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Abstract— Curved shocks that are locally oriented normal to the 

direction of the pre-shock flow vector appear on bluff and blunt 

bodies in supersonic flow and at the center lines of axisymmetric 

air intakes. There have been numerous studies to analytically 

approximate the shock stand-off distance associated with these 

curved normal shock waves; however, in view of the absence of 

satisfactory results across the entire range of freestream Mach 

numbers, further efforts are warranted. In this study, the Curved 

Shock Theory (CST) is used to derive analytical expressions for 

the pressure gradient right behind convex normal shocks in 

uniform upstream flow. This pressure gradient can be converted 

to gradients of other variables using the conservations laws and 

the isentropic relations. Using these gradients at the curved 

normal shock and an additional assumption on their variation 

between the shock and the blunt body it is possible to develop 

relations for the ratio of the shock stand-off distance to the radius 

of curvature of the shock surface as a function of freestream 

Mach number and the specific heat ratio. CST predictions are 

compared with experimental data from the literature and the 

CFD results obtained in the present study for freestream Mach 

numbers ranging from 1.2 to 8.  
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I.  INTRODUCTION 

The shock stand-off distance from blunt bodies is an 
important parameter to estimate the effects of shock waves on 
objects moving at supersonic and hypersonic speeds. The change 
in the shock stand-off distance can be an effective indicator of 
the changes in other important properties such as the drag on an 
aircraft or the heat flux on a re-entry vehicle. There have been 
continuous efforts over many decades to come up with handy 
expressions to quickly calculate the shock stand-off distance 
from blunt bodies. However, rather limited success is achieved 
in formulating expressions that can be applied over a wide range 
of Mach numbers. 

Several assumptions were implemented by different 
researchers to simplify the problem and formulate widely 
applicable expressions for the shock stand-off distance as a 

function of the freestream Mach number. In an earlier work by 
Moeckel [1], for instance, it is assumed that the detached shock 
wave can be represented by a hyperbola and that the sonic curve 
between the shock and the body is a straight line. In a recent 
study, Sinclair and Cui [2] made use of the variation of the size 
of the sonic zone bounded by the bow shock and the fore part of 
the body to relate the shock stand-off distance to the freestream 
Mach number.  

In this paper, the Curved Shock Theory (CST) is used to 
derive an expression for the pressure gradient right behind 
convex bow shocks that appear in supersonic and hypersonic 
flows with uniform pre-shock flow. This pressure gradient 
relation is combined with the momentum conservation law and 
the isentropic relations for various flow variables, such as Mach 
number, density, temperature, etc.  to obtain the gradients of 
those variables at the curved bow shock. By assuming the 
gradients to be constant within the shock layer between the bow 
shock and the blunt body or considering their average values, the 
ratio of the shock stand-off distance to the shock radius of 
curvature is obtained as a function of freestream Mach number. 
The aim of this study is to provide such alternative theoretical 
relations for the shock stand-off distance using CST and to 
investigate their validity. Billig’s experimental correlations [3, 
4], Liepmann and Roshko’s experimental data [5], and our 
numerical simulation results are used as tools for validation.  

II. THEORETICAL FORMULATION 

A. Curved Shock Theory as Applied to Curved Normal Shocks 

in Uniform Pre-shock Flow 

Theory that relates the pressure gradient, P, the streamline 
curvature, D, and vorticity, Γ, to the shock curvatures, Sa and Sb, 

on the pre-shock and post-shock sides of a doubly curved shock 
wave is developed in [6]. Such theories are also found in [7, 8]. 
When applied to a normal shock facing uniform upstream flow 
[8], the CST relations become:  

0 = A2
' P2 + C'Sa + G'Sb (1) 

P = 
∂p/∂s

ρV 2  = 
∂p/∂s

γpM 2
(2) 
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·
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2 – 1

M1
 2

(4) 

where subscripts 1 and 2 correspond to the upstream and 
downstream sides of the bow shock at the center line, 
respectively; M1 is the freestream Mach number; the derivative 
in (2) is taken along the streamline; other notations are 
conventional. 

For the blunt body case both shock surface curvatures, Sa and Sb, 
are negative and the corresponding radii of curvature, Ra = −1/Sa 
and Rb = −1/Sb, are positive. The total curvature is Sa + Sb, the 

‘average curvature’ is S̅=(Sa + Sb)/2 and the ‘harmonic average 

radius of curvature’ is R̅, where 1/R̅ =(1/Ra +1/Rb)/2, so that S̅= 
–1/R̅.  

