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Abstract

Cognitive Programs (CP) specify computational tasks for the executive con-

troller of visual attention. They are built on top of the Selective Tuning

(ST) model of attention and its extension, STAR. Currently, the common

way of specifying CPs is via diagrams, which are neither standardized nor

directly machine-readable. This necessitates tedious and time-consuming

implementation of CPs by hand, which slows research and prevents rapid

experimentation.

This thesis presents the specification and reference implementation of the

Cognitive Program Compiler (CPC). The CPC reads tasks written in the

Cognitive Program Description (CPD) format, based on a novel controlled

natural language called Imperative English (IE). The CPC can then output

executable code in a regular programming language. The reference imple-

mentation is easily extensible, and several output modules are provided.

The CPC output has been evaluated by specifying several real-world psy-

chophysical experiments and comparing the generated code against known

human performance for those experiments.
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Chapter 1

Background

1.1 Introduction and Motivation

The human visual system may exhibit dramatically different behaviours

based on the tasks it is given. A classic example of this is the work of

Yarbus from 1967 [1], in which he conducted experiments involving eye

movement patterns. In one of the experiments, he presented experimental

subjects with an image of Ilya Repin’s painting Unexpected Visitors and is-

sued them various tasks as they looked at the image. While the experimental

subjects were performing the tasks, Yarbus recorded their eye movements.

Figure 1.1 shows some of the resulting scanpaths, with descriptions of the

various instructions in the caption. The scanpaths show that the task had

an immediate effect on where in the image the experimental subjects looked.

The primary goal of this thesis is to develop a novel and useful way of

specifying tasks in the context of the Selective Tuning Attentive Reference

model (STAR) [13], which is built on top of the Selective Tuning (ST) model
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Figure 1.1: Results for Yarbus’s 1967 experiment, reproduced from [1].
All images are 3 minute recordings by the same subject. The tasks are: 1.
Free examination; 2. “Estimate the material circumstances of the family
in the picture”; 3. “Give the ages of the people”; 4. “Surmise what the
family had been doing before the arrival of the ‘unexpected visitor’ ”; 5.
“Remember the clothes worn by the people”; 6. “Remember the position of
the people and objects in the room”; 7. “Estimate how long the ‘unexpected
visitor’ had been away from the family.”

2



of visual attention [14, 15]. STAR provides a computational model of visual

cognition, and includes various elements, such as an attention executive,

memory, task executive and fixation controller.

In the context of STAR, tasks take on the form of Cognitive Programs

(CP) [2]. Cognitive Programs can be thought of as the software for the

executive controller for visual attention, and are formulated as a modern

extension of Visual Routines [16], first proposed by Ullman in 1984.

Currently, the common way of specifying CPs is via diagrams (example

in Figure 1.2), which are not standardized or suitable for machine consump-

tion. As a result, there is no easy way to specify or program CPs so that

they can be used to perform experiments, or run simulations of the human

visual system. To run an experiment in a neural network simulator, such as

TarzaNN [17], one has to hand-code every experiment. This process is un-

wieldy and very time consuming due to the need to create and maintain two

representations of the experiment: one in a diagram language and another

in a programming language, both of which are of significant complexity.

To resolve these issues, this thesis develops a standardized specifica-

tion format for Cognitive Programs called Cognitive Program Descriptions

(CPD). CPDs are written in a subset of natural English and are supple-

mented by code in a regular programming language. They describe ex-

perimental sequences composed of two kinds of instructions: endogenous

instructions which are issued to STAR (the experimental subject), and ex-

ogenous instructions which describe changes external to the experimental

subject, for example which images will be shown to the experimental sub-

ject at what time, as well as management of elements the experimental

3



Figure 1.2: A graphical depiction of a CP discrimination task. Reproduced
from [2].

subject can interact with, such as such as virtual displays and buttons.

The basis of the natural language portion of CPDs is a novel controlled

subset of English called Imperative English (IE), whose simple structure

is designed for issuing commands and stating facts about the world. This

ensures that CPD task descriptions are easy to parse and execute for both

humans and machines. However, in spite of IE’s simple structure, it is a

Turing complete programming language.

A reference implementation of a CPD compiler that can turn CPDs into

machine-executable code is also provided. It is called the Cognitive Program

Compiler (CPC), and it outputs Python code that can be used to drive the

TarzaNN 3 neural network simulator, which is the successor of the original

TarzaNN described in [17], extended to support STAR.

Unfortunately, TarzaNN 3 is – as of April 2017 – still under heavy de-
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velopment, and therefore unable to execute the output of CPC. To ensure

that a suitable evaluation of CPDs is undertaken despite this fact, several

real-world experiments studying visual attention are implemented as CPDs

and the resulting output code discussed. The output code is also executed

via a mockup program that logs the sequence of instructions that has been

issued to TarzaNN.

1.2 Thesis Outline

This thesis is divided into five chapters and an appendix:

• Chapter 1 describes the motivation behind this thesis, and provides

an overview of relevant literature and background.

• Chapter 2 provides the specification of Imperative English, proves

that it is a Turing complete programming language, and provides the

reference implementation of an IE interpreter called Imp.

• Chapter 3 introduces Cognitive Program Descriptions as an exten-

sion of Imperative English suitable for describing task specifications

in the context of STAR, and provides a reference implementation of a

Cognitive Program Compiler.

• Chapter 4 reports the results of empirical evaluation of the Cognitive

Program Compiler output.

• Chapter 5 concludes the thesis with discussion of results and notes

for future work.

5



• Appendix A provides additional implementation detail relevant to

work described in this thesis.

1.3 Literature Review

This brief overview of relevant literature covers STAR, Cognitive Programs,

their history, predecessors and various implementation efforts, as well as

the history and state of various existing paradigms for Natural Language

Interfaces and Natural Language Programming.

1.3.1 STAR Model

In an informal, everyday context, people might consider visual attention

to be something they intuitively understand. They might consider vision

as little more than a light sensor capable of collecting images. A kind of

biological camera that can be pointed at different subjects of interest. This

simplistic view, however, tends to neglect the daunting amount of compu-

tation the human visual system needs to do for even the simplest tasks,

such as finding an object in an image, or following a drawn line with one’s

gaze. This picture is further complicated by capacity limits inherent in the

human visual system, which establish visual attention as a necessity in a

visual system [18]. Tsotsos provides in [15] the definition of visual attention

used throughout this thesis:

“Attention is a set of mechanisms that help tune and control the

search processes inherent in perception and cognition.”

6



The model of visual attention we will focus on is Selective Tuning (ST),

a biologically plausible computational model of visual attention, first pro-

posed by Tsotsos in [18]. Since then, multiple papers have been published

elaborating on its theoretical underpinnings, mechanisms, implementations,

extensions, and extensive experimental support, an overview of which can

be found in [15].

A recent extension of the ST model is the Selective Tuning Attentive

Reference model (STAR) [2], currently under development by the Tsotsos

Lab at York University. STAR was proposed as a way to extend ST to allow

for executive control via Cognitive Programs (Section 1.3.2). The extensions

add proposals for new model components and enhancements to existing ones

to enable visual cognition. The main parts of STAR and their interactions

are shown in Figure 1.3 and further discussed in the following text.

Visual Hierarchy (VH)

The Visual Hierarchy [14, 15] is the “heart” of ST. It is the part of STAR that

takes as input signals from the retina (the photosensitive layer at the back

of the eye), and processes those signals via a hierarchy of visual processing

areas in the brain. The hierarchy takes on the form of a pyramidal lattice,

a kind of graph with exactly one “least” node and exactly one “greatest”

node, where every node is a sheet of neurons. It represents both the ventral

and dorsal streams of visual processing areas in the brain.

7



Figure 1.3: A diagram showing the main parts of STAR and the connec-
tions between them.

Fixation Controller (FC)

There are two ways one can attend to a stimulus in an image: by attending

to a stimulus in one’s field of view without looking at it, called covert at-

tention, and by attending to a stimulus by directly pointing their gaze at it,

called overt attention. The Fixation Controller [19] controls the eye move-

ments that allow one to overtly direct attention. This includes controlling

voluntary eye movements, such as saccades (voluntary jump-like eye move-

ment for moving the retina from one point in the visual field to another),

and smooth pursuit (voluntary eye movements for tracking objects moving

8



in one’s visual field).

Cognitive Programs Memory (CPM)

The Cognitive Programs Memory [2] (referred to as the methods Long Term

Memory (mLTM) in some publications) stores Cognitive Program (CP)

methods. CP methods are further described in Section 1.3.2, but the basic

idea is that they are program outlines that the executive controller for visual

attention can tune with some parameters and then execute. For example,

“perform overt fixation” might be a method that can be tuned with a lo-

cation parameter. Methods in the CPM can be composed into Cognitive

Programs, and new methods could be learned and added to the CPM.

Visual Working Memory (vWM)

The Visual Working Memory [2] provides short term storage for information

needed in executing visual tasks. For example, it stores the last several

fixation locations in the Fixation History Map (FHM), as well as attentional

samples, which are subsets of the Visual Hierarchy that represent stimuli it

has processed. Attentional samples are made available to all components by

the vWM.

Visual Task Executive (vTE)

The Visual Task Executive [2] is the primary focus of this thesis. It consists

of three main components:

• Script Constructor – The Cognitive Program Compiler, in the context

9



of this thesis. The CPC reads task specifications, consults the CPM for

appropriate methods to compose the task out of, and tunes the meth-

ods with parameters extracted from the specification into executable

scripts.

• Script Executor – Deploys the script that the script composer con-

structed to tune vision processes. It executes the script step by step,

sending instructions to appropriate components. It also sends the task

specification to the visual Attention Executive (vAE).

• Script Monitor – Checks every step of the execution for expected re-

sults and suggests changes for script progress when needed.

Visual Attention Executive (vAE)

The Visual Attention Executive [2] receives task parameters from the vTE

and generates control signals for the Visual Hierarchy. It contains the cycle

controller which initiates and controls different stages in the ST process.

Control signals generated by the vAE have a wide variety of effects, from

biasing the Fixation History Map to disengaging attention.

1.3.2 Cognitive Programs

A model of the visual system, such as STAR, can execute visual tasks. These

can be anything from searching for object to tracing lines. In STAR, tasks

are represented as Cognitive Programs (CP), which were first introduced

by Tsotsos & Kruijne in 2014 [2]. Cognitive Programs are themselves a

modern extension of an earlier idea called Visual Routines (VR), introduced

10



by Ullman in 1984 [16].

Visual Routines were developed as a way of processing visual informa-

tion. They are composed of sequences of elementary operations that can be

performed on representations of visual information. In a basic sense, they

are programs that take as input some representation of visual information

and process it to encode properties and relationships between objects. The

most basic kind of operations that VRs can perform are atomic operations.

Ullman does not define the exact set of atomic operations, but he proposes

some candidates, for example shift of focus, defining the next target, memo-

rizing locations, boundary tracing, determining inside/outside relations etc.

VRs can also be composed to create other VRs.

Ullman argues in [16] that there are two main stages to vision. The

first one is a bottom-up creation of a base representation of the visible envi-

ronment, which is the image from the retina that has undergone only basic

processing without any information or feedback from the rest of the visual

system. The second stage uses VRs to perform operations and transfor-

mations on the base representation constructed in the first stage to create

incremental representations. VRs can be subsequently applied to those in-

cremental representations as well.

Important, or frequently used VRs are stored as “skeletons.” They are

partially-completed VRs that need to be parametrized before use. For ex-

ample, a shift-of-focus VR might be stored as a skeleton without a location

to shift to. To use that VR, one would load it out of storage and add

the location as a parameter. Ullman calls this process “assembly.” Novel

or uncommon VRs are composed out of known VRs at runtime and then

11



parametrized. VRs can be applied to both base and incremental represen-

tations.

Ullman lays out the above basics of his system, however, he does not dis-

cuss implementation or exact mechanisms, nor does he provide a prototype.

Since 1984, there have been multiple attempts by other researchers at imple-

menting Visual Routines, but each attempt was based on their own, slightly

different, interpretation of some ambiguous details in [16]. An overview

can be seen in [20], with the majority of implementations treating VRs as

a collection of program fragments that can be composed together to per-

form arbitrary procedures, none of which is considered the “canonical” VR

implementation.

Despite VRs in general being a useful paradigm, a lot has changed re-

garding our understanding of vision and attention since 1984. One of the

most important observations is that a complete base representation con-

taining all information about the visual scene cannot be constructed in a

single feed-forward pass as Ullman assumed, but that vision is a dynamic

process [18, 15, 21, 2]. This means that VR’s stimulus-driven, bottom-up

base representations simply do not have the required complexity to model

all the recurrent processing occurring in the brain.

Cognitive Programs try to modernize Visual Routines with modern vi-

sion science insights to allow them to model the visual system as “a dynamic,

yet general-purpose processor tuned to the task and input of the moment”

[2], instead of just a passively observing module that can answer simple

queries about what it sees. Cognitive Programs themselves can be thought

of as software for STAR’s visual Task Executive.
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The reader might wish to consult Figure 1.4 while reading the following,

as it provides a detailed view of the parts of STAR immediately involved

with Cognitive Programs. Cognitive Programs begin as Cognitive Program

Descriptions (CPD) that are provided to the visual Task Executive (vTE)

as task specifications. The Cognitive Program Compiler (script constructor)

within the vTE then attempts to construct a script out of the CPD. The

CPC uses the CPD to consult the Cognitive Program Memory (CPM) for

what kinds of methods the task could be decomposed to. Methods are simi-

lar to what Ullman calls “skeletons”: they are unparametrized CP outlines.

The methods could be high-level (for example, the discrimination task) or

low-level (for example, disengage attention), and some methods may sub-

sume others since CPs can be composed just like VRs can. The CPC, in

addition to deciding which methods from the CPM are appropriate for the

task at hand, extracts parameters from the task specifications to use to tune

the methods into an executable script. The script is then handed to the

Script Executor and Monitor to execute. The Executor initializes the atten-

tive cycle and sends elements of the task specification required for attentive

tuning to the visual Attention Executive (vAE), and the Monitor super-

vises script execution and waits for the vAE to signal that the completion

conditions have been fulfilled.

As an example of this process, let us consider the task of finding Waldo, a

famous children’s book character [22]. The task consists of finding a cartoon

character of a unique appearance in a single large image of colorful cartoon

characters, and represents a variant of the visual search task. In the context

of Cognitive Programs, the process would proceed as follows:
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Figure 1.4: A more detailed view of the components of STAR that are
important for Cognitive Programs.

1. vTE begins by reading the specification of the task the visual system

needs to perform: “Find Waldo in this image.”

2. CPC consults the CPM for appropriate methods to apply to this task,

for example a discrimination method, a localization method, and a

visual search method.

3. The methods are then tuned with parameters provided to the vTE: for

example, Waldo is wearing a red and white striped shirt, a pattern
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which we can use to tune the visual search method into a script.

4. Scripts are then executed and their execution monitored by the vTE.

The vTE also sets control signals for the rest of the STAR system and

monitors results to determine when the task is complete (when Waldo

has been found).

Currently, the way one would describe an equivalent search task to the

one above is by using a diagram like the one in Figure 1.5. The issue here

is that there is no standard way of specifying these kinds of diagrams, and

they are difficult to translate to executable code one could use to conduct

simulations and experiments. This thesis contributes a way to enable a

natural language specification of a visual task, as well as a way to convert

it into an executable Cognitive Program. For example, the above sentence

“Find Waldo in this image,” would ideally be all the input a system would

need to compose a program that performs a process equivalent to the one

in Figure 1.5.

1.3.3 Natural Language Interfaces

At varying times in history, respected researchers have optimistically and

enthusiastically claimed that we are mere years or decades away from having

a conversant computer program, one that understands human speech, or

even an entirely new species of Machina Sapiens [23]. Unfortunately, most

of the research community’s self-imposed deadlines for such achievements

have thus far been missed [24, 25].
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Figure 1.5: Example of a Visual Search Cognitive Program diagram composed of multiple methods. Reproduced
from [2].
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This optimism was especially strong in the days of early attempts at

natural language understanding, and much of it was based on several suc-

cessful demonstrations of basic natural language processing programs, such

as STUDENT [26] which solved algebra problems given in natural lan-

guage, and ELIZA [3] that simulated a conversation with a psychoanalyst.

In fact, ELIZA was so convincing when it was introduced in 1964, that its

inventor, Joseph Wiezenbaum, had a hard time convincing early users that

ELIZA had no true emotion or understanding of the conversation. In [27], he

relates his astonishment at people’s belief that ELIZA demonstrated a gen-

eral solution to the problem of natural language understanding, and that

sometimes even his statements to the contrary were ignored. Both STU-

DENT and ELIZA worked by matching simple patterns in input text based

on hand-crafted rules, and were only considered convincing by their contem-

porary audiences due to the extremely constrained domains they operated

within and the novelty of such programs.

Another early success was SHRDLU1 built in 1968 by Terry Winograd

[4]. SHRDLU was a simulation of a simple world of 3D geometric shapes

called blocks, with a simulated agent that could interact with the world

and respond to commands issued via a natural language interface. The

vocabulary necessary for these interactions was kept very small, by keeping

the possible content of the world very restricted. Nonetheless, SHRDLU

could answer queries about the block world (“how many blocks are in the

box?”), and perform manipulations (“put the pyramid into the box.”).
1SHRDLU’s peculiar name comes from “etaoin shrdlu”, a phrase resulting from running

one’s fingers down the two leftmost columns of keys on a linotype machine keyboard.
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It can be seen from transcripts of ELIZA and SHRDLU sessions in List-

ings 1.1 and 1.2 why they might be considered by a naïve observer as con-

vincing intelligences, and some might even walk away with the idea that

true artificial intelligence is but a step away in research terms.

Listing 1.1: Excerpt from ELIZA session. Reproduced from [3].
User: I need some help, that much seems certain.
ELIZA: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
User: Perhaps I could learn to get along with my mother.
ELIZA: TELL ME MORE ABOUT YOUR FAMILY
User: My mother takes care of me.
ELIZA: WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU
User: My father.
ELIZA: YOUR FATHER
User: You are like my father in some ways.
ELIZA: WHAT RESEMBLANCE DO YOU SEE
User: You are not very aggressive but I think you don't
↪→ want me to notice that.
ELIZA: WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE
User: You don't argue with me.
ELIZA: WHY DO YOU THINK I DON'T ARGUE WITH YOU
User: You are afraid of me.
ELIZA: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

Listing 1.2: Excerpt from SHRDLU session. Reproduced from [4].
Person: PICK UP A BIG RED BLOCK.
Computer: OK. (does it)
Person: GRASP THE PYRAMID.
Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.
Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE
↪→ HOLDING AND PUT IT INTO THE BOX.
Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS
↪→ TALLER THAN THE ONE I AM HOLDING.
Computer: OK. (does it)
Person: WHAT DOES THE BOX CONTAIN?
Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.
Person: WHAT IS THE PYRAMID SUPPORTED BY?
Computer: THE BOX.
Person: HOW MANY BLOCKS ARE NOT IN THE BOX?
Computer: FOUR OF THEM.
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Person: IS AT LEAST ONE OF THEM NARROWER THAN THE ONE WHICH
↪→ I TOLD YOU TO PICK UP?
Computer: YES, THE RED CUBE.
Person: IS IT SUPPORTED?
Computer: YES, BY THE TABLE.

Unfortunately, despite early successes, enthusiasm, and optimism, natu-

ral language understanding is still an unsolved problem [25]. However, while

English (and other natural languages) cannot be generally understood by a

machine yet, use of constrained natural language interfaces has been suc-

cessful in practice.

One particularly successful domain are Natural Language Interfaces to

Databases (NLIDBs) [28]. Studies have shown that people frequently prefer

interacting with databases via natural language tools to other methods. For

example, Capindale and Crawford showed in 1990 [29] that out of a group

of 19 subjects with varying computer expertise, 72% of users “liked very

much” to enter queries to a database in natural language, and 80% felt

that it was a “far superior” or “somewhat better” method of querying the

database compared to a menu system interface. The study also claims that

NLI is especially suitable in the following cases:

• “for tasks which involve question-answering activities in a domain

whose horizons are limited,”

• “when users are knowledgeable about the task domain and intermit-

tent use inhibits command language training,” and

• “if the natural language system provides sufficient feedback to inform

users about language restrictions.”
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The last point is particularly important. A robust error reporting system

has proven to be vital to the functioning of NLI systems in practice. In

particular, [28] discusses the importance of distinguishing between linguistic

failures (occur when the natural language system is queried using words and

sentences the system is unable to link to concepts) and conceptual failures

(occur when the natural language system is queried for concepts it does not

know of). Limitations of the system need to be apparent to the user to

avoid frustration. One method that Intellect, the NLIDB system used in

the study in [29] uses to ameliorate this issue is via a feature called echo:

Intellect, given a line of input by the user outputs the query interpretation,

allowing the user to learn how to pose clearer queries to the system, reducing

training time to learn the system, and enabling frustration-free learning of

the system’s limits while working with it.

