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Abstract

The purpose of this work is to calculate the scattering behaviour of a non-coplanar

ionization collision of an electron with a helium atom. Relativistic distorted waves were

used to describe the wave functions of the incident and scattered electron, and at large

distances from the ionized atom the distorted waves for the outgoing electrons are a

linear combination of relativistic coulomb waves. The T-matrix and scattering cross

section were calculated with the assumptions that the incident electron impacted the

atom perpendicularly to the scattering plane, defined by the trajectories of the two

outgoing electrons which were assumed to have equal energies.
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1 Introduction

Ionization collisions is a large subset of atomic physics where an incident particle with

a particular energy, such as an electron, photon, positron etc. collides with a target atom

and strips off an electron from the atom. This field is one that has been extensively

researched and is studied experimentally by measuring the angles and energies of the

outgoing electrons [1]. One of the earliest examples of an ionization collision experiment

was in 1918, where an electron beam was directed at a solid metal cylinder, and led to

the discovery of new lithium isotopes [2]. More modern experiments use a focused beam

of electrons (focused to a single energy) which can impact target atoms propelled from a

gas jet into the path of the electron gun [3], [4]. These gas jets are used in the case of

noble gas targets, but targets can also include alkali-earth atoms, for example an atomic

beam of magnesium produced from a heated oven [5]. This experiment also involved the

use of a polarized laser to excite the magnesium atoms before the collision.

There are multiple methods to produce theoretical results in order to better understand

the physics behind these experiments. These methods include time dependent perturba-
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tions in the interaction picture, as well as calculating the T-matrix, and then the cross

section, from relativistic or non relativistic solutions to the respective wave equations [6]-

[10]. The cross section can also be calculated from the flux density, such as the work in [11]

which uses a non relativistic approach for helium ionization with outgoing electrons of

equal energy. Another recent paper used a method called the B-Spline R-Matrix approach

as an application for electron atom collisions [12]. This B-Spline R-Matrix approach was

used to solve for the radial scattering functions of the ionization. The theoretical results

in this work are produced by calculating the T-matrix of the collision using relativis-

tic methods and then calculating the triple differential cross section at varying outgoing

angles and energies.

Many experiments in ionization collisions are in a co-planar geometry in which the

incident particle is in the same plane as the outgoing particles, for example the paper

by A. Dorn [8]. This paper examines an experiment where a beam of polarized electrons

is used to ionize a xenon target. Recently, new experiments have been conducted on

ionization collisions that have yet to be fully investigated (Murray et al. [3], [4]). More

specifically, these are collisions for which the incoming electron is at an arbitrary angle
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with respect to the scattering plane of the outgoing electrons, and the outgoing electrons

are at equal energies. The experimental apparatus includes an electron gun and a gas

jet mounted on a yoke which is rotated around the interaction region. Note that the

incident electron beam is perpendicular to the atom beam from the gas jet, even when

the angle of incidence is not 90 degrees. The target gas emits photons when excited by

electron impact, and by observing the flux of these photons the electron beam is focused

and steered onto the physical centre of rotation of the detectors and electron gun. The

detectors are then tuned to measure electrons of equal energy, and in the perpendicular

plane have an angular range of the measured cross section between 70 and 290 degrees

from the axis of rotation of the electron gun. This range is dictated by the physical size

of the detectors. [3], [4].

Theoretical papers have been published which calculate the T-matrix and compare the

triple differential cross section to these non coplanar experimental results (e.g. [6] [7]).

Due to the lower energies of these collisions, as well as the equal energy of the outgoing

electrons, the interaction between the electrons must be taken into account [6]. In this

work the post-collision interaction is approximated as a constant factor and taken out of
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the integral calculations of the T-matrix. This constant factor allows the triple differential

cross section to go to zero when the outgoing electrons are in the same position (separation

angles of zero and one hundred eighty degrees). The constant factors that represent

the post collision interaction of the electrons are called the Gamow and Ward-Macek

factors [13]. These factors come from representing the post collision interaction with a

coulomb function. The Gamow factor is the first two terms in this representation and

involves the momenta of the outgoing electrons. The alternative Ward-Macek factor is the

coulomb function evaluated at some average distance, and is the Gamow factor multiplied

by the absolute value of a hypergeometric function. The Ward-Macek factor has a smaller

effect then the Gamow factor on the overall normalization of the cross section [13].

The main purpose of this work is to use relativistic distorted waves in calculation of the

T-Matrix in a non coplanar ionization collision, where the outgoing electrons have equal

energy. I will observe the specific effects of the relativistic method on the total results

in order to better understand their contribution. The ionization collision examined in

this work will be for a He atom target. The calculations will be based on the framework

provided by Tao Zuo [14], and all formula and results are presented in atomic units. I
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will use wave functions that are solutions to the relativistic wave Dirac equation, as well

as the Ward-Macek post-collision interaction factor to help produce results comparable

to experiment.
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2 Theory

The ionization process is completely represented by the calculation of the triple differ-

ential cross section, the exact form of this cross section given by:

dσ

dΩadΩbdEa
=

(2π)4

8

kakb
ki

∑
si,sa,sb,mb

|T |2 (1)

where the subscript a, b, and i correspond to the two outgoing electrons and the incident

electron respectively. dΩa and dΩb are the solid angle elements, dEa is the element of

the final energy, and T is the T-matrix. The (2π)4 normalization factor comes from

the definition of the scattering amplitude [15]. The term involving the magnitudes of

momentum ka, kb, and ki are to allow the momenta in the incident and outgoing electrons

have unit magnitude, which is a standard in the literature. The last normalization factor

1
8

is due to averaging over the spin of the incident electron and the ejected electron, as

well as the normalization of the wave function for the initial bound state.

In this work we are interested in the case where the energies of the two outgoing electrons

are equal, so we have Ea = Eb. This gives one independent value of energy, since this
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outgoing energy is also related to the energy of the incident electron. The geometry of

the ionization is non-coplanar, meaning the incident electron is at a non zero angle with

respect to the scattering plane which contains the scattered electrons. The two outgoing

electrons are scattered at equal angles to the right and left of the projection of the incident

electron on the scattering plane.
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2.1 T-Matrix

The T-Matrix element T from equation (1), for an ionization collision is of the form:

T = 〈ΨfinalΨion|HI |ΨinitialΨatom〉 (2)

With each Ψ being the respective wave functions and HI as the interaction hamilto-

nian. The wave functions of the initial and two outgoing electrons will be described with

relativistic distorted waves which account for the influence of the ion and atom on the

electrons. At large distances the effect of the ion becomes a coulomb potential. A finite

nucleus approximation is used as it allows for the correct behaviour of the bound state

wave functions, and the coulomb waves in the final channel to depend on an integral power

of r at the origin. A nucleus represented by a point charge would cause the integrals in

this case to be divergent near the origin.

In the relativistic Dirac picture, the Hamiltonian for a system of two electrons can be

written as

H = c~α · ~p1 + βc2 − Z

r1

+ c~α · ~p2 + βc2 − Z

r2

+
1

r12

(3)
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with r and p being position and momentum operators for each electron, and ~α and β the

standard Dirac matrices [16]. The leading term in the interaction part of this hamiltonian

is then 1
r12

where the operator r12 is the relative position between the two electrons, or

r12 = |~r1 − ~r2|. Note that for a helium target there is also a third electron that remains

bound to the nucleus after the collision, and is taken into account in the wave functions

and static potentials of the atom and ion.