Substituting (3) and (4) into (1), it is possible to show that,  

P2= –
4S̅

(γ +1)M
2

 2 
=

4

(γ +1)M2
 2R̅

(5) 

Furthermore, applying (2) at the downstream face of the shock 
wave it can be written as, 

(
dp

p
)

2

=
4γ

(γ +1)R̅
ds (6) 

B. Shock Stand-off Distance from a Blunt Body in Uniform 

Pre-shock Flow 

Expressions for the shock stand-off distance, Δ, from blunt 
and bluff bodies in a uniform pre-shock flow can be obtained 
using the post-shock pressure gradient (6) from CST, along with 
appropriate assumptions regarding flow variables in the 
downstream region. One such assumption is the constant 
pressure gradient assumption, in other words – the linear 
pressure profile in the shock layer. Equation (6) can be then 
written as,  
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)
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Δ
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[(
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 2(γ +1)2

4γM1
 2– 2(γ –1)

)

γ
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−  1] (10) 

Here, p0 is the stagnation pressure for the post shock flow at the 
centerline. Equation (10) gives a relation of the ratio of the shock 
stand-off distance to the radius of curvature as a function of the 
freestream Mach number and the specific heat ratio only.  

A similar equation can be obtained by using an average pressure 
gradient instead of the constant gradient assumption. It can be 
shown that the pressure gradient at the stagnation point is zero, 

i.e., the pressure gradient varies across the shock layer from the 
value given by (6) at the shock to zero at the stagnation point. 
Therefore, the average pressure gradient within the shock layer 
can be taken as an arithmetic average, i.e., one half of the value 
given by (6), 

(
dp

d𝑠
)

avg
=

1

2
[(

dp

d𝑠
)

2
+ 0] =

1

2
(

dp

d𝑠
)

2
(11) 

It is easy to show that such an assumption is mathematically 
equivalent to the parabolic pressure profile in the shock layer. 
This leads to,   

Δ

R̅
=
γ +1

2γ
[(

M1
 2(γ +1)2

4γM1
 2– 2(γ –1)

)

γ
γ –1

– 1] (12) 

Another estimation of Δ/R̅ can be obtained by assuming a 
constant velocity gradient in the downstream flow and using the 
conservation of momentum equation for steady, inviscid, one-
dimensional flow, 

ρV (
dV

ds
 ) = – (

dp

ds
) (13) 

Substituting the pressure gradient from CST into the right-hand 
side of (13) and applying the constant velocity gradient 
assumption on the left-hand side result in,  

Δ

R̅
=
γ +1

4
(

2+(γ –1)M1
 2

2γM1
 2 – γ +1

) (14) 

The third flow variable that can be used to estimate the ratio 
of the shock stand-off distance to the shock radius of curvature 
is the Mach number. The equation that allow to achieve that 
follows from (9), 

(
dM

M
 )

2
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 2

2γM
2

 2 (
dp

p
)

2

(15) 

Equation (15) used with (6), the normal shock relation for 
Mach number, and the constant Mach number gradient 
assumption results in,  

Δ

R̅
=

(γ –1)M1
 2 + 2

2(γ +1)M
1

 2
(16) 

It is also possible to relate the density gradient at the 
downstream face of the shock wave with the pressure gradient 
using the fact that the flow in this region is isentropic:  

(
dp

p
)

2

= γ (
dρ

ρ
)

2

(17) 

Equation (17) can be used either with the constant density 
gradient assumption or the average density gradient assumption 
to find relations for Δ/R̅. The respective results are,  

Δ

R̅
=
γ +1

4
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 2(γ +1)2

4γM1
 2 – 2(γ –1)

)

1
γ – 1

– 1] (18) 
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Δ
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1
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The isentropic nature of the flow in the downstream 
flowfield can also be used to obtain an equation that relates the 
temperature to the pressure gradient, 

(
dT

T
 )

2

=
γ –1

γ
(
dp

p
)

2

(20) 

Applying (20) at the downstream face of the shock wave and 
employing the constant temperature gradient assumption and the 
average temperature gradient assumption in the downstream 
flow field, it is possible to show that the respective equations that 
relate Δ/R̅ to the freestream Mach number are, 

Δ

R̅
=
γ +1

8
(

2+(γ – 1)M1
 2

2γM1
 2 – γ +1

) (21) 

Δ

R̅
=
γ +1

4
(

2+(γ –1)M1
 2

2γM1
 2 – γ +1

) (22) 

III. NUMERICAL INVESTIGATION OF RATIO OF SHOCK 

STAND-OFF DISTANCE TO RADIUS OF CURVATURE 

Flows over a sphere, representing an axisymmetric flow 
case, and over a cylinder, representing a planar flow case, are 
numerically simulated for Mach numbers ranging from 1.2 to 8 
using an adaptive unstructured total variation diminishing 
(TVD) finite volume Euler flow solver [9]. The shock stand-off 
distance and the radius of curvature for each case are obtained, 
and their ratio is compared against the CST results and Billig’s 
experimental correlations. 

