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ABSTRACT 

A loss of muscle mass or function occurs in many genetic and acquired pathologies such as heart 

disease, sarcopenia and cachexia which are predominantly found among the rapidly increasing 

elderly population. Developing effective treatments relies on understanding the genetic networks 

that control these disease pathways. Transcription factors occupy an essential position as 

regulators of gene expression. Myocyte enhancer factor 2 (MEF2) is an important transcription 

factor in striated muscle development in the embryo, skeletal muscle maintenance in the adult 

and cardiomyocyte survival and hypertrophy in the progression to heart failure. We sought to 

identify common MEF2 target genes in these two types of striated muscles using chromatin 

immunoprecipitation and next generation sequencing (ChIP-seq) and transcriptome profiling 

(RNA-seq). Using a cell culture model of skeletal muscle (C2C12) and primary cardiomyocytes 

we found 294 common MEF2A binding sites within both cell types. Individually MEF2A was 

recruited to approximately 2700 and 1600 DNA sequences in skeletal and cardiac muscle, 

respectively. Two genes were chosen for further study: DUSP6 and Hspb7. DUSP6, an ERK1/2 

specific phosphatase, was negatively regulated by MEF2 in a p38MAPK dependent manner in 

striated muscle. Furthermore siRNA mediated gene silencing showed that MEF2D in particular 

was responsible for repressing DUSP6 during C2C12 myoblast differentiation. Using a p38 

pharmacological inhibitor (SB 203580) we observed that MEF2D must be phosphorylated by 

p38 to repress DUSP6. This established a unique model whereby MAPK signaling results in 

repression of a MAPK phosphatase. The second MEF2 target gene studied was Hspb7, a small 

heat shock protein that is highly expressed in striated muscle. Using a combination of 

bioinformatic and biochemical analysis we found that AP-1 can inhibit Hspb7 transcription, in 

contrast to MEF2 which activates it. Additionally, the glucocorticoid receptor (GR) regulates 

Hspb7 in a manner dependent on the presence of MEF2. We also demonstrate an in vivo role for 

Hspb7 in autophagy which has significant implications in skeletal muscle wasting. Overall we 

found that MEF2A regulates distinct gene networks in skeletal and cardiac muscle, yet important 

shared target genes such as DUSP6 and Hspb7 also illustrate that MEF2A regulates some 

common gene programs that are critical to striated muscle health.  

 

 



iii 
 

ACKNOWLEDGEMENTS 

This was a lot of fun but also a lot of hard work! I couldn’t have done it without my parents, 

Genevieve and Stephen, who taught me to value education and encouraged me to pursue science 

and learning (and still do!). I wouldn’t be who I am without their love. To my husband, Mike, for 

keeping me laughing even when things got (seemingly) overwhelming. Also to Amanda, Al, 

Mike Sr., Heather, Leah and Kristyn: your encouragement and friendship have been so important 

to me! 

I would like to thank my supervisor, Dr. McDermott, for training me in all of the different 

aspects of science and academia. I would also like to thank Dr. Blais for teaching me how to do 

bioinformatic analyses and my committee members Dr. Scheid and Dr. Cheung for giving me 

direction during my PhD. 

There is no way I could have made it through six years without great lab members – Thank you 

for your support and criticism over the years. In particular I’d like to thank Nezeka for training 

me from the beginning and helping me talk through my problems. Also, thank-you Sara for 

being so great to work with on all of our collaborations.  

 

 

 

 

 

 

 

 

 

 



iv 
 

TABLE OF CONTENTS 
 

ABSTRACT ............................................................................................................. ii 

ACKNOWLEDGEMENTS .................................................................................. iii 

TABLE OF CONTENTS ...................................................................................... iv 

LIST OF TABLES ................................................................................................. vi 

LIST OF FIGURES .............................................................................................. vii 

LIST OF ABBREVIATIONS ............................................................................... ix 

CHAPTER I: Literature Review ............................................................................ 1 

1. Development of striated muscle ............................................................................................................ 1 

1.1 Early development of the mesodermal lineages .............................................................................. 1 

1.2 Skeletal myogenesis ........................................................................................................................ 2 

1.3 Cardiogenesis .................................................................................................................................. 7 

1.4 Striated muscle contraction ............................................................................................................. 9 

2. The role and regulation of MEF2 ........................................................................................................ 11 

2.1 Overview of MEF2 ....................................................................................................................... 11 

2.2 Role of MEF2 during vertebrate development and adult tissue maintenance ............................... 13 

2.3 MEF2 protein:protein interactions ................................................................................................ 15 

2.4 MEF2 and chromatin remodelling ................................................................................................ 17 

2.5 Regulation of MEF2 by post-translational modifications ............................................................. 22 

2.6 MEF2 and miRNA gene silencing ................................................................................................ 23 

3. Therapeutic relevance of MEF2 in skeletal and cardiac muscle disease ............................................ 24 

3.1 Metabolic disease .......................................................................................................................... 24 

3.1a: Diabetes ..................................................................................................................................... 25 

3.1b: Pathways regulating muscle atrophy ......................................................................................... 28 

3.2 Role of MEF2 in skeletal muscle regeneration ............................................................................. 33 

3.3 Role of MEF2 in cell death and muscle atrophy ........................................................................... 37 

3.4 Cardiac hypertrophy ...................................................................................................................... 39 

4. Summary of Literature Review ........................................................................................................... 42 



v 
 

CHAPTER II: Statement of Purpose ...................................................................43 

CHAPTER III: Global MEF2 target gene analysis in cardiac and skeletal 

muscle reveals novel regulation of DUSP6 by p38MAPK-MEF2 signaling .....44 

CHAPTER IV: Regulation of Hspb7 by MEF2 and AP-1 in muscle atrophy .73 

CHAPTER V: Summary of Dissertation ...........................................................106 

CHAPTER VI: Future Directions and Conclusions .........................................108 

REFERENCES .....................................................................................................111 

APPENDIX ...........................................................................................................149 

Expanded Material and Methods .......................................................................................................... 149 

Bioinformatic Analysis ......................................................................................................................... 156 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

LIST OF TABLES 

Chapter I: Literature Review 

Table 1. MEF2 and human disease................................................................................................34 

Chapter IV: Regulation of Hspb7 by MEF2 and AP-1 in muscle atrophy 

Table S1. MEF2A target genes that contain AP-1 consensus sequences within the enriched DNA 

fragment.......................................................................................................................................104 

Table S2. siRNA oligonucleotides..............................................................................................105 

Table S3. Primers used in qRT-PCR and ChIP-qPCR................................................................105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

LIST OF FIGURES 

Chapter I: Literature Review 

Figure 1. Mesoderm specification during embryogenesis...............................................................2 

Figure 2. Somite specification.........................................................................................................3 

Figure 3. Embryonic myogenesis....................................................................................................4 

Figure 4. Satellite cell activation.....................................................................................................6 

Figure 5. The formation of cardiogenic mesoderm during embryogenesis.....................................8 

Figure 6. The regulation of MEF2 by upstream factors.................................................................13 

Figure 7. The role of MEF2 in epigenetic gene regulation............................................................21 

Figure 8. Mechanisms of glucose storage......................................................................................25 

Figure 9. Insulin signaling in metabolic tissue...............................................................................26 

Figure 10. Protein ubiquitination and degradation in muscle........................................................30 

Figure 11. Pathways of autophagy.................................................................................................31 

Figure 12. Transcriptional regulators of muscle atrophy...............................................................33 

Figure 13. Structure of the sarcomere and DAG complex.............................................................36 

Figure 14. The role of MEF2 in the progression to heart failure...................................................39 

Figure 15. MEF2 and β-adrenergic signaling................................................................................41 

Chapter III: Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel 

regulation of DUSP6 by p38MAPK-MEF2 signaling 

Figure 1. Identification of MFE2A target genes in myoblasts and cardiomyocytes using ChIP-

exo..................................................................................................................................................53 

Figure 2. RNA-seq analysis of MEF2A depleted skeletal myoblasts............................................56 

Figure 3. Functional analysis of MEF2A target genes..................................................................60 

Figure 4. siRNA mediated gene silencing of MEF2 in cardiomyocytes or myoblasts induces 

DUSP6 expression.........................................................................................................................63 

Figure 5. MEF2D inhibits DUSP6 in a p38MAPK dependent manner in myoblasts....................65 

Figure S1. MEF2A and MEF2D protein expression during C2C12 differentiation......................69 

Figure S2. Efficiency of siRNA mediated gene silencing.............................................................70 

Figure S3. Effect of p38MAPK inhibition on MEF2 expression..................................................70 

Figure S4. siRNA catalog numbers (Sigma-Aldrich)....................................................................71 

Figure S5. Primers used in ChIP-qPCR.........................................................................................72 



viii 
 

Figure S6. Primers used in qRT-PCR............................................................................................72 

Chapter IV: Regulation of Hspb7 by MEF2 and AP-1 in muscle atrophy 

Figure 1. A comparison of MEF2A and AP-1 target genes in skeletal muscle.............................81 

Figure 2. Differential recruitment of MEF2A and AP-1 to actin cytoskeletal target genes..........84 

Figure 3. MEF2A and AP-1 regulation of actin cytoskeletal genes..............................................87 

Figure 4. Aging and dexamethasone-induced atrophy cause changes in MEF2A/AP-1 

cytoskeletal target genes................................................................................................................90 

Figure 5. MEF2 and AP-1 regulate atrophy induced Hspb7 expression.......................................92 

Figure 6. Role of Hspb7 in skeletal muscle atrophy......................................................................95 

Figure 7. Hspb7 expression is associated with autophagy.............................................................97 

Figure 8. Hspb7 expression prevents induction of autophagy markers in response to fasting......98 

Figure 9. Model for the regulation and role of Hspb7 in atrophic conditions.............................100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

LIST OF ABBREVIATIONS 

Akt Protein Kinase B 

ANP Atrial natriuretic peptide 

AP-1 Activator protein 1 

Ash2L Ash2 (absent, small or homeotic)-like 

ATF Activating transcription factor 

Bag3 Bcl-2-associated athanogene 3 

bHLH Basic helix loop helix 

CaMKII calcium/calmodulin-dependent protein kinase II 

CASA Chaperone assisted selective autophagy  

CHIP Carboxy-terminus of Hsc70 interacting protein  

ChIP-seq Chromatin immunoprecipitation sequencing 

CM Cardiomyocyte 

CMA Chaperone mediated autophagy  

DAG Dystrophin associated glycoprotein  

Dex Dexamethasone 

DM Differentiation medium 

DM1 Myotonic dystrophy 1 

DMD Duchenne muscular dystrophy  

DUSP6 Dual specificity phosphatase 6 

ERK Extracellular signal regulated kinase 

FIRE Fast intronic regulatory element  

FGF Fibroblast growth factor 

FKHR Forkhead 

FoxO Forkhead box protein 

Fra Fos related antigen 

Glut4 Glucose transporter 4 

GM Growth medium 

GO Gene ontology 

GSK3-β Glycogen synthase-β 

HAT Histone acetyltransferase 

HDAC Histone deacetylase 

HMT Histone methyltransferase 

HP1 Heterochromatin protein 1 

Hspb7 Heat shock protein family B (small) member 7 

ICM Inner cell mass 

IGF Insulin-like growth factor 

IGFR Insulin-like growth factor receptor 

iPSC Induced pluripotent stem cell 

JNK c-Jun N-terminal kinase 



x 
 

lncRNA Long non-coding RNA 

Lmod3 Leiomodin 3 

LSD1 Lysine specific demethylase 1  

MADS MCM1, agamous, deficiens, serum response factor 

MB Myoblast 

MCK Muscle creatine kinase 

MEF2 Myocyte enhancer factor 2 

MAPK Mitogen-activated protein kinase 

miRNA microRNA 

MLL Mixed lineage leukemia  

MRF Myogenic regulatory factor 

MT Myotube 

mTOR Mammalian target of rapamycin 

MyHC Myosin heavy chain 

MyLC Myosin light chain 

MyoG Myogenin 

ncRNA Non-coding RNA 

NMJ Neuromuscular junction  

NURF Nucleosome remodeling factor 

Pax Paired box protein 

PRC2 Polycomb repressive complex 2 

PGC-1α Peroxisome proliferative activated receptor gamma coactivator-1α 

PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase 

PKA Protein kinase A 

PKC Protein kinase C 

PTM Post-translational modification 

RNA-seq RNA sequencing 

RSRF Related serum response factor 

RyR Ryanodine receptor 

SERCA SR Ca2+-ATPase 

Six Sine oculis homeobox homolog 

SRF Serum response factor 

SURE Slow upstream regulatory element  

SWI/SNF Switch/sucrose non-fermenting 

TA Tibialis anterior 

TAC Transverse aortic constriction 

TAD Transcriptional activation domain 

TGF-β Transforming growth factor-β 

TSA Trichostatin A 

TSS Transcription start site 

T-tubules Transverse tubules 



1 
 

CHAPTER I: Literature Review 

1. Development of striated muscle 

1.1 Early development of the mesodermal lineages 

Early embryonic patterning is complex and relies on the strict co-ordination of gene 

expression. The processes that occur during development often follow a similar pattern during 

adult cell differentiation, therefore understanding developmental processes may improve our 

understanding and treatment of post-natal diseases. The earliest differentiation of cells in 

mammals is at the transition from the 16-cell stage, when the collection of cells referred to as the 

morula, transition to become the blastocyst (1, 2). At this point, the blastocyst consists of two 

types of specialized cells: trophoblast cells that make up the outer layer of cells, called the 

trophectoderm, and the inner cell mass (ICM), a group of pluripotent cells (2). The blastocyst 

also contains an empty cavity called the blastocoel. The ICM will separate into two cell types, 

the hypoblast, a layer of cells in contact with the blastocoel, and the epiblast, a collection of cells 

adjacent to the hypoblast (2). The hypoblast will not contribute to the embryo but it is critical in 

the formation of extraembryonic tissues that contribute to the yolk sac (2, 3). One of the most 

important processes to occur during development is gastrulation, development of the three germ 

layers (endoderm, mesoderm and ectoderm), all of which arise from the epiblast (4). The 

movement of epiblast cells to a region called the primitive streak sets up gastrulation and 

initiates cell commitment in a posterior to anterior direction (4). The primitive streak is formed 

between the epiblast and hypoblast. As cells migrate from the epiblast to the primitive streak 

they become committed to the endoderm and mesoderm lineages. The first cells that migrate to 

the primitive streak become endodermal cells, and move anterior alongside the primitive streak 

towards the hypoblast, displacing it (5). As the primitive streak moves toward the anterior end, 

cells become committed to different mesodermal lineages and migrate to a space between the 

new endodermal layer and the existing epiblast. Finally, the ectoderm is derived from the 

remaining cells of the epiblast that do not migrate to the primitive streak (5). 

During gastrulation the neural tube also develops in a process called neurulation which is 

critical as it sets up the anterior-posterior axis (6, 7). The dorsal cells that do not migrate to the 

primitive streak are ectodermal cells and form a structure called the neural plate which will fold 

inward and form the neural tube, as well as neural crest cells, and surface ectoderm. The neural 

crest cells (discussed below) that arise form neurulation are often referred to as the fourth germ 
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layer since they give rise to fundamental tissues including connective tissue of the face, arteries, 

smooth muscle, the peripheral nervous system and other tissues (8). As the neural tube is formed, 

the mesoderm can be separated into four independent regions: lateral plate mesoderm, paraxial 

mesoderm, chordamesoderm and intermediate mesoderm (Figure 1), which are formed in a 

posterior-anterior direction as the primitive streak moves anterior (1, 9). Each type of mesoderm 

will contribute to distinct tissues. Lateral plate mesoderm will form the heart (cardiac muscle), 

other visceral organs, and connective tissue. Paraxial mesoderm will form skeletal muscle, 

bones, cartilage and dermis of the back. The notochord is derived from chordamesoderm and will 

assist in neural tube formation. Intermediate mesoderm will form kidneys, gonads and ducts. 

 

Figure 1. Mesoderm specification during embryogenesis. Mesoderm will become specified into 

four sub-types: Lateral plate mesoderm, chordamesoderm, paraxial mesoderm and intermediate 

mesoderm. 

 

1.2 Skeletal myogenesis  

Paraxial mesoderm runs alongside the notochord and neural tube. Upon receiving the proper 

cues, paraxial mesoderm becomes segmented into blocks of mesoderm called somites, from 

which all skeletal muscle is derived, in a process called somitogenesis (10). This occurs in an 

anterior-posterior direction and is dependent first on Notch signaling and then on Hox signaling 

(11, 12).  Notch signaling triggers paraxial mesoderm to separate at specific segments along the 

anterior-posterior axis, forming the somites (11). Then, somites become specialized depending 

on the Hox transcription factors they express (9, 13). The first derivative to form is the 

sclerotome, and then the dermomyotome (Figure 2). Cells on the ventral side of the somite and 
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closet to the neural tube will form the sclerotome and then become bones and tendon (9). The 

dermomyotome will form several different tissue including skeletal muscle, endothelial cells, 

and brown fat (9, 14). 

 

 

Figure 2. Somite specification. During development the somite is initially composed of the 

sclerotome and dermomyotome (DM). As cells of the sclerotome migrate away, the distal 

myotome (M) and dorsal dermatome (D) become distinct regions. 

 

The cells of the sclerotome will migrate toward the neural tube and at this point the 

dermomyotome begins to differentiate into the myotome and dermatome. The remaining parts of 

the somite are made of three cell types and are arranged such that the myotome is between the 

migrating sclerotome (ventral) and the dermatome (dorsal). The dermatome will form connective 

tissue, skin and fat. The dorsal-most region of the myotome (epaxial myotome) will pattern 

muscles of the back (15). Cells of the ventral myotome (hypaxial myotome) will begin to migrate 

toward early limb buds (15) and interact with migrating neural crest cells in a “kiss and run” 

manner that is Notch-signaling dependent (16). Neural crest cells express the Notch ligand Delta, 

which interacts with the Notch receptor in migrating muscle precursor cells of the myotome. 

Activation of Notch signaling in these precursor cells leads to expression of the first myogenic 

commitment marker, Myf5 (16).  

In general there are two main myogenic events: during development and in the adult in the 

form of skeletal muscle satellite stem cells. Although there are some differences, both of these 
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processes promote myogenesis by initiating a three step process: Determination, Commitment, 

and Differentiation (Figure 3). Determination of cells to mesodermal origin during 

somitogenesis begins with expression of paired domain transcription factors Pax3 and Pax7. 

Loss of Pax3 activity results in various defects in neural tube closure and heart development that 

result in perinatal and in utero lethality (17, 18). Pax3 mutants also develop a severe limb muscle 

phenotype caused by a failure for cells to migrate to the limb buds (19–22). Pax7-/- mice have 

normal muscle development but die perinatally and lack satellite cells (23, 24). Dominant fusion 

mutants of the DNA binding domain of Pax3 and Pax7 to the transcriptional activation domains 

of Forkhead/Foxo1 (Pax3-FKHR and Pax7-FKHR) are found in rhabdomyosarcoma, a cancer 

with skeletal muscle properties (25, 26). Pax3 is expressed as early as unsegmented paraxial 

mesoderm and expression is maintained until commitment markers are expressed (21). Pax7 

expression, however, is delayed until somites are formed and is predominantly localized to the 

dermomyotome (27, 28).  

 

Figure 3. Embryonic myogenesis. Pax3 is expressed in the unsegmented paraxial mesoderm and 

specifies mesoderm fate.  Pax3+ cells can produce other types of mesodermal-derived cells. Pax7 

is not detected until the dermomyotome is formed and Pax7+ cells can form only cells of the 

myogenic lineage. Three MRFs (Myf5, MyoD and MRF4) and MEF2 are expressed in the 

myotome in committed muscle precursor cells. MyoD and MEF2 in particular induce MyoG, the 

fourth MRF which together with MEF2 activates genes related to muscle contraction. MEF2 can 

also contribute to expression of MRF4. 
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Commitment to myogenesis is initiated by the expression of Myf5, MRF4 and MyoD which 

are three of four members of the family of basic helix-loop-helix (bHLH) Muscle Regulatory 

Factors (MRFs) and regulate transcription through recognition of an E-box consensus sequence 

(CANNTG) in combination with E proteins E12/E47 (29). Individual deletion of Myf5 but not 

MyoD or MRF4 in genetic mouse models is lethal yet muscle is able to develop relatively 

unaffected in all cases (30–33). If Myf5 and MyoD are simultaneously deleted from the genome, 

muscles are unable to form (34). Similarly loss of MRF4 in combination with either Myf5 or 

MyoD results in improper commitment and differentiation of muscle (35, 36). This indicates a 

redundant function of some MRFs. Expression of MRFs is regulated by upstream factors such as 

Pax3/7. Initially, Pax3 directly regulates Myf5 expression in combination with other upstream 

signaling such as Notch, Wnt and Sonic hedgehog that are dependent on the compartment of the 

somite (epaxial, hypaxial or dermomyotome) relative to the notochord (37, 38). As the cells of 

the myotome migrate to the limb buds Pax3 and Pax7 expression becomes reduced, however a 

population of Pax3+Pax7+ cells persists and resides adjacent to developing fibers beneath the 

basal lamina (39). MyoD is expressed downstream of Pax3/7 and Myf5 however the precise 

mechanism during somitogenesis is unclear. One possible mechanism regulating MyoD 

expression is Notch signaling as there is evidence that Notch represses MyoD expression in 

Myf5+ cells (40). Additionally, Notch can block the transcriptional activity of MyoD (41). It is 

not until expression of a fourth MRF, Myogenin (MyoG) that myoblasts begin to terminally 

differentiate, which other MRFs cannot compensate for as it activates functional myogenic genes 

that contribute to muscle contraction (42).  

Additional regulation of myogenesis both in the embryo and adult are Six transcription 

factor (Six1,4) and their co-factor Eya1/2, which have a role upstream of Pax3 during 

somitogenesis (43, 44) but can also regulate myogenesis via MRF expression in the embryo (45) 

and in adult muscle regeneration (46). Myocyte Enhancer Factor 2 (MEF2; see The role and 

regulation of MEF2) is a transcription factor that is also expressed in the somites that is 

necessary for muscle development (47). microRNA (48), epigenetic regulation (49) and co-factor 

recruitment (e.g. by histone deacetylases class I and II) have also been shown to have a role in 

muscle specification (50).  

Mature skeletal muscle has regenerative capacity due to quiescent muscle precursor cells 

called satellite cells that reside atop the myofibers between the basal lamina and sarcolemma 
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(Figure 4). These adult stem cells were derived from Pax3+/Pax7+ cells from the 

dermomyotome, localize between the basal lamina and sarcolemma during embryonic 

development and eventually become Pax7+/Pax3- (39, 51, 52). Following injury, myofibers can 

be repaired through activation of satellite cells which may differentiate and contribute to the 

myofiber or asymmetrically divide and retain quiescence. Single myofiber isolation has been a 

useful method that allows ex vivo detection of satellite cell activation. Polarity of satellite cell 

division determines whether cells will become part of the myofibers or remain quiescent. In an 

apical-basal division, Myf5 is the first commitment marker activated (28) and this is through 

Pax7 recruitment to the Myf5 gene (53). As the satellite cell divides asymmetrically, the cell 

closest to the sarcolemma becomes Pax7+Myf5+ while the apical cell, in contact with the basal 

lamina remains Pax7+Myf5- (54). Shortly thereafter Pax7+Myf5+ cells will begin to express 

MyoD however Pax7 and MyoD toggle between quiescence and myogenesis as Pax7 can inhibit 

MyoD transcriptional activity (55), indicating additional factors are required to trigger full 

commitment to myogenesis. Finally, as terminal differentiation begins all Pax7 expression is 

lost, MyoD becomes fully active, and MyoG is expressed. This decrease in Pax7 is hypothesized 

to be due in part because of Myogenin expression but the mechanism remains unclear (56).  

 

Figure 4. Satellite cell activation. In uninjured muscle Pax7+ cells are quiescent and reside 

between the sarcolemma of the myofiber and the basal lamina.  Activation of Pax7+ cells can 

result in symmetric or asymmetric division.  In asymmetric division the cell closest to the 

sarcolemma will express Myf5. These cells will proliferate to expand the myoblast population 

and activate commitment marker MyoD. When Pax7 expression becomes reduced, MyoD can 

activate terminal differentiation marker MyoG, which further reduces Pax7 expression. 
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Wnt and Notch signaling have been implicated in early skeletal muscle development and 

recent research has assessed how these pathways may regulate the satellite cell niche to assist in 

the treatment of various myopathies. Canonical Wnt signaling has been shown to promote Type I 

(slow-oxidative) muscle fiber formation and differentiation of satellite cells (57, 58). Non-

canonical Wnt signaling regulated by Wnt7a and the receptor Fzd7, however, maintain the 

satellite cell population by encouraging symmetric cell division (59).  This is in part 

accomplished by fibronectin, an extracellular matrix protein co-operates with Wnt7a signaling to 

create a satellite cell niche (60). Asymmetric division has been documented to be regulated by 

Notch signaling (61) and miRNAs, such as microRNA-489 (62). In aged muscle, which have 

reduced regenerative capability, satellite cell activation is impaired because of reduced Delta-1 

expression (63).  

1.3 Cardiogenesis 

The heart is one of the most complex organs in the body, and it is the first to be formed 

during embryogenesis. The mammalian heart is made of four chambers: the right and left atria, 

and the right and left ventricles. Within the heart there are different types of specialized cells 

including smooth muscle, endothelial cells, fibroblasts, pacemaker cells, purkinje fibers, 

myocardial (cardiac muscle) cells and epicardial cells that are distributed within one of three 

layers: the endocardium (endothelial cells; interior layer), myocardium (contractile 

cardiomyocytes) and epicardium (connective tissue; exterior layer) (64). Furthermore, there are 

different types of myocardial cells, atrial and ventricular myocytes, which adds further 

complexity to heart development. This section of the review will focus on development of the 

myocardium (cardiogenic mesoderm). 

Lateral plate mesoderm will form somatic and splanchnic mesodermal cells from which 

connective tissue and visceral organs (e.g. the heart) are derived, respectively (65). Cells that 

make up lateral plate mesoderm must migrate through the primitive streak  to either side of the 

neural tube, at the distal most regions of the embryo, adjacent to the somites and intermediate 

mesoderm (66, 67) (Figure 5). Once here, cells on the dorsal region adjacent to the ectoderm are 

somatic mesoderm while adjacent to the endoderm is splanchnic mesoderm on the ventral region. 

In the anterior region of the gastrula, splanchnic mesoderm will become committed towards 

cardiogenic mesoderm (endocardial endothelial cells, atrial and ventricular myocytes) while 

hemangiogenic mesoderm (blood and blood vessels) will form in the posterior region (67). 
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Cardiogenic mesoderm is shaped into two paired endocardial tubes in a region referred to as the 

primary or first heart field (FHF), adjacent to the developing gut and ventral to the neural tube, 

and will quickly develop into the early heart tube and left ventricle (68). A second wave of 

cardiac progenitors known as the secondary heart field (SHF) arises near the FHF and will form 

the right ventricle and outflow tract (69). These cardiac progenitors in both the FHF and SHF 

express early cardiac markers such as Gata4, Nkx2-5 and Tbx5 which are all transcription factors 

required for commitment to the heart lineage (70–73). Each endocardial tube will move towards 

the midline and fuse into the primitive heart tube. Since these genes are only expressed in early 

cardiac progenitors, staining or lacZ reporter mice containing the promoters of these genes can 

be visualized as a crescent shape in the embryo, therefore, the region in which the earliest cardiac 

progenitor cells are found are often referred to as the cardiac crescent (74). Gata4 is one of the 

earliest markers required in heart development as homozygous null mice do not develop a heart 

tube (71, 73). From here a series of sophisticated processes occur including heart looping and 

chamber formation under the direction of differentiation factors such as Hand1 and Hand2 

(which are found in the left and right ventricle, respectively (75, 76)), Nodal and Lefty-1/2 (77). 