The spin flip effects in the relativistic picture allow the possibility of either one or

both of the electrons involved in the ionization to have opposite spin after the collision.

Due to spin flip the only good quantum number is the total angular momentum. The

indistinguishability of two electrons prevents us from realizing some specific cases were

the outgoing electrons have the same spin, or have spin different from their pre-collision

states. These cases are called exchange and are subtracted from the direct elements due

to antisymmetric wave functions.

The T-matrix that is calculated in the case of exchange will be referred to as the

exchange part of the T-matrix, and similarly for the direct case. The direct and exchange
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parts of the T-Matrix can then be written as

T d = 〈FDWC−
b,s1

(~r1, s1)FDWC−
a,s2

(~r2, s2)He+(~r3, s3)| 1

r12

|FDW+
i,s1

(~r1, s1)He(2, 3)〉 (4)

T e = 〈FDWC−
b,s2

(~r1, s2)FDWC−
a,s1

(~r2, s1)He+(~r3, s3)| 1

r12

|FDW+
i,s2

(~r1, s2)He(2, 3)〉 (5)

where the subscripts 1, 2, 3 refer to the three electrons in our system. More specifically

these are the free electron in the incident channel, the electron that is ejected upon

ionization, and the bound electron. We have also neglected the exchange of the free

electron in the initial channel and the bound electron in the final channel, and have no

change in the wave function of the helium atom between the direct and exchange elements.

So in equation (1), the equation for the cross section, the ”T” that represents the T-matrix

will actually be the difference of these terms when the outgoing electrons have the same

spins, and when the outgoing electrons have different spins the T-matrix will be either

the direct or the exchange term depending on which spin channel is detected. The two

outgoing electrons having the same spin makes them indistinguishable and then the cross

section is proportional to the square of the difference of the direct and exchange T-matrix
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terms.

From reference [14], the distorted wave in the incident channel is given by

FDW+
ch,µ =

1

(2π)3/2

1

kr

∑
κm

eiηkaµκm

(
~̂ki

)


fκχκm

igκχ−κm

 (6)

and the distorted waves in the final channel following [7] (which are equivalent to [14])

is given by

FDWC−
ch,µ =

1

(2π)3/2

1

kr

∑
κm

e−iδ
c
kaµκm

(
~̂kf

)


y1(kr)χκm

iy2(kr)χ−κm

 (7)

with phase shifts ηk in the initial channel, δck in the final channel, and with

aµκm

(
~̂k
)

= 4πil
√
E + c2

2E

∑
ml

(lml
1

2
µ|Jm)Y ∗lml

(
~̂k
)

(8)

where E is the total energy including rest mass of the incident electron and µ is the

spin component. The term multiplied by the spherical harmonic in the sum is a standard

Clebsch-Gordan coefficient, and is given an explicit form in equation (16) on page 22. The

functions in equations (6) and (7) denoted by fκ, gκ and y1(kr), y2(kr) are the regular
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and irregular component wave functions of the incident and final channels respectively.

The spin angular functions χ±κm are given by

χκm

(
~̂r, σ
)

=
∑
ml,µ

(lml
1

2
µ|Jm)Yl,ml

(
~̂r
)

Ψ1/2,µ(σ) (9)

and

χ−κm

(
~̂r, σ
)

=
∑
m̄l,µ

(l̄m̄l
1

2
µ|Jm)Yl̄,m̄l

(
~̂r
)

Ψ1/2,µ(σ) (10)

with l̄ = l − sκ and sκ = κ
|κ| . The orbital angular momentum part given by Yl,ml

(
~̂r
)

which are the spherical harmonics, and with Ψ1/2,µ(σ) being the spin component functions.

The spherical harmonics are given by

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cosθ)eimφ (11)

with Pm
l the associated Legendre functions. Note that the spherical harmonics obey the

relationship Yl−m(θ, φ) = (−1)mY ∗lm(θ, φ) since the Legendre functions are real. In the

experiment of [4] the outgoing electrons are on opposite sides of the incident electron in

the scattering plane. So for that case the first scattered electron has φ = 0 and the second

12



has φ = π making the spherical harmonics real.
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2.1.1 Radial And Angular Parts Of The T-Matrix

Using equations (6) to (10) we can expand the direct T-Matrix into radial and angular

parts. The expanded inter electronic term in the T-Matrix is

1

r12

=
∑
λµ

rλ<
rλ+1
>

4π

2λ+ 1
Y ∗λµ(1)Yλµ(2) =

∑
λµ

rλ<
rλ+1
>

C∗λµ(1)Cλµ(2) (12)

where r< and r> are the smaller and larger of the radii respectively. So the expanded

radial part of the direct T-Matrix is

TR =

∫ ∞
0

( 1

rλ+1
2

∫ r2

0

[ya1(r1)P1s(r1) + ya2(r2)Q1s(r2)] rλ1dr1

+ rλ2

∫ ∞
r2

[ya1(r1)P1s(r1) + ya2(r2)Q1s(r2)]
dr1

rλ+1
1

) [
yb1(r2)fk(r2) + yb2(r2)gk(r2)

]
dr2 (13)

with P1s(r) and Q1s(r) the bound state orbitals of the helium atom. Note that for

r > rN the bound state orbitals are zero (Where rN is defined as the radius at which

this takes place). In this region the inner integrals will behave as 1
rλ+1 and zero. For

r2 > rN the total inner integral will have a simple form which can be evaluated using the

asymptotic expansions gone over in section 2.2.5 and with more detail in the appendix.
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Letting the radial part of the T-Matrix be represented by TR, the full T-Matrix with

the angular parts (Ea = Eb, ~̂ki fixed, and si = 1/2) is then

Td(sa, sb, Ea, Ei) =
(4π)3

(2π)9/2

1

kik2
a

(
Ea + c2

2Ea

)√
Ei + c2

2Ei

×
∑

κamamla

∑
κbmbmlb

∑
κimimli

∑
λρ

i(li−la−lb)e
i(δcka+δckb

+ηka )

× (lamla
1

2
sa|jama)Ylamla(

~̂ka)

× (lbmlb
1

2
sb|jbmb)Ylbmlb(

~̂kb)

× (limli
1

2
si|jimi)Y

∗
limli

(~̂ki)

× dλρ(κimi, κbmb)d
λ
ρ(κama, 1sm1s)× TR (14)

with ma = mla + sa, mb = mlb + sb, mi = mli + si, and where

dλρ(j
′
m
′
, jm) = (−1)m+1/2

√
(2j + 1)(2j ′ + 1)


j λ j

′

1/2 0 −1/2




j λ j
′

−m ρ m
′

 (15)

Note that from the properties of the 3j symbols we have the parity condition that

l + λ+ l
′

is even, and the value of ρ = m1s −ma = mb −mi. Also note that Ei is related

15



to Ea through the ionization energy. More specifically, the ionization energy added to Ei

is equal to twice the value of Ea.

We can also write the Clebsch Gordan coefficients in terms of the 3j symbols with the

relation

(lml
1

2
s|jm) = (−1)l−1/2+m

√
(2J + 1)


l 1/2 j

ml s −m

 (16)

Substituting equations (15) and (16) into equation (14) and simplifying gives
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Td(sa, sb, Ea, Ei) =

(
2

π

)3/2
1

kik2
a

(
Ea + c2

2Ea

)√
Ei + c2

2Ei

×
∑

κamamla

∑
κbmbmlb

∑
κimimli

∑
λρ

i(li−la−lb)e
i(δcka+δckb

+ηka )
(−1)mb−1/2

√
2(2ja + 1)

× (2jb + 1)(2ji + 1)×


la 1/2 ja

mla sa −ma

Ylamla(
~̂ka)×


lb 1/2 jb

mlb sb −mb

Ylbmlb(
~̂kb)

×


li 1/2 ji

mli si −mi

Y ∗limli(
~̂ki)×


jb λ ji

1/2 0 −1/2




jb λ ji

−mb ρ mi



×


1/2 λ ja

1/2 0 −1/2




1/2 λ ja

−m1s ρ ma

× TR (17)

For a specific case where the three spins are chosen, and with the 3j symbols providing

one additional condition on the m values, we are left with two free m symmetries which

are chosen to be mla and mlb.

