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Abstract

This thesis implements a new numerical scheme to solve the (classical) constant speed wave

equation in the three dimensional space, currently existing methods (even if more restrictive)

rely on time iterations and observe the accumulation of error at each time step iteration, the

new method is iteration free ! Making it a good choice for applications requiring accurate

results at large times. Numerical experiments and error analysis reveal accuracy of the

scheme. The principal conclusion is that the method, based on the Radon transform, must

be considered, and we propose it should be developed and count among the standard methods

implemented in computational software for engineering and industrial applications.
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Dedication

"

- What did water say to the boat ?

- What ? I don’t know !

- Nothing. It just waved !

"

To Jasmine.
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1 Introduction

In Mathematics, we are usually interested in problems, one may argue that stating a problem

is equally important as solving one, so in this thesis, here is the problem we are interested

in solving :
1

c2
utt −∆u = 0 (1.1)

with initial conditions

u(x, 0) = f(x) , ut(x, 0) = g(x) (1.2)

where c > 0 is constant, and for positive times t ≥ 0.

This is the Cauchy problem for the wave equation on R3×R, the initial conditions as stated

guarantee the existence of a unique solution [3].

There is a plethora of numerical methods to solve variants of the wave equation, as in [4],

[7] and [12], very few deal with the case of propagation in the 3 dimensional space, in fact, a

notorious scheme ( in [1] ) is a Finite elements method that requires an additional boundary

condition and must be applied on a finite (bounded) space domain.

Other schemes can be based on Finite Volume methods and must proceed by time iterations,

where to reach a large specific time T0, computations need to be done for all times steps

occurring before T0.
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1.1 Outline

This introduction continues with a discussion of the one dimensional wave equation, as a

preliminary and necessary step before presenting the three dimensional case.

Chapters 2 and 3 lay the theoretical principles and necessary tools to tackle the problem,

the first presents the basic properties of the Radon transform, exposing all the proofs and

necessary facts, the second explains how the Radon transform can be used to solve the 3-D

wave equation, then shows a very nice formula for the solution.

Chapter 4 exposes a new computational method to compute integrals over the three dimen-

sional sphere S2. It can be regarded as a preliminary step before implementing the main

numerical method, but it can also be considered as an independent numerical method for

computing all sorts of integrals over the sphere. The latter sections of the chapter present

the proposed numerical method to solve the wave equation and one of the possible imple-

mentations.

Chapter 5 expose the tests to verify the accuracy of the scheme, and the computation latency,

for various examples.

1.2 Related research

Very few recent papers discuss the Radon transform in the context of the wave equation,

or other partial differential equations, we can cite the paper of Dr. Rim Donsub [9], which

discusses the idea of applying the Radon transform to an acoustic equation ( two dimensions

and time ) and the ’Discrete Radon transform’, which seems to be applied to two dimensional

’scans’ or data.
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1.3 The one dimensional wave equation

Before we chase the solution of the 3D wave equation, let us first recall the simpler 1-D wave

equation, we write this equation as:

utt = c2uxx , for x ∈ R (1.3)

Here the operator factors nicely:

utt − c2uxx =

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0

This means that, starting from a function u(x, t), you compute ut + cux, call the result v,

then you compute vt − cvx, and you need to get the zero function. The general solution is

u(x, t) = F (x+ ct) +G(x− ct) (1.4)

where F and G are two arbitrary (twice differentiable) functions of a single variable.

We are interested in the initial-value problem, that is, (1.3) together with the initial condi-

tions:

u(x, 0) = f(x) , ut(x, 0) = g(x) (1.5)

where f and g are arbitrary functions of x.

There is one, and only one, solution of this problem. The solution of (1.3), (1.5) is easily

found from the general formula (1.4). First, setting t = 0, we get f(x) = F (x) +G(x) then

g(x) = cF ′(x)− cG′(x) , regarding the last two equations for the two unknown functions F

and G. To solve them, we can differentiate the first and divide the second, it is convenient
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temporarily to change the name of the variable to some neutral name; we change the name

of x to s. Now

f ′ = F ′+G′ and 1
c
g = F ′−G′ . Adding and subtracting gives F ′ = 1

2
f ′+ g

c
and G′ = 1

2
f ′− g

c
.

Then integrating, we get

F (s) =
1

2
f(s) +

1

2c

∫ s

0

g ds+ a

and G(s) =
1

2
f(s)− 1

2c

∫ s

0

g ds+ b

where a and b are constants such that a + b = 0. Substituting s = x + ct into the formula

for F and s = x− ct into that of G, we get

u(x, t) =
1

2
f(x+ ct) +

1

2c

∫ x+ct

0

g +
1

2
f(x− ct)− 1

2c

∫ x−ct

0

g

which simplifies to

u(x, t) =
1

2

(
f(x+ ct) + f(x− ct)

)
+

1

2c

∫ x+ct

x−ct

g(s) ds (1.6)

This is the solution formula for the initial-value problem, due to D’Alembert in 1746. As-

suming F to have a continuous second derivative and G to have a continuous first derivative,

we see that u itself has continuous second partial derivatives in x and t.
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2 The Radon transform

2.1 Definitions

The Radon transform was invented by Johann Radon in 1917 [8], it has many applications

in mathematics and other sciences, including a significant achievement in medicine. This

integral transform has a close connection with the development of X-ray scans (or CAT

scans) in the theory of medical imaging. The solution of the reconstruction problem, and the

introduction of new algorithms and faster computers, all contributed to a rapid development

of computerized tomography. In practice, X-ray scans provide a ’picture’ of an internal

organ, one that helps to detect and locate many types of abnormalities.

While this transform can be defined for any dimension, we recall here the basics of the Radon

transform in R3.

To simplify, we shall assume that we are dealing with functions in the class S(R3). However,

many of the results obtained below can be shown to be valid for much larger classes of

functions. We define the Radon transform R(f) of a function f ∈ S(R3) by

R(f)(P ) =

∫
P

f

where P is a plane in the Euclidean 3-dimensional space R3.
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First, we explain the integral of f over a plane. We can describe planes in R3 as follows:

given a unit vector ω ∈ S2 and a number s ∈ R, we define the plane

Ps,ω = {x ∈ R3 : x · ω = s} , so we parametrize a plane by a unit vector ω orthogonal to

it, and by the distance s from the origin. Note that Ps,ω = P−s,−ω , and we allow s to take

negative values.

We can then explicitly write

Rf(s, ω) =

∫
x·ω=s

f(x) dµ(x)

In particular, we see that the Radon transform is a function on the set of planes in R3. From

the parametrization given for a plane, we can think of R(f) as a function on the product

R× S2 = {(s, ω) : t ∈ R, ω ∈ S2} , where S2 is the unit sphere in R3. The relevant class of

functions on R × S2 consists of those that satisfy the Schwartz condition in s uniformly in

ω. In other words, we define S(R × S2) to be the space of all continuous functions F (s, ω)

that are indefinitely differentiable in s, and that satisfy

sup
(s,ω)∈ R×S2

|s|n
∣∣∣ ∂m

∂sm
F (s, ω)

∣∣∣ <∞ for all integers n,m ≥ 0 .

How to answer the uniqueness problem: if R(f) = R(g) then f = g ? And is it possible to

reconstruct f from its Radon transform R(f) ?

The answer to both problems is yes, the solutions are obtained by using the Fourier transform.

In fact, the key point is a very elegant and essential relation between the Radon and Fourier

transforms :
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Theorem 1. ( from [13] )

Rf(s, ω) =
1

2π

∫
f̂(ρω)eisρ dρ (2.1)

Proof. We refer to the version of the Fourier transform given by the formulas

Ff(ξ) = f̂(ξ) :=

∫ ∞

−∞
f(x)e−iξ·x dx

F−1g(x) = ǧ(x) :=
1

(2π)n

∫ ∞

−∞
g(ξ)eix·ξ dξ

where n ≥ 1 is the dimension of the underlying space, i.e. x, ξ ∈ Rn. We note that

F
(

∂f

∂xj

)
(ξ) = iξjFf(ξ)

Let Fs denote the Fourier transform with respect to the variable s. Then

(FsRf) (ρ, ω) =

∫ ∞

s=−∞

∫
x·ω=s

f(x)dµ(x)e−iρs ds

=

∫
R3

f(x)e−iρ(x·ω) dx

= f̂(ρω)

Therefore

Rf(s, ω) =
1

2π

∫
f̂(ρω)eisρ dρ

With this result, we can deduce that R(f) determines uniquely f , then we can also obtain

the reconstruction formula.
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2.2 The inversion formula

Theorem 2. ( from [13] or [8] )

f(x) =
−1
8π2

∫
ω∈S2

∂2

∂s2
Rf(s, ω) dσ(ω) (2.2)

Proof. Since ρ 7→ f̂(ρω)eisρ is in the Schwartz space we can differentiate twice the previous

equality 2.1, inside the integral, to compute :

∫
ω∈S2

∂2

∂s2
Rf(s, ω) dσ(ω) =

1

2π

∫
ω∈S2

(∫
R

∂2

∂s2
f̂(ρω)eisρ dρ

)
dσ(ω)

=
1

2π

∫
S2

(∫
R
(iρ)2f̂(ρω)eisρ dρ

)
dσ(ω)

=
−1
2π

∫
S2

(∫ ∞

ρ=−∞
ρ2f̂(ρω) eisρ dρ

)
dσ(ω)

=
−1
2π

∫
S2

2

(∫ ∞

ρ=0

f̂(ρω) eisρρ2 dρ

)
dσ(ω)

=
−1
π

∫
S2

∫ ∞

ρ=0

f̂(ρω) eisρ ρ2dρdσ(ω)

= −8π2 1

(2π)3

∫
S2

∫ ∞

ρ=0

f̂(ρω) eisρ ρ2dρdσ(ω)

But the Radon transform is computed over the plane s = x · ω , and if we let S(r) ⊂ R3

denote the sphere of radius r centered at the origin, and σr the Lebesgue surface measure

on this sphere, then for any Lebesgue measurable f : S(r) → [0,∞) , we have the known

result from differential geometry

∫
S(r)

f(ζ)dσr(ζ) =

∫
S(1)

f(rω)rn−1dσ1(ω)
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In fact, the claim requires just to parametrize most of the sphere by polar coordinates and

then using one rule about computing determinants.