MEF2 and serum response factor (SRF) are also required in heart development (78, 79). In mice 

the cardiac crescent is detected at E7 and a fully functional heart is formed by E14.5 (80). 

 

 

Figure  5. The formation of cardiogenic mesoderm during embryogenesis. Somatic and 

splanchnic mesoderm develops from the dorsal and ventral regions of lateral mesoderm, 

respectively. Splanchnic mesoderm then becomes cardiogenic mesoderm in the anterior 

compartment of the embryo or hemangiogenic mesoderm in the posterior end.  NT: Neural tube; 

IM: Intermediate mesoderm; LP: Lateral plate mesoderm. 
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Cardiac and skeletal muscles differ in their regenerative capacity as the heart does not 

contain a significant source of precursor cells that may replenish the cardiomyocyte pool (81–

84). Therefore, little can be done intrinsically to recover heart function following cardiac stress 

or myocardial infarction (heart attack), which results in significant cardiomyocyte death (85). 

Instead the adult heart compensates for loss of cardiomyocytes by undergoing cardiac 

hypertrophy, resulting in left ventricle thickening to increase blood flow output (86). This 

compensatory mechanism depends on a gene program similar to what is observed during 

development and is therefore referred to as activation of the fetal cardiac gene program (87). 

This hypertrophic response is ultimately debilitating to the organism and results in heart failure 

(see Therapeutic relevance of MEF2).  

1.4 Striated muscle contraction 

Formation of functional skeletal and cardiac muscle is characterized by the sarcomere which 

is the fundamental unit of contraction. It is made up of polymers of contractile proteins, α-actin 

and myosin, which are organized into thin and thick filaments, respectively. Blocks of 

sarcomeres form myofibrils, which in skeletal muscle are then bundled to form myofibers or 

multi-nucleated muscle cells. In cardiac muscle, cells remain mononucleated and branched. 

Connecting each sarcomere to the sarcolemma and the extracellular matrix (ECM) are protein 

complexes called costameres, which provide stability to myofibers and mediate signaling from 

the extracellular space (88, 89) (see Therapeutic relevance of MEF2). Myosin is an ATPase 

hexamer composed of two myosin heavy chains (MyHC) and four myosin light chains (MyLC) 

that utilize ATP energy to pull actin scaffolds to produce a muscle contraction (90–92). In a non-

contracted muscle, myosin binding sites on actin are hidden by tropomyosin. Troponin is a 

protein that interacts with and controls the location of tropomyosin on actin and contains 

regulatory calcium binding sites. Contraction can only be induced in the presence of intracellular 

calcium, which displaces inhibitory tropomyosin-troponin complexes from the myosin binding 

sites on actin (93).  

Skeletal muscle contraction may be elicited by β-adrenergic signaling or nervous regulation. 

Skeletal muscles are innervated and when a nerve elicits an action potential it secretes 

acetylcholine from the terminal cleft into the space between the nerve and the muscle fiber, 

termed the neuromuscular junction (NMJ). Acetylcholine receptors on the muscle fibers will 

then activate ligand-gated sodium channels, allowing entry of sodium to the muscle fibers and 
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depolarization of the skeletal muscle fiber (94). Invaginations of the sarcolemma into the muscle 

fiber are called transverse-tubules (T-tubules), which allow the action potential to trigger 

contraction efficiently. The sarcoplasmic reticulum will release calcium into the intracellular 

space upon muscle depolarization. This is regulated by a class of calcium channels on the 

sarcoplasmic reticulum called Ryanodine Receptors (RyR1 in skeletal muscle) (95, 96) and 

dihydropyridine receptors (voltage gated L-type calcium channels) on the sarcolemma (97). 

Once released, intracellular calcium migrates to troponin and initiates tropomyosin relocation, 

allowing myosin to bind to actin. In a relaxed state, myosin is poised for contraction and contains 

ADP and phosphate. If myosin is able to bind actin, a power stroke or contraction occurs and 

ADP and the phosphate group are released from myosin. ATP is required to allow myosin to be 

released from actin, resulting in relaxation and the formation of ADP and phosphate, and myosin 

is then placed in an active position. Flight of fight molecules such as adrenaline and epinephrine 

can also cause contraction of skeletal muscle through  β-adrenergic signaling which mediates 

intracellular calcium release (98, 99).  

Skeletal myofibers in vertebrates can be grouped into four main fiber types (I, IIa, IIb and 

IIx) which correspond to the expression of various isoforms of myosin. These fiber types vary in 

the rate of contraction, twitch duration, morphology and metabolism (100). Differences in 

metabolism are dependent on whether a muscle fiber uses glycolysis or oxidative 

phosphorylation as a primary source of ATP production (101). Type I muscle is referred to as 

slow twitch (slow-oxidative) muscle since it contracts more slowly, but can have longer twitch 

duration because it uses oxidative phosphorylation as the source of ATP. These muscle types 

have an abundance of mitochondria. On the other hand, Type II fibers are fast twitch (fast-

oxidative or fast-glycolytic), since they are able to contract much faster and with more power but 

for shorter periods of time. Type II fibers therefore rely less on mitochondria and glycolytic Type 

IIb and IIx have the least amount. The factor that determines Type I fiber type formation over 

Type II is Peroxisome proliferative activated receptor gamma coactivator-1α (PGC-1α) (102), a 

transcriptional regulator that drives a number of cell processes, including mitochondrial 

biogenesis (see Therapeutic relevance of MEF2). The heart primarily relies on oxidative 

phosphorylation for energy production but differences between atrial and ventricular 

cardiomyocytes can be seen in gene expression and physiological assays (103).  
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Unlike skeletal muscle, cardiac muscle contraction is involuntary. The depolarization of 

cardiac cells relies on a combination of sodium and calcium voltage gated channels. First sodium 

and calcium ions slowly enter cardiomyocytes via leaky ion channels and then into neighbouring 

cells via gap junctions. This causes the cardiac myocyte to become depolarized and if the cell 

reaches threshold, voltage gated sodium channels will open (104). Next L-type voltage gated 

calcium channels, found along cardiac muscle and within T-tubules (105, 106) are activated and 

further drive depolarization. Calcium is released from the SR via RyR2 and contraction 

proceeds. The speed of contraction is regulated by pacemaker cells which do not require 

regulation from the nervous system to function but respond to flight or fight molecules such as 

adrenaline and acetylcholine which modulate heartrate. Restoration of intracellular calcium 

stores to the SR in both types of striated muscle is regulated by SR Ca2+-ATPase (SERCA) of 

which there are several isoforms (107, 108).  

Generation of skeletal and cardiac muscle from mesoderm is complex and each requires two 

highly specific gene programs, however, to be functional these tissues rely on the basic unit of 

the sarcomere for contraction and express many similar contractile genes. Additionally, these 

diverse gene programs rely on the transcription factor MEF2. 

2. The role and regulation of MEF2 

2.1 Overview of MEF2 

An important transcriptional regulator in cardiac and skeletal muscle formation is Myocyte 

Enhancer Factor 2 (MEF2). MEF2 is a member of the MADS (MCM1, Agamous, Deficiens, 

SRF) box family of transcription factors that contain a conserved protein domain and recognize 

an A/T rich DNA binding sequence (109). MADS-box proteins are found across kingdoms:  

MCM1 is found in yeast, Agamous and Deficiens are in plants, and SRF and MEF2 are 

expressed in animals.  

MEF2 was originally identified in the late 1980s as a novel transcription factor with high 

DNA binding affinity to muscle creatine kinase (MCK) (110) and further shown in the early 

1990’s to have strong sequence similarity to SRF and was therefore termed Related to Serum 

Response Factor (RSRF) (109). This similarity was identified by the highly conserved consensus 

sequences between SRF (CC(A/T)6GG) and MEF2/RSRF (C/T)TA(AT)4TA(G/A) (109, 110). 

Although these two cis elements are functionally distinct, a hybrid SRF and MEF2 consensus 

sequence (CCATTTATAG) was characterized by L’honore et al. (111) which is temporally 
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regulated first by SRF in satellite cells and later by MEF2 in myofibers. Across tissues, MEF2 

can have different binding consensus sequences, as observed by Andres et al. (112) who 

determined that MEF2 consensus sequences in the brain but not striated muscle require an 

additional five nucleotides upstream of C/TTA. Position weight matrices of MEF2 consensus 

sequences demonstrate that the A/T rich core is primarily made of adenine (113). MEF2 has been 

found to share its consensus sequence with the TATA boxes upstream of some genes such as 

MRF4 (114). This was discovered to have functional significance in Drosophila where it was 

shown that after infection by mycobacterium, MEF2 phosphorylation at T20 is lost, and instead 

MEF2 is recruited to compound MEF2-TATA box sequences found on immune-responsive 

promoters (115).  

C. elegans and Drosophila express one MEF2 gene, however in more complex organisms 

such as vertebrates, MEF2 activity and regulation is more elaborate as there are four MEF2 

genes (A-D) (116). Preliminary studies determined that the predominant role for MEF2 was to 

regulate several muscle specific genes involved in metabolism and muscle structure such as 

MCK, MyLC, cardiac myosin light chain 2A and later found to also regulate aldolase, troponin, 

desmin and in skeletal muscle MyoG (110, 117–121). Using mutagenesis in Drosophila, MEF2 

was shown to be involved in cardiac and smooth muscle development, but necessary for 

myoblast differentiation not myoblast formation (122). The four MEF2 genes in vertebrates 

however are involved in a wider range of cell and tissue development such as myogenic cells 

(including skeletal, cardiac and smooth muscle) as well as various other cell types such as 

neurons, bone and immune cells (T and B cells) (123–130).  

The protein domains within MEF2 can be divided into three sections: The MADS box and 

MEF2 domain in the N terminus, which together regulate DNA binding, dimerization and co-

factor interaction (131), and a transcriptional activation domain (TAD) in its C terminus (Figure 

6) which can be regulated by a variety of post-translational mechanisms (47). In MEF2C the 

MADS box is within residues 1-56 and the MEF2 domain is from 57-85 (131). The MADS and 

MEF2 domains are highly conserved across MEF2 isoforms while the C-terminal is highly 

divergent. This C-terminal sequence heterogeneity provides the opportunity for MEF2 isoforms 

to differentially regulate the same genes in response to different cues. Within the C-terminal on 

all MEF2 isoforms is a nuclear localization sequence (132). 
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Figure 6. The regulation of MEF2 by upstream factors. MEF2 regulation by two kinases, p38 

and PKA has been well characterized. Direction phosphorylation of MEF2A and C by p38 has 

been documented. PKA phosphorylates MEF2D at two sites that mediate MEF2D repression. 

Class II HDACs directly inhibit MEF2 activity by binding within amino acid 39-71 of MEF2 

proteins. 

 

2.2 Role of MEF2 during vertebrate development and adult tissue maintenance 

MEF2 is essential to development. Using in situ hybridization in mouse embryos, Mef2a-d 

can be detected in the early cardiac, skeletal muscle and nervous systems. Mef2c is the earliest 

MEF2 isoform to be expressed in the development of several tissues. For example, Mef2c is first 

expressed in the cardiac mesoderm at day 7.5 post-coitum, then at day 9 in the myotome and 

later at 11.5 pc in the telencephalon (124, 126). Mef2c expression is not detected until Myf5 and 

Myogenin are expressed in the myotome, followed by Mef2a and Mef2d (126). In cardiac 

mesoderm, Mef2c is expressed prior to formation of the primitive heart tube (126). Mef2b is 

expressed in a pattern similar to Mef2c, and MEF2B can activate the MEF2 consensus sequence, 

however this isoform does not appear to have a unique role from the other MEF2 isoforms 

during development as null mice are phenotypically normal (133).  MEF2 can also be detected in 

both the developing and adult brain (124, 127). 

Global gene deletion analysis of MEF2 in mice revealed that only MEF2C is embryonic 

lethal due to impaired left ventricle looping (78). MEF2A null mice survive gestation but die as 

neonates due to severe cardiac muscle defects but do not show overt skeletal muscle phenotypes 

(134). MEF2D deficient mice are phenotypically normal unless exposed to cardiac stress, in 

which they show improved cardiac function (129, 135).  
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To find tissue-specific roles for MEF2, conditional mutations have been used. Part of the 

challenge to these experiments, however, is that because MEF2 can function as a hetero- or 

homodimer, different MEF2 isoforms often have a redundant role and can compensate for each 

other. Conditional deletion of MEF2A or MEF2D from skeletal muscle results in muscles that 

are phenotypically normal however skeletal muscle specific deletion of MEF2C results in 

perinatal lethality and decreased sarcomere integrity (136). This was accomplished using two 

Cre-lox systems with an early (Myogenin) or late (MCK) myogenic promoter driving 

recombination. Early deletion of Mef2c from skeletal muscle resulted in lethality on post-natal 

day 1, however, loss of Mef2c did not affect viability if deleted later in development under the 

control of MCK (136). In a parallel study using morphilino knockdown of MEF2C or –D in 

zebrafish resulted in impaired thick filament formation of the sarcomere (137). Skeletal muscle-

specific deletion of MEF2A does not cause any developmental defects (134) but in vitro, 

dominant negative mutations of MEF2A blocks myoblast differentiation indicating MEF2A has 

a role in skeletal myogenesis (138). Indeed mice with global MEF2A deficiency show impaired 

muscle regeneration (139). To account for functional redundancy between MEF2 isoforms in 

skeletal muscle regeneration Liu et al. (140) generated Mef2a, Mef2c and Mef2d muscle specific 

knockout mice in Pax7+ cells. In contrast to Snyder et al. (139) who saw defects in muscle 

regeneration in globally deficient MEF2A mice this study concluded that only in the case of 

triple MEF2 deletion was muscle regeneration reduced and when cultured, myoblasts could not 

terminally differentiate (140).   

Type I muscle fiber type specification is also regulated by MEF2. This has been 

demonstrated by isolating two regulatory elements from Troponin I slow and fast genes, the slow 

upstream regulatory element (SURE) and a fast intronic regulatory element (FIRE) which are 

expressed in slow or fast twitch fibers, respectively (121). MEF2 was only able to activate the 

SURE enhancer, not the FIRE enhancer (141). Fiber-type specific MCK enhancers have been 

found in slow and fast twitch muscle but both are regulated by MEF2 (142, 143). Shortly 

thereafter, it was shown that fiber type switching was primarily governed by PGC-1α which acts 

as a co-factor to enhance MEF2 activity (102). Exercise can enhance MEF2 activity in MEF2-

lacZ sensor mice, particularly in Type II glycolytic fibers, which the authors hypothesize to 

indicate a conversion to Type I muscle (144). Additionally Potthoff et al. (145) found that loss of 

either MEF2C or MEF2D decreased Type I slow oxidative fiber formation.  
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Based on MEF2 expression during development and knockout experiments, MEF2 proteins 

have differential roles during development and adulthood. MEF2C is crucial for early cardiac 

and skeletal muscle development, however MEF2A and MEF2D have a role in post-natal heart 

function and stress compensation and also in adult skeletal muscle regeneration. Additionally, 

MEF2 regulates Type I fiber formation. These in vivo mutational assays implicate a role for 

MEF2 in metabolic and striated muscle diseases. 

2.3 MEF2 protein:protein interactions  

The transcriptional activity of MEF2 is well documented to be heavily influenced by co-

factor interactions as well as post-translational modifications, direct targeting by microRNAs, 

alternate splicing and epigenetic modifications. Like many transcription factors, MEF2 functions 

as a hetero- or homodimer. In skeletal muscle, a MEF2A homodimer is most prominent although 

MEF2A:MEF2D heterodimers also exist (146). In the adult heart, MEF2A and MEF2D are 

predominately expressed (134). The consequences of MEF2 dimer composition can influence 

gene expression based on differential regulation of MEF2 isoforms by post-translational 

modification or co-factor interaction. For example, MEF2D is negatively regulated by PKA 

(147) and alternative splice variants of MEF2D can determine recruitment of HDAC4 (discussed 

below) (148) which could lead to repression of gene expression. Loss of MEF2D may result in 

alternative MEF2 dimer composition such as a MEF2A homodimer. Indeed global deletion of 

MEF2D does not affect development but interestingly provides protection from cardiac stress 

(135) whereas MEF2A deficient mice develop severe heart defects and paradoxically, expression 

of MEF2 target genes related to cardiac hypertrophy is enhanced (134). Based on these findings, 

the composition of MEF2 subunits should be considered in future studies.  

 Skeletal muscle-specific MEF2 interacting partners MyoD and MyoG, were some of the 

first proteins documented to interact with MEF2 (149, 150). In a myogenic conversion assay 

using 10T1/2 cells, MEF2A was shown to synergize with MyoD to promote muscle 

differentiation but it was not sufficient to induce differentiation on its own (149). Since then the 

number of MEF2 binding proteins has grown exponentially, and these interactions are often 

tissue and context dependent. For example, Myocardin is a muscle specific protein that can be 

modified into two respective splice variants (151). The shorter isoform is expressed in smooth 

muscle and interacts with SRF exclusively, while the longer isoform is cardiac specific and can 

also interact with MEF2 in addition to SRF. During embryogenesis Myocardin expression in the 
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somites represses skeletal muscle differentiation (152). A Myocardin protein family member 

called MASTR is highly expressed in skeletal muscle and can interact with MEF2 to regulate 

MyoD expression during satellite cell differentiation (153). MEF2 also interacts with key 

transcription factors involved in cardiogenesis including Gata4 (154) and Tbx5 (155). 

The involvement of MEF2 in several signaling pathways including Wnt, Notch and TGF-β 

has been documented in our lab. Recently, MEF2 and β-catenin, a terminal protein effector in the 

canonical Wnt pathway, have been shown to directly interact (156, 157). As discussed above, 

non-canonical Wnt signaling has been associated with satellite cell symmetric division while 

canonical Wnt signaling has been associated with satellite cell proliferation and differentiation 

(58, 158). Precocious activation of canonical Wnt signaling via G3K3-β inhibitors induces 

satellite cell differentiation and expression of Follistatin, an antagonist of Myostatin, in a MyoG-

dependent manner (58). Similarly, Wnt signaling is involved in several aspects of heart 

maintenance including cardiomyocyte death (159). Mesenchymal stem cells that are recruited to 

the damaged heart release Secreted Frizzled receptors (Sfrps) which act as antagonists of Wnt 

signaling and prevent ischemia-induced cardiomyocyte death (159). Whether MEF2 is directly 

involved in Wnt signaling during satellite cell regeneration or cardiomyocyte apoptosis has not 

been determined. 

Notch signaling is a unique pathway in that it requires physical cell contact between the cell 

containing the Notch receptor and the cell expressing the Notch ligand, Delta or Jagged. In vitro  

Notch signaling reduces MEF2C DNA-binding and blocks myogenesis by a direct interaction 

between the Ankyrin-repeat domains of Notch and MEF2C (160). A downstream Notch co-

factor (MAML) can also interact with MEF2, however in this case, MAML promotes MEF2 

transcriptional activity (161). Upon Notch signaling, MAML is displaced from MEF2 and is 

instead recruited to the Notch transcriptional complex (161). Using a yeast two-hybrid screen 

(162) Strawberry Notch (Sbno1) was found to be a binding partner of MEF2D. Sbno1 was 

identified using mutational analyses in Drosophila which demonstrated phenotypic mutations 

similar to loss of function mutations in Notch signaling (163). The exact role of Sbno1 remains 

unclear. In C2C12 myoblasts Sbno1 inhibits MEF2 transcriptional activity and prevents 

myogenesis (Jahan, S unpublished). In contrast, Notch and MEF2 synergistically contribute to 

the metastasis of epithelial cells in Drosophila (164).  



17 
 

The majority of TGF-β signaling results in repression of myogenesis (e.g. TGFβ-1 (165, 

166)) or promotes muscle degradation (e.g. Myostatin (167)). By contrast, a related family 

member, GDF-11 had been recently shown to activate muscle regeneration and reduce cardiac 

hypertrophy using heterochronic parabiosis between young and aged mice (168). GDF-11 is very 

similar to Myostatin and therefore the scientific veracity of GDF-11 as a rejuvenation factor has 

been called into question (169). The crosstalk between TGF-β signaling and MEF2 activity 

during myogenesis has been unclear. MEF2 was shown to interact with canonical Smad2 in vitro 

in a p38MAPK-depedent manner to promote gene expression (170) but another study showed 

that Smad3 could repress MEF2 (171). Quinn et al. (170) speculated that MEF2 activity  may be 

repressed by TGF-β in high serum conditions and synergize with Smad proteins if TGF-β is 

received after differentiation has begun in low serum conditions.  

These examples highlight that MEF2 is implicated in many ubiquitous signaling pathways 

yet much work remains to be done to decipher the precise protein:protein interactions that 

mediate these effects.  

2.4 MEF2 and chromatin remodelling  

Epigenetics is the sequence independent modification of chromatin that may regulate gene 

expression. This includes DNA methylation of cytosine and guanine repeats, termed CpG 

islands, histone modifications and non-coding RNA (ncRNA). It is the combined effect of 

transcription factors and epigenetics that determine whether or not a gene is transcribed. 

DNA packaging is dependent on the nucleosome, a multimeric protein complex around 

which the DNA double helix is wound. The proteins within a nucleosome are called histones, a 

basic protein family that facilitate the packaging of DNA. There are five types of histone 

proteins: H1, a linker histone, and four core histones (H2A, H2B, H3 and H4). The nucleosome 

core is made up of an octamer of two of each core histone, around which approximately 146 

nucleotides are looped (172, 173). Linking each nucleosome is a span of 40-60 additional 

nucleotides where H1 can bind, which stabilizes the nucleosome by increasing the number of 

nucleotides coiled around the histone octamer to 166 base pairs (174). H1 also facilitates further 

DNA packaging and has an affinity for methylated DNA which strengthens the repression of 

genes (175–177).  

Nucleosomes may be repositioned via ATP-dependent chromatin remodelling complexes 

such as SWI/SNF (switch/sucrose non-fermenting) or NURF (nucleosome remodeling factor) 
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(178, 179). Nucleosome stability also has implications in gene expression and is regulated by 

histone modifying enzymes which target specific residues on histones to compress or relax DNA 

through a variety of PTMs such as ubiquitination, sumoylation, and phosphorylation however, 

acetylation and methylation are two of the better studied histone modifications. The interaction 

between histones and DNA is mediated by positively charged residues within histone proteins 

which are attracted to the negative charges in DNA. Several histone PTMs utilize this 

electrostatic attraction as a mechanism of control over DNA expression to affect not only 

chromatin structure, but also the recruitment of other proteins such as transcription factors to 

DNA. In most cases, histone PTMs target the histone tail, located at the amino terminal in 

histones. Histone acetylation generally relaxes DNA compaction by neutralizing the positive 

charges within the basic histone, and therefore this modification is associated with active 

transcription (180, 181). Histone methylation can indicate active or repressed genes depending 

on which histone residue is targeted. Two histone methylation markers commonly used in gene 

expression analyses are H3K4me3 and H3K27me3 for active and repressed gene expression, 

respectively (182, 183). In some cases the same residue within the histone may be targeted for 

acetylation or methylation such as H3K9 which is methylated to induce heterochromatin 

assembly but acetylated to maintain an active chromatin state (184).  

Epigenetic and co-factor recruitment to MEF2 target genes is necessary for myogenesis and 

is implicated in cardiac disease. One of the best studied MEF2 interactions is with class II 

histone deacetylase (HDAC4, 5, 7 and 9). Among all HDACs, only class II has a MEF2 

interacting domain (185) which contacts with MEF2 at the N terminus (amino acid 39-71) where 

the MADS and MEF2 domains are found. Sub-cellular localization of class II HDACs is 

regulated by calcium/calmodulin-dependent protein kinase (CaMK) which directly 

phosphorylates class II HDACs and results in its exportation from the nucleus, and therefore 

dissociation from MEF2, via chaperone protein 14-3-3 (186–188). Class II HDACs contain a 

catalytic domain which serves to deacetylate histones, however, their repression of MEF2 

transcriptional activity is not dependent on this domain but instead predominantly through steric 

blockage (185). The nuclear export of class II HDACs is required for skeletal myogenesis in a 

CaMK dependent manner (189). In cardiac hypertrophy the CaMK-MEF2-HDAC signalling 

cascade has been studied extensively (86). Constitutively active CaMKIV results in HDAC 

nuclear exclusion and activates MEF2 in the heart resulting in cardiac hypertrophy (190). 



19 
 

Genetic deletion of HDAC9 also results in cardiac hypertrophy, and when crossed with MEF2-

lacZ mice, there is enhanced MEF2 activity (191). HDAC9 has the unique ability to form a 

negative feedback loop, as MEF2 directly binds to and regulates HDAC9 gene expression (192). 

HDAC9 also has an alternative splice variant called MEF2-interacting transcriptional repressor 

(MITR) which interacts with and represses MEF2 but has no catalytic domain (193). In 

cardiomyocytes Backs et al. (194) presented evidence indicating that the nuclear export of 

HDAC4 is evaded by alternative splicing in response to PKA signaling, such that only the 

inhibitory MEF2 binding domain moves to the nucleus, and the domain recognized by 14-3-3 is 

no longer present (194). In contrast to HDACs, p300/CBP are histone acetyl-transferases that are 

required for skeletal muscle differentiation and can directly interact with bHLH proteins and 

MEF2 (195–197). More recently, the MEF2-HDAC interaction has been implicated in 

mesenchymal-epithelial transition (MET) that happens during somatic cells reprogramming to 

iPS cells (198). The authors argue that MEF2 prevents MET during reprogramming and that 

class II HDACs are necessary to inhibit MEF2 signaling and allow reprogramming of fibroblasts 

to occur.  

Trichostatin A (TSA) is an HDAC inhibitor (HDACi) which targets the zinc dependent 

catalytic domain of Class I, II and IV HDACs to inhibit deacetylase activity. In muscle cell 

culture, TSA promotes myogenesis (199). BML-210 could be a promising HDACi as it blocks 

the interaction between MEF2 and HDAC4 (200). Using class II specific HDACi in vivo, 

however, may indirectly target protective effects of HDACs. Using a muscle-specific HDAC4 

deficient mouse model, Pax7 and its downstream targets are downregulated, indicating a critical 

role for HDAC4 in satellite cell activation and regeneration (201).  

Histone methylation is found on lysine and arginine residues and can signify active or 

repressed chromatin, depending on which histones and residues are targeted. An important 

feature of histone methylation that differs from acetylation is that multiple methyl groups can be 

added to the targeted residue (mono-, di- or tri-methylated). Histone methylation is regulated by 

histone methyltransferase (HMT) and histone demethylase. H3K27 trimethylation is regulated by 

a complex of proteins including Ezh2, Suz12 and Eed which together form a regulatory complex 

called Polycomb repressive complex 2 (PRC2). In myoblasts H3K27me3 is present on the 

Myogenin promoter, but Suz12 knockdown decreases this histone modification and results in an 

increased expression of Myogenin RNA (202). Recent studies have identified important HMT 
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and histone demethylase to be dependent on MEF2 interacting partners, MyoD and class II 

HDACs. When HDAC4/5 and MITR are associated with MEF2, they recruit Heterochromatin 

Protein 1 (HP1) which may associate with histone methyltransferase SUV39H1, thereby 

resulting in H3K9 methylation and gene silencing (Figure 7A) (203). H3K4 may be di or 

trimethylated by the Mixed Lineage Leukemia (MLL) histone methyltransferase complex which 

corresponds to poised and active transcription, respectively. Using an in vitro muscle cell line 

MEF2D, and to a lesser extent MEF2C, were shown to recruit the MLL subunit Ash2L which 

provides the transcriptionally permissive mark H3K4me3 in a p38 dependent manner to muscle 

specific promoters (Figure 7B) (204). Brg1, an ATP-dependent helicase and SWI/SNF 

chromatin remodeling enzyme was shown to be necessary for p38 to induce myogenesis (205) 

and later MEF2D, Myogenin and Brg1 were shown to interact on late muscle specific promoters 

(206).  

