ga = 0.

By Rolle’s Theorem, ¥(a, i) € Ag X V and Vv € (0, v4), the map Lo(v, §4) = O has
at most one zero in a small neighborhood of 4 = 0, i.e., Cycl(Szhhlb) < 1.

Altogether, we obtain that all the generic convex graphics with a nilpotent saddle

point of multiplicity 3 have finite cyclicity, thus completing the proof of Theorem 3.1.1.
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3.4 Finite cyclicity of (I],)
Theorem 3.4.1. The graphic (I},) has finite cyclicity.

Proof. For (I},), it is an HH-type graphic with a nilpotent saddle of multiplicity 3 at
infinity and an invariant parabola as shown in Fig 3.1.

To prove the finite cyclicity of (I],), we only need to check that the first return map
P along the invariant parabola satisfies P'(0) # 1. By [15], the graphic (I{,) occurs in
the family

& = AT —y+ e,
(3.4.26)

¥ =2z 4+ y+ 622+ Sy,
where A # 0,0 < 0y < €1, (51 = )\(361 — (52) > 0 and 481)\2 - (1 + /\2)(52 < 0. By

rescaling we can assume that £, = 1. Then (3.4.26) becomes

T =Mt —y+7z?
(3.4.27)

=z + Ay + A3 — 82)z* + dazy,

with Ag = (1 + A2)8; — 4\ > 0 and A # 0. System (3.4.27) has an invariant parabola

y=(1- %)xz — Az — %(1 + A2). ‘ (3.4.28)
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Along the invariant parabola (3.4.28), we have

P/(0) = exp ( / " div X(y(t))}wndt)

—00

. o 2/\ -+ (2 + (52)112
= 2
A exp ( / Rt a it N @

)

8973 + 4z + 1+ A2 8oz + 2)

248
lim ) " ex -—1-(—5—):— arctan
~ aomoo | \ 8522 — 4Azo + 1+ A2 P\ 5,v/0, VB

. ( 16 7 )
= ex R —
P\ T 0/
£1.

zo
—z0

Therefore, we finish the proof.
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4 Finite cyclicity of (Ii5)

For the graphic (I,), it is an HH-type graphic with a nilpotent saddle at infinity. Com-
pared to the graphic (I],), there is an additional attracting saddle-node on the invariant

parabola for the graphic (I};) as shown in Fig. 4.1 .

Figure 4.1: The graphic (I};).

In this chapter, firstly we will give a main theorem that the graphic (I];) has finite
cyclicity in section 4.1, and then we prove the main theorem by showing that all the
upper boundary graphics have finite cyclicity in section 4.2, and all the lower boundary

graphics and intermediate graphics have finite cyclicity in section 4.3.
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4.1 Main theorem

Theorem 4.1.1. The graphic (1]5) has finite cyclicity inside quadratic systems.

Since the graphics (I1;) has a nilpotent singular point at infinity, we can limit our-
selves to the limit periodic sets which have an invariant line (%; = 0). Moreover the
connection along this line is fixed. Therefore, we only need to look to the limit periodic
sets Sxhh1, Sxhh4—Sxhh8.

To prove the finite cyclicity of graphic (I1;), we have to prove that all the upper
boundary graphics, the intermediate graphics and lower boundary graphics of Sxhhl,
Sxhh4—-Sxhh8 have finite cyclicity.

We begin with the upper boundary graphics.

4.2 The upper boundary graphic
Proposition 4.2.1. For the graphic (I3,), Cycl(Szhhia) < 1,i=1,2,--- ,10.

Proof. As shown in Fig. 4.2, let 3 = {)2'3 = 1} and ¥4 = {):(3 = —1} be the two
sections transversal to the graphics in the normal form coordinates ():(3, 1:’3) near the
saddle-node point.

We consider the Poincaré first return map P defined on the section ¥4:

PIZ4~—)E4,
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Figure 4.2: Upper boundary graphics of saddle type

which can be calculated by the composition
P=RyoRoR 0030U 007", 4.2.1)
where

e ©,: 1, — %; are the second type of Dulac maps in the neighborhood of P, (i =

3,4). The second type of Dulac maps ©; = (&, ;) (i = 3,4) have the expression

f’é(rh pz) =V,
422)

Ei(ri, pi) = mi(v, w(E, B1) + ()% [yo + 0:(ri, pi, w (7, —B1))];

where (3 = p3 — 03(a)gs.
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e U : 14 — 73 is a regular transition map which can be written as

Ur(74, pa) = ra(§(¥) + O([ra, pal)),
(4.2.3)

Us(ra, pa) = pa(3(v) + O(Ira, pal)),

where j(0) = 1 was calculated in Proposition 5.8 of [53] and 3(0)=j(0) ! =1.
° ﬁl : 3 — %3 is a regular transition map which can be written as

ﬁu(’/, 133) =V,
(4.2.4)
RIZ(Va :'33) = lO(V) + l](ll)ég + O(:‘jg)a

where [5(0) = 0 and {;(0) > 0.

e R:Y; — T, is a central transition map near the attracting saddle-node point in

the normal form coordinates (Xg,, }73), which can be written as

R, Ys) = v,
y ; 4.2.5)
RZ(Vv Y3) = m(V)Y37
where m(v) — 0asv — 0.
) .§2 : ¥, — ¥4 is a regular transition map which can be written as
EZI (Vy Y/AI) =V,
(4.2.6)

Ran(v, ¥a) = no(v) + i ()Y + O(V2),

where ny(0) = 0 and n1(0) > 0.
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(V, 154) B (V, (72(’4 174))

U=030U00;"

4.2.7)

For its first component of U , we have fjl(u, §4) = v. For the second component

U, (v, 74), it has already been shown in [53] that

8U,(0,0)
04

1.

For ﬁ(u, 73), by (4.2.4), (4.2.5) and (4.2.6), we have

él(ya 53) =V,

~

Ra(v,§3)) = fio(v) + m(v)lin (v)ys + O(43)],

where
fio(v) = no(v) + O(m(¥)lo(v)),
() = L(@)m () + O(m()lo(v)).
Therefore,
ORa(v,§s)

= m(v)[h (V) (v) + O(m(v)lo(v))] + O(ys).
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So there exist Ay, a neighborhood of ag and v; > 0, such that V(a, i, v) € Ay x S? x

(0,11), aﬁg(—i':’j"‘) is sufficiently small in a small neighborhood of 3 = 0.

For the first return map P defined by (4.2.1), by the definition R and U, we have

P(v,54) = Ro U(v, ).

The first component of P satisfies P, (v, §i4) = v. Let §j3 = Uy (v, §4), then for the second

component Py (v, 734), we have

6P2(’f) '54) — aR?(Va 353) aﬁ2(1/7 54)
04 073 N

By (4.2.8) and (4.2.10), we have that V(a, ji,v) € AgxS?x (0, vy), 9%54’@2 is sufficiently
small in a small neighborhood of 374 = (. Hence, by Rolle’s theorem, the first return map
P has at most 1 fixed point in the neighborhood of (v, 74) = (0,0), i.e., Cycl(Szhhia) <
1,i=1,2,---,10.

]
Remark 4.2.2. In the proof of Proposition 4.2.1, we only use the fact o3(a) = 2(1 —

2a) > 0, so for the elliptic case with a € (0,3), the same proof gives that for upper

boundary HH-graphic of elliptic type, Cycl(Ehhia) < 1,i=1,2,---,12.

4.3 The intermediate and lower boundary graphics

Let I" be any intermediate or lower boundary graphic. To study its cyclicity, as shown in

Fig. 4.3, take sections II; = {p; = po} in the normal form coordinates (7, p;, §;) in the
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neighborhood of the singular point P; (i=3, 4). We will study the displacement map

L: H3—>H4

L=R-T7,

where R : II; — Il is the transition map along the regular orbit in the normal form
coordinates, and T' : II; — II3 is the transition map passing through the blown-up
singularity. We study the number of small roots of L = 0. The maximum number of
roots bounds the cyclicity.

We begin with the transition map R.

Figure 4.3: Transition maps for the HH-graphics of saddle type
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Proposition 4.3.1. For any k € N andVay € A = (—00, 1), there exist Ay C A,
a neighborhood of ag and vy > 0 such that ¥(a,i) € Ag X S* and Vv € (0,11),
R(v,§3) = (Ri(v,93), Ro(v, §3)) is C* and Ry (v, §3) = v, Ry(v, §a) takes the following
form

1) ifao ¢ Q

Ry(v,3) = (no(y) + O(m))(i)—m

+m(v) [ll(u)nl(u) +O(vIn 1/10) + O(m)] U3
+m(v)| i O D) + O3]

2)ifao € Q

RQ(Vy ?73) = 70(1/7“)(1/107 —/61)7m(y))

+m(v)| Yo w W, —4),m)E + 0], @311

i=1 0

where
Yo = (no(v) + O(m)) (=) ™% + ksO(rBw( =, — 1)), mv**w(—, — 1)),
Vy Yy 140
N = h(E)m(v) + O(m(r)) + O(vin =) + O™ w™(—, —1)In ),
0 140 1 Z20)

% = O(m(v)) + O(wIn 2) + OGN s r=#al G Y gy Yy 559
2 0 W

Proof. We only consider the second case ag € Q. The transition map R can be calculated

by the composition

R=A;'0Ryo0RoRjoA,, (43.12)
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where
o A; : II; — X; are the first type of Dulac maps in the neighborhood of P;(i =
3,4). The first type of Dulac maps A; = (d;, D;)(i = 3,4) have the expressions
di(v, %) = v,

Di(v, i) = m(v, (55, =B1) + (%)% G + (v, i (35, —B1)));

where § = p; — d3(a)gs and ¥;(i = 3, 4) have the property (2.5.23).

(4.3.13)

e The transition maps Ry, R and R, are given by (4.2.4), (4.2.5) and (4.2.6).

o A;': ¥, — I, is the inverse of the first type of Dulac map in the neighborhood

of Py. It has the expression

dZI(V: ?54) =V,
(4.3.14)
D4_1(V, 334) = 94 + 1/}4(1/7"‘)(1,%7 _ﬁ1)7 g4)7
where §, = (£)™% (Y4 — na(v, w(s,—p1))), and 14 satisfies property (2.5.23).
Hence, for the second component of transition map R, by (4.2.4), (4.2.5), (4.2.6),
(4.3.12), (4.3.13), (4.3.14), and Lemma 4.13 in [53], a straightforward calculation yields

the result.

O

For each family of graphic Sxhhi (i = 1, 3,4, 5,6,7,8), we use V; C S? to denote the
set of i = (fu1, fi2, i3) in which the family Sxhhi exists, and use Vj to denote a small

neighborhood of jiy, where iy € V;.
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4.3.1 Family Sxhhl

Family Sxhh1 has a lower boundary graphic Sxhhlc which passes through a hyperbolic
saddle point as shown in Fig 4.4. Let A be the hyperbolicity ratio at this saddle point
when 7 = 0 for i = Jig and a = a9 € A. In the chart F.R., by translating the saddle
point to the origin, a linear transformation and C* changes of coordinates, we can bring

the system (2.4.14) in the neighborhood of the saddle point into a normal form.

Figure 4.4: Transition maps for the family Sxhhl

Take sections &; = {§ = 1} and X, = {& = 1} in the normal form coordinates near
the saddle point. Let D(v, %) = (D1 (v, %), D2(v, %)) : £1 — X be the Dulac map near
the saddle point. There exist Ao, a neighborhood of ao, V1o, a neighborhood of fio, and

vy > 0, such that V(a, 1) € Ag x Vi and Vv € (0,v1), the inverse of the Dulac map
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D(v,%) : &, — T can be written as
Dl 5,—Y
(v,§) — (D1'(»,9), Dy (v,9)),

which has the following form

DiY(v,) =v,
- 70 (1+ ¢(3,v)), if Ao # 1,
D2 (V7y) =
aW)jw+ -]+ G+ a@)[FPw+ -]+, ifd =1,
(4.3.15)

where ¢(g,v) € I§°, A(v) and &;(v) are functions of (v, i, a), G1(v) = 1~ x5 and
w = w(¥, a;(v)) is the Leontovich-Andronova-Ecalle-Roussarie compensator defined in
(2.2.4).

LetTh : I3 — Sy and T : &, — I1,. They are the compositions of normal form

coordinate changes and a regular transition map. YA’l (v, ¥s) can be written as

Tn('/, 373) =V,

(4.3.16)
T12(v, §is) = eo(v) + ea(v) s + O(33),
and Ty(v, %) can be written as
T\zl (V, i‘) =V,
(4.3.17)

Too(v, &) = bo(v) + by ()& + O(32),
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where e(0) = 0, bo(0) = 0, e1(0) > 0 and b;(0) > 0. Then for 77! : TI; — II,, we
have

T_l = fg o} D_l o fl.

We treat two cases A\ # 1 and \g = 1 separately.