By polar coordinates parametrization, we mean a smooth injective mapping γ : U → V1

where U is some open set of Rn−1, and V1 a certain open subset of the sphere S1, such that

σ1[S1/V1] = 0. For example the unit sphere in R3, polar spherical coordinates covers the

whole sphere except for half of a meridian including the two poles.

Given a parametrization γ of the unit sphere, we can clearly parametrize the sphere of radius

r by defining γr(x) := rγ(x), so letting Vr = γr(U) we have:

∫
Sr

f(ζ)dσr(ζ) =

∫
Vr

f(ζ)dσr(ζ)

:=

∫
U

f(γr(x))

√∣∣∣ det(∂γr
∂xi

(x) · ∂γr
∂xj

(x)

) ∣∣∣ dλn−1(x)

=

∫
U

f(rγ(x))

√∣∣∣ det( ∂γ

∂xi

(x) · ∂γ
∂xj

(x)

) ∣∣∣ rn−1dλn−1(x)

:=

∫
V1

f(rω)rn−1dσ1(ω) =

∫
S1

f(rω)rn−1dσ1(ω)

Here, λn−1 is the usual Lebesgue measure on the (n−1) -dimensional open subset U ⊂ Rn−1.

This remark allows us to recognize the inverse Fourier transform in the expression:



Chapter 2. The Radon transform 10

1

(2π)3

∫
S2

∫ ∞

ρ=0

f̂(ρω) eisρ ρ2dρdσ(ω) =
1

(2π)3

∫
S2

∫ ∞

ρ=0

f̂(ρω) eix·(ρω) ρ2dρdσ(ω)

=
1

(2π)3

∫ ∞

ρ=0

∫
S(ρ)

f̂(ξ) eix·(ξ) ρ2dσ(ω) dρ

=
1

(2π)3

∫ ∞

ρ=0

∫
S(ρ)

f̂(ξ) eix·(ξ) dσρ(ξ) dρ

=
1

(2π)3

∫
R3

f̂(ξ) eix·(ξ) dξ

= F−1 (Ff(x)) = f(x)

As needed to conclude the result :

f(x) =
−1
8π2

∫
ω∈S2

∂2

∂s2
Rf(s, ω) dσ(ω)

2.3 Nice properties of the Radon transform

Before we go to show the interesting connection between the Radon transform and the

wave equation, in the next chapter, we exhibit some properties that will be helpful for

computations later.
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The Radon transform is easily seen to be a linear operator, in fact

R(f + ag)(s, ω) =

∫
x·ω=s

(f + ag)(x) dµ(x)

=

∫
x·ω=s

f(x) dµ(x) +

∫
x·ω=s

ag(x) dµ(x)

= Rf(s, ω) + a Rg(s, ω)

A translation of any function in the Schwartz space is also in the space, if fT is the translation

of f by a vector c, then fT (x) = f(x − c) for all x ∈ R3 and we can establish by change of

variables:

R(fT )(s, ω) =

∫
x·ω=s

fT (x) dµ(x) =

∫
(x−c)·ω=s−c·ω

f(x− c) dµ(x)

=

∫
t·ω=s−c·ω

f(t) dµ(t+ c) =

∫
t·ω=s−c·ω

f(t) dµ(t)

= R(f)(s− c · ω , ω)

As we already mentioned, negative values of s are permitted, we have

R(f)(−s,−ω) = R(f)(s, ω)

But also

R(f)(s,−ω) = R(f)(−s, ω)
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Moreover, we can also talk about the Radon transform of a function R3 → R3 and we use

the same notation, here for ∇g in particular :

R(∇g)(s, ω) = R⃗(∇g)(s, ω) = R(
∂g

∂x
)(s, ω)e⃗x + R(

∂g

∂y
)(s, ω)e⃗y + R(

∂g

∂z
)(s, ω)e⃗z

To conclude this section, we note an important formula exploiting the spacial symmetry of

the Laplacian operator :

Theorem 3. ( from [13] )

R(∆f)(s, ω) =
∂2

∂s2
R(f)(s, ω) (2.3)

Proof. We differentiate in the formula 2.1, then we use an expression of the fourier

transform of ∆f :

∂2

∂s2
Rf(s, ω) =

1

2π

∂2

∂s2

∫
f̂(ρω)eisρ dρ

=
1

2π

∫
f̂(ρω)

∂2

∂s2
eisρ dρ =

1

2π

∫
f̂(ρω)(−ρ2)eisρ dρ

=
1

2π

∫
∆̂f(ρω)eisρ dρ = R(∆f)(s, ω)
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3 The wave equation in light of the

Radon transform

Recall our main problem is to solve the wave equation on R3 × R

1

c2
utt −∆u = 0 (1.1)

with initial conditions

u(x, 0) = f(x) , ut(x, 0) = g(x) (1.2)

where c > 0 is constant, and for positive times t ≥ 0.

We will see that the solution u can be expressed as a combination of plane waves indexed

over the unit sphere S2, enabling numerical computation of u(x, t) at large times without

any time iterations. The key idea is to convert the initial data 1.2 to a single function on

R× S2 that carries equivalent information.
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A compactly supported function F may be recovered from its Radon transform, as shown

previously, by the reconstruction formula

F (x) = − 1

8π2

∫
S2

∂2RF

∂s2
(s, ω) dσ(ω)

= − 1

8π2

∫
S2

R(∆F )(x · ω, ω) dσ(ω)
(3.1)

Here dσ denotes the surface area measure on the unit sphere S2.

We define first plane waves then we present the nice connection between the Radon transform

and the wave equation.

3.1 Plane waves

Recall that the solution of the one dimensional wave equation can be expressed as the sum

of two traveling waves, and it is natural to ask if an analogue of such traveling waves exists

in higher dimensions. The answer is positive. Let F be a function of one variable, which we

assume is sufficiently smooth (say C2), and consider u defined by

u(x, t) = F (x · ω − t) where x ∈ Rd and ω is a unit vector in Rd .

It is easy to verify directly that u is a solution of the wave equation ∆u = utt in Rd , here

we let c = 1.

Such a solution is called a plane wave, indeed, notice that u is constant on every plane

perpendicular to the direction ω, and as time t increases, the wave travels in the ω direction.

(It should be remarked that plane waves are never Schwartz functions, not in S(Rd) , when
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d > 1 because they are constant in directions perpendicular to ω). A more general plane

wave can immediately be derived as in D’Alembert formula :

Theorem 4. ( from [13] ) Given initial data f and g of the form f(x) = F (x · ω) and

g(x) = G(x · ω), the plane wave given by

u(x, t) =
F (x · ω + t) + F (x · ω − t)

2
+

1

2

∫ x·ω+t

x·ω−t

G(s) ds

is a solution of the Cauchy problem 1.1 & 1.2 for the d-dimensional wave equation and c = 1.

Proof. We check directly by computing derivatives.

For a fixed vector ω : ∂
∂xi

x.ω = ∂
∂xi

∑
j

xjωj = ωi , ∂2

∂x2
i
x · ω = 0 . Then

∂2

∂x2
i

(F (x · ω + t) + F (x · ω − t)) =
∂

∂xi

(
∂x · ω
∂xi

F ′(x · ω + t) +
∂x · ω
∂xi

F ′(x · ω − t)

)
= (

∂x · ω
∂xi

)2F ′′(x · ω + t) + (
∂x · ω
∂xi

)2F ′′(x · ω − t)

= ω2
i (F

′′(x · ω + t) + F ′′(x · ω − t))

∂2

∂x2
i

(∫ x.ω+t

x.ω−t

G(s) ds

)
=

∂

∂xi

(
∂x · ω
∂xi

G(x · ω + t) +
∂x · ω
∂xi

G(x · ω − t)

)
= (

∂x · ω
∂xi

)2G′(x · ω + t) + (
∂x · ω
∂xi

)2G′(x · ω − t)

= ω2
i (G

′(x · ω + t) +G′(x · ω − t))

So that ∂2u
∂x2

i
=

ω2
i

2
(F ′′(x · ω + t) + F ′′(x · ω − t) +G′(x · ω + t) +G′(x · ω − t))

And ∆u =
∑

j
∂2u
∂x2

i
= 1

2
(F ′′(x · ω + t) + F ′′(x · ω − t) +G′(x · ω + t) +G′(x · ω − t))
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On the other hand

∂2

∂t2
(F (x · ω + t) + F (x · ω − t)) =

∂

∂t
(F ′(x · ω + t)− F ′(x · ω − t))

= F ′′(x · ω + t) + F ′′(x · ω − t)

∂2

∂t2

(∫ x·ω+t

x·ω−t

G(s) ds

)
=

∂

∂t

(
∂t

∂t
G(x · ω + t) +

∂(−t)
∂t

G(x · ω − t)

)
= G′(x · ω + t) +G′(x · ω − t)

So that
∂2u

∂t2
=

1

2
(F ′′(x · ω + t) + F ′′(x · ω − t) +G′(x · ω + t) +G′(x · ω − t))

The two expressions are equal so u satisfies ∆u = ∂2u
∂t2

and is a solution.