An additional, perhaps slightly counter-intuitive, yet encouraging obser-

vation relating to NLIs in practice is that people who use a system with a

restricted vocabulary are not any slower or less detailed in expressing them-

selves than people who use unrestricted vocabularies (in effect, fully natural

conversational language) [30, 31].

A further note comes from Pane et al. [32], who studied what kind of

language constructs non-programmers use when describing computational

tasks. For our purposes, non-programmers are significant because their ut-

terances come closer to something one would call natural language, as op-

posed to the way programmers might assume a computer’s limitations and

try to work around them. Non-programmers tended to express operations

in terms of sets, as opposed to loops. Consider, for example expressing a
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set of operations as “Peel, slice and eat the apples,” instead of expressing a

loop like “for every apple, peel it, slice it and eat it.”

The first NLIDB system is LUNAR [33], developed by Woods et al.

in 1972 for querying a database of lunar rock samples from then-recent

Apollo 11 mission. A sample LUNAR query is “WHAT IS THE AVERAGE

CONCENTRATION OF ALUMINUM IN HIGH ALKALI ROCKS?”

An example of a modern NLIDB system is PANTO by Wang et al.

[34]. PANTO provides a natural language interface to query an ontology,

a “knowledge base (KB) that includes concepts, relations, instances and

instance relations that together model a domain.” PANTO is able to an-

swer queries like “which is the longest river that flows through the states

neighboring Mississipi.” The way PANTO works is similar to other similar

systems: first, it constructs a parse tree (a hierarchical representation of the

structure of a sentence, where different parts of the sentence are labelled)

from the input text. PANTO uses Stanford’s CoreNLP [35] as an off-the-

shelf parser to generate this tree. Then, PANTO extracts phrases out of the

generated parse tree that are then processed via a pipeline of operations to

map via intermediate representations onto the ontology. If this mapping is

successful, PANTO outputs a SPARQL [36] SELECT statement that can

be used to query the database.

Damljanovic et al. [37] follow a similar approach to PANTO, in develop-

ing FREyA, which also uses CoreNLP and outputs SPARQL queries, but

uses an interesting strategy in the case it fails to find a query mapping to

the ontology: it provides the user with a list of ranked possible interpreta-

tions, and uses the user’s choice for machine learning in order to be able to
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interpret queries better in the future.

NaLIX [38] is a system that generates XQuery [39] statements to query

XML documents. There are three steps to NaLIX: parse tree classification

(where NaLIX matches tokens to the XML structure, and marks tokens it

cannot match), parse tree validation (where NaLIX labels a tree as “in-

valid” if it cannot map the tree onto XQuery), and parse tree translation

(where NaLIX translates the parse tree into XQuery). The authors concede,

however, that it takes users one or two tries to write a query NaLIX can

understand, hence they rely on an feedback messages and an IDE-like GUI

to guide the user.

Several problems arose in the practice of creating NLIDB systems, which

are problems most NLI systems will have to provide a solution to – or at least

a coping strategy. One of them is anaphora resolution (how to match con-

cepts to “it” or “that one”), and the related problem of elliptical sentences

(incomplete, partial sentences that can only be understood in context). A

further issue is that the conjunctive “and” is sometimes used to mean set-

theoretic union and other times intersection. For example, to disambiguate

the sentence “List all students at the university whose GPA is above 3.9 and

below 2.0,” we need to have common-sense knowledge that it is impossible

for a student to have a GPA that is above 3.9 and below 2.0 at the same

time, and that the query therefore calls for a union operation on the set of

students with a GPA greater than 3.9 and the set of students with a GPA

below 2.0. There are numerous other examples of queries that may require

common-sense knowledge to disambiguate.

There are many more applications of NL interfaces, too many to list
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here. From robot control [40, 41] to various voice recognition based per-

sonal assistants and home automation systems (Apple Siri2, Google Assis-

tant3, Microsoft Cortana4, Amazon Alexa5), and web query engines (Wol-

fram Alpha6, Google Search7). Unfortunately, many of these systems are

proprietary, and as a result, not much is published detailing how they work.

However, many of these systems allow for third party extensions. For ex-

ample, one could write a module that allows a personal assistant to respond

to a novel query. We can use the extension developer documentation that

proprietary systems provide to infer the capabilities of proprietary systems.

Consider, for example, Amazon Alexa. To create an Alexa third party ex-

tension, one has to provide two things: a set of input utterance patterns (for

example, “get high tide for City”), and a program that generates a textual

response for Alexa to speech synthesize back to the user based on the input.

This requires developers to predict the exact queries that the user would

make, potentially making the system quite brittle if the user does not know

the exact query pattern that the extension expects. In practice, however, I

assume a technique like a sentence encoder8 may be used to map the user’s

queries to embeddings in a many-dimensional space, and if there exists an

embedding of a template sentence similar enough to the input, assume that

the user meant that template.

After observing in this section that natural language interfaces have been
2http://www.apple.com/ios/siri
3http://assistant.google.com
4http://www.microsoft.com/en-us/mobile/experiences/cortana
5http://developer.amazon.com/alexa
6http://wolframalpha.com
7http://google.com
8for example, the recently successful skip-thought vectors [42].
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used more or less successfully in a variety of domains, a question is bound

to arise in a computer scientist’s mind: could one program computers in

natural language?

1.3.4 Natural Language Programming

Natural Language Programming, in the sense of using a natural language

such as English as a programming language, was first proposed by Jean Sam-

met in 1966 [43]. She suggested that a computer should understand natural

language and have the ability to address ambiguity and other shortcomings

natural language has compared to traditional programming languages. One

of her primary motivators for suggesting this paradigm is that it should

not be necessary to know the inner workings of a computer to program one

to solve problems (Sammet gives the analogy of many people successfully

driving cars while knowing virtually nothing about how they work).

In the 1960’s, when Sammet proposed Natural Language Programming

general systems (systems capable of disambiguating casual general natural

language inputs regardless of domain, and outputting code based on that

input) did not exist. Unfortunately, the quest to produce such systems

has not borne fruit to this day [25]. This is not to say that research has

made no progress since the 1960’s, however, existing systems only work

with restricted input vocabulary, in restricted domains, and often even with

restricted syntax.

One of the first programming languages designed to be similar to natural

language was FLOW-MATIC, developed from 1955 until 1959 [44] by

Grace Hopper, a predecessor to the more famous COBOL [5]. However,
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one can see from Listing 1.3 that such languages, while using some semblance

of English keywords and syntax, can hardly be called natural.

Listing 1.3: Example of COBOL code, reproduced from [5].
IF A = B THEN MOVE X to Y;

OTHERWISE ADD D TO E;
MULTIPLY F BY G.

MOVE H TO J.

Another early example is JOSS (JOHNNIAC Open Shop System) [6],

developed by Shaw in 1964 as an experiment used by members of The RAND

Corporation for small numerical computations. An example of a JOSS ses-

sion in Listing 1.4, and again, we can see that the resemblance to natural

English is fleeting at best.

Listing 1.4: Example of JOSS code, reproduced from [6]. U denotes the

user input, J denotes the JOSS output. Note that the paper predates com-

mon keyboard layouts, and therefore the mid-dot character (·) is used for

multiplication, and * for exponentiation.
U: Type 2+2.
J: 2+2 = 4
U: Set x=3.
U: Type x.
J: x = 3
U: Type x+2, x-2, 2·x, x/2, x*2.
J: x+2 = 5

x-2 = 1
2·x = 6
x/2 = 1.5
x*2 = 9

U: Type [(|x-5|·3+4)·2-15]·3+10.
J: [(|x-5|·3+4)·2-15]·3+10 = 25

The Structured Query Language, more commonly known as SQL,
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was proposed in 1974 [45], and is to this day the most widely used natural

English-like programming language. SQL is used to manage databases in

relational database management systems (RDBMS), a widespread relational

database model used to store information in a structured way. A sample

query written in SQL is provided in Listing 1.5.

Listing 1.5: Example of a SQL query issued to a database containing a

table of table employee records. It lists, in lexicographic order of last name,

the names of all employees that live in Toronto and are older than 50.
SELECT Employee.last_name , Employee.first_name FROM
↪→ Employee WHERE age > 50 ORDERED BY 'last_name ';

NLC, introduced by Ballard and Biermann in 1979 [7] is a prototype

natural language (NL) programming language for interacting with matri-

ces. It resembles natural English more closely than the previously discussed

systems. The NLC language consists of sentences written in the imperative

grammatical mood, the form of verb used in English to express commands

and requests. Several examples of such sentences are provided in Listing 1.6.

The authors made this design decision because they found that users pre-

ferred issuing commands in the imperative grammatical mood, leading to a

significant simplification of the system design: the verb always came first

in a sentence. NLC differentiates between three kinds of knowledge that

a NL programming system should have: linguistic knowledge (which lan-

guage constructs are allowed, and how to resolve ambiguity), domain-specific

knowledge (the set of known domain entities), and computational knowledge

(which computational procedures should be used to execute commands).

The authors further observe that an essential feature of a NL programming
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language is the ability to be extensible both within its domain of application,

and to other domains of application.

Listing 1.6: Example of NLC code, reproduced from [7].
Choose a row in the matrix.
Put the average of the first four entries in that row into
↪→ its last entry.
Double its fifth entry and add that to the last entry of
↪→ that row.
Divide its last entry by 3.
Repeat for the other rows.

Biermann and Ballard go on to perform an interesting study using NLC

in [46]. The study is performed four years after the original paper, and

features a version of NLC which has been extended to the domains of solv-

ing linear equations and gradebook averaging. 23 first year undergraduates

typed a total of 1581 sentences, of which 81% were processed correctly, and

the authors note that “none of the standard concerns about natural language

programming related to vagueness, ambiguity, verbosity or correctness was

a significant problem, although minor difficulties did arise occasionally.”

The minor difficulties they speak of were system failures due to “‘bugs’ or

syntactic oversights which appear amenable to easy repair.”

In the late 80s, the xTalk family of languages arose, so named for Ap-

ple’s HyperTalk language [47]. HyperTalk was intended to be an easy to

use, English-like language for Apple’s HyperCard program [48], an early

commercial excursion into hypermedia that accesses a database via a flexi-

ble user interface metaphor of “cards.” The language itself was based around

an object-oriented paradigm: every object in the HyperCard system inher-

its properties and attributes from objects higher up in the hierarchy. Since
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the introduction of HyperTalk, there have been numerous xTalk dialects,

including AppleScript [49], MetaTalk 9, and LiveCode 10.

Listing 1.7 contains an example of a typical xTalk program, reproduced

from LiveCode developer documentation11. From it, we can see that its

structure is very much like that of a classical procedural programming lan-

guage, with keywords replaced with English words. Even though xTalk’s

verbosity is often touted as an asset that aids understanding, the example

likely is not as intuitive to the average reader as it would be in something

structurally closer to conventional English.

Listing 1.7: Example of a LiveCode program from the LiveCode documen-

tation. It emits an audible beep upon a key press only if the key pressed

corresponds to a number. The lines starting with a double hash sign are

comments.
on keyDown pKey

if pKey is not a number then
## If the parameter is not 0-9
## beep and prevent text entry
beep

else
## Allow text entry by passing the keyDown message
pass keyDown

end if
end keyDown

In 2000, Price et al. developed NaturalJava [50], which they describe

as an interface in natural language for creating, modifying and examining

abstract syntax trees of programs written in the Java programming language
9http://www.metacard.com

10https://livecode.com
11From: http://lessons.livecode.com/m/2592/l/125554-accepting-only-digit-characters-

during-data-entry
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[51]. Throughout a NaturalJava session, a window is displayed with code

resulting from the currently entered set of operations. To process natural

language input, the authors present a three-part pipeline: (1) a system that

processes natural language into case frames (templates with slots in them for

words of a certain type) by keyword matching parts of the natural language

input text to one of the 27 kinds of case frames that might be relevant,

(2) a frame interpreter that uses a decision tree to infer what kinds of edit

operations are being requested by the user, and (3) an abstract syntax tree

manager that takes those edit operations and applies them to Java’s abstract

syntax tree.

The decision tree used in step (2) makes an assumption that every re-

quest contains exactly one action, and that the first verb in the request

determines what kind of action that is. This rule of thumb is consistent

with the observations made by the developers of NLC [7] about humans

prefering to use imperative, verb-first sentences to instruct computers in

English. However, NaturalJava’s syntactic structure is closely coupled with

that of Java constructs, which makes it unsuitable for many other domains,

and requires knowledge of Java constructs to structure input.

In 2005, Liu and Lieberman developed Metafor [52], a system that can

take an input “story” written in natural language and outputs Python code

fragments that represent object definitions and their relationships in the

story. The work heavily leverages the authors’ earlier work on the MontyLin-

gua natural language understanding system [53], which is used as a parser

that converts input text into a verb-subject-object-object (VSOO) form,

and ConceptNet [54], a common-sense knowledge database based on the
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Open Mind project [55]. After the creation of VSOO objects, a “small so-

ciety of semantic recognizers” (presumably hand-crafted) identifies special

structures and objects in the VSOOs using the common-sense database, and

then the VSOO structures are mapped to changes to the output code model.

Note that the structures are not mapped to the output code model, but to

changes to it. One interesting case the authors make is that ambiguity in a

story is a good thing, because it allows Metafor to postpone decisions, and

to continuously re-interpret the internal representation and resulting code

as more of the story is entered and disambiguated.

Unfortunately, interpreting how well Metafor works in practice as a nat-

ural language system is difficult, as the authors only provide an outline of a

study to evaluate Metafor’s capabilities as a natural language programming

system, where most of the evaluation was qualitative, with an examiner who

“would occasionally gently rephrase the volunteer’s sentences if the volun-

teer strayed too far outside Metafor’s syntactic competence,” making it very

difficult to infer whether the system implementation was in fact usable. The

inclusion of the parse tree as part of their GUI “for debugging purposes”

seems to suggest that the system was quite difficult to use in practice.

The authors of Pegasus from 2006 [56], describe “naturalistic program-

ming” (writing computer programs with the help of natural language) as

a new paradigm. It reads a natural language (English and German imple-

mented) and outputs executable program files. It operates on a restricted

grammar, with structures similar to a regular programming language, which

the authors also note as one of its primary weaknesses. Its lexicon is imple-

mented as a hierarchy of Java classes representing “ideas,” sets of percep-
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tions that describe objects in the world, which is an attempt at formalizing

concepts of a common-sense knowledge base.

Inform 7, published in the same year by Nelson [57], is a domain-specific

programming language whose primary purpose is developing interactive fic-

tion games. The Inform7 whitepaper [57], which serves as the design docu-

ment and user manual, argues that in a natural language system, a useful

and detailed error reporting system is essential for a programming language

compiler that is of practical use to real-world users.

Inform 7 extensions are written in Inform 7 as well. However, whereas the

average Inform 7 program reads like natural English, its extensions read like

xTalk languages, as shown in Listing 1.8 12. In general, with NL languages

seen so far, there seems to be a trade-off between the precision of traditional

(low-level) programming languages and the readability of natural language

(higher-level), where structurally more complex and intricate programs are

actually easier to write in lower-level languages.

Listing 1.8: Example of an Inform 7 extension for a spellcasting game

mechanic, from Inform7’s contributed extensions documentation.
Rule for printing a parser error when the latest parser
↪→ error is cannot see any such thing error (this is the
↪→ new cannot see any such thing rule):

let T be indexed text;
let T be the player's command;
if word number 1 in T is "cast":

let W be word number 2 in T;
repeat with N running from 1 to the number of rows in
↪→ the Table of Spells:

let S be the spell in row N of the Table of Spells;
let SS be the printed name of S;
if W is SS:

12From: http://inform7.com/extensions/Jim%20Aikin/Spellcasting/source_1.html
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say "[cant-see-any-such]";
stop the action;

say "[unknown-spell]";
otherwise:

say "[cant-see-any-such]".

A dramatically simplified paradigm for programming is proposed by Lit-

tle and Miller in 2007, in the form of keyword programming in Java [58].

It takes on the form of synthesizing most likely Java expressions based on a

set of keywords and the surrounding program context. While not program-

ming in natural language per se, the practical success of such a simplistic

approach is definitely interesting.

PiE (Programming in Eliza) from 2014 [8], is an interesting adaptation of

the ELIZA system [3] discussed in Section 1.3.3. PiE uses ELIZA to engage

the user in a dialogue to determine what the user wants to do, and uses the

result of such an interactive programming session to generate code in the

LOGO programming language [59], an educational programming language

where a user moves a “turtle” to draw shapes on a screen. An excerpt of

a PiE session can be seen in Listing 1.9. This sort of interactive approach

where the user clarifies ambiguities by answering questions posed by the

system seems to be a common method of dealing with our current limitations

in understanding natural language.

Listing 1.9: Excerpt from a PiE session from [8]. User input begins with

prompt ‘>’.
Thanks for trying PiE. How can I help you?
> ’Lets first draw a line
Okay, what is the length of that line?
> Oh, I mean, to define a function called line
I see, what are the arguments of the function Line?

32



> They are count and n
Okay, I have designed a function called Line with input
↪→ arguments called count and n. Then?
> let the turtle move ahead n steps when the count equals
↪→ to one
Okay, if the Count is 1, turtle will forward N steps
(...)

SmartSynth, released in 2013 [60], is a system for synthesizing automa-

tion scripts for smartphones from a natural language description. Its rough

organization follows two processing stages:

1. Natural Language Processing Stage – Extracts entities from text using

regular expressions based on the fact that every entity known by the

system has a set of common terms associated with it that users might

refer to it by. A bag-of-words model (a commonly used model in

natural language processing that stores words encountered in the text

and their number of occurrences, to form a kind of “fingerprint” of

the text) is used to categorize the input text into components and

some dataflow relations to establish interactions between the generated

components.

2. Program Synthesis Stage – Infers the remaining dataflow relations be-

tween components based on component types, and then constructs

executable scripts.

The authors provide a user study evaluating SmartSynth based on 640

natural language descriptions of 50 tasks collected from smartphone help

forums, where the system produced the intended scripts 90% of the time.
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This study implies that even a restricted, domain-specific language can be

intuitive and easy to use in practice.

Manshadi et al. [61] provide an interesting idea combining programming

by example/destination (PbE/PbD) and natural language programming,

and apply it to simple text editing tasks in spreadsheets. In this technique

there are two inputs: a natural language task description; and a set of

input/output pairs examples that the synthesized code should be able to

produce.

NLCI introduced in 2016 by Landhäußer et al. [62], recognizes the

issue that a lot of natural language programming languages are domain-

specific and difficult to build, maintain, and port to different domains, so

they provide a way to “ontologize” an Application Programming Interface

(API). An API is a set of clearly defined interfaces that software components

can use to communicate with one another. The authors aim to develop

NLCI as a system that would allow one to issue commands to an existing

API in natural language. This approach recognizes the reality that NLP

is restricted to being domain-specific in practice for the time being, but

nonetheless provides a way to make it practical. One downside is that the

ontology generation from an API can only be automated if the API follows a

particular naming convention, and otherwise needs to be created explicitly.

The authors provide two applications as demonstration of this system:

a home automation API and a 3D animation API. They test NLCI on 50

input scripts and observe a recall of 67% and precision of 78%, which they

concede is not acceptable for practical use, but indicate that the approach

is promising. NLCI works by using the ontology to map noun phrases to

34



classes, and roughly verbs to methods. Ambiguous matches are ranked and

the highest-scoring result is selected. Knowledge of synonyms of different

words is provided by WordNet [63], a lexical database of English that groups

words into sets of synonyms, and provides relationships between different

sets of synonyms.

An interesting class of NL programming languages are esoteric NL pro-

gramming languages, which are not intended for serious software develop-

ment, but as a playful test of boundaries of language design. Some of the

more well known esoteric languages based on English are Shakespeare

(2001) [64] and Chef (2005) [65]. Shakespeare takes as input texts that

look like Shakespeare’s plays, and Chef takes as input texts structured to

look like recipes. Programs written in either of these languages do not look

like a program at first glance, and they both interpret innocuous sound-

ing statements as operations on a stack data structure. Nonetheless, they

are both Turing complete languages, which means that they are at least as

powerful as “real” programming languages like Java, Python or C.

Knuth’s literate programming [66] – while not exactly programming in

natural language – is also worth mentioning as a related technique. Liter-

ate programming is not tied to a particular programming or natural lan-

guage. Its documents are regular text that provide an non-executable ex-

planation of a program in natural language, which is interspersed with code

and macro commands. Literate programming documents can be parsed to

generate code executable by a computer, while keeping the input format

self-documenting and easily readable by a human.
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1.3.5 Controlled Natural Languages

As seen from Sections 1.3.3 and 1.3.4, none of the current solutions that use

natural language input use general natural English. So why not embrace

this fact and intentionally construct a constrained subset of English based

on a set of rules?