4311 X #1

Firstly, we study the lower boundary graphic Sxhhlc. By (4.3.15), (4.3.16) and (4.3.17),

we have

Tl—l(V7 g3) =V, (4 3 18)

Ty (v, 35) = e2(v) + h(v)(e2(v) + §o) I [1 + do(dis, V)],
where €;(0) = 0(¢ = 1,2), h(0) = el(O)Tlobl(O) # 0 and ¢y € I$°. Therefore, from

(4.3.11) and (4.3.18), the displacement map L has the following form

’

Li(v,33) =0,
k
4 L2(Va 1’33) = '70(’/?"‘)(,,_'/07 _ﬁ1)7m(y)) + m(V) [Z%(V?w(yioa —ﬂl)a m(l/))g;

=1

FOE)] = [10) + h)(Ea(v) + )7 (1 + dolGs, )]

\

Then
%;ya) = mE)nw(,~6),m) +0(s)]
‘%@2@) +62) % L+ 1 (G, V) @319

where ¢ € I§°.
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.)\0>1.

Since 1 (v, w(;%, —Bs), m(v)) is bounded and m(v) — O as v — 0, so

m(v)n (v, 0(2, =), m(¥) +0(F)] = 0

m
(va3 ,ﬁ,a)ﬁ(o,o,ﬂo,ao)
For (v, i, a) in a small neighborhood of (0, fg, ap), we have ﬁy) —1<0,7(v)and h(v)
are all bounded and bounded from zero. Hence,

h(v)

1
im - e2(v) + §3) " 1 + ys, V)| = oo.
ol (e (t) + 5T L+ G )

Hence, there exist Ay, a neighborhood of ay, Vg, a neighborhood of fig, and v, >
0, such that V(a,z) € Ay x Vip and Vv € (0,v1), we have %;3’53) # 0 in a small
neighborhood of 3 = 0.

By Rolle’s Theorem, V(a, i) € Ao x Vio and Vv € (0,1,), the map Ly(v,§3) = 0

has at most one zero in a small neighborhood of §j3 = 0, i.e., Cycl(Szhhlc) < 1.
° )\0 <1

By (4.3.19), zeros of %&;ﬁl are the same zeros of

LQ(V,Z?3) = m(y)%[1+0(g3)]%
(o) 0t

where ¢, € I§°.

62




Differentiate L, (v, §3) with respect to §i3, and we have

Ha i) — 1) 0(1) - (%) 1+ 63, )),

where ¢35 € I°. Since 25 > 0 and m(v) — 0asv — 0, 50

OLa(v,50) _ (61(0)%1)1(0))‘"‘%’ 40

1m =
(Vtgfixﬁ:a)_’(ov())ﬁ'oxao) ay3 AOll (O)nl (0)

Therefore, there exist Ay, a neighborhood of ag, V3, a neighborhood of fig, and
v > 0, such thatV(a, i) € Ag x Vip and Vv € (0, 1), we have @2_8(;;_273) # 0 for 43 in
a small neighborhood of §3 = 0.

By Rolle’s theorem, V(a, 1) € Ay x Vip and Vv € (0,v1), Lo(v,§3) = O has at most

two roots in a small neighborhood of §3 = 0, i.e., Cycl(Szhhlc) < 2.

Now we study the intermediate graphics Sxhhlb for A\ # 1. Note that for v = 0,

a = ag and i = [ip, from (4.3.18) we have
1
T;7(0,3s) = h(0)75° [1 + o(1)].

Since h(0) = 61(0)%61(0) # 0and \g # 1, so for V(a, i) € Ay x Vig, T3 (0, 3)
is nonlinear. By analytic extension principle [11, 52, 53], T5 *(0, #is) is nonlinear in its
analytic extension domain.

From proposition 4.3.1, we know that any 7** derivative of the second component of

transition map R(v, §j3) is close to zero. Suppose that T; (0, J3) has its n** derivative
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nonvanishing, then by Rolle’s theorem, V(a,i) € Ay X Vip and v > 0 sufficiently
small, Ly(v,%3) = O has at most n roots in a small neighborhood of §j3 = 0 i.e.,

Cycl(Szhhlb) < n.

4312 X=1

Performing a change of parametrization on II3, the displacement map L will be defined
as

L(v,Ys) = R(v, Y3+ ((v)) - T\ (v, Ys), (4.3.20)

where ((v) = Ti3! (v, 0) with ((0) = 0, and T-! = T, 0 D~1 0 5. The maps D~! and

’fz are given by (4.3.15) and (4.3.17), respectively. For §1, we have

§11(V,}73) =V,

(4.3.21)
Sia(v, V5) = & (v)Ys + &)Y+ O(Y3),
where €;(0) = e;(0) > 0.
By (4.3.15), (4.3.17) and (4.3.21), for T~! we have
( ~ ~
Tl_l(VaY-'i) =V,
| (v Ya) = bo(v) + &% (v)bi(v)au (v) [Vaw (Y5, 80) + -]
\ &1(1)b1 (v)Y3 + &% (1)by (V) A (V) [YRw(Y3, 81) + -+ -] + - -
(4.3.22)
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Therefore, for the displacement map L(v, 173), by (4.3.11), (4.3.20) and (4.3.22), we have

4

Ll (1/, Yé) = O,

8 Ly(v, V3) = co(v) + c1(v) [Yaw(Ys, @) + - - -] (4.3.23)

+e,(V)Ys + c3(V)[Y2w(Ys,6) + -] + -+,

where

(¥) = To(v (o, =), m(¥)) + O W) ~ (o),

a(v) = —e B )b (Va @),

& (v) = mE)m(, w(f{; —B1),m(v)) + O((¥)) — & (v)bs (v),

c3(v) = =& (V)by (V)G (v).

We will treat the following three cases separately depending on the parameters (a, ).
® (g 3& —% al’ld[_l,g() =0.

Since ji19 = 0, if fizo = 0, then in the chart F.R. on the blown-up sphere r = 0, system
X )= in (2.4.15) is symmetric with respect to the y-axis, so we have & (0)b,(0) = 1.

Differentiate Lo (v, )73) with respect to 173, and we have

0Ly, Ys) _ xw(Ys, a 1+ ea(v) + ca(v)[¥Yaw(Ys, &

—op, - allbeltsa)+e T () + o )#Yaw(Ys,an) +---] +
Let

&, Ys) = 0L, ¥s) W™ (Ys, 24) = c1(v) + c3(v) v 1,
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The zeros of %}Zﬁz are zeros of the function &, (v, Y3) in some neighborhood of Y3 = 0.

Differentiate &, (v, Y3) with respect to Y3, and we have

\/ ~—1_&1 .
_a_g_lil./:—}/'g)=>|<cz(]/)}/;3 + ~1_ + -
81/3 *1 + P w2()/3’ al)
Let
; N .S 2 )
,Y3) = ? Ys, ~* a = )
el 1) =%, &) Toma T Ty

then we have

&(v,Ys) = xea(v) + - - -

Since ¢2(0) = —¢€;(0)b1(0) = —1 # 0, and the remainder is o(1), so there exist Ay, a
neighborhood of ao, V1, a neighborhood of fip, and v; > 0, such that V(a, i) € Ay X Vi
and Vv € (0,11), &(v, Y3) # 0 in some neighborhood of ¥3 = 0. By Rolle’s Theorem,
Y(a, i) € A x Vig and Yv € (0,v;), the displacement map L(v, Y;) has at most 2 zeros
in some neighborhood of Y3 = 0, i.e., Cycl(Szhhlc) < 2.

For the intermediate graphics, if j1,0 = 0 and i3y = 0, because of the symmetry,
T571(0, 3) is an identity. From proposition 4.3.1, we know that any ** derivative of
the second component of transition map R(v, §j3) with respect to 73 is close to zero. By
Rolle’s theorem, V(a, i) € Ag X Vig and v > 0 sufficiently small, L(v, §3) has at most

one root in a small neighborhood of g3 = 0, i.e., Cycl(Szhh1b) < 1.

L) 75 —% andﬂ;;o 750
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For ag # —% and fizg # 0, it has been calculated in [53] that the first saddle quantity

_ 2a0(ao — 1)(1 +2a0)*  _
Qy = 0.
2 0,0(40,0 - 1)/7%0 - (1 + 20‘0)2[7,20/1’30 75

Differentiate Ly (v, }73) with respect to Y3, and we have

Lo(v, Y 5
%-—32 =) [xw(Ys,a1)+ -]+ cv) +---.
3
Let
~ ALy (v, Ys) w(Ya, @) *x1+--- 1
Y;) = = = —
6, 73) = T C T < () 4 ealy) T e

The zeros of %@ are zeros of the function &, (v, Y3) in some neighborhood of Y3 = 0.

Differentiate &, (v, 173) with respect to )73, and we have

v y-l-a
M—S):*Cz(u) 3 + ~1_ 4.,
6}/3 *14--- w2(1/3,al)
Let
*14--- 651(1/,}73)

)

,)7 :=w2}~’,6z = =
& (v, Ys) (Y3, 01) *Y3_1_C'+--- %,

then we have
§2(1/,1~/3) =xcV)+---.

Since c3(0) = —€1(0)b1(0) # 0 and the remainder is o(1), so there exist Ao, a
neighborhood of ay, V}o, a neighborhood of fig, and v > 0, such that V(a, i) € Ay % Vig

and Vv € (0,11), &(v, Y3) # 0 in some neighborhood of Y3 = 0.

67




By Rolle’s Theorem, V(a, i) € Ay X Vi and Vv € (0,1,) the displacement map
L(v, )73) has at most 2 zeros in some neighborhood of Y;=0,ie., Cycl(Szhhlc) < 2.

For the intermediate graphics, since &, # 0, from (4.3.22), we have @;}gﬁ # 0.
Hence, TZ_I(O, Y3) is nonlinear. By analytic extension principle [11,52, 53], @'1(0, Ys)
is nonlinear in its analytic extension domain.

From proposition 4.3.1, we know that any i** derivative of the second component of
transition map R(v, Y3 + ((v)) with respect to Ys is close to zero. If T; (0, Y3) has its
nt* derivative nonvanishing, then by Rolle’s theorem, V(a, 1) € Ag X Vipand v > 0

sufficiently small, L(v, Y3) has at most n roots in a small neighborhood of Y; =0, ie.,

Cycl(Szhhlb) < n.

® a0y — —5.

N =

Since Ay = 1, so the divergence of _)_(_,,:1 vanishes, i.e., (1 + 2a0)Zo + fi30 = 0. If
ag = —3, then figo = 0. Note that iy = 0, so again system X ,=1 is symmetric with
respect to the y-axis. Exactly as we did for the case ag # —3 and fizo = 0, we can prove

that Cycl(Szhh1b) < 1 and Cycl(Szhhlc) < 2.

4.3.2 Families Sxhh4 and Sxhhé6
The family Sxhh4 exists if and only if

Vi = {i € |1 = 0,13 > 0, 12 > ajz3},
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and the family Sxhh6 exists if and only if

Vs = { € S*|ji = 0, iz < 0, fiz > afi3}.

Figure 4.5: Transition maps for the family Sxhh4

For families Sxhh4 and Sxhh6, the lower boundary graphic has a saddle connection

519, as shown Fig. 4.5. At S; and S,, the hyperbolicity ratios are

N 0,/
St M= ——F—; Seitdp = —————.
204/—-%2 U3 + —‘%g'

We first consider the lower boundary graphics.
In the chart F.R., in the neighborhood of S, take sections ©; = {§; = 1} and

£, = {& = 1} in the normal form coordinates. In the neighborhood of S, take sections
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¥, = {& = 1} and &3 = {ij, = 1} in the normal form coordinates.

The transition map 7! : II; — II4 can be calculated by the composition
T ! = fg oD o ?3 oD 1o T\l,
where

e T; : II; — X, is a composition of normal form coordinate changes and a regular

transition map, which can be written as

’fll(’/a 3}3) =V,
(43.24)
Ti2(v, J3) = eo(v) + ex(v)§s + O(%3),

where e,(0) = 0 and €;(0) > 0.

o D! 3y — XAIg is the Dulac map in the neighborhood of S;, which has the

expression

5;1(1/792) =V,
. (4.3.25)
D' (v, i) = 527 [1+ (i, v)),

where ¢ € Ige.

o T : iz —» 3 is the composition of normal form coordinates changes and a

transition map. Since Z axis is fixed for X ,—;, so T3 can be written as

fgl (I/, fi‘z) =V,
(4.3.26)

ﬁz(’/, Tp) = k1(v)Z2 + O(23),
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where k;(0) > 0.

e D fl — ¥ is the Dulac map in the neighborhood of \S;, which has the

expression

(4.3.27)

where ¢ € I§°.

o T, : 3, — Il  is a composition of normal form coordinate changes and a regular

transition map, which can be written as

Tor(v,3) = v,
(4.3.28)
Too(v, &) = bo(v) + b1 (v)E + O(32),

where b,(0) = 0, and b,(0) > 0.