The relations for Δ/R̅ presented in Section II are adapted for 
different flow types by substituting the average radius of 
curvature, R̅, with R for axisymmetric flows and with 2R for 
planar flows, where R is the radius of shock curvature. 

Experimental correlations of the shock stand-off distance 
and the radius of curvature with the freestream Mach number are 
presented in [3, 4]. These correlations, in addition to the 
numerical studies conducted, are used to validate the CST-based 
estimations of Δ/R̅ . Billig’s experimental correlations for 
spherical and cylindrical bodies, respectively, are,  

Δ

R
=

0.143 exp[3.24/M1
 2]

1.143 exp[0.54/(M1 – 1)1.2]
(23a) 

Δ

R
=

0.386 exp[4.67/M1
 2]

1.386 exp[1.8/(M1 – 1)0.75]
(23b) 

A. Comparison of Analytical and Numerical Results  

The ratios of the shock stand-off distance to the radius of 
shock curvature obtained for the axisymmetric and planar flow 
cases are presented in Fig. 1 and Fig. 2, respectively. It is seen 
that the theoretical curves form two distinct groups. One of the 
groups shows reasonable agreement with the present numerical 
results and Billig’s experimental correlations for freestream 
Mach numbers higher than ~2 for axisymmetric flow and higher 

than ~3 for planar flow. The lines of this group are for the 
average gradient (parabolic profile) assumption applied to the 
flow variables having zero gradient at the stagnation point 
(pressure, density, temperature) or for the constant gradient 
(linear profile) assumption applied to the flow variables with 
non-zero gradient at the stagnation point (Mach number, 
velocity).  The second group of theoretical lines gives two times 
lower values of Δ/R. The lines of this group are for the constant 
gradient (linear profile) assumption applied to the flow variables 
having zero gradient at the stagnation point (pressure, density, 
temperature). It is clear that the constant gradient (linear profile) 
assumption is not suitable for flow variables having zero 
gradients at the stagnation point because for gradient to become 
zero at the stagnation point, it should significantly deviate from 
its value at the shock. 

 

 

 
Figure 1. Ratio of the shock stand-off distance to the radius of shock 

curvature vs. the freestream Mach number for axisymmetric flow (over a 

sphere) 

   

 
Figure 2. Ratio of the shock stand-off distance to the radius of shock 

curvature vs. the freestream Mach number for planar flow (over a cylinder) 

   



 4 Copyright © 2018 by CSME 

B. Evaluation of Assumptions Using Numerical Solutions 

To shed some light on the accuracy of the constant pressure 
gradient (linear pressure profile) and average pressure gradient 
(parabolic pressure profile) assumptions for various Mach 
numbers, the average pressure gradients in the flow downstream 
from the bow shock at the center line are obtained from the 
numerical solutions. The deviation of the constant and average 
pressure gradient assumptions from these numerical pressure 
gradient values are shown in Figs. 3 and 4. It is evident from 
these figures that for higher Mach numbers (> 2 or 3) the average 
pressure gradient assumption results in the pressure gradients 
which are much closer to the numerically determined values. On 
the other hand, at lower Mach numbers the constant pressure 
gradient assumption is more accurate. This is consistent with the 
results for the shock stand-off distance in Figs. 1 and 2. 

C. Weighted Average Pressure Gradient Approximation 

The above discussion suggests that the CST predictions for 
the shock stand-off distance would be more accurate if one 
would come up with a better approximation of gradients in the 
downstream flow field. To demonstrate that, a weighting factor, 

 

 

W, is introduced in the calculation of the average pressure 
gradient. The weighting factor is calculated as the ratio of the 
average numerical pressure gradient downstream from the shock 
to the pressure gradient at the downstream face of the shock 
wave. The results are presented in Fig. 5.   