The basic fact is that when d > 1 , the solution of the wave equation can be written as an

integral (as opposed to sum, when d = 1) of plane waves; this can be done via the Radon

transform of the initial conditions f and g. This can be shown in general for any dimension,

but for the case of interest d = 3 the solution of the Cauchy problem 1.1 & 1.2 is given as a

superposition of plane waves, and can be expressed in terms of the Radon transform by the

formula ( from [3] )

u(x, t) =
−1
16π2

∫
S2

(
R∆f(x · ω + t, ω) + R∆f(x · ω − t, ω) +

∫ x·ω+t

x·ω−t

R∆g(q, ω)dq

)
dσ(ω)

This formula appears also in a problem in [13].

But if we look closer at the terms inside the integral above, we notice that they are doubled,

shouldn’t we be able to exploit the fact that R(f)(s,−ω) = R(f)(−s, ω) ?
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3.2 A more concise formula

For given compactly supported functions f, g, defining the initial conditions 1.2, it is more

elegant to set

α(s, ω) = −1

2

∂2

∂s2

(
Rf(s, ω)− 1

c

∫ s

−∞
Rg(q, ω) dq

)
=

1

2

(
ω · 1

c
R(∇g)(s, ω)−R(∆f)(s, ω)

) (3.2)

For each ω ∈ S2, α(s, ω) represents the plane wave component of u travelling in the direction

ω at initial time t = 0.

We are now ready to show the crucial use of the Radon transform, the function α : R×S2 → R

encodes the pair f, g : R3 → R in a way that allows direct reconstruction of u(x, t) for any t

as follows :

Theorem 5. ( P.C. Gibson ) The general solution of the Cauchy problem 1.1 & 1.2 can be

written as:

u(x, t) =
1

4π2

∫
S2

α(x · ω − ct, ω) dσ(ω) (3.3)

Proof. Letting V (s, ω, t) = Ru denote the Radon transform of u(·, t) : R3 → R, trans-

forming (1.1) and (1.2) yields

1

c2
Vtt −

∂2

∂s2
V = 0

V (s, ω, 0) = Rf(s, ω) , Vt(s, ω, 0) = Rg(s, ω)
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which, for each fixed ω ∈ S2, is a one-dimensional wave equation in V . Thus V = Ru may

be expressed in terms of Rf and Rg according to the D’Alembert formula

V (s, ω, t) =
1

2
(Rf(s− ct, ω) + Rf(s+ ct, ω)) +

1

2c

∫ s+ct

s−ct

Rg(q, ω) dq (3.4)

Setting

A(s, ω) =
1

2

(
Rf(s, ω)− 1

c

∫ s

−∞
Rg(q, ω) dq

)
and

B(s, ω) =
1

2

(
Rf(s, ω) +

1

c

∫ s

−∞
Rg(q, ω) dq

)
,

the D’Alembert formula (3.4) may be re-written as

V (s, ω, t) = A(s− ct, ω) +B(s+ ct, ω) (3.5)

where A(s − ct, ω) is a right-travelling wave (with respect to the spatial variable s) and

B(s+ ct, ω) is a left-travelling wave. According to the reconstruction formula (3.1) then :

u(x, t) =− 1

8π2

∫
S2

∂2Ru

∂s2
(x · ω, ω, t) dσ(ω)

=− 1

8π2

∫
S2

∂2A

∂s2
(x · ω − ct, ω) +

∂2B

∂s2
(x · ω + ct, ω) dσ(ω)

Observe however that, by taking advantage of the symmetry of the Radon Transform :

∫
S2

∂2A

∂s2
(x · ω − ct, ω) dσ(ω) =

∫
S2

∂2B

∂s2
(x · ω + ct, ω) dσ(ω) (3.6)

In fact

F (x, y) = F (−x,−y) =⇒ ∂F

∂x
(−a,−b) = −∂F

∂x
(a, b) (3.7)
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And by definition,

∂2A

∂s2
(s, ω) =

1

2

∂2

∂s2

(
Rf(s, ω)− 1

c

∫ s

−∞
Rg(q, ω) dq

)
=
1

2

(
R∆f(s, ω)− 1

c

∂Rg

∂s
(s, ω)

)
=
1

2

(
R∆f(s̃, ω̃) +

1

c

∂Rg

∂s
(s̃, ω̃)

)
where (s̃, ω̃) = (−s,−ω)

=
∂2B

∂s2
(s̃, ω̃) .

Therefore
∂2A

∂s2
(x · ω − ct, ω) =

∂2B

∂s2
(x · (−ω) + ct,−ω)

which implies (3.6). It follows in turn from (3.6) and the convenient definition (3.2) :

u(x, t) =− 1

4π2

∫
S2

∂2A

∂s2
(x · ω − ct, ω) dσ(ω)

=
1

4π2

∫
S2

α(x · ω − ct, ω) dσ(ω)

completing the proof.

This theorem expresses u(x, t) as the average value (over all the directions of travel) of

the plane wave components of u passing through x at time t. Once α is known, just a

single integral over a compact set needs to be computed in order to recover u(x, t). If

such a numerical scheme is developed, unlike standard numerical methods, the amount of

computation required would be independent of the time t, since there would be no time

iterations or time-stepping involved.
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4 Numerical implementation

4.1 Partitioning the sphere

In order to exploit the idea of the previous chapter to solve the 3D wave equation, we

need to possess a tool to compute integrals over S2, while many numerical methods might

be available, we developed a precise, but also an economical method for the particular

integration ∫
S2

f(ω) dσ(ω) , where dσ is the Lebesgue measure on S2

Often the precise form of f is either too complicated to integrate analytically or is not known

explicitly and can only be sampled at individual points on S2. One of the most common

ways to arrive at such approximations is by use of a numerical scheme, or quadrature, where

we approximate the integral by a weighted sum over a finite collection of points xi ∈ S2

∫
S2

f(ω) dσ(ω) =
N∑
i=0

wif(xi) := Q[f ]

where wi denote the weights and Q[f ] is called the quadrature of the exact integral.

The theory of quadratures for one-dimensional integrals has a long history and many results

can be found in literature [2]. Some of this theory can be extended to the case of integrals

over S2, a noteworthy difference however is that the distribution of points {xi} over the
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surface of the unit sphere is a non-trivial problem on its own.

It is worth mentioning that the method of spherical harmonics is a common way to compute

integrals of square-integrable functions on the unit sphere, as these functions can be expanded

in terms of the spherical harmonics orthonormal basis on this sphere. This method requires

determining both weights and nodes and is then classified as a Gauss quadrature method.

We will not use any of the already existing quadrature schemes !

Instead, we will proceed to develop our own Chebyshev quadrature, that is, a quadrature

where the weights are all equal.

We will witness the power of this quadrature when we apply it to integrate wave components

and solve the 3-D wave equation.

The problem of quadrature is geometric in nature, we need to partition the sphere into

regions of small areas, regions relatively having the same shape as each other, in the sense

that normal vectors centered at each region will be equally spread over the surface of the

sphere, ideally we would want regions of equal area, we are looking for a regular ’tiling’ of

the sphere.

Luckily, this problem has been solved, a paper from 2006 [5] describes exactly an algorithm

to do that. Based on Zhou’s construction for S2 [14], as modified by Saff [10], and on

Sloan’s notes on the partition of S3 [11] ( references as they appear in the main paper [5]

). This article describes a practical algorithm for partitioning higher dimensional spheres

(S2, S3, ... ) into regions of equal areas and small diameter, Paul Leopardi, the author, calls it

the ’recursive zonal equal area sphere partitioning algorithm’, but we will call it Leopardi’s

algorithm going forward.

We need to settle some definitions first ;
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Definition 1. ( from [5] ) An equal area partition of Sd is a nonempty finite set P of regions,

which are closed Lebesgue measurable subsets of Sd such that

1. the regions cover Sd, that is
⋃

R∈P R = Sd.

2. the regions have equal area, with the Lebesgue area measure σ of each R being

σ(R) = σ(Sd)
|P | = 4π

|P | , where |P | denotes the cardinality of the partition P .

3. the boundary of each region has area measure zero, that is, for each R ∈ P : σ(∂R) = 0.

Note that this definition implies that the intersection of any two regions of P has measure

zero. This in turn implies that any two regions are either disjoint or only have boundary

points in common. Condition 3 excludes pathological cases.

Definition 2. ( from [5] ) The diameter of a region R ⊂ Sd is, as one could expect,

Diam(R) = sup{∥x− y∥ | x, y ∈ R}, where the distance is in the Euclidean space Rd+1.

It is denoted by EQ(d,N) the recursive zonal equal area partition of the unit sphere Sd into

N regions.

The proof of the following theorem can be found in detail in the companion paper [6].

Theorem 6. ( from [5] ) For d ≥ 1, N ≥ 1, the partition EQ(d,N) is an equal area

partition of Sd.

