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Abstract

Recently, wind energy has been used widely as a complement to the common

used energy resources such as oil, coal, and natural gas. Fossil fuels can generate

heavy pollution and release greenhouse gases, which are recognized as the main

cause of the global warming. As a result, green and renewable energy technologies,

such as wind energy and solar energy, are highly recommended nowadays. In order

to build the wind farms and make the wind energy assessments, wind flow over

topography has been studied intensively in wind energy industry.

In my thesis, we first improve an under-relaxed iteration scheme for the steady-

state RANS equations of neutrally stratified airflow over complex topography. The

NLMSFD scheme failed on predicting flow over terrains with a relatively high slope

and we improve this iteration scheme to a much higher maximum slope. In the

second part, we develop the efficient characteristic finite volume method (CFV) to
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solve the time-dependent RANS equations of flow over topography with various

surface roughnesses. In viscous flow, the convective term plays a more important

role than the diffusive term, especially for the turbulent flow with a high Reynolds

number. The CFV scheme is developed by combining the characteristic method

and the finite volume method. It treats the convective term efficiently. Numeri-

cal experiments of solving the time-dependent RANS equations with k − ε closure

show the advantages of the accuracy, efficiency and stability of the method. In

the last part, the CFV method is further applied to model wind flow and turbine

wakes of large wind farms. We simulate the wind turbine wakes behind a cluster

of wind farms which take into account the roughness change on the topography.

We propose to consider RANS models with the Coriolis effect in modelling wind

flows under a large scale due to the rotation of Earth. The wind flows within and

downwind of the wind farms are predicted numerically. Simulation results on the

Horns Rev wind farm are compared with field measurements.
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1 Introduction

1.1 Background

Renewable energy resources have been considered as a great supplement to tra-

ditional energy resources in the past many years. Wind energy has drawn great

attentions after the oil crisis in the 20th century ([71], [3]). As the supplementary

energy resource, wind energy is clean and economical. Studies and researches of

wind energy are widely involved such as the wind resource assessment ([14], [46],

[63], [51]), hardware manufacture and reliability ([89], [36], [17]), environmental

impact ([24], [50]), and economic assessment ([84], [2], [15]). Electricity generated

by wind power has provided an increased percentage of the total electricity gener-

ation year by year. The global wind energy capacity has a growth of 20 percent

in 2012 with a total capacity of 282 GW ([30]). Since 2011, wind energy, together

with other green energies, are considered as supplement or replacement of the nu-

clear energy after the Fukushima nuclear crisis ([39], [38]). Scientific studies on

wind energy such as wind turbine and wind resource assessment are based on the
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boundary-layer meteorology ([60], [61]). Some mathematical models were built for

modelling the wind flows over topography analytically and numerically ([41], [52],

[81], [76], [12]). Development of efficient numerical techniques has been becoming

an important task due to the high complexities of the systems ([87], [88]). Fig-

ure 1.1 shows the Exhibition Place turbine in downtown Toronto, the first urban

turbine in North America. Figure 1.2 represents the Canadian Wind Atlas which

contributed from the EOLE Wind Energy Project, Environment Canada.

The turbulence flow is studied given the nature of the high Reynolds number

of the air flow ([37], [29]). Mathematical models are derived based on the Navier-

Stokes equations which are used to describe fluid motions. Numerical solutions

of Navier-Stokes equations with high Reynolds numbers are very challenging in

computational fluid dynamics (CFD). In such problems it causes computational

difficulties and nonphysical oscillations. We should introduce the averaged vari-

ables and the perturbation terms for the small scale turbulence. If the turbulent

flow field is homogeneous, an average in space can be considered. However, if the

flow field is neither steady nor homogeneous, we may assume that an average is

taken over a large number of experiments that have the same initial and boundary

conditions, which is called the ensemble average. There are three major methods

used numerically solving the Navier-Stokes equations with or without a turbulence

model. In the Direct Numerical Simulation (DNS), the Navier-Stokes equations

2



Figure 1.1: The Exhibition Place turbine in downtown Toronto, the first urban tur-

bine in North America. Photograph taken by Canadian Wind Energy Association,

2004.
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are solved without any turbulence model. All the spatial scales of the turbulence

must be resolved in the computational mesh and no turbulence closure is employed.

The Reynolds Averaged Navier-Stokes (RANS) model, which is known since the

early work of [65], gives averaged solutions to the Navier-Stokes equations that only

mean quantities are described numerically. A turbulence closure scheme is needed

to provide additional relationships between some averaged quantities. It can be ap-

plied to problems with arbitrarily large Reynolds numbers. Applications of RANS

models in wind energy assessment can be found [9] and [25] etc. Large-eddy sim-

ulation (LES) is on some middle ground between the DNS and Reynolds-averaged

simulations. A local spatial filter is applied to the equations and the numerical

simulation gives an description of the large-scale turbulent motions. Applications

can be found either in [21], [53], [70], or with some hybrid models in [33], [42].

Throughout this thesis, we consider the RANS models to describe averaged

solutions. The ensemble properties of all time fluctuations in the flow are described

by a turbulence closure. Many turbulence closures can be used jointly with the

RANS models, such as mixing length, k − κZ, k − ε, k − ε − τ , and q2l ([4], [54],

[47]). Applications of RANS models with the most widely-used k − ε closure can

be found in [16] and [58], model equations are proposed for the Turbulent Kinetic

Energy k (TKE) and its dissipation rate ε.
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Figure 1.2: Canadian Wind Atlas. Contributed from the EOLE Wind Energy

Project, Environment Canada.
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1.2 Work of Thesis

Numerical computations of wind flows over topography have recently been playing

an important role in the wind energy industry. In this thesis, we study and develop

the efficient numerical methods for solving the RANS equations with turbulence

closures, and we simulate wind flows over complex topography and turbine wakes

of wind farms.

In the first part of the thesis, we first review the models of neutrally strati-

fied turbulence flow over a rough surface with small curvature, which are reviewed

in [41], [52], [81], [76], [82], [75], [12], and [49]. The predictions of turbulence vari-

ables depend on the closure scheme [77]. [16] has recently used a Mixed Spectral-

Integration Model with k−ε closure. To avoid the limitation of constant advection

velocity and simple turbulence closure (mixing-length closure) in MS3DJH, a lin-

earized Mixed Spectral Finite Difference model (MSFD) was developed by [10].

They use a Fourier transform on the horizontal coordinates and finite differences

on the vertical coordinate, and [44] improved the numerical treatment for the ver-

tical dimension. However it is still limited to a low slope due to linearization

and the assumption that higher order terms are negligible. A non-linear extension

(NLMSFD) of this model was then developed by [86] with non-linear terms treated

6



as additional source terms in an iterative procedure mentioned by [7]. Owing to

instability of the iteration scheme, this non-linear mixed spectral finite difference

mode (NLMSFD) was limited to a maximum slope of about 0.3. However the choice

of relaxation factor can affect the convergence of the iteration scheme. We will show

how the relaxation factor can affect the stability and improve the maximum slope

for which convergent results can be obtained. We improve this iteration scheme to

a much higher maximum slope by adjusting the relaxation factors. We simulate

the flows over periodic sinusoidal waves with maximum slope of 0.5 similar to those

used by [31] in their wind tunnel study. We find flow separation for both rough and

smooth terrain surfaces. In the wind tunnel experiment, the flow remains attached

over the smoother surface and separates over the rougher surface. For a realistic

application, we use the improved iterative scheme to simulate the wind flow over

Bolund hill, which is a field campaign reported by [6], in Denmark.

In the second part of the thesis, we develop an efficient Characteristic Finite

Volume (CFV) method for solving the time-dependent RANS equations and k − ε

closure. The CFV scheme is developed by combining the characteristic method and

the finite volume method ([59], [57], [55]). The numerical solutions of the time-

dependent RANS equations are not easy to compute because of the dominance of

the nonlinear convective term and the topography structure. In order to resolve the
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dominance of the convective term, we take the significant advantage of the char-

acteristic method to efficiently and accurately solve the time-dependent Reynolds

Averaged Navier-Stokes (RANS) equations and the coupled k − ε equations. The

characteristic method approximates the derivative of temporal and convection dis-

cretization directly. Along characteristics, the solution changes much slower than

along the original time direction. Hence it is computationally efficient that we can

use large time steps and get more accurate results. The characteristic finite volume

scheme is developed to solve the RANS equations and the coupled energy equations.

Numerical experiments will focus on two-dimensional topography. Numerical ex-

amples of flow over two-dimensional flat terrain and complex terrain such as cliff

and blocks are tested. The first test is flow over flat terrain, we compare results

from the CFV scheme and a regular Euler time scheme. It shows the advantages

of the accuracy and stability of the CFV method in large time steps. Complex

terrains are then tested, which show that our method can be applied to flow over

various terrain shape and roughness. Finally, the CFV method is applied to a re-

alistic terrain wind flow over the Bolund hill in Denmark. Simulation results are in

good agreement with field measurements by [11], [8].

In the third part of the thesis we apply the CFV to model wind flow and

turbine wakes of large wind farms. The roughness change models of RANS equa-
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tions with k − ε closure solved by the CFV method are developed to predict the

wind speed reduction and recovery within and downwind of the wind farm. Sev-

eral approaches have been applied in [18], [25], [26]. We consider the effects of

the infinitely large wind farm as a higher surface roughness than the surroundings.

An empirical formula is derived to calculate the roughness of wind farms based on

the terrain roughness. The prediction of turbine wakes is useful on deciding the

distance between wind farms in order to maximize the potential energy which can

be captured. The recovery of the wind speed on the downwind side of the wind

farm will be computed. We simulate the wind turbine wakes behind a cluster of

wind farms which take into account the roughness change on the topography. We

propose to simulate RANS models with Coriolis Effect to predict wind flows in a

large wind farm due to the rotation of Earth. The wind flows within and downwind

of the wind farms are studied numerically. Simulation results on the Horns Rev

wind farm are compared with field measurements.
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2 Relaxation Factor Effects in NLMSFD Model

and Applications of Flow Over Topographic

Features

A linearized Mixed Spectral Finite Difference model (MSFD) developed by [10]

used a Fourier transform on the horizontal coordinates and finite differences on

the vertical coordinate, and [44] improved the numerical treatment for the vertical

dimension. This model can operate with various closure schemes such as E − κZ,

E − ε, E − ε − τ , and q2l, and better predict turbulence variables as noted by [4]

(The Turbulence Kinetic Energy term E is also known as k in other literatures

and Chapters of this thesis. In this Chapter we use E in order to distinct from

the Fourier wave number k). A non-linear extension (NLMSFD) of this model was

then developed by [86] with non-linear terms treated as additional source terms

in an iterative procedure mentioned by [7]. This non-linear version of the MSFD

model experienced difficulties on stability of the iteration scheme. Especially for

10



the complex terrain with a maximum slope of 0.3 or greater. In this Chapter,

the relations between the stability of the iteration scheme and its relaxation pa-

rameter are discussed. Suitable choice of the relaxation factor will improve the

computational stability on terrain with maximum slope up to 0.5 or 0.6 in certain

circumstances. Examples of relatively high slope terrain are used to test the sta-

bility under a two-dimensional manner. By setting a smaller relaxation parameter

than had previously been used we are able to calculate flow over complex terrain

with a relatively high slope. The stability of the non-linear iteration scheme also

depends on the roughness length (z0) of the terrain, a larger roughness length (z0)

gives better convergence. Tests of the NLMSFD model give reasonable results on

terrain with relatively high maximum slope and successfully predicted the flow sep-

aration in the wind-tunnel experiment. The choice of different relaxation factors

does not affect the results, assuming the relaxation parameter is small enough to

ensure numerical stability. The application on Bolund hill shows the potential of

NLMSFD on a real topography with high maximum slope up to 0.77.