Then by (4.3.24), (4.3.25), (4.3.26), (4.3.27) and (4.3.28), for the transition map T, we

have
Tl—l(ya 53) =V,
. (4.3.29)
T, (v, 53) = e1(v) + h(v)(e2(v) + §3) % [1 + 1ho(F3, V)],

where £;(0) = 0( = 1,2), h(0) = e;(0) @ k, (0) 5@ by (0) # 0 and o € I

— B0 _ [igo
Let A(v) = A ()Xo (v) in (4.3.29). Since A;(0)Az(0) = Y— , then
—E2 + [i3o
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1. If fip € V4, then A\;(0))2(0) < 1. Exactly as we did for the case \g(jig) < 1 of

graphic Sxhh1, we have Cycl(Szhh4b) < n and Cycl(Szhhdc) < 2.
2. If iy € Vi, we have A\1(0)A\2(0) > 1. Exactly as we did for the case A\o(fip) > 1 of

graphic Sxhh1, we have Cycl(Szhh6b) < n and Cycl(Szhhbéc) < 1.

4.3.3 Family Sxhh5

The family Sxhh5 exists if and only if jip = (0, 1,0). Then system 7,,:1 is symmetric

with respect to y-axis as shown in Fig 4.6.

4.3.3.1 SxhhSb

For the intermediate graphics, the transition map 5 '(0,7s) is an identity for fig =
(0,1,0). Since the derivative of the second component of transition map R(v, §j3) with

respect to g is close to zero, so by Rolle’s theorem, we have Cycl(Szhh5b) < 1.

4.3.3.2 SxhhSc

Now we consider the graphic Sxhh5c. The hyperbolicity ratio A\; and A, satisfy A\, =
—a, A = —2aand M)Ay = 1.

In the chart F.R., in the neighborhood of S;, take sections &; = {§; = 1} and

5= {Z; = 1} in the normal form coordinates. In the neighborhood of S,, take sections

72




Figure 4.6: Transition maps for the family Sxhh5

¥, = {#; =1} and S, = {§; = 1} in the normal form coordinates.

The transition map 7! : II3 — II4 can be calculated by the composition
T_l = j_\'2 OE_I o} T3 (¢] ﬁ_l Ofl7

.. =~ = ~ =-1 S ..
where the transition maps 77, D!, T3, D and T, have the same definitions and ex-

pressions as those in Family Sxhh4.

Performing a change of parametrization on I3, the displacement map L will be de-

fined as

~ ~

L(v,Ys) = R(v, Y3 +((v)) = T} (v, Ya), (4.3.30)

where ((v) = T3 (v, 0) with ¢(0) = 0, and T1=TyoD 'oTh0oD 105,
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For S;, we have

§11(V, )73) =V,
(4.3.31)

Si(v, Va) = &1(v)Vs + &(v)Y2 + O(Y3),

where é;(0) = €,(0) > 0.
By (4.3.25), (4.3.26), (4.3.27), (4.3.28), (4.3.30) and (4.3.31), for T~! we have

B ¥e) = v (43.32)

l

3

(1, 4) = bo(v) + R 1+ (¥, 1)),

2

where h(0) = &;(0) OO kl(O)Wbl(O) # 0 and ¢ € I$°.

As M (0))2(0) = 1, if we let —~— = 1 — &(v), then &(0) = 0. We introduce a
/\1(11)/\2(11)

compensator w defined as follows.

2
3 e if a(v) #0,
W(.Yé, I/) = a(y)
—InYs, if a(v) = 0.
This yields
U o~ 4 ~ ~
Y2 = Y374 = 1+ a(v)w(Ys, v)]Ys. (4.3.33)
By (4.3.32) and (4.3.33), 7! has the form
( ~ o~
7' v, Ys) =v,
(4.3.34)

T, T) = bo(v) + GR()Vaw(Ts, v)[1 + 9o(Va,v)]

+h(v)Ya[L + ¢o(Ys, v)].
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For R(v,Ys + ¢(v)), by (4.3.11), we have

R(v,Y- =y,
v Yat () =v (4.3.35)

R(v, Y3 +((v)) = %0 + O(m(v)) + m()[(m () + O())¥s + O(F)].

By (4.3.30), (4.3.32) and (4.3.35), we have

(
Li(v,Y3) =0,

Y Lz(v, Y3) = 70 + O(m(v)) — bo(v) — G(v)h(v)Yaw(Ya, )[1 + o (¥s, v)]

—h()¥[L - FE () + O(Q)) + Yo(Ys, )],

\

where ¥, € I°.

Differentiating L,(v, }73) with respect to Y3, we have

8L2(z/, %)

%, = —aV)h(v)[*w(Ys,v) + 91 (Ys, V)]

m(v)

—h(v)[1 — W

(n(v) +0(() + ¥1(Ya,v)),

where 1[)1, v, € I(c))o Let

SN 8L2(1/, }73) w_l(Yg,l/)
R e

m(v)

h(v)

= —a(v)h(v) + +h(v)[1 - (n(¥) +0(Q)) + Yo (Ya,v)Jw™ (Y3, v),

where ¥, € Ig°. The zeros of Q%;;ﬁ) are zeros of the function & (v,Y3) in some

neighborhood of Y3 = 0. Differentiate &, (v, Y3) with respect to Y3, and we have

oY) _ o [, _m), o B L
a% - h( ) 1 B(V) (71( )+O(C))+‘II3(Y37 ) w2(173.,u) + ’
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where W3 € If°. Let

Ea(v, Ys) := w?(Ys, @) Yi+e M
9Y3

)

then the roots of &(v, Y;) are the same roots of in a small neighborhood of

661 (51?3)
Y3
Y3 = 0, and we have

o m()

&(vYs) = *h(v) |1- )

— xe1(0) O (0) i by (0) # 0

(1 (v) + O@Q)) + Wa(Ya, )| +---

when (Y3, v, i, a) — (0,0, i, ao).

Hence, there exist Ay, a neighborhood of ag, Vs, a neighborhood of fig, and v, > 0,
such that V(a, i) € Ag X Vsp and Vv € (0,11), &(v, ¥3) # 0 in a small neighborhood of
Y3 = 0. By Rolle’s Theorem, ¥(a, i) € Ag x Vsg and Vv € (0, 1), the map L(v, Y3) has

at most 2 zeros in a small neighborhood of ¥; = 0, i.e., Cycl (Szhhbc) < 2.

4.3.4 Family Sxhh7

For the graphics Sxhh7, as shown in Fig. 4.7, there is a repelling saddle-node S; and
a saddle point S; on the lower boundary graphic Sxhh7c. Graphics Sxhh7 exists if and
only if

Vi={p eS| =0,/>0j = —;}-

N =

The hyperbolicity ratio of the saddle Sy is Ay = —a <
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Figure 4.7: Transition maps for the family Sxhh7

4.3.4.1 Sxhh7¢

We first consider the lower boundary graphic Sxhh7c.

In the chart F.R., in the neighborhood of the saddle-node point, take sections S =
{j = 1} and ¥ = {Z = 1} in the normal form coordinates (Z1,%:). In the neighbor-
hood of saddle point S, take sections X2 = {Z2 = 1} and f)z = {§» = 1} in the normal
form coordinates (Z2, §2). We study the displacement map

L:35,—%
,\ (4.3.36)
L=W-W.
For the transition map VV\, we calculate it by making the following decomposition

/W=f20ROT1,
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where

° f’l : ¥y — II3, which is the compositions of normal form coordinate changes

and a regular transition map. It can be written as

Tu(l/, U2) = v,
(43.37)
T12(v, §2) = eo(v) + el(’/)g2 + O@%)a

where ey(0) = 0 and e;(0) > 0.
e R :II; — Il is a transition map, which is given in Proposition 4.3.1.

° T} : II; — X, is the composition of normal form coordinates changes and a

regular transition map, which is given as follows

f?l(’@ .774) =V,
(4.3.38)
Toa(v, Ga) = bo(v) + bi(V) s + O(33),

where by(0) = 0 and 4,(0) > 0.

Then by straightforward calculation from (4.3.11), (4.3.37) and (4.3.38), for W, we

have
W ’ Ya) = v,
) (4.3.39)
Wa(v, §2) = Co(v) + m(v)[G(v)2 + (V)75 + O(%3)],
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where

Go(¥) = bo(v) + O(%(v)) + O(m(v)),
Q) = e1()br (V) (v) + O(eo(v)) + O((v)) + O(m(v)),

(V) = e2(V)bi (V)1 (v) + 1)1 (¥)12(v) + O(eo(v)) + O(7(v)) + O(m(v)).
For the transition map W, we calculate it by making the following decomposition
W=AoT,0D,
where

e Dl: %, — f)z is the Dulac map in the neighborhood of S,, which has the

expression

Dl—l(y7g2)=yv (4340)

l ~
D7 (v, §2) = 537 [1 + oG, v)),

where ¢, € Ige.

~

o 15 : f)g — fl is the composition of normal form coordinates changes and a

regular transition map. Since Z axis is fixed for —)?p=1, so T3 can be written as

ﬁn(V’ Z2) = v,
(4.3.41)

Tao(v, 32) = k1 (V)& + O(32),

where £;(0) > 0.
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o A : f)l — %, is the stable-centre transition map in the neighborhood of the
saddle-node S;. Obviously, the first component A;(v,3;) = v. For the second
component Aq(v,71), the graph Z; = Aq(v,§1) is a solution of the following

differential equation
Q= F(gh v, 4, a’)dil - -'ildgl =0, (4.3.42)

where F(f1, v, fi,a) = O(v) + w(v)ii2 + O(G) and w(v) = ~& ./~ % + O(v).

Hence, by (4.3.40), (4.3.41) and (4.3.42), the transition map W has the following form

Wl (Va g?) =V,
(4.3.43)

W(v,§2) = Ba(v, ),
where
= B [+ (i, V)
and ¢, (7, v) € I.
Now we study the displacement map L = W — W. Obviously, we see L, (v, &2) =
0. By (4.3.36), (4.3.39) and (4.3.43), the equation Ly(v,%;) = 0 is equivalent to the

following system

Z = AZ(”? 371)1
(4.3.44)

i.l = WZ(Va gZ)
Since Az(v, §1) is a connected graph, the Khovanskii procedure [32] shows that the

number of solutions of (4.3.44) is at most 1 plus the number of solutions of the following

80



system

5y = Wa(v, ),
QA de(V, :92) =0.

This above system is equivalent to

4

jil = W?(V) 52)7

4 @g(m) -1 (4.3.45)
det vz = 0.
_571 F(gl,u,ﬂ,a)

\

Eliminating Z; from the equations (4.3.45), we have an equivalent equation

Wa(v, iz)

Ly = Wa(v,52) = F(G, v,y ) =52 (4.3.46)

Differentiating (4.3.46) with respect to Z,, we have

_ PWa(v,
- F(yl)y,ﬂ’a)——g—%yi)
2

Q_f__?_ — (1 _ 8F(gl)u7ﬂ7a)> aw?(”vg2)
0 0%a 0Ye
-1

= m(w)[(1 - 20RO T8 (14 ada ) (G0) +0()
- (00) + @WKWE (1 + sl ) (20) + 0@
= m() [6() = OW)ealv) + 0@,

which has the same number of small roots as of

L= — Qf_z;__ v) —0(v)G(V 7
Ly := () 97 G(v) — O(W)Ga(v) + O(#h).

Since (1(0) = €;(0)b1(0)l1(0)n1(0) # 0 and (;(v) is bounded for (v, fi,a) in a

small neighborhood of (0, fio, ap). Therefore, there exist Ay, a neighborhood of ao, V7o,
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a neighborhood of fiy, and v; > 0, such that V(a, i) € Ay x Vi and Vv € (0,14),
Zg(u, ) # 0 in a small neighborhood of g, = 0.
Therefore, by Rolle’s theorem, V(a,z) € Ag x Vi and Vv € (0,14), equation

Ly(v,2) = 0 has at most 2 small zeroes, i.e., Cycl(SzhhTc) < 2.

4.3.4.2 Sxhh7b

We study the transition map 7! : I3 — II4. In the chart F. R. on r = 0, II3 and I,
are two line sections parameterized by §;(¢ = 3, 4), respectively. The second component
T571(0, §i3) maps (0, +00) to (0, +00).

If T, 1(0, §3) is in the neighborhood of the graphic Sxhh7c, since the Dulac map D!
is attracting and the map A has flatness property, then we have limg, o %—3_1(0, ¥3) = 0.
If T;2(0, §3) is in the neighborhood of the graphic Sxhh7a, then by (4.2.3), we have
limg, 400 %;—1(07?}3) = 1. so 75 *(0, §3) has to be nonlinear. Therefore, it is nonlinear
for 3 € Rt.