In fact, this is an established practice, and the resulting languages are

called Controlled Natural Languages (CNL) [67, 68]. Here is an overview of

some examples, together with some brief comments on their suitability for

specifying CPs.

• Attempto Controlled English (ACE) [69]: Designed to be easily

parsed by machines into first order logic statements, it is well suited for

representation of knowledge and relationships, and is used in theorem

provers, software specifications, ontology construction, etc. Unfortu-

nately, ACE was designed primarily with AI knowledge representation

in mind, and therefore is declarative in nature (e.g. “All humans are

mammals; No mammals are reptiles; No humans are reptiles.”), and

therefore unsuitable for CP specification, since there is no natural way

to issue commands and instructions.

• Sowa’s syllogisms [70]: Based on Aristotle’s Syllogisms, restricted

to simple is-a patterns (e.g. “A human is a mammal.”).

• Basic English [71]: This system was first developed in the 1930s,

prior to the development of the modern computer. It is very lightly

constrained and therefore difficult to parse by a machine, but it is still
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over-constrained for our purposes (a sentence like “Look at the red

box,” is not valid in Basic English).

• E-Prime [72]: E-Prime is very similar to regular English, but the verb

“to be” is banned. It is too broad to be easily parsed by a machine.

• Caterpillar Fundamental English (CFE) [73]: CFE does not have

a strict definition, but is instead defined via guidelines such as “use

uniform sentence structures,” and its authors themselves admit its

rules are difficult to enforce.

• FAA Air Traffic Control Phraseology / AirSpeak [74]: A set

of phrase templates used by air traffic controllers. Heavily restricted,

and defined by 300 template phrases selected to be easy to under-

stand in a high-risk context where not all parties to a conversation

are native English speakers. Regular English is allowed to supplement

AirSpeak where no existing phrase template exists. AirSpeak consists

of only Air-Control specific phrases, but its usage proves the surprising

practical usefulness of templated phrases in a restricted domain.

• ASD Simplified Technical English (ASD-STE) [75]: Specified

by 60 broad rules, and is intended for clear communication by humans

more than for computer consumption.

• Standard Language (SLANG) [76]: Developed by the Ford Motor

Company, SLANG is designed to be a machine-checkable language for

instruction manuals. Its grammar is focused exclusively on imperative

mood verbs.
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• SBVR Structured English [77]: Similar to SQL, and is made for

describing business rules, not for commands.

• Drafter Language [78]: Based on filling in blanks in existing phrasal

templates.

• E2V [79]: Focused on specifying facts, similar to ACE.

• Formalized-English (FE) [80]: Focuses on knowledge representa-

tion.

There are many more CNLs in existence ([68] has approximately a hun-

dred listed), many of them domain specific. For the purpose of specifying

CPs, we require several features: the ability to issue commands for the

experimental subject to perform, the ability to control the flow of execu-

tion (via conditional statements and loops), and the ability to state facts or

describe events that are about to happen.

We can see from the above overview that many of the CNLs listed do not

have the ability for specifying commands, and those that do have such ability

lack either control flow statements or the ability to state facts. One might

suggest that a possible approach to providing natural language capability

to CP specifications would be to adapt one of the above CNLs and add the

missing features. Unfortunately, the effort involved in such additions and

adaptation to a new domain is likely to be greater than the effort required

for developing our own custom CNL, which we can design to have exactly

the set of features CPs require and nothing more.
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1.4 Objective of Work

From the literature review, we have seen the major components of the STAR

and the role of Cognitive Programs within it. The purpose of this thesis is

to provide a method for translating task descriptions written in natural lan-

guage into executable Cognitive Program scripts. In the context of STAR,

this will be done by a component of the visual Task Executive called the

Cognitive Program Compiler (CPC) which takes Cognitive Program De-

scriptions (CPDs) as input and composes executable scripts out of methods

stored in the CPM tuned with task-specific parameters. In the context of

TarzaNN 3, the Cognitive Program Compiler is an implementation of a com-

piler that takes CPDs written in natural language annotated with code and

translates them into executable code that TarzaNN 3 can use to execute

visual attention experiments.

The CPD format needs to provide both endogenous information (in-

structions to STAR), and exogenous information (about the environment)

in natural language. The remainder of the literature review spoke about

various natural language interfaces and programming paradigms that we

can study for ideas on how to specify Cognitive Programs in an easy and

convenient – yet rigorous – way using natural language. The optimal route

seems to be to construct a Controlled Natural Language that will have a

simple structure and be unambiguous like a regular programming language,

yet be easy to understand by both humans and machines. This allows us

to:

• enjoy greatly simplified parsing,
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• have a clear mapping between parse tree and ontology,

• allow for extensibility via a single Lexicon that holds both the dictio-

nary and ontology,

• resolve anaphorae and conjunctions via simple procedures, and avoid

the ambiguity plaguing some natural language programming languages,

• lose very little or no expressive power of regular natural language due

to restricted vocabulary and syntax, and

• have an easily implementable error system to help guide the user.

Taking ideas from the discussion of CNLs in Section 1.3.5, we can design

the natural language component of CPDs as a novel CNL called Imperative

English (IE), which is described in Chapter 2. It is simple, unambiguous,

easily understandable by humans, extensible, and specifically tailored for

issuing commands and stating facts about the world. IE is incorporated into

Cognitive Program Descriptions, the CP description format which allows

for complete specification of computational tasks, suitable for parsing and

translation into scripts that can be executed by a visual Task Executive as

part of a simulator of STAR, like TarzaNN [17] in Chapter 3.

Since the TarzaNN 3 implementation is not complete, evaluation will be

based on implementing several real-world visual attention experiments as

CPDs and a discussion of the output code. A mockup program is also pro-

vided that logs the sequence of instructions that would be issued to TarzaNN

3 when executed.
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1.5 Significance and Contributions

When Shimon Ullman first described Visual Routines in 1984 [16], he did

not propose a way of how a VR could be specified. Subsequent work building

on Visual Routines also did not propose or implement any way of specifying

them, and this thesis is poised to resolve this long-standing problem. It will

allow researchers to specify Cognitive Programs in a natural and easy to use

way. It has the potential to enable rapid iteration of experiments via a stan-

dardized high-level system, as opposed to the typically slow progress using

various hand-coded systems. It will also serve as a valuable contribution to

the final implementation of the STAR model in the future.

Furthermore, CPD and IE themselves have the potential to be significant

beyond just the STAR model and Cognitive Programs. CPD can serve

as a general-purpose experiment description format that is unambiguous,

and yet easily understandable by both humans and machines. IE is easy

to use and extensible to arbitrary commands, and therefore suitable for

Natural Language Programming in various domains, as well as facilitating

communication with machines via natural language.
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Chapter 2

Imperative English

2.1 Overview

To construct CPDs, the first thing we need to do is precisely define their

controlled natural language component. Such a language needs to be simple,

unambiguous, easily understandable by humans, yet easy to parse for a

machine, and extensible. It should be able to, at a minimum, serve two

functions: issuing commands and stating facts.

The novel controlled natural language constructed for the purpose of

this thesis is called Imperative English (IE), so named after the imperative

grammatical mood it heavily leverages to issue commands and provide in-

structions. IE is shown in this chapter to be a Turing complete language,

making it at least as powerful as any other programming language.

IE’s design was influenced by an observation from the literature review

that a natural language system with a carefully designed, but restricted,

grammar will often be more functional in a constrained domain than a com-
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plex system that attempts to understand general English using sophisticated

techniques. This is especially true in light of natural language understanding

still being an unsolved problem. For example, relatively simple systems like

ELIZA or Inform 7 which have been explicitly designed to work within the

limitations of their domains have seen more success in the real world than

dramatically more complex systems like Metafor or NCLI which attempt to

be general.

Motivated by that observation, an explicit choice is made not to use

general-purpose NL parsers like CoreNLP, but to impose stricter structure

at the parser level akin to a CNL. That frees us from having to take into

account an imperfect parser that may produce inconsistent part-of-speech

tags for input sentences. It also frees us from having to compute a mapping

between part-of-speech tags and IE concepts, since such a mapping can be

built into the CNL itself.

Constructing IE as one would a traditional programming language also

allows us to leverage an enormous amount of research and engineering ex-

perience in compiler theory to find solutions to a wide variety of problems.

For example, we could create a helpful error reporting system to guide the

user with suggestions in the cases where the user employs ordinary English

constructs in their CPD that do not occur in Imperative English.

However, several rather obvious questions about this approach arise.

How can one ensure that a constrained natural language constructed that

way is general? Would a traditional compiler structure impose restrictions

on the domains and usability of the language? Would it be difficult for a user

that knows conversational English to use IE due to its restricted nature?
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The literature review provides answers to some of those questions. For

example, [30, 31] note that using constrained English does not significantly

impair a person’s expressiveness, as long as they know which structures

are valid. IE aims to define its structure in a handful of simple guidelines

that are easy to follow. As for generality, portability across domains is often

achieved via an ontology that can be built for new domains. To this purpose,

IE proposes the Lexicon: a combination of an ontology and dictionary. To

port IE to an arbitrary new domain, all one would have to do is construct

a new Lexicon.

In this chapter, the grammar of IE is discussed in Section 2.2, the Lexicon

is introduced in Section 2.3, its Turing completeness proved in Section 2.5,

and a reference implementation of an IE interpreter called Imp is presented

in Section 2.6.

2.2 Grammar

Unlike natural English (a language equally suited for poetry and for legal

documents), Imperative English only needs to be general enough to issue

sequences of commands and facts, and does not need to recognize many

other more complicated grammatical structures. This allows us to build

a constrained enough grammar to make the problem of parsing English

manageable.

How will a user be able to tell which sentences are valid IE and which

ones are not? This is an essential prerequisite to making IE practical, as

anything else would very quickly lead to user frustration. To specify IE’s
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core in the simplest terms possible, the following three rules are provided:

1. To issue a command, start the sentence with a verb.

• Example: “Look at the red circle.”

2. To state a fact, start the sentence with an object phrase followed by a

verb.

• Example: “The red circle is in the centre of the screen.”

3. To specify conditions or repetition of actions, start sentences with one

of four control flow keywords: If, When, While, or For.

• Example: “If the square is red, push the button.”

• Example: “When the square turns red, push the button.”

• Example: “While the square is red, hold the button.”

• Example: “For every red circle, push the button.”

The above three rules are all one needs to write mostly-valid IE. The

remainder of this chapter will discuss the specifics of the IE grammar, which

has three levels of organization: Sentences, which are composed of Phrases,

which are composed of Fragments. The remainder of this section covers

those different levels of organization.

2.2.1 Fragments

We begin our overview of IE grammar with its smallest part: the Fragment.

Every word in an IE text is either part of a Fragment or one of a handful
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of keywords. The majority of Fragments correspond to individual words,

such as “red” or “is”, but sometimes they may correspond to multiple words

that form a single indivisible Fragment, such as “Look at”. IE recognizes

four kinds of Fragments: Verbs, Targets, Modifiers, and Relationships. The

kinds of Fragments IE recognizes will vary depending on the domain, and

are defined by the Lexicon (Section 2.3).

Verbs

Verbs correspond to the grammatical part of speech of the same name, which

conveys actions, occurrences or states. They can play one of two roles in a

sentence: Imperative Verbs, or Fact Verbs.

Imperative Verbs are Verbs in the imperative grammatical mood, such

as “look at,” “wait,” or “go.” If they occur in a Sentence, they always occur

at its beginning. Imperative Verbs always specify the kind of action that

should be executed as a result of the IE instruction that contains them.

Fact Verbs are Verbs that do not occur at the beginning of a Sentence.

They describe relationships or states, and are named “Fact” Verbs because

they occur in Sentences that describe the state of the environment or the

imperative subject.

Targets

Targets are a kind of Fragment that represents a grammatical object or

subject in a sentence that Verbs can execute their actions on. Commonly,
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they are nouns or pronouns, such as “square”, “name”, “it”, or “they”. Plain

strings or numbers can also be targets, for example "/tmp/images/image.png",

or 11.5.

Modifiers

Modifiers modify Targets. They can describe various properties, states,

locations, or kinds of Targets. Examples are “red”, “leftmost”, or “eleven”.

Relationships

Relationships are words that have a similar role to prepositions in English.

They allow prepositional phrases that modulate the execution of a Verb or

the properties of a Target. Examples are “with”, “containing”, “to”, or “of”.

2.2.2 Phrases

The next level of hierarchy in the IE grammar are Phrases. Phrases are

groupings of one or more Fragments, and they form the basic units of mean-

ing of which Sentences are composed. There are three kinds of Phrases:

Verb Phrases, Selectors, and Specifiers.

Verb Phrases

Verb Phrases are the simplest of the three kinds of Phrases, as they consist

only of a Verb and an optional auxiliary verb. Auxiliary verbs are not

treated as Fragments, but as keywords due to their limited number and

limited semantic value. Examples of Verb Phrases are “move” and “will

appear”.
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Selectors

Selectors are based on Targets augmented with one or more Modifiers. They

can represent objects in the environment (“leftmost red filled rectangle”) or

the imperative subject itself (“you”). Usually, they evaluate to a set of one or

more items, for example “red rectangle” would be interpreted as referring to

the set of available red rectangles, and the IE interpreter would use context

to decide whether a set or a single element of that set is required.

Specifiers

Specifiers consist of a Relationship and a Selector, and perform a role similar

to prepositional phrases in English. They can apply to Verb Phrases or

Selectors to modify their properties or methods of execution. For example,

the Relationship “with” can be used to modulate a Target with another

Target (“a box with blue sides”), and the Relationship “to” can be used

to provide a Verb with additional information on how it should execute an

action (“Set the counter to zero.”).

2.2.3 Sentences

The highest level of IE grammar organization are Sentences. Sentences may

be composed of Phrases and other Sentences. In that respect, IE Sentences

are similar to the grammatical notion of clauses, however, IE uses the word

“clause” in the context of Facts, and uses “sentence” here instead to avoid

ambiguity.
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Commands

Commands are Sentences that begin with a Verb Phrase in the imperative

mood, and their purpose is to specify actions. They have a Selector, which

is the object to which the imperative Verb applies, and some optional Spec-

ifiers, which describe how the Verb applies to the Selector, or modify the

Selector in some way.

This design is inspired in part by SLANG [76], and in part by interactive

shell command conventions in the UNIX operating system [81]. Take, for

example, the following shell command for compressing the contents of the

directory /home/user/photos into an archive file photos.tar:
tar --create --file photos.tar --verbose /home/user/photos

Shell commands like the above tend to begin with the command name

(Verb-like tar), followed by zero or more flags with or without arguments

(Specifier-like --file photos.tar and --create), and an argument file or

directory (Selector-like /home/user/photos).

As an example of a Command in Imperative English, consider the sen-

tence “Look at the red triangle on the blue square.”. In this sentence:

• “Look at” is the Verb describing the action to be undertaken,

• “the red triangle” is the Selector describing the object of that action,

and

• “on the blue square” is the Specifier applied to the Selector. It consists

of the relationship “on”, and the Selector “the blue square”.
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We can express the grammatical structure of Commands and other parts

of the IE grammar as grammatical rules, such as:
command

: imperative_verb specifier* selector? specifier*
;

The above is an ANTLR [82] grammatical rule that specifies the struc-

ture of a Command. ANTLR is a modern parser generator: a tool that

takes as input a text file containing grammar rules that describe the struc-

ture of a language, and uses that input to generate executable code that can

parse text into a parse tree according to those grammatical rules. ANTLR

grammars are based on the Extended Backus-Naur Form (EBNF) [83], and

in that context the above rule means: a command is a rule matched by an

imperative_verb that is followed by specifier* (“zero or more occur-

rences of a specifier”), which is followed by selector? (“zero or one occur-

rence of a selector”), and another specifier*. Each of imperative_verb,

selector and specifier have their own rules that define their own struc-

ture. The full ANTLR grammar for IE can be seen in Appendix A.

Facts

Facts are the second kind of IE sentence. Facts, similarly to Commands, are

also composed of Selectors, Specifiers and Verb Phrases. Note, however, that

non-imperative mood Verbs are used in Facts. Facts have a dual purpose in

IE:

1. Describe facts and changes in the world that are tautologies, uncon-

ditionally evaluated as true. These Facts are always standalone Sen-
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tences.

• Example: “An image showing five blue rectangles will appear on

the screen.”

2. Logical statements that, when evaluated, result in a boolean value:

true or false. One can think of these as being tested for fact-hood at

evaluation time, returning true if the Fact is a fact, and returning false

if it is not a fact. This kind of Fact is always part of another Sentence,

such as conditional control flow Sentences using If, When and While.

• Example: “If you see a red circle, press the button.”

Let’s analyze the above standalone Fact “An image showing five blue

rectangles will appear on the screen”:

• “An image” is a Selector,

• “showing five blue rectangles” is a Specifier applying to the above

Selector,

• “will appear” is a Verb Phrase containing the auxiliary verb “will”,

and

• “on the screen” is a Specifier applying to the Verb.

Facts consist of Fact Clauses, which can be composed via logical oper-

ations AND and OR, for example “The shape is a rectangle or the shape is

a square.” The logical NOT can be expressed via Modifiers and Verbs, for
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example to negate “the image is blue,” one would say “the image is not

blue,” and to negate “you see a square” one would say “you see no square.”

The basic ANTLR grammar rules governing Facts are:
fact

: factClause AND fact
| factClause OR fact
| factClause
;

factClause
: factClauseLHS factVerb factClauseRHS
;

factClauseLHS
: selector specifier*
;

factClauseRHS
: specifier* selector? specifier*
| modifier
;

In ANTLR, the pipe sign (|) separates alternatives that the rule can

match, so a fact rule could match either factClause AND fact, or factClause

OR fact, or a single factClause. Note the recursive definition, where a part

of the alternative that fact matches can be another fact, to allow for chain-

ing many factClauses together. RHS and LHS stand for “right hand side”

and “left hand side”, respectively.

Control Flow

Control flow statements, in computer science, are statements that can decide

the order in which instructions in a program get executed. This includes

deciding the next instruction to be executed based on a boolean condition,
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or looping: repeating a block of instructions multiple times. IE has four

kinds of Control Flow Sentences: If statements, When statements, While

loops, and For loops. The Böhm-Jacopini theorem, also known as the struc-

tured program theorem [84], shows that If statements and While loops are

sufficient for programming language control flow, however IE also defines

When statements and For loops for convenience of programming and for

the natural kinds of expressions they allow.

If Statements can decide to execute different blocks of instructions based

on a boolean condition. Their basic structure is:
ifStatement

: IF fact instructionBlock (ELSE instructionBlock)?
;

To enable natural expression, both “else” and “otherwise” match the

ELSE rule. The rule instructionBlock matches a list of instructions (Com-

mands, standalone Facts, or Control Flow) chained together by the keyword

“then”. For example:
If you see a red circle,

press the left button, then
press the middle button

else,
press the right button.

Indentation and newline characters have been added to aid readability.

If the Fact “you see a red circle” evaluates to true, then the left and middle

buttons will be pressed, otherwise if the Fact evaluates to false, the right

button will be pressed.
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When Statements have a similar structure to If statements:
whenStatement

: WHEN fact instructionBlock
;

The main difference in the execution of If and When statements is

that When statements wait until the fact is true before executing the

instructionBlock, whereas the If statement will evaluate the fact im-

mediately and make its decision on which instruction block to execute.

While Loops are the first of two kinds of loop that IE recognizes:
whileStatement

: WHILE fact instructionBlock
;

The fact will be evaluated, and if true, the instructionBlock will be

executed once. That procedure will be repeated until the fact evaluates to

false.

For Loops are the second kind of loop in IE. As opposed to While loops,

which are condition-controlled, For loops are collection-controlled: they ex-

ecute the instruction block once for every element of a collection of items.

Their structure is:
forEachStatement

: FOR EACH selector specifier* instructionBlock
;

For example: “For every plate in the stack of plates, wash the plate,

then dry it, then put it into the cupboard.” This statement iterates across

the set of items defined by the Selector and Specifiers “plate in the stack of
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plates”, and the instruction block consisting of the three commands “wash

the plate, then dry it, then put it into the cupboard” is executed once for

every element of the set.

2.3 Lexicon

The Lexicon represents the dictionary and ontology of IE. It consists of a

hierarchy of Fragment entries, where every Fragment is the child of another

Fragment (for example, the Red Fragment might inherit from Color, which

in turn might inherit from Modifier, which inherits from Fragment, which is

the root Fragment). Each Fragment consists of:

• Dictionary Strings – A set of strings that this Fragment matches

in the input text. Different Fragments can share the same dictionary

string, as long as they are different kinds of Fragments (for example,

a Lexicon can contain without conflict both a Target fragment or a

Verb fragment that match the string “push”, and both a Target and

a Modifier that match the string “fixation”). This set may be empty

for an abstract Fragment, such as Color.