In this work we let the kappa values κa, κb of the scattered electrons be the indices with

infinite range. That leaves λ and κi for the incident electron to have a finite range. To

17



find the allowed value of λ we use the parity conditions and the triangle relations from

the 3j symbols in equation (17).

From the 3j symbols (where the Helium bound state gave κ = −1, l = 0, and j = 1/2)

we have the triangle inequalities

|ja − 1/2| ≤ λ ≤ (ja + 1/2) (18)

|jb − λ| ≤ ji ≤ (jb + λ) (19)

with la+λ and lb+λ+li even. From the first triangle inequality we get that ja = λ±1/2

and from the definition la = ja ± 1/2. Therefore we must have λ = la and the two cases

ja = la − 1/2 and κa = la, or ja = la + 1/2 and κa = −la − 1. Note that if la = 0 then we

only have the case that ja = la + 1/2.
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2.2 Radial Part Of The Distorted Waves

The radial equations for the distorted waves, as given by [14], are

(
d

dr
+
κ

r

)
f(r)− α(E +

1

α2
− U(r))g(r) =

α

r
WQ(r) (20)(

d

dr
− κ

r

)
g(r) + α(E − 1

α2
− U(r))f(r) = −α

r
WP (r) (21)

where U(r) is the static potential of the atom in the initial channel, and the static

potential of the ion in the final channel. α is the fine structure constant, and the W terms

on the RHS of the equations are the exchange terms, which are given an explicit form

and discussed in more detail in section 2.2.3.

2.2.1 Initial Channel

The solutions to the distorted waves in the initial channel follow [14] by writing the

equations in integral form and using Simpson’s rule to evaluate. The integral equations

19



are in the form

f(r) = v11(r)

[
1−

∫ ∞
r

(v12(s)f(s) + v22(s)g(s))U(s)ds

]

− v12(r)

∫ r

0

((v11(s)f(s) + v21(s)g(s))U(s)ds (22)

g(r) = v21(r)

[
1−

∫ ∞
r

(v12(s)f(s) + v22(s)g(s))U(s)ds

]

− v22(r)

∫ r

0

((v11(s)f(s) + v21(s)g(s))U(s)ds (23)

where v11, v21 are the regular solutions, and v12, v22 the irregular solutions of the radial

Dirac equations with U = 0, and neglecting the W exchange terms for simplicity. In the

initial channel U is the static potential of the neutral atom, which is a combination of the

static potential of the nucleus and the bound electrons. Letting rn be the radius of the

nucleus, the static potential of the nucleus is given by UN(r) = − 3Z
2rn

+ Zr2

2r3n
for r ≤ rn,

and UN(r) = −1
r

otherwise (where Z = 2 for helium). The numerical solutions to the

static potential of the electrons has been provided by Professor Robert McEachran and

is evaluated from the expectation value of the potential of an electron.
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These homogeneous solutions are constant multiples of the Ricatti-Bessel functions.

More specifically they are given by

v11(r) = ĵl(kr) (24)

v12(r) = −αCαn̂l(kr) (25)

v21(r) =
sκ
Cα

ĵl̄(kr) (26)

v22(r) = −αsκn̂l̄(kr) (27)

where ĵl and n̂l are the Ricatti-Bessel functions (which are kr multiplied by the spherical

Bessel functions) sκ = κ
|κ| , l̄ = l − sκ and Cα = E+2c2√

E(E+2c2)
. Substituting these into

equations (22) and (23) gives the integral equations

f(r) = ĵl(kr)− αCαĵl(kr)

×
∫ r

0

(n̂l(ks)(f(s)U(s)−WP (s)) +
sκ
Cα

n̂l̄(ks)(g(s)U(s) +WQ(s)))ds

+ αCαn̂l(kr)

∫ r

0

(ĵl(ks)(f(s)U(s)−WP (s)) +
sκ
Cα

ĵl̄(ks)(g(s)U(s) +WQ(s)))ds (28)
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g(r) =
sκ
Cα

ĵl̄(kr)− αsκĵl̄(kr)

×
∫ r

0

(n̂l(ks)(f(s)U(s)−WP (s)) +
sκ
Cα

n̂l̄(ks)(g(s)U(s) +WQ(s)))ds

+ αsκn̂l̄(kr)

∫ r

0

(ĵl(ks)(f(s)U(s)−WP (s)) +
sκ
Cα

ĵl̄(ks)(g(s)U(s) +WQ(s)))ds (29)

with the exchange terms WP and WQ retained and the factors of 1
r

absorbed into them.

Note also that the integrals from r to ∞ have been replaced with negative integrals from

0 to r.

Simpson’s rule is then used to approximate the solutions with the subroutine BESJN

from [17] used to compute the Bessel functions. In this work a different mesh is used than

the one in [14] so that h→ 1
ζ′ (r)

= dr. Let the two integrals in f and g be represented as

J(m) and I(m) respectively, then the equations f(m) and g(m) in the approximation are

given by

f(m) =
(

(1− αCαJ(m))ĵl(m) + αCαI(m)n̂l(m)

− fac[( 1

Cα
− αJ(m))sκĵl̄(m) + αsκI(m)n̂l̄(m)] +

α

3ζ ′
(WQ + fac ·WP )

)
/deta (30)
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g(m) =
(
fac(1− αCαJ(m))ĵl(m) + (

1

Cα
− αJ(m))sκĵl̄(m)

+ (fac · Cαn̂l(m) + sκn̂l̄(m))I(m)α +
α

3ζ ′
(fac ·WQ −WP )

)
/deta (31)

with fac = αUatom
3ζ′ (m)

, deta = 1 + (fac)2, and Uatom as the static potential of the neutral

atom. So Uatom becomes constant as r → 0
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2.2.2 Final Channel with Finite Nucleus Approximation

Starting with the differential equations of the distorted waves (Eqns (20), (21)) we let

U(r) = Zn(r)
r

+ Ū(r) in the final channel, with Zn(r) = − 3r
2rn

+ r3

2r3n
for r < rn, and

Zn(r) = −1 otherwise, and where rn is the radius of the nucleus. Now in the final

channel, U(r) represents the static potential of the ion and we chose Zn(r) to be such

that Ū(r) → 0 as r → ∞, which allows the integral solutions to converge. To calculate

the distorted waves in the final channel we put the equations in integral form. For the

integral solutions, neglecting the exchange terms, we take


y1

y2

 =


f

g

 , A =


−κ
r

(αE + 1
α

+ Zn(r))

−(αE − 1
α

+ αZn(r)) κ
r

 , c̄ =


−αŪy2

αŪy1


(32)

The homogeneous solutions are the solutions to v̄
′
= Av̄. These are the upper and lower
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component functions


v11

v12

 =


f

(u)
κ (kr)

f
(l)
κ (kr)

 ,

v21

v22

 =


g

(u)
κ (kr)

g
(l)
κ (kr)