The complexity of epigenetic regulation becomes even more complex when other 

transcription factors are taken into account. Pax7 is also able to interact with MLL via a Pax3/4 

binding protein and also after post-translational methylation of Pax7 by Carm1 (207, 208). Set7, 

the HMT responsible for monomethylation of H3K4, is required for myogenesis and is able to 

interact with MyoD (209). Furthermore, the repressive marker, H3K27me3, is maintained in 

myoblasts by PRC2 and then removed by UTX as the cells differentiate (210).  
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Figure 7. The role of MEF2 in epigenetic gene regulation. A) MEF2 strongly interacts with class 

II HDACs which repress MEF2 function and may also contribute to regional histone 

deacetylation, but also recruit HP1 and SUV39H1 which methylates H3K9 and represses 

transcription. B) MEF2 recruitment of histone methyltransferase Ash2L, which places a 

transcriptionally permissive histone marker, has been well studied in skeletal muscle. Chromatin 

remodelling factor Brg1 may also be recruited by MEF2 to promote gene expression. C) LSD1 

demethylates transcriptionally repressive histone markers to promote gene expression in skeletal 

muscle.  

 

Histone demethylation of H3K4 and H3K9 is mediated by lysine specific demethylase 1 

(LSD1) (211). LSD1 is able to interact with MEF2 to induce myogenesis however it appears that 

LSD1 only demethylates H3K9 in this context (Figure 7C) (212). 

Using ChIP methodology in combination with microarray analysis (ChIP-chip) or with 

sequencing (ChIP-seq) there has been tremendous movement in our understanding of the role of 

MEF2 in myogenesis. In Drosophila, ChIP-chip assays in three stages of the Drosophila lifecycle 

identified multiple pathways of MEF2 involvement in muscle development (213). In C2C12 

myoblasts MEF2 and MRF recruitment was assessed also using ChIP-chip which showed in 
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addition to myogenesis, these factors were involved in the cell cycle, stress pathways and 

development of the neuromuscular junction (NMJ) (214). In C2C12, MEF2 on CpG islands 

(ChIP-CpG island-chip) was also shown to be associated with NMJ (215). These ChIP-chip 

arrays are useful in identifying biological function, but have a limited scope as they contain 

select regions of DNA. Using ChIP-seq, MyoD was revealed to have thousands of novel binding 

sites during myogenesis, the majority of these were inter and intragenic regions (216).  MyoD 

recruitment was also found to be correlated to chromatin accessibility as shown in a conversion 

assay using mouse embryonic fibroblasts, MyoD overexpression induced significant changes in 

regional histone acetylation (216). 

2.5 Regulation of MEF2 by post-translational modifications 

MEF2 is also regulated by a variety of kinases such as p38 MAPK (217, 218), ERK5 (162, 

219), HIPK2 (220), PKA (147), PKC (218), skMLCK which results in PCAF/p300 recruitment 

(221) and Nemo-like kinase during early Xenopus development (222). Protein phosphatases, 

although less well-studied, have also been shown to regulate MEF2 activity such as PP1-α (223). 

In skeletal muscle the p38MAPK-MEF2 signaling cascade is necessary for myogenesis and 

has been studied extensively. p38 phosphorylates three locations of MEF2 within the TAD at 

Threonine 312 and 319 and Serine 453 in MEF2A and in conserved sites in MEF2C at Thr 293, 

Thr 300, and Ser 387 (Figure 6), resulting in enhanced transcriptional activity of myogenic 

targets (217, 224). ERK5/BMK1 also targets Ser387 in MEF2C and the conserved site in 

MEF2A (162, 219). MEF2D and MEF2B have not been shown to be directly phosphorylated by 

p38, however changes in transcriptional activity by activated p38 and MEF2D have been 

documented (204, 225). In vitro p38 blockade using chemical inhibitors that sterically block the 

catalytic domain prevents skeletal myogenesis (226). In the developing somites and limb buds, 

p38 and MEF2 are co-expressed and inhibition of p38 results in decreased MEF2 activity as 

determined in a MEF2-lacZ model (227). One mechanism by which p38 promotes skeletal 

myogenesis is through targeting SWI/SNF chromatin remodelling complexes to target genes 

(205). As p38 is a stress activated pathway, it is not surprising to see that p38 activity is 

upregulated in cardiac hypertrophy (228). A recent study showed that pressure overload-induced 

hypertrophy was mediated through Adiponectin, p38 and MEF2 (229) but the precise mechanism 

of p38 activation in cardiac hypertrophy and the downstream consequences require further 

investigation.  
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The regulation of MEF2 by PKA phosphorylation has been studied in a variety of tissues 

including cardiomyocytes, skeletal muscle, vascular smooth muscle and neurons. In myoblasts 

PKA inhibits MEF2 transcriptional activity in two ways. PKA directly phosphorylates MEF2D 

at Serine 121 and Serine 190 (Figure 6) and indirectly represses MEF2 by promoting HDAC4 

nuclear accumulation (147). Interestingly MEF2D has two splice variants, one of which lacks the 

MEF2D PKA phosphorylation target sites. Full-length MEF2D is expressed in myoblasts and 

subject to PKA repression, however as cells exit the cell cycle and enter differentiation the 

alternative splice isoform is present and MEF2D escapes PKA-mediated repression (148). This 

study also identified different co-factors for MEF2D splice variants. The early MEF2D isoform 

was able to interact with HDAC4 but the later form interacted with Ash2L. In vascular smooth 

muscle, PKA signaling enforces a MEF2-HDAC4 interaction indirectly, by phosphorylating 

SIK1 to lead to HDAC4 nuclear accumulation (230). MEF2 also has a pro-survival role in 

hippocampal neurons wherein PKA activation results in apoptosis and the repression of MEF2D 

(231). Similarly, in primary rat cardiomyocytes, activation of PKA increased cell death but PKA 

resistant mutants of MEF2 rescued this effect (232). 

2.6 MEF2 and miRNA gene silencing 

The importance of miRNA in developmental and disease pathways has developed at an 

exponential rate since the first miRNA was characterized in C. elegans in the early 1990s. In 

2006 Chen et al. (233) used a miRNA microarray to identify miRNA involved in skeletal 

myogenesis. Two miRNA clusters containing miR-1 and miR-133 stood out as they are induced 

during myogenesis, abundant in both skeletal and cardiac muscle and they are on the same 

chromosome and transcribed as one transcript. Two of the initial targets of miR-1 and miR-133 

were HDAC4 and SRF, respectively. This comprehensive study also determined that miR-1 

promoted myogenesis while mir-133 promotes proliferation. These two clusters have been 

labelled as miR-1-2 with miR-133-1 and mir-1-1 with miR-133-2. Interestingly both of these 

independent miRNA clusters contain MEF2 regulatory sites, and mir-1-2/mir133-1 was shown to 

be directly regulated by MEF2 (234).  

Another miRNA cluster contains miR-206 with miR-133b. miR-206 promotes skeletal 

myogenesis by inhibiting p180 and therefore inhibiting DNA synthesis (235) but it has many 

other targets including Pax7, HDAC4, and Id, a transcriptional repressor of MyoD (235–237). 

Another locus containing mir-1/206 appears to be indirectly regulated by MEF2 (238). 
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A negative feedback loop involving MEF2, miR1/206, p38 and Notch signaling has been 

characterized in myoblasts. The Notch signaling pathway can affect the MAPK pathway by 

inducing expression of Dual Specificity Phosphatase 1 (DUSP1, also known as MKP-1) which 

deactivates p38 and therefore blocks myogenesis (239). Gagan et al. (238) showed that Notch3 

inhibits myogenesis by upregulating DUSP1 which decreases p38 activity and therefore 

downregulates MEF2 transcriptional activity (238). MEF2 can in turn regulate Notch3 

expression by inducing expression of mir-1/206.  

Long noncoding RNAs (lncRNA) are RNA up to 200 nucleotides long with multiple 

functions including regulating DNA transcription, interfering with translation and acting as 

sponges for miRNA. linc-MD1 is one such lncRNA that acts as a sponge to modulate the effect 

of miR-133 and miR-135 and thereby promote muscle differentiation (240). Although it is likely 

that MEF2 can regulate lncRNA, none have yet been characterized.  

3. Therapeutic relevance of MEF2 in skeletal and cardiac muscle disease 

With the aging population set to dramatically increase in the near future, identifying 

therapeutics for muscle degeneration and wasting as well as heart disease will be of critical 

importance. Investigation of the role of MEF2 in satellite cell quiescence, activation, 

proliferation and differentiation and heart failure are necessary to fully understand how to treat 

these diseases. 

3.1 Metabolic disease 

Healthy tissue is sustained by the regulation of energy input and output at the molecular 

level in a process referred to as metabolism. This involves the combined processes of energy 

production (catabolism) via the breakdown of molecules such as glucose to produce ATP, and 

energy consumption (anabolism), which requires ATP to produce new molecules. In muscle the 

cyclical transition of energy input and output is necessary to sustain everyday tasks such as 

voluntary movements of the limbs or autonomous beating of the heart. The primary sources of 

energy production are from the liver and skeletal muscles which respond to insulin and house 

glycogen stores (Figure 8). Therefore, skeletal muscle has a role unlike many other tissues in 

that it is important not only in the storage of energy but also in energy consumption through the 

high-energy demand of contraction. Understanding the mechanisms by which muscle is able to 

regulate metabolic pathways is important in the prevention and treatment of muscle-related 

diseases. Several metabolic diseases are particularly relevant in muscle including diabetes and 
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muscle atrophy, which can manifest as a side-effect to aging, cancer or AIDS (referred to as 

cachexia) or muscle disuse.  

 

Figure 8. Mechanisms of glucose storage. Glucose triggers insulin secretion from the pancreas 

which results in glucose uptake in various tissues. Shown here are the three main sources of 

energy: adipose tissue, which store glucose as triglycerides, and skeletal muscle and liver, which 

store glucose as glycogen. 

 

3.1a: Diabetes 

After a meal, there is an increase in extracellular glucose that can either be taken up by cells 

for storage as glycogen, or immediately used for protein synthesis or other processes that require 

ATP. The body responds to extracellular glucose by secreting insulin from the pancreas to 

trigger glucose import. The insulin receptor is a receptor tyrosine kinase that responds to insulin 

or insulin-like growth factor (IGF) I and II by activating downstream effectors that mediate 

glucose uptake (Figure 9). If not needed for immediate energy consumption, glucose is stored as 

glycogen. Synthesis of glycogen from glucose occurs primarily in the liver and skeletal muscle 

while adipose tissue stores glucose in the form of triglycerides. Once the insulin signalling 

cascade is initiated in skeletal muscle and adipose tissues, the primary mechanism of glucose 

uptake is via insulin-responsive glucose transporter 4 (Glut4) (reviewed in (241)). In the absence 

of insulin, Glut4 is confined to the interior of the cell, however if insulin signaling is received, 

Glut4 moves to the plasma membrane. Interestingly, Glut4 mRNA and protein expression is 

increased following exercise, which in turn leads to enhanced glycogen accumulation (242). In 

addition the stable overexpression of Glut4 can increase the rate of glycogen made, indicating a 

critical role for Glut4 in metabolism (243).  Glycogen synthesis is mediated by glycogen 

synthase, which is inhibited by GSK3-β in unstimulated cells. Insulin signaling triggers 

activation of Akt/PKB which phosphorylates and inhibits GSK3-β, resulting in glycogen 

synthesis. 
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Figure 9. Insulin signaling in metabolic tissue. Insulin binds to IGF receptors on the cell surface 

of metabolic tissues, resulting in Akt/PKB activation which has two main effects on glucose 

storage: 1) Akt/PKB inhibits GSK3-β which results in glycogen synthesis and 2) Promotes Glut4 

translocation to the cell membrane which mediates glucose uptake. Glut4, the main glucose 

transporter, is under the transcriptional control of MEF2. 

 

Diabetes is a metabolic disease in which an individual does not regulate blood-glucose 

levels properly which can lead to hyperglycemia, severe muscle wasting or death if untreated. 

There are two primary classes of diabetes. Type I diabetes occurs in individuals who are unable 

to produce and secrete insulin from the pancreas. This is caused by an autoimmune response in 

which the insulin producing cells of the pancreas, β-cells, are destroyed. This disease has no cure 

however it can be treated with insulin injections. 

Individuals with Type II diabetes are referred to as insulin resistant, as although insulin is 

secreted, glucose uptake is impaired. This can occur through various defects in the insulin signal 
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transduction pathway such as faulty insulin receptors or impaired transportation of glucose into 

the cell (reviewed in (244)). For example, individuals with Type II diabetes have decreased 

Glut4 expression in adipocytes but normal expression in skeletal muscle with impaired 

translocation to the plasma membrane (245, 246). To account for the lack of glucose uptake the 

body increases insulin secretion and this results in a temporary normal insulin response, yet this 

compensatory effect is not sustained. It has been reported that Type II diabetes in obese 

individuals is caused predominantly by diet and exercise, however, there is emerging evidence 

that the epigenetic events within certain genes may predispose individuals to the development of 

the disease. Several hypotheses have been proposed to rationalize a genetic reason as to why 

genes responsible for this disease would be retained in the population. One hypothesis suggests 

that the environment during early life dictates gene expression as an adult, as modeled through 

the observed correlation between low birth weight and the development of Type II diabetes (247, 

248). There is strong evidence to support this hypothesis using intrauterine growth restricted 

(IUGR) mouse models and population studies (249).  

Since glucose transportation is a critical component of the insulin response, modulating the 

expression and translocation of Glut4 could be a viable option to treat those who are insulin 

resistant. Investigation into the molecular events responsible for Glut4 expression revealed that it 

is dependent on the transcriptional activity of MEF2 and subject to extensive epigenetic control. 

Initial studies of the Glut4 promoter identified a MEF2 binding sites between -463 and -473 

which is required for normal Glut4 expression (Figure 9) (250, 251). The MEF2 isoforms 

believed to be responsible for proper Glut4 expression was a MEF2A/MEF2D heterodimer 

(252). Glut4 expression also relies on the co-operation between MEF2, MyoD, thyroid hormone, 

and a novel co-factor, Glut4 enhancer factor (GEF), which binds 300 base pairs upstream of the 

MEF2 site (253, 254). Interestingly, pregnant mice on a low protein diet produced offspring with 

increased MEF2A protein, GLUT4 expression and enrichment of H3K4me2 (a transcriptionally 

permissive mark) and RNA polymerase II on the Glut4 gene (255). Conversely Glut4 expression 

was decreased if mice were on a low calorie diet (256). In addition, Raychaudhuri et al. (257) 

found that IUGR leads to an increase in MEF2D but a decrease in MEF2A and MyoD 

enrichment on Glut4.  

Molecular regulation that occurs upstream of MEF2 such as HDACs and p38 are modified 

by exercise in a concerted effort to produce a cellular environment in which MEF2 is active and 
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Glut4 is expressed. Examples of this include enhanced DNA interaction between MEF2A/D and 

GEF, nuclear export of HDAC, strengthened MEF2-p38 interaction and subsequent 

phosphorylation of MEF2, all of which are exercise-induced events (258, 259). As described in 

Part 1 of this review (see Striated muscle contraction), there are two main type of energy 

production in muscle: oxidative phosphorylation (Type I and IIa) and glycolysis (Type IIb and 

IIx). Type I fiber type is driven by transcription factor PGC-1α which has several important roles 

in oxidative phosphorylation and metabolic disease in muscle atrophy and diabetes. The most 

well studied function of PGC-1α is to regulate mitochondrial biogenesis, which promotes the 

oxidative phosphorylation gene program in a calcium dependent manner (260) and, because 

metabolic preference contributes to fiber type classification, fiber type switching from Type II to 

Type I is also driven by PGC-1α (102). MEF2 directly regulates the expression of Ppargc1a and 

it is also able to directly co-operate with PGC-1α (102, 261). In a microarray screen using human 

diabetic muscle samples, genes associated with oxidative phosphorylation and driven by PGC-1α 

were downregulated (262). In addition, as was seen on the promoters associated with muscle 

fiber type switching, PGC-1α, was able to increase Glut4 expression by enhancing MEF2 

transcriptional activity (263). Together these studies identify an indirect role for MEF2 in the 

progression of Type II diabetes.  

3.1b: Pathways regulating muscle atrophy 

To gain energy during times of nutrient deprivation, our body takes advantage of energy 

stores in muscle and fat. In extreme cases, such as starvation, the energy demand outweighs 

available nutrients and energy stores in the muscle are depleted. This requires the body to 

produce energy through alternative measures, including degradation of muscle itself. 

Alternatively, aberrant signaling to the mechanisms that control muscle metabolism can also 

result in muscle degradation. This muscle wasting phenomena is known as muscle atrophy and 

can manifest in several diseases including diabetes, cancer, AIDS, aging and muscular 

dystrophies. The pathways that mediate atrophy are complex but the outcome is simple: reduced 

protein synthesis and enhanced protein degradation. Exercise is a suggested therapy to regenerate 

muscle however this is an unrealistic treatment for patients with severe diseases, therefore 

pharmaceutical treatments to prevent protein degradation or promote muscle regeneration are 

being pursued. A critical experiment utilized microarray analysis to compare the mRNA levels of 

mice and rats with muscle wasting induced by fasting, cancer cachexia, diabetes, or renal failure 
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(264) and identified increased expression of several key factors, termed atrogenes, that mediate 

protein degradation either through the autophagy or ubiquitin-proteasome pathways.  

The ubiquitin-proteasome pathway is a necessary cell process that targets proteins for 

degradation in the proteasome via mono- or poly-ubiquitin tags that are added to lysine residues 

(Figure 10). Attaching ubiquitin to the target protein happens in a multi-step process in which 

ubiquitin is transferred by E1 (activating enzyme), to E2 (conjugating enzyme) and finally E3 

(ligating enzyme). The E3 ligase has substrate specific activity.  

One of the complexes that targets misfolded proteins to the proteasome involves heat shock 

protein Hsc70, Bcl-2-associated athanogene 1 (Bag1) and carboxy-terminus of Hsc70 interacting 

protein (CHIP), an E3 ligase (265). Bag1 acts as a co-chaperone with Hsc70 and also interacts 

with the proteasome, therefore promoting misfolded proteins to be degraded instead of refolded. 

CHIP expression is enriched in the heart and skeletal muscle (266) and knockout mice develop 

normally but are more susceptible to myocardial infarction and cardiomyocyte apoptosis after 

left coronary artery ligation (267). 

In times of muscle atrophy two muscle-specific E3 ubiquitin ligases, MAFbx and MURF1, 

are expressed (268). These proteins are able to target the same proteins such as MyBP-C (269), 

but evidence exists that they also differentially target proteins such as myosin and other 

myofibrillar proteins which are targeted by MURF1 (270, 271). MAFbx can target translation 

protein eIF3-F and MyoD (272, 273).  
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Figure 10. Protein ubiquitination and degradation in muscle. The figure highlights two 

mechanisms protein degradation in muscle. Misfolded proteins are targeted for degradation via a 

protein complex of Hsc70, Bag1, and E3 ligase CHIP. Under atrophic conditions, muscle-

specific E3 ligases MuRF1 and MAFbx are expressed and ubiquitinate muscle proteins.  

 

During classical autophagy, termed macroautophagy, Atg family members contribute to the 

formation of autophagosomes which will fuse with the lysosome to degrade its contents (Figure 

11). LC3B (Atg8 in yeast) is integrated into the autophagosome in a step-wise manner. First, full 

length LC3B is cleaved by cysteine protease Atg4b which produces an exposed glycine residue 

and results in cytosolic LC3B-I (274). Phosphatidylethanolamine (PE) is added to LC3B-I to 

produce LC3B-II via Atg7, Atg3 and Atg12-Atg5-Atg16L in a process similar to E1/E2/E3 

ubiquitin conjugation (275). Adding this lipid group drives LC3B-II to associate with the 

membrane of the autophagosome. Substrates are targeted to the autophagosome by autophagy 

receptors such as p62/Sqstm1 which bind ubiquitinated proteins and bring them to the growing 

autophagosome via direct interaction with LC3B-II (276). The autophagosome then fuses with 

the lysosome and the contents are degraded. Macroautophagy includes the degradation of 

individual proteins and mitophagy, degradation of mitochondria (277). Microautophagy occurs 

when the lysosome engulf small peptides and lipids. Chaperone mediated autophagy (CMA) 

requires heat shocks protein Hsc70 (ubiquitous) or Hsp70 (inducible) and co-chaperone proteins 
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to target peptides to the lysosome via a KFERG motif on the misfolded protein (278, 279). 

Lamp2A receptors on the surface of lysosomes mediate transfer of the protein into the lysosome 

(280).  

 

 

 

Figure 11. Pathways of autophagy. Four methods of autophagy are shown: Chaperone mediated 

autophagy (CMA), Chaperone-assisted selective autophagy (CASA), Microautophagy and 

Macroautophagy. CMA degrades misfolded proteins and relies on the protein complex Hsc70 

and co-chaperone proteins. The complex then moves to the lysosome where the misfolded 

protein interacts with Lamp2A on the surface of the lysosome. Microautophagy occurs when the 

lysosome engulfs small molecules. During macroautophagy p62 binds to ubiquitinated protein 

cargo or whole organelles (e.g. Mitochondria) and brings them to LC3B in the growing 

autophagosome. CASA involves Hsc70, Bag3, CHIP and Hspb8 which target protein aggregates 

to an autophagosome via p62. 
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The Hsc70-CHIP-Bag1 complex has been known to promote protein degradation via the 

ubiquitin-proteasome pathway (Figure 11) (265), however, Bag3 was found to replace Bag1 in 

the same complex in aged models and promote autophagy over proteasome-mediated 

degradation via an interaction with SQSTM1/p62 (281). Another group found that Hsc70, Bag3, 

CHIP and small heat shock protein Hspb8 (282, 283) form a complex to mediate an alternate 

mechanism of autophagy which they termed chaperone assisted selective autophagy (CASA). 

CASA is an intermediate between macroautophagy and chaperone mediated autophagy and 

primarily targets protein aggregates but has only been described in muscle. The CASA complex 

localizes to sarcomeric structures in the Z disc, wherein Hsc70, Bag3 and Hspb8 can recognize 

myofibrillar protein aggregates, CHIP then ubiquitinates the target protein and this recruits the 

autophagosome via interaction with p62 (282).  

Muscle atrophy also depends on the inactivation of pathways which promote muscle 

formation, which is heavily influence by Akt/PKB and upstream regulation by Myostatin, a 

member of the TGF-β superfamily that activates downstream signaling via Activin Type II 

receptors (Figure 12). Akt signalling represses FoxO family transcription factor members Foxo1 

and Foxo3 which are the main drivers of atrophy as they activate the expression of factors that 

directly contribute to the autophagy and ubiquitin-proteasome pathway. Both Foxo1 and Foxo3 

can induce expression of MAFbx and MURF1 however only Foxo3 can activate autophagy by 

regulating LC3B, Atg4b and other autophagy related genes (284, 285). Foxo3 activity is 

inhibited by PGC-1α (286) and Junb in mouse models of muscle atrophy (287).  
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Figure 12. Transcriptional regulators of muscle atrophy. Myostatin signaling through the Activin 

Type II receptors inhibits Akt/PKB and results in activation of transcription factors Foxo3 and 

Foxo1 which contribute to muscle atrophy.  

3.2 Role of MEF2 in skeletal muscle regeneration 

During muscle regeneration, a process similar to myogenesis occurs in which quiescent 

Pax7+ cells, called satellite cells, become activated and will express Myf5 and MyoD. This is 

followed by MyoG and MEF2 and eventually differentiating myoblasts will fuse with the 

existing myofiber (288) (Figure 4). Treatment of genetic and metabolic muscle diseases utilizing 

satellite cells, either through endogenous activation or satellite cell transplantation, has been an 

area of active research (289). With age, satellite cell numbers decrease dramatically, therefore 

regenerative capacity is reduced (290). Inherited skeletal myopathies show dramatic muscle fiber 

destabilization which signals for constant satellite cell activation until this stem cell pool 

becomes depleted and regeneration is no longer possible. Harnessing the regenerative potential 

of satellite cells through transplantation could be a possible treatment option in muscle 

degeneration. The precise role of MEF2 in satellite cell activation is being explored. Global 

deletion of MEF2A show impaired skeletal muscle regeneration (139) but since this knockout 

was not skeletal muscle specific the possibility remained that this deficiency was caused by 

impairment in the immune response not by defects in satellite cell differentiation. Also gene 

deletion of individual MEF2 genes during muscle regeneration may be obscured by the 

redundant function of MEF2 proteins. In 2014 MEF2 was shown to have a role in muscle 
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regeneration using a skeletal muscle specific MEF2A, C and D triple knockout mouse (140). 

Some of the implications of MEF2 processes discussed in this review have been associated with 

human disease (Table 1). 

 

Table 1. MEF2 and human disease. A compilation of a subset of known MEF2 mutations or 

functions and the implications in human disease.  

Human disease Evidence MEF2 function 

Alzheimer's; Mental retardation SNPs or haploinsufficiency of MEF2C (291, 

292). 

Neuronal targets during development (124).  

Role in neuronal survival (231, 293). 

Bone mineral density SNPs in MEF2C (294). MEF2 controls bone hypertrophy (129). 

Cachexia MEF2C is reduced in C26 carcinoma mouse 

models (295). 

MEF2 maintains muscle integrity. 

Diabetes (indirect) i) Promotes Type I fiber formation (slow-
oxidative) 

ii) Mediates glucose uptake 

i) PGC-1α is a MEF2 target gene and co-factor (102, 
261). 

ii) MEF2 binding to Glut4 is reduced in diabetic 

animal models (250). 

Familial hypertrophic cardiomyopathy Mice carrying MHC403/+ to model FHC 
crossed with MEF2-reporter. 

MEF2 activity is upregulated with disease progression 
in MHC403/+  particularly prior to heart failure (296). 

General myopathies (indirect) Loss of MEF2 results in destabilization of 

sarcomeres. 

i) Regulates costamere-associated gene expression 

(297). 

ii) Thick filaments of the sarcomere (137). 
iii) Disorganized myofibers  in MEF2C sk-muscle KO 

(298). 

Heart failure i) MEF2 activates the fetal gene program. 
ii) Activity of MEF2 is upregulated in murine 

models of heart failure (pressure overload). 

i) MEF2 upregulates ANF, MHC isoforms, early 
response genes (86). 

ii) Alternative splicing of MEF2; regulation of MEF2 

by PKA, β-blockers and CaMKII, (186, 232, 299). 

Myotonic dystrophy (DM1, DM2) Human samples of DM1 and 2. MEF2 and downstream targets are downregulated. 
MEF2 is also alternatively spliced in this disease 

(300). 

Nemaline myopathy Nemaline myopathy is associated with 

mutations in Lmod3 (301). 

Lmod3 is a MEF2 target gene (225, 302). 

Sarcopenia and muscle wasting Triple MEF2 sk-muscle KO have impaired 
muscle regeneration (140). 