Moreover, this partition is diameter-bounded in the sense that there exists a k ∈ R+ (called

a diameter bound) for which for all R ∈ P :

Diam(R) ≤ k

|P |1/d

It is important to underline here that the last statement is important to us, since the diameter

of the regions is bounded, we are sure to have regions of the same shape relatively, so this
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sphere partition will yield points evenly spread over the sphere.

We describe now the algorithm briefly, for the specific case of S2 :

4.1.1 Leopardi’s algorithm

For each natural number N , the algorithm outputs EQ(2, N) which is a partition of the unit

sphere S2 into N regions of equal area A(R) = 4π
N

1- Determine the colatitude of polar caps :

θc = Θ(A(R)) where Θ = V −1 and V (θ) = 2π
∫ θ

0
sinx dx = 2π(1− cos θ) , giving

θc = arccos

(
1− 2

N

)

2- Determine the ideal collar angle :

δI = A(R)1/2 = 2

√
π

N

3- Determine the ideal number of collars :

nI =
π − 2θc

δI

4- Determine the actual number of collars :

We use a rounding procedure to obtain an integer close to the ideal number of collars. Here

N > 2 ,

n = max (1, round(nI)) where round(x) = ⌊x+ 0.5⌋
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5- Create a list of the ideal number of regions in each collar :

We number the zones southward, from 1 for the North polar cap to n+2 for the South polar

cap, and number the collars so that collar i is zone i+ 1 . The ’fitting’ collar angle is

δF =
π − 2θc

n

We use δF to produce an increasing list of ’fitting’ colatitudes of caps, defined by

θF,i = θc + (i− 1)δF , i = 1, ... , n+ 1

The area of each corresponding ’fitting’ collar is given by successive colatitudes in this list.

The ideal number of regions, yi , in each collar i ∈ {1, 2, ... , n}, is then

yi =
V (θF,i+1)− V (θF,i)

A(R)

6- Create a list of the actual number of regions in each collar :

We use a rounding procedure with n the number of collars, we define mi, the required number

of regions in collar i as follows. Define the sequences ai and mi by starting with a0 = 0 and

ai =
i∑

j=1

yj −mj , mi = round(yi + ai−1)

7- Create a list of colatitudes of each zone :

We now define θ0 = 0 and θn+2 = π and θi = Θ

((
1 +

i−1∑
j=1

mj

)
A(R)

)
for i ∈ {1, 2, ... , n+1}

We then define zone i+ 1 to be the spherical sector Z(θi, θi+1) , and of course for

i ∈ {1, 2, ... , n} we define collar i to be zone i+ 1 .
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8- Partition each spherical collar into regions of equal area :

Using our algorithm for the circle S1 , we partition collar i into mi regions, each corresponding

to a region of the partition EQ(1,mi), we assume that each region of EQ(1,mi) is rectilinear

in spherical polar coordinates.

End

Notice how this last step is a direct computation, as we know how to split a circle (S1) into

equal length arcs, so we are just doing one recursion.

We can divide the sphere for example into 50 regions of equal area :

Figure 4.1: The points are exactly in the centers of the regions given by
Leopardi’s algorithm
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Now we just need to adapt this algorithm to our problem, we are only interested in computing

points that are the centers of each region in the partition EQ(2, N). Then we can assign a

normal unit vector to each of the obtained points. We will see that our method turns out to

be much simpler, since for each collar, all of the central points lie in the same latitude.

4.1.2 ESP algorithm (short for Equally Spread Points)

For each given N > 20 (we are only interested in fine partitions), the ESP algorithm outputs

the N unit vectors, that are given by ωi = (θi, ϕi) in spherical coordinates, where θ represents

the colatitude angle and ϕ the azimuthal angle.

1- ω1 = ez , θ1 = 0 and ωN = −ez, θN = π

Then compute θc = arccos
(
1− 2

N

)
, δI = A(R)1/2 = 2

√
π
N

2- Determine the number of collars : nI =
π−2θc
δI

, n = ⌊nI + 0.5⌋

3- Create a list of the actual number of regions in each collar :

The ’fitting’ collar angle is δF = π−2θc
n

then

θF,i = θc + (i− 1)δF , i = 1, ..., n+ 1

The ideal number of regions, yi, in each collar i ∈ {1, 2, ... , n} :

yi =
V (θF,i+1)− V (θF,i)

A(R)
=

N

2
(cos θF,i − cos θF,i+1)
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The required number of regions in collar i is then mi computed using the recursion method

with a0 = 0 and

ai =
i∑

j=1

yj −mj , mi = round(yi + ai−1)

4- Create a list of colatitudes of each zone :

We now define α0 = 0 and αn+2 = π and for i ∈ {1, 2, ... , n+ 1}

αi = Θ

(
4π

N

(
1 +

i−1∑
j=1

mj

))
= arccos

(
1− 2

N

(
1 +

i−1∑
j=1

mj

))

At this point, ordering the ωi’s from North to South:

ω2, ω3, ..., ωm1+1 will have all the same θ2 = θ3 = ... = θm1+1 =
α1+α2

2

The next m2 vectors will have θm1+2 = θm1+3 = ... = θm1+m2+1 =
α2+α3

2

... continue

Until finally the last mn vectors will have θ∑n−1
j=1 mj+2 = θ∑n−1

j=1 mj+3 = ... = θN−1 =
αn+αn+1

2

5- Partition the directions on each spherical collar :

We partition collar i into mi regions, we assume that for large N it is not relevant to care

about the positioning of each direction in relation with the position in the neighbouring

collars.

So each direction ω2, ω3, ..., ωm1+1 will have ϕ2 = 0, ϕ3 =
2π
m1

, ... , ϕm1+1 =
2π(m1−1)

m1

The next m2 vectors will have ϕm1+2 = 0, ϕm1+3 =
2π
m2

, ... , ϕm1+m2+1 =
2π(m2−1)

m2

... continue

Until finally the last mn vectors will have ϕ∑n−1
j=1 mj+2 = 0, ϕ∑n−1

j=1 mj+3 =
2π
mn

, ...

and ϕN−1 =
2π(mn−1)

mn

End
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We illustrate the method with the the following figure.

Figure 4.2: Plots of 200, 1000, 5000 and 10 000 points
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It is clear that this algorithm has complexity O(N), returning to our problem, given N

normal unit vectors, covering equally the directions of space, we can now compute our

integral via the Riemann sum

∫
S2

f(w) dσ(w) = lim
N→∞

4π

N

N∑
i=1

f(ωi)

In fact, this regular ’tiling’ simplify computation immensely in comparison with other quadra-

ture methods, that is because all the weights are equal, the area of each region A = 4π
N

is

constant, thus pulled out of the summation to be done by the machine. Moreover, this

method can be used for various types of functions, however their variations can be, even for

highly variant functions, one can take a finer distribution of points on the sphere and get a

good approximation.

Thanks to Leopardi’s algorithm, we can exploit this regular ’tiling’ to compute many integrals

of the sort. Particularily, we are interested in computing the integral of the plane wave

component to solve the wave equation.
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Figure 4.3: 10 000 points are already challenging the resolution of the screen
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4.2 A new scheme to solve the 3D wave equation

We established that if we consider the plane wave component of u For each ω ∈ S2 ,

α(s, ω) =
1

2

(
ω · 1

c
R(∇g)(s, ω)−R(∆f)(s, ω)

)
(3.2)

we can find solutions by direct reconstruction of u(x, t) for any time t from the formula

u(x, t) =
1

4π2

∫
S2

α(x · ω − ct, ω) dσ(ω) (3.3)

We will use the ESP algorithm to compute precise approximations to this integral.

Clearly by Riemann integration, we have the convergence of the sequence :

N∑
i=1

α(x · ωi − ct, ωi)A(ωi) −−−−−→
N→∞

∫
S2

α(x · ω − ct, ω) dσ(ω)

Where the ωi’s are equally distributed over S2 and each one is at the center of a region of

the same area A(ωi) =
4π
N

.

Then we obtain a formula for the solution u :

1

Nπ

N∑
i=1

α(x · ωi − ct, ωi) −−−−−→
N→∞

u(x, t)

or, for a sufficiently large N we have the approximation

u(x, t) ≈ 1

Nπ

N∑
i=1

α(x · ωi − ct, ωi)
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We can then implement this in any computational software, of course we can fix the ap-

proximation error and tune accordingly. The algorithm is simple, for the sake of precise

exposition, we present an implementation in Matlab.

4.3 Implementation in Matlab

We first compute (manually) the Radon transforms of the initial conditions, for example,

polynomials are particularly easy to compute, as we will see in the next chapter.

Given initial conditions f, g, they determine a unique example to be tested, we will name our

test cases (or examples) and we can show here how the implementation goes for an example

A.

Preparation

Depending on computation power, one can start by storing the units vectors, at once, in a

file, before using them, (or including them in a library or a package that should be called

before running the scheme). We will store them in a standard Matlab table which we save

under a ’.mat’ file.

• We use the method ’ESP(N)’ that outputs the list of unit vectors ωi’s for each N ranging

from 400, 800, ... to 205200, by iterating the steps described in the ESP algorithm.

• Store the unit vectors in a Matlab table, corresponding to each N in the range from

400, 800, 1200, ... to 205200 (by steps of 400).