 (33)

which are calculated with the finite nucleus approximation. Using the homogeneous

solutions in the same way they were used in the initial channel, the integral equations to

ȳ
′
= Aȳ + c̄ are then

y1(r) = f (u)
κ (kr)− α

∆
f (u)
κ (kr)

∫ r

0

[g(l)
κ (ks)y2(s) + g(u)

κ (ks)y1(s)]Ū(s)ds

+
α

∆
g(u)
κ (kr)

∫ r

0

[f (l)
κ (ks)y2(s) + f (u)

κ (ks)y1(s)]Ū(s)ds (34)

y2(r) = f (l)
κ (kr)− α

∆
f (l)
κ (kr)

∫ r

0

[g(l)
κ (ks)y2(s) + g(u)

κ (ks)y1(s)]Ū(s)ds

+
α

∆
g(l)
κ (kr)

∫ r

0

[f (l)
κ (ks)y2(s) + f (u)

κ (ks)y1(s)]Ū(s)ds (35)

where ∆ = detV = f
(u)
κ g

(l)
κ − f (l)

κ g
(u)
κ . Note that the form of these equations including

the exchange terms are given in Section 2.2.3 in equations (69) and (70). We can also
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show that ∆ is independent of r by looking at the equation v̄
′
= Av̄. This gives

v
′

x1(r) = a(r)vx1(r) + b(r)vx2(r) (36)

v
′

x2(r) = c(r)vx1(r) + d(r)vx2(r) (37)

with a(r), b(r), c(r) and d(r) the components of the matrix A, prime denoting derivative

with respect to r, and vx1(r) = f
(u)
κ or g

(u)
κ and vx2(r) = f

(l)
κ or g

(l)
κ . Then we can substitute

these equations into the derivative of ∆, which is given by

∆
′
= f (u)′

κ g(l)
κ + f (u)

κ g(l)′

κ − f (l)′

κ g(u)
κ − f (l)

κ g(u)′

κ (38)

To get

∆
′
= [a(r) + d(r)]∆ (39)

but a(r) = −κ
r

and d(r) = κ
r

so that ∆
′
= 0. A specific value of ∆ can be ∆ = −

√
E−c2
E+c2

by using the equations (166) and (170) in [17] (With E being the total energy including

rest mass).

Using the Frobenius method the distorted waves and the Coulomb waves are calcu-

26



lated inside the nucleus. We then match the solutions around rn by magnitude without

matching slope. Matching both the upper and lower component solutions simultaneously

results in a very small contribution from the irregular solutions. So the upper and lower

solutions are matched separately.

In equations (34) and (35) we can call the two integrals from 0 to r, J(r) and I(r)

respectively so that

I(r) =

∫ r

0

[f (l)
κ (ks)y2(s) + f (u)

κ (ks)y1(s)]Ū(s)ds (40)

J(r) =

∫ r

0

[g(l)
κ (ks)y2(s) + g(u)

κ (ks)y1(s)]Ū(s)ds, (41)

where Ū has Z=1 (in order to match the solutions of the full equation of U). So for

s < rn, Ū(s) = − 3
rn

+ co
2

+ s2

r3n
+O(s3), where co is the constant term in the static potential

of the bound electrons of helium and is equal to 3.3748629. The 1
2

multiplied by co is due

to the fact that in the final channel we now have a helium ion which has an electron in a

state closer to that of the bound state of a hydrogen atom.

The Frobenius method solutions for the Coulomb waves and distorted waves for κ < 0
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are

f (u)
κ (s) =

n∑
i=0

amc(i)s
2i+l+1, f (l)

κ (s) =
n∑
i=0

bmc(i)s
2i+l+2 (42)

g(u)
κ (s) =

n∑
i=0

apc(i)s
2i−l, g(l)

κ (s) =
n∑
i=0

bpc(i)s
2i−l−1 (43)

y2(s) =
n∑
i=0

am(i)s2i+l+1, y1(s) =
n∑
i=0

bm(i)s2i+l+2 (44)

and for κ > 0

f (u)
κ (s) =

n∑
i=0

apc(i)s
2i+l+1, f (l)

κ (s) =
n∑
i=0

bpc(i)s
2i+l (45)

g(u)
κ (s) =

n∑
i=0

amc(i)s
2i−l, g(l)

κ (s) =
n∑
i=0

bmc(i)s
2i−l+1 (46)

y2(s) =
n∑
i=0

ap(i)s
2i+l+1, y1(s) =

n∑
i=0

bp(i)s
2i+l, (47)

where the value l in the equations corresponds to the respective value of κ. Plugging in
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these Frobenius solutions into I(r) and J(r) and solving gives, for κ < 0,

I(r) =

∫ r

0

[∑
ij

amc(i)am(j)s2i+2j+2l+2 +
∑
ij

bmc(i)bm(j)s2i+2j+2l+4

]
(u0 + u2s

2)ds

=
∑
ij

[
amc(i)am(j)

(
r2i+2j+2l+3

2i+ 2j + 2l + 3
u0 +

r2i+2j+2l+5

2i+ 2j + 2l + 5
u2

)

+ bmc(i)bm(j)

(
r2i+2j+2l+5

2i+ 2j + 2l + 5
u0 +

r2i+2j+2l+7

2i+ 2j + 2l + 7
u2

)]
(48)

J(r) =

∫ r

0

[∑
ij

apc(i)am(j)s2i+2j+1 +
∑
ij

bpc(i)bm(j)s2i+2j+1

]
(u0 + u2s

2)ds

=
∑
ij

[apc(i)am(j) + bpc(i)bm(j)]

(
r2i+2j+2

2i+ 2j + 2
u0 +

r2i+2j+4

2i+ 2j + 2l + 4
u2

)
(49)

and for κ > 0

I(r) =

∫ r

0

[∑
ij

apc(i)ap(j)s
2i+2j+2l+2 +

∑
ij

bpc(i)bp(j)s
2i+2j+2l

]
(u0 + u2s

2)ds

=
∑
ij

[
apc(i)ap(j)

(
r2i+2j+2l+3

2i+ 2j + 2l + 3
u0 +

r2i+2j+2l+5

2i+ 2j + 2l + 5
u2

)

+ bpc(i)bp(j)

(
r2i+2j+2l+1

2i+ 2j + 2l + 1
u0 +

r2i+2j+2l+3

2i+ 2j + 2l + 3
u2

)]
(50)
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J(r) =

∫ r

0

[∑
ij

amc(i)ap(j)s
2i+2j+1 +

∑
ij

bmc(i)bp(j)s
2i+2j+1

]
(u0 + u2s

2)ds

=
∑
ij

[amc(i)ap(j) + bmc(i)bp(j)]

(
r2i+2j+2

2i+ 2j + 2
u0 +

r2i+2j+4

2i+ 2j + 2l + 4
u2

)
, (51)

where u0 = − 3
rn

+ c0
2

and u2 = 1
r3n

. Combining each of the a and b coefficients in the

Frobenius solutions allows us to simplify for matching and summing over κ. Let these

combined coefficients be

amm(m) =
m∑
i=0

amc(κ, i)am(κ,m− i), bmm(m) =
m∑
i=0

bmc(κ, i)bm(κ,m− i) (52)

apm(m) =
m∑
i=0

apc(κ, i)am(κ,m− i), bpm(m) =
m∑
i=0

bpc(κ, i)bm(κ,m− i) (53)

amp(m) =
m∑
i=0

amc(κ, i)ap(κ,m− i), bmp(m) =
m∑
i=0

bmc(κ, i)bp(κ,m− i) (54)

app(m) =
m∑
i=0

apc(κ, i)ap(κ,m− i), bpp(m) =
m∑
i=0

bpc(κ, i)bp(κ,m− i). (55)
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Therefore, for κ < 0