MEF2 has a role in satellite cell differentiation. 

 

 

Heritable mutations of proteins associated with the sarcomere or muscle structure results in 

severe disorders in both skeletal and cardiac muscles. Several muscular dystrophies have been 

characterized to have a strong genetic component. One of the most common and well-studied 

muscular dystrophies is Duchenne muscular dystrophy (DMD), in which a large scaffolding 

protein called Dystrophin is mutated (303). Under normal circumstances, Dystrophin is present 

in the Dystrophin Associated Glycoprotein (DAG) complex of the costamere and anchors muscle 

Z discs to the sarcolemma to stabilize the muscle during contraction (Figure 13). Without 
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Dystrophin the muscle fiber is weakened  and may rupture, allowing calcium to enter the cell and 

trigger mitochondrial swelling and lysis (304). Mitochondrial dysfunction then triggers 

activation of the cell death and apoptosis pathways which contribute to muscle atrophy. Resident 

satellite cells are activated and attempt to replace damaged muscle, however, because of the 

constant turnover of tissue, the satellite cell pool becomes depleted. Additionally, in this disease 

Dystrophin is also mutated in the heart, resulting in cardiomyopathy. This is an X-linked 

mutation that is particularly devastating among young boys who show severe symptoms a young 

age and succumb to the disease in their twenties by cardiac death (303). Several studies have 

attempted to do transplantation studies using exogenous satellite stem cells from relatives and 

while these studies showed some promise, efficiency was low and age was a limiting factor 

(305). Other groups have used a combination of gene correction and cell reprogramming by 

using fibroblasts from mice modelling DMD (mdx), correcting the gene using transposons and 

differentiating the cells into myoblast progenitors (306). An additional consideration to this field 

is that in mouse models of cancer cachexia, genes associated with muscle membrane integrity, 

such as Dystrophin, are reduced and E3 ubiquitin ligases, MAFbx and MURF1 are upregulated 

(307), indicating that therapies that strengthen muscle tissue may be beneficial in other diseases 

such as cancer.  

The Olson lab recently utilized the CRISPR/Cas9 genome editing system to manipulate a 

mouse embryo of the mdx strain (308). They were successfully able to use CRISPR/Cas9 to edit 

the germline of mdx mice to rescue this deficiency. This demonstrates that the genetic 

technology to correct genetic mutations is available, yet the possibility of applying 

CRISPR/Cas9 editing to human zygotes is seen by most in the scientific community to be 

dangerous. Several groups have, however, been able to use CRISPR to essentially cure muscular 

dystrophy in adult mice, without going through the germline which presents our generation with 

a new frontier of regenerative medicine (309, 310). 
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Figure 13. Structure of the sarcomere and DAG complex. One sarcomere unit is comprised of 

actin (thin) and myosin (thick) filaments. At the Z-line are costameres which contain several 

protein complexes such as the DAG complex that anchors the sarcomere in place and receives 

signals from the extracellular matrix (ECM). 

 

 

MEF2 regulates skeletal muscle cell integrity by regulating the expression of a number of 

sarcomeric and cytoskeletal genes. In the heart, MEF2A knockout mice die post-natally due to 

defects in the cell structure (134) and in skeletal muscle MEF2C mutants have compromised 

sarcomeres (136). Ewen et al. (297) showed that MEF2A is strongly linked to cardiac muscle 

cell integrity by regulating several genes associated with the costamere, and furthermore that loss 

of MEF2A in cardiomyocytes results in cell death in a cell-adhesion specific manner. In the case 

of DMD, enhancing expression of Dystrophin is useless if the protein will be non-functional. 

Interestingly, Utrophin, a highly similar protein to dystrophin that is expressed at the 

neuromuscular junction, has been investigated as a possible treatment to DMD. PGC-1α drives 

Utrophin expression in slow muscle fibers (311). Furthermore, mdx mice that transgenically 
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express PGC-1α  show improved outcome (312). Whether MEF2 interacts with PGC-1α to 

mediate Utrophin expression, or assist PGC-1α transgenic mice in this improvement remains to 

be determined. 

Involvement of MEF2 has been implicated in other myopathies such as Myotonic dystrophy 

(DM1 and DM2) that causes muscle wasting and cardiac death. In the DM1 heart, MEF2 is 

downregulated along with several MEF2-target genes and miRNA (313). In addition, Mef2 is 

alternatively spliced in DM and neuromuscular disorder (NMD) (300). Also using a mouse 

model of Becker syndrome, a disease in which muscle relaxation is delayed, MEF2 activity was 

enhanced (314).  

Nemaline myopathy, an autosomal recessive disease that causes muscle weakness was 

recently shown to be driven by mutations in Kelch-like family member 40 (KLHL40) and 

Leoimodin 3 (Lmod3) (301, 315). Both Klhl40 and Lmod3 localize to the thin filament of 

sarcomeres where Lmod3 functions as an actin-nucleation factor (316). There are three Lmod 

proteins (1-3) that are differentially expressed among smooth, skeletal and cardiac muscle. 

Lmod1 is found in smooth muscle and contains an SRF CArG box (317). Lmod2 is found in 

skeletal and cardiac muscle and also contains a CArG box but this appears to be non-functional. 

Lmod3 is found in skeletal and cardiac muscle and contain both an SRF and MEF2 binding site 

which are required for muscle function (318). 

3.3 Role of MEF2 in cell death and muscle atrophy 

Although MEF2 is traditionally thought of as a differentiation factor, which in itself has 

implications in restoring muscle fiber mass in various disease conditions, it also has roles in 

other cellular events such as cell death and survival. The importance of MEF2 in survival has 

been seen in neurons (223, 231, 293) and cardiomyocytes (232, 319) but many questions related 

to the mechanism remain. In contrast, MEF2 promotes apoptosis in T cells by regulating the 

expression of Nur77 (320). Since PKA (231, 232) and PP1-α (223) activity can result in MEF2 

transcriptional repression and subsequent cell death, investigating the target genes in this context 

would reveal the function of MEF2 in survival. Loss of MEF2D in cardiomyocytes led to cell 

cycle re-entry but also increases in cell death and related genes (e.g. Caspase 8) (319). Wales and 

Hashemi (manuscript in preparation, 2016) found that loss of MEF2A in primary 

cardiomyocytes also induced several genes related to apoptosis and cell death using RNA-seq.  
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The relationship between MEF2 and apoptosis have been investigated but other aspects of 

cell death may also involve MEF2 including atrophy via the ubiquitin pathway, necrosis and 

autophagy. While there is no evidence that MEF2 is involved in autophagy, MEF2 is degraded 

via CMA in neurons (321, 322). Muscle atrophy can be observed in muscle disuse, however in 

animals that undergo hibernation muscle atrophy is reduced in spite of enhanced MAFbx 

expression (323). This is associated with enhanced MEF2 expression and adaptive metabolic 

consequences including increased Glut4 expression and Type I fiber formation (324, 325). 

Several other correlative analyses indicate MEF2 and atrophy are linked. Transgenic mice 

overexpressing Foxo1 have enhanced muscle atrophy and reduced MEF2C expression (326) and 

similarly MEF2 expression and downstream target genes are dysregulated in microgravity-

induced muscle atrophy (327).  Perhaps the strongest evidence that MEF2 is involved in atrophy 

is that MURF1 was shown to be a MEF2 target gene in the heart in times of metabolic stress 

such as nutrient deprivation (328) yet surprisingly little has been done to further characterize this 

regulation.  

After muscle fiber damage, induced by muscular dystrophies or infection, cellular integrity 

is compromised and an unprogrammed form of cell death known as necrosis occurs. Immune 

cells are recruited to the site of injury as well as inflammatory cells which together contribute to 

the clearance of debris, recruitment of additional immune cells and activation of satellite cells 

(329). Chronic inflammation is seen in muscular dystrophies which further perpetuate muscle 

damage and this results in fibrosis instead of repair (330). TNF-α, one of the key mediators of 

inflammation (331), activates the p38 pathway in muscle and induces MAFbx expression (332). 

While no direct evidence between inflammatory signals and MEF2 in either damaged myofibers 

or recruited immune cells has been thoroughly explored, it has been shown that cardiotoxin-

induced damage of MEF2A knockout muscle results in delayed clearance and repair of necrotic 

tissue (139) and triple knockout MEF2 mutants (MEF2A,C,D) show regenerative defects (140). 

Mechanistically, TNF-α and p38 signaling has been shown to activate Ezh2 to repress Pax7 

expression, thereby controlling muscle regeneration (333). The significance of TNF-α and p38 

signaling on MEF2 signaling could therefore also mediate important downstream consequences 

on muscle regeneration and the immune response.  
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3.4 Cardiac hypertrophy 

Pathological hypertrophy occurs after myocardial infarction (heart attack) which results in 

cardiomyocyte death. Since there is no significant regenerative mechanism akin to skeletal 

muscle in the heart, existing cardiomyocytes undergo hypertrophy to compensate for decreased 

cardiac output (Figure 14). This mechanism, however, is not a permanent solution and sustained 

cardiac hypertrophy will result in heart failure. The paracrine signaling that mediates these 

processes are via the β-adrenergic signalling cascade which is activated by agonists, such as 

epinephrine or the drug isoproterenol, that bind to β-adrenergic receptors I or II.  The β-II 

adrenergic receptors appear to have a protective role as it is anti-apoptotic but β-I is associated 

with maladaptive effects (334). During hypertrophy the distribution of β-II receptors changes 

from the T-tubules to crest cells, while β-I receptors remain ubiquitous (335). 

It is unclear of the in vivo activity of MEF2 immediately after myocardial infarction, 

however in vitro β-adrenergic activation reduces MEF2 activity and promotes cell death through 

PKA (232). Furthermore β-blockers prevent cell death in a MEF2 dependent manner (232) 

suggesting that post-myocardial infarction in vivo, MEF2 activity is low (Figure 14).  As the 

heart progresses to cardiac hypertrophy, however, MEF2 activity becomes markedly enhanced 

and contributes to pathological remodelling with Gata4 and Nkx2-5 (86). PGC-1α expression 

also becomes reduced, changing the metabolism of the heart (336).  

 

Figure 14. The role of MEF2 in the progression to heart failure. MEF2 has two roles in heart 

failure: 1) MEF2 can prevent cardiomyocyte death, but the activity of MEF2 is low after 

myocardial infarction. 2) MEF2 activity promotes cardiac hypertrophy. The transition of MEF2 

activity from cardioprotective to maladaptive may be regulated by different pathways of β-

adrenergic signaling. 
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MEF2 appears to have two mechanisms of regulation in cardiac hypertrophy: via PKA in 

acute/short-term activation of β-adrenergic signaling or through CaMK in chronic/long-term 

activation (Figure 15). Short-term activation of β-adrenergic signaling activates PKA activity 

which phosphorylates MEF2D to repress activity (147). Recently it was shown in neurons and 

cardiomyocytes that MEF2 has a pro-survival function that is downregulated by PKA activity 

(231, 232). Supplementing cardiomyocytes with β-blockers, a commonly used drug used to treat 

heart disease (e.g. Atenolol), enhanced MEF2 activity and prevented isoproterenol-induced cell 

death (232). HDAC4 is also important in PKA-mediated repression of MEF2. Interestingly the 

heart expresses a truncated version of HDAC4 which retains the MEF2 interacting domain to 

selectively repress MEF2 and is able to evade shuttling from the nucleus (194). This mechanism 

requires PKA interaction with HDAC4 to promote cleavage of HDAC4 by an unknown protease. 

Zhang et al. (322) observed that the HDAC4 cleavage product was enhanced in response to 

oxidative stress and proposed that in this  case, cleavage was via lysosomal proteases. The 

resulting truncated HDAC4 protein acts similar to MITR as it contains a MEF2 interacting 

domain but has lost its histone deacetylase domain. On the other hand, PKA directly 

phosphorylates HDAC5 and promotes nuclear retention and transgenic mice expressing the 

catalytic subunit of PKA develop dilated cardiomyopathies (337, 338). To counteract this 

maladaptive effect, MEF2 target mir-133 is expressed and able to downregulate both PKA and β-

I receptor (339).  
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Figure 15. MEF2 and β-adrenergic signaling. Acute activation of β-adrenergic signaling (right; 

orange) results in PKA activation and MEF2 repression. Chronic β-adrenergic signaling (left; 

green) activates CaMKII, which activates MEF2 via HDAC4 nuclear exclusion. There is 

evidence that PKA enhances CaMKII activity by increasing intracellular calcium. 

 

 

Under chronic β-adrenergic signaling, usually modelled by transverse aortic constriction 

(TAC) in experimental studies, MEF2 activity is enhanced (296). Knockout models of MEF2 co-

repressors HDAC5 or HDAC9 results in cardiac hypertrophy (191, 340). Activation of the 

CaMK pathway results in class II HDAC nuclear exclusion (186) and promotes MEF2 activity as 

seen in constitutively active CaMKIV mouse mutants that demonstrate cardiac hypertrophy and 

enhanced MEF2 activity when crossed with a MEF2-lacZ mouse (341). CaMKII is the most 

highly expressed in the heart and the delta C isoform is induced in TAC models of cardiac 

hypertrophy while constitutively active mouse models results in cardiac hypertrophy (342). 

Blocking CaMKII activity prevents pathological remodelling induced by β-adrenergic signaling 

(343). Mechanistically, CaMKII phosphorylates HDAC4, but not other class II HDACs, 

resulting in its nuclear exclusion (344). Interestingly it has reported that transgenic dominant 
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negative MEF2 mice fare worse under TAC conditions compared to TAC alone and this is 

accompanied with mitochondrial instability and cell death (345), indicating that MEF2 is not 

strictly maladaptive in chronic pressure overload.  

Taking into account both of the effects of PKA and CaMKII on MEF2 activity under β-

adrenergic signaling could explain why exogenous activation of MEF2 prevents apoptosis in 

acute β-adrenergic signaling while loss of MEF2 under models of chronic β-adrenergic signaling, 

such as pressure overload via TAC, reduced pathological remodeling. 

Another potential therapy to treat heart failure is stem cell therapy, either through 

endogenous stem cell activation or using induced pluripotent stem cells (iPSCs). Reprograming 

fibroblasts to cardiac progenitors requires three factors referred to as GMT: Gata4, Mef2c, Tbx5 

(346). Using retroviral gene transfer these factors were introduced to immunosuppressed or 

immunocompetent mouse hearts post-myocardial infarction (347). In MHC-GFP mice this 

caused cardiac fibroblasts to express GMT and caused 3% of cell to be GFP+. Unfortunately, the 

best outcomes were in immunosuppressed mice, and even these mice did not sustain expression 

of these markers however the involvement of MEF2C in reprogramming fibroblasts to 

cardiomyocytes further demonstrates the importance of MEF2 as a myogenic factor. 

4. Summary of Literature Review 

Together these studies demonstrate an important role for MEF2 in development of skeletal 

and cardiac tissues as well as striated muscle diseases. It is well known that MEF2 regulates the 

integrity of the sarcomere but more recently MEF2 has been implicated in cell death and 

survival. During muscle atrophy and hypertrophy the sarcomere is destabilized and/or 

reorganized which contributes to various pathologies that may activate cell death pathways. 

Determining how MEF2 may contribute to cell death or survival and whether this is through the 

disruption of the sarcomere may provide a better understanding of the molecular changes that 

occur in myopathies and lead to the development of pharmacological treatment strategies.  
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CHAPTER II: Statement of Purpose 

Both skeletal and cardiac muscle require transcription factor MEF2 for development and 

maintenance of function. Additionally striated muscle diseases including atrophy and 

hypertrophy have been associated with aberrant MEF2 activity. To date the majority of MEF2 

target genes in skeletal and cardiac muscle have been identified at an individual level as opposed 

to using high throughput techniques such as ChIP-seq, and a thorough comparison of MEF2 

target genes across these cell types has not been done. Therefore, the purpose of this work was to 

identify new MEF2 target genes in skeletal and cardiac muscle and to distinguish MEF2 function 

in these two cell types with respect to muscle disease. 

Chapter III: Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel 

regulation of DUSP6 by p38MAPK-MEF2 signaling. 

The structural similarities of skeletal and cardiac muscle are seen within the sarcomere, the 

contractile unit of striated muscle. MEF2 has been well documented to regulate critical 

components related to the actin cytoskeleton and costamere in both cells types yet 

simultaneously regulate cell specific genes (e.g. MyoG in skeletal muscle or ANF in cardiac 

muscle). We sought to identify MEF2A target genes in skeletal and cardiac muscle and critically 

compare recruitment of MEF2A to target genes using ChIP-exo and detailed bioinformatic 

analysis. Furthermore this work was complemented by transcriptome analysis of MEF2A 

depleted cells using RNA-seq. DUSP6 was identified as a MEF2A target gene in both cell types 

and its function was characterized using biochemical analyses. 

Chapter IV: Regulation of Hspb7 by MEF2 and AP-1 in muscle atrophy.  

MEF2 activity often depends on the recruitment of other transcription factors and co-factors such 

as class II HDACs. Based on the analysis done in Chapter III we observed that AP-1 consensus 

sequences were enriched in MEF2A-bound DNA. The importance of AP-1 in skeletal muscle 

regeneration has recently been under investigation in our lab yet the relationship between MEF2 

and AP-1 has not been explored. Therefore, using bioinformatic analysis we compared 

recruitment of MEF2A to publicly available ChIP-seq datasets of two AP-1 components: c-Jun 

and Fra-1. Hspb7 is a small heat shock protein that contained MEF2A, c-Jun and Fra-1 

enrichment and was subsequently chosen for further study and found to have a role in muscle 

atrophy.  
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CHAPTER III: Global MEF2 target gene analysis in cardiac and skeletal 

muscle reveals novel regulation of DUSP6 by p38MAPK-MEF2 signaling 
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Abstract 

MEF2 plays a profound role in the regulation of transcription in cardiac and skeletal muscle 

lineages. To define the overlapping and unique MEF2A genomic targets, we utilized ChIP-exo 

analysis of cardiomyocytes and skeletal myoblasts. Of the 2783 and 1648 MEF2A binding peaks 

in skeletal myoblasts and cardiomyocytes, respectively, 294 common binding sites were 

identified. Genomic targets were compared to differentially expressed genes in RNA-seq 

analysis of MEF2A depleted myogenic cells, revealing two prominent genetic networks. Genes 

largely associated with muscle development were down-regulated by loss of MEF2A while up-

regulated genes reveal a previously unrecognized function of MEF2A in suppressing 

growth/proliferative genes. Several up-regulated (Tprg, Mctp2, Kitl, Prrx1, Dusp6) and down-

regulated (Atp1a2, Hspb7, Tmem182, Sorbs2, Lmod3) MEF2A target genes were chosen for 

further investigation. Interestingly, siRNA targeting of the MEF2A/D heterodimer revealed a 

somewhat divergent role in the control of Dusp6, a MAPK phosphatase, in cardiac and skeletal 

myogenic lineages. Furthermore, MEF2D functions as a p38MAPK dependent repressor of 

Dusp6 in myoblasts. These data illustrate that MEF2 orchestrates both common and non-

overlapping programs of signal-dependent gene expression in skeletal and cardiac muscle 

lineages.  

mailto:jmcderm@yorku.ca
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Introduction 

Myocyte Enhancer Factor-2 (MEF2) is a member of the MADS-box super family of 

transcriptional regulatory proteins originally identified in skeletal muscle but are now an 

established component in the regulation of a diverse number of tissues including smooth, cardiac 

and skeletal muscle, neurons and T cells (123, 124, 126, 320). In vertebrates there are four MEF2 

isoforms (A-D) which bind to the consensus sequence (C/T TA(A/T)4TAG/A) within the 

promoter/regulatory regions of genes to regulate gene transcription (109, 112). The 

transcriptional activation properties of MEF2 is regulated by a variety of post-translational 

mechanisms including regulation by MAPKs such as p38 and ERK5 (217, 219, 226) and PKA 

(147), and also through interaction with class II HDACs which inhibit MEF2-dependent gene 

activation (185, 348). 

The transcriptional networks underlying both cardiac and skeletal muscle gene expression 

require MEF2 during embryonic and fetal development and for post-natal control of gene 

expression for tissue homeostasis in adulthood (78, 140, 191, 349). During embryonic 

development Mef2 is expressed in the somite and the presumptive vertebrate heart in successive 

waves, beginning with Mef2c on embryonic day 9.0 (126). This is followed shortly thereafter by 

Mef2a and Mef2d. MEF2A and MEF2C are required at different stages of the life cycle. Global 

deletion of Mef2c is embryonic lethal due to impaired heart morphogenesis (78) while Mef2a is 

necessary for post-natal function since gene targeting results in mitochondrial and contractile 

defects in the heart (134). Mef2d homozygous null mice have no phenotypic abnormalities unless 

exposed to cardiac stress (135). Due to the impaired development and embryonic lethality 

associated with Mef2 null mice, tissue specific conditional mutant mice have been useful in fully 

dissecting the role of MEF2 in a plethora of tissues. Interestingly, individual skeletal muscle 

deletion of Mef2c, but not Mef2a or Mef2d impairs proper muscle development in mice (145, 

298). However, the MEF2 complex collectively has an important role in response to post-natal 

injury as a compound conditional deletion of Mef2a, -c and -d results in an inability to repair 

muscle after myotrauma (140). Additionally, MEF2 has been implicated in pathological heart 

hypertrophy in the adult by provoking the induction of fetal gene expression which is a hallmark 

of cardiomyocyte hypertrophy in the failing heart (191, 341, 350). 

Functionally, cardiac and skeletal muscles share many properties and are similar in their 

reliance on a highly ordered sarcomeric structure. However, there are also important differences 
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between the two lineages that are subserved by interrelated but also subtly different programs of 

gene expression. Since MEF2 is expressed in both cell types it represents a useful paradigm for 

studying common and non-overlapping patterns of gene expression targeted by a transcriptional 

regulatory complex.  A number of very well characterized MEF2 target genes that encode a 

network of structural proteins in cardiac and skeletal muscle such as Acta1, cTnT, MCK, MyHC, 

and MyLC, are already known (reviewed in (351)), and various large scale surveys to identify 

MEF2 targets has been completed independently in skeletal and cardiac muscle (214, 148, 352) 

however a detailed global inventory of MEF2 target genes in both tissues has not been done. A 

systematic comparison would provide a more complete picture of common and non-overlapping 

programs of MEF2-dependent gene expression. Moreover, an unbiased identification of MEF2 

target genes may also reveal other properties of these lineages that are controlled by MEF2 

dependent gene expression. It has been reported that MEF2 fulfills divergent roles in other cell 

types such as neurons, B cells and T cells regulating processes such as apoptosis and survival 

(125, 231, 293, 353). Clearly, MEF2 targets a more diverse set of genes than previously thought, 

warranting an unbiased comparison of genomic targets in skeletal and cardiac muscle. 

Thus, the primary goal of this study was to identify a complete set of MEF2 target loci in 

skeletal and cardiac muscle using chromatin immunoprecipitation coupled with high throughput 

sequencing. The methodology used was ChIP-exo which utilizes exonuclease activity to digest 

unprotected DNA, and thereby provides refined sequencing data with high resolution 

identification of bound sequences (354). Here we report ChIP-exo identified global genomic 

MEF2A target genes in differentiating myoblast cells and cardiomyocytes. These studies 

characterize common and non-overlapping programs of MEF2-dependent gene expression and 

also reveal previously unanticipated functions of MEF2 in striated muscle. 
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Methods 

Cell Culture. C2C12 myoblasts and COS7 fibroblasts were obtained from American Tissue 

Culture Collection (ATCC).  Cells were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) with High Glucose and L-Glutamine (Hyclone) supplemented with 10% fetal bovine 

serum (HyClone) and 1% Penicillin/Streptomycin (Invitrogen). C2C12 were induced to 

differentiate in differentiation medium (DM) containing DMEM/High Glucose/L-Glutamine 

supplemented with 2% Horse Serum (Hyclone) and 1% Penicillin/Streptomycin for the indicated 

time. Primary neonatal cardiomyocytes were prepared from 1 to 3 day old rats using the 

Neonatal Cardiomyocyte Isolation System (Worthington Biochemical Corp). Briefly, whole 

hearts were dissociated with trypsin (Promega) and collagenase (Worthington Biochemical 

Corp). The cells were re-suspended in F12 DMEM (Gibco) supplemented with 10% FBS, 1% 

Penicillin/Streptomycin and 50 mg/L gentamycin sulfate (Invitrogen). The isolated cells were 

plated for 60 minutes at 37
o
C, allowing differential attachment of non-myocardial cells. 

Cardiomyocytes were counted and transferred to pre-gelatin coated 60-mm plates. The day after, 

medium was removed and replaced with fresh medium. All cells were maintained in an 

humidified, 37
o
C incubator at 5% CO2. Pharmacological drug treatments were completed for the 

indicated times and replenished with fresh medium every 24 hr. 

Transfections. COS7 were transfected using the calcium phosphate precipitation method. Cells 

were then harvested 48 hr post transfection. For siRNA experiments in C2C12 Lipofectamine 

(Invitrogen) was used according to the manufacturer’s instructions. Cells were then harvested 24 

hr later or the media was changed to DM. Neonatal cardiomyocytes were transiently transfected 

with siRNA using Lipofectamine RNAiMax (Invitrogen) according to the manufacturer’s 

instructions.  

Plasmids. Expression plasmids for pcDNA3-MEF2D, pCMV-dsRed2, pMT3-p38 and pcDNA3-

MKK6ee have been described (218, 147)(10, 32). The following reporter constructs were used: 

pRL-Renilla (Promega) and pGL3Basic-Dusp6-Luciferase (1010 bp; (355)). 

Antibodies and reagents. Rabbit polyclonal MEF2A antibody has been previously described 

(38). The following antibodies were purchased from Santa Cruz: actin (sc-1616), dsRed (sc-

33354), MEF2A (sc-313X; used in ChIP), donkey anti-goat IgG-HRP (sc-2020), ERK-1 (sc-93). 

The following antibodies were obtained from Cell Signaling: p38 (9212), phospho-p38 (9211), 

phospho-ERK1/2 (4370). Myogenin (clone F5D) monoclonal antibodies were provided by the 
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Developmental Studies Hybridoma Bank. Goat anti-rabbit IgG-HRP (170-6515) and goat anti-

mouse IgG-HRP (170-6516) were from Bio-Rad Laboratories. The remaining antibodies are as 

follows: MEF2D (BD Biosciences, 610775), DUSP6 (Abcam, ab76310), Rabbit IgG (Millipore, 

12-370), IRDye 680RD goat anti-rabbit (LiCOR) and IRDye 680RD goat anti-mouse (LiCOR). 

SB 202474 (Santa Cruz) and SB 203580 (Cell Signaling) was used at a concentration of 5 μM. 

siRNA. Knockdown of target genes was done using siRNA obtained from Sigma-Aldrich and 

are listed in Supplementary Figure S4. In C2C12 siRNA was transfected at the following 

concentration: Mef2a (30 nM), Mef2d (70 nM), Atp1a2, Dusp6, Hspb7, Kitl, Lmod3, Mctp2, 

Prrx1, Sorbs2, Tmem182, and Tprg at 50 nM. In cardiomyocytes siRNA were transfected at a 

final concentration of 200 nM. 