Using the weighting factor, the averaging equation (11) is 
modified as follows, 

(
dp

d𝑠
)

avg
=

1

2
[W (

dp

d𝑠
)

2
+ 0] =

W

2
(
dp

ds
)

2

(24) 

This allows to get (compare with (12)),   

Δ

R̅
=

1

W
·
γ +1

2γ
[(

M1
 2(γ +1)2

4γM1
 2 – 2(γ –1)

)

γ
γ – 1

– 1] (25) 

The values Δ/R̅ based on the weighted average pressure gradient 
approximation for axisymmetric and planar flows are shown in 
Fig. 6 and 7, respectively. It is seen that this approximation leads 

 

 
Figure 3. Percent deviation of the average and constant pressure gradient 

assumptions from the numerical average pressure gradient for 

axisymmetric flow 

 
Figure 4. Percent deviation of the average and constant pressure gradient 

assumptions from the numerical average pressure gradient for planar flow    

 
Figure 5. Weighting factor at different Mach numbers for axisymmetric 

and planar flows     

 
Figure 6. Ratio of the shock stand-off distance to the radius of shock 

curvature vs. freestream Mach number for axisymmetric flow using the 

weighted average pressure gradient 
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to the results which are close to the values produced via 
numerical modelling (the difference is less than 10% for the 
whole Mach number range considered). The predictions based 
on the weighted average pressure gradient approximation cannot 
be considered as an independent theoretical treatment because 
numerical simulation data are used when calculating the 
weighting factor. However, Figs. 6 and 7 demonstrate clearly 
that better approximation of downstream flow gradients would 
certainly lead to more accurate results for Δ/R̅. 

D. Comparison of Shock Stand-off Distance with Results in 

Literature Using Approximated Radius of Curvature 

Most published data on the shock stand-off distance is in terms 
of the body radius, Rbody, rather than the shock radius of 
curvature, R. Hence, an approximation of the radius of curvature 
is needed to facilitate the comparison of the CST results with 
other data. In the present work, the radius of curvature is 
assumed to be the sum of the body radius and the shock stand-
off distance, i.e., 

 
R =  Rbody  +  Δ (26) 

or  

R

Rbody

= 1 +
Δ

Rbody

(27) 

Then the CST predictions for Δ/R can be converted to Δ/Rbody as 
follows, 

Δ

Rbody

= 
Δ

R
×

R

Rbody

(28) 

As seen from Figs. 8 and 9 it is a reasonable approximation at 
high Mach numbers when the bow shock lies close to the body 
surface. At low Mach numbers, equation (27) significantly 
underestimates the radius of shock curvature.  

 

The results for Δ/Rbody are shown in Figs. 10 and 11 for 
axisymmetric and planar flows, respectively. The CST 
predictions are represented by the same two groups of curves as 
in Figs. 1 and 2. Experimental results include Billig’s 
correlations and data from Liepmann & Roshko [5]. Numerical 
results from the present work are also shown. The analytical 
prediction by Sinclair & Cui [2] is provided as well (for the 
planar case only). 

It is seen in Figs. 10 and 11 that the CST relations correctly 
predict the overall monotonic variation of the stand-off distance 
(in terms of the body radius) with increasing Mach number (as 
opposed to Figs. 1 and 2 where non-monotonic behavior of the 
ratio of the stand-off distance to the radius of shock curvature is 
not reproduced by the CST predictions). This is because for low 
Mach numbers CST overpredicts the ratio of Δ/R (see Figs. 1 
and 2) while assumption (26-27) underestimates the radius of 
curvature R/Rbody (see Figs. 8 and 9) so that their product (28) 
serendipitously exhibits correct behavior (Figs. 10 and 11).     

 
Figure 7. Ratio of the shock stand-off distance to the radius of hock 

curvature vs. freestream Mach number for planar flow using weighted 

average pressure gradient 

 
Figure 8. Comparison of the radius of shock curvature given by (27) with 

experimental data and numerical results for axisymmetric flow 

   

 
Figure 9. Comparison of the radius of shock curvature given by (27) 

with experimental data and numerical results for planar flow 
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As seen in Figs. 10 and 11, among various assumptions 
regarding the gradients in the post-shock flow along the center 
line the average pressure gradient assumption (in other words, 
the parabolic pressure distribution in the shock layer) leads to 
the best CST-based result in comparison with experimental and 
numerical simulation data. Nevertheless, CST somewhat 
underestimates the shock stand-off distance for the whole range 
of Mach number considered. This may be attributed to 
underprediction of the radius of shock curvature by (27). It is to 
be noted that the alternative theory by Sinclair & Cui [2] appears 
to overestimate the shock stand-off distance. 

IV. CONCLUDING REMARKS 

It may be concluded that the CST-based approach shows a 
good promise in predicting the shock stand-off distance. Further 
improvements might be achieved by finding better 
approximations for the post-shock flow gradients and the radius 
of shock curvature.   
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Figure 10. Comparison of CST estimates of the shock stand-off distance 

with experimental data and numerical results for axisymmetric flow 

 
Figure 11. Comparison of CST estimates of the shock stand-off distance 

with experimental data and numerical results for planar flow 

   