• Fragments Accepted – A set of the kinds of Fragments that this

Fragment accepts. For example, Verbs would have a list of Targets

or Relationships they recognize and can perform actions with. Due to

the hierarchical organization of the Lexicon, one does not need to be

exhaustive in creating entries for each individual Fragment. Instead

of saying that a Square Target can accept the Modifiers Red, Blue,
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Green, Violet etc., one can simply state that Square accepts Color,

the parent Fragment of all colours.

• Implementation Code – Code that specifies what kind of output

this Fragment instance should generate in response to Fragments it

has accepted.

To illustrate how a Lexicon would be consulted when parsing a phrase,

let us take a look at how the IE sentence “Look at the red box without

blinking” would be decomposed:

• “Look at” is a Verb that accepts:

– “box” – a Target that accepts the “red” Modifier, with which it

forms the Selector “the red box”.

– “without” – a Relationship that accepts the “blinking” Target,

with which it forms the “without blinking” Specifier.

The Lexicon allows us to check IE sentences for semantic meaning (in

effect, this allows an IE interpreter to act as if it had common-sense knowl-

edge), and to generate code from those sentences. New entries can be added

to the Lexicon at any time without having to change the rest of the system.

A question that may be bothering the reader is: How does one maintain a

huge interrelated Lexicon of terms? Does maintaining this structure become

problematic as it grows? May it introduce inconsistencies?

The answer is, unfortunately, that there is no simple solution. We are,

after all, trying to represent knowledge in language, and projects tackling
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a similar organization of meaning or knowledge, like WordNet [63] (117,000

sets of synonyms), or Open Mind Common Sense [55] (over a million facts

from 15,000 contributors), are fairly huge. Fortunately, most natural lan-

guage applications today are domain-specific, and implementing Lexicons

on the order of a hundred entries should be sufficient for many applications

(including the purposes of this thesis), and should not be a daunting task.

Most kinds of inconsistencies that a Lexicon might have can be statically

checked. For example, the non-intersection of dictionary string sets among

Fragments of the same kind, or ensuring the acceptance of Fragments in

accord with IE grammar rules. New additions to the Lexicon should not

change the way old Lexicon entries behave as long as the acceptance lists of

the old entries have not changed.

2.4 Interpretation

After outlining the IE grammar and how the Lexicon works, a couple of

interpretation questions remain undiscussed. The following is a list of some

of the more obvious ones, as well as strategies an IE interpreter should

employ to address them.

Vagueness – It is not realistic to expect a natural language system user

to exhaustively specify every possible parameter, so at some stage (like in

human communication), a certain amount of guesswork is necessary and

warranted. Lexicon entries generally should not count on accepting non-

essential Lexicon entries, and should instead assume some sensible set of
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defaults that the user can then override with more exact specification. For

example, the entry “Bake a cake.” should not throw an error because the

user did not specify what kind of cake they want, but a reasonable default

(e.g. chocolate cake) should be assumed.

Anaphora – A way to resolve pronouns and references is necessary for

resolving Targets like “it” or “them”, or elliptical sentences that require

context for resolution. Anaphora can only validly occur within Selectors

in IE, so a practical resolution strategy is to walk the parse tree backwards

(relative to the usual depth-first traversal order), and find the first previously

mentioned Selector that can be accepted by the current context. If such a

Selector cannot be found, an informative error should be thrown.

Conjunction – The conjunctive “and” is sometimes used to mean (in

set-theoretic terms) union and other times intersection, as discussed in the

context of NLIDB in the literature review. IE resolves this by providing an

And Relationship that matches strings “together with” and “along with,”

and a separate keyword “and” that connects Fact Clauses and performs

the logical AND operation on the evaluation results of those clauses. The

interpretation of the And Relationship should be resolved at the level of

Lexicon implementation code for applicable entries. Any Target Fragment

has the default behaviour of unioning the set it represents with the set of

the Target accepted by the And Relationship. This default behaviour can

be overridden by Target Fragments that require intersection. Only a small

part of the Lexicon should have to override this Relationship interpretation.
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Specifier attachment – Is a specific Relationship Fragment accepted by

a Verb or a Selector? Which one? Specifier attachment is easy to resolve

via the Lexicon: the Specifier attaches to the closest Verb or Selector to its

left in the parse tree that can accept it.

Unknown Syntax – How should an IE interpreter handle the user pro-

viding uninterpretable input text? As seen in the literature review, for

a domain-specific or constrained natural language interface, a detailed and

helpful error reporting system is essential to provide feedback and a frustration-

free learning opportunity to the user. The system should provide gentle

guidance based on what it can infer about the uninterpretable input. Some

error reporting strategies are discussed in Section 2.6.3.

2.5 Turing completeness

Turing completeness (also called computational universality) is an extremely

desirable property for a programming language to have [85]. This section

demonstrates that IE is a Turing complete language.

For a programming language to be Turing complete (TC) means that it

can be used to write any algorithm, and therefore used to perform any pos-

sible computation. A way of stating this is that the programming language

can simulate a Turing machine [86].

A Turing machine is an abstract theoretical construct invented by Alan

Turing in 1936 as a mathematical model of computation. Turing machines

manipulate symbols on an infinite strip of tape, using a tape head to read
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or write one symbol at a time, and a finite set of instructions to an imag-

ined “computer” who in Turing’s original formulation is not a mechanical

contraption, but an obedient human who executes instructions depending

on the symbol under the tape head and the current state. Turing goes on

to hypothesize that such a machine can compute any calculable function1,

which implies that it can execute any algorithm, making it a universal model

of computation.

The primary goal of Turing in constructing this machine (which he called

an “automatic machine”, or “a-machine”) was to provide an answer to

Hilbert’s Entscheidungsproblem [88], which asked whether there exist an

algorithm that can prove or disprove a given logic statement based on a set

of axioms. Turing shows that the answer to that question is no, based on his

proof of undecideability of the halting problem: one can not build a Turing

machine that can answer the question of whether another Turing machine

will finish running (halt) or run forever.

This section shows that Imperative English is a Turing complete lan-

guage, but we should immediately note one caveat: no particular implemen-

tation of any computer programming language can be shown to be truly

Turing complete. This is because the formulation of a Turing Machine as-

sumes infinite memory, which is not strictly true in the real world, if for

no other reason than there being a limited amount of matter and space in

the known universe to make memory elements out of. This fact, however, is

usually only of theoretical concern.
1This hypothesis is also known as the Church-Turing thesis, as Church independently

developed a similar formalism of equivalent power in [87].
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Likewise, most computational facilities we take for granted today are not

necessary for a Turing Machine to function as a universal computation de-

vice. For example, input-output facilities are unnecessary for computation.

In a way, input is the starting state of the tape and output is the state of

the tape when the halting symbol is printed on the tape.

In practice, it is very hard to write a non-Turing complete programming

language (famously, some implementations of SQL are not Turing complete,

while others are [89], many of the latter group without explicit intention on

part of their designers). In fact, IE is in a good position to be assumed to

be Turing complete, due to the results of the Structured Program Theorem

[84], which implies that a programming language capable of sequential ex-

ecution of instructions (a block of code), some sort of selection mechanism

(if-statement), and a looping construct (while-loop) will likely be Turing

complete. One could also provide an alternate argument that the underly-

ing language of implementation for Fragments in the Lexicon – for example,

Java – is Turing complete, and that since Fragments are allowed to execute

arbitrary code, Java’s Turing completeness is sufficient for us to implement

a Turing complete IE program via Turing complete Fragments.

IE has all those things, however, one should note that we still require a

proof before being able to say that IE is Turing complete. So we proceed as

follows.

We need to show that for every possible computation that a Turing

Machine can perform, there exists a corresponding IE program that, when

executed, performs the same computation. In effect, this means that we

could use IE to simulate a Turing Machine, and compute any algorithm
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using IE. Nothing is said of efficiency of the computation, just that it can

be done.

To make this job easier, we’ll try to simplify the simulation. One way to

do that is to find a simple system that has been proven to be Turing complete

and attempt to simulate that system. There are numerous such systems, for

example the Rule 110 automaton [90], or Corrado Böhm’s P ′′ language [91].

We select the Minsky Machine (MM) as our target, a kind of counter machine

introduced by Marvin Minsky in 1967 under the name Program Computer

[85]. The Minsky Machine is known to be Turing complete, and features:

• Five registers, each of which can hold an unbounded number greater

than or equal to zero.

• A set of three instructions that operate on those registers:

– 0 – set a register to 0, e.g. a0,

– ' – add 1 to a register, e.g. a′,

– - – subtract 1 or transfer if already 0, e.g. a−(n), where n is

the instruction to jump to.

The Minsky Machine also assumes that instructions are executed in order

(taking into account the jump instruction), and that, consistent with Turing

Machines, there is a halt state.

Minsky proves in [85] the existence of many other counter machines, the

smallest of which has as little as one counter and two instructions. How-

ever, these machines impose some complex restrictions (notably, the use of
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Table 2.1: Mapping from Minsky Machine commands to Imperative En-
glish commands.

MM IE Description

a0
Set register labelled a to 0, then
increment the register labelled “pc”. Sets register a to 0.

a′
Increment register labelled a, then
increment the register labelled “pc”. Increments register a.

a−(n)

If value of register labelled a is 0,
set the register labelled “pc” to n,
else decrement register labelled a, then
increment the register labelled “pc”.

Jump to instruction n iff
register a is zero,
otherwise decrement it.

Gödel encodings for counter values), which would make the proof unneces-

sarily more complicated, when compared to the more “ordinary” and easily

understandable version described above.

To prove that IE is Turing complete, we show that for all possible Minsky

Machine programs, there exists an equivalent IE program. In other words,

we show that Minsky Machines are IE-complete. We begin by showing for

every Minsky Machine command the equivalent IE command in Table 2.1.

One important thing to note is that while Table 2.1 translates MM’s

jump instruction into valid IE, this is not the entirety of the generated pro-

gram. The correct translation of the jump instruction necessitates some

additional machinery. The generated instructions are embedded in a tem-

plate program containing a while loop and a program counter variable to

account for the fact that IE uses if-statements and while-loops, whereas MM

only uses jump instructions for control flow. Luckily, the structured program

theorem [84] proves that one can trivially flatten if-conditionals and loops
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into jump statements, and expand jump statements into if-conditionals and

loops. The result is ugly, but guaranteed to work, and can be seen in List-

ing 2.1, showing the translation of a short MM program of three commands

30, 3′, 3−(1) to IE. The variable “pc” is the program counter.

Listing 2.1: Translation of a short MM program of three commands 30, 3′,

3−(1) to an IE program.
Set the register labelled "pc" to 0.

While 1 is 1,
if the value of register labelled "pc" is 0,

# 30

set register labelled 3 to 0, then
increment the register labelled "pc";

else if the value of register labelled "pc" is 1,
# 3′

increment the register labelled 3, then
increment the register labelled "pc";

else if the value of the register labelled "pc" is 2,
# 3−(1)
if value of register labelled 3 is 0,

set the register labelled "pc" to 1,
else,

decrement the register labelled 3, then
increment the register labelled "pc";

else if the value of the register labelled "pc" is 3,
return 0.

For IE programs constructed according to the above to work, the Frag-

ments used have to be implemented in the Lexicon in a particular way:

• Register – Target that represents a counter with an integer value,

accepts Relationship “labelled” to select a specific counter out of the

ones in memory.

• Value – Target that accepts Relationship “of.”
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• Integer – Target that holds numbers.

• Increment/Decrement – Verb that accepts a Register and generates

code to increment or decrement its integer value by one.

• Set – Verb that accepts a Register and a Relationship “to,” and sets

the Register to the Integer accepted by the Relationship.

• Is – Verb that returns a boolean value representing the equivalence of

the Targets on its left hand side and right hand side.

• Labelled – Relationship that accepts an Integer.

• To – Relationship that accepts an Integer.

• Of – Relationship that accepts a Register.

• Return – Verb that accepts an Integer return value and terminates the

execution of the IE program when called.

This procedure allows us to convert any MM program to an IE program

by translating individual instructions according to Table 2.1, and embedding

them in a template like in Listing 2.1, with the loop expanded to accom-

modate the number of instructions in the MM program. Thereby, we have

shown that IE is Turing complete.

2.6 Implementation

“In the computer field, the moment of truth is a running pro-

gram; all else is prophecy.” – Herbert Simon
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This thesis, in addition to defining IE, provides a reference implemen-

tation of an IE interpreter called Imp that can execute Imperative English

programs. A sample Lexicon is also provided. An overview of Imp’s imple-

mentation follows.

Imp is implemented in the Java programming language [51], and its Lex-

icon outputs code in Python [92]. Java was chosen because it is a portable,

statically typed language with extensive library support. Python was chosen

as the output language because it is dynamically typed, and thus forgiving

to write and easy to read, as well as widely used in the scientific community.

2.6.1 Lexicon

Imperative English is designed with extensibility as a first-order concern.

This is because even though the Imp reference implementation provides a

core set of Fragment implementations, these cannot hope to cover everything

an Imp user might potentially want to do. Therefore, for IE to be of any

practical use, a user must be able to provide their own entries to the Lexicon.

The question arises of how one should structure the Lexicon implementa-

tion. Fragment definitions should be available at every stage of the compiler,

so one wise design decision would be to build the Lexicon as completely sep-

arate from the compiler implementation: no Fragments should be built into

the compiler itself. Another good idea would be to keep all the information

about a single Fragment in the Lexicon (the set of strings it matches, the

set of Fragments it accepts, how it generates code) inside a single file.

The Lexicon is implemented as a hierarchy of Java classes. Java is an

object oriented language, and in that context classes are code templates for
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creating objects, each of which can have fields containing data and methods

that describe procedures one can execute on the objects. Java classes may

inherit from one another. For example, a class Red might inherit from the

class Color, which in turn might inherit from the class Appearance. This

greatly reduces the amount of repetition in code, and we can heavily leverage

this hierarchical nature of Java classes in implementing Fragments. In our

case, every Fragment will be its own Java class. That allows, for example, a

Target to accept a Colour, instead of implementing the acceptance of each

one of its children separately.

Fragments are implemented in Java instead of IE because specifying

low-level detail in a high-level language tends to be cumbersome (consider

the example of Inform 7 extensions written in Inform 7 [57] discussed in

the literature review). An added benefit to using Java is the extensive

library support it provides. This means that if one would like to write

a novel IE Verb, for example “Download”, as in “Download all pdfs from

“http://jtl.lassonde.yorku.ca”,” one would have at their disposal existing

Java libraries that know how to search websites and download files from

them, a task which would be a lot harder to accomplish in IE on its own.

Imp puts some restrictions on the structure of Lexicon entries. For ex-

ample, Targets are assumed by the rest of the Lexicon implementation to

always return code that evaluates to a collection. There is no simple way

to ensure this at Lexicon-compile time, but it is anticipated by the system:

failure to do so would result in non-functioning code.

The standard Lexicon included with Imp includes 53 Fragments, most

of them suitable for common automation tasks (e.g. Download and Extract
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Verbs, File and Directory Targets), and the remainder relevant to the Turing

completeness program in Section 2.5. A list of implemented Fragments and

their relationships is in Appendix A. The basic structure of a Fragment class

is:

• void accept(Fragment s) throws FragmentAcceptanceException

– Validates and accepts a given Fragment or throws an Exception.

• String[] dict

– An array of strings that this Fragment should match.

• String generate()

– Generates code based on the Fragment implementation and ac-

cepted Fragments.

• String generateHeader()

– Generates imports and other top-of-file code.

The basic Fragment types (Target, Modifier, Verb and Relationship)

inherit directly from Fragment. Every Lexicon implementation should con-

tain these Fragment types, and all other Fragments in the Lexicon should

inherit from these basic Fragment types or their children. So to implement

a new Target Fragment, one would have to create a new Java class that

inherits from Target and implement the above methods and fields: the ac-

ceptor method, the dictionary of strings this Fragment should match, and
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the two code generation functions. Everything else is a matter of the devel-

oper’s imagination, and one is free to leverage as little or as much of Java

functionality to implement their Fragments as one wants.

2.6.2 Compiler Stages

Compilers are usually structured in stages. This enables one to replace or

make improvements to parts of the compiler without having to modify all of

it. It also imposes structure on the compiler pipeline, making development

and debugging easier. Figure 2.1 contains an overview of Imp’s compiler

stages. Its pipeline begins with a lexing that generates a stream of tokens

from the input text. These will correspond to Lexicon strings, keywords and

punctuation. Next is the parsing step, which assembles a parse tree out of

those tokens based on the rules in the IE grammar. A semantic analysis step

enforces semantic structure and detects errors, followed by the generation

of an intermediate representation that one can use to generate executable

output code. An optional final step can execute the compiled code as it

is being generated. The Lexicon is independent from this pipeline, but

consulted at virtually every stage.

Lexing and Parsing

The first step of the compiler is achieved by a lexer-parser generated via the

ANTLR v4 parser generator [82]. ANTLR was selected among other parser

generators because of its modern design that uses a single grammar file to

generate both a lexer and a parser. It also provides convenient facilities

for traversing parse trees using different programming languages. These
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Figure 2.1: Overview of Imp’s compilation stages.

facilities come in the form of Listeners and Visitor classes, which are common

patterns for “walking” along a tree data structure while executing commands

based on one’s location in the tree and context.

The lexer-parser generated by ANTLR lexes the input to produce tokens,

and then parses the tokens to produce a parse tree. An example of a parse

tree resulting from this procedure can be seen in Figure 2.2.

For the lexing step that recognizes individual words as different kinds

of tokens, the ANTLR grammar is augmented by the Lexicon. This allows

the lexer to dynamically load the Fragment Java classes at runtime using

reflection [93] and build a dictionary datastructure that it can consult to

infer which Fragment tokens match which words. If an unknown word is

encountered, an error message is thrown (Section 2.6.3).
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Figure 2.2: Parse tree for an IE If-then-else statement.

Semantic Analysis

The main purpose of the Semantic Analysis stage is to ensure that the parse

tree is semantically correct. One can imagine numerous syntactically cor-

rect IE statements that would semantically be inexecutable nonsense (e.g.

“Push the three four background with any rectangle.”). This is done by im-

plementing several Listener classes that will traverse the parse tree searching

for errors, for example:

• Fragment attachment: For every Fragment in the sentence, ensure that

it is accepted by one other Fragment in the sentence, or the Sentence

itself.

• Anaphora resolution: Ensure all anaphora instances are resolvable to

Targets.
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Figure 2.3: Example of how a validated parse tree of an IE Command is
transformed into an intermediate representation tree.

The necessary details for ensuring correct Fragment attachments are

encapsulated within the implementation of the accept method of Fragments

in the Lexicon.

Intermediate Representation

After verifying that the parse tree is semantically correct, an intermediate

representation is constructed. The intermediate representation is composed

of Fragment and Sentence objects, and it is a tree data structure created

based on acceptances established during the semantic analysis stage. An

example can be seen in Figure 2.3.

Code Generation

The Code Generation stage traverses the top-level Sentence objects, and

calls their generate methods, which will call the generate methods of the

Sentences and Fragments they contain, which will in turn call the ones of
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their Sentences and Fragments and so on, recursively. Every Sentence or

Fragment then decides how to compose the code returned by the Fragments

it accepted, and passes on the result to the Fragment or Sentence that ac-

cepted it. The output of this process is a Python script in the case of Imp,

but all one needs to do to generate output in different programming lan-

guages is replace the generatemethods of the Lexicon objects and Sentences

with ones in a different programming language.

2.6.3 Error Reporting

An important fact that needs to be recognized is that new IE users might

get frustrated when writing English sentences that Imp cannot interpret

because they are not valid IE. Therefore, a robust error reporting system is

required. It should provide guidance to the user via helpful error messages

that contain suggestions on how to correct the error in a straightforward

way. There are several classes of errors this kind of system needs to be able

to handle:

• Dictionary Errors – A class of errors that arises when the user

attempts to use a word unknown to Imp, a word whose string is

not matched by an entry in the Lexicon. This can be due to

one of two reasons: the word represents an unimplemented con-

cept absent from the Lexicon (an instance of a conceptual failure

[28]), or it is an unexpected synonym to a known word (a lin-

guistic failure). The former case cannot be helped except by ex-

tending the Lexicon, but the latter case is handled by querying
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WordNet [63] for synonyms to the unknown word, and if a syn-

onym is in the Imp Dictionary, suggesting the known synonym to

the user. An example error message for this case looks something

like: Unknown verb `press' in phrase `press the button'. Do

you mean one of the following: `push', `click'?

• Syntactic Errors – A class of errors where the user writes a

grammatical structure that is not part of IE. This generally leads

to a parsing failure, and the error messages given to the user try to

refer back to one of the three rules discussed at the beginning of this

chapter when suggesting the next step for correction, for example: I

do not understand the phrase `Wait until a square appears

on the screen.' Please start Facts with a Selector, and

Commands with a Verb.