Immunoblots. Cells were washed with 1XPBS and lysed in NP-40 lysis buffer (50 mM Tris, 

150 mM NaCl, 0.5% NP-40, 2 mM EDTA, 100 mM NaF and 10 mM Na pyrophosphate) 

containing protease inhibitor cocktail (Sigma-Aldrich), 1 mM phenylmethylsulfonyl fluoride 

(Sigma-Aldrich), and 1 mM sodium orthovanadate (Bioshop). Protein concentrations were 

determined by Bradford assay (Bio-Rad). Twenty μg of total protein were resolved on 10% SDS-

PAGE and then transferred onto Immobilon-FL PVDF membrane (Millipore) for 1 hr or 

overnight. Non-specific binding sites were blocked using 5% milk in PBS or TBST. Membranes 

were incubated with primary antibodies overnight at 4
o
C in 5% milk in PBS or 5% BSA in 

TBST. HRP-conjugated secondary antibody was added for 1 hr at RT. Protein was detected with 

ECL Chemiluminescence reagent (Pierce). In cardiomyocytes, immunoblots were performed as 

described above except antibodies were incubated with Odyssey Blocking Buffer (LiCOR) and 

membranes were imaged using the LiCOR Odyssey System. 

Luciferase Analysis. Cells were washed with 1XPBS and then lysed in Luciferase Lysis Buffer 

(20 mM Tris pH 7.4 0.1% Triton X-100). Lysate was briefly vortexed and centrifuged at 

maximum speed for 15 minutes at 4
o
C. Enzymatic activity was measured in each sample on a 

luminometer using Luciferase assay substrate (E1501, Promega) or Renilla assay substrate 

(E2829, Promega). Western blots of luciferase extracts contained equal volumes from each 

triplicate.  

Chromatin Immunoprecipitation. Methods were carried out as described previously described 

(356) however a third IP Wash Buffer was added (IP Wash Buffer III; 20 mM Tris pH 8.1, 250 

mM LiCl, 1% NP-40, 1% deoxycholate, 1 mM EDTA).  

http://www.jneurosci.org/cgi/redirect-inline?ad=Millipore
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RNA extraction. Total RNA was extracted from cells using the RNeasy Plus kit (Qiagen) and 

Qiashredder (Qiagen). RNA was converted to cDNA using Superscript III (Invitrogen) according 

to the manufacturer’s instructions.  

Quantitative PCR. 2.5 μl gDNA or cDNA was combined with SybrGreen (BioRad) and 500 

nM primers in a final volume of 20 μl. cDNA was diluted 1:10 prior to use. Each sample was 

prepared in triplicate and analyzed using Rotor-Gene Q (Qiagen). Parameters for qRT-PCR: 30s 

95
o
C, [5s 95

o
C, 30s 60

o
C] x 40 cycles. Parameters for ChIP-qPCR: 5min 95

o
C, [5s 95

o
C, 15s 

60
o
C] x 40 cycles. Fold enrichment (ChIP-qPCR) and Fold change (qRT-PCR) was quantified 

using the ∆∆Ct method. Primers used in ChIP-qPCR and qRT-PCR are listed in Supplementary 

Figure S5 and S6, respectively. 

ChIP-exo. 15x10
6
 C2C12 (48 hr DM) and 8x10

6
 primary rat cardiomyocytes were prepared for 

ChIP-exo as follows: Cells were washed with 1XPBS and treated with 37% formaldehyde 

(Sigma) for 15 minutes at 37
o
C. The cell pellet was isolated similar to ChIP-qPCR as previously 

described (356). DNA was sonicated to approximately 250 bp in length. Crosslinked chromatin 

was sent to Peconic Genomics with 5 μg anti-MEF2A (Santa Cruz) and Rabbit IgG (Millipore). 

Peconic Genomics completed ChIP-exo, sequencing, and sequence alignment as previously 

described (31). Sequencing reads were aligned to the mm10 (C2C12) or rn5 (cardiomyocytes) 

genome assembly. Raw data was filtered for a quality score of 37, and duplicates were removed 

using Picard (http://picard.sourceforge.net/). MACS 1.4.2 was used to do peak calling analysis 

(357). To identify MEF2A target genes in skeletal and cardiac muscle corresponding to peak 

location, MEF2A enrichment peaks identified in MACS were converted to mm9 using UCSC 

LiftOver (358). 

RNA-seq. 30 nM of Mef2a siRNA2 or scrambled control was transfected into C2C12 as 

described above. Five μg of total RNA was isolated from C2C12 at 48 hr DM, as described 

above, in duplicate. Purified RNA was delivered to McGill University and Genome Quebec 

Innovation Centre (MUGQIC) for cDNA library preparation (Illumina TruSeq stranded cDNA 

library), RNA-sequencing (Illumina HiSeq2000, 100 bp paired-end reads; 4 samples per lane), 

and bioinformatic analysis. Sequencing reads were aligned to the mm10 genome assembly. 

 

 

 

http://picard.sourceforge.net/
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Results 

ChIP-exo analysis of MEF2A target genes in skeletal and cardiac muscle identifies 

overlapping regulatory domains with divergent gene function 

To identify novel MEF2A target genes in skeletal and cardiac muscle, ChIP-exo was 

performed in differentiating cultured C2C12 myoblasts (MB; 48 hr Differentiation Media (DM)) 

and primary cardiomyocytes (CM) using a MEF2A specific antibody or a rabbit IgG control 

(Figure 1A). C2C12 myoblasts fuse into multinucleated myotubes when grown in low serum 

DM. During the initial phase of myogenesis MEF2A and MEF2D expression increases 

(Supplementary Figure S1); therefore ChIP-exo was performed at 48 hr DM, a time at which 

MEF2 transcriptional activity has been documented to be high.   

Of the 2783 and 1648 MEF2A peaks discovered in MBs and CMs, respectively, 294 

common enrichment peaks were identified (Figure 1B; Supplementary Table S1-S3). Nearby 

genes were identified using Genomic Regions Enrichment of Annotations Tool (GREAT; (359)) 

using the 5+1 kb basal promoter with 1 Mb extension rule. Based on this analysis it was possible 

for some MEF2A peaks to be associated with more than one gene. The 294 common MEF2A 

binding peaks corresponded to 473 putative MEF2A target gene associations in skeletal and 

cardiac muscle. Region-gene associations of MEF2A peaks were then compared using five 

different parameters relative to the transcription start site (TSS): proximal promoter (±5 kb), 

upstream (-5 kb to -50 kb), downstream (+5 to +50 kb), intergenic (>50 kb from any Gene), or 

no gene association (Figure 1C). The pattern of MEF2A recruitment to different regions of the 

genome in skeletal and cardiac muscle was relatively similar. Approximately only 7% of 

MEF2A peaks in both cell types were associated with the proximal promoter while nearly 63% 

of all MEF2A peaks were found in the intergenic region.  

Further analysis using CENTDIST (360) revealed common transcription factor motifs 

within MEF2A enrichment peaks (p-value<0.05; Figure 1D). The top two motifs within skeletal 

and cardiac peaks were MEF2 and AP-1. CREB and BACH motifs were also prevalent in both 

datasets, however it is noted that the BACH motif is quite similar to AP-1. Interestingly, AP-1 

motifs were also found to be enriched in a genome-wide screen of MyoD binding sites in skeletal 

muscle (216). E-box motifs were also enriched in skeletal muscle but ranked position 13. 

Lastly, the functional role of MEF2A target genes was assessed using Gene Ontology 

(GO) analysis to identify terms enriched in either Biological Processes or Cellular Component 
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annotations determined in GREAT (Figure 1E; Supplementary Table S1 and S2). Enriched 

Cellular Component GO terms were similar in skeletal muscle and cardiomyocytes with 

annotations such as Contractile Fiber and Myofibril. GO terms associated with Biological 

Processes was the first analysis that suggested MEF2A had a different role in skeletal and 

cardiac tissue, targeting genes that affected MAP kinase activity or apoptosis, respectively. Both 

cell types, however, were associated with actin movement. 
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Figure 1. 
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Figure 1. Identification of MEF2A target genes in myoblasts and cardiomyocytes using ChIP-

exo. (A) Workflow of ChIP-exo analysis. C2C12 (48 hr DM; MB) and primary cardiomyocytes 

(CM) were collected to identify MEF2A target genes using ChIP-exo. A non-specific IgG 

antibody was used as a control. (B) The number of common MEF2A enriched peaks in MB and 

CM identified in ChIP-exo are indicated in a Venn diagram. (C)  The percentage of peaks within 

the Proximal Promoter (±5 kb), Upstream (-5 to -50 kb), Downstream (+5 to +50 kb), or 

Intergenic region ( >50 kb from any annotated gene) identified in ChIP-exo using GREAT. 

Location is relative to the transcription start site. (D) The five most dominant transcription factor 

binding motifs found within MEF2A-enriched peaks as determined by CENTDIST (p-

value<0.05). (E) Biological Processes and Cellular Component GO terms of MEF2A enriched 

peaks from MB and CM. 
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RNA-seq analysis of MEF2A depleted myoblasts reveals multiple MEF2 gene networks in 

regulating cell processes 

To further interrogate the identification of MEF2A target genes, RNA-seq analysis was 

performed in C2C12 (48 hr DM) depleted of MEF2A using siRNA mediated gene silencing and 

compared to a scrambled siRNA control (Figure 2A). Efficiency of MEF2A knockdown at this 

time point was assessed using western blotting comparing two independent siRNAs programmed 

to target MEF2A (Figure 2B). siMEF2A-2 was subsequently used in RNA-seq analysis which 

resulted in 828 downregulated and 452 upregulated genes (edgeR p-value<0.05; Supplementary 

Table S4). The functional role of MEF2A was assessed using GO::TermFinder (361) to identify 

enriched GO Biological Processes, however, the up- and down-regulated genes were assessed 

separately. Figure 2C shows the top five GO Biological Processes enriched in each group. This 

segregation revealed two different roles of MEF2A: Not only does loss of MEF2A lead to a 

downregulation of muscle function, as has been previously shown, but also results in the 

unanticipated upregulation of genes associated with cellular migration and locomotion, a cellular 

process previously not associated with MEF2 function.  

The differentially expressed genes identified in RNA-seq were compared with those 

enriched in ChIP-exo analysis in MB (Figure 2D). Up- and down-regulated genes were separated 

and then grouped as either ChIP (-) or ChIP (+). As expected, a number of MEF2A target genes 

identified in ChIP-exo were also found to be differentially regulated in MEF2A depleted 

myoblasts. 190/828 downregulated genes and 121/452 upregulated genes were found to be 

MEF2A targets in ChIP-exo. The location of each MEF2A enrichment peak of these 

differentially expressed genes was then assessed (Figure 2E). Genes were grouped into four bins 

based on the location of the MEF2A enrichment peak relative to the TSS: ±5 kb, -5 to -50 kb, +5 

to +50 kb, and >50 kb. This classification revealed that the majority of MEF2A recruitment to 

downregulated genes occurs equally within the ±5 kb, -5 to -50 kb, and +5 to +50 kb regions. In 

contrast approximately 65% of genes that were upregulated in response to MEF2A knockdown 

were associated with MEF2A enrichment peaks >50 kb from the TSS. MEF2A recruitment to the 

proximal promoter (±5 kb) of upregulated genes was less than 5%. 
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Figure 2. RNA-seq analysis of MEF2A depleted skeletal myoblasts. (A) RNA-seq analysis 

workflow. MB were transfected with 30 nM of siMEF2A-2 or a scrambled siRNA control. 5 μg 

of RNA was prepared for RNA-seq analysis in duplicate. Differentially expressed genes were 

assessed using edgeR p-value<0.05. (B) Two different siRNA targeting Mef2a were transfected 

into myoblasts at 30 nM and allowed to differentiate for 48 hr in DM. Cells were harvested and 

protein was extracted to assess changes in MEF2A using western blotting. (C) Distinguished 

roles for MEF2A in skeletal myogenesis were revealed when up- and down-regulated genes were 

grouped separately prior to GO (Biological Processes) term analysis. (D) The differentially 

expressed genes that were also identified as MEF2A target genes in MB were determined (ChIP 

(+)). Differentially expressed genes that were not identified as MEF2A targets are labelled ChIP 

(-). (E) Binding profiles of MEF2A recruitment to associated genes in MB based on their 

differential expression in RNA-seq analysis.  
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Functional analysis of MEF2A target genes  

To investigate whether MEF2A shared novel target genes in cardiac and skeletal muscle, 

the differentially expressed genes identified in RNA-seq were grouped in a similar classification 

to Fig 2D, however MEF2A target genes in CM were included. Three divisions of differentially 

expressed genes were established: ChIP (-), ChIP (+) MB, and ChIP (+) MB and CM. Only 4% 

of differentially expressed genes were identified as MEF2A target genes in MB and CM (Figure 

3A). This corresponded to 38 downregulated and 20 upregulated genes (Supplementary Table 

S4). From this list, ten putative MEF2A target genes were selected for further study. The location 

of MEF2A recruitment is indicated based on the peak location relative to the TSS of each gene 

(Figure 3B). The presence of a MEF2 consensus sequence within 1 kb of the enrichment peak is 

also indicated.  

 To validate that the identified genes from ChIP-exo and RNA-seq were true MEF2A 

target genes, Dusp6 (Dual specificity phosphatase 6), Hspb7 (Heat shock protein family, member 

7), Kitl (Kit ligand), Lmod3 (Leiomodin 3) and Prrx1 (Paired related homeobox 1) were chosen 

for further study. Only Kitl, Lmod3 and Hspb7 contain nearby MEF2 consensus sequences. We 

confirmed MEF2A recruitment to these genes using gene targeted ChIP-qPCR in C2C12 at 48 hr 

DM (Figure 3C). Primers were designed to flank the MEF2A enrichment peak or the nearby 

MEF2 consensus sequence (if present). Figure 3D represents, for each gene, the ChIP-exo 

sequencing read density in C2C12 as well as MACS peak calls, and was prepared using the 

Integrative Genome Viewer (IGV; (362)). In some cases, genes had more than one enrichment 

peak. For example, MEF2A was recruited to two locations upstream of Dusp6 at ±5 kb and -5 to 

50 kb in both CM and MB. In this case we focused on the more proximal binding event 150 bp 

upstream from the TSS in ChIP-qPCR analysis. Prrx1, however, had three MEF2 binding events 

in MB but only one (+91 kb; MACS_peak_212) had a common binding event in CM. Using 

ChIP-qPCR we detected variable MEF2A recruitment at all genes compared to Acta2. 

Interestingly the level of MEF2A recruitment to target genes in Figure 3C corresponded to 

similar enrichment patterns detected in ChIP-exo. 

Two independent Mef2a siRNAs were individually transfected into MB. At 48 hr DM the 

expression of three up (Kitl, Prrx1 and Dusp6) and two downregulated (Hspb7 and Lmod3) 

genes were then assessed (Figure 3E). Similar to RNA-seq results, loss of MEF2A resulted in the 

downregulation of Lmod3 and Hspb7. Conversely Dusp6, Prrx1 and Kitl were upregulated in 
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response to MEF2A knockdown. Interestingly MEF2D was also shown to be recruited to Prrx1, 

Lmod3, and Hspb7 in myoblasts and these genes were differentially expressed in response to 

MEF2D overexpression (148). 

To begin to understand the functional role of these putative MEF2 target genes we used 

siRNA gene silencing to supress the expression of Atp1a2 (ATPase, Na+/K+ transporting, alpha 

2 polypeptide), Dusp6, Hspb7, Kitl, Lmod3, Mctp2 (Multiple C2 domains transmembrane 2), 

Prrx1, Tmem182 (Transmembrane protein 182), Sorbs2 (Sorbin and SH3 domain containing 2), 

and Tprg (Transformation related protein 63 regulated), and determined their role in myogenesis 

by assessing changes in Myogenin expression in myoblasts as a readout of the irreversible 

commitment to myogenic induction (Figure 3F). Prior to this, the efficiency of knockdown of 

each target gene was determined using three siRNAs labelled A-C (Supplementary Figure S2). 

The two with the most efficient knockdown of the targeted gene product were selected to assess 

Myogenin expression. The knockdown of a number of these genes resulted in downregulation of 

Myogenin expression in myoblasts in GM. In particular, loss of Hspb7 and Kitl reduced 

Myogenin by 50% indicating that a number of the identified MEF2 target genes are crucial for 

efficient myogenic differentiation and their precise role in the myogenic program remains to be 

characterized. 
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Figure 3. Functional analysis of MEF2A target genes. (A) The percentage of differentially 

expressed genes in MB that were also identified as MEF2A target genes (ChIP (+)) in MB alone 

or MB and CM. (B) Comparative analysis of ten putative MEF2A target genes. Selected genes 

were differentially expressed in RNA-seq analysis in MB and shared overlapping MEF2A 

enrichment peaks in MB and CM. The locations of common MEF2A recruitment peaks relative 

to the TSS and nearby MEF2 consensus sequences are indicated. (C) MEF2A recruitment was 

assessed in C2C12 (48 hr DM) using ChIP-qPCR. Acta2 was used as a negative control locus. 

Error bars represent ± SD, n=3. (D) Screenshot from IGV depicting C2C12 ChIP-exo read 

density and MACS peak calls. Read densities are in purple, MACS peak calls are in black and 

Refseq genes are in blue. (E) Two different siRNA targeting Mef2a were transfected into C2C12 

at 30 nM and allowed to differentiate for 48 hr in DM. Cells were harvested and RNA was 

extracted to assess changes gene expression using qRT-PCR. Samples were normalized to β-

actin. Error bars represent ± SD, n=3. (F) Knockdown of individual target genes in MB. C2C12 

were transfected with 50 nM siRNA and harvested 24 hr later. mRNA was assessed similar to 

that in (E).  
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DUSP6 is a novel MEF2 target gene in cardiac and skeletal muscle 

We were particularly interested in the identification of Dusp6 as a MEF2A target since it 

was shown to be necessary in regulating the skeletal muscle satellite cell population and has also 

been implicated in cardiac hypertrophy (363, 364). Based on the overlap of MEF2 recruitment to 

the Dusp6 promoter in MBs and CMs and its relative location in relation to other transcriptional 

regulatory domains of the Dusp6 gene locus (355), Dusp6 was selected for further mechanistic 

analysis in terms of how it is regulated by MEF2. 

To confirm that Dusp6 is also a MEF2A target gene in cardiomyocytes ChIP-qPCR was 

done in primary cardiomyocytes (Figure 4A). This analysis confirmed that MEF2A is recruited 

to a shared location within the Dusp6 promoter in both myoblasts and cardiomyocytes. 

Furthermore, MEF2A or MEF2D depletion from cardiomyocytes (Figure 4B, C) or myoblasts 

(Figure 4D) and corresponding DUSP6 expression was assessed in western blot analysis. 

Knockdown of either MEF2 subunit in cardiomyocytes dramatically increased DUSP6 

expression (Figure 4B, C). Although loss of MEF2A at 48 hr DM upregulated Dusp6 

transcription in myoblasts (Figure 3B), at the protein level, DUSP6 was unaffected by 

knockdown of MEF2A in C2C12 (24 hr DM; Figure 4D) and we suspect this is a temporal lag in 

response to the knockdown. In contrast, loss of MEF2D (the heterodimeric partner of MEF2A in 

MBs (146)) increased DUSP6 expression.  
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Figure 4. siRNA mediated gene silencing of MEF2 in cardiomyocytes or myoblasts induces 

DUSP6 expression. (A) MEF2A is recruited to the Dusp6 promoter in primary cardiomyocytes. 

Gapdh was used as a negative control locus. Error bars represent ± SD, n=3.  (B) Knockdown of 

MEF2A or MEF2D (C) in primary cardiomyocytes upregulates Dusp6 expression. siRNA was 

added at a final concentration of 200 nM. Protein was harvested and analyzed by 

immunoblotting with the indicated antibodies. (D) Knockdown of MEF2D upregulates DUSP6 

expression in MB. Mef2a or Mef2d were targeted using 30-70 nM siRNA. C2C12 were harvested 

at 24 hr DM for immunoblot analysis. 

 

Regulation of DUSP6 by MEF2 is p38MAPK dependent in myoblasts 

DUSP6 is a dual specificity protein phosphatase, predominately targeting ERK1/2 

activity (365, 366). Interestingly, Dusp6 expression is mediated by growth factors and ERK1/2 

activation in a negative feedback loop (355, 367). Upon serum withdrawal in C2C12 myoblasts 

we observed a decrease in DUSP6 expression during the initial phase of myogenesis (Figure 5A) 

under conditions when we have previously documented that MEF2 protein levels and DNA 

binding activity are increasing (138). In addition there was a corresponding decrease in ERK1/2 

activity and activation of p38MAPK. Since MEF2 becomes activated in part due to 
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phosphorylation by p38MAPK (217) and there is an inverse relationship between DUSP6 

expression and p38MAPK activity we sought to determine whether p38MAPK also has a role in 

regulating Dusp6. C2C12 were treated with a well characterized p38MAPK inhibitor SB 203580 

(5 μM) or its inactive analogue SB 202474 as a control. A time course treatment of MBs with or 

without SB 203580 treatment revealed that while p38MAPK inhibition blocked myogenesis, as 

shown by a decrease in Myogenin expression, this was accompanied by an upregulation of 

DUSP6 (Figure 5B). MEF2A and MEF2D are downregulated in response to SB 203580 

treatment, probably as a result of an overall delay in myogenesis (Supplementary Figure S3). To 

determine whether p38MAPK was acting directly through MEF2 to modulate DUSP6 

expression, C2C12 were transfected with two sets of siRNA targeting Mef2a or Mef2d and then 

treated with SB 203580 for 24 hr in DM (Figure 5C). p38MAPK inhibitor treatment consistently 

upregulated DUSP6, with or without MEF2A. In MEF2D depleted cells, however, SB 203580 

treatment did not have any effect on DUSP6 induction. Our interpretation of these data, in 

contrast to the usual potentiating effect of p38MAPK on MEF2 activity, is that MEF2D is 

required for the p38MAPK-dependent repression of DUSP6. 

To test this novel observation further in a carefully controlled reconstruction assay we 

transfected COS cells (as a neutral cell type to circumvent endogenous regulation by factors in 

MBs) with a Dusp6 promoter construct, Dusp6-luc (1010 bp; (355)), with or without a 

constitutively active MKK6 (MKK6ee to activate p38MAPK), p38MAPK, or MEF2D. The 

results of this assay were unequivocal in that individually, MEF2D and activated p38MAPK 

activate expression of the Dusp6 reporter gene but when transfected in combination, MEF2D and 

activated p38MAPK cannot induce expression of Dusp6-luc (Figure 5D).  Also, SB 203580 

treatment reverses this effect by enhancing Dusp6 reporter gene activation, further supporting the 

direct involvement of p38MAPK in this negative regulation. Simultaneous western blot analysis 

of this experiment shows that MKK6ee/p38MAPK induce the previously well characterized 

post-translational modifications of MEF2 (368) and SB 203580 treatment reverses these PTMs 

as expected (Figure 5D). Collectively, these data lead us to the novel conclusion that p38MAPK 

signaling to MEF2D leads to transcriptional repression of the Dusp6 promoter (Figure 5E). 
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Figure 5. MEF2D inhibits DUSP6 in a p38MAPK dependent manner in myoblasts.  (A) 

C2C12 were allowed to differentiate, harvested at the times specified and analyzed by 

immunoblotting with the indicated antibodies. (B) Myogenesis is inhibited when C2C12 are 

treated with p38MAPK inhibitor SB 203580 (5 μM). Media was changed to DM for the 

indicated time and protein was assessed by immunoblotting. Control cells were treated with an 

inactive analogue, SB 202474. (C) C2C12 were transfected with 30nM siMEF2A or 70 nM 

siMEF2D and treated with SB 203580 (5 μM) for 24 hr in DM. Cells were harvested as 

described above. (D) COS7 were transfected with Dusp6-luc and the indicated plasmids. One 

day after transfection cells were treated with 5 μM SB 203580 or inactive analogue for 24 hr. 

Luciferase values were normalized to Renilla. Error bars represent ± SEM, n=3. Corresponding 

western blots are shown. (E) Dusp6 is negatively regulated by MEF2D in a p38MAPK 

dependent manner.  
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Discussion 

Using forefront methods in genomic analysis we have characterized the panoply of 

MEF2A genomic targets in striated muscle. Moreover, by coupling this chromatin based genome 

wide analysis of MEF2A DNA binding to MEF2A gene silencing and RNA-seq we have been 

able to comprehensively catalog both direct and indirect genomic targets of MEF2. These data 

identify some novel aspects of MEF2 function that have, thus far, not been appreciated. 

Particularly, this comparative analysis will lead to new directions in understanding the function 

of MEF2 in a variety of contexts in its role as an important regulator of gene expression in all 

muscle types, neurons and immune system cells, both during development and in a variety of 

post-natal physiological and pathological circumstances. In addition, more detailed analysis by 

gene silencing of some of the identified MEF2A target genes led us to identify a number of 

downstream targets that fulfill a potentially important role in the myogenic program. Finally, 

mechanistic studies concerning the regulation of the Dusp6 locus by MEF2 has led us to the 

novel conclusion that p38MAPK-MEF2 signaling leads to repression of DUSP6 expression 

during the myogenic cascade. 

ERK1/2 inactivation through DUSP6 expression has been linked to pluripotency in 

embryonic stem cells (369), cardiac hypertrophy (363, 370) and the satellite stem cell pool in 

muscle (364). Therefore there is an evident requirement of DUSP6 to downregulate ERK1/2 

signaling in the very early phases of differentiation. In skeletal muscle cells p38MAPK and 

ERK1/2 exhibit inverse activity: in growth conditions, p38MAPK is inactive and ERK1/2 is 

active (371), however upon the withdrawal of growth factors, p38MAPK becomes active, 

ERK1/2 is inhibited, and the myogenic cascade proceeds. The results presented here may be 

linked to a previously reported biphasic role for ERK1/2 in muscle in which ERK1/2 is 

implicated in proliferation of myoblasts under growth conditions but also in differentiation 

conditions in myotube fusion (372, 373). In this model DUSP6 expression itself has to be 

extinguished for the myogenic program to proceed and for ERK1/2 involvement in myoblast 

fusion later in the program. Our contention is therefore that the induction of MEF2 and 

p38MAPK activity at the onset of differentiation is required for the transcriptional suppression of 

Dusp6 which then allows myogenesis to proceed. 

The canonical interpretation of the p38MAPK-MEF2 signaling pathway has, so far, been 

that when covalently modified by p38MAPK mediated phosphorylation, MEF2 transcriptional 
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activation properties are enhanced (217) however, as alluded to above, our data illustrate that 

MEF2D represses Dusp6 expression in a p38MAPK dependent manner. Interestingly, this 

potently repressive role of MEF2 at some genes may also clarify the previously unexplained 

observation that in a compound transgenic in which the MEF2 sensor mice were bred with 

Mef2a homozygous nulls, an unexpectedly high β-Galactosidase staining was observed in some 

tissues in the mice (134). This observation is consistent with a potent repressive effect of MEF2 

in certain cellular contexts.  Indeed there have been several negative regulators of MEF2 

identified including HDAC4 (348), Cabin1 (374), MITR (193), HIPK2 (220) and PKA (147, 

230), however it is unclear at this point how p38MAPK can lead to MEF2-mediated 

transcriptional repression. Indeed, primary limb mesenchymal cultures treated with p38MAPK 

inhibitor also exhibited enhanced MEF2 activity which implies that the regulation of MEF2 

activity by p38MAPK activity is not as straightforward as previously thought (375).  

Dusp6 provides not only an example of a common MEF2 target gene in skeletal and 

cardiac muscle but also demonstrates the complex role of MEF2 as a heterodimer. 