I(r) = r2l+3

n∑
m=0

[amm(m)u0 + amm(m− 1)u2 + bmm(m− 1)u0 + bmm(m− 2)u2]

× r2m

2m+ 2l + 3
(56)

J(r) = r2

n∑
m=0

[apm(m)u0 + apm(m− 1)u2 + bpm(m)u0 + bpm(m− 1)u2]
r2m

2m+ 2
(57)

and for κ > 0

I(r) = r2l+1

n∑
m=0

[app(m− 1)u0 + app(m− 2)u2 + bpp(m)u0 + bpp(m− 1)u2]

× r2m

2m+ 2l + 1
(58)

J(r) = r2

n∑
m=0

[amp(m)u0 + amp(m− 1)u2 + bmp(m)u0 + bmp(m− 1)u2]
r2m

2m+ 2
(59)
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2.2.3 Exchange Terms For The Distorted Waves

In the previous section the exchange terms in the distorted waves have been notated by

WQ and WP . These terms appear in the differential equation for the distorted waves with

a 1
r

term in front and have the form

1

r
W(P, Q) = ΓJµJ ′

1

r
Yµ(n

′
, κ
′
, κ, r) (Pn′κ′ (r), Qn′κ′ (r)) (60)

with

1

r
Yµ(n

′
, κ
′
, κ, r) =

1

rµ+1

∫ r

0

[Pn′κ′ (s)y1(s) +Qn′κ′ (s)y2(s)] sµds

+ rµ
∫ ∞
r

[Pn′κ′ (s)y1(s) +Qn′κ′ (s)y2(s)]
ds

sµ+1
(61)

Specifically for the ground state n
′
κ
′

= 1s so for r → 0 we can let P1s(r) = pr,

Q1s(r) = qr2, y1(r) = arl+1, and y2(r) = brl̄+1 with µ = l, with p, q, a, and b constants.
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We can evaluate the four parts of the integrals;

∫ r2

0

P1s(s)y1(s)

sµ+1
ds = pa

r2
2

2
=
P1s(2)

2

y1(2)

rl2
(62)

∫ r2

0

Q1s(s)y2(s)

sµ+1
ds =


qb

r22
2

= Q1s(2)
2

y2(2)

rl2
, κ > 0

qb
r42
4

= Q1s(2)
4

y2(2)

rl2
, κ < 0

(63)

∫ r2

0

sµP1s(s)y1(s)ds =
P1s(2)

2l + 3
y1(2)rl+1

2 (64)

∫ r2

0

sµQ1s(s)y2(s)ds =


Q1s(2)
2l+3

y2(2)rl+1
2 , κ > 0

Q1s(2)
2l+5

y2(2)rl+1
2 , κ < 0

(65)

The ΓJµJ ′ in equation (60) is given by

ΓJµJ ′ =


J µ J

′

−1/2 0 1/2


2

(66)

with the parity condition that l+µ+ l
′

is even. For the ground state n
′
κ
′
= 1s we have

κ
′

= −1⇒ l
′

= 0,⇒ J
′

= 1/2. By parity µ = l = J ± 1/2 so for κ > 0 we get µ = κ and

for κ < 0 we get µ = −κ− 1.
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Evaluating Γ in the two regions gives

ΓJµJ ′ =


1

2(2κ+1)
, κ > 0

−1
2(2κ+1)

, κ < 0

(67)

To include the exchange terms in the final channel integral equations we start with the

column vector c̄, and add the
W(P,Q)(r)

r
terms.

c̄ = α


−Ū(r)y2(r) +

WQ(r)

r

Ū(r)y1(r)− WP (r)
r

 (68)

The integral equations are then

y1(r) = f (u)
κ (kr)

− α

∆
f (u)
κ (kr)

∫ r

0

[
g(l)
κ (ks)

(
y2(s)Ū(s)− WQ(s)

s

)
+ g(u)

κ (ks)

(
y1(s)Ū(s)− WP (s)

s

)]
ds

+
α

∆
g(u)
κ (kr)

∫ r

0

[
f (l)
κ (ks)

(
y2(s)Ū(s)− WQ(s)

s

)
+ f (u)

κ (ks)

(
y1(s)Ū(s)− WP (s)

s

)]
ds

(69)
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y2(r) = f (l)
κ (kr)

− α

∆
f (l)
κ (kr)

∫ r

0

[
g(l)
κ (ks)

(
y2(s)Ū(s)− WQ(s)

s

)
+ g(u)

κ (ks)

(
y1(s)Ū(s)− WP (s)

s

)]
ds

+
α

∆
g(l)
κ (kr)

∫ r

0

[
f (l)
κ (ks)

(
y2(s)Ū(s)− WQ(s)

s

)
+ f (u)

κ (ks)

(
y1(s)Ū(s)− WP (s)

s

)]
ds

(70)

35



2.2.4 Asymptotic Expansions

For large r (r > rN), the radial distorted waves are exposed to a Coulomb potential from

the ion, where rN is the distance at which the bound orbitals are taken to be zero. This

implies that an integral over the electron coordinates is equal to the number of electrons

for these values of r and also that the total potential, including the nuclear term, is zero for

the neutral atom. The radial distorted waves are then asymptotically linear combinations

of the upper and lower component Coulomb functions. These functions themselves can

be expressed as linear combinations of the non relativistic Coulomb functions which we

will call Gλ and Fλ. From [17] we get the relationship that

Gλ + iFλ = yλ(η, x)eiθλ (71)

Gλ − iFλ = y∗λ(η, x)e−iθλ (72)

where λ =
√
κ2 − (αZ)2, yλ(η, x) = 2F0(iη − λ, iη + λ + 1, (2ix)−1), x = kr, η = Z

ν

(with ν given after equation (87)), and θλ = x − λπ/2 − ηln(2x) + arg(Γ(λ + 1 + iη)).

Note that because the Dirac-Coulomb functions involve regular Coulomb functions with
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non-integer parameters, both the regular and irregular solutions can be calculated from

the power series of the confluent hypergeometric function, although in the case of the

irregular solution a multiple of the regular solution must be added in order to get the

correct asymptotic form.

Reference [17] contains a derivation of the asymptotic form of the Coulomb functions,

and details of the coefficients and phase shifts of this asymptotic form.

In the asymptotic region, the distorted waves are

y1 = AN [aFλ(η, x) + bFλ−1(η, x)] +BN [aGλ(η, x) + bGλ−1(η, x)] (73)

y2 = −AN [cFλ(η, x) + dFλ−1(η, x)]−BN [cGλ(η, x) + dGλ−1(η, x)] (74)

where A = 1 − α
∆
J(rN), B = α

∆
I(rN), and ∆ = −

√
E−c2
E+c2

, with I and J being the

integrals from the section on the final channel distorted waves and E being the relativistic

energy including rest mass. Recall also that the bound states P1s(r) and Q1s(r) are zero

when r > rN . The coefficients Na, Nb, -Nc, and -Nd are given in the subroutine DFASO

from [17] which has been modified to produce the coefficients of 2F0 (the hypergeometric
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function).