• Semantic Errors – For example, unclear pronoun references and

other errors where the semantic meaning is difficult to discern. This

class of errors are handled via messages like: I do not understand

what `it' references in the line `A square and a circle

will appear. Click on it.' Do you mean the `square' or

the `circle'?

2.7 Summary

This chapter has defined Imperative English, a novel Controlled Natural

language for issuing commands and stating facts that can be used for writing
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programs in natural language. Imperative English is simple, unambiguous

and easy for humans to understand, yet easy for machines to parse. It is

readily extensible via the a Lexicon that contains known words and concepts.

This chapter also described Imp, the reference implementation of Imper-

ative English, and its implementation of a common Lexicon of 53 Fragments.

Imperative English was shown to be Turing complete, and thus, capable

of universal computation and equal in power to traditional programming

languages.
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Chapter 3

Cognitive Program

Descriptions

3.1 Overview

This chapter extends Imperative English developed in Chapter 2 to cre-

ate the Cognitive Program Description language (CPD). CPD is a Cogni-

tive Program-specific extension to IE, designed to be a human readable,

high-level task description language that can be compiled into executable

Cognitive Programs, while remaining flexible enough to allow for arbitrary

extension to new paradigms that might arise in future research of STAR.

Sammet advocated in [43] for natural language programming, but noted

that she has no desire to type mathematical formulae in English, preferring

to write them in a standard mathematical notation. Similarly, CPD gives

its users the ability to express some ideas as code instead of writing pure

IE.
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In the context of STAR, CPDs represent task specifications that the vi-

sual Task Executive can compile and run (see Figure 3.1). In the context

of neural network simulators, like TarzaNN [17], CPDs describe sequences

of events that are to be simulated. To specify an entire experiment, CPDs

distinguish between endogenous instructions that are issued to the experi-

mental subject, and exogenous instructions issued to the “experimental rig”

(everything in an experiment that is not the experimental subject, for ex-

ample displays and buttons).

Strictly speaking, only the endogenous instructions form part of the Cog-

nitive Program task specification, but in order to run experiments, addi-

tional information is required about the environment, and that information

is provided in a CPD by the exogenous instructions.

A reference implementation of a CPD compiler is also presented, and is

called the Cognitive Program Compiler (CPC). It reads a CPD and outputs

Python code that can be used to run experiments using TarzaNN 3, the

successor of the original TarzaNN neural network simulator.

3.2 Structure

CPDs have a dual purpose of issuing both endogenous instructions for the

experimental subject (which can be thought of as the CP task specification),

and exogenous instructions that control the experimental rig. In TarzaNN 3,

the “experimental subject” is a simulation of the STAR model. The “exper-

imental rig” is defined as a simulation of all parts of an experiment that are

not the experimental subject: the computer and display that generate vi-
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Figure 3.1: Overview of how CPDs fit into STAR.

78



sual stimuli for the experimental subject to look at, the keyboard or joystick

that they provide responses with, as well as various other equipment, such

as speakers that can sound auditory feedback. A sample CPD showcasing

some of these features can be seen in Listing 3.1.

Listing 3.1: Example Cognitive Program Description of the Egly and

Driver 1994 experiment [9].
{%

self.button = self.rig.buttons['LMB']
%}

[%
self.rig.display_image("img/intertrial.png")
self.rig.wait(500)

%]

A fixation cross ("img/fixation.png") along with two
↪→ rectangles will appear on the screen. Look at the
↪→ fixation cross. A cue ("img/cue.png") will appear (1000)
↪→ , then it will disappear (100). Please do not look away
↪→ when it does.

A filled square ("img/target.png") will appear (200) on the
↪→ screen.

[%
self.button.listen(2000)

%]

When you see the square, press the left mouse button.
↪→ Please respond as quickly as possible , as the response
↪→ latency will be recorded , but it is important to
↪→ minimize the number of errors.

[%
rt = self.button.wait().result().time
self.save_result(rt)

%]

The first thing one notices are Code Blocks surrounded by {% %} and [%
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%] that are placed in between IE paragraphs. These exogenous instructions

that are intended for execution by the the experimental rig, not the vTE.

Their purpose is to set up the experimental environment to provide stimuli

and record responses from the experimental participant. There are two kinds

of code blocks:

• Setup Blocks – A block of code that gets executed only once, usually

contains setup code for the experimental rig. Delimited by {% %}.

• Code Blocks – A block of code that gets executed at every run of the

trial the CPD describes to control the experimental rig. Delimited by

[% %].

Code blocks also allow CPDs to provide a way to implement new experi-

mental rig features of arbitrary complexity. Chapter 4 contains an example

of a juice dispenser being integrated into a CPD. Support for such hardware

is essential for CPD’s primary audience of vision researchers, who will pre-

sumably be continuously devising unpredictably novel experiments. Note

that, even though the code in the blocks of the example Listing is Python,

CPDs do not put limits on which programming languages their code blocks

may contain. This decision only depends on the compiler or interpreter that

uses CPDs. The Cognitive Program Compiler, discussed in Section 3.4, uses

Python.

The second new feature are Code Annotations. They are the snippets of

code or parameters in brackets that can be used to annotate IE Fragments

and provide them with additional information. For example, when using an

“image” Target, one could annotate it with the path of that image so that

80



the Target Fragment knows which image to load. Other examples could be

exact delay durations or calls to external classes to dynamically generate

visual stimuli for the experiment. The Fragment implementation in the

Lexicon specifies if the Fragment accepts annotations or not.

The last, and least interesting, new feature of CPDs are Please State-

ments. Please statements are nothing but comments in disguise, and they do

not have to consist of valid Fragments in the Lexicon. They are ignored by

the compiler and are defined as an arbitrary string beginning with “Please”

and ending with a period. They are only intended to offer additional in-

struction or clarification to a human reader in a way that does not seem

conspicuous in the context of the rest of the CPD. Please Statements do not

result in any output code when processed by the compiler – if one wishes to

express an idea that should result in code, one should express it as part of

a regular IE statement.

An overview of which parts of a CPD are endogenous and which are

exogenous is provided in Table 3.1. Commands and Control Flow form the

endogenous part of a CPD, since they are used to specify the procedure

that the experimental subject or STAR should follow. All code blocks and

annotations are purely exogenous, and control the experimental rig. One can

use this code to provide the experimental rig with instructions, while keeping

them secret from the experimental subject. Facts are an interesting case, as

they specify changes that the rig should perform, but that the experimental

subject should be aware of and anticipate. This is why Facts can generate

both endogenous and exogenous instructions.

One might observe that the self-documenting interweaving of English
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Table 3.1: Different parts of CPD, by whether they describe exogenous or
endogenous influences.

Endogenous Exogenous Both

• Commands
• Control Flow

• Setup Blocks
• Code Blocks
• Code Annotations

• Facts

with code in CPDs has a similar effect on a reader as a program written

in the tradition of Knuth’s Literate Programming [66], discussed in the

literature review. An additional observation is that CPDs are in fact Turing

complete, since for a language to be Turing complete, it is sufficient for any

subset of it to be Turing complete. The rationale for this is that one would

only use that subset of the language in a proof of Turing completeness, so

additional features of the language are irrelevant. In the case of CPD, there

are two such subsets: Python code ([94] provides a Python evaluator for

lambda calculus, which is known to be Turing complete) and IE (shown to

be Turing complete in Section 2.5).

3.3 Translation

How can the visual Task Executive (vTE) interpret a CPD like the one in

Listing 3.1 and use it to construct an executable Cognitive Program script?

As discussed in Section 1.3.2, in STAR the task specification is analyzed

by the vTE to select relevant methods stored in the Cognitive Programs

Memory (CPM), and to extract parameters it can use to tune the methods

into executable scripts. As an example, consider the analysis of the IE

sentence “When you see a square, press the button,” in Figure 3.2. It shows
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Figure 3.2: Overview of how CPDs are converted into CP scripts. First,
methods and parameters are extracted, and then the methods are composed
and tuned with parameters to create executable scripts.

the extraction of appropriate methods and parameters out of the CPD,

and their assembly into a script. The resulting Python code is shown in

Listing 3.2.

As a rule of thumb, Verb Fragment implementations decide what kinds

of methods are required for the task being described and Targets and Re-

lationships decide what kind of parameters should be generated to tune

those methods into scripts. The CPD’s Imperative English component uses

a STAR-specific Lexicon, which is aware of the methods contained in the

CPM.

Abid’s Master’s thesis [95] – developed concurrently with this work –

deals with the definition and implementation of neural primitives essential

for defining the CP methods available in the CPM. A list of the methods

stored in the CPM and used in this thesis is available in Section 4.2. Most

of them are defined by Abid’s work, with a minority of additional methods

for interacting with the environment specified by this thesis, for example,
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motor commands to press buttons.

After tuning CP methods with parameters, CPC generates Python code,

like the code shown in Listing 3.2. Note that in the Listing, a single Verb

“see” actually evaluates to the composition of two methods (detection and

localization), as well as some control flow code to compose the two methods.

Section 3.4.4 discusses how this generated code interacts with TarzaNN 3.

Listing 3.2: Script created by parsing the CPD sentence “When you see a

square, press the button.” VH stands for visual hierarchy, and vae for visual

Attention Executive.
# When you see a square , press the button.
detection1 = self.vae.VH.detection({'shape': 'square'})
if detection1:

self.vae.motor.press_button('LMB')
else:

localization1 = self.vae.VH.localization({'shape': '
↪→ square'})
if localization1:

self.vae.motor.press_button('LMB')

This covers the translation of the endogenous parts of a CPD. Translation

of exogenous parts is less interesting: Non-IE parts of CPDs (for example

setup blocks, code blocks, and code annotations), are simply injected into

the output code based on their position in the CPD.

3.4 Implementation

The Cognitive Program Compiler (CPC) is the reference implementation

of a CPD compiler. It is based on Imp (described in Section 2.6), with

which it shares the basic compiler architecture and extension mechanism.
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However, due to the many features CPD has that IE does not, additional

compiler features are implemented, as well as new Sentence objects and a

new Lexicon. An overview of the changes follows.

3.4.1 Compiler Stages

CPC’s architecture can be seen in Figure 3.3, and we can see that it is similar

overall to the Imp architecture in Figure 2.1, the most significant difference

between the two being CPC’s addition of multiple output streams.

Lexing and Parsing

Lexing and parsing is done via code generated by an ANTLR lexer-parser,

whose grammar is listed in Appendix A. The grammar is very similar to the

IE grammar discussed in Chapter 2 that drives Imp’s lexing and parsing, but

with extensions to accommodate CPD features like code blocks, annotations

and Please statements. The Lexicon is consulted for dictionary entries in

exactly the same way as well.

Semantic Analysis

Semantic Analysis traverses and verifies the parse tree generated by the

lexer-parser, enforcing a variety of rules to ensure that it indeed represents

a valid CPD. This includes consulting the Lexicon for correct attachment

of Fragments, enforcing the existence of exactly zero or one setup blocks,

enforcing that all code annotations given to Fragments are relevant, and a

variety of other rules.
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Figure 3.3: Overview of CPC compiler stages.
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For each class of errors, an error checker Listener is implemented, and

each Listener traverses the parse tree to verify its rules are being enforced

by the CPD, or to emit error messages if they are not.

Intermediate Representation

Given a semantically correct parse tree, we can construct an intermediate

representation of the CPD. Imp’s Sentence objects are reused without mod-

ification in CPC, with two new ones added to represent Setup Blocks and

Code Blocks. Code Annotations are treated as a special Fragment object.

The implementation of Code Block Sentences is fairly straightforward, as

they are simple containers for the text string of the code they hold. The in-

termediate representation tree can then be traversed by the code generation

stage to produce output code.

Code Generation

The code generation stage traverses the topmost Sentences in the interme-

diate representation, queries them to generate code, and uses the results to

populate a Template. The Template is scaffolding for a Python class that

defines the layout of the output file that CPC will generate. Templates are

convenient because they reduce the amount of boilerplate code that needs to

be generated, as well as allowing for some flexibility, for example generating

Python class files instead of simple Python scripts.

Figure 3.3 shows that CPC has three different Code Generation stages

that allow for a wide variety of outputs by combining different parts of the

intermediate representation. Section 3.4.3 discusses each of the three output
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modules.

3.4.2 Lexicon

The CPC provides a STAR-specific Lexicon that contains Fragments use-

ful for describing CPs in the context of STAR and TarzaNN. Targets and

Modifiers that describe various kinds of visual stimuli (e.g. Square, Colour,

Cross), and objects in the experimental rig (e.g. Display, Button) are pro-

vided. Imperative Verbs define actions the experimental subject can under-

take, including visual tasks (e.g. LookAt, Find) and non-visual ones (e.g.

Push, Say).

The Verb implementations provide a link between the CPD’s text and

the methods available in the CPM. The Fragments that those Verbs accept

are interpreted as parameters to the methods the Verbs will generate.

The set of available CPM methods in TarzaNN 3 are defined in tn3cpc,

a Python interface to TarzaNN 3 developed as part of this thesis. This

interface is discussed in more detail in Section 3.4.4. The interface calls the

TarzaNN implementation of CPM methods developed in [95].

Details of the CPC Lexicon hierarchy can be seen in Appendix A.

3.4.3 Output

The modular design of CPC allows us to generate a variety of outputs simply

by swapping out the code generation stage. The following three kinds of

output have been implemented so far:

• TarzaNN 3 Program
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• Human Readable Text

• Experimental Rig Program

Each of these outputs works by generating code based on the interme-

diate representation, and injecting that code into a different Template. A

brief overview of each follows.

TarzaNN 3 Program

The first kind of output CPC can generate is a Python module that controls

a TarzaNN 3 simulation of STAR. TarzaNN 3 is a modern redevelopment

of the original TarzaNN neural network simulator [17] that will implement

a simulation of all the parts of STAR, allowing researchers to conduct sim-

ulations of psychophysical experiments in TarzaNN 3. An example of CPC

output that has been generated from the Egly experiment CPD in Listing 3.1

can be seen in Listing 3.3.

Listing 3.3: TarzaNN 3 code generated from Egly & Driver 1994 experi-

ment in Listing 3.1 to drive TarzaNN 3.
from cpctn3.runners import TN3Runner

class egly1994simple(TN3Runner):
def __init__(self):

super().__init__()

self.button = self.rig.buttons['LMB']

def run_trial(self):
self.rig.display_image("img/intertrial.png")
self.rig.wait(500)

# A fixation cross ("img/fixation.png") along with two
↪→ rectangles will appear on the screen.
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self.vae.VH.prime({'shape': 'cross', 'kind': 'fixation'
↪→ , 'union': {'shape': 'rectangle', 'count': 'two'}})
handle1 = self.rig.display_image("img/fixation.png")

# Look at the fixation cross.
localization1 = self.vae.VH.localization({'shape': '
↪→ cross', 'kind': 'fixation'})
self.vae.FC.setFHMBias(localization1)

# A cue ("img/cue.png") will appear (1000), then it
↪→ will disappear (100).
self.rig.wait(1000)
handle2 = self.rig.display_image("img/cue.png")
self.rig.wait(100)
self.rig.remove_image(handle2)

handle3 = self.vae.VH.getAS()
self.vae.VH.prime(handle3)

# A filled square ("img/target.png") will appear (200)
↪→ on the screen.
self.vae.VH.prime({'shape': 'square', 'appearance': '
↪→ filled'})
self.rig.wait(200)
handle4 = self.rig.display_image("img/target.png")

self.button.listen(2000)

# When you see the square , press the left mouse button.
def handle5():

detection1 = self.vae.VH.detection({'shape': 'square'
↪→ })
if detection1.result():

self.vae.motor.press_button('LMB')
else:

localization2 = self.vae.VH.localization({'shape':
↪→ 'square'})
if localization2.result():

self.vae.motor.press_button('LMB')
self.vae.executor.submit(handle5)

rt = self.button.wait().result().time
self.save_result(rt)

if __name__ == "__main__":
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er = egly1994simple()
er.run()

This code is created by injecting code generated from the intermediate

representation into a Template object that represents a Python class inher-

iting from TN3Runner. TN3Runner provides an interface to different parts

of TarzaNN, in particular: STAR (via self.vae), and the experimental rig

(via self.rig). The TN3Runner parent class handles most of the initial-

ization and default setup, such as how many blocks of trials and trials per

block the experimental run should consist of.

Note that self.rig and self.vae have to be able to operate in parallel

and execute commands at the same time. An example for why this is necces-

sary is the call to self.rig.wait, which should only pause the execution for

the experimental rig portion of TarzaNN, but not for STAR. Operating in a

multi-threaded way allows the rig to wait while STAR continues executing.

The mechanism used to achieve this is an asynchronous interface built into

Python 3 called Futures1. The return of every method in self.rig and

self.vae is a Future object, and self.rig and self.vae each contain its

own set of execution queues that resolve method calls one by one.

The Future object is a placeholder for the result of a computation. This

allows a method to return a Future object before it has computed the result

that the Future object represents, and then proceed to compute the result

in the background. When the result has been computed, it will be provided

to the Future object, from where it can be read via its result() method. If

the result() method is called before the result is ready, execution is paused
1https://docs.python.org/3.5/library/concurrent.futures.html
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until the result is computed.

The great advantage of this system is that the CPD executes virtually

instantly, and builds a network of interconnected Futures that the rig and

vAE have to resolve one at a time in parallel by working through their

queues of method calls. When correctly implemented, there is no way for

one of them to stall the other (also known as deadlock) due to the CPD

waiting for a result, because the only thing the CPD does is populate their

task queues. This is not to say that the two task queues cannot depend on

one another: for example, the rig might be waiting for the vAE to initiate a

button press, or the vAE might be waiting for the rig to display an image.

In those cases, the waiting is intentional and desired.

However, this means that the generated CPD code should avoid reading

the results of Futures, lest it stall the execution. In cases where this is

necessary (for example a Fragment generating code that makes a decision

based on the result of a Future), a Fragment needs to read Futures inside a

function that is then provided as a whole to a task queue for execution.

Human Readable Text

The second, and simplest of the three output modules, is the Human Read-

able Text module. It simply strips out all the code annotations from the

input text to leave behind Imperative English sentences and Please state-

ments, as shown in Listing 3.4.

Listing 3.4: Human Readable Text generated from Egly & Driver 1994

experiment in Listing 3.1 to drive TarzaNN 3.
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A fixation cross along with two rectangles will appear on
↪→ the screen. Look at the fixation cross. A cue will
↪→ appear, then it will disappear. Please do not look away
↪→ when it does.

A filled square will appear on the screen.

When you see the square, press the left mouse button.
↪→ Please respond as quickly as possible , as the response
↪→ latency will be recorded , but it is important to
↪→ minimize the number of errors.

This output can be provided to human experimental participants as ex-

periment instructions. Note the usefulness of Please statements in provid-

ing additional information to the human that might be useless to a system

like TarzaNN, for example “Please respond as quickly as possible,” which

is something TarzaNN will do by design, but a human might not without

being explicitly told to prioritize short response times. Of course, if the

contents of the Please statement are something that TarzaNN should take

into account (for example, if TarzaNN indeed had an option to prioritize

short response times over quality of response), one should express it as part

of an ordinary IE statement, potentially as a Specifier such as “prioritizing

speed” that would inform a Verb’s execution.

Experimental Rig Program

The last CPC output module is based on the following observation: Since

CPC can generate TarzaNN 3 code which drives both STAR and the exper-

imental rig, could we take just the experimental rig code, and generate a

program to drive a real-world experimental rig, one for running experiments

on humans?
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The answer to that question is yes, enabling CPC to offer functionality

similar to experimental builders such as Psychtoolbox [96] and OpenSesame

[97]. Listing 3.5 shows a program generated from the CPD in Listing 3.1.

Note, however, that the CPD used here has been modified to use an external

image generator instead of relying on filpaths to images (can see modifica-

tions in comments in Listing 3.5), as well as to record the participant’s id

and save results to a named file.