2.1 Steady-state RANS model with E − κZ Closure

In this section we test the effects of relaxation factor from the Non-linear MSFD

model. The two-dimensional steady-state Reynolds Averaged Navier-Stokes (RANS)

equations and E − κZ closure are used. Two-dimensional governing equations and
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E − κZ closure can be found in [75] under Cartesian coordinates (x, z), details of

RANS equations will be discussed in next chapter. The steady state Reynolds-

averaged momentum, continuity, and turbulence kinetic energy (TKE) equations

for incompressible flow are

U
∂U

∂x
+W

∂U

∂z
= −∂P

∂x
− ∂uu

∂x
− ∂uw

∂z
, (2.1)

U
∂W

∂x
+W

∂W

∂z
= −∂P

∂z
− ∂uw

∂x
− ∂ww

∂z
, (2.2)

∂U

∂x
+

∂W

∂z
= 0, (2.3)

U
∂E

∂x
+W

∂E

∂z
= −uu

∂U

∂x
− uw

∂U

∂z
− uw

∂W

∂x
− ww

∂W

∂z

−ε+
∂

∂x

(
K

∂E

∂x

)
+

∂

∂z

(
K

∂E

∂z

)
. (2.4)

Coriolis terms are omitted in the basic atmospheric surface layer context. Mean flow

variables (U,W,P ) are generally denoted by upper case and turbulent fluctuations

u, v, w et al. by lower case symbols. E = 1
2
(uu+ vv+ww) is the turbulence kinetic

energy, ε is the mean dissipation rate of TKE and K is eddy viscosity. Using an

isotropic form for eddy viscosity, we have,

uu =
2

3
E −K

(
∂U

∂x
− ∂W

∂z

)
, (2.5)

ww =
2

3
E −K

(
∂W

∂z
− ∂U

∂x

)
, (2.6)

uw = −K

(
∂U

∂z
+

∂W

∂x

)
. (2.7)
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To close the system we also assume, with E − κZ closure

ε =
(αE)3/2

ℓ
, (2.8)

K = ℓ(αE)1/2, (2.9)

where the constant α = 0.25 is the equilibrium ratio of surface shear stress to the

turbulent kinetic energy and ℓ is the turbulence length scale. In the simple surface

layer model of the lower atmospheric boundary layer we take

ℓ = κ (z − zs + z0) , (2.10)

with von Karman constant κ = 0.4, constant surface roughness z0, and terrain

surface zs(x). Equations are solved in a non dimensional framework using z0 and

u∗ (the friction velocity for the undisturbed flow) as length and velocity scales re-

spectively.

Boundary conditions on the surface are given as non-slip conditions for velocity

and we assume that production balances dissipation of turbulence kinetic energy at

the surface. Upper boundary conditions at Z = H assume that vertical derivatives

of mean variable perturbations are zero and perturbations of all turbulent quanti-

ties are zero. By fixing perturbed shear stress to be zero and allowing U to vary

we are applying a fixed shear stress at the upper boundary. Because the surface

topography causes a form drag on the flow this will lead to a reduction of U at the

13



upper boundary relative to flow over the flat surface.

The lower boundary is at z = zs(x) and a coordinate transform is used as,

X = x, (2.11)

Z = z − zs(x). (2.12)

Another vertical coordinate transform

η = ln

(
Z

z0
+ 1

)
, (2.13)

is used later in the computations to ensure sufficient resolution near the surface.

Lateral boundary conditions (in X) are simply that the flow is periodic –one of the

limitation of the use of Fourier transform methods. The terrain zs(x) must also be

periodic and the domain used covers just one wavelength.

2.2 Non-linear MSFD Method

Equations (2.1) to (2.9) are solved numerically based on the method presented

on [10]. All unknown variables are split into unperturbed terms and perturbation
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terms along the X direction,

U(X,Z) = U0(Z) + U1(X,Z), (2.14)

W (X,Z) = (U0(Z) + U1(X,Z))
∂zs
∂x

+W1(X,Z), (2.15)

P (X,Z) = P0(Z) + P1(X,Z), (2.16)

E(X,Z) = E0(Z) + E1(X,Z), (2.17)

uu(X,Z) = uu0(Z) + uu1(X,Z), (2.18)

ww(X,Z) = ww0(Z) + ww1(X,Z), (2.19)

uw(X,Z) = uw0(Z) + uw1(X,Z), (2.20)

ε(X,Z) = ε0(Z) + ε1(X,Z), (2.21)

K(X,Z) = K0(Z) +K1(X,Z), (2.22)
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where the unperturbed terms are scaled by friction velocity u∗,

U0(X,Z) =
1

κ
ln

(
Z

z0
+ 1

)
, (2.23)

P0(X,Z) = 0, (2.24)

E0(X,Z) =
1

α
, (2.25)

uu0(X,Z) =
2

3α
, (2.26)

ww0(X,Z) =
2

3α
, (2.27)

uw0(X,Z) = −1, (2.28)

ε0(X,Z) =
1

κ
(

Z
z0
+ 1
) , (2.29)

K0(X,Z) = κ

(
Z

z0
+ 1

)
, (2.30)

where α = 0.25. Combining the variable decomposition and the coordinates trans-

form, we can re-write the above differential equations. For example, the derivatives

with respect to x and z become,

∂U

∂x
= −∂U0

∂Z

∂zs
∂X

+
∂U1

∂X
− ∂U1

∂Z

∂zs
∂X

, (2.31)

∂U

∂z
=

∂U0

∂Z
+

∂U1

∂Z
. (2.32)

Thus Equation (2.1) can be updated by arranging the linear terms to the left hand

side and non-linear terms to the right hand side.

U0
∂U1

∂X
+W1

∂U0

∂Z
+
∂P1

∂X
+
∂uu1

∂X
+
∂uw1

∂Z
= −U1

∂U1

∂X
−W1

∂U1

∂Z
+
∂P1

∂Z

∂zs
∂X

+
∂uu1

∂Z

∂zs
∂X

≡ R1.

(2.33)
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After the variable decomposition, we apply the Fourier transform on linear terms

from the left hand side of Equation (2.33) with respect to the horizontal directions

(X direction in the 2-D case).

Û1(k) =
1

2π

∫ ∞

−∞
U1(X)e−ikXdX. (2.34)

Hence the partial differential equations can be reduced to the ordinary differential

equations with respect to the vertical direction Z. For example Equation (2.33)

becomes,

ikU0Û1 + U ′
0Ŵ1 + ikP̂1 + ikûu1 +

d

dZ
ûw1 = R1. (2.35)

Apply the same treatment from Equations (2.1) to (2.9) we can obtain the following

system,

−→
L (Φ̂) =

−̂→
R (Φ), (2.36)

with first order terms in a linear system on the left hand side of Equation (2.36) and

higher order source terms on the right hand side of Equation (2.36). Φ̂ represents

9 unknowns,

Φ̂ = [Û1, Ŵ1, P̂1, Ê1, ûu1, ŵw1, ûw1, ε̂1, K̂1]
T , (2.37)

and hats denote a Fourier transform with respect to X. To solve the non-linear

system in Equation (2.36), an under-relaxation iteration scheme from [7] is used as
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follows,

−→
L (Φ̂∗) =

̂−→
R (Φ(n−1)), (2.38)

Φ̂(n) = ωΦ̂∗ + (1− ω)Φ̂(n−1).

The stability of this scheme depends on the selection of relaxation factor ω. For

given topography, most cases with moderate ω failed for terrain with a maximum

slope greater than 0.3. A smaller relaxation factor is time consuming but will give

a more stable iteration as shown in the example below.

The boundary conditions used for this case are given in following. On the
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lower boundary where z = zs(x) or Z = 0 we have,

U = 0, (2.39)

W = 0, (2.40)

∂P

∂Z
= 0, (2.41)

0 = −uu
∂U

∂X
− uw

∂U

∂Z
− uw

∂U

∂X
− ww

∂W

∂Z
− ε, (2.42)

uu =
2

3
E −K

(
∂U

∂X
− ∂W

∂Z

)
, (2.43)

ww =
2

3
E −K

(
∂W

∂Z
− ∂U

∂X

)
, (2.44)

uw = −K

(
∂U

∂Z
+

∂W

∂X

)
, (2.45)

ε =
(αE)3/2

ℓ
, (2.46)

K = ℓ(αE)1/2. (2.47)
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On the upper boundary where z = H + zs(x) or Z = H we have,

U
∂U

∂X
+W

∂U

∂Z
= − ∂P

∂X
− ∂uu

∂X
− ∂uw

∂Z
, (2.48)

P = 0, (2.49)

∂U

∂X
+

∂W

∂Z
= 0, (2.50)

uu = uu0, (2.51)

ww = ww0, (2.52)

uw = uw0, (2.53)

ε =
(αE)3/2

ℓ
, (2.54)

K = ℓ(αE)1/2. (2.55)

2.3 Tests on Relaxation Factor

In the following tests, a two-dimensional periodic sinusoidal terrain is given as

zs(x) = a cos(kx), (2.56)

where k = 2π/L, L is the wavelength, and the maximum slope is ak. Different

roughness length are used for comparison with L/z0 = 103, 104, 105, 106. The

domain used has height of 2L and length of L. A typical value of L would be 1000

m with z0 ranging from 1 mm to 1 m depending on the nature of the surface. A

total number of 129 horizontal grid points and 101 vertical grid points are used in
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Figure 2.1: Region of convergence.

our computation.