Input

- The wave component α-A(s, ω) as a Matlab function

- The wave speed c as a scalar
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- An approximation error, or tolerance ϵ > 0

- The point in space X = (x1, x2, x3), and time t

Processing

Try u(X, t) = 1
Nπ

N∑
i=1

α(X ·ωi−ct, ωi) (the vectors ωi are now available in the file), increment

N by 500 while the difference between two successive approximations is still bigger than ϵ.

Output

The solver, which is the Matlab function, radonSolver-A(ϵ, c,X, t) , is a method that returns

the value of u at time t and position X, which is ϵ close to the exact solution, i.e.

|uexact(X, t)− u(X, t)| < ϵ
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Our implementation of the new scheme in Matlab

Input The wave component α-A(s, ω) as a Matlab function

The wave speed c as a scalar

An approximation error, or tolerance ϵ > 0

The point in space X = (x1, x2, x3), and time t

Step 1: Store the units vectors in a file that should be ’loaded’ before running the script.

Step 2: initialize with N = 1200 and value1=value= 1
Nπ

N∑
i=1

α(X · ωi − ct, ωi)

and a second value with N = 2000 and value2=f= 1
Nπ

N∑
i=1

α(X · ωi − ct, ωi).

Looping: While (|value2- value1|>ϵ) do {

value1← value2, N=N+1600, value2← 1
Nπ

N∑
i=1

α(X · ωi − ct, ωi)

return value2 }.

Output The desired value of u(X, t)
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5 Testing the new scheme

Now that the numerical scheme is settled, we should dispose of some exact data against

which we can test it, we will be able to verify that the algorithm works correctly (though we

already proved it works) when compared to ’ground truth’ solutions.

We can invoke known analytic solutions to the wave equation for simple Cauchy problems,

which we develop in the following section.

5.1 Exact solutions to some particular wave equations

Theorem 7. Let F : R → R be a real function, and denote x ∈ R3, r = |x|, if C : R → R

is a real function then u(x, t) = C(r)F (r − ct) is a solution to the wave equation 1.1 if and

only if C(r) = a
r

for some real number a

Proof. We note that ∂r
∂xj

=
xj

r
, ∂2r

∂x2
j
=

r2−x2
j

r3
and for u(x, t) = C(r)F (r − ct) :

∂2u

∂x2
j

=F (r − ct)
∂2C(r)

∂x2
j

+ C(r)
∂2F (r − ct)

∂x2
j

+ 2
∂C(r)

∂xj

∂f(r − ct)

∂xj

=F (r − ct)
∂

∂xj

(
∂r

∂xj

C ′(r)

)
+ C(r)

∂

∂xj

(
∂r

∂xj

F ′(r − ct)

)
+ 2

∂r

∂xj

C ′(r)
∂r

∂xj

f ′(r − ct)
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=F (r − ct)

(
∂2r

∂x2
j

C ′(r) + (
∂r

∂xj

)2C ′′(r)

)
+ C(r)

(
∂2r

∂x2
j

F ′(r − ct) + (
∂r

∂xj

)2F ′′(r − ct)

)
+ 2(

∂r

∂xj

)2C ′(r)F ′(r − ct)

=F (r − ct)

(
r2 − x2

j

r3
C ′(r) + (

xj

r
)2C ′′(r)

)
+ C(r)

(
r2 − x2

j

r3
F ′(r − ct) + (

xj

r
)2F ′′(r − ct)

)
+ 2(

xj

r
)2C ′(r)F ′(r − ct)

=F (r − ct)

(
r2 − x2

j

r3
C ′(r) +

x2
j

r2
C ′′(r)

)
+ F ′(r − ct)

(
C(r)

r2 − x2
j

r3
+ 2

x2
j

r2
C ′(r)

)
+ F ′′(r − ct)

x2
j

r2
C(r)

Then we can have the Laplacian of u, noting that
3∑

j=1

x2
j

r2
= 1 and

3∑
j=1

r2−x2
j

r3
= 2

r
:

∆u =
3∑

j=1

∂2u

∂x2
j

= F (r − ct)

(
C ′(r)

3∑
j=1

r2 − x2
j

r3
+ C ′′(r)

3∑
j=1

x2
j

r2

)

+ F ′(r − ct)

(
c(r)

3∑
j=1

r2 − x2
j

r3
+ 2C ′(r)

3∑
j=1

x2
j

r2

)
+ F ′′(r − ct)C(r)

3∑
j=1

x2
j

r2

=F (r − ct)

(
c′(r)

2

r
+ C ′′(r)

)
+ F ′(r − ct)

(
c(r)

2

r
+ 2C ′(r)

)
+ F ′′(r − ct)C(r)

On the other hand we have ∂2u
∂t2

= c2C(r)F ′′(r − ct), so for u to be a solution we need

C(r)F ′′(r−ct) = F (r−ct)
(
C ′(r)

2

r
+ C ′′(r)

)
+F ′(r−ct)

(
C(r)

2

r
+ 2C ′(r)

)
+F ′′(r−ct)C(r)

That is

C ′(r)
2

r
+ C ′′(r) = 0

C(r)
2

r
+ 2C ′(r) = 0
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We can solve either of the two differential equation to find that all C(r) = a
r

for a ∈ R are

solutions of the two conditions combined.

Expressing F in term of the initial conditions of our Cauchy problem

For a non trivial solution of the wave equation, a ̸= 0, if u satisfies as well the two initial

conditions 1.2 then :

u(x, 0) =
a

r
F (r) =f =⇒ F (r) =

r

a
f

ut(x, 0) = −c
a

r
F ′(r) =g =⇒ F ′(r) =

−r
ac

g

Which yields that f and g depend solely on r with :

g(r) = −ac
r
F ′(r) = −ac

r
( r
a
f(r))′ = −ac

r
( r
a
f ′(r) + 1

a
f(r)) = −c(f ′(r) + 1

r
f(r))

So we need necessarily that f, g must obey the following conditions :

f(r) =
a

r
F (r) , g(r) = −c

(
f ′(r) +

1

r
f(r)

)

We can then come up with some nice examples of 3 dimensional waves propagating only

’radially outward’, we start by compactly supported piece-wise polynomials’ cases before we

show that we can also compute some nice formulas for non compactly supported functions

as well, namely e−r2 and e−r as initial states.

In each of the following, first we find an expression of the exact solution, then we proceed to

compute

ω ·R(∇g)(s, ω) = ∂

∂s
R(g)(s, ω) and R(∆f)(s, ω) =

∂2

∂s2
R(f)(s, ω)
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So we can retrieve the expression of α(s, w) to be put in our numerical scheme :

α(s, ω) =
1

2

(
ω · 1

c
R(∇g)(s, ω)−R(∆f)(s, ω)

)
=

1

2c

(
∂

∂s
R(g)(s, ω)− c

∂2

∂s2
R(f)(s, ω)

)

As we will see, we apply some calculus, and we take advantage of the radial nature of the

examples.

5.2 Generating the first experiments

The motivation for piece-wise polynomials comes from the following two examples that we

first experimented with, each represent a pair of initial conditions, we note that these exam-

ples doesn’t need u(x, 0) to be C2, nor ut(x, 0) to be C1, but they still work! We found the

data to be exactly matching the exact solution obtained analytically. We hint to a potential

generalization of our scheme to include discontinuous cases, distribution theory is a natural

way to go. But for now, let us draw some plots :
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Starting examples

Example B
Bump

(r − 1)2(r − 3)2

for 1 ≤ r ≤ 3

Example BH
Bump with a Hump

(r − 1)2(r − 5)2((r − 3)2 + 0.25)

for 1 ≤ r ≤ 5

Example B, (B for Bump)

Take the function f that is differentiable for all r > 0 :

f(r) =


(r − 1)2(r − 3)2 = r4 − 8r3 + 22r2 − 24r + 9 , if 1 ≤ r ≤ 3

0 , otherwise
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Figure 5.1: Plot of the Bump

For 1 ≤ r ≤ 3 : f ′(r) = 4r3 − 24r2 + 44r − 24 and

g(r) = −c(4r3 − 24r2 + 44r − 24 +
1

r
(r4 − 8r3 + 22r2 − 24r + 9))

= −c(5r3 − 32r2 + 66r − 48 +
9

r
)

In this case

F (r) =


r
a
(r − 1)2(r − 3)2 , if 1 ≤ r ≤ 3

0, , otherwise
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and we can work with the exact analytic solution :

u(x, t) =


r−ct
r
(r − ct− 1)2(r − ct− 3)2 , if 1 ≤ r − ct ≤ 3

0 , otherwise

Now to compute the wave component: We can start by computing first for s ≥ 0, since

f, g are symmetrical radially, we can immediately retrieve the values of negative s from

R(f)(−s, ω) = R(f)(s,−ω) = R(f)(s, ω) .