From proposition 4.3.1, we know that any *" derivative of the second component of
transition map R(v, §is) is close to zero. If T, *(0, §i3) has its n** derivative nonvanishing,

then by Rolle’s theorem, V(a, &) € Ap x Vio and v > 0 sufficiently small, L(v, §3) has

at most n roots in a small neighborhood of g3 = 0, i.e., we have C'ycl(Szhh7b) < n.
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4.3.5 Family Sxhh8

As shown in Fig. 4.8, there is a saddle point S; and an attracting saddle node S; on the

lower boundary graphic Sxhh8c. In this case

%:{ﬁeszlﬂlzoaﬁ2>07ﬂ3=‘_ _—;}

The hyperbolicity ratio at Sy is \; = —2 > 2.

Figure 4.8: Transition maps for the family Sxhh8

4.3.5.1 Sxhh8c

We first consider the lower boundary graphic Sxhh8c. In the chart F.R., in the neigh-

borhood of S, take sections £; = {§; = 1} and f)l = {Z; = 1} in the normal form
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coordinates. In the neighborhood of saddle-node point, take sections X3 = {f; = 1} and

£, = {&, = —1} in the normal form coordinates. We study the first return map
P:¥,— 3%,

For the Poincaré return map P, we calculate it by making the following decomposi-

tion
P=Aofo,oDo'f20Roﬁ,
where

° Tl : ¥, — II3, which is the compositions of normal form coordinate changes

and a regular transition map. It can be written as

Tll(l/, .’;72) =V,
(4.3.47)
Tia(v, E2) = eo(v) + €1 (V)2 + O(&3),

where €y(0) = 0 and ¢;(0) > 0.
e R :II3 — Il4 is a transition map, which is given by Proposition 4.3.1.

e Ty : I, — % is the composition of normal form coordinate changes and a

regular transition map, which is given as follows

Cf?l(”) 374) =V,
(4.3.48)

Toa(v, §) = bo(v) + by (v)ia + O(2),

where bo(0) = 0 and b,(0) > 0.
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eD:¥, — f)l is the Dulac map near the attracting saddle S;, which is given as

follows

DI(V7 jl) =v,
(4.3.49)

Da(v,51) = (L + (&1, v)),
where ¢ € I§°.

° ZA}, : il — ¥, is the composition of normal form coordinates changes and a

regular transition map. Since Z axis is fixed for 7,,=1, so T3 can be written as

ﬁl(y7 gl) = V;
(4.3.50)
T2 (v, 1) = k1(v)§1 + O(%),

where k;(0) > 0.

o A: f)2 — 3, is the stable-centre transition map near saddle-node point S,. Ob-
viously, the first component A, (v, §») = v. For the second component Ay (v, §2),

Vp, g € N, we have the flatness property:

8PA2 (Va g?) ~

222092 - o). (4.3.51)
ayg ( 2)
Then by (4.3.11), (4.3.47), (4.3.48), (4.3.49) and (4.3.50), for the return map P, we have

Pi(v, %) = v,
(4.3.52)

Pg(V, .'i?g) = AQ (o) j;32 o D2 o j-\'QQ o R2 o j;lg(l/, 572)
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Letys = ﬁz(l/, %2), Ja = Re(v, §3), &1 = @2(1/7 Ua),th = Da(v,21), 92 = j:32(1/, %)
and Z2 = Ay(v, §2). Then

OPy(v,%3)  0As(v,§2) 8Taa(v,§1) 8Dy (v,&1) OTa(v, fia)

0% N 0 ot 07, N
8R2(I/ y3) 8T12(1/ 1'2)
97 9%, (4.3.53)

From proposition 4.3.1, we know that any 5** derivative of the second component of
transition map R(v, §3) is close to zero for v > 0 sufficiently small and (v, i) sufficiently
near (a, i) = (ag, fip). D is the Dulac map near an attracting saddle, and A is the stable-
centre transition map with flatness property (4.3.51).

Therefore, for any 0 < € < 1, there exist Ay, a neighborhood of ay, Vi, a neighbor-
hood of fig, 1 > 0, neighborhoods Uy (%;) of Z; = 0(i = 1, 2) and neighborhoods Up(¥;)
of J; = 0(i = 1,2,3,4), such that if (a, i) € Ay x Vo and v € (0,11), and Zy € Up(Z2),
then we have Z; € Uy(%1), §; € Uo(%:)(i = 1,2,3,4) and

'BAz(u, gg)l <e ’BDZ(V, 5:1)’ -

8R2(V) 273)
5 o e (—I <e. (4.3.54)

’ 073

Also, if (a, i) € Ag X Vo and v € (0,11), Up(Z;) and Up(;) are sufficiently small, there
exista M > 0 such that

3'?32(1/, 1) ’ l 3@2(% ¥a) ' ’ 3ﬁ2(V, ),
o N 0z,

0< | } <M. (43.55)

Py(
|82—sz)| < 1. Therefore, by

Hence, by (4.3.53), (4.3.54) and (4.3.55), we have
Rolle’s theorem, V(a, i) € Ag X Vg and Vv € (0, v4), the first return map P has at most

1 fixed point in a small neighborhood of Z3 = 0, i.e., Cycl(Szhh8c) < 1.
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4.3.5.2 Sxhh8b

We study the transition map 7' : II; — II3. In the chart . R. on r = 0, II3 and II,
are two line sections parameterized by (i = 3, 4), respectively. The second component
T5(0, §4) maps (0, +00) to (0, +00).

If T5(0, §4) is in the neighborhood of the graphic Sxhh8c, since the Dulac map D is
attracting and the map A is flat, then we have limg,_,o %(0, 74) = 0. If T5(0, 34) is in
the neighborhood of the graphic Sxhh8a, by (4.2.3), we have limy, _, g—%(o, 7s) = L.
Since T5(0, §4) is analytic, there exists a constant M, > 0, such that 13—%(0, Ja)| < My
for g4 € (0, 00).

Define the Poincaré return map

P: II; — 1,
(v, ) — (v, Pa(v, ) (4.3.56)
P=ToR.

For the first component P;, we have P, (v, §js) = v. For the second component P,
we have Py (v, 3) = Ty o Ry(v, §3).

Since the derivative of T5(0, §4) is bounded for ; € (0, 00), and any 4** derivative of
Ry (v, §3) is close to zero, so V(a, i) € Ag x Vgo and v >0 sufficiently small, %—?32(1/, i3)
is sufficiently small in a small neighborhood of §j3 = 0. Therefore, the first return map P

has at most 1 fixed point, i.e., Cycl(Szhh8b) < 1.
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Altogether, we finish the proof of Theorem 4.1.1.
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5 TFinite cyclicity of (I3;)

For the graphic (I3,), it is an HH-type graphic with a nilpotent elliptic point of multiplic-
ity 3 at infinity and an invariant parabola as shown in Fig 5.1, and this nilpotent elliptic

point could be of codimension 3 or 4.

Figure 5.1: The graphic (Ig,).

In this chapter, firstly we identify the codimension of the nilpotent singularity point
of the graphic (I},) in section 5.1. If the nilpotent elliptic point is of codimension 3, then
we only need to verify the generic condition of Theorem 2.1.2. If the nilpotent elliptic

point is of codimension 4, by calculation of the second derivative of the transition map
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along the invariant parabola we prove that the graphic (I3, ) has finite cyclicity in section

5.2 and section 5.3.

5.1 Lemmas

Lemma 5.1.1. The graphic (I3,) occurs in the family

& =Xx—y+a?:= P(z,y),
(5.1.1)
¥ =z + Ay + 622 + by = Q(z,y),

where A # 0,1 < 053 < 2,8, = X3 —68,) > 0and 4)? — (1 + M\%)d, < 0.
1. If 85 # 3, the nilpotent elliptic point is of codimension 3.
2. If b= g the nilpotent elliptic point is of codimension 4, type 2.

Proof. For the family (5.1.1), the triple nilpotent singular point is at infinity, so we intro-

duce the coordinates (v, z) = (£, %) Then we have

v = —z+ (1 —d8)v?— A3 — d)v3 —v?z,
z = —0vz — A2% — A3 — dr)v%z — vt
By a near-identity transformation
v =1,

(5.1.2)
z =z + (1= 8)v? + Az, + O(Jvy, 21)3),
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and change of coordinates v; — —v; and 2; — 2;, we have

n =2,

(5.1.3)
21 = 62(1 - (32)'0:13 + (352 - 2)’!)121 + A(géz - 16)’0%21 + O(l’Ul, 21|4).
Let
(%] 22
vV = —F—, 7 = ——_—— (5.1.4)
V162(02 — 1) V/102(02 — 1)
we rescale the system (5.1.3) into

1:)2 = 29,

{ (5.1.5)
. 5o — 52—

\ 2y = —’Ug + %’02,@ - ?{5(29(622_116;?1)322 + O(|U2,Z2|4).

By a near-identity transformation

)
vo =u3(l+ AGS_UotD) ) 4 O(v?)),

{ V1% (5.1.6)

2y = Z3,

\
and rescaling the time, we bring system (5.1.5) into a “standard form’

3

1.}3 = 23,

(5.1.7)
Z3 = —’Ug + z3[bvs + 52'1)%] + Z:%O(I('U& Z3)|2),
where
_3%-2
162(05 — 1)’
o226 -3)(6 - 4)
2 5|65(8, — 1)]2

So for A # 0 and &, € (1,2), if 6, # %, the nilpotent elliptic point is of codimension

3;ifd = %, the nilpotent elliptic point is of codimension 4, type 2. O
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Lemma 5.1.2. Inside quadratic systems, the graphics (I3,) have finite cyclicity if the

nilpotent singular point is of codimension 3.

Proof. 1f the nilpotent singular point is of codimension 3 [i.e., d, € (1,2) and 6, # 3 in
family (5.1.1)], to prove that the graphic (I},) has finite cyclicity, by Theorem 2.1.2, we

only need to check that for the first return map P along the invariant parabola, it satisfies

P'(0) # 1.
The equation of the invariant parabola is given as follows.
) 1
y=(1- 52).7:2 —z -5 (1+ A2). (5.1.8)

Along the graphic (the invariant parabola), we have

P(0) =exp ( / ~ div X(r(t))](5'11)’(5.1.8)&)

—00

— lim ex /’”0 AN+ 2(2 4 b9)x dz
o TQ—00 P —xo (5211,'2 + 4z +1 + A2

2446
lm ( 213 + 4Xzo + 14 N2 ) w ex (— 162 arctan 820 + 22
Lo—00 (52.'13(2) — 4/\.’!70 +1+ A? P 52\/ AO vV Ao

_ exp (_ 16\ )
621/ Ao
£1.

f

Zo
—x0

where Ag = (14 A2)d; — 422 > 0and )\ # 0.
So, the graphics (I3;) have finite cyclicity if the nilpotent point has codimension 3.

O
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5.2 Main theorem

Theorem 5.2.1. The graphics (I3,) have finite cyclicity inside quadratic systems.

By Lemma 5.1.2, we only need to prove that (I3, ) have finite cyclicity when the nilpo-
tent singular point is of codimension 4 [i.e., §; = % in family (5.1.1)], which corresponds
toag = % in (2.4.15).

If the nilpotent singular point is of codimension 4, the finite cyclicity of the limit
periodic sets Ehh1a, Ehh2—-Ehh12 is the direct consequence of Theorem 2.1.2 and the fact
P'(0) # 0 in Lemma 5.1.2, except the case Ehh1b and Ehhlc, for which the hypothesis
ao # 3 is used.

Therefore, we only need to prove that the intermediate graphic Ehh1b and lower

boundary graphic Ehh1c have finite cyclicity when a¢ = % [i.e., b6 = % in family (5.1.1)].

5.3 Proof of the main theorem

We begin with the lower boundary graphic Ehhlc. We study the displacement maps
defined on the sections 7, and 7, with images on the sections II; and X4 as shown in Fig.
5.2.

The procedure of the proof is the same as the proof for the case Ehh1c of codimension

3, which consists of several steps, so we recall the common steps (I)-(IV) as follows.