In each test, the relative error of normalized surface shear stress −uw (RESS)

before relaxation is used as criterion of convergence,

RESS ≡

∥∥∥uw(∗)(X⃗, 0)− uw(n)(X⃗, 0)
∥∥∥
2∥∥∥uw(n)(X̃ , 0)

∥∥∥
2

< δ, (2.57)

where δ is set as 2×10−3 and ∥·∥2 denotes the L2 norm. We investigate the stability

of the method for various ak and ω. Figure 2.1 is an (ak, ω) domain plot for the

region of convergence which is bounded above by lines for different L/z0 values.

From Figure 2.1 we find that the convergent region in (ak, ω) space is largest for

the rougher surface cases where, for a maximum slope ak = 0.65 we could obtain
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convergence with ω = 0.1, while if ω = 0.5 the iteration can only converge for

a maximum slope ak = 0.45. Similarly when L/z0 = 106, we have the smallest

region of convergence and can only reach a maximum slope ak = 0.45 for ω = 0.1.

Even smaller relaxation factors such as ω = 0.05 have also been tested but they

are not plotted in Figure 2.1. In Figure 2.2 we show changes of errors under cases

of convergence and divergence when ak = 0.55 and L/z0 = 103. The y-axis is

arranged under a logarithm scale in order to show the error pattern. By using a

small relaxation parameter, Figure 2.2(a) shows the convergence of the iteration

scheme for a relatively high maximum slope. Figure 2.2(b) shows a case of rapid

divergence during the iteration.

We also tested cases when the vertical domain H = L and H = 4L. Re-

sults of (ak, ω) plots show that there is little difference between these cases, and

whenH = 2L. The convergence of the iteration scheme is not sensitive to the choice

of vertical domain height. Tests on other topographies such as Cosine square or

Bell shape terrain showed similar behaviors.
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Figure 2.2: Related error of normalized surface shear stress in N steps, ak=0.55,

L/z0 = 103, (a) ω = 0.3. (b) ω = 0.4.

2.4 Comparisons with a wind tunnel study of flow over a

sinusoidal wavy surface.

Flow over a two-dimensional periodic sinusoidal surface was studied in a wind tun-

nel by [31] for relatively smooth and rough surfaces. In their experiment a neutrally

stratified flow is presented. They observed that flow separates in the rough case

and generally remains attached in the smooth case. In the smooth case a secondary

three-dimensional flow develops. This has longitudinal vortices aligned with the

flow. We concentrate on their results from one period of the sinusoidal wave be-

tween the 11th and 12th trough in a wave train. The flow is essentially periodic
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at this stage and periodic boundary conditions can be applied in the horizontal

direction.

We use this case to test the NLMSFD model for a relatively steep slope with

E − κZ closure. Vertical boundary conditions are applied as mentioned in the pre-

vious section. The periodic surface function is defined by Equation (2.56), where

k = 2π/λ. In the wind tunnel, the terrain height was set to be 2a = 96.5 mm,

wavelength λ = 609.6 mm, thus the maximum slope is ak = 0.5. In our model we

set the upper boundary at Z = H = 1200 mm, roughly 2λ. The two surfaces used

in the wind tunnel had z0 = 0.4 mm with a carpet cover and z0 = 0.03 mm with

the basic Masonite floor.

During the computation, periodic boundary conditions are applied on x/λ =

−0.5 and x/λ = 0.5, and lower and upper boundary conditions are applied on

Z = 0 mm and Z = 1200 mm. The NLMSFD model converges with relatively

small relaxation factors (ω = 0.3 for the rough case and ω = 0.2 for the smooth

case). In Figure 2.3, we compare velocity profiles at different locations (trough,

midway upwind, crest, midway downwind). Our model results are normalized by

the velocity at height λ. Wind tunnel data are normalized by a free-stream velocity,

which was attained at Z = λ.
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Although the general pattern of speed increases over the crest and decreases

in the trough is the same in both cases we can see that the wind tunnel speed

increases in the relatively smooth wall case are much larger than in the rough case.

The NLMSFD model matches the wind tunnel results in the rough wall case rea-

sonably well, especially considering that the wind tunnel boundary layer is roughly

of depth λ while the model assumes a very deep constant stress layer as the back-

ground flow. Also note that the hot wire methodology used by [31] could not

measure the reverse flow near the surface over the trough, although flow separation

was observed in the rough wall case.

In the smooth wall case the model fails to predict the strong near-surface jet

measured over the crest and wind speeds below Z = λ are generally lower than

those measured in the wind tunnel. This may be in part because the wind tun-

nel flow remained attached while the model predicts flow separation in the trough,

which effectively reduces the steepness of the terrain seen by the outer flow. Model

tests with a smoother surface (z0 = 0.01 mm) have also been run and flow separa-

tion still occurred.

A factor which could cause model/wind tunnel differences in the smoother wall
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Figure 2.3: Comparison of model results and experimental data from Gong et al

(1996), (a) z0 = 0.03 mm (b) z0 = 0.4 mm. Vertical results are plotted versus

log(Z) where Z is in mm. x-direction velocity U is scaled by U(λ). Line segments

are model results and measurement data are given as: (+) trough, (▹) midway

upwind, (�) crest, (O) midway downwind.
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Figure 2.4: Comparison of model results and experimental data from Gong et al

(1996), results are normalized by velocity at hill crest, (a) z0 = 0.03 mm (b) z0 = 0.4

mm. Vertical results are plotted versus log(Z) where Z is in mm. x-direction

velocity U is scaled by U(λ). Line segments are model results and measurement data

are given as: (+) trough, (▹) midway upwind, (�) crest, (O) midway downwind.
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case is the fact that the three-dimensional longitudinal vortices are not represented

in our two-dimensional model. The absence of roll vortices may cause the different

results and flow separation. These vortices may play a role in transferring momen-

tum down towards the surface and inhibiting flow separation. Initial studies by

[78] were unsuccessful in establishing this but further study with three-dimensional

models is planned. Therefore we will focus on the rough wall case in the rest of this

paper.

In Figure 2.3(b) we can find good result on the wave crest between the ex-

periment data and model results. When log(Z) < 1.5, with Z in mm, different

results are shown on wave trough and midway downwind. Since the measurement

data cannot distinguish the direction of the flow, when flow separates, horizontal

velocities do not give negative values in the rough wall case. Results from the

NLMSFD model show that flow separates in the wave trough. Thus in Figure

2.3(b), the normalized speed-up ratio of model results are negative over the trough

and midway downwind while measured data are not conclusive. Normalized results

are also given in Figure 2.4.

In Figure 2.5 surface pressure is compared over one period, and normalized by

P/ρU2
ref where the reference velocity Uref is taken as U(λ/4) which is horizontally

averaged. In the rough wall case model result and measurement data show fair
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Figure 2.5: Surface pressure scaled by ρU2
ref (rough wall case).

agreement and it should be noted that measuring static pressure through small

holes in the carpet covered floor may be inaccurate. Contour plots of modelled

E/u2
∗ and −ūw/u2

∗ are given in Figure 2.6 and Figure 2.7 for the region close to

surface. Perturbations in the upper region are nearly zero since E0/u
2
∗ = 4 and

−uw0/u
2
∗ = 1. The y axis scale is stretched rather than a 1:1 ratio in order to show

patterns clearly.

It was previously stated that recirculation was not observable in the experi-

ments due to equipment limitations. In order to show the region of flow separation,

we further calculate the stream function ϕ with

U =
∂ϕ

∂z
. (2.58)
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∗ over two periods, z0 = 0.4 mm.
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Contour plots of ϕ and velocity vector field are given in Figure 2.8 and Figure

2.9. NLMSFD predicts a large region of flow separation in the rough wall case,

which is also observed in wind tunnel experiment. The separation zone in the

rough wall case is about 270 mm in length and 24 mm in depth over trough from

model results. The relatively good agreement in the rough wall case and lack of

agreement in the smooth wall case supports the view that the three-dimensional

longitudinal vortices observed in the wind tunnel by [31] may play an important

role in momentum transfer and in inhibiting flow separation in the smooth wall case.

2.5 Application to Bolund hill

The Bolund experiment is a field campaign run by the Risø National Laboratory

for Sustainable Energy, Technical University of Denmark (DTU), Denmark. It was

conducted in 2007 and 2008 and reported by [6].

In Figure 2.10, the terrain of Bolund hill has a dimension of 12m in height,

130m in length, 75m in width. It is located north of Risø DTU. A steep edge occurs

on the western side of the hill with a maximum slope around 1.2. Surface roughness

also changes sharply from the water surface to a land surface. Two roughness are

used as z0 = 0.015 m for grassland and z0 = 0.0003 m for water surface. Ten masts,
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Figure 2.10: Photo of Bolund hill from [6]

M0 to M9 (see Figure 2.11) were used to collect wind data. There were four sim-

ulation cases for the blind comparison of Bolund experiment, the first three cases

are wind from west with directions of 270◦, 255◦, and 239◦, the fourth case is wind

from east with direction of 90◦. The locations of the masts are listed in Table 2.1.

Owing to the limitation of our two-dimensional model, we simulated only case

1, case 3, and case 4 on cross-sections of Bolund hill, which are along lines A and

B in Figure 2.11. First, we present our results from case 1, where the friction ve-

locity is set to be u∗ = 0.4 ms−1, and upstream turbulence kinetic energy (TKE)
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Table 2.1: The locations of the masts

Mast ID x [m] y [m] Ground level [m]

M0 -180.832 -103.267 0.75

M1 -52.426 -30.987 0.78

M2 -34.840 -21.110 10.80

M3 3.220 0.000 11.66

M4 51.458 30.612 1.37

M5 1.502 -48.926 2.59

M6 -46.121 0.242 11.47

M7 -66.887 0.016 0.81

M8 92.009 -0.136 2.00

M9 327.326 -39.296 0.75
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Figure 2.11: Contour plot of Bolund hill (re-plotted from data provided by [6])
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Table 2.2: The four simulation cases

Case Wind direction Roughness length z0 Ground level TKE0/u
2
∗0 u∗0

[◦] [m] [m] [-] [m/s]

1 270 0.0003 0.75 5.8 0.4

2 255 0.0003 0.75 5.8 0.4

3 239 0.0003 0.75 5.8 0.4

4 90 0.015 0.75 5.8 0.5

E0/u
2
∗ = 5.8. Details of each case setup can be found in Table 2.2. A roughness

length of z0 = 0.0003 m is used here for all computations since the upstream flow

is over a water surface. Because the Bolund hill has a steep edge that will effect

the stability of our iteration, a surface smoothing technique is also used to smooth

the terrain from actual maximum slope of 1.1 to 0.77 for case 1.