Listing 3.5: Experimental Rig program generated from a modified CPD

of the Egly & Driver 1994 experiment in Listing 3.1 to drive a physical

experimental rig.
from cpctn3.runners import ExperimentRunner

class egly1994(ExperimentRunner):
def __init__(self):

super().__init__()

from eglyig import EglyImageGenerator
self.ig = EglyImageGenerator()
self.button = self.rig.buttons['LMB']
initials = raw_input("Participant Initials?")
self.results_filename = "results_{}.csv".format(
↪→ initials)

def run_trial(self):
# Reset the button and display inter -trial image.
self.button.clear()
self.rig.display_image("img/intertrial.png")
self.rig.wait(500)

trial = self.ig.next_trial()
condition_number = trial["condition_number"]
fixation_image = trial["fixation"]
cue_image = trial["cue"]
target_image = trial["target"]

# A fixation cross , and two rectangles (fixation_image)
↪→ will appear on the screen.
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handle1 = self.rig.display_image(fixation_image)

# A cue (cue_image) will appear (1000), then it will
↪→ disappear (100).
self.rig.wait(1000)
handle2 = self.rig.display_image(cue_image)
self.rig.wait(100)
self.rig.remove_image(handle2)

# A filled square (target_image) will appear (200) on
↪→ the screen.
self.rig.wait(200)
handle3 = self.rig.display_image(target_image)

self.button.listen(2000)

rt = self.button.wait().time
if rt < 150:

self.rig.beep(500)
self.save_result("{}, {}\n".format(condition_number , rt
↪→ ))

if __name__ == "__main__":
er = egly1994()
er.run()

Note that the Experimental Rig Program inherits from a different base

class, ExperimentRunner, where self.rig refers to an implementation of

the experimental rig in the PyGame library [98], which controls physical

displays, buttons and speakers. When run, this Python code will display

stimuli full-screen, and record user responses into a file.

3.4.4 TarzaNN 3 CPC Interface

TarzaNN 3 needs to know how to interact with the Python classes generated

by CPC. For this, an interface needs to be implemented, such as a Python

package that TN3Runner can call to control TarzaNN. For this purpose, the
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Figure 3.4: Overview of how the cpctn3 package interacts with TarzaNN
3.

Python package cpctn3 is implemented. It contains three modules with

simple interfaces, vae, runner, and rig. Their relationships are shown in

Figure 3.4.

The vae module represents the vAE in the context of mapping TarzaNN

3 components to STAR. It controls the attentional cycle, translates task

parameters into control signals, determines attentional samples etc. It al-

lows access to various TarzaNN components, like the Visual Hierarchy or

Fixation Controller, via interfaces vae.VH and vae.FC. However, since the

development of TarzaNN 3 has not progressed yet to the point where a sim-
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ulation of STAR can be run, most CPC output that invokes vae will not

execute as anticipated. To get around that temporary hurdle, and still be

able to provide an evaluation of CPC in Chapter 4, calls to vae go to a

TarzaNN 3 mockup that outputs log files of calls to show that the correct

sequence of commands is executed by CPC output.

The runner module contains the TN3Runner class, which is the parent

class from which all CPC output generated by the TarzaNN 3 output module

inherits. It takes care of initializing a TarzaNN instance and setting defaults

for a TarzaNN experiment.

The rig is an interface to the parts of TarzaNN that represent the ex-

perimental rig. It controls which visual stimuli are displayed to the visual

system simulation, as well as buttons and other means STAR has of inter-

acting with the system.

3.5 Summary

This chapter presented the specification of Cognitive Program Descriptions

(CPD), a novel format for Cognitive Program task specifications in the

context of the STAR model. CPDs and their reference implementation

compiler, CPC, provide a way to write CP task specifications in natural

language. This allows CPDs to be human readable, yet flexible enough to

allow for arbitrary extension facilitating future research in the STAR model.

An interface for performing experiments with TarzaNN called tn3cpc is

also provided, which allows CPC output to control the execution of TarzaNN

3 simulations.
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Chapter 4

Empirical Evaluation

4.1 Overview

This chapter provides some evidence for the soundness and correctness of

CPC output. Since CPC implementation has progressed more quickly than

the implementation of TarzaNN 3, as of April 2017 TarzaNN 3 does not

have all the components necessary to execute CPC output programs. So

to persuade the reader that the correct sequence of commands is generated

by CPC, output code is provided, as well as a mockup TarzaNN 3 interface

which can approximate the duration of TarzaNN events generated by the

execution of the CPC output and produce a log file with the sequence of

operations it performed.

Section 4.2 shows examples of CPDs exercising STAR methods contained

in the CPM, as well as the code generated by CPC from those examples,

to demonstrate that the methods selected by the compiler are reasonable

choices.
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Section 4.3 shows CPDs for several published visual attention experi-

ments, and provides some commentary and evaluation of the output code.

Section 4.4 compares CPDs to real-world experiment instructions. In

particular, an instruction text for a psychology experiment written by a

researcher unfamiliar with CPDs is converted into a real CPD.

4.2 CPM Methods

The CPM holds all methods that are available to the vTE to compose Cogni-

tive Programs out of. In the case of CPC and TarzaNN 3, the set of methods

available in the CPC is defined by Abid’s Master’s thesis [95], and supple-

mented with some additional methods for interacting with the world. Abid’s

thesis uses definitions of recognition tasks in experimental paradigms pro-

vided by Macmillan and Creelman in [99]. This section demonstrates that

all those methods are easy to invoke via standard CPD constructs. Table 4.1

lists high-level methods in the CPM used by the CPC. Note that, while these

methods are composed of lower-level methods and CPC uses the higher-level

ones listed, nothing is barring the Lexicon from using lower-level methods,

for example VH.liftSuppressiveSurround or vTE.getcFOA. These meth-

ods could be used by the Verb implementations in the Lexicon to any level

of granularity.

An additional thing to note is that this list of CPM contents is in no

way complete, and that many obvious methods are missing. Most notably,

methods for interacting with memory are not implemented.

The following sections discuss the methods in Table 4.1, in addition to
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Table 4.1: Listing of methods contained in the CPM that are used by
CPC’s Lexicon.

Recognition task
methods in [95]

Fixation Controller
methods Motor methods

• VH.Prime
• VH.Discrimination
• VH.Detection
• VH.Recognition
• VH.Identification
• VH.Localization

• FC.SetFHMBias
• motor.Click
• motor.Press
• motor.Say

providing CPD and output code listings.

4.2.1 Recognition Methods

VH.Prime

Priming prepares the Visual Hierarchy (VH) for input: it biases the VH

to be more selective for task-relevant features, objects, and locations by

suppressing task irrelevant ones. Therefore, priming can be spatial, where

the VH is primed for a location, or featural, where the VH is primed for

features or an object.

An example of featural priming:
A red square will appear.

and the generated code:
self.vae.VH.prime({'shape': 'square', 'color': 'red'})

An example of spatial priming:
A stimulus will appear on the left side of the screen.
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the generated code:
self.vae.VH.prime({'location': 'left'})

Note that there exists an alternative to endogenous spatial priming

shown in the above example. In a real experiment, one is more likely to

use cueing as a mechanism for specifying spatial priming. This is done sim-

ply by informing the experimental subject that a cue will appear on the

screen, and then displaying the cue stimulus. The experimental subject’s

Visual Hierarchy will respond to this by processing the stimulus, attending

to it, deriving an attentional sample, and priming itself with that attentional

sample, while disengaging attention and applying object-based inhibition of

return to previous stimuli. An example of this is:
A cue ("img/cue.png") will appear (1000), then it will
↪→ disappear (100).

Since the above statement is an IE Fact, not a Command, it features

annotations for the benefit of the experimental rig, and both endogenous

(self.vae) and exogenous (self.rig) instructions are generated:
self.rig.wait(1000)
handle1 = self.rig.display_image("img/cue.png")
self.rig.wait(100)
self.rig.remove_image(handle1)

handle2 = self.vae.VH.getAS()
self.vae.VH.prime(handle2)

VH.Discrimination

In the Discrimination task, the experimental subject is expected to differen-

tiate between two kinds of stimuli. They may be asked to identify a stimulus
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as belonging to one of two classes, one of which may or may not be noise.

In the case where one class is noise, the task is called Detection, and in

the case where neither class is noise, the task is called Recognition.

VH.Detection

Detection is a special case of Discrimination where one of the classes is

noise (null). This is equivalent to a situation where one class is noise, and

the other is signal and noise. An experimental subject may be asked to say

whether or not an instance of an item is present in the display. For example:
If you see a red square, press the button.

detection1 = self.vae.VH.detection({'shape': 'square', '
↪→ color': 'red'})
if detection1:

self.vae.motor.press_button('LMB')

VH.Recognition

Recognition is a kind of Discrimination where neither of the two classes is

noise. For example:
Wait until you see a square.
If the square is red, press "z", else if the square is blue
↪→ , press "m".

Keyboard keys “z” and “m” are a common choice for providing responses

in psychology experiments because they are located at extreme ends of the

bottom row of a QWERTY keyboard, allowing the experimental subject to

place an index finger on each key.
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# Wait until you see a square.
detection1 = None
while not detection1:

detection1 = self.vae.VH.detection({'shape': 'square'})

# If the square is red, press "z", else if the square is
↪→ blue, press "m".
if detection1.matchToFeature({'color': 'red'}):

self.rig.keyboard.press("z")
else:

if detection1.matchToFeature({'color': 'blue'}):
self.rig.keyboard.press("m")

The definite article allows us to identify that the square we should com-

pare in the condition “the square is red” had already been referenced, and

that we should use that reference in the code that follows. The object re-

sulting from the detection task called detection1 is an Attentional Sample,

which we can use to ask questions about the stimulus that had been detected.

VH.Identification

Identification is similar to the Discrimination task, but it allows for multiple

classes: one stimulus, from a set of more than two, is presented on each trial

and needs to be assigned a class label.
Wait until you see a circle.
If the circle is blue, press "b", else if the circle is red
↪→ , press "r", else if the circle is green, press "g".

# Wait until you see a circle.
detection1 = None
while not detection1:

detection1 = self.vae.VH.detection({'shape': 'circle'})

# If the circle is blue, press "b", else if the circle is
↪→ red, press "r", else if the circle is green , press "g".
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if detection1.matchToFeature({'color': 'blue'}):
self.rig.keyboard.press("b")

else:
if detection1.matchToFeature({'color': 'red'}):

self.rig.keyboard.press("r")
else:

if detection1.matchToFeature({'color': 'green'})
self.rig.keyboard.press("g")

The awkward “else: if” is used in the output code instead of the more

pythonic “elif” because IE’s grammar structures a chain of if-then-else state-

ments as a chain of nested if-then-else statements, each of which generates its

own code. This could be avoided by collapsing the nested if-then-else chain

into a single Sentence during the intermediate representation construction

stage of the compiler.

VH.Localization

In Localization, the task is to return the location of a stimulus. In STAR

terms, an Attentional Sample (AS) [19] is returned by the Localization

method. The AS can then be used as a parameter to the FC, motor system,

spatial priming etc.
Click on the green square.

# Click on the green square.
localization1 = self.vae.VH.localization({'shape': 'square'
↪→ , 'color': 'green'})
self.rig.mouse.click(localization1)

The localization task may also be invoked if a detection takes a long

time, as the experimental subject will start to search for stimuli they cannot

detect. In that case, a sentence like:
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When you see a green square, press the button.

will get translated as:
detection1 = self.vae.VH.detection({'shape': 'square', '
↪→ color': 'green'})
if detection1.result():

self.vae.motor.press_button('LMB')
else:

localization1 = self.vae.VH.localization({'shape': '
↪→ square', 'color': 'green'})
if localization1.result():

self.vae.motor.press_button('LMB')

4.2.2 Fixation Controller Methods

FC.SetFHMBias

The Fixation History Map (FHM) is a part of the Fixation Controller that

represents the 2D visual space. It is larger than the visual field and combines

locations of recent fixations with task specific biases. This method allows

us to set a bias in the FHM to explicitly influence the Fixation Controller’s

next eye movement. This method takes a location as a parameter.
Look at the fixation cross.

location1 = self.vae.VH.localization({'shape': 'cross', '
↪→ kind': 'fixation'})
self.vae.FC.setFHMBias(location1)

4.2.3 Motor Methods

The experimental subject needs to have some means of communicating re-

sponses based on the results of the computations they perform. Therefore,
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at least some rudimentary methods to control the motor system need to be

implemented. Examples for these methods have been given in Section 4.2.1,

so they will not be repeated here.

motor.Click

This method simulates a mouse click, and returns the location of the click

as a response. Note that this method is not implemented to any biologically

faithful level of detail. It takes in a location as a parameter, and when run as

a script, an event is emitted with information about a click on that location.

Anything else, like matching visual stimuli to motor actions, would be far

out of scope of this thesis.

motor.Press

This method simulates the press of a previously defined button or keyboard

key, allowing the experimental rig to log the timing of the button press.

motor.Say

Simulates the experimental subject providing verbal feedback. Verbalization

is even more complex than clicking and pushing buttons, so the implemen-

tation of this method simply outputs a string.
Find the square.
Say the colour of the square.

# Find the square.
localization1 = self.vae.VH.localization({'shape': 'square'
↪→ })

# Say the colour of the square.
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self.vae.motor.say(localization1.getColour())

4.3 Visual Attention Experiments

After exploring what kinds of methods are available to us, let us try to

recreate some visual attention experiments in CPD form and examine the

generated code.

4.3.1 Egly & Driver 1994

The Egly & Driver 1994 experiment [9], used throughout this thesis as a

running example of a CPD, was originally performed to examine how spa-

tial location and the perception of an object impact visual attention, in

particular how response times change relative to valid and invalid atten-

tional cueing. The CPD for the experiment is in Listing 3.1, the generated

code for TarzaNN is in Listing 3.3, and the log file from the mockup simu-

lator executing the TarzaNN code is in Listing 4.1. Figure 4.1 contains an

illustration of the experimental sequence for the experiment.

Listing 4.1: Log file generated by mockup simulator using code generated

from the CPD in Listing 3.1 of the Egly & Driver 1994 experiment [9].
[00000 ms] RIG: Displaying image 'img/intertrial.png'.
[00000 ms] VH: Priming for {'shape': 'cross', 'kind': '
↪→ fixation', 'union ': {'count ': 'two', 'shape': 'rectangle
↪→ '}}.
[00000 ms] RIG: Waiting for 500 ms.
[00134 ms] VH: Localization for {'shape': 'cross', '
↪→ kind': 'fixation '}.
[00388 ms] VH: Localization found {'shape': 'cross', '
↪→ kind': 'fixation '}.
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Figure 4.1: Experimental sequence for Egly & Driver 1994 experiment.

[00389 ms] FC: Setting FHM bias for location (127, 127)
↪→ .
[00501 ms] RIG: Displaying image 'img/fixation.png'.
[00502 ms] RIG: Waiting for 1000 ms.
[01503 ms] RIG: Displaying image 'img/cue.png'.
[01503 ms] RIG: Waiting for 100 ms.
[01540 ms] VH: Priming for {'location ': (100, 150)}.
[01603 ms] RIG: Removing image 'img/cue.png'.
[01603 ms] RIG: Waiting for 200 ms.
[01673 ms] VH: Priming for {'shape': 'square', '
↪→ appearance ': 'filled '}.
[01803 ms] RIG: Displaying image 'img/target.png'.
[01803 ms] BUTTON: Button 'LMB' listening for 2000 ms.
[01807 ms] VH: Detection for {'shape': 'square '}.
[01974 ms] VH: Detection found {'shape': 'square '}.
[01974 ms] MOTOR: Pushing button 'LMB'.
[02191 ms] BUTTON: Button press detected on 'LMB'.
[02193 ms] RUNNER: Saving result (388,) in 'results.csv'.

From the Listing, we can see that the sequence of RIG and STAR events

issued by the TarzaNN mockup executing the CPD roughly follows the tim-

ings and order one would expect based on the results reported in [9]. Un-

fortunately, exact results are impossible without a simulator like TarzaNN:
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the mockup has no way of knowing what kinds of stimuli are being dis-

played or how to process them. Most actions are implemented with a delay

to simulate the duration of different instructions, but some simply cannot

be recreated in a mockup, for example any action that requires STAR to

answer questions about the stimuli currently displayed by the experimental

rig.

Note, however, that while the mockup simulates the issuance of various

commands, their duration, and their returns, the durations of the various

operations were tuned to correspond to experimental results. This is due

to the aforementioned implementation timeline difference between TarzaNN

and CPC, preventing any actual simulation of STAR from being done at the

time this thesis work was undertaken.

4.3.2 Cutzu & Tsotsos 2003

The Cutzu & Tsotsos 2003 experiment [100] is a kind of same-different N-

interval design experimental task. It involves a circular display of letters, two

of which are red, the remainder being black, and the experimental subject

is asked to answer if the two red letters are the same or different. The aim

of the experiment is to prove the existence of a suppressive annulus around

an attended item, which is one of ST’s predictions [14]. The CPD for this

experiment is in Listing 4.2, and the code generated is in Listing 4.3.

Listing 4.2: CPD describing the Cutzu & Tsotsos 2003 experiment.
A fixation cross ("img/fixation_cross.png") will appear.
↪→ Look at the fixation cross. Please do not look away from
↪→ the cross throughout the experiment.

109



A cue ("img/experiment_cue.png") will flash (1000, 180),
↪→ then a test image ("img/experiment_test.png") with red
↪→ characters will flash (0, 100).

[%
self.rig.keyboard.listen()

%]

When you see red characters , if the red characters are both
↪→ Ls or they are both Ts, press "z", else press "m".

A mask ("img/mask.png") will appear.

[%
key_event = self.rig.keyboard.wait().result()
self.save_result(key_event.time, key_event.character)

%]

Note how the Verb “flash” is used in this CPD instead of the “appear

and disappear” idiom used in the Egly experiment. The two statements

produce equivalent code in effect. The first part of Flash’s annotation is the

delay in miliseconds before stimulus appearance, and the second part is the

number of miliseconds before disappearance.

Listing 4.3: TarzaNN 3 code generated from the CPD for the Cutzu &

Tsotsos 2003 experiment from Listing 4.2.
from cpctn3.runners import TN3Runner

class ct2003simple(TN3Runner):
def __init__(self):

super().__init__()

def run_trial(self):
# A fixation cross ("img/fixation_cross.png") will
↪→ appear.
self.vae.VH.prime({'shape': 'cross', 'kind': 'fixation'
↪→ })
handle1 = self.rig.display_image("img/fixation_cross.
↪→ png")
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# Look at the fixation cross.
localization1 = self.vae.VH.localization({'shape': '
↪→ cross', 'kind': 'fixation'})
self.vae.FC.setFHMBias(localization1)

# A cue ("img/experiment_cue.png") will flash (1000,
↪→ 180), then a test image ("img/experiment_test.png")
↪→ with red characters will flash (0, 100).
self.rig.wait(1000)
handle2 = self.rig.display_image("img/experiment_cue.
↪→ png")
self.rig.wait(180)
self.rig.remove_image(handle2)

handle3 = self.vae.VH.getAS()
self.vae.VH.prime(handle3)

self.vae.VH.prime({'shape': 'character', 'color': 'red'
↪→ })
self.rig.wait(0)
handle4 = self.rig.display_image("img/experiment_test.
↪→ png")
self.rig.wait(100)
self.rig.remove_image(handle4)

self.rig.keyboard.listen()

# When you see red characters , if the red characters
↪→ are both Ls or they are both Ts, press "z", else
↪→ press "m".
def handle5():

detection1 = self.vae.VH.detection({'shape': '
↪→ character', 'color': 'red'})
if detection1.result():

if len(detection1.matchToFeature({'shape': 'L'}))
↪→ == 2 or len(detection1.matchToFeature({'shape':
↪→ 'T'})) == 2:

self.rig.keyboard.press("z")
else:

self.rig.keyboard.press("m")
else:

localization2 = self.vae.VH.localization({'shape':
↪→ 'character', 'color': 'red'})
if localization2.result():
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if len(localization2.matchToFeature({'shape': 'L'
↪→ })) == 2 or len(localization2.matchToFeature({
↪→ 'shape': 'T'})) == 2:

self.rig.keyboard.press("z")
else:

self.rig.keyboard.press("m")
self.vae.executor.submit(handle5)

# A mask ("img/mask.png") will appear.
handle6 = self.rig.display_image("img/mask.png")

key_event = self.rig.keyboard.wait().result()
self.save_result(key_event.time, key_event.character)

if __name__ == "__main__":
er = ct2003simple()
er.run()

4.3.3 Raymond et al. 1992

Listing 4.4 contains the CPD of Experiment 2 from the Raymond et al. 1992

paper [10]. The experiment is a rapid serial visual presentation (RSVP) task

where a sequence of 15 letters is presented on the screen for 15 ms per letter,

with an inter-stimulus period of 75 ms. After the sequence, the experimental

subject is asked to state if an X appeared or not, and to name the white

letter in the sequence. Listing 4.5 contains the generated TarzaNN code.

Listing 4.4: CPD of Experiment 2 from Raymond et al. 1992 [10].
{%

from experiments import RaymondImageGenerator
self.ig = RaymondImageGenerator()

%}

Hold the mouse button.
A centre fixation dot ("fixation_dot.png") will appear on
↪→ the screen. Look at the fixation dot, then when you are
↪→ ready, release the mouse button.
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A sequence (ig.get_raymond_image_set , 15) of characters
↪→ will be presented (180), then a mask ("mask.png") will
↪→ flash (0, 60).