Characterization of binding sites of the single Mef2 gene in Drosophila using ChIP-chip and 

mutagenesis first revealed that MEF2 has a more significant role in muscle development than 

originally thought and further showed that MEF2 activity is regulated in a complex manner to 

function differently at certain developmental timepoints (213). In vertebrate development, it is 

not surprising that with four Mef2 genes, the complexity of MEF2-dependent gene expression 

increases. With respect to the role of MEF2A/D heterodimers in skeletal muscle, MEF2A and 

MEF2D are subject to differential regulation by PKA (147), among other kinases, and MEF2D is 

differentially spliced in a skeletal muscle specific manner (148), which together may explain the 

seemingly more dominant role of MEF2D in regulating Dusp6 in MB. It is also critical to 

recognize that the majority of MEF2A target genes identified in CM and MB are not shared. This 

could be explained by differential upstream signaling, different co-factor interactions, and 

chromatin accessibility. Although the majority of target genes between CM and MB were 

different, the predominant transcription factor motifs and GO processes were largely similar 

indicating conservation of MEF2 function at the level of cellular processes. However, one 

exception to this is that MEF2A target genes in CM were associated with GO Biological 

Processes involving apoptosis and cell death. Currently there is no direct evidence that MEF2 

regulates apoptosis in cardiomyocytes.  
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In terms of the global target gene network that we have identified, there are some results 

that surprised us. The first was that some distal MEF2 binding events were observed greater than 

50 kb from the TSS. Similar to our findings, MEF2 binds to intra- and intergenic enhancer 

regions during cardiac hypertrophy (376). Together this indicates that MEF2 has an emerging 

role as a transcription factor that is able to regulate gene expression globally. Furthermore, 

MEF2A was recruited to different genomic regions in up- and down-regulated genes. An 

interesting possibility would be that the position of MEF2 recruitment relative to the TSS 

dictates its function as a positive or negative regulator of transcription. The second observation is 

that there are a number of genes that were upregulated in response to MEF2A knockdown in 

myoblasts including Tprg, Mctp2, Kitl, Prrx1 and Dusp6. Repression of these genes may not be 

solely regulated by MEF2 as AP-1 binding sites, which are associated with proliferation, are 

frequently found not only in MEF2 enriched binding sites (as reported here in both CM and MB) 

but also in MyoD target genes (216). AP-1 and MyoD are known to antagonize each other’s 

function through direct protein-protein interactions (377, 378), and yet together, can also form 

MyoD-directed enhancers (379). Based on data presented here it is likely that MEF2 may either 

have a role in AP-1-MyoD dependent gene expression, or AP-1 and MEF2 may function in 

combination and independently of MyoD to regulate developmental processes.   

Using high throughput genomic approaches we have identified a comprehensive list of 

MEF2 target genes in skeletal and cardiac muscle that will be further investigated in a variety of 

cellular contexts. Mechanistic smaller scale follow up studies based on the high throughput data 

have so far revealed the novel observation that MEF2 represses Dusp6 in skeletal and cardiac 

muscle and this is p38MAPK dependent in myoblasts. Understanding the global role of MEF2 in 

striated muscle gene expression has implications not only for our understanding of development, 

but also in contexts where the expression of developmental genes is recapitulated such as in post-

natal skeletal muscle regeneration and cardiac hypertrophy.  
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Figure S1. MEF2A and MEF2D protein expression during C2C12 differentiation. Protein was 

harvested at the indicated timepoints and analyzed by immunoblotting. 
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Figure S2. Efficiency of siRNA mediated gene silencing. C2C12s were transfected with 50 nM 

siRNA and harvested 24 hr later. RNA was extracted to assess changes in expression of each 

target gene using qRT-PCR. Samples are presented as fold change and were normalized to β-

actin.  

 
 

Figure S3. Effect of p38MAPK inhibition on MEF2 expression. C2C12s were treated with 5 

μM SB 203580 or control (SB 202474) for 48 hr in DM. Protein was harvested and analyzed by 

immunoblotting with the indicated antibodies.  
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Figure S4. siRNA catalog numbers (Sigma-Aldrich). 

 siRNA-1 (A) siRNA-2 (B) siRNA-3 (C) 

scrambled SIC001     

Mef2a SASI_Mm01_00120787 SASI_Mm01_00120788   

Mef2d SASI_Rn01_00057714  SASI_Rn01_00057717    

Atp1a2 SASI_Mm01_00139387  

  

SASI_Mm01_00139389  

  

SASI_Mm01_00139390 

  

Dusp6 SASI_Mm01_00051559  

  

SASI_Mm01_00051560 

  

SASI_Mm01_00051561  

  

Hspb7 SASI_Mm01_00161042 

  

SASI_Mm01_00161043 

  

SASI_Mm01_00161044  

  

Kitl SASI_Mm01_00090429   

  

SASI_Mm01_00090430 

  

SASI_Mm02_00322344 

  

Lmod3 SASI_Mm02_00295741  

  

SASI_Mm02_00295742  

  

SASI_Mm02_00295743  

  

Mctp2 SASI_Mm01_00067344   

  

SASI_Mm01_00067345   

  

SASI_Mm01_00067346   

  

Prrx1 SASI_Mm01_00148745 

  

SASI_Mm01_00148746 

  

SASI_Mm01_00148747 

  

Sorbs2 SASI_Mm02_00344595  

  

SASI_Mm02_00344596 

  

SASI_Mm02_00344597 

  

Tmem182 SASI_Mm02_00296151 

  

SASI_Mm02_00296152 

  

SASI_Mm02_00296153  

Tprg SASI_Mm02_00345802   SASI_Mm01_00147001 SASI_Mm01_00147002 
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Figure S5. Primers used in ChIP-qPCR. 

ChIP-qPCR   

Dusp6  F 5’ AATTCATCAACACAACCTGTTCC 3’ 

R 5’ AGCTCCTCAATGGATACAAACAG 3’ 

Acta2  F 5′ TTCCAGGACCTTTTGCATCC  3′  

R 5′ CCGGTTAGGGTTCAGTGGTG  3′ 

Gapdh F 5’ GCACAGTCAAGGCCGAGAAT 3’ 

R 5’ GCCTTCTCCATGGTGGTGAA 3’ 

Hspb7 F 5’ GGTTGGCCCACCCTTTGTAG 3’ 

R 5’ TCAGGATTGCCAGGGTGTCT3’ 

Kitl F 5’ TACGAAAAACTAGCCTTGCTACCT 3’ 

R 5’ ACATAAGCACTAATGTCTGGCA3’ 

Lmod3 F 5’ TGACTCTGCCCAGAAAACCT 3’  

R 5’ GTTGAGCTGCTGGGAGTGAC 3’ 

Prrx1 F 5’ GATGAGCAGCAACTCAGACC 3’ 

F 5’ GGGACGTTTGAGGTGGCATAA 3’ 

 

 

Figure S6. Primers used in qRT-PCR. 

qRT-PCR  

 KiCqStart
®
 SYBR

®
 Green Primers 

Dusp6 M_Dusp6_1 

Hspb7 M_Hspb7_1 

Kitl M_Kitl_1 

Lmod3 M_Lmod3_1 

Prrx1 M_Prrx1_1 

  Other 

Mef2a F 5’ ATGGTTGTGAGAGCCTGATG 3’ 

R 5’ AGAAGTTCTGAGGTGGCAAGC 3’ 

β-actin  F 5’ AAGTGTGACGTTGACATCCGTAA 3’ 

R 5’ TGCCTGGGTACATGGTGGTA 3’ 

Myogenin F 5’ CAGCTCCCTCAACCAGGAG 3’ 

R 5’ GACTGCAGGAGGCGCTGT 3’ 
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CHAPTER IV: Regulation of Hspb7 by MEF2 and AP-1 in muscle atrophy 
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Experimental design and drafting manuscript by  
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Dabo Yang and John Girgis (Figure 7-8) 
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Abstract 

The individual roles of MEF2 and AP-1 in myogenesis have been explored yet the relationship 

between these proteins in muscle development, disease and aging has not been clearly defined. 

Using MEF2A ChIP-exo, c-Jun and Fra-1 ChIP-seq data and predicted AP-1 consensus motifs, 

we identified common MEF2 and AP-1 target genes, several of which have a function in 

regulating the actin cytoskeleton. Since muscle atrophy results in remodelling or degradation of 

the actin cytoskeleton, we characterized the expression of five putative MEF2/AP-1 target genes 

(Dstn, Flnc, Hspb7, Lmod3 and Plekhh2) under atrophic conditions using Dexamethasone (Dex) 

in C2C12 myoblasts or in aging (8wk vs 63wk old mice). Hspb7, a small heat shock protein, 

showed upregulation in Dex treated cells and with age. Further biochemical analyses revealed 

that loss of MEF2A using siRNA-mediated gene silencing prevented Dex-regulated induction of 

Hspb7 and MEF2A could co-operate with Dex to induce Hspb7 expression in myoblasts. Fra-2 

or c-Jun expression prevented GR-mediated upregulation of Hspb7, but loss of Fra-2 or c-Jun 

enhanced Hspb7 expression. A role for Hspb7 in skeletal muscle has not been identified but it 

has been associated with autophagy in other tissues. Using a combination of fasting and 

colchicine to monitor autophagic flux in vivo, we observed that Hspb7 expression was 

upregulated along with other autophagy-related genes. Furthermore, electroporation of Hspb7 

into the TA muscle reduced induction of autophagy related genes after fasting. Together these 

data indicate that MEF2 and AP-1 have opposite roles in the regulation of Hspb7, and may rely 

on additional co-operatively with the glucocorticoid receptor. Additionally, we provide evidence 

of a role for Hspb7 in autophagy in muscle which has implications for muscle atrophy and aging.  
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Introduction 

Muscle atrophy is a phenomenon associated with reduced muscle fiber number and size 

caused by increased proteolysis and decreased protein synthesis (380). In the elderly, muscle 

wasting is referred to as sarcopenia (381), and in patients with cancer, AIDS and other chronic 

disease, muscle atrophy is referred to as cachexia (382). Improving or maintaining muscle mass 

in these conditions has immediate effects on the overall quality of life, and there is evidence that 

sarcopenia in cancer patients directly affects the time to tumour progression and disease 

recurrence (383, 384). In the ubiquitin proteasome pathway, the FoxO family of transcription 

factors activates muscle atrophy through induction of two E3 ubiquitin ligases MAFbx/Atrogin-1 

and MuRF1 (385). Current treatment programs for muscle atrophy include activating the Akt 

pathway, which induces muscle hypertrophy by inactivating FoxO proteins (386), however, Akt 

can be inhibited by Myostatin, a member of the TGF-β superfamily (167), superseding Akt 

activation as a treatment option. A new antibody recently characterized to bind to both members 

(A and B) of the Myostatin/Activin type II receptor (ActRII) induces hypertrophy in a muscle 

wasting model in vivo (387). Additionally, targeting ActRIIB in cancer cachexia models can 

prevent atrophy which resulted in prolonged survival without tumour manipulation (388).  

The autophagy pathway is another mechanism of protein degradation that has also been 

implicated in muscle wasting. Foxo3, unlike other members of the FoxO family is able to also 

regulate autophagy in addition to the ubiquitin-proteasome pathway (284, 285).  Several possible 

autophagy pathways have been identified in muscle, two of which are macroautophagy and 

chaperone mediated autophagy (CMA). Although both ultimately lead to protein degradation in 

the lysosome, they achieve this through different mechanisms. In CMA, Hsc70 targets proteins 

directly to the lysosome (278). Macroautophagy requires de novo synthesis of autophagosomes 

in a multi-step process that involves Atg protein family members. Autophagy is required for 

muscle homeostasis as mouse knockout models, which lack proteins involved in autophagosome 

formation such as Atg5 and Atg7, result in muscle atrophy (389, 390). Aged muscle shows 

decreased autophagy and therefore buildup of protein aggregates (391). LC3B (Map1lc3b) is an 

Atg protein that is a good readout for autophagy as it is post-translationally modified before it 

becomes part of the autophagosome (274). First, pro-LC3B is cleaved by Atg4 to form cytosolic 

LC3B-I. Atg7 then lipidates LC3B-I to form LC3B-II which can form part of the 

autophagosome. Using samples from various atrophic mouse models, LC3B was shown to be 
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strongly upregulated (264) and furthermore Foxo3 can directly regulate several autophagy 

related genes including LC3B (284, 285). A form of autophagy termed chaperone-assisted 

selective autophagy (CASA) merges the chaperone mediated and macroautophagy pathways. In 

CASA, Hsc70 forms a complex with Bag3, Hspb8 and E3 ubiquitin ligase CHIP, to identify 

protein aggregates and target them to the autophagosome (282).  

Myocyte Enhancer Factor 2 (MEF2) is a member of the MADS-box family of transcription 

factors found in many tissues including skeletal and cardiac muscle (78, 126). MEF2 functions in 

a homo- or hetero-dimer complex with four different MEF2 isoforms in vertebrates (MEF2A-D) 

which bind to the consensus sequence (C/TTA(A/T)4TAG/A) . Previously we had shown that 

MEF2A can target a shared subset of genes in C2C12, an in vitro model of skeletal myogenesis, 

and primary cardiomyocytes (225). Gene Ontology (GO) analysis contained terms enriched for 

actin cytoskeleton organization and actin filament-based processes. In addition these common 

binding sites shared similar neighbouring consensus sequences for AP-1, a serum responsive 

transcription factor that may be composed of a Jun homodimer or a Jun-Fos heterodimer. AP-1 

recognizes the consensus sequence TGAG/CTCA (392). Global analysis of MyoD target genes 

in skeletal myoblasts also showed that AP-1 motifs are prominent in neighbouring sequences 

(214, 216). Neighbouring MEF2 and AP-1 sequences were also enriched in macrophages and 

neurons (393, 394). Several AP-1 subunits have been shown to regulate myogenesis. c-Jun can 

antagonize MyoD transcriptional activity in vitro (377, 378). Using high throughput data, Blum 

et al. (2012) showed that c-Jun and MyoD co-ordinate muscle enhancers, indicating a more 

complex role for AP-1 in muscle (379). Additionally, Fos family member, Fra-2, likely has a role 

in maintenance of the satellite cell pool (395).  

While MEF2 and AP-1 have individually been shown to have a role in myogenesis, their 

potential interaction has not been documented. Additionally, although loss of MEF2 and AP-1 

have been implicated in loss of sarcomere integrity during development and satellite cell-

mediated muscle regeneration (137, 298, 396), the combined role of these factors in muscle 

atrophy has not been investigated. Here, we document that MEF2 and AP-1 regulate several 

genes associated with the actin cytoskeleton. Amongst them, the small heat shock protein, Hspb7 

is implicated in muscle atrophy. 
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Methods 

Cell Culture. C2C12 myoblasts were obtained from American Tissue Culture Collection 

(ATCC).  Cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM) with High 

Glucose and L-Glutamine (Hyclone) supplemented with 10% fetal bovine serum (HyClone) and 

1% Penicillin/Streptomycin (Invitrogen). C2C12 were induced to differentiate in differentiation 

medium (DM) containing DMEM/High Glucose/L-Glutamine supplemented with 2% Horse 

Serum (Hyclone) and 1% Penicillin/Streptomycin for the indicated time. Cells were maintained 

in an humidified, 37
o
C incubator at 5% CO2. Pharmacological drug treatments were completed 

for the indicated times and replenished with fresh medium every 24 hr.  

Transfections. C2C12 were transfected using the calcium phosphate precipitation method. Cells 

were then harvested 48 hr post transfection or the media was changed to DM. For siRNA 

experiments in C2C12 proliferating myoblasts Lipofectamine (Invitrogen) was used according to 

the manufacturer’s instructions. Cells were then harvested 24 hr later or the media was changed 

to DM.  

Plasmids. Expression plasmids for pMT2-MEF2A, pCMV-c-Jun, pcDNA3.1-Fra-2, pCMV-

dsRed2, pcDNA-GFP have been described previously (223, 395). pCAGGSnHC-HSPB7-HA 

was generously donated by Lin et al. (397). 

Antibodies and reagents. Rabbit polyclonal MEF2A antibody has been previously described 

(368). The following antibodies were purchased from Santa Cruz: actin (sc-1616), dsRed (sc-

33354), MEF2A (sc-313X; used in ChIP), donkey anti-goat IgG-HRP (sc-2020), Fra-2 (sc-604), 

c-Jun (sc-1694), GFP (sc-9996), MCK (sc-365046), MyoD (sc-304). anti-LC3B (Cell Signalling, 

2775). Myogenin and HA monoclonal antibodies were obtained from the Developmental Studies 

Hybridoma Bank. The remaining antibodies are as follows: Hspb7 (Abcam, ab150390), Rabbit 

IgG (Millipore, 12-370). Dexamethasone (sc-29059) was used at a concentration of 10 μM, 

unless otherwise indicated. DMSO was used as a volume control. Rapamycin (10 μg/ml) was 

used purchased from Santa Cruz (sc-3504). 

siRNA. Knockdown of target genes was done using siRNA obtained from Sigma-Aldrich and 

are listed in Supplementary Table S2. In C2C12 siRNA was transfected at the following 

concentration: Mef2a (30 nM), c-Jun (50 nM), Fra-2 (50 nm)  

Immunoblots. Cells were washed with 1XPBS and lysed in NP-40 lysis buffer (50 mM Tris, 

150 mM NaCl, 0.5% NP-40, 2 mM EDTA, 100 mM NaF and 10 mM Na pyrophosphate) 
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containing protease inhibitor cocktail (Sigma-Aldrich), 1 mM phenylmethylsulfonyl fluoride 

(Sigma-Aldrich), and 1 mM sodium orthovanadate (Bioshop). Protein concentrations were 

determined by Bradford assay (Bio-Rad). Twenty μg of total protein were resolved on 10% SDS-

PAGE and then transferred onto Immobilon-FL PVDF membrane (Millipore) for 1 hr or 

overnight. Non-specific binding sites were blocked using 5% milk in PBS or TBST. Membranes 

were incubated with primary antibodies overnight at 4
o
C in 5% milk in PBS or 5% BSA in 

TBST. HRP-conjugated secondary antibody was added for 1 hr at RT. Protein was detected with 

ECL Chemiluminescence reagent (Pierce).  

Chromatin Immunoprecipitation. Methods were carried out as described previously described 

(34) however a third IP Wash Buffer was added (IP Wash Buffer III; 20 mM Tris pH 8.1, 250 

mM LiCl, 1% NP-40, 1% deoxycholate, 1 mM EDTA).  

RNA extraction. Total RNA was extracted from C2C12 using the RNeasy Plus kit (Qiagen) and 

Qiashredder (Qiagen). RNA isolated from tissue was extracted using Trizol (Invitrogen). RNA 

was converted to cDNA using Superscript III (Invitrogen) according to the manufacturer’s 

instructions.  

Quantitative PCR. SybrGreen (BioRad or ABM) was combined with 2.5 μl gDNA or cDNA 

and 500 nM primers in a final volume of 20 μl. cDNA was diluted 1:10 prior to use. Each sample 

was prepared in triplicate and analyzed using Rotor-Gene Q (Qiagen). Parameters for qRT-PCR 

using BioRad: 30s 95
o
C, [5s 95

o
C, 30s 60

o
C] x 40 cycles. Parameters for qRT-PCR using ABM: 

10m 95
o
C, [3s 95

o
C, 30s 60

o
C] x 35 cycles. Parameters for ChIP-qPCR: 5min 95

o
C, [5s 95

o
C, 

15s 60
o
C] x 40 cycles. Fold enrichment (ChIP-qPCR) and Fold change (qRT-PCR) was 

quantified using the ∆∆Ct method. Primers used in ChIP-qPCR and qRT-PCR are listed in 

Supplementary Figure Table S3. 

Bioinformatics. AP-1 consensus sequences were mapped using cisGenome. GREAT (default 

settings) identified GO terms based on DNA sequences obtained from available datasets. 

MEF2A: GSE61207; Fra-1: ENCSR000AIK c-Jun: GSE37525. 

Animal Care. For aging experiments, 63 and 8 week old C57BL/6 male mice were obtained 

from Jackson Lab or Charles River, respectively. Mice were sacrificed using cervical dislocation 

in accordance with the Institutional Animal Care and Use Committee of York University. For 

autophagy experiments 6-8 week old C57BL/6 male mice were sacrificed in accordance with 

University of Ottawa Animal Care and Use Committee. Autophagic flux was monitored as 

https://www.encodeproject.org/experiments/ENCSR000AIK/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37525


79 
 

described by Ju et al. (398) with the following changes: 1) Mice were placed on a 24 hr fast. 2) 

After ptfLC3, Hspb7-HA or pCAGGSnHC electroporation, two days of recovery was allowed.  

Statistics. Data are presented as mean ±SEM. Statistical analysis was done using one-tailed 

paired student t-test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 
 

Results 

Common MEF2 and AP-1 target genes in muscle affect components of the cytoskeleton 

MEF2 and AP-1 are transcription factors involved in myoblast proliferation and 

differentiation, yet whether they regulate common target genes during differentiation has not 

been thoroughly explored. To determine whether MEF2 and AP-1 have similar target genes we 

utilized MEF2A ChIP-exo data previously obtained from differentiating C2C12 (48 hr DM) 

(225) and compared these binding events to c-Jun (379) and Fra-1 (Wold group, ENCODE) 

ChIP-seq data, the only muscle specific ChIP-seq datasets currently available of any AP-1 

component that we are aware of. Fra-1 is primarily associated with bone development (399, 400) 

and c-Jun has been implicated in many tissues including muscle (377–379). Both the c-Jun and 

Fra-1 ChIP-seq data was completed in C2C12 myoblasts in growth medium (GM). c-Jun yielded 

9778 binding events while Fra-1 had 6507. To determine the percentage of shared binding sites 

across these datasets we first used three transcription factor-centric viewpoints from MEF2A, c-

Jun and Fra-1 (Figure 1A). From a MEF2A-centric analysis, the majority of MEF2A binding 

sites (69%) bound to DNA independent of c-Jun or Fra-1 recruitment, yet 17% of MEF2A bound 

DNA also contained c-Jun recruitment and 12% contained both c-Jun and Fra-1. Fra-1 and 

MEF2A alone shared few binding sites (2%). From the 9778 c-Jun ChIP-seq peaks, over 30% 

also has Fra-1 recruitment, but the majority of c-Jun targets did not show enrichment for MEF2A 

or Fra-1. Conversely, over half of all Fra-1 binding events were associated with c-Jun 

recruitment (56%). 

Functional roles for common MEF2A and AP-1 binding sites were identified using 

Genomics Regions Enrichment of Analysis Tool (GREAT), which revealed enriched GO terms 

for Biological Processes, the top ten of which are in Figure 1B. The GO terms were ranked by 

Binomial raw p-value and the number of genes within each GO term is indicated. DNA enriched 

for MEF2A-alone was associated with traditional functions such as actin-filament based 

processes and skeletal muscle tissue development but also myeloid cell development (blue). 

There were no GO terms identified for MEF2A and Fra-1, however, MEF2A and c-Jun had GO 

terms for striated muscle development, vascular development and heart morphogenesis (purple). 

Common terms across all three groups were related to the actin cytoskeleton and negative 

regulation of smooth muscle cell proliferation (black). c-Jun and Fra-1 targets had GO terms 

related to infection such as response to bacterium (pink). 
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Figure 1. 
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Figure 1. A comparison of MEF2A and AP-1 target genes in skeletal muscle. A) Percent 

overlap between MEF2A, c-Jun, and Fra-1. Within each pie graph is the percentage of binding 

events corresponding to a MEF2A, c-Jun, or Fra-1 centric view. The total number of ChIP-seq 

binding events for each category is indicated in parentheses. B) Functional roles for MEF2A 

alone, MEF2A/c-Jun, MEF2A/c-Jun/Fra-1 and c-Jun/Fra-1. Using the datasets from 1A, GREAT 

analysis revealed GO terms for Biological Processes. The total number of genes per GO term are 

indicated to the right of each GO term.  
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Since the MEF2A dataset was obtained from differentiating myoblasts and given that 

several other AP-1 components aside from c-Jun and Fra-1 could also be targeting MEF2 target 

genes we determined the location of AP-1 consensus sequences containing the sequence 

TGAGTCA using cisGenome allowing zero mismatches. From the mm9 genome, this search 

identified 264, 537 AP-1 consensus sites. We decided to focus on the MEF2A/AP-1 common 

genes within ±10kb of the transcription start site (TSS) and observed that 13 out of these 76 

genes are associated with the molecular function cytoskeleton protein binding (Supplementary 

Table S1). We assessed the expression of five of these genes during C2C12 myogenesis: Destrin 

(Dstn), Filamin C (Flnc), Heat shock protein family, member 7 (Hspb7), Leiomodin 3 (Lmod3) 

and Pleckstrin homology domain containing family H, member 2 (Plekhh2). The recruitment 

pattern of MEF2A, c-Jun, Fra-1 and any AP-1 consensus sequences is indicated in an image 

from UCSC (Figure 2). The overall trends demonstrate several points. First, as MEF2A was done 

using ChIP-exo, which involves exonuclease digestion prior to sequencing, MEF2A peaks are 

more defined indicating one of the advantages of ChIP-exo over conventional ChIP-seq. Second 

the scale of c-Jun and Fra-1 recruitment differ dramatically which could indicate differential 

DNA binding affinity of AP-1 family members. From these five MEF2A target genes, c-Jun 

(ChIP-seq) was recruited to an overlapping or neighbouring binding event near Flnc, Hspb7 and 

Plekhh2. Fra-1 and MEF2A recruitment only overlapped at the promoter of Flnc, and Fra-1 was 

detected within the second intron of Hspb7.  Dstn is an actin-depolymerizing protein (401) while 

Flnc, a muscle specific filamin (402), promotes the cross-linking of actin. We had previously 

identified Hspb7 (small heat shock protein) and Lmod3 (tropomodulin family member) as MEF2 

target genes in cardiac muscle as well (225). Recently a human nemaline myopathy has been 

associated with mutations in Lmod3 (301, 315, 318). Hspb7 expression is higher in mdx mice, a 

genetic model of muscular dystrophy, but no functional role has been established in muscle 

(403). The role of Plekhh2 appears to be to stabilize the cortical actin cytoskeleton (404). All of 

these proteins are primarily found in the cytoplasm except for Hspb7 which has been shown to 

also reside in sub-nuclear speckles (405).  
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Figure 2. 
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Figure 2. Differential recruitment of MEF2A and AP-1 to actin cytoskeletal target genes.  

UCSC Genome Browser image depicting the location of MEF2A (blue), c-Jun (Green) and Fra-1 

(Black) recruitment to Dstn, Flnc, Hspb7, Lmod3 and Plekhh2. Horizontal bars below read 

densities indicate an enrichment peak (if present). AP-1 consensus sequences are also indicated 

as vertical green dashes below Fra-1 data.  
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Actin cytoskeletal genes are directly regulated by MEF2A and AP-1 

Aside from c-Jun and Fra-1, AP-1 has many family members including Fra-2, Junb, c-

Fos, and several others. We assessed the expression pattern of MEF2A and AP-1 family 

members during C2C12 differentiation (Figure 3A). As Myogenin and MEF2A levels increase 

with myogenesis, only one AP-1 subunit, Fra-2, also increased. c-Jun, Jund and most 

dramatically, Fra-1 are reduced after serum withdrawal. To move forward in determining a role 

for MEF2 and AP-1 in myogenesis we decided to focus on Fra-2 and c-Jun since they are 

expressed in myoblasts and have been shown to have a role in myogenesis (377–379, 395). 

Additionally the Fra-2:c-Jun heterodimer is one of the main AP-1 complexes present in C2C12 

differentiation (406). Fra-2 is present in different isoforms and subject to post-translational 

modifications by ERK (395, 406). Unfortunately no Fra-2 ChIP-seq dataset is currently 

available.  