[41] and others have used the concept of speed-up, S, and a ”fractional speed-up

ratio”, ∆S, relative to an undisturbed upstream flow to characterize wind speed

increases caused by topography

∆S =
U(X,Z)

U0(Z)
− 1. (2.59)
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Roughness change effects can be considered separately using results from a plane-

tary boundary-layer (PBL) model in [85]. Here we let

U = U0(Z)

(
1 + ∆St(X,Z)

1 + ∆St(−400, Z)
+ ∆Sr(X,Z)

)
, (2.60)

where U0(Z) is the equilibrium profile over water, ∆St is fractional speed-up ratio

for terrain change from the NLMSFD model, and ∆Sr is fractional speed-up ratio

for roughness change from PBL model. The appearance of ∆St(−400, Z) is to com-

pensate for the use of periodic boundary condition. A total of 256 wavenumbers are

used in the X-direction and 81 grid points in Z after a logarithm transformation.

This is a first attempt to couple the effects of terrain shape change and roughness

change. Values of normalized ∆St and ∆Sr in case 1, 3, and 4 are given in Figures

2.12, 2.13, and 2.14.

We can observe that for roughness change, the fractional speed-up ratio

is negative when flow passes from sea to Bolund island. The wind speeds up down-

wind of the island and slows again when flow hits land west of x=320 m. For terrain

change, the fractional speed-up ratio changes sharply at the hill edge and smoothly

over the hill top.

In Figures 2.15, 2.16, and 2.17, we present the normalized surface velocity at

two different heights, 2 metres from surface and 5 metres from surface. The total
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Case 1. Speed−up ratio from terrain shape change.

Figure 2.12: Fractional speed-up ratio in case 1, 2 metres from surface.
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Case 3. Speed−up ratio U1/U from roughness change, case 3.
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Case 3. Speed−up ratio U1/U from terrain change, case 3.

Figure 2.13: Fractional speed-up ratio in case 3, 2 metres from surface.
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Figure 2.14: Fractional speed-up ratio in case 4, 2 metres from surface.
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Case 1, Cross−section of Line B. Horizontal velocity profile, wind flow from left.
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Figure 2.15: Case 1. Surface velocity on Line B.

velocity s (wind speed) is defined by

s = (U2 + V 2 +W 2)1/2, (2.61)

and we use the upstream velocity as the reference velocity sref . Field measure-

ments are compared with the model data for case 1 and case 3 in Figures 2.18

and 2.19. Since a smoothing technique is applied to the hill terrain, there are

under-predictions of wind speed reductions on the lee side but fair agreement with

observations on the hill top five metres from the surface. For two metres from
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Case 3, Cross−section of Line A. Horizontal velocity profile, wind flow from left.
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Figure 2.16: Case 3. Surface velocity on Line A.
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Case 4, Cross−section of Line B. Horizontal velocity profile, wind flow from left.
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Figure 2.17: Case 4. Surface velocity on Line B.
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Case 1, Cross−section of Line B, top: z=2m, bottom: z=5m.
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Figure 2.18: Case 1. Surface velocity on Line B compare with field measurements.
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Case 3, Cross−section of Line A, top: z=2m, bottom: z=5m.
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Figure 2.19: Case 3. Surface velocity on Line A compare with field measurements.
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Figure 2.20: Case 1. Surface TKE on Line B.

the surface, the model under-predicts the magnitude of the normalized velocity

perturbation near the upwind escarpment but agrees on the hill top where topo-

graphic and roughness change induced perturbations approximately balance each

other. The two-dimensional NLMSFD model can predict the general flow pattern

of Bolund hill. The normalized surface TKE is also given in Figures 2.20, 2.21, and

2.22.
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Figure 2.21: Case 3. Surface TKE on Line A.
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Figure 2.22: Case 4. Surface TKE on Line B.
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3 The Characteristic Finite Volume Method for

Time-dependent RANS Models with k − ε closure

In the wind energy industry, solving the Navier-Stokes equations of turbulence flow

is very challenging. Wind flow over complex topography has been widely studied

since the 1970s in papers such as [41] [75], [12], [49], [20]. In problems with very

high Reynolds numbers, the convective term is more dominated than the diffusive

term. Mentioned in [72], this causes computational difficulties and nonphysical os-

cillations.

In order to resolve the dominance of nonlinear convective term, we study and

develop the characteristic finite volume method to efficiently and accurately solve

the time-dependent Reynolds Averaged Navier-Stokes (RANS) equations in this

paper. The characteristic method uses a substantial derivative for temporal and

convection discretization. Along characteristics, the solution changes much slower

than in the original time direction at fixed points in space. Hence, the characteristic
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difference will leads to efficient numerical schemes. It can get more accurate results

by using larger time steps which is not restricted by the Courant-Friedrichs-Lewy

condition. This kind of characteristic method has been studied by [62], [23], [72],

[83], [48]. They showed that this kind characteristic method can be applied in many

subject areas which relate to convection-diffusion problems. In meteorological mod-

els, people use the same kind of approach, called Semi-Lagrangian methods. [68]

first used this method combined with the spectral form of the meteorological equa-

tions. Other applications, such as applying Semi-Lagrangian methods to shallow

water equations, can be found in [69] and [13].

In this chapter, we develop a characteristic finite volume (CFV) method for

the RANS models with a certain turbulence closure. Closure models are needed to

study turbulence flows with high Reynolds numbers and better predict turbulent

flow. There are many different closure models as noted in [4], such as k−κz, k− ε,

k − ε− τ , q2ℓ. In this paper, the well-known k − ε closure is used, where k stands

for turbulence kinetic energy (TKE), κ is the von Karman constant (0.4), and ε

is the dissipation rate of TKE. The use of k − ε closure along with RANS models

can be found in [47] and [22]. In our CFV method, we treat the time derivative

and convective terms as a total derivative and discretize it along the characteristic

direction by using a backward characteristic tracking. Combining this, the rest of
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the terms from momentum equations in RANS models is discretized by the finite

volume method. In the coupled k − ε closure, it contains two equations with re-

spect to k and ε, which have time derivative terms and convective terms. A similar

characteristic approach is applied on these two equations of the k− ε closure. As a

result, we apply the characteristic finite volume method not only to the Reynolds

averaged momentum equations but also to the coupled energy equations of the

k − ε closure. Numerical experiments will focus on two-dimensional topography.

The first test is flow over flat terrain, we compare results from the characteristic

finite volume scheme and a regular Euler time scheme. It shows the advantages of

stability and accuracy from the characteristic method in large time steps. Complex

terrains are tested next, which show that our method can be applied on various

terrain shapes and roughness. Finally, a realistic terrain wind flow, over Bolund

hill in Denmark, is efficiently simulated by the developed CFV method. Numerical

results are in a good agreement with field measurements.

This chapter contains the model description of the RANS equations and closure

models. We then propose the CFV method with a brief algorithm procedure to

RANS equations with k − ε closure. Example of flow over two-dimensional flat

terrain is given for comparison of the convergence. We also test on two-dimensional

cliff and blocks and further extend to a realistic terrain, the Bolund hill in Den-
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mark. Simulation results are compared with field measurements by [11], [8], as well

as numerical results from the previous chapter.

3.1 Navier-Stokes Equations

To describe the fluid motion, the Newton’s law of motion is applied on the contin-

uum. The Navier-Stokes equations are derived based on the conservation of mass

and momentum ([37], [79], [19]). The governing equations of the incompressible

Newtonian fluids are given in the following coordinate free form,

ρ

(
∂

∂t
u+ u · ∇u

)
= −∇p+ µ∇2u+ f , (3.1)

∇ · u = 0, (3.2)

where u = (u, v, w) is the velocity vector, ρ is the flow density, p is the pressure, µ

is the dynamic viscosity and f represents body forces such as gravity and Coriolis

force. The extended form can be written as,

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
+ fx,

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
+ fy,

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+ µ

(
∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)
+ fz,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.
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We can further obtain the dimensionless form by applying

x′
i =

xi

L̃
,

u′
i =

ui

Ũref

,

p′ =
p

ρŨ2
ref

,

t′i =
tŨref

L̃
,

where Ũref and L̃ are the characteristic velocity and length. Dividing ρŨref

2
/L̃ on

both sides of (3.1) and (3.2), we neglect primes from variables for simplicity,

∂

∂t
u+ u · ∇u = −∇p+

1

Re
∇2u, (3.3)

∇ · u = 0, (3.4)

where Re is the Reynolds number

Re =
ρŨref L̃

µ
. (3.5)

The equations under Cartesian coordinates by neglecting the body forces can

be written as,

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+
1

Re

∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
, (3.6)

∂ui

∂xi

= 0. (3.7)
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3.2 Reynolds Averaged Navier-Stokes Equations

For turbulence flow with very high Reynolds number, Navier-Stokes equations can-

not resolve the small-scale turbulence unless the computational mesh is fine enough

to catch the dissipative eddies. Since the large eddies of the flow are dependent on

the flow geometry and the smaller eddies are self similar, we can solve the mean

variables under averaged Navier-Stokes equations and model the smaller eddies with

turbulence closures or subgrid-scales. Three different averages are given as,

tU(x0) = lim
T→∞

1

2T

∫ T

−T

U(x0, t)dt, (3.8)

sU(t0) = lim
X→∞

1

2X

∫ X

−X

U(x, t0)dx, (3.9)

eU(x0, t0) =
1

N

N∑
n=1

Un(x0, t0) =

∫ ∞

−∞
U · P (U)dU, (3.10)

where tU is the time average, sU is the space average, and eU is the ensemble

average. We can write each variable as a mean flow over a certain time frame plus

a random fluctuating component. For example, the velocity can be written as,

u(x, t) = U(x, t) + u′(x, t), (3.11)

where U = (U1, U2, U3). We substitute both terms into the Navier-Stokes equations

(3.6) and (3.7) to obtain the following Reynolds Averaged Navier-Stokes equations,

∂

∂t
Ui + Uj

∂

∂xj

Ui = −∂P

∂xi

+
1

Re

∂

∂xj

(
τ̄ij + τRij

)
, (3.12)

∂Ui

∂xi

= 0, (3.13)
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where τ̄ij and τRij are defined as

τ̄ij ≡ ν

(
∂Ui

∂xj

+
∂Uj

∂xi

)
, (3.14)

τRij ≡ −ρu′
iu

′
j. (3.15)

The τRij is considered as the extra stress term, which is known as the Reynolds stress.

Such terms need to be modelled by the closure equations in order to have the same

number of unknowns and equations. According to the Boussinesq approximation,

the model equations for Reynolds stress and eddy viscosity are given as,

−u′
iu

′
j = −2

3
kδij + νt

(
∂Ui

∂xj

+
∂Uj

∂xi

)
, (3.16)

νt = cµ
k2

ε
, (3.17)

where k is the Turbulence Kinetic Energy (TKE).