[%
self.rig.outstream.clear()

%]

Say the white letter.
If you saw an X after the white letter, say "yes", else say
↪→ "no".
[%

output_line1 = self.rig.outstream.readln().result()
output_line2 = self.rig.outstream.readln().result()
self.save_result(output_line1 , output_line2)

%]

In this example, the images for the RSVP task are defined and presented

as a sequence, instead of appearing one by one like individual images. To

achieve that, an image generator class provides a list of images and their

timings to the Specifier “sequence”, and the Verb “be presented” takes that

sequence and displays its images on the display one by one, with delays

according to timings generated by the image sequence parameter.

Listing 4.5: TarzaNN 3 code generated from the CPD in Listing 4.4 of the

Raymond et al. 1992 Experiment 2 from [10].
from cpctn3.runners import TN3Runner

class raymond1992(TN3Runner):
def __init__(self):

super().__init__()

from experiments import RaymondImageGenerator
self.ig = RaymondImageGenerator()

def run_trial(self):
# Hold the mouse button.
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self.vae.motor.hold_button('LMB')

# A centre fixation dot ("fixation_dot.png") will
↪→ appear on the screen.
self.vae.VH.prime({'shape': 'dot', 'kind': 'fixation'})
handle1 = self.rig.display_image("img/fixation_dot.png"
↪→ )

# Look at the fixation dot, then when you are ready ,
↪→ release the mouse button.
localization1 = self.vae.VH.localization({'shape': 'dot
↪→ ', 'kind': 'fixation'})
self.vae.FC.setFHMBias(localization1)

self.vae.motor.release_button('LMB')

# A sequence (ig.get_raymond_image_set(15)) of
↪→ characters will be presented (180), then a mask ("
↪→ mask.png") will flash (0, 60).
self.vae.VH.prime({'shape': 'character'})
def handle2():

self.rig.wait(180)
for ite1 in ig.get_raymond_image_set(15):

self.rig.wait(ite1.appear_delay)
handle3 = self.rig.display_image(ite1.image)
self.rig.wait(ite1.disappear_delay)
self.rig.remove_image(handle3)

self.rig.executor.submit(handle2)

self.rig.wait(0)
handle4 = self.rig.display_image("mask.png")
self.rig.wait(60)
self.rig.remove_image(handle4)

self.rig.outstream.clear()

# Say the white letter.
handle5 = self.vae.VH.getAS()
handle6 = handle5.matchToFeature({'color': 'white'})[0]
self.vae.motor.say(handle6.getShape())

# If you saw an X after the white letter , say "yes",
↪→ else say "no".
def handle7():

handle8 = self.vae.vWM.get({'shape': 'X', 'after': {'
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↪→ shape': 'letter', 'color': 'white'}})
if handle8:

self.vae.motor.say("yes")
else:

self.vae.motor.say("no")
self.vae.executor.submit(handle7)

output_line1 = self.rig.outstream.readln().result()
output_line2 = self.rig.outstream.readln().result()
self.save_result(output_line1 , output_line2)

if __name__ == "__main__":
er = raymond1992()
er.run()

The “saw” Verb currently generates some non-functional code, as vWM.get

is not implemented or defined yet in published work, and developing neces-

sary working memory machinery is beyond the scope of this thesis. The rela-

tionships in the query object define the relationship between the “X” whose

attentional sample we want returned, and its relationship to the “white let-

ter” attentional sample.

4.3.4 Folk et al. 1992

Listing 4.6 contains a CPD of experiment 1 from the 1992 experimental

paper by Folk et al. [11]. The experiment aims to prove that abrupt onset

cues only capture attention when an abrupt onset is used to locate the target,

and not when some other property is used for target location. Listing 4.7

shows the output generated from the CPD.

Listing 4.6: CPD of experiment 1 from Folk et al. 1992 [11].
{%

from random import randint
from experiments import FolkImageGenerator
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self.ig = FolkImageGenerator()
%}

[%
trial = self.ig.next_trial()
cue_img = trial['cue']
target_img = trial['target ']

%]

A fixation image ("img/fixation_display.png") will appear.
↪→ Look at the centre fixation box. Please do not look away
↪→ from the box throughout the experiment , because the
↪→ trial events will be occurring very rapidly, so
↪→ attempting to make eye movements will impair performance
↪→ .

[%
self.rig.wait(500)
blink_handle = self.rig.display_image("img/
↪→ fixation_display_blink.png")
self.rig.wait(100)
self.rig.remove_image(blink_handle)

self.rig.wait(1000+randint(0,4)*100)
%]

Please respond as quickly as you can while making as few
↪→ errors as possible.

A cue (cue_img) will flash (0, 50), then a red target (
↪→ target_img) will flash (100, 50).

[%
self.rig.keyboard.listen(1500)

%]

If the red target was a "=", press "z", else if the target
↪→ was an X, press "m".

[%
key_event = self.rig.keyboard.wait().result()
self.save_result(key_event.time, key_event.character)

self.rig.wait(500)
blink_handle = self.rig.display_image("img/
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↪→ fixation_display_blink.png")
self.rig.wait(100)
self.rig.remove_image(blink_handle)

%]

Listing 4.7: TarzaNN 3 code generated from the CPD in Listing 4.6 of the

Folk et al. 1992 Experiment 1 from [11].
from cpctn3.runners import TN3Runner

class folk1992(TN3Runner):
def __init__(self):

super().__init__()

from random import randint
from experiments import FolkImageGenerator
self.ig = FolkImageGenerator()

def run_trial(self):
trial = self.ig.next_trial()
cue_img = trial['cue']
target_img = trial['target']

# A fixation image ("img/fixation_display.png") will
↪→ appear.
self.vae.VH.prime({'kind': 'fixation'})
handle1 = self.rig.display_image("img/fixation_display.
↪→ png")

# Look at the centre fixation box.
localization1 = self.vae.VH.localization({'shape': '
↪→ square', 'kind': 'fixation', 'location': 'center'})
self.vae.FC.setFHMBias(localization1)

self.rig.wait(500)
blink_handle = self.rig.display_image("img/
↪→ fixation_display_blink.png")
self.rig.wait(100)
self.rig.remove_image(blink_handle)

self.rig.wait(1000+randint(0,4)*100)

# A cue (cue_img) will flash (0, 50), then a red target
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↪→ (target_img) will flash (100, 50).
self.rig.wait(0)
handle2 = self.rig.display_image(cue_img)
self.rig.wait(50)
self.rig.remove_image(handle2)

handle3 = self.vae.VH.getAS()
self.vae.VH.prime(handle3)

self.vae.VH.prime({'color': 'red'})
self.rig.wait(100)
handle4 = self.rig.display_image(target_img)
self.rig.wait(50)
self.rig.remove_image(handle4)

self.rig.keyboard.listen(1500)

# If the red target was a "=", press "z", else if the
↪→ target was an X, press "m".
def handle5():

handle6 = self.vae.VH.getAS()
handle7 = handle6.matchToFeature({'color': 'red'})
if handle7.matchToFeature({'shape': '='}):

self.rig.keyboard.press("z")
else:

if handle7.matchToFeature({'shape': 'X'}):
self.rig.keyboard.press("m")

self.vae.executor.submit(handle5)

key_event = self.rig.keyboard.wait().result()
self.save_result(key_event.time, key_event.character)

self.rig.wait(500)
blink_handle = self.rig.display_image("img/
↪→ fixation_display_blink.png")
self.rig.wait(100)
self.rig.remove_image(blink_handle)

if __name__ == "__main__":
er = folk1992()
er.run()
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4.3.5 Bichot & Schall 2002

Bichot & Schall conducted an experiment in 2002 [12] on priming in macaque

monkeys during popout visual search. The monkeys were presented with

four stimuli, and their task was to make a saccade to the colour singleton

stimulus among them. The CPD describing the experiment is in Listing 4.8,

and the generated code is in Listing 4.9

Listing 4.8: CPD of experiment from Bichot & Schall 2002 [12].
{%

from experiments import BS2002ImageGenerator
from hardware import JuiceDispenser
self.ig = BS2002ImageGenerator()
self.jd = JuiceDispenser()

%}

[%
trial = self.ig.next_trial()
target_img = trial['target_image ']
target_location = trial['target_location ']

%]

A fixation image ("img/fixation_square.png") will appear.
↪→ Look at the centre fixation square. Please do not look
↪→ away.

[%
# Wait until the subject has been looking at the centre
↪→ of the screen for 500 ms.
centre_success = self.rig.eye_tracker.wait_or_fail((127,
↪→ 127), 500)
if not centre_success.result():

self.rig.wait(40)
return # no juice

%]

An image (target_img) containing red rectangles together
↪→ with green rectangles will appear.

[%
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start_measurement = self.rig.now().result()
# Timeout if the subject does not saccade within 2000 ms
still_looking = self.rig.eye_tracker.wait_or_fail((127,
↪→ 127), 2000)

%]

Look at the color singleton rectangle.

[%
if still_looking.result():

self.rig.wait(40)
return # no juice

# Wait until the subject has been looking at the target
↪→ for 500ms
target_success = self.rig.eye_tracker.wait_or_fail(
↪→ target_location , 500)
if not target_success.result():

self.rig.wait(40)
return # no juice

self.save_result(self.rig.now().result() -
↪→ start_measurement)
# Dispense 0.1 milliliter of juice
self.jd.dispense(0.1)

%]

The original experiment calls for monitoring fixation locations using scle-

ral coils as an eye tracker. This facility is implemented as self.rig.eye_tracker.

This object can be queried to return the current screen-coordinates of the

gaze, or to return if the subject looks away from a given set of coordinates.

We can also see the demonstration of the trial abort functionality via return.

An external facility is the juice-reward dispenser for the monkey. This

feature was implemented simply to demonstrate the ease of extensibility of

the CPD format to novel experimental features, even though TarzaNN 3

does not care much for juice rewards.
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Listing 4.9: TarzaNN 3 code generated from the CPD in Listing 4.8 of the

Bichot & Schall 2002 experiment [12].
from cpctn3.runners import TN3Runner

class bs2002(TN3Runner):
def __init__(self):

super().__init__()

from experiments import BS2002ImageGenerator
from hardware import JuiceDispenser
self.ig = BS2002ImageGenerator()
self.jd = JuiceDispenser()

def run_trial(self):
trial = self.ig.next_trial()
target_img = trial['target_image']
target_location = trial['target_location']

# A fixation image ("img/fixation_square.png") will
↪→ appear.
handle1 = self.rig.display_image("img/fixation_display.
↪→ png")

# Look at the centre fixation square.
localization1 = self.vae.VH.localization({'shape': '
↪→ square', 'kind': 'fixation', 'location': 'center'})
self.vae.FC.setFHMBias(localization1)

# Wait until the subject has been looking at the centre
↪→ of the screen for 500 ms.
centre_success = self.rig.eye_tracker.wait_or_fail
↪→ ((127, 127), 500)
if not centre_success.result():

self.rig.wait(40)
return # no juice

# An image (target_img) containing red rectangles
↪→ together with green rectangles will appear.
self.vae.VH.prime({'shape': 'rectangle', 'color': 'red|
↪→ green'})
handle2 = self.rig.display_image(target_img)

start_measurement = self.rig.now().result()
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# Timeout if the subject does not saccade within 2000
↪→ ms
still_looking = self.rig.eye_tracker.wait_or_fail((127,
↪→ 127), 2000)

# Look at the color singleton rectangle.
localization2 = self.vae.VH.localization({'shape': '
↪→ rectangle', 'singleton': 'color'})
self.vae.FC.setFHMBias(localization2)

if still_looking.result():
self.rig.wait(40)
return # no juice

# Wait until the subject has been looking at the target
↪→ for 500ms
target_success = self.rig.eye_tracker.wait_or_fail(
↪→ target_location , 500)
if not target_success.result():

self.rig.wait(40)
return # no juice

self.save_result(self.rig.now().result() -
↪→ start_measurement)
# Dispense 0.1 milliliter of juice
self.jd.dispense(0.1)

if __name__ == "__main__":
er = bs2002()
er.run()

4.4 Ease of Use

There is no standard experimental instruction format in psychology, how-

ever, most experimental instruction texts look alike. They often consist of

short imperative mood sentences similar to IE, showing that it would be no

great leap to imagine adopting CPD for the purpose of providing a standard

experimental instruction format. Studies confirming readability and write-
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ability of IE and CPD are out of scope of this thesis, however, to attempt

to persuade the reader that this might be true, this section offers a brief

demonstration of translation between ordinary English to IE.

Listing 4.10 shows instructions for a color visual search experiment, writ-

ten by Sang-Ah Yoo, a psychology researcher unfamiliar with Imperative

English [101]. Listing 4.11 shows those same instructions in CPD form.

Listing 4.10: Experimental instruction text for color visual search experi-

ment, written by a researcher unfamiliar with IE/CPD.
1. Look at the center of the display and press the spacebar
↪→ when you are ready to start the experiment.
2. Coloured patches will be presented on the screen. There
↪→ are target-present and target-absent trials. In target-
↪→ present trials, one distinctive colour patch will be
↪→ presented among the distractor patches (distractor
↪→ patches have the same colour). In target-absent trials,
↪→ all patches will have the same colour so no colour
↪→ singleton.
3. Press 'z' once you find a target (colour singleton) and
↪→ press 'm' if there is no target. Please press button as
↪→ rapid as possible.
4. Visual search display will be shown until you respond.
↪→ Once you respond, the next trial will be presented
↪→ automatically.

Listing 4.11: Translation of experimental instruction text in Listing 4.10

into a CPD.
Look at the center of the display, then press the spacebar
↪→ when ready.
Coloured patches will appear on the screen. Please note
↪→ that there are target-present and target-absent trials:
↪→ in target-present trials one distinctive colour patch is
↪→ present among distractor patches, and in target-absent
↪→ trials all patches have the same colour, so the colour
↪→ singleton is absent.
If you see a colour singleton , press "z", otherwise , press
↪→ "m". Please press the button as rapidly as possible ,
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↪→ upon which the next trial will be presented.

From the above two listings, we can see that many of the instructions

are commands that a neural network simulator would be unlikely to under-

stand or need. Those instructions can easily be be translated into Please

statements, keeping them available for the human reader, but ignorable for

the machine. Other sentences have been modified minimally to fit CPD’s

syntax and currently implemented Lexicon.

4.5 Summary

This chapter showed an evaluation of code generated by TarzaNN. Sec-

tion 4.2 showed examples of snippets of CPDs that activate particular meth-

ods in the CPM, and Section 4.3 showed examples of fully-featured real-

world psychophysical experiments implemented in CPM. Even though we

cannot test the code in TarzaNN at the present moment, a mockup TarzaNN

interface was constructed that produces log files of execution sequences.

Section 4.4 showed an example of translation between a real-world piece

of experimental instructions to CPD, to demonstrate the usability of this

format.
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Chapter 5

Discussion and Conclusions

5.1 Summary

At the beginning of this thesis, its objective was specified as:

“How can we specify Cognitive Programs in an easy and conve-

nient, yet rigorous way using natural language?”

Cognitive Program Descriptions provide an answer to that question.

They use a special Constrained Natural Language called Imperative En-

glish to describe tasks for the executive controller of visual attention in the

context of the Selective Tuning Attentive Reference model of the human

visual system.

CPDs succeed not only in defining a specification format for Cognitive

Programs, but also a format for an experimental builder and structured

experiment instruction texts. It is equally easy to read for humans and

machines, and removes the need to communicate Cognitive Programs via
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diagrams or other unwieldy formats in favour of a simple and expressive

text file.

An implementation of a CPD compiler, called the Cognitive Program

Compiler, is also designed and developed by this thesis. CPC eliminates the

need for writing CP experiments in TarzaNN by hand and thereby opens

the door for rapid experimental iteration.

5.2 Future Work

There is much future work planned for Cognitive Program Descriptions,

some of which is overviewed in this section.

Testing with TarzaNN 3 Even though there has not been an oppor-

tunity to test CPC output with TarzaNN, this is definitely a plan for the

near future when TarzaNN development progresses to the point where such

tests are possible. This would allow comparison of experiments generated

in Section 4.3 with data from human experiments.

Extending CPC Lexicon The CPC Lexicon as it stands covers a lot of

ground, but more functionality could be implemented, most notably support

for memory methods.

Declarative Programming Support for a declarative style of program-

ming would be a significant boon to CPDs. It would allow defining new

concepts and relationships on the fly, in effect allowing one to extend the

Lexicon via IE text. For example, “A stack is a kind of collection. It has a
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method called pop. Pop means ‘remove top element of the stack’.”

Syntactic Robustness One could potentially increase syntactic robust-

ness of CPC by utilizing an off-the-shelf linguistic parser like CoreNLP to

handle “fuzzier” output and unfamiliar syntactic structures. This could be

implemented by parsing text via CoreNLP first, and then traversing that

parse tree to extract recognizable elements using the Lexicon, which could

then be used to build the intermediate representation. This might mean sac-

rificing some of the power of the error reporting system which is currently

operating on a “rigid” grammar, but perhaps a balance could be found.

IE Usability Study Evaluation by different humans to see how natural

or unnatural the structure of IE is, and how easy or hard CPDs are to

write in practice. One could structure these experiments similarly to how

[46] evaluated NLC, with human test subjects being asked to verbalize a

set of tasks and then evaluating the frequency of them verbalizing valid IE,

and how frequently the interpretations of the verbalizations matched the

intended meaning.

CPC IDE An Integrated Development Environment for CPC could be

implemented by coupling a part of the compiler pipeline into a plugin for

an existing text editor, like Atom1. This could allow for dynamic feedback

between CPC and the user, similar to the workflow in the Inform 7 IDE

[57]. The general idea is to continuously parse the user input and suggest
1https://atom.io
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valid autocompletion based on the Lexicon, as well as provide localized error

messages on the fly to help the user write valid IE.

128



Bibliography

[1] A. L. Yarbus, Eye movements during perception of complex objects.

Springer, 1967.

[2] J. K. Tsotsos and W. Kruijne, “Cognitive programs: Software for

attention’s executive,” Frontiers in Psychology - Cognition, vol. 5,

no. 1260, pp. doi–10, 2014.

[3] J. Weizenbaum, “Eliza—a computer program for the study of natural

language communication between man and machine,” Communica-

tions of the ACM, vol. 9, no. 1, pp. 36–45, 1966.

[4] T. Winograd, “Procedures as a representation for data in a computer

program for understanding natural language,” tech. rep., DTIC Doc-

ument, 1971.

[5] J. E. Sammet, “The early history of cobol,” in History of programming

languages I, pp. 199–243, ACM, 1978.

[6] J. Shaw, “Joss: A designer’s view of an experimental on-line com-

puting system,” in Proceedings of the October 27-29, 1964, fall joint

computer conference, part I, pp. 455–464, ACM, 1964.

129



[7] B. W. Ballard and A. W. Biermann, “Programming in natural lan-

guage: “nlc” as a prototype,” in Proceedings of the 1979 annual con-

ference, pp. 228–237, ACM, 1979.

[8] X. Liu and D. Wu, “Pie: programming in eliza,” in Proceedings of

the 29th ACM/IEEE international conference on Automated software

engineering, pp. 695–700, ACM, 2014.

[9] R. Egly, J. Driver, and R. D. Rafal, “Shifting visual attention between

objects and locations: evidence from normal and parietal lesion sub-

jects.,” Journal of Experimental Psychology: General, vol. 123, no. 2,

p. 161, 1994.

[10] J. E. Raymond, K. L. Shapiro, and K. M. Arnell, “Temporary sup-

pression of visual processing in an rsvp task: An attentional blink?,”

Journal of experimental psychology: Human perception and perfor-

mance, vol. 18, no. 3, p. 849, 1992.

[11] C. L. Folk, R. W. Remington, and J. C. Johnston, “Involuntary covert

orienting is contingent on attentional control settings.,” Journal of

Experimental Psychology: Human perception and performance, vol. 18,

no. 4, p. 1030, 1992.

[12] N. P. Bichot and J. D. Schall, “Priming in macaque frontal cortex

during popout visual search: feature-based facilitation and location-

based inhibition of return,” Journal of Neuroscience, vol. 22, no. 11,

pp. 4675–4685, 2002.

[13] J. K. Tsotsos, “Putting saliency in its place,” 2015.

130



[14] J. K. Tsotsos, S. M. Culhane, W. Y. K. Wai, Y. Lai, N. Davis, and

F. Nuflo, “Modeling visual attention via selective tuning,” Artificial

intelligence, vol. 78, no. 1, pp. 507–545, 1995.

[15] J. K. Tsotsos, A computational perspective on visual attention. MIT

Press, 2011.

[16] S. Ullman, “Visual routines,” Cognition, vol. 18, no. 1-3, pp. 97–159,

1984.

[17] A. L. Rothenstein, A. Zaharescu, and J. K. Tsotsos, “Tarzann: A

general purpose neural network simulator for visual attention mod-

eling,” in International Workshop on Attention and Performance in

Computational Vision, pp. 159–167, Springer, 2004.

[18] J. K. Tsotsos, “Analyzing vision at the complexity level,” Behavioral

and brain sciences, vol. 13, no. 03, pp. 423–445, 1990.