Using equations (71) and (72) we can write these equations in a form better suited for

contour integration;

y1 =
Na

2
(B − iA)yλ(η, x)eiθλ +

Na

2
(B + iA)y∗λ(η, x)e−iθλ

+
Nb

2
(B − iA)yλ−1(η, x)eiθλ−1 +

Nb

2
(B + iA)y∗λ−1(η, x)e−iθλ−1 (75)

y2 = −Nc
2

(B − iA)yλ(η, x)eiθλ − Nc

2
(B + iA)y∗λ(η, x)e−iθλ

− Nd

2
(B − iA)yλ−1(η, x)eiθλ−1 − Nd

2
(B + iA)y∗λ−1(η, x)e−iθλ−1 (76)

The two terms on each line of y1 and y2 are complex conjugates of each other. This

implies that on the real axis the two distorted waves are just the real part of the first term

on each line. To evaluate the asymptotic T-Matrix, contour integration is used separately

on each term as different contours are needed.

In the incident channel the asymptotic distorted waves can be expressed as a linear

combination of the Riccati-Bessel functions, and the Bessel functions can be expanded in
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terms of the spherical Hankel functions

ĵl(kr) =
h+
l (kr)− h−l (kr)

2i
=
H+
l (kr)eikr −H−l (kr)e−ikr

2i
(77)

n̂l(kr) =
h+
l (kr)− h−l (kr)

2
=
H+
l (kr)eikr −H−l (kr)e−ikr

2
(78)

As before, asymptotically we have P1s, Q1s = 0 so then WP , WQ = 0 and Uatom = 0,

which implies that fac = 0. Therefore we have the asymptotic expansion in the initial

channel;

fκ(r) ∼
{

(1− αCαJ(rN))
H+
l (kr)

2i
− αCαI(rN)

H+
l (kr)

2

}
eikr

−
{

(1− αCαJ(rN))
H−l (kr)

2i
+ αCαI(rN)

H−l (kr)

2

}
e−ikr (79)

gκ(r) ∼
{

(C−1
α − αJ(rN))sκ

H+
l̄

(kr)

2i
− αsκI(rN)

H+
l̄

(kr)

2

}
eikr

−
{

(C−1
α − αJ(rN))sκ

H−
l̄

(kr)

2i
+ αsκI(rN)

H−
l̄

(kr)

2

}
e−ikr (80)

with I(rN) and J(rN) the integrals as defined in section 2.2.1, and Cα, sκ also as defined

in section 2.2.1.
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2.2.5 Phase shifts and normalization

In the asymptotic region the distorted waves in the initial channel are a linear combi-

nation of the Riccati-Bessel functions, and in the final channel are a linear combination

of the upper and lower component functions. If we call the coefficients of these linear

combinations Ak and Bk such that, for example,

fκ(r) = Akĵl(kr) +Bkn̂l(kr) (81)

in the initial channel, and

y1 = Akf
(u)
κ (kr) +Bkg

(u)
κ (kr) (82)

in the final channel, then the scattering phase shift is given by

tan(δsck ) =
Bk

Ak
(83)

where these B and A have different values in the initial and final channel. The total
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phase shift in the final channel involves a sum of this scattering phase shift and the

Coulomb phase shift (see equations (86) and (87)). More specifically, in the initial channel

we have

Bk = −αCαI(rN), Ak = 1− αCαJ(rN) (84)

and in the final channel

Bk =
α

∆
I(rN), Ak = 1− α

∆
J(rN) (85)

The total phase difference between the distorted waves f and g in the initial channel is

the scattering shift δsck plus an additional factor of π
2
. The phase difference between y1

and y2 in the final channel has additional contributions and is given by

∆θ = δsck +
π

2
+ ln(2kr) + CS (86)

with k =

√
E(E+2c2)

c
, the Coulomb shift, or CS, given by

CS = ν − (λ− l − 1)
π

2
+ argΓ(λ+ iη)− SZ,κπ (87)
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With ν = arg[αZ(E + c2) − i(κ + λ)kc] and with SZ,κ = 1 if Z < 0 and κ < 0, and = 0

otherwise.

The distorted waves are normalized by dividing by a factor of
√
A2
k +B2

k. This gives

the larger solution an amplitude of one.
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3 Results and Discussion

In this section the results of the complete cross sections summed over all spin contribu-

tions are presented, as well as discussion of the relativistic effects on the results. We also

examine the convergence of the partial waves in section 3.1. The results in section 3.3

also include a post-collision interaction term (Ward-Macek) in order to observe its effects

on the behaviour of the cross section.

The calculations in this work are all in atomic units, so the cross sections have units of

a20
sr2au

where a0 is the Bohr radius (0.529177×10−10m), au is the unit of energy (27.2114 eV),

and sr is units of steradians (where the two values of sr correspond to the two outgoing

electrons). In the figures, the units of energy and all angles are given in electron volts

(eV), and degrees (0) respectively. In each figure showing the calculated cross section

with respect to an angle theta, we define theta as half of the angle between the two

outgoing electrons. Theta is also the angle between each outgoing electron and the axis

of symmetry between them. In this work the angle of the incident electron is taken to be

90 degrees with respect to the plane containing the outgoing electrons, and without loss

of generality, we assume the incident electron has spin up.
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3.1 Convergence Of The Partial Waves

The following figures are to demonstrate the convergence of the partial waves after a

certain value of kappa. Note that in this section the value of kappa is a maximum value

for the summation over the orbital angular momentums of the outgoing electrons. In the

calculation of the T-matrix we sum over all possible combinations of angular momentum,

where we take the orbital angular momentum quantum numbers from zero to kappa.

Figure 1 is for an incident electron energy of 10 eV and Figure 2 for the case with 35 eV.

Although for higher energy we do not see convergence until higher values of kappa, the two

figures shown are almost if not completely converged by kappa=15 and 17 respectively.

Both figures are for the case with spin up on the bound electron and both outgoing

electrons, which is allowed non relativistically. Other spin cases can be seen in the figures

of section 3.2 and have similar converging behaviour for values of kappa greater than or

equal to 15.

In both figures the cross section is zero at angles 0 and 180 with peak values at 90

degrees. Since electrons are fermions, we would expect the cross section to be zero at

theta=0 and 180 degrees when the spins and energies of the outgoing electrons are the
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same.
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Figure 1: The cross section at 10 eV for the individual cases of kappa=7, 9, 11, 13, 15 with spin up for
the bound electron and both outgoing electrons. We see complete convergence of the partial waves by
kappa=15.
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Figure 2: The cross section at 35 eV for the individual cases of kappa=7, 9, 11, 13, 15, 17. with spin up
for the bound electron and both outgoing electrons. We see complete convergence of the partial waves
by kappa=17.

47



3.2 Relativistic And Non Relativistic Spin Cases

Assuming the incident electron has spin up, we have eight possible cases for the spins

of our total system. These cases come from the spin of the bound electron before it is

ionized as well as the spins of the two outgoing electrons after the collision. Among these

cases we can distinguish between what is allowed relativistically by observing whether or

not the bound electron and incident electron have changed spin in the final channel. Since

they are only allowed relativistically, the cases with one or more spin flip produce cross

sections with a much lower magnitude.

The figures in the following pages are of the converged cross sections at 15 eV for three

possible spin configurations of the total system. Figure 3 is possible non relativistically,

while Figure 4 has the bound electron changing spin, and Figure 5 has both the bound

electron and the incident electron changing spin in the final channel.