3.3 RANS Models with k − ε Closure

The turbulence flow can be resolved by RANS equations along with various closure

schemes. In this Chapter, we adopt the k− ε closure because it is the most widely
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used closure scheme. The dimensional form of the RANS equations are given as,

ρ
∂

∂t
Ui + ρUj

∂

∂xj

Ui = −∂P

∂xi

+
∂

∂xj

(
µ

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− ρu′

iu
′
j

)
, (3.18)

∂Ui

∂xi

= 0, (3.19)

−ρu′
iu

′
j = −2

3
ρkδij + µt

(
∂Ui

∂xj

+
∂Uj

∂xi

)
, (3.20)

µt = ρcµ
k2

ε
. (3.21)

To predict the turbulent flow numerically, [47] calculated the turbulent kinetic

energy k (= 1
2
u′
ju

′
j) and its dissipation rate ε from two equations. [22] states that

the k − ε model is used widely in engineering because it gives reasonable estimate

of the mean flow, it is better than the simple mixing-length model but not that

complicated. The equations of k and ε are

ρ
∂

∂t
k + ρUj

∂

∂xj

k =
∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+µt

∂Ui

∂xj

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− ρε, (3.22)

ρ
∂

∂t
ε+ ρUj

∂

∂xj

ε =
∂

∂xj

[(
µ+

µt

σε

)
∂ε

∂xj

]
+c1µt

ε

k

∂Ui

∂xj

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− ρc2

ε2

k
, (3.23)

where both k and ε are ensemble averaged. Coefficients given in Table 3.1 are set

to the same values as [22],

Equations (3.18)-(3.23) form a complete system. Boundary conditions are re-
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Table 3.1: The k − ε model constants

κ cµ σk σε c1 c2

0.4 0.09 1.0 1.11 1.44 1.92

quired for the mean variables such as U, p, k, ε. The inlet boundary conditions for

U, k, ε are given as

U1 =
u∗

κ
ln

(
z + z0
z0

)
, U2 = 0, U3 = 0, (3.24)

k =
u2
∗

c
1/2
ν

, (3.25)

ε =
u3
∗

κ(z + z0)
. (3.26)

The zero-gradient condition is used for p. And a calculated condition is used for νt,

νt = Cµ
k2

ε
. (3.27)

where νt = µt/ρ. The top boundary conditions are slip condition for U, k, ε

and zero-gradient for p. The outlet boundary is considered as the flow is fully

developed. Thus the zero-gradient condition is used for U, k, and ε. The pressure

is given a fixed value of zero. For the wall boundary, no-slip condtion is set for U

and zero-gradient condition is set for p. Wall functions are used for k, ε, νt ([34]).
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3.4 The Characteristic Finite Volume Method

For the convection term dominated problems, the characteristic direction can be

used in the equation descritization instead of the original time direction. This will

be applied to the momentum equations (3.18), k equation (3.22), and ε equation

(3.23). We first consider the compact form of the momentum equation (3.18) for

convinence,

ρ
∂U

∂t
+ ρU · ∇U = ∇ · (ΓU∇U) + SU(U, k, ε)−∇p, (3.28)

where ΓU is a function of k and ε and SU is the source term. The material derivative

of U can be written as

DU

Dτ
=

∂U

∂t
+U · ∇U. (3.29)

For a given temporal grid tn = n∆t, the characteristic χ(τ ;x, tn+1) for every x

and τ ∈ (tn, tn+1) is given by,

dχ(τ ;x, tn+1)

dτ
= U(χ(τ ;x, tn+1), τ), (3.30)

χ(tn+1;x, tn+1) = x. (3.31)

Therefore, the material derivative can be approximated as following,

DU

Dτ
∼=

Un+1(x)−Un(χn)

∆τ
, (3.32)

where χn = χ(tn;x, tn+1).
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In order to approximate the material derivative, we use the known value of

Un as an approximation of U in Equation (3.30). The equation becomes that for

τ ∈ (tn, tn+1).

dχ(τ,x)

dτ
= Un(χ(τ)), (3.33)

χ(tn+1) = x. (3.34)

The above characteristic equation can be solved for χn,

χn = x−∆tUn(x). (3.35)

In the numerical simulation, the characteristic method is combined with finite vol-

ume method (FVM). The finite volume discretisations are used as mentioned in

[57], [80], [43] and in the open source CFD software OpenFOAM [55].

Given the two-dimensional domain of control volume, the centroid of the control

volume P denotes the computational point for the material derivative. N denotes

all other owner and neighbor cell centers. All cell faces are marked as f , thus the

face area vector Sf is constructed for each face and points outwards from the cell

centre, V is the volume of the cell. By using the Finite Volume technique, we

integrate the equation (3.28) over the control volume. We can convert the volume

integral to the surface integral by the Gauss’s theorem. The Laplacian term can be
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treated as

∫
V

∇ · (ΓU∇U)dV =

∫
S

dS · (ΓU∇U)

=
∑
f

ΓUfSf · (∇U)f . (3.36)

To resolve the face normal gradient, let d be the distance between the center of the

owner cell P and the neighbor cell N . We have

Sf · (∇U)f ∼= |Sf |
UN −UP

|d|
. (3.37)

In each control volume, we integrate the momentum equation (3.28). The left hand

side of the equation yields,

ρ

∫
V

[
∂U

∂t
+ U · ∇U

]
dV = ρ

∫
V

D

Dτ
UdV

=
ρUP (x)V − ρUO

P (χ
n)V

∆t
, (3.38)

where the superscribed notation O denotes values in the previous time step. Com-

bining other terms from the right hand side of Equation (3.28) which are discretised

by the finite volume method, the resulting semi-discretised system for momentum

equations are,

aPUP = HU(k
O, εO;U) + aPU

O
P (χ

n) + SU(U
O, kO, εO)−

∫
V

∇pdV, (3.39)

where aP is the coefficient,

aP =
ρV

∆t
, (3.40)
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and HU(k
O, εO;U) is the algebraic system term which contains the discretization

of the diffusive term,

HU(k
O, εO;U) = −

∑
N

aN(k
O, εO)UN , (3.41)

where aN are coefficients. Similarly, the discretization form of k equation (3.22)

and ε equation (3.23) can be written as,

aPkP = Hk(k
O, εO,UO; k) + aPk

O
P (χ

n) + Sk(U
O, kO, εO), (3.42)

aP εP = Hε(k
O, εO,UO; ε) + aP ε

O
P (χ

n) + Sε(U
O, kO, εO). (3.43)

To solve the incompressible time-dependent RANS equations, the velocity-pressure

coupling causes oscillations in solutions. [68] first used this method combined with

the spectral form of the meteorological equations. [59] derived a scheme for steady-

state Navier-Stokes equations by using momentum prediction and pressure and ve-

locity corrections, this method is known as the Semi-Implicit Method for Pressure-

Linked Equations (SIMPLE). For a time-dependent system, which also involves

other scalar transport equations, [40] derived the pressure-implicit with splitting of

operator (PISO) algorithm and [66] suggested to used a non-staggered mesh grid.

The pressure gradient term is not discretised yet in Equation (3.39), a pres-

sure equation is derived by joint of the momentum equations and the discretised
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continuity equation, ∫
V

∇ · UdV =

∮
S

dS ·U = 0. (3.44)

Substituting Equation (3.39) to the above equation, we obtain the following ap-

proximated pressure equation,

∑
f

Sf ·

[(
1

aP

)
f

(∇hp)f

]
=
∑
f

Sf ·
(
HU(k

O, εO;U)

aP
+UO

P (χ
n) +

SU(U
O, kO, εO)

aP

)
f

,

(3.45)

where ∇h is the difference gradient operator. Therefore, the solution procedure of

the Characteristic Finite Volume method is combined with PISO algorithm, where

the PISO loop contains an implicit velocity predictor and several explicit velocity

correctors. More corrector steps can be performed, however, at least two corrector

steps are needed.

The Algorithm of the CFV method:

Step 1. Set initial values for all variables, such as UO, pO, kO, εO.

Step 2. Start loop until final time step reached. Use PISO algorithm in following,

do Step 3 to Step 5.

Step 3. Predictor step, solve the momentum equations Equation (3.39) for U∗.

The pressure field from old time step is used.

aPU
∗
P = HU(k

O, εO;U∗) + aPU
O
P (χ

n) + SU(U
O, kO, εO)−∇hp

OV.
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Step 4. First corrector step, solve the pressure equation Equation (3.45) for p∗,

∑
f

Sf ·

[(
1

aP

)
f

(∇hp
∗)f

]
=
∑
f

Sf ·
(
HU(k

O, εO;U∗)

aP
+UO

P (χ
n) +

SU(U
O, kO, εO)

aP

)
f

,

and correct momentum equation explicitly,

aPU
∗∗
P = HU(k

O, εO;U∗) + aPU
O
P (χ

n)− SU(U
∗, kO, εO)−∇hp

∗V.

Step 5. Second corrector step, solve the pressure equation Equation (3.45) for p∗∗,

∑
f

Sf ·

[(
1

aP

)
f

(∇hp
∗∗)f

]
=
∑
f

Sf ·
(
HU(k

O, εO;U∗∗)

aP
+UO

P (χ
n) +

SU(U
O, kO, εO)

aP

)
f

,

and correct momentum equation explicitly,

aPU
∗∗∗
P = HU(k

O, εO;U∗∗) + aPU
O
P (χ

n) + SU(U
∗∗, kO, εO)−∇hp

∗∗V.

Step 6. Use the known Un+1 = U∗∗∗ field and pn+1 = p∗∗ field, solve turbulence

equations Equation (3.42), Equation (3.43) implicitly,

aPk
n+1
P = Hk(k

O, εO,UO; kn+1) + aPk
O
P (χ

n) + Sk(U
n+1, kO, εO),

aP ε
n+1
P = Hε(k

O, εO,UO; εn+1) + aP ε
O
P (χ

n) + Sk(U
n+1, kO, εO).

Other turbulence equations Equation (3.20), Equation (3.21) are solved explicitly

from the known kn+1 and εn+1.

Step 7. Stop when the time limit is reached.