Any plane distant by s ≤ 1 from the origin and normal to the radial vector ω, intersect

the density function f on a circular sector of an internal radius
√
1− s2 and external radius

√
9− s2, any such plane distant by more than or equal to 3 from the origin gives a Radon

transform value of 0, so we know that R(f) vanishes for all s ≥ 3, and for s ≤ 1 it evaluates

to :

R(f)(s, ω) =

∫
C

f(r)dµ = 2π

∫ √
9−s2

√
1−s2

r1f

(√
r21 + s2

)
dr1

(where C is the circular sector of intersection)

=2π

∫ 3

1

rf (r) dr by the change of variable r =
√

r21 + s2

=2π

[
r6

6
− 8r5

5
+

22r4

4
− 24r3

3
+

9r2

2

]3
1

=
64

15
π
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then for 1 < s < 3 :

R(f)(s, ω) =

∫
D

f(r)dµ = 2π

∫ √
9−s2

0

r1f

(√
r21 + s2

)
dr1

(where D is the disk of intersection)

=2π

∫ 3

|s|
rf (r) dr by the change of variable r =

√
r21 + s2

=2π

[
r6

6
− 8r5

5
+

22r4

4
− 24r3

3
+

9r2

2

]3
s

=π

(
782, 992224− s6

3
+

16s5

5
− 11s4 +

48s3

3
− 9s2

)

Then

∂2

∂s2
R(f)(s, ω) = π

(
−10s4 + 64s3 − 132s2 + 96s− 18

)
for 1 < s < 3

∂2

∂s2
R(f)(s, ω) =

∂2

∂s2
R(f)(−s, ω) = ∂2

∂s2
π

(
782, 992224− s6

3
− 16s5

5
− 11s4 − 48s3

3
− 9s2

)
= π

(
−10s4 − 64s3 − 132s2 − 96s− 18

)
for − 3 < s < −1

and
∂2

∂s2
R(f)(s, ω) = 0 for |s| /∈ [1, 3]

On the other hand we have for g ; R(g) vanishes for all s ≥ 3 and for s ≤ 1 it evaluates to :

R(g)(s, ω) =

∫
C

g(r)dµ = 2π

∫ √
9−s2

√
1−s2

r1g

(√
r21 + s2

)
dr1

(where C is the circular sector of intersection)

=2π

∫ 3

1

rg (r) dr by the change of variable r =
√
r21 + s2

=− 2cπ
[
r5 − 8r4 + 22r3 − 24r2 + 9r

]3
1
= 0
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and for 1 < s < 3 :

R(g)(s, ω) =

∫
D

g(r)dµ = 2π

∫ √
9−s2

0

r1g

(√
r21 + s2

)
dr1

(where D is the disk of intersection)

=2π

∫ 3

|s|
rg (r) dr by the change of variable r =

√
r21 + s2

=− 2cπ
[
r5 − 8r4 + 22r3 − 24r2 + 9r

]3
s

= 2cπ
(
s5 − 8s4 + 22s3 − 24s2 + 9s

)
Then

∂

∂s
R(g)(s, ω) = 2cπ

(
5s4 − 32s3 + 66s2 − 48s+ 9

)
for 1 < s < 3

∂

∂s
R(g)(s, ω) =

∂

∂s
R(g)(−s, ω) = ∂

∂s
2cπ

(
−s5 − 8s4 − 22s3 − 24s2 − 9s

)
= −2cπ

(
5s4 + 32s3 + 66s2 + 48s+ 9

)
for − 3 < s < −1

and
∂

∂s
R(g)(s, ω) = 0 for |s| /∈ [1, 3]

We obtain the expression of the plane wave component for f and g :

α(s, ω) =
1

2c

(
∂

∂s
R(g)(s, ω)− c

∂2

∂s2
R(f)(s, ω)

)

=


π (10s4 − 64s3 + 132s2 − 96s+ 18) , if 1 ≤ s ≤ 3

0 , otherwise

We can then run a comparison with the exact solution of our new numerical method in

Matlab, specifically for this example, a plot of relative errors is below where we took c = 1
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and we computed the solution at the (30, 30, 30) point in space and for times ranging from

45 seconds to 55 seconds, corresponding to the time where the ‘perturbation’ passes through

the point.

Figure 5.2: Decimal logarithm of relative errors for t from 45 to 55

We can see that the relative error is not more than 0.002 of the value of the exact solution,

meaning that our new scheme in this case is very precise.
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Figure 5.3: Runtimes as measured in Matlab

We can measure the computation time, which is dependent on the machine in where the

scheme is being run. On a personal laptop with CPU Intel i5, under Windows, x64, Matlab

version R2020b, we have less than 3 seconds for each obtained value. Not to mention that

other applications are running, meaning that the total power of the personal laptop is not

fully exploited.

Clearly this performance can be exceeded by just ’tuning’ the scheme to skip unnecessary

iterations to reach the tolerance of 10−6; an example of that can be to modify the loop

increments, instead of making steps of 1600 in the equally distributed points of S2 we can

take 3200 to reduce the runtime by almost a half !



Chapter 5. Testing the new scheme 46

Figure 5.4: The solution u for t from 45 to 55

One can follow the Bump as it travels through space, as in the above figure, notice how

30
√
3 ≈ 43.
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Example BH, (BH for Bump with a Hump)

Take the function f that is differentiable for all r ≥ 0 :

f(r) =


(r − 1)2(r − 5)2((r − 3)2 + 0.25) =

r6 − 18r5 + 127.25r4 − 447r3 + 810.5r2 − 705r + 231.25 , if 1 ≤ r ≤ 5

0 , otherwise

Figure 5.5: Plot of the Bump with a Hump
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For 1 ≤ r ≤ 5 : f ′(r) = 6r5 − 90r4 + 509r3 − 447× 3r2 + 1621r − 705 and

g(r) =− c(6r5 − 90r4 + 509r3 − 447× 3r2 + 1621r − 705)

+
1

r
(r6 − 18r5 + 127.25r4 − 447r3 + 810.5r2 − 705r + 231.25))

=− c(7r5 − 108r4 + 636.25r3 − 1788r2 + 2431.5r − 1410 + 231.25
1

r
)

In this case

F (r) =


r
a
(r − 1)2(r − 5)2 ((r − 3)2 + 0.25) , if 1 ≤ r ≤ 5

0 , otherwise

and we can work with the exact analytical solution :

u(x, t) =


r−ct
r
(r − ct− 1)2(r − ct− 5)2 ((r − ct− 3)2 + 0.25) , if 1 ≤ r − ct ≤ 5

0 , otherwise

We can proceed now, differently, to illustrate more than one way of computation. Just by

considering the absolute value of s, the computation is straight forward.

Any plane distant by |s| ≤ 1 from the origin and normal to the radial vector ω, intersect

the density function f on a circular sector of an internal radius
√
1− s2 and external radius

√
52 − s2, any such plane distant by more than or equal to 5 from the origin gives a Radon

transform value of 0, so we know that R(f) vanishes for all |s| ≥ 5, and for |s| ≤ 1 it
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evaluates to :

R(f)(s, ω) =

∫
C

f(r)dµ = 2π

∫ √
52−s2

√
1−s2

r1f

(√
r21 + s2

)
dr1

(where C is the circular sector of intersection)

=2π

∫ 5

1

rf (r) dr by the change of variable r =
√

r21 + s2

= Cste (we don’t care what constant is that since its derivative is zero)

For 1 < |s| < 5 :

R(f)(s, ω) =

∫
D

f(r)dµ = 2π

∫ √
52−s2

0

r1f

(√
r21 + s2

)
dr1

(where D is the disk of intersection)

=2π

∫ 5

|s|
rf (r) dr by the change of variable r =

√
r21 + s2

=2π
[
r8/8− 18r7/7 + 127.25r6/6− 447r5/5 + 810.5r4/4− 705r3/3 + 231.25r2/2

]5
|s|

=π

(
8125

42
− s8

4
+

36

7
|s|7 − 127.25

3
s6 +

894

5
|s|5 − 810.5

2
s4 +

1410

3
|s|3 − 231.25s2

)

Then

∂2

∂s2
R(f)(s, ω) =

∂

∂s
π
(
−2s7 + 36s6 − 2(127.25)s5 + 894s4 − 2(810.5)s3 + 1410s2 − 2(231.25)s

)
= π

(
−14s6 + 6(36)s5 − 1272.5s4 + 4(894)s3 − 6(810.5)s2 + 2(1410)s− 2(231.25)

)
for 1 < s < 5
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And

∂2

∂s2
R(f)(s, ω) =

∂2

∂s2
π
(8125

42
− s8/4− 36s7/7− 127.25s6/3

− 894s5/5− 810.5s4/2− 1410s3/3− 231.25s2
)

=
∂

∂s
π
(
−2s7 − 36s6 − 2(127.25)s5 − 894s4 − 2(810.5)s3 − 1410s2 − 2(231.25)s

)
= π

(
−14s6 − 6(36)s5 − 1272.5s4 − 4(894)s3 − 6(810.5)s2 − 2(1410)s− 2(231.25)

)
for − 5 < s < −1

And
∂2

∂s2
R(f)(s, ω) = 0 for |s| /∈ [1, 5]

On the other hand we have for g : R(g) vanishes for all |s| ≥ 5 and for |s| ≤ 1 it evaluates

to :

R(g)(s, ω) =

∫
C

g(r)dµ = 2π

∫ √
52−s2

√
1−s2

r1g

(√
r21 + s2

)
dr1

(where C is the circular sector of intersection)

=2π

∫ 5

1

rg (r) dr by the change of variable r =
√

r21 + s2

= Cste
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and for 1 < |s| < 5 :

R(g)(s, ω) =

∫
D

g(r)dµ = 2π

∫ √
52−s2

0

r1g

(√
r21 + s2

)
dr1

(where D is the disk of intersection)