The expression of these genes during myogenesis was determined using qRT-PCR at GM 

(myoblasts) and 48 hr DM (myocytes) (Figure 3B). During C2C12 differentiation, the expression 

of each gene except for Dstn increased. To confirm MEF2A recruitment to Dstn, Flnc, Hspb7, 

Lmod3 and Plekhh2, ChIP-qPCR was done in growth conditions GM and at 48 hr DM. During 

differentiation, MEF2A was recruited to each gene compared to recruitment to SMA (Figure 

3C). MEF2A recruitment to Lmod3 and Hspb7 were the most significant and reflect ChIP-seq 

data (Figure 2). We could not successfully ChIP c-Jun or Fra-2 using available antibodies. 

To determine whether actin cytoskeletal genes are sensitive to the loss of AP-1 and 

MEF2 we utilized siRNA mediated gene silencing. Our previous ChIP-exo data was completed 

using a MEF2A antibody, therefore, we used siRNA targeting MEF2A. Since AP-1 may function 

in a Jun-Fos or Jun-Jun homodimer and because in muscle c-Jun and Fra-2 have been 

documented to be critical factors in regulating myoblast proliferation (377, 395) we used siRNA 

targeting c-Jun and Fra-2 (Figure 3D). Knock-down of MEF2A resulted in significant 

downregulation of Hspb7 (Figure 3E) but other genes were not significantly affected.  
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Figure 3. MEF2A and AP-1 regulation of actin cytoskeletal genes. A) MEF2A and AP-1 

protein expression during myogenesis. C2C12 were allowed to differentiate from myoblasts 

(GM) to 48 hr DM. B) Expression pattern of MyoG, Dstn, Flnc, Hspb7, Lmod3 and Plekhh2 

during C2C12 differentiation in GM and 48 hr DM. Values were calculated using the ∆∆Ct 

method and normalized to β-actin (n=3, *P<0.05, **P<0.01). C) Recruitment of MEF2A to 

cytoskeletal target genes during C2C12 differentiation. Values were calculated using the percent 

input method. SMA was used as a control (n=2). D) Efficiency of knockdown of MEF2A, Fra-2 

and c-Jun in C2C12 myocytes (48 hr DM) using siRNA mediated gene silencing. C2C12 were 

transfected with siRNA and allowed to differentiate for 48 hr before western blot analysis. E) 

siRNA-mediated knockdown of MEF2A, Fra-2 and c-Jun at 48 hr DM. Data were analyzed as in 

B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 
 

Age and dexamethasone induced atrophy causes changes in MEF2A/AP-1 cytoskeletal 

target genes 

The cytoskeleton is integrally linked to the contractile unit of the myofibril, the 

sarcomere which is made up of α-actin and myosin. During muscle atrophy, a phenomenon 

observed in sarcopenia, cachexia and various genetic diseases, the cytoskeleton and components 

of the sarcomere become degraded resulting in overall muscle loss and weakness. Since these 

five proteins are involved, to varying degrees, in the actin cytoskeleton we wanted to determine 

whether expression of these MEF2/AP-1 target genes may change under atrophic conditions. To 

determine whether these genes were differentially expressed in aging muscle we isolated RNA 

from the gastrocnemius and quadriceps of 8- and 63-week old mice (Figure 4A). In the 

gastrocnemius Hspb7 was upregulated with age. In the quadriceps Dstn, Flnc and Hspb7 were 

upregulated. In cell culture, muscle atrophy can be replicated using Dexamethasone (Dex), a 

synthetic glucocorticoid. To model glucocorticoid induced atrophy C2C12 were allowed to 

differentiate for 72 hr in DM, and then treated with Dex (Figure 4B). In this analysis we included 

two E3 ubiquitin ligases, MAFbx and MURF1 which are associated with muscle atrophy and 

serve as positive controls.  These E3 ligases promote atrophy and ubiquitinate proteins for 

degradation. In muscle, MuRF1 directly targets myosin and myosin binding proteins for 

degradation, contributing to loss of the sarcomere (270, 271). After 6 or 24 hr treatment of Dex 

MAFbx and MuRF1 were upregulated. Six hour Dex treatment increased Dstn and Hspb7 

expression and decreased Flnc. Lmod3 and Plekhh2 expression were unchanged. After 24 hr 

treatment with Dex these trends were similar, however, Hspb7 was upregulated by five-fold, 

equivalent to the degree of MAFbx and MuRF1 induction.  
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Figure 4. Aging and dexamethasone-induced atrophy cause changes in MEF2A/AP-1 

cytoskeletal target genes. A) The RNA from the gastrocnemius and quadriceps of 8- and 63-

week old CB57/J mice was isolated for qRT-PCR analysis. Values were calculated using the 

∆∆Ct method and normalized to Gapdh (n=3 unless otherwise indicated, *P<0.05). B) 

Dexamethasone treatment of myotubes induces atrophy and the expression of MEF2A/AP-1 

target genes. C2C12 were allowed to differentiate for 72 hr and then treated with Dexamethasone 

for 6 hr (upper graph) or 24 hr (lower graph) at the indicated concentrations. Values were 

calculated as in A. 

 

 

 

 

 

 

 

 

 

 

 



91 
 

 

MEF2 and AP-1 regulate atrophy-induced Hspb7 expression 

Since Hspb7 expression was induced by Dex, increased during aging and is regulated by 

MEF2A and AP-1 (Figure 3) we chose to study the regulation of this gene in more detail.  

Using ChIP-seq, GR binding sites were identified in C2C12 myotubes treated with Dex (407). 

Interestingly, GR was found to bind to an intron of Hspb7. Using UCSC browser we plotted the 

MEF2A, c-Jun, Fra-1 and AP-1 peaks and compared them to GR recruitment from Kuo et al. 

(407) within the Hspb7 gene (Figure 5A). Where GR was recruited following Dex treatment was 

within the second intron of Hspb7 which contained c-Jun and Fra-1 enrichment peaks. We 

utilized Dex treatment to further determine how MEF2A, AP-1 and GR might be contributing to 

Hspb7 expression.  

At the protein level, Dex treatment upregulated Hspb7 expression in the late stages of 

differentiation but not under growth conditions (Figure 5B). The effect of exogenous expression 

of MEF2A, Fra-2 or c-Jun in combination with Dex treatment was assessed in growth conditions 

and 72 hr myotubes. Under growth conditions, Hspb7 expression was only enhanced by the 

combined overexpression of MEF2A and Dex treatment. Dex treatment alone could not induce 

induction of Hspb7 (Figure 5C). In myotubes, Dex treatment consistently upregulated Hspb7 

expression, with the exception of c-Jun overexpression (Figure 5D). In differentiation conditions, 

overexpression of MEF2A alone could upregulate Hspb7 expression, and this was enhanced by 

Dex treatment.  

 Finally, to determine whether MEF2 and AP-1 were necessary for Dex-induced 

upregulation of Hspb7, C2C12 were transfected with siRNA targeting MEF2A, Fra-2 or c-Jun, 

allowed to differentiate for 48 hr and then treated with Dex (10 μM, 6 hr) to determine whether 

Hspb7 expression was affected (Figure 5E). Under Dex treatment, loss of MEF2A prevented 

Dex-dependent induction of Hspb7 expression, however, loss of Fra-2 or c-Jun upregulated 

Hspb7 and this was enhanced upon Dex treatment. Together this indicates that Hspb7 is 

repressed by AP-1 factors c-Jun and Fra-2 and upregulated by a combination of MEF2A and GR 

recruitment.  
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Figure 5. MEF2 and AP-1 regulate atrophy induced Hspb7 expression. A) UCSC genome 

browser image depicting recruitment of MEF2A (blue), Fra-1 (black), c-Jun (green) and 

Glucocorticoid Receptor (GR, red) to Hspb7. AP-1 consensus sequences are indicated by vertical 

black lines. B) Dex treatment of myotubes strongly upregulated Hspb7 protein expression. 

C2C12 were treated with 10 μM Dex for the indicated time. Actin was used as a loading control. 

C) Exogenous expression of MEF2A, Fra-2 or c-Jun in Dex treatment in growth conditions (C) 

or 72 hr (D). C2C12 were transfected with the indicated construct using calcium phosphate. Cells 

were treated with 10 μM Dex for 24 hr. E) Loss of MEF2A, Fra-2 or c-Jun prevents the 

induction of Hspb7 expression by Dex treatment. Cells were transfected with the indicated 

siRNA and allowed to differentiate for 48 hr, after which they were treated with 10 μM Dex for 

24 hr.  
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Characterizing the role of Hspb7 in muscle atrophy 

Small heat shock proteins have a role in protecting the cytoskeleton during stress (408). 

Hspb7 (also known as cvHsp) is highly expressed in skeletal and cardiac muscle (409) and it has 

been linked to cardiac morphogenesis and cardiomyopathies (410, 411), but a role in skeletal 

muscle has thus far not been established. In other cell types Hspb7 has been shown to prevent 

protein aggregation (412) and to localize to nuclear speckles (405), a sub-nuclear location in 

which pre-mRNA is spliced.  

First, Hspb7 expression was observed to be expressed late in myogenesis (Figure 6A). 

Secondly, we found that similar to the majority of literature on Hspb7, it is localized to the 

cytoplasm, and this is more pronounced under Dex treatment (Figure 6B). Occasionally we could 

detect Hspb7 as a doublet but the significance of this is unclear. 

Using an HA tagged Hspb7 expression construct we observed that exogenous expression 

of Hspb7 did not influence myogenesis, as MyoG expression was unchanged (Figure 6C). Hspb7 

has been associated with autophagy but the mechanism is unclear (413). Bag3 is a component of 

chaperone mediated autophagy that shows enriched expression in striated muscle and Bag3 null 

mice develop myopathies (414). Interestingly, Hspb7 and Bag3 SNPs have been associated with 

heart failure (415). Hspb7 has also been shown to interact with Hspb8 (416), an autophagy 

related protein that interacts with Bag3 (417). Therefore we decided to look at whether Hspb7 

could affect autophagy using LC3B as a readout. We observed that with Hspb7 overexpression, 

LC3B-II levels were not significantly affected, however Hspb7 protein turnover occurred within 

24 hr in spite of maintained GFP expression (Figure 6C). Many proteins that contribute to 

autophagy are degraded with the autophagic vesicle, such as p62 which shows a reduction in 

expression in response to increased autophagy. To induce autophagy we treated C2C12 

myotubes with Rapamycin, an mTOR inhibitor. We saw an accumulation of LC3B-II in 

Rapamycin treated cells indicative of enhanced autophagy. This was accompanied by 

downregulation of Hspb7 after 24hr Rapamycin treatment (Figure 6D), indicating that Hspb7 

may be degraded with the autophagosome or involved in autophagy. 
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Figure 6. Role of Hspb7 in skeletal muscle atrophy. A) Hspb7 during myogenesis. Protein 

extracts were collected from differentiating C2C12 at the indicated time and prepared for 

western blot analysis. B) Cyto-Nuclear fractionation in Dex-treated C2C12 myotubes. Cells at 72 

hr DM were treated with 10 μM Dex for 24 hr and prepared for fractionation. MCK was used a 

cytoplasmic control. MyoD was used as a nuclear control. C) Overexpression of Hspb7 in 

differentiating C2C12. Cells were transfected with Hspb7-HA and allowed to differentiate for 

the indicated time. Extracts were prepared for western blot. D) Rapamycin treatment decreases 

Hspb7 expression. Myotubes (72 hr) were treated with Rapamycin (10 μg/ml) for the indicated 

time.  
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Hspb7 expression in vivo 

These data indicate that Hspb7 is induced under muscle atrophy and may also have a role 

in autophagy. To determine whether Hspb7 has any correlation to autophagy in vivo we induced 

autophagy via fasting (24 hr). Twenty-four hours prior to fasting, colchicine (0.4mg/kg/day) was 

injected to serve as an autophagic block and this treatment was maintained throughout fasting. 

Colchicine+Fast reduced overall weight of the quadriceps and gastrocnemius (Figure 7A). The 

tibialis anterior (TA) was also affected but this reduction was not as dramatic. Induction of 

autophagy via fasting and colchicine treatment upregulated Map1lc3b, p62, MyoG Atg7, Foxo1, 

Foxo3 and Hspb7 in the TA (P<0.01) (Figure 7B). Hspb7 expression was also increased 

(P<0.05) in the quadriceps and gastrocnemius but not the heart (Figure 7C).  

To determine whether Hspb7 may have a protective role during muscle atrophy we 

exogenously expressed an HA tagged Hspb7 construct into the TA muscle. Under control 

conditions, Hspb7-HA did not affect Map1lc3b or p62 expression, however, in response to 

colchicine and fasting, Hspb7-HA prevented induction of these autophagic genes (Figure 8A, B). 

The level of Hspb7-HA expression is shown in Figure 8C. 
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Figure 7. Hspb7 expression is associated with autophagy. A) Total muscle mass of 6-8week old 

CB57/J mice treated with saline, colchicine (0.4mg/kg/day) or Colchicine+Fast (n=3). B) 

Changes in autophagy genes in response to fasting. RNA was isolated for qRT-PCR analysis 

from the TA. Values were calculated using the ∆∆Ct method and normalized to Gapdh (n=3, 

*P<0.05, **P<0.01). C) Hspb7 in the Heart, Quadriceps (Quad) and Gastrocnemius (Gastroc). 

Data were analyzed as in B. 
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Figure 8. Hspb7 expression prevents induction of autophagy markers in response to fasting. 

A) Hspb7-HA or control (pCAGGSnHC) was electroporated into the TA muscle on Day 1. On 

Day 3 daily colchicine injections began and on Day 4, colchicine fasting began. Values were 

calculated using the ∆∆Ct method and normalized to the geometric mean of β-actin, Gapdh, Tbp 

and Rps26 (n=3 unless otherwise indicated, *P<0.05). Panel A shows expression of Map1lc3b 

while Panel B shows p62 expression. C) Samples were analyzed using western blot analysis to 

determine level of exogenous expression of Hspb7-HA.  
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Discussion 

From our previous study which identified novel MEF2A target genes in skeletal and 

cardiac muscle (225) we observed that AP-1 consensus sequences were enriched with MEF2A 

binding events, and there was strong indication that MEF2A regulates the actin cytoskeleton 

based on GO term analysis (136, 225). Based on the inverse expression pattern of MEF2 and 

most AP-1 components (Figure 3A), we hypothesized that MEF2 and AP-1 may regulate the 

actin cytoskeleton in a competitive manner. In the work presented here we show, through 

bioinformatic and biochemical analysis that MEF2 and AP-1 share common target genes related 

to the actin cytoskeleton. Our study presents a mechanism by which changes in gene expression 

during muscle atrophy directly involve both MEF2 and AP-1. Using Dexamethasone as a model 

of muscle atrophy we further provide evidence that AP-1 and MEF2 regulate a novel target gene, 

Hspb7, in a Dex-dependent manner. Additionally, we show a novel role for Hspb7 muscle 

atrophy that may have implications in autophagy (Figure 9). 
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.   

Figure 9. Model for the regulation and role of Hspb7 in atrophic conditions. Glucocorticoid 

signaling (e.g Dexamethasone), aging and fasting induces Hspb7 expression. Activation of 

Hspb7 requires glucocorticoid receptor (GR) and MEF2A which co-operatively regulate Hspb7 

expression. AP-1 inhibits Hspb7 expression by repressing GR activity.  

 

MEF2 and AP-1 regulation of the actin cytoskeleton and muscle atrophy 

 MEF2 and AP-1 are ubiquitous transcription factors yet their potential interaction at the 

transcriptional level has not been studied.  Based on our results, MEF2 and AP-1 appear to 

inversely regulate Hspb7 wherein MEF2 promotes expression and AP-1 represses it. We also 

identified several other potential common target genes that MEF2 and AP-1 may co-operatively 

or competitively regulate. Based on GO term analysis, Fra-1 and MEF2A do not share a 

significant number of target genes compared to MEF2A and c-Jun (Figure 1). This may indicate 

that Fra-1 and MEF2 have fundamentally different functions and also that Fra-1 associates with 

another Jun family member such as Junb or Jund to target differential AP-1 genes. MEF2 and c-
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Jun were enriched for several muscle-related GO terms. This likely reflects the role of c-Jun in 

priming muscle specific enhancers with MyoD (379), whereby c-Jun and MyoD could prime 

DNA binding for MEF2A. Fra-1/c-Jun exclusive targets were mainly associated with 

angiogenesis and the response to bacterium, the latter of which is associated with inflammation 

and cytokine production, one of the traditional roles of AP-1 (418, 419). This bioinformatic 

analysis demonstrates that analysis of differential transcription factors can reveal distinct roles of 

co-operative and exclusive biological functions.   

 A striking feature of Fra-1 and c-Jun recruitment was that the anti-inflammatory GR also 

binds within the same location of the second intron of Hspb7 (Figure 5A). GR and AP-1 

competitive regulation is not a new phenomenon and was observed several decades ago on the 

collagenase I gene (420). Subsequently, many other genes were shown to be regulated by GR 

and AP-1, and interestingly GR co-operates with a Jun homodimer but inhibits Jun:Fos 

heterodimers (421, 422). Additionally AP-1 has been shown to potentiate GR recruitment by 

promoting accessible chromatin in epithelial cells (423). In the case of Hspb7 we showed that 

loss of c-Jun or Fra-2 induces Hspb7 expression upon Dex treatment, indicating a Jun:Fos dimer 

is involved in regulation of this gene. 

In striated muscle the actin cytoskeleton stabilizes the sarcomere in concert with the 

costamere which tether the Z-line of the sarcomere to the sarcolemma (424). This link facilitates 

sarcomere stabilization and connects the actin cytoskeleton to the extracellular matrix via the 

costamere, but it also has roles in other cell processes including migration, adhesion and gene 

expression (425). Therefore, identifying pathways that mediate actin cytoskeletal gene 

expression have implications across different type of disease. MEF2 has a well-established role 

in sarcomere organization as it regulates key target genes associated with the costamere and 

sarcomeric proteins (136, 137, 297). There are fewer studies that have investigated the role of 

AP-1 in sarcomere integrity, however, in cardiomyocytes c-Jun has been shown to have an 

important role in promoting sarcomere gene expression and sarcomere integrity (396). 

Interestingly, destabilization of actin cytoskeleton triggers c-Jun activity in vitro and represses 

glucocorticoid receptor activity (426). The myofibers in mouse models of cachexia is associated 

with a defective sarcolemma similar to those seen in muscular dystrophies (307), therefore 

common structural and cytoskeletal defects may contribute to various pathologies. In cancer 

cachexia, expression of the dominant negative AP-1 factor Tam67 or AP-1/NF-kappaB double 
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inhibitor can prevent loss of muscle mass (427, 428). In contrast, Junb was found to be 

universally downregulated in models of atrophy (264) and loss of AP-1 factors in denervation-

induced muscle atrophy prevents upregulation of MAFbx and MURF1 (429). Dysregulation of 

AP-1 in cancer (430) could therefore not only modulate proliferation and metastasis but also 

muscle health, which is modulated in cancer cachexia.  

A role for Hspb7 in muscle disease and sarcopenia. 

The role of small heat shock proteins to date has largely been to interact with and 

stabilize the cytoskeleton under stress conditions. Hspb7 has been shown to interact with α-

filamin (409) and to stabilize the cytoskeleton in tachypaced cardiomyocytes through co-

localization with other heat shock proteins to F-actin, preventing polymerization (431). Along 

with other small heat shock proteins, Hspb7  moves from the cytosol to myofibrils in response to 

cardiac ischemia (432). A critical role for Hspb7 in heart development has been shown in 

zebrafish (411) and an increasing amount of evidence exists that correlates mutations in Hspb7 to 

cardiomyopathies (415, 433). Co-incidentally Hspb7 SNPs within the second intron where GR 

and AP-1 recruitment was observed are associated with cardiomyopathies (433). Although 

Hspb7 was induced in skeletal muscles in response to fasting it was not upregulated in the heart 

(Figure 7). This may indicate that Hspb7 is induced to protect tissues in response to different 

forms of stress.  

The molecular function of Hspb7 in the stress response, aside from stabilization of the 

cytoskeleton, has been unclear. Hspb7 does not chaperone misfolded proteins like other small 

heat shock proteins but instead has been linked to autophagy as a mechanism to clear polyQ 

protein aggregates (405, 413). In our model of skeletal muscle autophagy, Hspb7 protein levels 

decrease with Rapamycin, yet expression of mRNA is highly inducible with Dex, aging and 

fasting. The function of Hspb7 may be similar to one of its co-factors, Hspb8, which interacts 

with the CASA complex via protein Bag3. The decrease of endogenous Hspb7 in response to 

Rapamycin treatment likely indicates that Hspb7 is degraded via the autophagy pathway, perhaps 

as it chaperones muscle proteins. Also Hspb7 has been reported to be located in sub-nuclear 

speckles in HL-1 and HeLa cells using a tagged Hspb7 construct (405) however in our data, 

Hspb7 was localized exclusively to the cytosol.  

Doran et al. (403) observed increased expression of Hspb7 and Cryab in rat models of 

sarcopenia aged 30 months. In our model, Hspb7 also increased with age. Since autophagy 
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impairment is believed to be associated with sarcopenia (434), Hspb7 maybe a protective 

response as suggested by Doran et al. (403). Decreased satellite cell number has recently been 

associated with decreased autophagy (435), which could also mean there is a role for Hspb7 in 

satellite cell quiescence. 

In conclusion, MEF2 and AP-1 each have distinct functions, yet both are involved in 

regulation of skeletal muscle development and the actin-cytoskeleton. Furthermore these 

transcription factor families may regulate some genes in an inverse manner, such as Hspb7. The 

precise role of Hspb7 still requires further characterization but so far our experiments indicate 

that Hspb7 is involved in autophagy which may be of particular importance for muscle function 

and pathology. 
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Table S1. MEF2A target genes that contain AP-1 consensus sequences within the enriched 

DNA fragment. Results here are limited to ±10kb of TSS. 

Gene Symbol Gene ID Peak Location 

1700001K19Rik RIKEN cDNA 1700001K19 gene MACS_peak_671 (-5250) 

1700034E13Rik RIKEN cDNA 1700034E13 gene MACS_peak_1317 (-6521) 

4930564D02Rik RIKEN cDNA 4930564D02 gene MACS_peak_1802 (-6871) 

4931408C20Rik RIKEN cDNA 4931408C20 gene MACS_peak_15 (+1371) 

Acta1 actin, alpha 1, skeletal muscle MACS_peak_2612 (+9788) 

Actr3 ARP3 actin-related protein 3 homolog (yeast) MACS_peak_143 (+6940) 

Aebp2 AE binding protein 2 MACS_peak_2324 (-1642) 

Aldoart1 predicted gene 8659; aldolase 1, A isoform, retrogene 1 MACS_peak_1974 (+9501) 

Anxa11 annexin A11; predicted gene 2260; predicted gene 2274 MACS_peak_831 (-9585) 

Aqp1 aquaporin 1 MACS_peak_2246 (+8468) 

Bbc3 BCL2 binding component 3 MACS_peak_2351 (+4483) 

Bhlhe40 basic helix-loop-helix family, member e40 MACS_peak_2288 (+5093) 

Birc5 baculoviral IAP repeat-containing 5 MACS_peak_575 (-5521) 

Bmf BCL2 modifying factor MACS_peak_1621 (+8695) 

C030005K15Rik RIKEN cDNA C030005K15 gene MACS_peak_371 (+55) 

Capn2 calpain 2 MACS_peak_248 (-2987) 

Ccr3 chemokine (C-C motif) receptor 3 MACS_peak_2728 (+1247) 

Cd300lb CD300 antigen like family member B MACS_peak_567 (+4643) 

Cdh17 cadherin 17 MACS_peak_1905 (+9238) 

Chst3 carbohydrate (chondroitin 6/keratan) sulfotransferase 3 MACS_peak_319 (+9824) 

Cldn20 claudin 20 MACS_peak_1175 (-760) 

Cspg4 chondroitin sulfate proteoglycan 4 MACS_peak_2665 (+8160) 

Ctps cytidine 5'-triphosphate synthase MACS_peak_2027 (-898) 

Cxcr6 chemokine (C-X-C motif) receptor 6 MACS_peak_2727 (+9716) 

Diras1 DIRAS family, GTP-binding RAS-like 1 MACS_peak_351 (-2159) 

Dstn destrin MACS_peak_1668 (-359) 

Ephb2 Eph receptor B2 MACS_peak_2045 (+1959) 

Fadd Fas (TNFRSF6)-associated via death domain MACS_peak_2460 (+4321) 

Flnc filamin C, gamma MACS_peak_2215 (-2395) 

Gas2 growth arrest specific 2 MACS_peak_2376 (+9357) 

Gata2 GATA binding protein 2 MACS_peak_2264 (+9663) 

Git1 G protein-coupled receptor kinase-interactor 1 MACS_peak_491 (-1334) 

Gpc6 predicted gene 4672; glypican 6; similar to Glypican 6 MACS_peak_899 (+3069) 

Gtf3c5 general transcription factor IIIC, polypeptide 5 MACS_peak_1486 (-8235) 

H3f3b H3 histone, family 3B MACS_peak_569 (+3721) 

Hspb7 heat shock protein family, member 7 (cardiovascular) MACS_peak_2052 (+5169) 

Ifnlr1 interferon, lambda receptor 1 MACS_peak_2041 (-9676) 

Il20 interleukin 20 MACS_peak_151 (-7486) 

Itgbl1 integrin, beta-like 1 MACS_peak_903 (+2644) 

Jup junction plakoglobin MACS_peak_544 (+9544) 

Klhl41 kelch like family member 41 MACS_peak_1541 (-342) 

Lmod3 leiomodin 3 (fetal) MACS_peak_2277 (-51) 

Lsm4 LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae) MACS_peak_2552 (+9194) 

Mall mal, T-cell differentiation protein-like MACS_peak_1642 (+7295) 

Man2a2 mannosidase 2, alpha 2 MACS_peak_2395 (-5837) 

Nav1 neuron navigator 1 MACS_peak_165 (-8842), MACS_peak_164 (-5605) 

Necap1 NECAP endocytosis associated 1 MACS_peak_2307 (-2794) 

Npas4 neuronal PAS domain protein 4 MACS_peak_1381 (-2966) 

Olfr432 olfactory receptor 432 MACS_peak_238 (+2806) 

Orai1 ORAI calcium release-activated calcium modulator 1 MACS_peak_2169 (-5772) 

Plec plectin 1 MACS_peak_1032 (-7521) 

Plekhh2 pleckstrin homology domain containing, family H (with MyTH4 domain) member 2 MACS_peak_1250 (-1476) 

Ppap2a phosphatidic acid phosphatase type 2A MACS_peak_799 (+2938) 

Prkag3 protein kinase, AMP-activated, gamma 3 non-catatlytic subunit MACS_peak_77 (-260) 

Prnp prion protein MACS_peak_1655 (-6982) 

Rapgef1 Rap guanine nucleotide exchange factor (GEF) 1 MACS_peak_1487 (+5135) 

Rcc2 regulator of chromosome condensation 2; hypothetical protein LOC100047340 MACS_peak_2050 (-4012) 

Sil1 endoplasmic reticulum chaperone SIL1 homolog (S. cerevisiae) MACS_peak_1284 (-185) 

Slc30a4 solute carrier family 30 (zinc transporter), member 4 MACS_peak_1628 (-2027) 

Smtnl1 smoothelin-like 1 MACS_peak_1563 (+2568) 

Sp2 Sp2 transcription factor MACS_peak_535 (-4416) 

Spata4 spermatogenesis associated 4 MACS_peak_2533 (+8876) 

Stambpl1 STAM binding protein like 1 MACS_peak_1428 (+3047) 

Stmn4 stathmin-like 4 MACS_peak_864 (-3371) 

Supt3 suppressor of Ty 3 MACS_peak_1207 (-6125) 

Tlr4 toll-like receptor 4 MACS_peak_1970 (+1251) 

Treml1 triggering receptor expressed on myeloid cells-like 1 MACS_peak_1212 (-3847) 

Wisp1 WNT1 inducible signaling pathway protein 1 MACS_peak_1017 (-7370), MACS_peak_1021 (+2803) 

Xcl1 chemokine (C motif) ligand 1 MACS_peak_222 (+8518) 

Xirp1 xin actin-binding repeat containing 1 MACS_peak_2720 (-673) 

Ybx3 Y-box binding protein 3 MACS_peak_2318 (+5898) 

Zbtb42 predicted gene 5188 MACS_peak_672 (+4714) 

Zc3h18 predicted gene 5939; zinc finger CCCH-type containing 18 MACS_peak_2609 (-7767) 

Zfp46 zinc finger protein 46 MACS_peak_2044 (-1687) 

Zfp516 zinc finger protein 516 MACS_peak_1375 (-310) 

Zfp697 zinc finger protein 697 MACS_peak_1795 (-7835) 
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Table S2. siRNA oligonucleotides.  