63



Table 3.2: The solvers for linear system

Eqn. Solver Preconditioner Tolerance

U Preconditioned Diagonal incomplete-LU 1e-5

bi-conjugate gradient (asymmetric)

P Preconditioned Diagonal incomplete- 1e-6

conjugate gradient -Cholesky (symmetric)

P Final Preconditioned Diagonal incomplete- 1e-6

conjugate gradient -Cholesky (symmetric)

k Preconditioned Diagonal incomplete-LU 1e-5

bi-conjugate gradient (asymmetric)

ε Preconditioned Diagonal incomplete-LU 1e-5

bi-conjugate gradient (asymmetric)

The resulting linear systems in each predictor and corrector steps are solved

by vary equation solvers in OpenFOAM, In Table 3.2, these solvers are used typ-

ically in the PISO algorithm. Table 3.3 contains the numerical scheme for each

terms of the equation such as the gradient, divergence, and laplacian derivatives.
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Table 3.3: The derivative and interpolation schemes

Derivatives Schemes

Time Euler

Gradient Gauss Linear

Divergence Gauss Limited Linear

Laplacian Gauss Linear corrected

Interpolation Linear

3.5 Numerical experiments on two-dimensional flat terrain

In order to show the advantages of the Characteristic Finite Volume method, we

consider a two-dimensional turbulence channel air flow over a flat terrain at small

scale. In a time-dependent problem, the step size of the time iteration is an im-

portant criterion for temporal accuracy and numerical stability. In this section,

numerical results are compared between the characteristic finite volume method

and the implicit Euler method. The comparisons will show that the characteristic

finite volume method converges with a relatively large time step size while the Euler

method is broken, meanwhile the accuracy of the solution from the characteristic

finite volume method is still maintained.

We perform the simulation within a rectangular domain of 10 m long in
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Figure 3.1: Case description of channel flow over flat terrain.

x-direction and 3 m high in z-direction. In Figure 3.1, a logarithmic grid is used

in vertical direction and an uniform grid is used in horizontal direction. RANS

equations with k− ε model are used in examples. The Reynolds number used here

is Re= 105. L/z0 = 103, where L is the length of the computation domain and z0

(=0.01 m) is the surface roughness. The inlet velocity follows the log-wind profile

with a reference height of Href=3 m and a reference velocity of Uref=1 m/s. The

inlet boundary condition for pressure is zero gradient, and the initial values of k

and ε are assigned as

k =
u2
∗

c
1/2
µ

, (3.46)

ε =
c0.75µ k1.5

ℓ
, (3.47)
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Figure 3.2: 2D flat terrain. Normalized vertical profiles of Ux, locate at x = 5 m

and T = 10 s. (a) ∆t = 10/n = 1 s, (b) ∆t = 10/n = 0.6667 s, (c) ∆t = 10/n = 0.5

s.
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Figure 3.3: 2D flat terrain. Normalized vertical profiles of TKE, locate at x = 5 m

and T = 10 s. (a) ∆t = 10/n = 1 s, (b) ∆t = 10/n = 0.6667 s, (c) ∆t = 10/n = 0.5

s.
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Figure 3.4: 2D flat terrain. Normalized vertical profiles from CFV method, locate
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where cµ is constant of k − ε model and ℓ is length scale. The outlet boundary

conditions are zero for pressure and zero gradient for other variables. A no-slip

condition is applied on the lower boundary and free stream values are assigned to

variables on the upper boundary.

Numerical results in Figure 3.2 show the vertical profile of normalized x-direction

velocity Ux/Uref at the centre of the domain. We simulate the air flow for T = 10

s and let n denote the number of time intervals during the calculation of T s,

therefore ∆t is defined as T/n. When ∆t is relatively small (∆t = T/15), both

the Characteristic Finite Volume (CFV) method and the Euler method converge

as shown in Figure 3.2(c). The velocity profiles are well maintained compare with

the inlet profile. But when increase the size of ∆t (∆t = T/11), the result from the

Euler method is inaccurate in Figure 3.2(b), and totally broken in Figure 3.2(a)

under ∆t = T/10. In Figure 3.3, vertical profile of normalized TKE gives a similar

conclusion in comparing stability between CFV method and Euler method.

From above, we obtain an obvious stability improvement by using the char-

acteristic method over the implicit Euler method. In Figure 3.4, it shows a fast

convergence of Ux and TKE by comparing the characteristic method itself. In order

to track the trajectories of the χ(tn) in the CFV method, we plot them in Figure
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Figure 3.5: 2D flat terrain. Characteristic trajectories ∆t = 0.5 s, T = 20 s.

3.5, which shows that the direction of each trajectory is consistent with the velocity

profile.

In Figure 3.6, we also test the velocity profile versus different surface rough-

ness. The inlet velocity is fixed under L/z0 = 103, but the roughness of the flat

terrain is used as L/z0 = 101, L/z0 = 5 × 102, L/z0 = 103, and L/z0 = 104.

For a larger roughness, we can observe the speed deficit near wall and for a small

roughness, there is a speed up near wall.
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3.6 Two-dimensional geometric topography simulations

In this section we apply the CFV method on two-dimensional geometric topography

and simulate air flow over complex terrain with steep curvature. Given in Figure

3.7, the first case is a two-dimensional cliff with the height H = 1 m and cliff length

20H. The computation domain is 34H in length and 24H in height, the cliff is

placed at 7H meters from the inlet (west). Two different surface roughness are

tested, the smooth surface has u∗ = 0.21 m/s and z0 = 0.01 m, the rough surface

has u∗ = 0.52 m/s and z0 = 0.3 m. RANS equations with k − ε model are used in

the computations, and the boundary conditions are used same as those mentioned

earlier.

In Figure 3.8, we first present a simple comparison. The numerical results from

the characteristic finite volume method are compared with the one from the implicit

Euler method. We simulate the air flow over a smooth surface with z0 = 0.01 m

after T = 10 s, under an uniform grid with ∆x = ∆y = H/5 = 0.2 m. For the

vertical profile of x-direction velocity Ux on the upwind side of the cliff, we can see

both methods work well in Figure 3.8(c) when n = 25, but the Euler method starts

oscillating in Figure 3.8(b) and is broken down in Figure 3.8(a) when n = 21. In

Figure 3.9, same comparison is presented on the downside of the cliff. Both meth-
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Figure 3.7: Case description of flow over 2D cliff.
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Figure 3.8: 2D cliff, cliff height=H, z0 = 0.01 m, u∗ = 0.21 m/s. ∆x = H/5 = 0.2

m. Vertical profile of Ux, locate at x = 7.5 m and T = 10 s. (a) ∆t = T/n = 0.4762

s, (b) ∆t = T/n = 0.4545 s, (c) ∆t = T/n = 0.4 s.
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Figure 3.9: 2D cliff, cliff height=H, z0 = 0.01 m, u∗ = 0.21 m/s. ∆x = H/5 = 0.2

m. Vertical profile of Ux, locate at x = 27.5 m and T = 10 s. (a) ∆t = T/n = 0.4762

s, (b) ∆t = T/n = 0.4545 s, (c) ∆t = T/n = 0.4 s.
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Figure 3.10: 2D cliff, cliff height=H, z0 = 0.01 m, u∗ = 0.21 m/s. ∆x = H/5 = 0.2

m. Vertical profile of TKE, locate at x = 7.5 m and T = 10 s. (a) ∆t = T/n =

0.4762 s, (b) ∆t = T/n = 0.4545 s, (c) ∆t = T/n = 0.4 s.
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Figure 3.11: 2D cliff, cliff height=H, z0 = 0.01 m, u∗ = 0.21 m/s. ∆x = H/5 = 0.2

m. Vertical profile of TKE, locate at x = 27.5 m and T = 10 s. (a) ∆t = T/n =

0.4762 s, (b) ∆t = T/n = 0.4545 s, (c) ∆t = T/n = 0.4 s.
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Figure 3.12: 2D cliff, cliff height=H, smooth surface, z0 = 0.01 m, u∗ = 0.21 m/s,

∆x = H/5 = 0.2 m, ∆t = 0.5 s.
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ods predict a flow separation close to surface when n = 25, but the Euler method

is broken when n = 21, while Characteristic method still gives a good prediction of

flow separation at the same location. Vertical profiles of TKE are also compared

in Figure 3.10 and 3.11 for two different locations.

The characteristic trajectories are plotted in Figure 3.12 when z0 = 0.01 m and

∆t = 0.5 s, in which case the Euler method fails to converge. From the trajectories

we can see that the flow changes its direction on the upwind side of the cliff and

separates on the downwind side of the cliff.

In order to observe flow separation region under different roughness, we compare

the smooth surface (z0 = 0.01 m) with the rough surface (z0 = 0.3 m). We will

also change the cliff height to see how it can influent the flow pattern. The time

step size during computation is set to be ∆t = 0.2 s for consistency in following

tests. In Figure 3.13, the streamlines are plotted on the upwind side of the cliff,

no flow separation is observed in the smooth surface case, but there is separation

in the rough surface case with a diameter of 0.4 m. In Figure 3.14, flow separation

is observed in both cases on the downside of the cliff. The smooth surface gives a

region of 2 m in length and 0.8 m in height, while the rough surface gives a region

of 1 m in length and 0.8 m in height. Not only change the surface roughness, we
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Figure 3.13: Streamline 2D cliff case, cliff height=H, ∆x = H/5 = 0.2 m, ∆t = 0.2

s. Left: Smooth surface z0 = 0.01 m. Right: Rough surface z0 = 0.3 m.
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Figure 3.14: Streamline 2D cliff case, cliff height=H, ∆x = H/5 = 0.2 m, ∆t = 0.2

s. Left: Smooth surface z0 = 0.01 m. Right: Rough surface z0 = 0.3 m.
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Figure 3.15: Streamline 2D cliff case, cliff height=2H, ∆x = H/5 = 0.2 m, ∆t = 0.2

s. Left: Smooth surface z0 = 0.01 m. Right: Rough surface z0 = 0.3 m.
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Figure 3.16: Streamline 2D cliff case, cliff height=2H, ∆x = H/5 = 0.2 m, ∆t = 0.2

s. Left: Smooth surface z0 = 0.01 m. Right: Rough surface z0 = 0.3 m.
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Figure 3.17: 2D block case, ∆t = 1 s, ∆x = 0.5 m, T = 30 s, z0 = 0.01 m, u∗ = 0.3

m/s. Distance=0 m.

also change the cliff height to be 2H in the following test. In Figure 3.15, when

the cliff height is two times as before, flow separation can be now observed in the

smooth surface case on the upwind side of the cliff, and a larger separation region

is also observed in the rough surface case with a diameter of 1 m. In Figure 3.16,

the separation region is also larger than the one in Figure 3.14, here the smooth

surface gives a region of 5 m in length and 1.8 m in height and the rough surface

gives a region of 3.4 m in length and 1.8 m in height.