[19] J. Tsotsos, I. Kotseruba, and C. Wloka, “A focus on selection for

fixation,” Journal of Eye Movement Research, vol. 9, no. 5, 2016.

[20] I. Kotseruba, Visual Attention in Dynamic Environments and Its Ap-

plication To Playing Online Games. PhD thesis, York University,

2016.

[21] J. K. Tsotsos, A. J. Rodríguez-Sánchez, A. L. Rothenstein, and

E. Simine, “The different stages of visual recognition need different

attentional binding strategies,” Brain research, vol. 1225, pp. 119–132,

2008.

131



[22] M. Handford, Where’s Waldo? Candlewick Press, 1997.

[23] T. Winograd, Thinking machines: Can there be? Are we?, vol. 200.

University of California Press, Berkeley, 1991.

[24] B. C. Smith, “The owl and the electric encyclopedia,” Artificial Intel-

ligence, vol. 47, no. 1, pp. 251–288, 1991.

[25] E. Cambria and B. White, “Jumping nlp curves: a review of natu-

ral language processing research,” IEEE Computational Intelligence

Magazine, vol. 9, no. 2, pp. 48–57, 2014.

[26] D. G. Bobrow, “Natural language input for a computer problem solv-

ing system,” 1964.

[27] J. Weinzembaum, “Computer power and human reason: From judge-

ment to calculation,” 1976.

[28] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, “Natural lan-

guage interfaces to databases–an introduction,” Natural language en-

gineering, vol. 1, no. 01, pp. 29–81, 1995.

[29] R. A. Capindale and R. G. Crawford, “Using a natural language inter-

face with casual users,” International Journal of Man-Machine Stud-

ies, vol. 32, no. 3, pp. 341–361, 1990.

[30] W. R. Ford, A. Chapanis, and G. D. Weeks, “Self-limited and un-

limited word usage during problem solving in two telecommunication

modes,” Journal of psycholinguistic Research, vol. 8, no. 5, pp. 451–

475, 1979.

132



[31] P. R. Michaelis, A. Chapanis, G. D. Weeks, and M. J. Kelly, “Word

usage in interactive dialog with restricted and unrestricted vocabu-

laries,” IEEE Transactions on Professional Communication, no. 4,

pp. 214–221, 1977.

[32] J. F. Pane, B. A. Myers, et al., “Studying the language and structure in

non-programmers’ solutions to programming problems,” International

Journal of Human-Computer Studies, vol. 54, no. 2, pp. 237–264, 2001.

[33] W. A. Woods, R. M. Kaplan, and B. Nash-Webber, The Lunar Sci-

ences: Natural Language Information System: Final Report. Bolt

Beranek and Newman, 1972.

[34] C. Wang, M. Xiong, Q. Zhou, and Y. Yu, “Panto: A portable natural

language interface to ontologies,” in European Semantic Web Confer-

ence, pp. 473–487, Springer, 2007.

[35] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard,

and D. McClosky, “The stanford corenlp natural language process-

ing toolkit,” ACL 2014, p. 55, 2014.

[36] E. Prud, A. Seaborne, et al., “Sparql query language for rdf,” 2006.

[37] D. Damljanovic, M. Agatonovic, and H. Cunningham, “Natural lan-

guage interfaces to ontologies: Combining syntactic analysis and

ontology-based lookup through the user interaction,” in Extended Se-

mantic Web Conference, pp. 106–120, Springer, 2010.

133



[38] Y. Li, H. Yang, and H. Jagadish, “Nalix: an interactive natural lan-

guage interface for querying xml,” in Proceedings of the 2005 ACM

SIGMOD international conference on Management of data, pp. 900–

902, ACM, 2005.

[39] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie,

J. Siméon, and M. Stefanescu, “Xquery 1.0: An xml query language,”

2002.

[40] C. Finucane, G. Jing, and H. Kress-Gazit, “Ltlmop: Experimenting

with language, temporal logic and robot control,” in Intelligent Robots

and Systems (IROS), 2010 IEEE/RSJ International Conference on,

pp. 1988–1993, IEEE, 2010.

[41] I. Song, F. Guedea, F. Karray, Y. Dai, and I. El Khalil, “Natural

language interface for mobile robot navigation control,” in Intelligent

Control, 2004. Proceedings of the 2004 IEEE International Symposium

on, pp. 210–215, IEEE, 2004.

[42] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Tor-

ralba, and S. Fidler, “Skip-thought vectors,” in Advances in neural

information processing systems, pp. 3294–3302, 2015.

[43] J. E. Sammet, “The use of english as a programming language,” Com-

munications of the ACM, vol. 9, no. 3, pp. 228–230, 1966.

[44] A. Taylor, “The flow-matic and math-matic automatic programming

systems,” Annual Review in Automatic Programming, vol. 1, pp. 196–

206, 1960.

134



[45] D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english

query language,” in Proceedings of the 1974 ACM SIGFIDET (now

SIGMOD) workshop on Data description, access and control, pp. 249–

264, ACM, 1974.

[46] A. W. Biermann, B. W. Ballard, and A. H. Sigmon, “An experimen-

tal study of natural language programming,” International journal of

man-machine studies, vol. 18, no. 1, pp. 71–87, 1983.

[47] D. Shafer, HyperTalk Programming. Indianapolis, IN, USA: Sams,

1988.

[48] D. Goodman, Complete HyperCard 2.0 Handbook. Random House

Inc., 1990.

[49] W. R. Cook, “Applescript,” in Proceedings of the third ACM SIGPLAN

conference on History of programming languages, pp. 1–1, ACM, 2007.

[50] D. Price, E. Rilofff, J. Zachary, and B. Harvey, “Naturaljava: a natural

language interface for programming in java,” in Proceedings of the 5th

international conference on Intelligent user interfaces, pp. 207–211,

ACM, 2000.

[51] J. Gosling, The Java language specification. Addison-Wesley Profes-

sional, 2000.

[52] H. Liu and H. Lieberman, “Metafor: Visualizing stories as code,” in

Proceedings of the 10th international conference on Intelligent user

interfaces, pp. 305–307, ACM, 2005.

135



[53] H. Liu, “Montylingua: An end-to-end natural language processor with

common sense,” 2004.

[54] H. Liu and P. Singh, “Conceptnet—a practical commonsense reasoning

tool-kit,” BT technology journal, vol. 22, no. 4, pp. 211–226, 2004.

[55] P. Singh, T. Lin, E. T. Mueller, G. Lim, T. Perkins, and W. L. Zhu,

“Open mind common sense: Knowledge acquisition from the gen-

eral public,” in OTM Confederated International Conferences “On

the Move to Meaningful Internet Systems”, pp. 1223–1237, Springer,

2002.

[56] R. Knöll and M. Mezini, “Pegasus: first steps toward a naturalistic

programming language,” in Companion to the 21st ACM SIGPLAN

symposium on Object-oriented programming systems, languages, and

applications, pp. 542–559, ACM, 2006.

[57] G. Nelson, “Natural language, semantic analysis, and interactive fic-

tion,” IF Theory Reader, vol. 141, 2006.

[58] G. Little and R. C. Miller, “Keyword programming in java,” in Pro-

ceedings of the twenty-second IEEE/ACM international conference on

Automated software engineering, pp. 84–93, ACM, 2007.

[59] W. Feurzeig and S. Papert, “The logo programming language,” 1967.

[60] V. Le, S. Gulwani, and Z. Su, “Smartsynth: Synthesizing smartphone

automation scripts from natural language,” in Proceeding of the 11th

136



annual international conference on Mobile systems, applications, and

services, pp. 193–206, ACM, 2013.

[61] M. H. Manshadi, D. Gildea, and J. F. Allen, “Integrating programming

by example and natural language programming.,” in AAAI, 2013.

[62] M. Landhäußer, S. Weigelt, and W. F. Tichy, “Nlci: a natural lan-

guage command interpreter,” Automated Software Engineering, pp. 1–

23, 2016.

[63] G. A. Miller, “Wordnet: a lexical database for english,” Communica-

tions of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[64] K. Hasselström and J. Åslund, “The shakespeare programming lan-

guage,” Apr 2001.

[65] S. Cozens, Advanced perl programming. O’Reilly, 2005.

[66] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27,

no. 2, pp. 97–111, 1984.

[67] W.-O. Huijsen, “Controlled language–an introduction,” in Proceedings

of CLAW, vol. 98, pp. 1–15, 1998.

[68] T. Kuhn, “A survey and classification of controlled natural languages,”

Computational Linguistics, vol. 40, no. 1, pp. 121–170, 2014.

[69] N. E. Fuchs, K. Kaljurand, and T. Kuhn, “Attempto controlled en-

glish for knowledge representation,” in Reasoning Web, pp. 104–124,

Springer, 2008.

137



[70] J. F. Sowa, “Ontology, metadata, and semiotics,” in Conceptual

structures: Logical, linguistic, and computational issues, pp. 55–81,

Springer, 2000.

[71] C. K. Ogden, Basic English: A general introduction with rules and

grammar. No. 29, K. Paul, Trench, Trubner, 1944.

[72] D. D. Bourland Jr, “A linguistic note: Writing in e-prime,” General

Semantics Bulletin, vol. 32, no. 3, pp. 111–114, 1965.

[73] C. A. Verbeke, “Caterpillar fundamental english.,” Training and De-

velopment Journal, vol. 27, no. 2, pp. 36–40, 1973.

[74] F. Robertson, “Airspeak: Radiotelegraphy for pilots,” 1987.

[75] AeroSpace and D. I. A. of Europe, ASD Simplified Technical English:

Specification ASD-STE100. ASD AeroSpace and Defence, 2005.

[76] N. Rychtyckyj, “Standard language at ford motor company: A case

study in controlled language development and deployment,” Cam-

bridge, Massachussets, 2006.

[77] P. Bollen, SBVR: A Fact-Oriented OMG Standard, pp. 718–727.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

[78] R. Power and D. Scott, “Multilingual authoring using feedback texts,”

in Proceedings of the 17th international conference on Computational

linguistics-Volume 2, pp. 1053–1059, Association for Computational

Linguistics, 1998.

138



[79] I. Pratt-Hartmann, “A two-variable fragment of english,” Journal of

Logic, Language and Information, vol. 12, no. 1, pp. 13–45, 2003.

[80] P. Martin, “Knowledge representation in cglf, cgif, kif, frame-cg and

formalized-english,” in Conceptual Structures: Integration and Inter-

faces, pp. 77–91, Springer, 2002.

[81] O. Ritchie and K. Thompson, “The unix time-sharing system,” The

Bell System Technical Journal, vol. 57, no. 6, pp. 1905–1929, 1978.

[82] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf,

2013.

[83] N. Wirth, “Extended backus-naur form (ebnf),” ISO/IEC, vol. 14977,

p. 2996, 1996.

[84] C. Böhm and G. Jacopini, “Flow diagrams, turing machines and lan-

guages with only two formation rules,” Communications of the ACM,

vol. 9, no. 5, pp. 366–371, 1966.

[85] M. L. Minsky, Computation: finite and infinite machines. Prentice-

Hall, Inc., 1967.

[86] A. M. Turing, “On computable numbers, with an application to the

entscheidungsproblem,” Proceedings of the London mathematical so-

ciety, vol. 2, no. 1, pp. 230–265, 1937.

[87] A. Church, “An unsolvable problem of elementary number theory,”

American journal of mathematics, vol. 58, no. 2, pp. 345–363, 1936.

139



[88] D. Hilbert, W. Ackermann, and R. E. Luce, Principles of mathematical

logic, vol. 69. American Mathematical Soc., 1950.

[89] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases: the

logical level. Addison-Wesley Longman Publishing Co., Inc., 1995.

[90] M. Cook, “Universality in elementary cellular automata,” Complex

systems, vol. 15, no. 1, pp. 1–40, 2004.

[91] C. Böhm, “On a family of turing machines and the related program-

ming language,” ICC Bull, vol. 3, no. 3, pp. 187–194, 1964.

[92] G. Van Rossum and F. L. Drake, Python language reference manual.

Network Theory, 2003.

[93] B. C. Smith, Procedural reflection in programming languages. PhD

thesis, Massachusetts Institute of Technology, 1982.

[94] S. Houben, “Turing compliant?.” Python mailing list (python-

list@python.org), Sept 1999.

[95] O. Abid, “Decomposing cognitive programs into neural primitives: An

incremental approach,” Master’s thesis, York University, 2017. Un-

published work.

[96] M. Kleiner, D. Brainard, D. Pelli, A. Ingling, R. Murray, C. Broussard,

et al., “What’s new in psychtoolbox-3,” Perception, vol. 36, no. 14,

p. 1, 2007.

140



[97] S. Mathôt, D. Schreij, and J. Theeuwes, “Opensesame: An open-

source, graphical experiment builder for the social sciences,” Behavior

research methods, vol. 44, no. 2, pp. 314–324, 2012.

[98] W. McGugan, Beginning game development with Python and Pygame:

from novice to professional. Apress, 2007.

[99] N. A. Macmillan and C. D. Creelman, Detection theory: A user’s

guide. Psychology press, 2004.

[100] F. Cutzu and J. K. Tsotsos, “The selective tuning model of attention:

psychophysical evidence for a suppressive annulus around an attended

item,” Vision research, vol. 43, no. 2, pp. 205–219, 2003.

[101] S. Yoo. Private communication, 2017.

141



Appendix A

Additional Implementation

Details

A.1 CPD ANTLR Grammar

Listing A.1 contains the complete ANTLR grammar that describes CPDs.

Since the IE grammar is a subset of the CPD grammar, IE’s grammar is not

shown in a separate listing, as everything needed to parse IE is included in

Listing A.1.

Listing A.1: ANTLR grammar describing CPDs.
grammar CPC;

@lexer::header {
import lexicon.*;
import lexicon.base.*;
}

@lexer::members {
private LexiconManager lexiconManager = new LexiconManager
↪→ ();
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public CPCLexer(CharStream input, LexiconManager
↪→ lexiconManager) {

this(input);
this.lexiconManager = lexiconManager;

}
}

/********************************************************
********************* SENTENCES *************************
*********************************************************/

root
: SETUP_BLOCK? statement*
;

SETUP_BLOCK
: OPENSB .*? CLOSESB
;

statement
: instructionBlock PERIOD
| pleaseStatement PERIOD
| CODE_BLOCK
;

CODE_BLOCK
: OPENCB .*? CLOSECB
;

instructionBlock
: instruction (THEN instruction)* SEMICOLON?
;

instruction
: command
| fact
| controlFlow
;

controlFlow
: ifStatement
| forEachStatement
| whileStatement
| whenStatement
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;

fact
: factClause AND fact
| factClause OR fact
| factClause
;

command
: imperativeVerb specifier* selector specifier*
;

factClause
: factClauseLHS factVerb factClauseRHS
;

ifStatement
: IF fact instructionBlock (ELSE instructionBlock)?
;

whenStatement
: WHEN fact instructionBlock
;

whileStatement
: WHILE fact instructionBlock
;

forEachStatement
: FOR EACH selector specifier* instructionBlock
;

pleaseStatement
: PLEASE_STATEMENT
;

factClauseLHS
: selector specifier*
;

factClauseRHS
: specifier* selector? specifier*
| modifier
;
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PLEASE_STATEMENT
: PLEASE ~'.'*
;

/********************************************************
*********************** PHRASES *************************
*********************************************************/

selector
: ARTICLE? modifier* target
;

specifier
: relationship selector
;

/********************************************************
************************ FRAGMENTS **********************
*********************************************************/

factVerb
: AUX_VERB? FACT_VERB_DICT parameters?
;

imperativeVerb
: IMPERATIVE_VERB_DICT parameters?
;

modifier
: MODIFIER_DICT
;

target
: TARGET_DICT parameters?
| (STRING|INT)
;

relationship
: RELATIONSHIP_DICT parameters?
;

parameters
: LPAREN parameter+ RPAREN
;
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parameter
: (STRING|INT|IDENTIFIER)
;

/********************************************************
************************ LEXICON ************************
*********************************************************/

TARGET_DICT
: [a-zA-Z ]+ { this.lexiconManager.hasDictionaryEntry(
↪→ Target.class, getText()) }?
;

MODIFIER_DICT
: [a-zA-Z ]+ { this.lexiconManager.hasDictionaryEntry(
↪→ Modifier.class, getText()) }?
;

RELATIONSHIP_DICT
: [a-zA-Z ]+ { this.lexiconManager.hasDictionaryEntry(
↪→ Relationship.class, getText()) }?
;

IMPERATIVE_VERB_DICT
: [a-zA-Z ]+ { this.lexiconManager.hasDictionaryEntry(
↪→ ImperativeVerb.class, getText()) }?
;

FACT_VERB_DICT
: [a-zA-Z ]+ { this.lexiconManager.hasDictionaryEntry(
↪→ FactVerb.class, getText()) }?
;

AUX_VERB: 'will';

IF: ('If'|'if');
FOR: ('For'|'for');
WHILE: ('While'|'while');
WHEN: ('When'|'when');

THEN: 'then';
ELSE: ('else'|'otherwise ');
EACH: ('each'|'every ');
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PLEASE: 'Please ';

ARTICLE
: ('An'|'an'
| 'A'|'a'
| 'The'|'the')
;

AND: 'and';
OR: 'or';

/********************************************************
********************* TERMINALS *************************
*********************************************************/

INT: [0-9]+ ;
STRING

: '"' (ESC | ~ ["\\])* '"'
;

fragment ESC
: '\\' (["\\/bfnrt] | UNICODE)
;

fragment UNICODE
: 'u' HEX HEX HEX HEX
;

fragment HEX
: [0-9a-fA-F]
;

PERIOD: '.';
LPAREN: '(';
RPAREN: ')';
OPENCB: '[%';
CLOSECB: '%]';
OPENSB: '{%';
CLOSESB: '%}';
SEMICOLON: ';';

IDENTIFIER: [a-zA-Z_][a-zA-Z0-9_]*('.'[a-zA-Z0-9_]+)*;

/********************************************************
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****************** IGNORE OR SKIP ***********************
*********************************************************/

COMMENT
: '#'.*? [\r\n]+ -> channel(2)
;

WS
: [ \t\n\r]+ -> channel(HIDDEN)
;

PUNCTUATION
: [,] -> channel(HIDDEN)
;

A.2 Lexicon Entries

Imp and CPC implementations have separate Lexicons. Imp’s Lexicon con-

tains Fragments for common operations on files and directories. They are

enumerated in a hierarchical fashion in Listing A.2. CPC’s Lexicon Frag-

ments focus on describing CPDs for TarzaNN 3.0, and are enumerated in

Listing A.3.
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Listing A.2: Hierarchical listing of Fragments in Imp’s Lexicon.

1 - Fragment
2 - Target
3 - Background
4 - Register
5 - Value
6 - Line
7 - Image
8 - Time
9 - Name
10 - Reference
11 - It
12 - File
13 - Directory
14 - Parent
15 - Child
16 - Verb
17 - ImperativeVerb
18 - Change
19 - Extract
20 - Find
21 - Increment
22 - Return
23 - FileOp
24 - Move
25 - Rename
26 - Copy
27 - Download
28 - Run
29 - Set
30 - Decrement
31 - Say
32 - FactVerb
33 - Is
34 - Relationship
35 - Named
36 - On
37 - To
38 - In
39 - SetOperation
40 - SetIntersection
41 - SetUnion
42 - Of
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43 - Containing
44 - At
45 - Modifier
46 - Position
47 - Count
48 - Appearance
49 - Color
50 - Green
51 - Blue
52 - Black
53 - White
54 - Red

Listing A.3: Hierarchical listing of Fragments in CPC’s Lexicon.

1 - Fragment
2 - Target
3 - Cue
4 - TargetFrag
5 - Mask
6 - RigElement
7 - Display
8 - Button
9 - Image
10 - Sequence
11 - Video
12 - Keyboard
13 - Reference
14 - You
15 - It
16 - Shape
17 - Dot
18 - Rectangle
19 - Square
20 - Character
21 - T
22 - X
23 - PlusSign
24 - L
25 - EqualsSign
26 - Ready
27 - Verb
28 - ImperativeVerb
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29 - Look
30 - Release
31 - Press
32 - Say
33 - Hold
34 - FactVerb
35 - Flash
36 - Saw
37 - Appear
38 - See
39 - BePresented
40 - Is
41 - Disappear
42 - Relationship
43 - After
44 - Between
45 - On
46 - To
47 - In
48 - SetOperation
49 - SetIntersection
50 - SetUnion
51 - Of
52 - At
53 - Modifier
54 - Fixation
55 - Position
56 - Center
57 - Right
58 - Left
59 - Count
60 - Singleton
61 - Appearance
62 - Color
63 - Green
64 - Blue
65 - Black
66 - White
67 - Red
68 - Filled
69 - Mouse
70 - Test
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