(I) Parameterization of sections 7, and 7,
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Figure 5.2: Transition maps for the graphic Ehhlc of (Ig,)

~ On 7y, the coordinates are (rq, p;) with r1p; = v for v > 0 small. Now we want to
cover the domain |r1| < €, |p1| < € for e > 0 small. Then v < €%. So Vu € (0,1), on the

curve v = ue?, we have ryp; = ue?. Hence rq, p1 € (ue,€). Let

then we parameterize the section 7; with the coordinates (v,c) € (0,e?) x I, where

I, = (5, '2) C (0,1),

Iny’ Tnv

Similarly, on the section 75, we have

and we use coordinates (v, d) € (0,€?) x I, to parameterize the section 7.
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For graphic Ehh1, we use V', C S? to denote the set of i = (fiy, fig, fi3) in which the
family Ehh1 exists, and use V1o to denote a small neighborhood of fiy, where fip € V1.
We use Ay to denote a small neighborhood of ao, where a4 € (0, %)

We will study the number of roots of the following system

Tl(l/, C) ——‘T2(Vad)7 (539)

Ts(v,c) = Ty(v,d),
for (a, 1) € Ag x V1o with (c,d) € I, X I, and v, ¢ sufficiently small. The transition

maps T;(i = 1,2, 3,4) will be developed in the next step.
(I1) Transition maps T; (: = 1,2, 3,4)

(II-1) The transition map 7}
The map T} : 7 — II; is the second type of Dulac map near P;. For r; = v~ and

p1 = VS, it has the following expression

Tll(l/, C) =V,
(5.3.10)

Tia(v,©) = m(v,w(2, 00)) +v7¢ [l + 0, (v, v%,0(%, —a))]
where I, = % > 0, o = p1 — d1(a)q, 7)1('/,0)(:—0;041)) = %Vplw(y—c’al) and
Po 0 Po Po

01 (v, ¢, w(:—:, —a;) is C* and satisfies the following properties:

0.(v, v w(%, —a;) = 0 (u”lcw(ﬁf, —al)) ,
P P (5.3.11)

%l(u, I/C,w(:—:, —a;) =0 (V”lcw(%g, —a1)(In 1/)’) , 1>1

(I1-2) The transition map 7>
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The transition map 75 : 7, — II; can be factorized as
T2 =S -1 O 62,
where

e O, : 7, — Il is the second type of Dulac map in the neighborhood of P,. For

re = v~ and p, = 14, it has the following expression

@11(1/, d) =V,
Ona(v,d) = ma(v,w(2e, 01)) +v71¢ Iy + ba(v, 1%, (5, —an))]

po’

d

where ll = ;%OT > O: 772(V7w(%.;7a1)) = %Ll‘l/plw(%;aal) and 02(”7’/ ’w(z_:, _al)

is C* and satisfies the same properties as of 8, in (5.3.11).
e S~1:II, — II, is a regular transition map, which can be written as

Sl_l(l/7 g2) =V,

S (v, ) = ko(v) + k1(v)G2 + k2 (V)73 + O(F),
where ko(0) = 0, k1(0) = e~ Va5, and k3(0) = */igo by Proposition 6.1 in [53].

Therefore, for T5, we have

4

T21 (I/, d) =V,
 Toe(v,d) = m20(V7W(:—27 o)) + V&Id[mm(l/,w(:—:, a1)+ (5.3.12)
k Ve s ve
Z mai(v,w(—, a )07 4 Gy (1,04 w(—, —an)) |,
L - Po Po
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where

ve m) , v N
mgo(u,w(%,al)) = ko(v) + K1 [—pgl v w(;}—o—,al) + O(v™w (E,al))],
Ll , L
mai(v,w(—, 1)) = k;(v)l; + K007 w(—, aq)), i>1
Po Po

and 6, is C* and has the same properties as of 6; in (5.3.11).
(I1-3) The transition map 73

The transition map 73 : 7, — ¥4 can be factorized as
I3=RoB30YV,
where

e V : 1, —> 73 is aregular transition map, which can be written as
4

— 1-d ,d
ry = WVi(v' % %)

= yl-d [m141(l/) + My (V)= + mygs (V) + O3, V2d)] )

P33 = ‘/2(Vl—da Vd)

=v° [mm(u) + g (V)14 + s (V) + O (V209 1/2‘1)] ,
(5.3.13)

where m141(0) > 0, 72141(0) > 0, m142(0) = *€g, M142(0) = *e3, M143(0) = *jizo

and m43(0) = *[izo. The symbol * denotes any continuous function of (v, i, a),

which is nonzero at (v, i, a) = (0, fio, ap)-

e O3 : 73 — Il is the second type of Dulac map in the neighborhood of P; with

Qi

= 5’3.
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e The regular transition map R : 3 — X, is C*, which can be written as

Rl(’/a 203) = V)
N(k) - (5.3.14)
~ A A ~ ~ l
Ra(v,3is) = to(v) + Y _ 10 (v)iis + O(gs ™),
J=1

where 1(0) = 0, 7711 (0) > 0.

Therefore, for T;, we have
(
T3 (v,d) = v,

T (v, d) = mao(v,w(r3, B1)) + v7>1=D | mg (v, w(Mayl=4, B,))

$ +mg (V) + mgs (V) + O (W9, V2d) (5.3.15)
N(k)
+ Z mj (V)V&g(l—d)j + O(l/63(1—d)(N(k)+1))

j=1

+931(V7 Vl_d) w(ﬂﬁ;g_yl—-d, _181)) ’

where

mso = 10(0) + kol T2 31) + 02, ),
7o To To

m33,m m
My = —M + rgO (P (414 gy, ma1(0) # 0,
o’ To
03M142Y Mia1 -
My = oo + kO (Pw(—=v' ™4 ), maz(0) = xe2,
To Mg To
o3m ™Miq _
M3z = ';31_—?'3%_2 + k30 (VPw(—— - d,ﬂl)) m32(0) = *fiso,
To Mgy To
mfﬁmﬂlo ps, (41 14 — .
M= R 30(VPw(—— — , 1)), mi1(0) = *1my(0),
0

and 03, is C* and has the same properties as of 8, in (5.3.11).
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(I1-4) The transition map 7}

The transition map T, : 3 — ¥4 can be factorized as
T4 = @4 oU. 3
where

e U : 4 — 74 is aregular transition map, which can be written as

(

ry = Uy (v, 0°)
=pl-e [mm(’/) + Mg (V)V1 7 + mugs(v)v® + O(v¥1-9), V2C)] ;

ps = Us(v'™¢,0°)

= [Th141 (l/) + m142(l/)1/1_c + Th143(1/)1/6 + O(V2(1—-c)’ V2c)] ,
(5.3.16)

where m141(1/), Th141(l/), m142(1/), Th142(1/), m143(z/) and ’ﬁ?,143(l/) are defined in

(5.3.13).

e O, : 74, — X4 is the second type of Dulac map in the neighborhood of P, with

Qi

- 53.

Therefore, for T,, we have

4
Tu(v,c) =v,

{ Te(v,¢) = m,w(%, 81) + 1730~ \my (v) + map (V)v'~

+mag(V)v° + OV, 0%) + Oy (v, 10, w(Basipl=e, —-,81))] ,
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where myy (I/) = ——%%mlﬂ(u)‘_”, m42(0) = *E9 and m43(0) = *[i3g. 941 is Ck and has
To

the same property as of 6; in (5.3.11).
(ID) study F,(c,d) and G, (c, d)

To obtain the cyclicity of Ehhlc, one needs to study the number of roots for the

following system

F,,(C, d) = T12(V, C) - T22(V, d) = 0,
(5.3.17)
G,(c,d) := Tya(v,c) — Tsa(v,d) = 0,
for (a, i) € Ap X V1o with (c,d) € D, where D, = I, x Z, and v, ¢ sufficiently small.

For 0 < v < €2, F,(c,d) and G, (c, d) are continuous on D,, and smooth in D,,. For

V(c,d) € D, with € > 0 sufficiently small, it has been proved in [53] that

0 0 0 0
%F,,(C, d) ‘f‘ 0, %Fy(c, d) 75 0, &GV(C, d) # 0, %Gu(c, d) 7é 0.

Denote the number of roots of F,(c,d) = 0 and G,(c,d) = 0 in the region D, by

#(F,G), and let

0 0 0 0
J[F, G] = '6—d—F,,(C, d)%GV(C, d) - %F,,(c, d)%G,,(C, d)

Then for 0 < v < €2 and V(c,d) € D, with ¢ > 0 sufficiently small, by generalized
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Rolle’s Theorem (Theorem 6. 11 in [53]), one can have

#(F,G) <#(F,J[F,G]) +1

- (5.3.18)
S #(G27 J[Fa GZ]) + 2
= #(G,Gs) +2,
where
_ 6'31/&3 oF 61163 oG _Hj—.a_s oF &llera oG —5-1-}-_53
Gatesd) = == [(5,) " (5) "7 - (50) T (Ga) T,
0G5 0Go\ 1

G3(V1 ¢, d) = _61l1 (6—026_;) J[F, Gz]

(IV) Calculation of #(G>, G3)

In order to study the number of the roots of the system G»(v, ¢, d) = 0, G3(v, c,d) = 0,
one can eliminate the variable c, and obtain a scalar equation with variables (v, d), which

was given in [53], and we recall it as follows.

g(v,d) =)+ a@)v?e + (V)¢ + 3 (V) + O(V¥I-9) 29
N(k)
+ ) ey ()P 4 O (7~ DN RI+D)) (5.3.19)
j=1

- d -
+H(V)l/d)yl d)w(':;’"al)yw(m;fll/l di_ﬁl))7
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where

1) = 1= (AP ORP) T, a(0) = k() = 4,
2(0) = #macz(0) (ks (0) — 71(0)) = sz,

65(0) = #ma45(0)(k2(0) — 714(0)) = #7s,

ca1(0) = *1m12(0),

e

po To

and H is C, H = O (4(22, o), v9s0-Du(mian1=4, 6,)).
In order to obtain the cyclicity of Ehhlc , we will study the number of roots of the
equation g(v,d) = ford € Z,, v > 0 sufficiently small and V(a, 1) € Ay x V. We

need the following two lemmas.

Lemma 5.3.1. /53] If ag = 3(01 = 1), then in the chart FR. onr = O, the first saddle
quantity as of P satisfies aig = *[izg.

Lemma 5.3.2. The regular transition map R : ¥3 — X, defined in (5.3.14) satisfies

2

that %gij(o, 0) # 0 infamily (5.1.1).
3

Proof. From Lemma 5.1.1, if §; = %, the nilpotent elliptic point is of codimension 4,

and system (5.1.7) becomes

U3 = 23,
(5.3.20)

23 = —v3 + bzzuz + O(v3) + 220(|(vs, 23)|?),
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where b = % By the near-identity transformation,

vz = Xi,
(5.3.21)
23 = Y+ b;_:Z;SX%,
and rescaling
X Y
X, = , Y, = , 5.3.22
P 1+ VP —38) b+ VE=38) (5:3.22)
we bring system (5.3.20) into a “standard form”
X =Y +aoX?
(5.3.23)

Y =Y(X+&EX%+ X3 (X)) + X*hyo(X) + Y2Q(X,Y),
where ag = 75[b — V0% — 8] = 3 and & = 0. 2 (X)), hy(X) and Q(X,Y) are C°.

To obtain the normal form near the singular point P;, we make the following blow-up
X = —r, Y =% (5.3.24)

then we have

Fo=—(+9)r
(5.3.25)
y =—37+205° - gr2hy(r) + rhy(r),
where h; and h, are C* functions.
We divide the above system (5.3.25) by % + 7. By the transformation
1 - -
r=ri, g=g+ O(rg) + (4 + O(14))s + O(%2), (5.3.26)
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we obtain the normal form near the singular point P

’f'4 = —Ty,
k

Ys = [% + Zci(rzﬂi)z] Ga,
i=1

3i+1

4 .

where ; is the coefficient of the term 72

If we make the blow-up
X =r, Y = r?g, (5.3.27)
similarly we will obtain the normal form near the singular point P
r3 =73,
' k
Ys = [% + Z%(Tz'gg)z] 73
i=1
Let X3 = X3N {p = 0} and 4 = &4, N {p = 0}, where {p = 0} is the blow-up of
the fiber iz = 0. Then by a sequence of changes of coordinates (5.1.2), (5.1.4), (5.1.6),

(5.3.21), (5.3.22), (5.3.24), (5.3.25) and (5.3.27), X3 and X4 can be parameterized by 7

and 74, respectively. Therefore, we have

Bs ={(z,y)|

z = f3(3) = —% [L+ O(ro) — (6 + O(r0))g3 + (12 + O(r0))F3 + O(%3)] ,

y=gs(fs) = % [14 O(ro) — (6 + O(r0))dis + (12 + O(r0))75 + O(73)] },
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Za ={(=,y)l

z = fa(fa) = — [1+ O(ro) — (6 + O(r0))7a + (12 + O(ro))i; + O(%3)] ,

6
9 114 0(ro) — (6+ O(r0))ia + (12 + O(ro))2 + O(F2)] }.

y = 94(%4) = 2

Now we study the regular transition map ® : ¥3 — X, along the invariant parabola

(5.1.8). By the formula in Theorem 2.2.1, we have

' (G;) = g_?%)“) exp ( /0 ' dz'vX(F(t))’(5.1.1)’(5'].8)dt>

___A(jjg) exp / ) ——diUX(F(t))‘ dx (5.3.28)
A(®(5s)) fa(ys) P(z,y) lsineiey )’ "

where T' is time to travel from X3 to &, along the invariant parabola,

AGGs) = P(f3(7s), 95(Fs))  f3(Fs) |

Q(f3(73), 93(¥s))  95(Fs)

and

A(3(3)) = P(f4(®(73)), 9a(®(P3))) fa(P(P3))

Q(fa(®(3)), 94(2(F3))) 92(2(F5))

For simplicity, we let

divX (y(t)) AN+ 2(62 + 2)z
f(fv) = T——} = 5ig2 3
z,y) G518 0x2 +4 .+ 14+ A

Since
A f4(0)
lim '(0) = lim ~(0) exp / F(z)dz
ro=0 ro=0 A(0) £(0)

oo 16\
= ‘”‘"( . ’”(x)d””) = exp (‘W)
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then we have

#(0) = exp (‘%—) + (o),

where ¢(ry) = o(1) as 7o — 0.