The general shape of the cross section for 15 eV, in the experimental results of [6], is a

large central peak at 90 degrees with two smaller side peaks on either side. In the results

of the individual spin cases presented here, we see a similar large central peak in the non
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relativistically allowed figure 3. The cross section on either side of the central peak has

small side peaks but does not go to zero at theta=0 and 180 degrees. This behaviour

is not unexpected as the two outgoing spins are opposite which allows the electrons to

occupy the same position.

A more notable difference is present in the relativistic cases in Figures 4 and 5. In

Figure 4 we have almost the opposite behaviour, where we have zero cross section at 90

degrees, and larger side peaks. Figure 5 presents a central peak, but has a much more

gradual decline in the cross section on either side approaching zero.

While the behaviour present in the relativistic cases seems like it may add certain

features to the total cross section, note that the magnitudes in Figures 4 and 5 are much

smaller. Figure 3 has a cross section around 10−2 where as Figures 4 and 5 are closer to

10−12 and 10−21 respectively. Even though five of the eight possible spin configurations

are relativistic, the sum of the cross sections of all of these cases would still not be near

the magnitude of the sum of the non relativistic cases. This relativistic contribution to

the complete triple differential cross section would be very small and almost negligible for

these results.
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Since the helium nucleus has a very small charge it is not unexpected that the relativistic

effects would also be small, since these effects depend on the total charge of the nucleus.

It is interesting to note though, that in a similar collision with an atom that has a much

greater charge on its nucleus (such as Xenon for example), the relativistic spin cases may

make a much larger contribution to the complete cross section. This is something to be

potentially looked at in a future work.
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Figure 3: The cross section at 15 eV with spin down for the initially bound electron and one outgoing
electron, and spin up for the other outgoing electron. This case is possible non relativistically and has
non zero cross section at theta=0 and 180 degrees since the outgoing electrons have opposite spin. The
partial waves of kappa=15 and 17 are shown to demonstrate convergence.
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Figure 4: The cross section at 15 eV with spin down for the initially bound electron and spin up for both
of the outgoing electrons. This case is only possible relativistically, as the bound electron has opposite
spin in the final channel. The partial waves of kappa=15 and 17 are shown to demonstrate convergence.
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Figure 5: The cross section at 15 eV with spin up for the initially bound electron and spin down for
both of the outgoing electrons. This case is only possible relativistically, as both the bound electron and
incident electron have changed their spin in the final channel. The partial waves of kappa=15 and 17 are
shown to demonstrate convergence.
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3.3 Triple Differential Cross Sections And Experimental Results

The following pages contain the plots for the complete results of the cross section with

and without the Ward-Macek factor, as well as results from [6] and experimental data

from [4]. The results presented here from [6] do not include any post-collision interaction

term (Ward-Macek or Gamow factors) as the effects of these terms are well understood.

Results for the Gamow factor are not shown as it has the same purpose as the Ward-

Macek factor with differing magnitude. These differences in magnitude are not observed

as each result is normalized at ninety degrees to the unmodified cross section (blue line)

to allow the comparison of the shapes at all angles. Note that without this normalization

the cross section results are still within the same magnitude as the results of [6].

The experimental error in the cross section is displayed at each point on the plots, while

the experimental error in theta is constant at five degrees. The result for the plane wave

approximation is only included in the lowest three energy plots, as it does not change

shape significantly at higher energies.
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Figure 6: Triple differential cross sections for incident electron energy of 5 eV. Green line: plane wave ap-
proximation results of [6], purple line: distorted wave born approximation results of [6], blue line: present
work without Ward-Macek, red line: present work including Ward-Macek, black points: experimental
data from [4].
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Figure 7: Triple differential cross sections for incident electron energy of 10 eV. Green line: plane wave ap-
proximation results of [6], purple line: distorted wave born approximation results of [6], blue line: present
work without Ward-Macek, red line: present work including Ward-Macek, black points: experimental
data from [4].
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Figure 8: Triple differential cross sections for incident electron energy of 15 eV. Green line: plane wave ap-
proximation results of [6], purple line: distorted wave born approximation results of [6], blue line: present
work without Ward-Macek, red line: present work including Ward-Macek, black points: experimental
data from [4].
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Figure 9: Triple differential cross sections for incident electron energy of 20 eV. Purple line: distorted
wave born approximation results of [6], blue line: present work without Ward-Macek, red line: present
work including Ward-Macek, black points: experimental data from [4].
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Figure 10: Triple differential cross sections for incident electron energy of 30 eV. Purple line: distorted
wave born approximation results of [6], blue line: present work without Ward-Macek, red line: present
work including Ward-Macek, black points: experimental data from [4].
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Figure 11: Triple differential cross sections for incident electron energy of 40 eV. Purple line: distorted
wave born approximation results of [6], blue line: present work without Ward-Macek, red line: present
work including Ward-Macek, black points: experimental data from [4].
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3.3.1 Discussion

As we can see from the figures in the previous pages, the cross section with the Ward-

Macek factor produces results that are comparable to the experimental data from [4] for

lower energies, but lags behind in the magnitude of side peaks as the energy increases.

The results of reference [6] are much better in this regard, but in some cases still does

not produce side peaks of the same magnitude as the experimental results (most notably

in the 30 eV case in figure 10). The width of the central peak also becomes wider as

energy increases in the experimental results and the results of [6], whereas the cross

section calculated in this work seems to have a constant width for the central peak, and

as a result is less accurate for higher energies. Note that these cross sections were also

calculated in the work of Zatsarinny and Bartschat [12], and produced similar results

to that of Miller (reference [6]). In the lower three energy figures (Figures 6, 7, and

8) the plane wave approximation is also included. The plane wave approximation uses

undistorted waves to calculate the T-matrix and therefore does not include the effect of

the final waves scattering elastically from the ion. This causes a lack of side peaks in the

plane wave results, which become more apparent at higher energies.
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4 Conclusions and Further Work

There could be several reasons why there is an overall difference in shape between the

results presented here and the results of reference [6]. In this work we used a full non-

local exchange potential that arose from the antisymmetrization of the wave functions,

whereas [6] used a local exchange which is a simpler calculation involving an additional

term in the distortion potential. One would expect the non-local method to be more

accurate, but it seems like the combination of distorted waves with a local potential

might produce a better model of the ionization collision. Other differences between this

work and [6] are the use of an integral equation method to solve for the distorted waves

(as shown in section 2.2.1 and 2.2.2), and to get acceptable behaviour near the origin, a

finite nucleus model was used.

It was also noted in Section 3.2 that the cross sections of the relativistic spin cases

seemed to be the ones that had most of their behaviour away from ninety degrees. This

behaviour away from the central peak in the experimental results from [4] is what differs

most from the calculated results in this work, although it is not unexpected for the
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relativistic results to be small as compared to the non relativistic cases, since the charge

on the nucleus of helium is small.

As a further work, more promising results may be produced at smaller and larger theta

if the inter electron interaction is explicitly included, as opposed to the use of the Ward-

Macek or Gamow factor. Extending this work to heavier atoms would also allow for a more

detailed look into the relativistic effects in these collisions, but the addition of electrons

would increase the amount of exchange terms, and the non zero angular momentum of

the outer shell would lead to extra terms from angular momentum coupling with the free

waves. In order to produce the results in this work, programs were written that calculate

the potentials, distorted waves, T-matrix, and cross sections. These programs can now

be used to examine the use of these methods for other ionizations collisions such as the

asymmetric co-planar configurations.

In conclusion, the results presented in this work were for a non coplanar ionization

collision of a helium target in the case of the outgoing electrons having equal energy.