In order to test the Characteristic Finite Volume method on a more complex

and steep topography, we consider multiple blocks on ground. The computation

domain is now 100 m in x direction and 40 m in z direction, the size of each block is
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Figure 3.18: 2D block case, ∆t = 1 s, ∆x = 0.5 m, T = 30 s, z0 = 0.01 m, u∗ = 0.3

m/s. Distance=5 m.

Figure 3.19: 2D block case, ∆t = 1 s, ∆x = 0.5 m, T = 30 s, z0 = 0.01 m, u∗ = 0.3

m/s. Distance=20 m.
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Figure 3.20: 2D block case, ∆t = 1 s, ∆x = 0.5 m, T = 30 s, z0 = 0.01 m, u∗ = 0.3

m/s. Distance=40 m.

10 m in length and 5 m in height. We simulate the air flow over topography under

the situations that the distance between two blocks are 0 m, 5 m, 20 m, and 40 m.

Boundary conditions remain the same as those mentioned at the beginning of this

section, only the inlet velocity Ux has a reference speed of Uref = 10 m/s and a

reference height of Href = 40 m. Numerical results are carried out under ∆x = 0.5

m and ∆t = 1 s, in which the Euler method fails to converge. In Figures 3.17,

3.18, 3.19, 3.20, streamlines are plotted after a simulation of T = 30 s. We can

observe different patterns of the separation region between two blocks. And when

the distance is large (40 m), the separation region splits into two isolated regions.
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3.7 Simulation over realistic terrain, Bolund hill

To simulate wind flow over a realistic topography, [11] and [8] conducted a field

campaign on Bolund hill, a small island in Roskilde, Denmark. The dimension of

the hill is 12 m in height, 130 m in length, 75 m in width. The roughness changes

from water surface (z0 = 0.0003 m) to grassland (z0 = 0.015 m). One of the main

challenges of this terrain is the steep escarpment which occurs on the western side

of the hill. The maximum slope of the terrain is up to 1.2, which causes a computa-

tional crash from the Non-linear Mixed Spectral and Finite Difference (NLMSFD)

method, which is used previously. In this section, we apply the Characteristic Fi-

nite Volume method on the time-dependent RANS equations and k−ε model. The

two-dimensional model is used to simulate wind flow over the cross sections of the

Bolund hill, which are line B and line A (refer to Chapter 2).

In the field campaign, ten masts were used to collect wind data. We focus on

the cases when wind direction is 270◦ on Line B and 240◦ on Line A. The friction

velocity is set to be u∗ = 0.4 m/s, and upstream TKE is k0/u
2
∗ = 5.8. We use the

roughness of water surface (z0 = 0.0003 m) as upstream inlet wind profile, and the

computation domain is 800 m in x-direction and 500 m in z-direction. Boundary

conditions are used same as Section 3.6. In numerical simulation, wind flow is sim-

ulated for T = 100 s, which is long enough to reach a steady state. A time step
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Figure 3.21: Surface velocity on Line B.

89



−200 −150 −100 −50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 s
/s

re
f (

m
/s

)

 y=2m

 

 

Characteristic
NLMSFD
Measurements

−200 −150 −100 −50 0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 s
/s

re
f (

m
/s

)

 y=5m

 

 

Characteristic
NLMSFD
Measurements

−200 −150 −100 −50 0 50 100 150 200
0

10

20

30

 x

te
rr

ai
n 

he
ig

ht
 (

m
)

Case 3, Cross−section of Line A.

 

 
Terrain shape

Figure 3.22: Surface velocity on Line A.
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∆t = 0.1 s is used, from where the Euler method fails to converge.

In Figure 3.21 and Figure 3.22, we plot the normalized surface velocity s/sref 2

m and 5 m from terrain surface, where s is the total velocity s = (U2+V 2+W 2)1/2,

sref is the reference total velocity at the upstream location. Results in both cases

show a good agreement at the upwind side of the hill and the hill top. In Figure 3.22

there is a good agreement at the lee side of the hill, but there are under-predictions

in Figure 3.21, which is believed as the limitation of the two-dimensional model

over the three-dimensional realistic terrain.
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4 Modelling Wind Flow and Turbine Wakes in

Large Wind Farms by the CFV Method

In this chapter, we apply the characteristic finite volume method developed in

Chapter 3 to simulate wind flow and turbine wakes in large wind farms. The time

dependent Reynolds Averaged Navier-Stokes (RANS) equations are used as model

equations that are coupled by the k−ε equations. The effect of the wind turbines is

considered as a higher surface roughness than the surroundings. Wake effect from

neighboring turbines is studied in order to determine how efficiently the potential

energy can be converted. Taking into account the effect of wind farms on the

topography, one can consider a surface roughness change for the wind farm area

such as [26], [18], [25]. Studying wind turbine wakes is useful on measuring how

efficiently the wind farm is able to capture the available potential energy in the

atmosphere. The roughness change is also studied by [73] and [85]. The object

is to predict the recovery of the wind speed downwind of an existing wind farm.

We consider the large scale model such that a cluster of wind farms is treated as a
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roughness element. Small scale models are introduced by [45], which used a k − ε

model to simulate flow through a horizontal-axis wind turbine. Other concept such

as adding the drag force and treat the group of roughness elements as a canopy is

introduced by [9], [27]. In this chapter, the roughness change models are applied.

Wind farms can be considered from one large wind turbine group to many smaller

wind farm over a region. We simulate the wakes from a cluster of wind farms

by considering the case as one large wind farm or several small wind farms. We

present the results for the case with one block, two blocks, three blocks, and ten

blocks. Wind speed reductions and recoveries are shown and an asymptote can be

predicted with infinite blocks. We also propose to consider RANS equations with

Coriolis Effect for modelling wind flows over a large wind farms due to the rotation

of Earth. The wind flows within and downwind of the wind farms are predicted

numerically. Simulation results on the Horns Rev wind farm are compared with

field measurements in [35] and [5].

4.1 Roughness Treatment on Large Wind Farms

To model large wind farm we treat the effect of the wind turbines as roughness

changes. Thus the lower boundary of the computation domain is treated as having

different roughness patches. Wall functions are used on such patches in order to

describe the changes on surface roughness. To demonstrate this model, we use
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RANS equations with k− ε closure. The inlet boundary conditions are a logarithm

profile for U and an inverse linear profile for ε,

U1 =
u∗

κ
ln

(
z + z0
z0

)
, U2 = U3 = 0, (4.1)

∂P

∂x
= 0, (4.2)

k =
u2
∗

c
1/2
ν

, (4.3)

ε =
c
3/4
ν k3/2

κ(z + z0)
. (4.4)

The outlet boundary conditions are

∂U

∂x
= 0, (4.5)

P = 0, (4.6)

∂k

∂x
= 0, (4.7)

∂ε

∂x
= 0. (4.8)

For the lateral boundary the symmetric condition is applied. On the top bound-

ary,

∂U

∂z
= 0, (4.9)

∂P

∂z
= 0, (4.10)

∂k

∂z
= 0, (4.11)

∂ε

∂z
= 0. (4.12)
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For the lower boundary, we consider the bottom faces of the control volume as

patches with different surface roughness. Therefore the wall functions are used on

the lower boundary. The wall function for k is simply a zero-gradient condition. The

wall function for ε is that an equilibrium assumption is used between production

and dissipation of TKE combined with the logarithmic law of the wall, which gives

ε =
C

3/4
µ k3/2

κzp + z0
, (4.13)

where zp is the z-coordinate of the first node, at which ε is computed. The wall

function for νt is used for a rough wall based on the law of the wall. We can control

the roughness of the domain throughout the specification of Nikuradse’s roughness

length ks and the roughness constant Cs in [34]. The following relation is used at

wall,

up

u∗
=

1

κ
ln

(
Ez+p

1 + Csk+
s

)
, (4.14)

where E is the smooth wall constant E = eκB and B is the smooth log law constant

taken as 5.2. Cs is used for taking into account the roughness type and it takes

the value between 0.2 and 1. z+p = u∗z
ν

is the dimensionless z coordinate at zp and

k+
s = u∗ks

ν
is the dimensionless roughness height ks. Consider the fully rough regime

as the complex rough terrain, the rough log law can be re-written as

up

u∗
=

1

κ
ln

(
Ezp
Csks

)
. (4.15)
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To find a prescribed value of ks in this wall function, we compare the inlet

condition of velocity and assume that the first cell node must be considered much

bigger than the roughness length. We can get

ks =
Ez0
Cs

= 19.58z0. (4.16)

which means that the value of ks depends on the surface roughness of each patch.

As analyzed previously, we can consider the wind farms as several higher rough-

ness than the surrounding area based on [1] and [28]. Given the terrain surface

roughness, different wind farms are treated as different patches on the terrain sur-

face. The roughness of such patch can be determined by the following formula. In

Figure 4.1, the roughness z00 can be calculated as

z00 = hH exp

(
− κ√

ct + [κ/ ln(hH/z0)]2

)
(4.17)

where κ is the von Karman constant, hH is the wind turbine hub height, z0 is the

roughness of the terrain surface and ct is given as

ct =
πCT

8 · dr/D · df/D
(4.18)

where CT is the thrust coefficient of the rotor which can be vary between 0 and 1, dr

is the distance to the next wind turbine in the same row, and df is the distance to the

neighboring rows. For example, the turbines in a wind farm is evenly distributed,
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Figure 4.1: Wind turbines as roughness element.

and the distance between each turbine is 7D where D is the rotor diameter. Hub

height of each turbine is 100 m. If the wind speed at hub height is approximately

14 m/s, a typical CT is 0.6. Thus the following value of the parameters are chosen,

dr = df = 7D, CT = 0.6, hH = 100 m,

If the terrain roughness is z0 = 0.0002 m, the roughness of this wind farm is

z00 = 0.5 m from Equation (4.17).

4.2 Simulation on Large Offshore Wind Farms

In this section, we conduct numerical experiments on large offshore wind farms

by using the developed characteristic finite volume method. We treat large scale
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Table 4.1: Experiments on 2D model

Number of size of wind Distance between

wind farms turbine group (km) groups (km)

1 30 –

2 15 15

3 10 10

10 3 3

wind farms as roughness elements. Experiments with similar treatment can be

found in [26]. The surface roughness length for open water is set to be 0.0002

m, the roughness for the wind farm is 0.5 m. Experiments have been conducted

on different wind farm configurations shown in Table 4.1 under a two-dimensional

assumption. The total area is fixed for 900 km2.

In Figure 4.2, one wind farm is located at x = 50 km and the size of the wind

farm is 30 km in length. The grid size in the horizontal direction is ∆x = 1 km and

the vertical gird is uniformly graded with a ratio of 10. The time step ∆t = 100

s. The simulation of all four cases are lasting for 20000 s to reach a stable state.