From (5.3.28), we have

®"(gs) =

A (§)A(2(35)) ~ AGs) N (D) (Gs) (/ T F e d-’E)
A2(2(3)) :

A(§3) N f4(<1>(?73))]: d)
+Z(®(§3)) p(/fs(@s) (x) ’

X [F(Fu(@(5)) f2(@(0)) ' (35) — F(Salis)) fai)-

3(%3)

Therefore,

' ‘N _ At / f4(0)
2(0) = 2030 Zf(g;m () ( % dx)

fa(0))
20 e ( [ 7@ da:) [FU0) O (©0) - F(1(0) (0]

A(0) 3(0)
Since
WO
= im [ - E'(g’(f)’;(o)] #(0) + [FAO)A0)20) - F((0)150)] 20
=i (3 s YO0 -2 O)

16Am 167
-tze (-5 7 ) li-eo (-5 ) | #0
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so we have

"(0) = 12 exp (—;6—\/’\%) [1-exp (—%) | +w(ro),

where 9 (rp) = o(1) as 79 — 0.

Since Ay > 0 and X # 0, so for the transition map R : ¥3 — 3,4, we have

0*Ry "
—b—g?(0,0) = ®"(0) # 0.

Therefore, we finish the proof of the lemma.

End of proof for Theorem 5.2.1

We treat the following two cases fizo > 0 and fizo < O separately.
D). fizo 2 0.

For the graphic Ehhlc, we have

1

10) = 1— (W7 )k (0)) ™.

If fizo > 0, then by Proposition 6.1 in [53], we have k;(0) < 1. Since 772,(0) = 9'(0) <

1, then we have (0) # 0. Hence, Cycl(Ehhlc) < 2.

(2)- p30 < 0.
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Since ag = 1,50 01 = p; = 1 and 03 = 2. The the function g(v, d) in (5.3.19) has
the form

d d d
glv,d) = ~(v)+ 511(I/)I/d + 512(1/)de(—”—, o) + O(sz(y—, ~a1)w(~y—, ay)),
Po Po Po

+cq (V)Vag(l—d) + o(u53(1_d)),

where 83, (0) can vanish, §;2(0) = *az and c4;(0) = *705(0).

By Lemma 5.3.1 and Lemma 5.3.2, we have

512(0) = *Qp = *i3p # 0,

82R2

C41(0) = *7’7’12(0) 8

S22 (0,0) # 0.

Now we study the root of g(v,d) for (v,d) € (0,e2) x I, with € > 0 sufficiently
small. Firstly, we can kill the term ~(v). Differentiate g(v,d) with respect to d, and

divide by In v, then we have

ao(v,d) - = (v, d)

d v I/d

= %01, (V) + %015 (v)V w(% 1) + O(vw? (% —al)w(po,al))

+ xcqy (V)72 17D 4 o(172(1-D),

Then we can kill the v¢ term as follows.

yd ;d (g"(” dv” )

= *512(V)V61d + O(”wz(z_’ _O‘I)W(:_v a1)) + xeq (V)73 4 o(p73(1-9),
0 0

gl(V7 d) =
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Denote

L(v) = x012(v), [l2(v) := xcq(v),
and we have I1(0) # 0 and I5(0) # 0.

1. If1;(0)I3(0) > 0, then g (v, d) # 0 for (v,d) € (0,€?) x I, with & > 0 sufficiently

small.

2. If11(0)12(0) < 0, then %% (v, d) # 0 for (v, d) € (0,?) x I, with € > 0 sufficiently

small.

By Rolle’s Theorem, Y(a, i) € Ag X V19, g(v, d) has at most 3 zeros in (v, d) € (0,€?) x

I,. Therefore, by (5.3.18), system (5.3.9) has at most 5 zeros, i.e., Cycl(Ehhlc) < 5.

For the intermediate graphics Ehhlb, its finite cyclicity has been proved in [53] by
showing that the transition map 7" : II3 — Il passing through the blown-up sphere is
nonlinear.

Therefore, we finish the proof of Theorem 5.2.1.
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6 Finite cyclicity of (I1;,)

For the graphic (I1,,), it is an HH-type graphic with a nilpotent elliptic point is at infin-
ity. Compared to the graphic (I3,), there is an additional attracting saddle-node on the

invariant parabola as shown in Fig. 6.1 .

Figure 6.1: The graphic (I],,).

In this chapter, firstly we will give a main theorem stating that the graphic (I3,,) has
finite cyclicity in section 6.1, and then we prove the main theorem by showing that all
the upper boundary graphics, intermediate graphics and lower boundary graphics have

finite cyclicity in section 6.2, 6.3 and 6.4, respectively. Finally, we has an open case for
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the cyclicity of Ehh3e of (I},,) and we leave it as future work.

6.1 Main Theorem

Theorem 6.1.1. The graphic (I},,) has finite cyclicity inside quadratic systems.

Since the graphics (I},,) has a nilpotent singular point at infinity, we can limit our-
selves to the limit periodic sets which have an invariant line (i; = 0). Moreover the
connection along this line is fixed. Therefore, we only need to look to the limit periodic
sets Ehh1-Ehh8.

To prove the finite cyclicity of the graphic (I;,), we have to prove that all the upper
boundary graphics, the intermediate graphics and lower boundary graphics of Ehhl—
Ehh8 have finite cyclicity.

We begin with the upper boundary graphics.

6.2 The upper boundary graphic
Proposition 6.2.1. For the graphic (I},,), Cycl(Ehhia) < 1,1 =1,2,---,12.

Proof. By Remark 4.2.2. O
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6.3 The lower boundary graphic

For each family of graphic Ehhi (i = 1,2,---,8), we use V; C S? to denote the set
of i = (fi1, iz, i3) in which the family Ehhi exists, and use V; to denote a small
neighborhood of iy, where fip € V;. We use always Ay to denote a small neighborhood

of ao, where aq € (0, 1).

6.3.1 Ehhlc, Ehh2e and Ehh3e

We study the displacement maps defined on the sections 7, and 7, with images on the
sections II; and ¥4 as shown in Fig. 6.2.

Exactly as we did for the lower boundary graphic Ehhlc of (I},), firstly we param-
eterize the sections II; and 4. On the section 7y, the coordinates are (ry, p1), and we
have

I _,C
mn=v ) =V,

with (v, c) € (0,£?) x I, where I, = (e lnue) - (0, 1).

Inv) Inv

Similarly, on the section 7, we have

with (v,d) € (0,€?) x I, to parameterize the section 7,. Then we study the number of
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Figure 6.2: Transition maps for the graphics Ehh1c, Ehh2e and Ehh3e of (I1,)

roots of the system

Ti(v, c) = Tx(v,d),
(63.1)
T3(Vu C) = T4(Uv d)’
for (a, i) € Ao X Vio(i = 1,2,3) with (¢, d) € I, x I, and v, ¢ sufficiently small.
The transition maps T;(¢ = 1,2, 3,4) have the same definitions as those of Ehhlc for
graphic (I%,). The transition maps ©;(z = 1,2,3,4), U, V and S~! are the same as those

defined for (I},), except the transition map R : X3 — X4,

For (I},), R is merely a regular transition map, while for (I},,) here, R can be de-
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composed as

R: Y3 — 34
(v,93) — (v, Ra(v, §i3)) (6.3.2)
R=RyoRoR,
where the transition maps ﬁl, R and ﬁg are given by (4.2.4), (4.2.5) and (4.2.6). There-

fore, we have

(6.3.3)

where

A

mo(v) = no(v) + O(m),

m;(v) = m)[l;(v)n.(v) + O(m))], i=1,2,---.

By equation (5.3.18), the number of solutions of system (6.3.1) is at most 2 plus the
number of solutions of the scalar equation g(v,d) = 0 for d € Z,, v > 0 sufficiently

small and V(a, i) € Ag x V(i = 1,2,3), and g(v, d) = 0 is given as follows [53].

g(v,d) =)+ ;W) + (V)" + c3(V)vt + O (V¥ L29)

N
() 3 ey ()P0 4 Om(n) PN ED) (63.4)
7j=1

+H (v, v, 0179, w(”d

L, —on),w(TEo, — ),

(1}
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where

1) = 1= (MR )™, (0) = +hka(0) = wigo,
c2(0) = *myg2(0)(k1(0) — 11 (0)) = *e9,
c3(0) = *my43(0)(k1(0) — 711 (0)) = *[iso,

Ca1 (0) = *lg(O)TLl(O),

and H is Ck, H = O(dew( ,011), Vps(l—d)w(z_n;lagyl—d’ 51))

l/d
Po
6.3.1.1 Ehhlc and Ehh2e

Since

1) =1 - (AR WRP) ™, (635)

for graphic Ehhlc, we have k;(v) is bounded and 7,(v) — 0 as v — 0, so y(0) = 1.

Hence, V(a, i) € Ay X V1, g(v,d) # 0 for (v,d) € (0,€?) x I,. Therefore, system
(6.3.1) has at most 2 small zeros, i.e., Cycl(Ehhlc) < 2.

For graphic Ehh2e, we have k;(v) — 0 and /m;(v) — Oasv — 0, so v(0) = 1.

Hence, Y(a, i) € Ag X Vo, g(v,d) # 0 for (v,d) € (0,e2) x I,. Therefore, system

(6.3.1) has at most 2 small zeros, i.e., Cycl(Ehh2e) < 2.
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6.3.1.2 Ehh3e

The family Ehh3 exists if and only if fip := (0,0,—1). We treat the following cases

depending on the value of ag.
eCasea € (0,3)\Q

Let N = [EI«F)] In this case, the function g(v, d) can be simplified to
g(v,d) =)+ @)+ 019 + c(V)v~? + c3(v)v? + O(V2(1-9) 124)
]

+m(v) Z 4 (V)72 0=D5 4 O(m(y)yﬁs(l—d)([%].;_l))'
j=1
We define the following procedure

gO(Vr d) = iﬁ;}%g(ya d),
DD : (6.3.6)

LI3(1=d)j (e ,
gi(v,d) =Y— Jé%(gj_l(l/,d)y 3(1-a)3), i=1,---,[&]

Then after [313-] + 1 steps of successive derivation and division, we get

gy d) = *er ()07 4 we ()1 4 sy (p) + Oy, 20, 2d)
73

where ¢;(0) = *[i30 # 0, c2(0) = *€5 # 0 and c3(0) = *fizg # 0.

Denote

L) :=x*a(v), LV):=x*cv), 3v): =x*xc(v),

and we have I,(0)13(0)I5(0) # 0.

If&l > 1,
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1. 15(0)I5(0) > 0, then g 1 1(v,d) # O for (v, d) € (0,€?) x I, with e > 0 sufficiently
53

small;

2. 1,(0)l3(0) < 0, then Zg1,(v,d) # 0 for (v,d) € (0,&%) x I, with £ > 0 suffi-
I3

ciently small.
Ifey <1,

1. 1;(0)I2(0) > 0, then g 1,(v,d) # O for (v, d) € (0,€2) x I, with € > 0 sufficiently
93

small;

2. 1,(0)I3(0) < 0, then %g[;_](u, d) # 0 for (v,d) € (0,€?) x I, with € > 0 suffi-
73

ciently small.