The distorted waves were used as solutions to the relativistic Dirac equation with a non-

local exchange, and calculated with the integral equation method. Direct and exchange

T-matrix elements were used to calculated the cross sections for individual spin configu-
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rations as well as for the total collision. The triple differential cross section was compared

to the experimental results from reference [4] and the calculations from reference [6], and

gave results comparable to experiment for lower energies, but became less accurate as

energy increased.
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Appendix A: T-Matrix With Asymptotic Correction

From Equation (13) in section 2.1.1, we evaluate the outer integral when r2 > rN using

the asymptotic correction method. The asymptotic expansions in section 2.2.4 can be

written as

y1(r) = Cei(x−ηln(r)) + C∗e−i(x−ηln(r)) (88)

y2(r) = Dei(x−ηln(r)) + D∗e−i(x−ηln(r)) (89)

in the final channel, with x = kr, and

fκ(r) = Eeix
′

+ E∗e−ix
′

(90)

gκ(r) = Feix
′

+ F∗e−ix
′

(91)

in the initial channel, where x
′
= k

′
r, k

′
> k, and (*) denotes complex conjugate in the

65



coefficients C, D, E, and F. Specifically these coefficients are given by

C =
Na

2
(B − iA)yλ(η, x)ei(argΓ(λ+1+iη)−λπ/2−ηln(2k))

+
Nb

2
(B − iA)yλ−1(η, x)ei(argΓ(λ+iη)−(λ−1)π/2−ηln(2k)) (92)

D = −Nc
2

(B − iA)yλ(η, x)ei(argΓ(λ+1+iη)−λπ/2−ηln(2k))

− Nd

2
(B − iA)yλ−1(η, x)ei(argΓ(λ+iη)−(λ−1)π/2−ηln(2k)) (93)

E = − [αCαI(rN) + i(1− αCαJ(rN))]H+
l (kr)/2 (94)

F = −
[
αI(rN) + i(C−1

α − αJ(rN))
]
sκH

+
l̄

(kr)/2 (95)
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Thus the asymptotic part of the T-Matrix in equation (13) can be written as

y1(r)fκ(r) + y2(r)gκ(r)

rλ+1
=

1

rλ+1

{
CEei(x

′
+x−ηln(r)) + C∗Eei(x

′−x+ηln(r))

+ CE∗e−i(x
′−x+ηln(r)) + C∗E∗e−i(x

′
+x−ηln(r))

+ DFei(x
′
+x−ηln(r)) + D∗Fei(x

′−x+ηln(r))

+ DF∗e−i(x
′−x+ηln(r)) + D∗F∗e−i(x

′
+x−ηln(r))

}
, (96)

where the λ in this equation is the summation index as used in section 2.1.1, and the λ

in equations (92) and (93) is the value as used in section 2.2.4. This λ as in equation (96)

can be determined from the triangle inequalities and is equal to la in the direct term, and

lb in the exchange term.

Since the r dependant terms involve only inverse powers of r (other terms become

constant as r → ∞) there are no singularities for r > rN . Therefore we can replace the

integral on the real line by an integral along a line perpendicular to the real axis with

contour integration.

In the first and third lines in the above equation the arguments of the exponentials
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are positive, so we can use a contour integral in the first quadrant of the complex plane,

starting at R > r1 on the real line. This contour consists of the real axis for r ≥ R, part

of the circle at infinity, and the line perpendicular to the real axis given by z = R + iy,

y ≥ 0. Since there are no singularities inside the contour, and the integrand along the

circle at infinity in the first quadrant vanishes exponentially, we can replace the integral

along the real line by the integral along z = R + iy. Specifically;

∫ ∞
R

[
(CE + DF)ei(x

′
+x−ηln(r)) + (C∗E + D∗F)ei(x

′−x+ηln(r))
] dr

rλ+1

= −i
∫ ∞

0

[
(CE + DF)ei(x

′
+x−ηln(r)) + (C∗E + D∗F)ei(x

′−x+ηln(r))
] dy

(R + iy)λ+1
(97)

where r is replaced by R + iy. Similarly the integral of the terms in the second and

fourth lines of the full integrand equation can be replaced by a contour integral in the

fourth quadrant of the complex plane that has the same form.

∫ ∞
R

[
(C∗E∗ + D∗F∗)e−i(x

′
+x−ηln(r)) + (CE∗ + DF∗)e−i(x

′−x+ηln(r))
] dr

rλ+1

= i

∫ ∞
0

[
(C∗E∗ + D∗F∗)e−i(x

′
+x−ηln(r)) + (CE∗ + DF∗)e−i(x

′−x+ηln(r))
] dy

(R− iy)λ+1
(98)
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where r is replaced by R− iy.

The two integrals above (including the factors of i in front) are complex conjugates of

one another. Thus the total integral along the real line is just two times the real integral

in the first quadrant. Since this integral is over the range [0,∞) and has a factor e−(k
′
+k)y,

we use Gauss - Laguerre quadratures to evaluate it.

Consider the term

∫ ∞
R

[
(CE + DF)ei(x

′
+x−ηln(r))

] dy

(R + iy)λ+1
(99)

Using contour integration this can be put into the form

− i
∫ ∞

0

[
C(R +

iz

k + k′
)E(R +

iz

k + k′
) + D(R +

iz

k + k′
)F(R +

iz

k + k′
)

]

× e−iηln(R+ iz

k+k
′ )ei(k+k

′
)R e−z

(R + iz
k+k′

)λ+1

dz

k + k′
(100)

where z = (k + k
′
)y. Note that this is the first of two terms from the contour integral

in the first quadrant (as in equation (97)), and the second term would have z = (k
′−k)y.

Using Gauss-Laguerre quadrature, with zm and wm the Gauss-Laguerre roots and weights,

69



this integral is written as

− iei(k+k
′
)R

k + k′
∑

wmf(zm) (101)

where f(z) is the z-dependant terms in the integral without the e−z which is included

in the Gauss-Laguerre scheme.

Expanding the coefficients C, E, D, and F by writing

C(r) = C1yλ(η, kr) + C2yλ−1(η, kr) (102)

E(r) = E0H
+
l (k

′
r) (103)

with

C1 = Na
(B − iA)

2
ei(argΓ(λ+1+iη)−λπ/2−ηln(2k)) (104)

C2 = Nb
(B − iA)

2
ei(argΓ(λ+iη)−(λ−1)π/2−ηln(2k)) (105)

E0 = −1

2
[αCαI(R) + i(1− αCαJ(R))] (106)
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and similarly

D(r) = D1yλ(η, kr) + D2yλ−1(η, kr) (107)

F(r) = F0H
+
l̄

(k
′
r) (108)

where

D1 = −Nc(B − iA)

2
ei(argΓ(λ+1+iη)−λπ/2−ηln(2k)) (109)

D2 = −Nd(B − iA)

2
ei(argΓ(λ+iη)−(λ−1)π/2−ηln(2k)) (110)

F0 = −sκ
2

[
αI(rN) + i(C−1

α − αJ(rN))
]

(111)

we can write

f(z) =

(
B − iA

2

){[
NaE0H

+
l (k

′
r)−NcF0H

+
l̄

(k
′
r)
]

× ei(argΓ(λ+1+iη)−λπ/2−ηln(2k))yλ(η, kr)

+
[
NbE0H

+
l (k

′
r)−NdF0H

+
l̄

(k
′
r)
]
ei(argΓ(λ+iη)−(λ−1)π/2−ηln(2k))yλ−1(η, kr)

}
e−iηlnr

dz

rλ+1

(112)
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where r = R + iz
k+k′

.
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