=2π

∫ 5

|s|
rg (r) dr by the change of variable r =

√
r21 + s2

=− 2cπ
[
r7 − 18r6 + 636.25r5/5− 447r4 + 2431.5r3/3− 705r2 + 231.25r

]5
|s|

= 2cπ
(
|s|7 − 18s6 + 636.25|s|5/5− 447s4 + 2431.5|s|3/3− 705s2 + 231.25|s|

)
Then

∂

∂s
R(g)(s, ω) = 2cπ

(
7s6 − 6(18)s5 + 636.25s4 − 4(447)s3 + 2431.5s2 − 1410s+ 231.25

)
for 1 < s < 5

∂

∂s
R(g)(s, ω) =

∂

∂s
2cπ

(
−s7 − 18s6 − 636.25s5/5− 447s4 − 2431.5s3/3− 705s2 − 231.25s

)
= −2cπ

(
7s6 + 6(18)s5 + 636.25s4 + 4(447)s3 + 2431.5s2 + 1410s+ 231.25

)
for − 5 < s < −1

And
∂

∂s
R(g)(s, ω) = 0 for |s| /∈ [1, 5]

We obtain the expression of the plane wave component for f and g :

α(s, ω) =
1

2c

(
∂

∂s
R(g)(s, ω)− c

∂2

∂s2
R(f)(s, ω)

)

=


π (14s6 − 216s5 + 1272.5s4 − 3576s3 + 4863s2 − 2820s+ 462.5) , if 1 ≤ s ≤ 5

0 , otherwise
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We run the comparison with the exact solution again in Matlab, specifically for this example,

a plot of relative errors is below where we took c = 1 and we computed the solution at the

(30, 30, 30) point in space and for times ranging from 45 seconds to 55 seconds again.

Figure 5.6: Decimal logarithm of relative errors for t from 45 to 55

We notice the same order of relative errors, not more than 0.002 for this case as well.
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Figure 5.7: Runtimes as measured in Matlab

Figure 5.8: The solution u for t from 45 to 55
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We like to make things more simple, so we generalize our calculus for any polynomial ex-

pression in the following analysis.

5.3 Piece-wise Polynomials

Now we make the computation more automated; we consider any polynomial, up to a van-

ishing point at r = M

f(r) = P (r) =
n∑

k=0

akr
k

Figure 5.9: A polynomial where r = 3 is the vanishing point

Question: can we consider density functions which are discontinuous like that example above?
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Let us explore this later.

For now, to continue in the spirit of taking only differentiable initial states ( f ′ exists ), we

will choose only polynomials whose derivative is zero at the vanishing point r = M .

Here f ′(r) =
n∑

k=1

kakr
k−1 and

g(r) =− c(
n∑

k=1

kakr
k−1 +

1

r

n∑
k=0

akr
k)

=− c

(
n∑

k=1

(k + 1)akr
k−1 +

a0
r

)

In this case

F (r) =
r

a
(

n∑
k=0

akr
k) =

n∑
k=0

ak
a
rk+1 for r ≤M , 0 otherwise

and the exact solution has the formula:

u(x, t) =


a
r
F (r − ct) = r−ct

r
f(r − ct) =

n∑
k=0

ak
r
(r − ct)k+1 , if 0 ≤ r − ct ≤M

0 , otherwise

Proceeding in a similar fashion, any plane distant by |s| from the origin and normal to the

radial vector ω, intersects the density function f everywhere up to M , meaning as long as
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|s| < M , so we know that R(f) evaluates to :

R(f)(s, ω) =

∫
P

f(r)dµ = 2π

∫ √
M2−s2

0

r1f

(√
r21 + s2

)
dr1

dµ = r1dθdr1 with polar calculus

=2π

∫ M

|s|
rf (r) dr by the change of variable r =

√
r21 + s2

=2π

[
n∑

k=0

ak
k + 2

rk+2

]M
|s|

= 2π
n∑

k=0

ak
k + 2

(Mk+2 − |s|k+2)

Then, we can compute for positive s :

∂2

∂s2
R(f)(s, ω) =

∂

∂s
(−2π

n∑
k=0

aks
k+1)

= −2π
n∑

k=0

(k + 1)aks
k

and for negative s :

∂2

∂s2
R(f)(s, ω) =

∂

∂s
(2π

n∑
k=0

ak(−s)k+1)

= −2π
n∑

k=0

(k + 1)ak(−s)k
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On the other hand, we have for g, for |s| ≤M, R(g) evaluates to :

R(g)(s, ω) =

∫
P

g(r)dµ = 2π

∫ √
M2−s2

0

r1g

(√
r21 + s2

)
dr1

dµ = r1dθdr1 with polar calculus

=2π

∫ M

|s|
rg (r) dr by the change of variable r =

√
r21 + s2

=− 2πc

[
n∑

k=1

akr
k+1 + a0r

]M
|s|

= 2πc
n∑

k=0

ak(|s|k+1 −Mk+1)

Then

∂

∂s
R(g)(s, ω) = 2cπ

n∑
k=0

(k + 1)aks
k for s ≥ 0

∂

∂s
R(g)(s, ω) = −2cπ

n∑
k=0

(k + 1)ak(−s)k for s < 0

We obtain the expression of the plane wave component for f and g :

α(s, ω) =
1

2c

(
∂

∂s
R(g)(s, ω)− c

∂2

∂s2
R(f)(s, ω)

)

=


2π

n∑
k=0

(k + 1)aks
k , if 0 < s ≤M

0 , otherwise

Now we possess a powerful tool to compute as many polynomials as we wish.

But we can do better. If we look carefully at the expression of α(s, ω) we can make a

useful observation. The expression looks like the polynomial f and this can shortcut the

computations, so we can immediately retrieve the wave component without relying on the
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Radon transform, only for radial waves:

Theorem 8. Let M > 0 and f : R+ → R be a real differentiable function such that f = 0

for all r ≥ M , f is a polynomial over [0,M ] and f ′(0+) = 0, then f gives rise to a unique

radial wave function

u(x, t) =


r−ct
r
f(r − ct) , if 0 < r − ct ≤M

0 , otherwise

such that u(x, 0) = f(r), where r = |x|.

Moreover ut(x, 0) = g(r) = −c(f ′(r) + 1
r
f(r)) and the wave component is retrieved by the

formula

α(s, ω) =


−2π
c
sg(s) = 2π(sf ′(s) + f(s)) , if 0 < s ≤M

0 , otherwise

Proof. As we computed, we have for 0 < s ≤M ,

α(s, ω) = 2π
n∑

k=0

(k + 1)aks
k =
−2π
c

(
−c(

n∑
k=0

(k + 1)aks
k)

)

=
−2π
c

s

(
−c(a0

s
+

n∑
k=1

(k + 1)aks
k−1)

)
=
−2π
c

sg(s)

And recall that g(s) = −c(f ′(s) + f(s)
s
) .

Now that we have this nice ’mechanical’ formula for producing the wave component for any

initial condition of this sort, we can just take any polynomial we want to test our scheme.



Chapter 5. Testing the new scheme 59

Example S, (S for sinus)

Take the function f that is differentiable for all r ≥ 0 :

f(r) = r2(r − 4)2(r − 2) =
5∑

k=0

akr
k up to the vanishing point r = 4

= r5 − 10r4 + 32r3 − 32r2

Figure 5.10: Plot of example S

For r ≤ 4 : f ′(r) = 5r4 − 40r3 + 96r2 − 64r and

g(r) =− c

(
5r4 − 40r3 + 96r2 − 64r +

1

r
(r5 − 10r4 + 32r3 − 32r2)

)
=− c(6r4 − 50r3 + 128r2 − 96r)
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In this case

F (r) =


r
a
r2(r − 4)2(r − 2) , if r ≤ 4

0 , otherwise

and the exact analytical solution is :

u(x, t) =


r−ct
r
(r − ct)2(r − ct− 4)2(r − ct− 2) , if 0 ≤ r − ct ≤ 4

0 , otherwise

We have sg(s) = −c(6s5− 50s4+128s3− 96s2) and we apply the observation that we made:

α(s, ω) =


2π(6s5 − 50s4 + 128s3 − 96s2) , if 0 ≤ s ≤ 4

0 , otherwise

We run the comparison again in a similar fashion as the first two examples. And we obtain

the plots:
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Figure 5.11: Decimal logarithm of relative errors for t from 45 to 55

Figure 5.12: Runtimes as measured in Matlab
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Figure 5.13: The solution u for t from 45 to 55

Example W, (W for Wiggly)

Consider now the function f (differentiable for all r ≥ 0) :

f(r) = (r2 − 1)(r2 − 4)(r2 − 9)(r2 − 16)(r2 − 25)(r2 − 36)(r2 − 49)2 up to the vanishing point r = 7

=
16∑
k=0

akr
k = r16 − 189r14 + 14322r12 − 557258r10 + 11864853r8 − 136589817r6

+ 787692424r4 − 1907102736r2 + 1244678400
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Figure 5.14: Plot of the example W

For r ≤ 7 : f ′(r) = 16r15 − 189(14)r13 + 14322(12)r11 − 5572580r9 + 11864853(8)r7 −

136589817(6)r5 + 787692424(4)r3 − 1907102736(2)r and

g(r) =− c
(
16r15 − 189(14)r13 + 14322(12)r11 − 5572580r9 + 11864853(8)r7 − 136589817(6)r5

+ 787692424(4)r3 − 1907102736(2)r +
1

r
(r16 − 189r14 + 14322r12 − 557258r10

+ 11864853r8 − 136589817r6 + 787692424r4 − 1907102736r2 + 1244678400)
)

=− c
(
17r15 − 189(15)r13 + 14322(13)r11 − 557258(11)r9 + 11864853(9)r7

− 136589817(7)r5 + 787692424(5)r3 − 1907102736(3)r +
1244678400

r

)
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In this case

F (r) =


r
a
(r2 − 1)(r2 − 4)(r2 − 9)(r2 − 16)(r2 − 25)(r2 − 36)(r2 − 49)2 , if r ≤ 7

0 , otherwise

and the exact analytical solution is

u(x, t) =



r−ct
r
((r − ct)2 − 1)((r − ct)2 − 4)((r − ct)2 − 9)((r − ct)2 − 16)...