Hence, g(v,d) = 0 has at most [%] + 2 roots. Therefore, system (6.3.1) has at most

(5] + 4 zeros, i.e.,Cycl(Ehh3e) < [01_3] +4.

e Caseqo € (0,3)NQ\ {75, &1

In this case, we have ¢; > 2, 01 < p; and p3 > 2. For v > 0 sufficiently small, we
have 5, < p; and [313—] < ps3, then the function g(v, d) can be simplified to
g(v,d) =)+ ()14 + O1"9) + ca(v)vr=? + cs(v)v? + O(2(A-9), 2d)

q3
+m(z/) Z C4j (I/)l/as(l_d)j.
i=1

Exactly as we did for the case ao € (0, 3) \ Q, we obtain Cycl(Ehh3e) < g3 + 4.
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e Case qp = ne€Nn#12

+2’

In this case, we have o1(ap) < p; = n > 1 and 03(ag) = 2 = € (1,2),s

g3 > 2. Then the function g(v, d) can be simplified to

g(v,d) =)+ (V) + c3(v)r? 4+ O(2(-9) L24),

Apply DD process for one step to kill the () term, similar to the argument of the case

ao € (0,3) \ Q, we obtain Cycl(Ehh3e) < 4.

eCascag=2' neNn#l

4n’

In this case, we have 01(ag) = 325, p1 = 2, 1 = 2n — L and o3(ag) = 1, p; = 1,

g3 = n. Since 0y < 1, the function g(v, d) can be simplified to

n—1
g(v,d) =)+ ci(v)v?r¢ + O(v°19) + m(v) Z ca; (V)7 4 6, (V)14
j=1
8o (4) (Y, ) + O (w1, - B (21, ),

where ¢;(0) = *fizp # 0, 031(0) can vanish, and d35(0) = *,. Here (3, is the first saddle
quantity of Pj in the chart FR. on r = 0, and 3; # 0 by Lemma 6.14 in [53].
Apply DD process for n steps to kill the () term and v73(1-9i(j = 1,2,... n—1)

terms, then we get
gn(v,d) = *c; (V)74 + O (V1) + #8031 (V)14 + *030 (v) v 4w ( st daL —4.6)
+O (et (a1, - YRt~ ) ).
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Let gni1(v,d) = 4— —g—( ~(-dg (v, d)), then

gni1(v,d) = *c1 (V) + O(V™14) 4 b3z (V)1 D%

+O(sz(m;. —,61) ( 1 d’ﬁl))
agn+1 (v,d) # 0 for (v,d) € (0,52) x I,

soV(a, 1) € Ag X Vy,, either g,+1(v,d) # O or

with € > 0 sufficiently small, so we obtain Cycl(Ehh3e) < n + 4.

e Caseag = 5
In this case al(i) =2,pp =2,¢q¢ =1and 0'3(;11‘) = 1, p3 = g3 = 1. the function

g(v, d) can be simplified to
gv,d) =y(v)+ do(v)ve + o1 (V) + 612(1/)V2dw(1;§1/1_d, a;)
+0 (VA (v, —anw (v, o) ) + 8gs ()01~
52 (1)~ (L1, ) + O (w1, — B o1, 5,)),
where 911(0) and 43 (0) can vanish, 6;2(0) = *fi30 # 0 and d32(0) = %5, # 0.

Apply DD process for 2 steps to kill the v(v) term and ¢ term, then we get

g(v,d) = x6(v)v¥ + *612(1/)1/2%(%;1/1_‘1, a;)

+O(V2w2(:—: 1-d _g))w (:ZVl_d;al))+*531(V)V1_d

4 B (V) o1, B1) 4+ O (P (21, — By (P14, ) )
Let

92('/’ d)

.—|:

2% (v e a),

91 d) = 574 (v 00, d)),
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then
G1d 2 2(v 1-d v 1-d
g3(v,d) = x0pp (V)™ +O(V W (Lv' 7% —a)w(%v ,al))
+ 4 8 (V)10 4 O (v(ty1 4, — B (2t ) ).
Then Y(a, 1) € Ao X Vi, either gs(v,d) # 0 or Z8(v,d) # 0 for (v,d) € (0,€2) x I,

with € > 0 sufficiently small, so we obtain Cycl( Ehh3e) < 7.

e Case ap = 3

Ifap = %, the nilpotent elliptic point at infinity is of codimension 4, and the graphic
(I},,) occurs in the following system

T = V/_ —y+ 12
6.3.7)

g _x_’_\/_y_l_?ﬂ/_ 2,3 32y,
which determines the regular part of the graphic.
For the passage near the blown-up sphere, on r = 0 in the chart F.R., we have

_ =7+ 3%
X et (6.3.8)

-1

W=

)7,

<
I
+

Furthermore, we have o, = 1 and 03 = £, so function g(v, d) defined in (6.3.4) has the

form

v Ve 7,
o) = A) + S + a0 () + O ) (p—z,al)x

Fea (V) + m(v)ey (V70D 4 0Dy 20s0-d)),
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where 611(0) can vanish, §12(0) = *ag # 0, ¢3(0) = *e3 = 0, ¢41(0) = *I2(0)n,(0) and
m(v) is sufficiently small for (v, fi, a) close to (0, fio, o).

Therefore, we need an additional generic condition to prove the cyclicity of the
graphic Ehh3e, which we may derive from the high order term of the transition maps.

This is the most difficult case for the graphic (1},;), and we leave it for future work.

6.3.2 Ehh4c

For the lower boundary graphic Ehh4c, it is the same as the lower boundary graphic

Sxhhlc of (I};), so Ehh4c has finite cyclicity.

6.3.3 EhhSc

The Lower boundary of Family Ehh5 passes through a hyperbolic saddle point in the
chart F. R. as shown in Fig. 6.3. Let A(v) be the hyperbolicity ratio at this saddle point.
Take sections ©; = {§ = 1} and £3 = {Z = 1} in the normal form coordinates of the
saddle point.

We are going to study the displacement map defined on the section 71:

L:m — Xy,

L=T-T.
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Figure 6.3: Transition maps for the graphic Ehh5c

The transition map T can be factorized as

T:1 — X4,

T = @4 o U,
where
e U : 7 — 74 is a regular transition map, which is given by (5.3.16).

e O4: 74 —> X, is the second type of Dulac map in the neighborhood of P, with

QI

= 73.
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Therefore, for T, we have

~

Ti(v,c) = v,
Ty(v,c) = _;%%mfil(’/)’/(l_c)&e’ [1+ 0 v'7¢) + O (v, !¢, w(T22v'=2, = fy)))],

(6.3.9)
where 04, satisfies the same properties as of 6, in (5.3.11).
For the transition map ’f, we calculate it by the following decomposition
T: T — X4,

f=§zoﬁo§10A30820DoSlo@1,

where
e O, : ; — II; is the second type of Dulac map in the neighborhood of P, with
o = 0.
e S, : II; — X is a regular transition map. Since Z axis is fixed for 7,,=1, so S

can be written as

511(1/, 171) =V,
Si2(v, 1) = ex(v)§1 + O(%3),

where e; (0) > 0.

e D :3; —> %3 is the Dulac map near the saddle point, which has the expression

(3.2.5).
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e S, : X3 — II5 is a regular transition map, which can be written as

Sa(v,7) = v,

Saa(v, §) = bo(v) + b1 ()7 + O(F?),

where by(0) = 0 and b,(0) > 0.

e A; : [I; — X5 are the first type of Dulac maps in the neighborhood of P; with

= 5'3.

Qi

e The transition maps ﬁl, R and R, are given by (4.2.4), (4.2.5) and (4.2.6).

Hence, for T, we have T} (v, ¢) = v. Let

C C

th= (%)&1 [yo + 611 (v, Vc,w_(%, —ai1))],
75 = bo(v) + b()er (W) 7L + 1 (v, 2)],

U3 = (l—/’%) [ﬂ3+931('/,373,w(y10,*ﬂ1))]a

where ¢, (v, ) € IS, 01 satisfies the same properties as of f; in (5.3.11) and 63, satisfies

the properties (2.5.23). Then the second component of T can be written as

Ty(v, ¢) = no(v) + O(m) + m()[(lhi () (v) + O(m(v)))is + O(%3)). (6.3.10)
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By (6.3.9) and (6.3.10), the first derivative of Ly (v, c) with respect to c is given as follows.

6L2(Va C) _ 6?2(1/1 C) _ 87:2(’/1 C)
dc  Bc Jc

= ) [ )+ 0(m) + 03] (2)” [1+ Gl 2, -50)

Vo

c

bi(v) (el(lf)yo)/\ NGy [1 + ¢ (v, 58)] [1 + 012(v, I/C,w(y—, —oq) + O(Va‘c)] Inv

Pg ' Po

+ om 99514+ O, v17) + (v, v~ w(Tt01%, =) I,
T 0

0

where ¢,(v, ) € I§°, and 0y, 645 satisfy the same properties as of 6, in (5.3.11), also

8931 = 14 v
— = 0(VPwB(—, — ln—).
031 ( (Vo ﬁl) )
BL%(;—Q—CZ has the same number of small roots as of
— v=(1=9% §L,(v, c)
La(v,€) = lnv Oc
= Bemi ()50 + O, V™) + a0, (T2, =)
0 0
+0 (m(u)u(&”)‘&‘)c) :

Since ¥3m3,(0)os # 0, so La(v,c) # 0. Hence, Y(a, 1) € Ag X Vso, La(v,c) has
To
at most one small root for (v,c) € (0,€2) x I, with ¢ > 0 sufficiently small, i.e.,

Cycl(Ehh5c) < 1.

6.3.4 Ehho6c

Compared to the lower boundary graphic Ehh5c, Ehh6c passes through a saddle-node

point as shown in Fig 6.4. In the neighborhood of saddle-node point, take sections ¥ =
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{§ = 1} and £3 = {Z = 1} in the normal form coordinates. The other transition maps

are the same as those of EhhS5c.

Figure 6.4: Transition maps for the graphic Ehh6c

D : T; —> %3 is the stable-centre transition map near the saddle-node point. Obvi-
ously, the first component D; (v, Z) = v. For the second component D;(v, ), Vp, q € N,

we have
ang(V, ff)

ozP

= 0(&9).
For the displacement function L

L:m — Xy,

L=T-T,
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we have L,(v,c) = v, and

OLy(v,c) (v, ) B Ty (v,c)

Oc dc Oc
) v\% 003 . .
= (o) [ s+ 0m) + 0()] () [1+ Gttws ol )
Vo
(b1(v) + O(§))O(397) ( 210 )yo) V7, [1 + 012(v, V5, w(y—, —oq) + O(V&IC)] Inv
Po Po
+ sy (975 [ 1+ O, 117 + Oia(v, e (M )] v
5’ To
8—1;2%’—6)- has the same number of small roots as of
— v=(1=9%3 9L,(v, c)
La(v,c) = Inv Oc
= Y0 1032, (1)55 + O, V1) + Bua (v, 12, (212, )
’I"O To

+ O (m(u)u(&”al)%q_l) :

Since %5m73,(0)os # 0, so Ly(v,¢) # 0. Hence, V(a, 1) € Ao X Vo, La(v,c) has
0
at most one small root for (v,c) € (0,e%) x I, with ¢ > 0 sufficiently small, i.e.,

Cycl(Ehhbc) < 1.

6.3.5 Ehh7c

The Lower boundary graphic of Ehh7 passes through a repelling saddle-node as shown
in Fig 6.5. In the neighborhood of saddle-node, take sections S, ={f=1}and &4 =

{7 = 1} in the normal form coordinates.
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Figure 6.5: Transition maps for the graphic Ehh7¢c

We are going to study the displacement map defined on the section II;:-
L: H2 — 24,
L=T-T.

The transition map T can be factorized as

T:Hg——>24,

T:A4OSZODOS],
where

e Sy : I, — Xy is a regular transition map. Since Z axis is fixed for 7(—,,=1, so S
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can be written as

Su(v,%2) = v,
S12(v, §2) = ex(v)¥2 + O(33),
where e, (0) > 0.
e DY, — 3, is the stable-centre transition map near the semi-hyperbolic point.
Obviously, the first component D; (v, §) = v. The second component D, (v, §) is

a solution of the following differential equation
F(y,v,B,a)dZ — dj = 0, (6.3.11)

where F (3, v, i, a) = co(v, i, @) + c2(v, 5, a)§* + o(§?) with co(0, fio, ag) = 0 and
c2(0, fig, ag) # 0.
e S, : %, — Il is a regular transition map, which can be written as
Sa(v,9) = v,
Saa(v, ) = bo(v) + b1 (v)§ + O(F?),

where by(0) = 0 and b,(0) > 0.

o Ay : II; — ¥, are the first type of Dulac maps in the neighborhood of Py with
0 = 03.

Let

1 dg
h’/(gz) = D2 o 512(1/, 52) = exp (_/ = ) ’
S1a(vga) F(H: )

Ja = Soa(v, hu(%2))-
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Therefore, for T, we have

Tl (Va g?) =V,
) .. (6.3.12)
Ty a) = (£) 5+ $alv, (. ~B0), 30),

vo

where ¢, satisfies the properties (2.5.23).

The first derivative of Tvz(u, U2) with respect to ¥ is given as follows.

——8T2(V’ 52) = (5—)63 [1 + O(Vﬁawq(ia _:31) ln(i):l

) 9] )

y 082 (v, ¥) hy (32) S12(v, §2)
0y  F(Sa2(v,%2),v) O

7

and
*Ty(v, o) _ (v \* hy(§2) =
Qa2  — \ ~ H ) )
8y§ (VO) (F(Sl2(1/> y2))' V))2 (V yz)
where

(0512 )2 _ 05x» OF(9) (8512 ) 2

_ 8y, (0Sw\?, OSn

Hin %) =55 ”(yZ)(agz) " 55 \ o3, 55 0y \ o
6822 - 82812 B3, q—1 124 14
57 F(S12(v, %2), v) 7 + 0w (VO,—ﬂl)an—O)-

Since F'(S12(v, §2),v) # 0 and h,(§2) > 0, and

lim H(v, ) = by(0)e1(0)% > 0,

(g2, 8,0)—(0,0,20,a0)

— . — 627’:2 (V) gZ) .
So for v > 0 small and (i, a) sufficiently close to (fio, ag), we have o7 > 0in
2

the small neighborhood of > = 0, i.e., Tg(l/, 72) is convex.
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For the transition map T, we calculate it by the following decomposition

o~

TZH2—>24

T\zﬁ2OFO§1O@3OV0@;1,
where

e O : II; — 7y is the inverse of the second type of Dulac map in the neighbor-

hood of P, which can be written as

62—11(’/7 g2) =V, (6 3 13)

O (v, 52) = §5* (N1 + 021 (v, 7)),

where N; = LB-"OT and 09, € I§°.
0
e V : p —> 73 is aregular transition map, which is given by (5.3.13).

e O3z : 13 —> Y3 is the second type of Dulac map in the neighborhood of P; with

Qi

= 3.
e The transition maps ﬁl, Rand ﬁg are given by (4.2.4), (4.2.5) and (4.2.6).
Hence, we have ﬁ(u, c¢) = v and the second component of T can be written as

To(v, 12) = no(v) + O(m(v)) + m(V)[(L () (v) + O(m(¥)))gs + O(@3)),
where

_ &
g3 = N[ Nom 3%, 7 [1+ Oaa(v, o)),
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and N, = —:yg% and 0, € I§°. Then the first derivative of fg(u, 7o) with respect to 7, is

given as follows.