The horizontal velocity profile at z = 50 m is presented in Figure 4.2(a) where the

upstream velocity at the height of 50 m is used as reference velocity Uref . The wind
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Figure 4.2: Horizontal velocity and TKE profile at z=50 m, one farm case.
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Figure 4.3: Horizontal velocity and TKE profile at z=50 m, two farms case.
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Figure 4.4: Horizontal velocity and TKE profile at z=50 m, three farms case.
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Figure 4.5: Horizontal velocity and TKE profile at z=50 m, ten farms case.
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Figure 4.6: Horizontal velocity and TKE profile at z=50 m, under different rough-

ness.
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speed reduces from x = 50 km and recovers at x = 80 km. The horizontal TKE

profile at z = 50 m is presented in Figure 4.2(b). A large variation occurs at the

location of the wind farm. The results for two, three, ten wind farms are further

given in Figure 4.3, Figure 4.4, and Figure 4.5.

For all four cases, the effect of the higher roughness of the wind farm can

be observed as the wind speed reduction downwind of the turbine groups. The

reduction of the wind speed within the groups can also be observed. The rate of

reduction decreases with distance into the turbine group. For the case with ten

wind farms, the wind speed inside the wind turbine group approaches an asymp-

tote, at which point the wind farm roughness has led to full development of the

wind speed profile. The downwind wind speed recovery or wake decay looks similar

in all cases. Recovery to flow speed upwind of the turbine groups takes around 50

km. When the distance between turbine groups is small, there is a reduced recovery.

We also test the one wind farm case under different inlet surface roughness.

Figure 4.6 shows the horizontal velocity profile of z0 = 0.01, 0.005, 0.001, 0.0002 m.

The higher surface roughness predicts smaller wind speed reduction and less TKE

oscillation.
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Table 4.2: Experiments on 3D model

Number of size of wind Distance between

wind farms turbine group (km) groups (km)

1×1 30×30 –

2×2 15×15 15

3×3 10×10 10

The three-dimensional model is also considered to test the following cases in

Table 4.2. In the case of one wind farm, the location of wind farm starts at x=50

km and y=50 km. The size of wind farm is 30×30 km2. In the case of four wind

farms, the locations of wind farms start at x=50 km and y=50 km. The size of

the wind farm is 15×15 km2 and the distance between two wind farms is 15 km.

In the case of the nine wind farms, the locations of wind farms start at x=50 km

and y=50 km. The size of wind farm is 10×10 km2 and the distance between two

wind farms is 10 km. The contour plots from Figure 4.7 to Figure 4.15 show the

horizontal velocity field at heights of z=50, 70, 100 m. Large wind farm is given as

patch(es) with higher surface roughness. The wind direction is from west to east.

Wind speed deficit is shown on the downwind side of the patch(es).

105



Figure 4.7: Contour plot of one wind farm at z=50 m.

Figure 4.8: Contour plot of one wind farm at z=70 m.
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Figure 4.9: Contour plot of one wind farm at z=100 m.

Figure 4.10: Contour plot of four wind farms at z=50 m.
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Figure 4.11: Contour plot of four wind farms at z=70 m.

Figure 4.12: Contour plot of four wind farms at z=100 m.
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Figure 4.13: Contour plot of nine wind farms at z=50 m.

Figure 4.14: Contour plot of nine wind farms at z=70 m.
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Figure 4.15: Contour plot of nine wind farms at z=100 m.

4.3 Simulation on Large Wind Farms Under the Coriolis

Effect

In this section, we consider the Coriolis Effect on the wind flows in large wind

farms. The Coriolis Force is proposed to be added to the momentum equations

of the RANS models. In order to consider the large scale wind farms, wind flow

under Coriolis effect need to be taken into account due to the rotation of Earth.

The Coriolis force under unit mass can be considered as

Fc = −2Ω×U, (4.19)
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where

U = (U1, U2, U3)
T , (4.20)

Ω = ω · (0, 0, sin(φ))T . (4.21)

Ω is the rotation rate vector, ω is the planetary rotation rate (rad/s), and φ is

the latitude. As it is standard in Planetary Boundary Application, the horizontal

components of rotation are ignored and the calculation is made on an f-plane.

The importance of the rotation effect can be determined by the Rossby number

which is defined as

Ro =
Uref

2ω sin(φ)L
, (4.22)

where Uref is the velocity scale and L is the length scale. If the Rossby number

is small, the rotation effect should be considered as dominant (as in geostrophic

theory). If the Rossby number is very large, the rotation effect can be neglected.

For example, the rotation rate of the earth is approximately 7.3×10−5 s−1. Given

a length scale of 50 km and a velocity scale of 10 m/s, the Rossby number at 45◦

N would be approximately 2, indicating that Coriolis terms are required.
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Thus the RANS equations of U, k, ε with Coriolis Effect are

ρ
∂

∂t
Ui + ρUj

∂

∂xj

Ui = −∂P

∂xi

+
∂

∂xj

(
µ

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− ρu′

iu
′
j

)
−ϵijkΩi(Ui − Uig), (4.23)

∂Ui

∂xi

= 0, (4.24)

ρ
∂

∂t
k + ρUj

∂

∂xj

k =
∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+µt

∂Ui

∂xj

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− ρε, (4.25)

ρ
∂

∂t
ε+ ρUj

∂

∂xj

ε =
∂

∂xj

[(
µ+

µt

σε

)
∂ε

∂xj

]
+c1µt

ε

k

∂Ui

∂xj

(
∂Ui

∂xj

+
∂Uj

∂xi

)
− ρc2

ε2

k
, (4.26)

where Ug is the geographic wind vector.

We take numerical experiments with same parameters by the CFV method.

Results are presented in Figures 4.16, 4.17, 4.18 and 4.19. From the previous re-

sults in Figures 4.2, 4.3, 4.4 and 4.5, we observe a slow decreasing of the horizontal

profile of Ux from the inlet direction. This issue can be solved by involving the

Coriolis force and the geographic wind. We first simulate the case under the same

domain and mesh grids over a flat terrain with no roughness change. The time

iteration is set to be long enough (30000 s) in order to get the stable results. The

outcome of this simulation is then used as an inlet profile for tests of the roughness

change model. In Figures 4.16, 4.17, 4.18 and 4.19, the results of the simulation
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Figure 4.16: Horizontal velocity profile at z=50 m, one wind farm.
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Figure 4.17: Horizontal velocity profile at z=50 m, two wind farms.

with 1, 2, 3, and 10 wind farms are shown. Comparing with the results obtained

with and without rotation effects, the horizontal wind profiles with rotation effect

are well maintained. The wind speed deficit is slower when the Coriolis Effect is

involved.
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Figure 4.18: Horizontal velocity profile at z=50 m, three wind farms.
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Figure 4.19: Horizontal velocity profile at z=50 m, ten wind farms.
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Figure 4.20: Horns Rev wind farm in the North Sea near Denmark.

4.4 Simulation on Horns Rev wind farm

[35] introduced the field measurements on Horns Rev wind farm, which is an off-

shore wind farm located in the North Sea near Denmark. In Figure 4.20, Horns

Rev consists 8 rows of 10 2MW wind turbines which have a hub height of 70 m

and rotor diameter D = 80 m. When the wind direction is 270 degree, the spacing

between rows and columns is 7D. When the wind speed is around 8 m/s, the thrust

coefficient CT can be taken as CT = 0.8. There are three meteorology masts, MM2,

MM6, and MM7, which capture the wind speed.

We use the roughness change models to obtain the numerical results and com-
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pare to the field data. In Figure 4.21 vertical profiles of the wind speed are given,

we use the upstream wind speed measured at height of 70 m as a reference velocity.

Wind speeds are measured at different height of location MM2, MM6, and MM7.

Our model predictions agree with the field data. At the downwind location MM6,

a 2 km downwind of Horns Rev, comparing to the upstream velocity at MM7, a 6

km downwind of Horns Rev, the wind speed starts clearly to recover.

We also compare the field data within the wind farm. Wind speed at hub

height (70 m) are measured for the fourth row of Horns Rev, which is the row in

the middle of the wind farm. In Figure 4.22 downwind evolution of wind speed at

hub height is given, the wind speed at the first hub is used as a reference speed. Our

model prediction catches the speed reduction correctly. The model over-predicts

the wind speed for the first 4 wind turbines, and it’s prediction agrees well there-

after.
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5 Conclusion

In this Thesis, we studied and developed numerical methods which are used in

Computational Fluid Dynamics. Related to the wind energy industry, the nature

of high Reynolds numbers of the air flows requires well-treatment on representing

the turbulence. In our development, the Reynolds Averaged Navier-Stokes equa-

tions with turbulent closures were considered for simulating wind flows over complex

topography and turbine wakes of wind farms.

In Chapter 2, we examined the iteration procedure of the Non-linear MSFD

method. We improved the stability of the iteration method by adjusting the re-

laxation factors based on different surface roughness. Before such adjustment, the

iteration procedure only converges when the maximum slope of the topography is

less or equal to 0.3. We proposed the suitable choices of the relaxation factors

which improved the computational stability on the topography with a much higher

maximum slope. Flow separations were successfully predicted in the experiments
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on a sinusoidal terrain while the previous result had no separation observed. The

application on Bolund hill showed the potential of Non-linear MSFD on real to-

pographies with high maximum slopes.

In Chapter 3, we developed the efficient CFV method for solving the time-

dependent RANS equations with k − ε closure by combining the characteristic

method and the finite volume technique. The material derivative was discretized

by the characteristic method. The developed CFV method is more stable and ac-

curate than other commonly used time schemes such as the Euler method. This

method was applied to many problems related to wind flows over different complex

terrains with high maximum slopes. We successfully showed the flow separations

on the complex topography by using this method. We solved the wind flows of a

realistic topography over Bolund hill, and obtained a better result than the Non-

linear MSFD method.

In Chapter 4, we further developed the CFV method to model wind flow and

turbine wakes in wind farms. We considered the wind farms as higher surface

roughness than the surroundings. The CFV method successfully predicted the

wind speed deficit within the wind farms and turbine wake recovery. Results were

presented for both two-dimensional and three-dimensional cases. The Coriolis Ef-
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fect and geostrophic wind were also studied when taking into account of the large

scale problems. Simulating by the CFV method, the RANS models and k − ε clo-

sure with Coriolis force showed success in predicting wind flows over large wind

farms due to the rotation of the Earth. Simulations on the Horns Rev wind farm

are in a good agreement with field measurements.

The CFV method developed in this study can be used in solving related fluid

dynamic problems and it has the potentials on applications related to wind energy

industry.
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