...((r − ct)2 − 25)((r − ct)2 − 36)((r − ct)2 − 49)2 , if 0 ≤ r − ct ≤ 7

0 , otherwise

We have sg(s) = −c(17s16−189(15)s14+14322(13)s12−557258(11)s10+11864853(9)s8−

136589817(7)s6 + 787692424(5)s4 − 1907102736(3)s2 + 1244678400)

and we apply our theorem :

α(s, ω) =


2π
(
17s16 − 15(189)s14 + 13(14322)s12 − 11(557258)s10 + 9(11864853)s8

−7(136589817)s6 + 5(787692424)s4 − 3(1907102736)s2 + 1244678400
)

, if 0 < s ≤ 7

0 , otherwise

Below are the plots obtained;
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Figure 5.15: Decimal logarithm of relative errors for t from 45 to 55

Figure 5.16: Runtimes as measured in Matlab
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Figure 5.17: The solution u for t from 45 to 55
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5.4 Non-compactely supported initial states

Gaussian density

Take the function f that is differentiable for all r > 0 : f(r) = e−r2

Figure 5.18: Plot of the Gaussian

Here f ′(r) = −2re−r2 and

g(r) = −c(−2re−r2 + 1
r
e−r2) = (2cr − c

r
)e−r2

In this case

F (r) =
r

a
e−r2
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and we can work with the following

u(x, t) =


a
r
F (r − ct) = r−ct

r
e−(r−ct)2 , if r − ct ≥ 0

0 , otherwise

Integrating :

R(f)(s, ω) =

∫
D

f(r)dµ = 2π

∫ ∞

0

r1f

(√
r21 + s2

)
dr1

(where D is the infinite plane of intersection)

=2π

∫ ∞

|s|
rf (r) dr by the change of variable r =

√
r21 + s2

=2π

[
−1
2
e−r2

]∞
|s|

=− π
(
0− e−s2

)
= πe−s2

Then

∂2

∂s2
Rf(s, ω) =

∂

∂s

(
−2πse−s2

)
= 2π

(
2s2 − 1

)
e−s2
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On the other hand we have for g :

R(g)(s, ω) =

∫
D

g(r)dµ = 2π

∫ ∞

0

r1g

(√
r21 + s2

)
dr1

(where D is the infinite plane of intersection)

=2π

∫ ∞

|s|
rg (r) dr by the change of variable r =

√
r21 + s2

=2π

∫ ∞

|s|
(2cr2 − c)e−r2 dr = 2cπ

[
−re−r2

]∞
|s|

=2cπ
(
|s|e−s2 − 0

)
= 2cπ|s|e−s2

Then

∂

∂s
R(g)(s, ω) = 2cπ(1− 2s2)e−s2 for s ≥ 0

∂

∂s
R(g)(s, ω) = −2cπ(1− 2s2)e−s2 for s < 0

We obtain the expression of the plane wave component for f and g :

α(s, ω) =


2π(1− 2s2)e−s2 , if s ≥ 0

0 , if s < 0
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e−r density

This density is defined by, for all r > 0 : f(r) = e−r

Figure 5.19: Plot of the e−r density

Here f ′(r) = −e−r and

g(r) = −c(−e−r + 1
r
e−r) = (c− c

r
)e−r

In this case

F (r) =
r

a
e−r
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and we can work with the following

u(x, t) =


a
r
F (r − ct) = r−ct

r
e−(r−ct) , if r − ct ≥ 0

0 , otherwise

Integrating :

R(f)(s, ω) =

∫
D

f(r)dµ = 2π

∫ ∞

0

r1f

(√
r21 + s2

)
dr1

(where D is the infinite plane of intersection)

=2π

∫ ∞

|s|
rf (r) dr by the change of variable r =

√
r21 + s2

=2π
[
−re−r

]∞
|s| − 2π

∫ ∞

|s|
−e−r dr

=2π
[
−re−r − e−r

]∞
|s|

=2π
(
0 + |s|e−|s| + e−|s|) = 2π(1 + |s|)e−|s|

Then

∂2

∂s2
Rf(s, ω) =

∂

∂s
2π
(
−se−s

)
= 2π(s− 1)e−s if s ≥ 0

∂2

∂s2
Rf(s, ω) =

∂

∂s
2π(−s)es = −2π(1 + s)es if s < 0
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On the other hand we have for g :

R(g)(s, ω) =

∫
D

g(r)dµ = 2π

∫ ∞

0

r1g

(√
r21 + s2

)
dr1

(where D is the infinite plane of intersection)

=2π

∫ ∞

|s|
rg (r) dr by the change of variable r =

√
r21 + s2

=2π

∫ ∞

|s|
(cr − c)e−r dr = 2π

[
−cre−r

]∞
|s| = 2cπ|s|e−|s|

Then

∂

∂s
R(g)(s, ω) = 2cπ(1− s)e−s for s ≥ 0

∂

∂s
R(g)(s, ω) = −2cπ(1 + s)es for s < 0

We obtain the expression of the plane wave component for f and g :

α(s, ω) =


2π(1− s)e−s , if s ≥ 0

0 , if s < 0

We note the relative errors obtained in Matlab for these two situations :
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Gaussian e−r2

e−r density e−r

Then the runtimes, under 4 seconds always;
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Gaussian e−r2

e−r density e−r

And the solutions which are not different from the exact solutions;



Chapter 5. Testing the new scheme 75

Gaussian e−r2

e−r density e−r

We can also compute any other values we want, we recap in the following the results obtained

for different points in space-time. Here (300, 30, 30, 50) correspond to the point (30, 30, 30)

in space and time t = 50 seconds.
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Relative errors, logEr

Initial state B BH S W G Expr

(30, 30, 30, 50) -5.06919 -3.90426 -3.69285 -2.10977 -1.95904 -2.41681

(300, 300, 300, 500) Inf Inf Inf Inf 164.82807 4.06320

(3000, 3000, 3000, 5000) Inf Inf Inf Inf Inf 82.41244

(3.104, 3.104, 3.104, 5.104) NaN NaN NaN NaN Inf Inf

Runtimes (in seconds)

Initial state B BH S W G Expr

(30, 30, 30, 50) 2.08400 2.40600 0.39000 2.60200 2.96300 0.38500

(300, 300, 300, 500) 4.85600 2.26700 2.28200 2.41900 0.09300 2.19400

(3000, 3000, 3000, 5000) 2.34700 2.32900 2.31800 2.34900 0.86900 2.22900

(3.104, 3.104, 3.104, 5.104) 0.00100 0.00100 0.00100 0.00200 0.00000 0.00300

The higher values 164.82 and 82.41 are understandable if you consider the limitations of

Matlab, when the values are closer to 0, we can easily get log(10
−8

Inf ) = +∞.

Notice also how ’Nan’ is given when Matlab tries to divide by 0. We leave it at the conclusion

that the new scheme gives very accurate results.
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6 Conclusion

We have defined the Radon transform and showed how it can be used in solving the 3

dimensional wave equation, we have proved the general form of solution:

u(x, t) =
1

4π2

∫
S2

α(x · ω − ct, ω) dσ(ω)

Then we have exploited this formula to implement an accurate numerical scheme. The

scheme doesn’t rely on time iterations, hence it can be used to compute solutions for large

times with a very low latency. The new scheme gave promising results and hopefully opens

up a new idea in the field of computational science for the wave equation.

We sketch some ideas for future work that would incorporate the results of the thesis into

a broader framework of solving numerically the general stated Cauchy problem. A natural

starting point is to assume that initial data f, g is given discretely, at points xj on an equally-

spaced grid in R3. The question is: how to obtain a function α(s, ω) corresponding to the

given discrete initial data?

If xj is a grid point, one idea is to replace the given data f(xj), g(xj) with scaled characteristic

functions of a ball centred at xj (call them “pixel functions”). This way the discrete data



Chapter 6. Conclusion 78

is replaced by a sum of pixel functions, defined on all of space. One can then compute

the corresponding α. A technical difficulty inherent in the aforementioned scheme is that

the characteristic function of a ball is discontinuous. Therefore one has to evaluate the

Radon transform in a distributional sense. With the resulting α(s, ω) in general being a

distribution. Thus a basic open question is to extend the Radon transform to the more

general setting of tempered distributions, and to express the general solution u(x, t) in terms

of a distributional version of α. In the cases where u is a regular function, one needs to be

able to recover its values at specific points. Provided the distribution α(s, ω) is integrable

with respect to the variable ω, the proposed numerical method can be used to recover u.

The analysis of precisely when the distribution α is integrable with respect to ω, depending

on given initial distributions f and g, is an open question for future research.

The hope is that the requisite integrability can be established for pixel functions (or a suitable

modification to this idea), thereby incorporating the proposed scheme into a fully-fledged

numerical solution to the (discrete) Cauchy problem for the wave equation.
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