OBT) _ ) [0 () + O(m(w)) + O]
8y2
= = F 0 _2-3-—
X NT% Ny (=22, ™
01

1[1 + 923(”) 372)]7

where 053 € I°. The second derivative of fz(u, 72) with respect to s is

33 _o

62f ~ _ _  _ 0 i
TLUT) _ )Ny Mo 25,5 B, ), (63.14)
1

0y}
where

g,

A, 52) = [10Ima(v) + O(m() +09)| 2 (455 ™) (1+ Baulv, )

+ [1Im) +0m(v) +0(3)] (2 + (1 + (01 0)),

and Ga4, 025 € 180
Note that on the section 73, the coordinates are (13, po) with rop; = v for v > 0 small,

so we only need to consider the domain |r2| < € and |p2| < € for ¢ > 0 small. In fact,

~L

1 ~
from (6.3.13), we have py = §5* (N1 + 021 (v, %2)), and g = v, ™ Ny Y (L + 021 (v, §2))

with 521 € I°. Therefore, we study the graphic on section 7, for sufficiently smalle > 0

L

such that vjj, °* < 1. Hence, for v > 0 small and (i, a) sufficiently close to (fo, ao),
we have H (v, §2) > 0 in the small neighborhood of j, = 0

Since N, < 0, by (6.3.14), we have ﬂf‘;c';_ﬂzl <0,ie., ?2(1/, 72) is concave. Note that

Ty(v, i) is convex, so for V(a, i) € Ag X V7o and v > 0 sufficiently small, Ly(v, §2) has
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at most two small roots in the small neighborhood of §, = 0, i.e., Cycl(Ehh7c) < 2.

6.3.6 Ehh8c

The Lower boundary graphic of Ehh8 passes through a hyperbolic saddle point in the
chart F. R. as shown in Fig. 6.6. Let A\(v) be the hyperbolicity ratio at this saddle point.
Take sections ¥3 = {Z = 1} and £4 = {§ = 1} in the normal form coordinates of the

saddle point.

Figure 6.6: Transition maps for the graphic Ehh8¢c

We are going to study the displacement map defined on the section 7:

L:7m— Yy,

L=T-T.
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The transition map T can be factorized as
T: T — g,
1~"=}A22OROE10@30V,

where

e V : 1, — 73 is a regular transition map, which is given by (5.3.13).

e O3 : 73 —> Y3 is the second type of Dulac map in the neighborhood of P; with

Qi

= 5'3.
e The transition maps R;, R and R, are given by (4.2.4), (4.2.5) and (4.2.6).

Therefore, for f, we have

Tl(l/’ C) =V,
~ (6.3.15)
Ta(v,¢) = no(v) + O(m(¥)) +m() | (W)m (v) + O(m))is + OGR)
where
7.;3 = _y?ogmfil(y)y(l_c)as[l + O(Vc: Vl_c) + 031(1/7 Vl_c’ w(wyl_ca _ﬂl))]’
To To

and 63, satisfies the same properties as of 6; in (5.3.11)

For the transition map ﬁ we calculate it by the following decomposition

~

T:1 — X4,

T=A408 0D 0800,

where
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e O, : 7, — I, is the second type of Dulac map in the neighborhood of P, with

= 5’1.

Qi

e S, :II; — %, is a regular transition map, which can be written as
Sul, 1) = v,
Si2(v,§1) = ex(v)ii + O(F),

where e;(0) > 0.

e D71: ¥, — ¥, is the Dulac map near the saddle point, which has the expression

(3.2.5).
e S:%, —TIlisa regular transition map, which can be written as
521(1/) g) =V,

Sna(v,§) = bo(v) + b1 (v)§ + O(F?),

where bo(O) =0 and bl(O) > 0.

o Ay : Il — X4 are the first type of Dulac maps in the neighborhood of P, with

= 3.

Qi

Hence, for T, we have T} (v, c) = v. Let
§= el—}((;?ﬂu“_’l (14 61 (v, l/c,w(g—, —ay) + O(v™)],
0 0

Ga = bo(v) + b1 (V)G [1 + 91 (1, §),
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where ¥ (v,§) € I$° and 0y, satisfies the same properties as of 6, in (5.3.11). Then the

second component of T can be written as

Ty(v,c) = (;)as [T + 041 (v, Ga, w (— ~1))]- (6.3.16)

0

By (6.3.16), the first derivative of ’fg(u, c) with respect to c is given as follows.

@échC) - (50)63 [1 ¥ 8941 (V: y4,w(— —ﬂl))] 1(v )% (%)%

C

B [1 + o, g)] [1 + O (v, V", w(%, —on) + O(l/alc)] Inv,

where 15(v, §) € I$°, and 6, satisfies the same properties as of §; in (5.3.11) also

%

— ps, as( ¥ _ v
s O(y w (Vo’ ﬁl)anO).

PTo(v,0) _ (v oy v 7 (e}
T_(V_o) 1+ 0fmum-som e () ()

C

5 [1 4+ (0,0 ) +007) +(w, )| (o,

X
o

where ¥(v, §) € I. So ¥(v,c) € (0,e?) x I, with ¢ sufficiently small, %ﬂ) > 0,
i.e., To(v, c) is convex.
By (6.3.15), the first derivative of T5(v, c) with respect to c is given as follows.

a_q%cLC) = m(v) [(h(u)m(l/) + O(m)) +O(g3)]r m3s (V)95

[1 + O(V%,v'™%) + b2 (v, l/l'c,w(n:}‘u vie, ,61))] Inv,
0
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where 04, satisfies the same properties as of 8; in (5.3.11).

8Ty(v, )

22 = —m(v) [(1)m () + O(m)) + O(ds)| Zym, (v)v =957

03
0

[1 + O, v, v17993) 4 g5 (v, 11, w(mr;:lul_c, —ﬂl))] (Inv)2.

So ¥(v,c) € (0,€2) x I, with ¢ sufficiently small, % <0,ie., ’E(V, c) is concave.
Note that 75(v, ) is convex and T(v, ¢) is concave, so V(a, i) € Ag X Vo, La(v, c)
has at most two small roots for (v,c) € (0,e2) x I, with ¢ sufficiently small, i.e.,

Cycl(Ehh8c) < 2.

6.4 The intermediate boundary graphic

Let I" be any intermediate HH-graphic of elliptic type. Similar to the intermediate con-
cave graphics of saddle type, take sections I13 and Il defined (2.5.21) in the normal form
coordinates in the neighborhood of P; and P; respectively. We will study the displace-

ment map

L: H3—>H4

L=R-T7,

where R : [I3 — Il is the transition map along the regular orbit in the normal form
coordinates, and 7' : II; — II3 is the transition map passing through the blown-up
singularity.
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For the transition map R, from proposition 4.3.1, we know that for v > 0 sufficiently
small, any it* derivative of the second component of transition map R(v, §j3) with respect
to g3 is close to zero.

To study the transition map T on the blown-up sphere, let 7; = {p; = po}(i = 3,4)
be the two line sections in the chart F. R. on r = 0 parameterized by 7;(1 = 3,4),

respectively. Then we are reduced to study the one dimensional transition map
TZ(O, g4) Ly — T3,

or its inverse

T{l(O,gg) LMy — T4.

6.4.1 Family Ehhl

It has been proved in [53] that T3(0,J4) : m4 — T3 is either the identity or nonlinear
for §4. Since T5(0,7,) is analytic and bijective, so Ty (0, §i3) : m3 — 4 is either the
identity or nonlinear for §j3. Thus for both cases, the intermediate graphics of the family

Ehh1 have finite cyclicity.

6.4.2 Families Ehh2 and Ehh3

For family Ehhi (i = 2, 3), we have a family of intermediate graphics Ehhib, Ehhic and

Ehhid as in Fig. 6.8 (a). For the graphic (IJ,), it was proved in [53] that Cycl(Ehhic) <
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Figure 6.7: Transition maps for the intermediate graphics of Ehh1

1 and Cycl(Ehhid) < 2(i = 2, 3). For the graphic (I7;,), the transition near the addi-
tional attracting saddle-node behaves like a transition near P; which does not influence
the proof of the finite cyclicity of graphics Ehhic and Ehhid (i = 2, 3).

To study the cyclicity of the graphic Ehh2b, we study the transition map 75710, 73)
defined on 73 in the neighborhood of the graphic Ehh2c.

Let 7 = {§ = yo} and 73 = {& = o} be two sections in the neighborhood of the

saddle node. Then the corresponding transition map T ' can be factorized as

T, m3—my

T2_1=S40U20D10W20D00W1,

where
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(a) Family Ehh2 (b) Family Ehh3

Figure 6.8: Transition maps for the intermediate graphics of Ehh2 and Ehh3

oWy :im3 — 1, Wo:m — m, Uy : 1y — 14 and Sy : 74 — 7y are transition

maps.
e Dy : T3 — T, is the stable-centre transition in the neighborhood of the saddle
node in the normal form coordinates, and Vn;,n, € N

™ D,
By

= O(F™). (6.4.17)

e D, : m — 7 is a Dulac map near the saddle point.

Note that §, = Wy 0 Dy o W1(0, §i3) as the function of §i3, which satisfies the flatness

property (6.4.17), for T, ', we have lim T (0, 4j3) = —oc. Hence T, ' maps (0, +00)
Yy3z—

to (—oo0, +00). Since T, (0, §s) is analytic and bijective, it has to be nonlinear in 7,
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therefore it is nonlinear for g3 € R™, thus any intermediate graphic Ehh2b has finite
cyclicity.

Since system X ,—; in (2.4.15) is invariant under the transformation

(—z,—t, — 1, —ii3) — (z,t, B, B3)- (6.4.18)

The family Ehh3 can be obtained from the family Ehh2 by transformation (6.4.18).
Hence, For the graphics Ehh3b, we have T5(0, 4) maps (0, +00) to (—o0, +00), and
T5(0, 74) is analytic, bijective and nonlinear, so T, *(0, §3) exists and is nonlinear in §s.

Therefore, any intermediate graphic Ehh3b has finite cyclicity.

6.4.3 Family Ehh4

For the family Ehh4b, the lower boundary graphic passes through a hyperbolic saddle, it
has the same structure as the family Sxhh1b of saddle type. Therefore, any intermediate

graphic of Ehh4 has finite cyclicity.

6.4.4 Families Ehh5-Ehh8

We first consider family EhhS. As shown in Fig. 6.9 (a), the lower boundary graphic
Ehh5c¢ passes through two saddle points. One is at infinity, the other lies on the invariant
line 7 = 0. We have a saddle connection.

In the normal form coordinates (Z, ) near the finite saddle, take sections 7; = {Z =

—xp} and 73 = {§ = yo}. Let Dy : 7y — 73 be the Dulac map, then the transition map
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(a) EhhSb (b) Ehhéb

Figure 6.9: Transition maps for the intermediate graphics of Ehh5 and Ehh6

TQ. can be factorized as
T2=W10D0W20D10U{10>S4'1.

It was proved in [53] that T5(0, §4), which maps (—c0,4+00) to (0, +00), is bijective,
analytic and nonlinear. So T;, (0, §3) exists and should be nonlinear in s, therefore it is
nonlinear for §j3 € R*. Hence, any intermediate graphics Ehh5b have finite cyclicity.
For the family Ehh6b, it has a attracting saddle node on the lower boundary graphic.
By the similar argument as Ehh5b, we have T;1(0, §js) is nonlinear in 3. Hence, the
intermediate graphics Ehh6b have finite cyclicity.
The family Ehh7 and Ehh8 can be obtained from the family Ehh5 and Ehh6 by

the transformation (6.4.18) on the blown-up sphere {r = 0}, respectively. Therefore,
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T, (0, §j3) exists and is nonlinear in g3 for the family Ehh7b and Ehh8b. Hence, any

intermediate graphic of Ehh7b and Ehh8b have finite cyclicity.

Altogether, we finish the proof of Theorem 6.1.1.
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