Target Product Number 

scr SIC001 
 

Mef2a SASI_Mm01_00120788  
 

c-Jun SASI_Mm01_00046358  

Fra-2 SASI_Mm01_00201001  
 

 

Table S3. Primers used in qRT-PCR and ChIP-qPCR.  

Gene Forward 5'-3' Reverse 5'-3' 

Atg7 TTTCTGTCACGGTTCGATAATG TGAATCCTTCTCGCTCGTACT 

Dstn CACCAGAACAAGCACCTCTG AGCCACCTAGCTTTTCAGCA 

Flnc TTAACCGAGACTGGCAGGAC CCTCTCTGGCATTCTGCAC 

Foxo1 ACG AGT GGA TGG TGA AGA GC TGC TGT GAA GGG ACA GAT TG 

Foxo3 AGT GGA TGG TGC GCT GTG T CTG TGC AGG GAC AGG TTG T 

Hspb7 TGTCACCACCTTCAACAACCAC TCATGACTGTGCCATCAGCTG 

Lmod3 TGACTCTGCCCAGAAAACCT GTTGAGCTGCTGGGAGTGAC 

Plekhh2 AATTCCGAGTTCAAGCAAGC CCGCTCTGCATCGATAACTT 

MAFbx GCAGAGAGTCGGCAA GTC CAGGTCGGTGATCGTGAG 

Murf1 AGTGTCCATGTCTGGAGGTCGTTT ACTGGAGCACTCCTGCTTGTAGAT 

Map1lc3b GCTTGCAGCTCAATGCTAAC CCTGCGAGGCATAAACCATGTA 

Myogenin CAGCTCCCTCAACCAGGAG GACTGCAGGAGGCGCTGT 

Rps26 GCCATCCATAGCAAGGTTGT GCCTCTTTACATGGGCTTTG 

Sqstm1/p62 TGTGGTGGGAACTCGCTATAA CAGCGGCTATGAGAGAAGCTAT 

Tbp TCATGGACCAGAACAACAGC GCTGTGGAGTAAGTCCTGTGC 

β-Actin AAGTGTGACGTTGACATCCGTAA TGCCTGGGTACATGGTGGTA 

Gapdh ACCCCCAATGTATCCGTTGT TACTCCTTGGAGGCCATGTA 
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CHAPTER V: Summary of Dissertation 

The complex role that MEF2 has during embryogenesis and in adult diseases in both 

skeletal and cardiac muscle has been difficult to fully characterize. Genetic knockout mouse 

models have shown critical roles for individual MEF2 genes yet their redundancy in function 

may hide physiological outcomes as seen in MEF2A, C, and D triple knockout models during 

skeletal muscle regeneration (140). To better identify the functions of MEF2A we utilized high 

throughput ChIP-sequencing in skeletal and cardiac cells to find new target genes. Bioinformatic 

analysis showed that MEF2A is recruited to a loosely conserved set of binding sites (~300) in 

both cell types. Using Gene Ontology analysis it was found that across cell types MEF2A 

recruited genes were mutually associated with functions related to the actin cytoskeleton but in 

myoblasts, MEF2A was also associated with functions related to the regulation of MAPK 

activity while in cardiomyocytes, enriched genes were associated with the induction of apoptosis. 

Enriched consensus sequences within these cells types included MEF2 and AP-1.  

We also used a loss of function approach via siRNA-mediated gene silencing to find 

differentially expressed genes in MEF2A depleted myoblasts. The majority of downregulated 

genes were associated with muscle system processes and upregulated genes were related to 

cellular locomotion.  Additionally, the location of MEF2A recruitment may dictate function: 

20% of downregulated genes corresponded to MEF2A enrichment within ±5 kb of the 

transcription start site, compared to upregulated genes which had less than 5% of total gene 

recruitment within ±5 kb of the TSS. We then validated five genes (Dusp6, Hspb7, Kitl, Lmod3, 

Prrx1) that were differentially expressed in the RNA-seq analysis and also bound by MEF2A in 

both cardiomyocytes and myoblasts. Loss of function analysis of the genes modulated MyoG 

expression in myoblasts, indicating a functional role for these genes in myogenesis. Further 

characterization of DUSP6 showed that MEF2 inhibits expression of this gene in both cardiac 

and skeletal muscle. We observed that during myoblast differentiation, DUSP6 becomes 

dramatically decreased as p38MAPK activity increases. Using p38MAPK inhibitor SB 203580 

in combination with MEF2 gene silencing we found that p38 activity contributes to DUSP6 

repression in a MEF2D-dependent manner. Therefore this research established a model whereby 

MEF2 repression of DUSP6, a MAPK phosphatase, depends on MAPK activity. 

From this bioinformatic analysis it was observed that AP-1 consensus sequences are 

enriched in MEF2A bound DNA in striated muscle. MEF2A recruitment in myoblasts was 
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compared to Fra-1 and c-Jun ChIP-seq datasets in an exploratory bioinformatic screen. Of the 

2783 MEF2A enriched binding sites, approximately 69% were enriched with only MEF2A, not 

c-Jun or Fra-1. Interestingly, this analysis showed MEF2A and c-Jun share more binding sites 

than MEF2A and Fra-1, although there were sites enriched for all three factors. Fra-1 rarely 

showed recruitment without c-Jun. As many AP-1 factors could be interacting with MEF2A, we 

reasoned that mapping AP-1 consensus sequence (TGAGTCA) to MEF2A-enriched DNA could 

be a less-biased approach to finding shared MEF2A/AP-1 target genes. Many of the MEF2A/AP-

1 target genes were associated with Gene Ontology terms related to the actin cytoskeleton. Five 

were chosen for further study: Dstn, Flnc, Hspb7, Lmod3 and Plekhh2. Hspb7 was found to be 

upregulated in aging skeletal muscle and also in response to atrophic signaling mediated by 

Dexamethasone, a synthetic glucocorticoid. Using gain and loss of function approaches it was 

found that MEF2A positively regulates Hspb7 expression, and Dex-mediated upregulation of 

Hspb7 requires MEF2A. In contrast, AP-1 factors Fra-2 and c-Jun repress Hspb7 expression. 

Hspb7 has been linked to autophagy by others, but not studied in skeletal muscle. Using in vivo 

models of autophagy we found that Hspb7 is induced in skeletal muscle but not the heart. 

Exogenous expression of Hspb7 may offer protection from atrophy as this reduced upregulation 

of Map1lc3b and p62 in response to fasting. 

Together, this thesis identified the common and divergent MEF2A target genes in 

skeletal and cardiac muscle using high throughput sequencing. Furthermore, Dusp6 and Hspb7 

were identified as two MEF2A target genes in skeletal and cardiac muscle that have implications 

in cardiac hypertrophy, myogenesis, and atrophy.  
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CHAPTER VI: Future Directions and Conclusions 

Broad scale high throughput approaches, such as those used in this thesis, are useful in 

identifying transcription factor target genes, and several thousands of studies have been compiled 

and released into public databases that often remain underutilized. Future work will need to take 

into account existing high throughput data and transform it into a more complex, integrated 

network. In this thesis we compared ChIP-seq data from MEF2A and AP-1 components Fra-1 

and c-Jun. Based on the differential regulation of MEF2A and MEF2D by p38MAPK on DUSP6 

expression shown in Manuscript I it is clear that MEF2 proteins have different capacities in gene 

regulation that are dependent on post-translational modifications which was not considered in 

Manuscript II. As MEF2A and MEF2D are the predominant MEF2 dimer found in the adult 

heart and skeletal muscle (134, 146), it would be interesting to compare MEF2A recruitment to 

MEF2D to determine whether MEF2A or D homodimers have different effects on gene 

expression and whether this is related to differential AP-1 recruitment. Furthermore alternative 

splicing of MEF2 may determine their potential for co-factor interactions. A skeletal muscle 

specific MEF2D splice variant was shown to evade PKA signaling and in addition it did not 

interact with HDAC4 (148).  To fully understand how muscle responds to stress it will be 

necessary to have a complete genomic understanding of temporal recruitment of MEF2 proteins 

and their co-factors. With these considerations in mind, the complexity of understanding gene 

regulation can seem overwhelming. It will therefore be important in the future to fully utilize 

available research using bioinformatic approaches.  

DUSP6 has been shown to inhibit ERK1/2 activity and thereby regulate proliferation of 

the satellite pool in skeletal muscle regeneration (364) and hypertrophy in cardiac pressure 

overload (363, 436). We studied the upstream factors that regulate MEF2 activity in myoblasts 

and found p38MAPK to have an important role in this pathway, but did not investigate possible 

mechanisms in cardiomyocytes. As cardiomyocyte hypertrophy is known to be regulated by 

MEF2, and loss of DUSP6 has a protective effect on pressure overload (363), it may be useful to 

study the regulation of DUSP6 by MEF2 in cardiomyocytes in more detail.  

There is a significant body of literature that identifies a role for Hspb7 in heart 

development (411), cell stress (397, 413, 431), and aging in muscle (403), yet aside from 

zebrafish, a genetic knockout model of Hspb7 has not yet been generated. It would be useful to 

create a floxed Hspb7 mouse to conditionally delete Hspb7 from certain tissues. Studying Hspb7 
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in vitro was particularly difficult since it is expressed only in mature myotubes, therefore the 

effect of siRNA mediated gene silencing was difficult to achieve. Generating Hspb7 knockout 

mice could be used to understand aging models of autophagy, as Hspb7 is upregulated in skeletal 

muscle with age and has a definite but unclear role in autophagy. Also, data from our lab 

indicates Hspb7 may have a pro-survival role in the heart, as loss of Hspb7 in vitro upregulated a 

variety of stress related genes such as ANF, MAFbx and cleaved Caspase-3 (data not shown). 

Loss of function of Hspb7 in experimental animal models of myocardial infarct and pressure 

overload would elucidate whether this small heat shock protein has a function in adult myopathy.  

More broadly speaking, the regulation of MEF2 is implicated in many types of disease. 

Models of cancer cachexia show disturbed myofiber membranes and have similar properties to 

muscular dystrophies (307). Characterizing the activity of MEF2 in cancer has been done only in 

a few studies and looks primarily at the role of MEF2 in EMTs of the invasive tissue. Tumor-

bearing mice show reduced muscle stability and MEF2 expression (295), therefore implicating 

MEF2 activity in cancer cachexia. Examining how MEF2 is downregulated in cancer cachexia 

could lead to the development of beneficial treatment options to improve muscle health and 

quality of life in the chronically ill. 

Genome editing via TALENs and CRISPR/Cas9 has become an integral part of 

experimental design in many labs, and it is possible that in the future, human diseases will also 

be treated using this technology. Recently a child in the United Kingdom with leukemia was, for 

the first time, “cured” using genome editing, although official results are awaiting publication. 

With respect to MEF2, various diseases in which MEF2 signaling is maladaptive could be 

blocked by a reversible single nucleotide deletion from the MEF2 consensus sequence in specific 

tissues. For example in pathological hypertrophy, shutting down MEF2 recruitment to genes 

associated with remodelling would slow the progression to heart failure. Another possibility 

would be to activate MEF2 by swapping out the class II HDAC interacting domain in MEF2 in 

satellite cells to promote myofiber repair in muscle atrophy.  

If genome editing of human tissues in vivo is undesirable, then manipulating MEF2 

activity prior to stem cell transplantation could also be considered. Stem cell transplantation has 

already been done for several years in cardiac and skeletal muscle in which fibroblasts that have 

been reprogrammed to behave as cardiac stem cells or satellite cells are added to damaged tissue. 

Instead of treating the problem after the fact, stem cells should be prepared as protective reagents 
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and transplanted prior to injury. For example, creating PKA-resistant MEF2D cardiomyocytes 

and transplanting these into patients predisposed to have heart attacks may prevent 

cardiomyocyte death and fare better than with β-blocker treatment. Or athletes, astronauts or the 

elderly may take a dose of super-activated MEF2 satellite cells prior to strenuous workout, 

returning to earth or going for a walk, to temporarily increase Type I fibers.  

There is still much to be determined about MEF2 in disease. Future experiments related 

to MEF2 must utilize a combination of bioinformatics, in vivo and biochemical analyses to 

further elucidate gene regulation in striated muscle disease. 
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APPENDIX 

Expanded Material and Methods 

 

CaCl2 Transfection in C2C12 

Day 1 

Seed 12.5 x10
3
 cells/well for a 2 ml well. 

Or 1.0 x 10
5
 cells/ plate for a 10 ml plate. 

 

Day 2 

3 hr prior to transfection add either 2 or 10 ml of fresh media to encourage proliferation. 

At time of transfection cells should be at 40-50% confluency; i.e. cells should not be touching. 

Cell contact causes differentiation and so does low serum. 

 

Day 3 

16 hr after transfection, wash 2X with PBS and add fresh medium. 

Allow cells to recover for 24 hr (harvest 48 hr post-transfection). 

 

Transfection Preparation 

1) Aliquot HEBS from 2X stock (dilute to 1X). 

- Ex 300 μl Hebes + 300ul CaCl2+DNA. 

2) Make Master Mix in 2 ml tubes; Add DNA first! 

- Add the appropriate volumes of DNA. For C2C12 in a 10 ml plate this should be a total 

of 25 μg DNA. For 2 ml well this should be 5 μg of total DNA. 

- Add ddH20 – pipette up and down *Beware: smaller pipette tips will shear DNA. 

3) Add CaCl2 mix to MM tubes. 

- Ensure mixing by tapping. 

4) Vortex tube that has HEBS (2.8 M NaC, 15 mM Na2HPO4, 50 mM HEPES at pH 7.15).  

- While vortexing add dropwise the complete MM solution. 

- Solution will become slightly cloudy as precipitate forms. 

5) Give slight mix before adding transfection mixture to cell wells. 

- As you add, agitate plate and add in dropwise manner. 

 

Lipofectamine Transfection in C2C12 

Day 1 

1) Seed cells at 2.0 x 10
5
 cells per 10 ml plate. 

Day 2 

1) Cell should be 80-90% confluent. Dilute DNA into final volume of 500 μl in DMEM 

(serum free media). 

- Dilute 35 μl Lipofectamine into final volume of 500 μl in DMEM (serum free media). 
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- Incubate both solutions for 5 minutes. 

2) Add 4 ml DMEM (SFM) to cells. 

- Mix DNA mixture with Lipo mixture = 1 ml total. Incubate for 20 minutes at room 

temperature. After 20 minutes has passed, to this volume add an additional 3 ml DMEM 

(SFM). 

3) Wash cells with DMEM (serum free media) 2X. 

4) The 4 ml of DNA:lipo solution can now be added to the 4ml in the dish. 

5) Total volume of 8 ml is incubated for 5 hours. 

6) After 5 hours add 20% serum; i.e. 2 ml serum FBS (found in fridge in 50 ml aliquot). 

Make sure that this is thawed in advance! 

Day 3 

1) In the morning wash cells 2X with PBS and add 10 ml 10% FBS (GM). 

2) Check confluency and fluorescent signal. If the signal is not strong enough, let recover 5-

8 hours or if they are ready, harvest or add DM. 

 

Chromatin Immunoprecipitation Protocol 

 

Cell Culture: This protocol prepares four aliquots of chromatin for four possible IPs.  

1. Plate cells: 2-4 confluent 100 mm dishes or 1-2 confluent 150 mm
2 
 

- Collect approximately 1x10
7
 – 5x10

7
 cells per treatment.  

- Use a spare plate for counting if necessary. 

 

Day 1 

A. Cross-link cells 

1) At room temperature wash plate once with PBS. 

2) Add 10 ml of PBS followed by 270 μl of 37% Formaldehyde.  

- Final formaldehyde concentration of 1%. 

- Do not use formaldehyde past expiration date. 

- Do not over cross link. 

3) Incubate at RT for 10 min.  

- Agitation of cells is not necessary, but slow rocking is ok. 

4) Quench cross-linking reaction by adding 1.25 M glycine (10X Glycine) dropwise to each 

plate for a final concentration of 0.125 M glycine. 

- 1 ml per 10 ml dish. 

- Incubate for 5 min with slow rocking. 

5) Place dishes on ice. Pour into formaldehyde waste. Wash with ice cold PBS 3X. Aspirate 

on last wash to remove as much PBS as possible.  

6) On ice scrape cells into 1 ml of ice cold PBS containing Roche tablet and PMSF.  

- 1 Roche Tablet per 10.5 ml PBS + 105 μl PMSF. 

7) Pellet cells by centrifugation at 3000-5000 rpm for 5 minutes at 4 degrees. 
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8) Remove supernatant. Resuspend pellet with 1 ml of Wash Buffer 1 (10mM HEPES pH 

6.5, 0.5 mM EGTA, 10 mM EDTA, 0.25% Triton X-100, 1 Roche tablet, PMSF). 

9) Incubate on ice for 5 minutes. 

10) Centrifuge at 3000-5000 rpm for 5 min at 4 degrees. 

11) Remove supernatant. Resuspend nuclei in 1 ml of Wash Buffer 2 (10mM HEPES pH 

6.5, 0.5 mM EGTA, 1 mM EDTA, 200mM NaCl, 1 Roche tablet, PMSF). 

12) Incubate on ice for 10 minutes. 

13) Centrifuge at 3000-5000 rpm for 5 minutes at 4 degrees. 

14) Remove supernatant. Either continue to immediately to Day 2 or nuclei can be frozen at -

80 degrees. 

 

Day 2  

A. Nuclear lysis 

1. To nuclei add 500 μl of SDS lysis buffer (50mM Tris-HCl pH 8.1, 1-mM EDTA, 1% 

SDS, plus Roche tablet and PMSF). 

- Buffer must be prepared fresh. 

- Pipette gently, avoid forming bubbles, work quickly as SDS will precipitate on ice. 

- You may want to consider using 0.1% SDS if too many bubbles are forming. 

 

2. Sonicate to break up DNA to approximately 500 bp fragments. 

- Gel sample should be run on 2.5-3% agarose to confirm fragment size following DNA 

purification.  

- ***Can remove an unsonicated sample to run alongside the sheared sample for a 

comparison. 

- Sonicate on ice as sonicating produces heat which can denature the DNA. 

 

3. Centrifuge samples at 14000 rpm for 15 min at 4 degrees to remove insoluble materials. 

If SDS precipitates, leave briefly at RT. 

 

4. Transfer supernatant  to new tubes. 

- aliquot 4x100 μl for IP (store at -80 for up to a few months; label as XLSC for 

crosslinked sheared chromatin). 

- 2 x 20 μl aliquots for gel and input samples  (store at -20) or proceed to Day 3 Step 12 to 

get DNA concentration. 

- avoid multiple freeze thawing. 

 

* Gel and input samples should be DNA purified (Day 3-4) and the chromatin concentration 

should be calculated prior to any IPs.  

B. Pre-blocked Protein G  
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Incubate 15 μl of protein G dynal beads (Invitrogen) with 20 μg of salmon sperm DNA 

for each IP in IP dilution buffer.  

- 15 μl beads + 135 μl IP dilution buffer + 20 μg (2 μl of 10 mg/ml) salmon sperm per IP. 

- Ex: for 10 IPs: 150ul beads + 1.35 ml IP dilution buffer + 20 μl salmon sperm DNA. 

- Incubate O/N at 4 degrees. 

 

*Make 0.5 extra IP. 

* Protein G and Protein A have different affinities for different animal immunoglobulins. Use the 

appropriate one. A mix of the two can also be used.  

 

C. Lysate-antibody Incubation  

1. Once the DNA concentration is known, an equivalent of 25 μg per IP is 

recommended. 

2. Dilute sample 1:10 with IP dilution buffer (0.01% SDS, 1.1% Triton-X 100, 1.2 mM 

EDTA, 16.7 mM Tris-HCl pH 8.1, 167 mM NaCl) to 1 ml. 

- I.e. add 900 μl of IP dilution buffer to 100 μl of XLSC.  

3. Add 1-2 μg of antibody. Some antibodies have recommended dilution of antibody: 

chromatin ratio. Some antibodies must have the appropriate concentration determined 

empirically. 1-10 μg of antibody per 25 μg of DNA often works well. Use the 

equivalent in the IgG control.  

- Note: A beads-only control can also be prepared but this requires more XLSC samples. 

4. Rotate at 4 degrees O/N. 

Day 3 

A. Incubation with Dynabeads and Recovering Bound DNA 

1. Add 152 μl of pre-blocked beads (beads+buffer+salmon sperm DNA) to each IP reaction. 

Rotate at 4 degrees for 1 hour. 

2. Using magnet remove supernatant.  

3. Wash beads with 1 ml of cold IP Low Salt Immune Complex Wash buffer 1 (20 mM 

Tris pH 8.1, 2mM EDTA, 150 mM NaCl, 1% Triton-X 100, 0.1% SDS). Rotate at 4 

degrees for 5-10 minutes.  

4. Using magnet remove supernatant. 

5. Wash beads with 1 ml of cold IP High Salt Immune Complex Wash buffer 2 (20 mM 

Tris pH 8.1, 2 mM EDTA, 500 mM NaCl, 1% Triton X-100, 0.1% SDS). Rotate at 4 

degrees for 5-10 minutes. 

6. Using magnet remove supernatant. 

7. Wash beads with 1 ml of cold LiCl Immune Complex Wash buffer 3 (10 mM Tris pH 

8.1, 0.25M LiCl, 1 mM EDTA, 1% NP-40, 1% Deoxycholate).  

Rotate at 4 degrees for 5-10 minutes. 

8. Wash beads with 2X with TE. Rotate at 4 degrees for 2 x 15 minute washes. 

9. Using magnet, remove supernatant. 
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10. Elute Protein-DNA complexes from the beads by adding 300 μl of freshly made Elution 

Buffer (0.1 M NaHCO3, 1% SDS). Incubate with rotation for 30 minutes at RT.   

Use this elution buffer also for input and gel samples.  

11. Using magnet collect supernatant in fresh tubes. DO NOT THROW AWAY 

SUPERNATANT.  

12. For input and gel samples make up to 300 μl of elution buffer so it will have the same 

volume as the IP sample. 

13. To recovered complexes (IP) add 12 μl of 5M NaCl. Add the same amount of 5M NaCl 

to input and gel samples. (Reverses cross links). 

14. Incubate at 65 degrees for 4-5 hours or O/N. 

 

Day 4 

DNA Purification (Using Qiagen PCR clean up kit) 

1. Add 6 μl of 0.5 M EDTA, 12 μl of 1 M Tris-HCl pH 6.5, 1.2 μl of 10 mg/ml proteinase 

K, incubate for 1 hour at 45 degrees in the water bath. 

- proteinase K may have to be made up fresh. 

2. Purify DNA using Qiagen PCR clean up kit. Elute into 50 μl of nuclease free water. For 

gel samples elute with 30 μl of elution buffer.  

 

Eluate is now purified DNA and can be analyzed immediately or stored frozen at -20 degrees.  

 

Harvesting C2C12 Cells (Whole cell extracts) 

On Ice: 

- Aspirate/dump old media out of dish. 

- Wash 2X PBS; Add 700 μl of PBS onto plate; Scrape into tubes using rubber policeman. 

- Pellet cells: 1.5g for 5 minutes. 

- Aspirate PBS. 

- Add 100 μl of (or 5x the pellet size) NP-40 lysis buffer or β-gal depending on protocol. 

- Pipette up and down to break cells. 

- Vortex for 10 sec, Incubate on ice 5 min. Repeat 3X. 

- Spin at max speed 15 min. 

- Store supernatant at -80
o
C. 

 

Lysis Buffer Ingredients: 

PMSF, Sodium Othrovanadate, Protease Inhibitor. 

- Add to NP-40 lysis buffer in 1:100 ratio. 

 

NP-40 Lysis Buffer: Make up to 100 ml, store at 4
o
C. 

Volume Stock Take Final Concentration 

250 ml 1 M Tris pH 8.0 5 ml 50 mM 
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250 ml 5 M NaCl 3 ml 150 mM 

50 ml 10% NP-40 5 ml 0.5 % 

100 ml 0.5 M EDTA pH 8.0 400 μl 2 mM 

100 ml 0.5 M NaF 20 ml 100 mM 

100 ml 0.1 M Na Pyrophos. 10 ml 10 mM 

 

 

Transformation 

 

1) Stock expression plasmids should be diluted to 10ng/μl in a -20 freezer for easy 

transformation. 

- Carrier DNA (has no promoter): Bluescript (pBSK), etc. 

- Marker of transfection: ds Red, GFP. 

- Backbone: pMT2, pcDNA, etc. 

- DNA effectors: Mef2a, Mef2c, etc. 

 

2) Obtain competent cells: E. Coli XL1Blue. 

- Once thawed, can’t reuse. 

- Thaw on ice. 

- Must be grown at a certain OD prior to freezing. 

 

3) Add 1 μl (10ng) of expression plasmid to 50 µl of E. Coli. 

- Add plasmid to tube first. 

- Pipette up and down once. 

- Incubate on ice for 30 minutes. 

 

4) Heat Shock: 1 min at 42
o
C water bath. 

- Follow up with 2 min on ice. 

- In the meantime take out LB plates and warm them in 37 degree room. 

- Put bacterial waste in a designated waste. 

 

5) At room temperature add 200 μl of LB+0.1%glucose by open flame to the bacteria. 

6) Put in water bath or incubator at 37
o
C for 30 minutes. 

7) Spin at 7000 rpm for 5 minutes. Remove supernatant. 

8) Resuspend in 50μl LB and plate by an open flame.  

9) Place the plates facing down at 37 degrees overnight. Next day put in 4
o
C or select 

colony and proceed with maxiprep. Keep plates for 1 week. 

*This protocol is ideal for cloning new plasmids. You can do a 5 minute transformation protocol 

(NEB website) if transforming a standard plasmid. 
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C2C12 Cell Culture 

Thawing C2C12 cells 

1) Thaw cells in 37 degree bath.  

2) Mix with 10 ml fresh Growth Medium (GM; DMEM plus 10%FBS, 1%Pen-Strep, 1% 

glutamine). 

3) Spin for 5 min at 1.5g.  

4) Aspirate media. Tap remaining cells to dislodge pellet.  

5) Replace with 10 ml fresh GM and add to dish. Check 24 hr later. 

 

Culturing C2C12 cells 

C2C12 should not be cultured if they grow beyond 90% confluency as they may have lost their 

proliferative capacity. To pass cells every second day, at 80% confluency, pass cells in a 1:10 

ratio: 

1) Wash 1-2X with Versene (0.2 g EDTA in PBS). 

2) Add 1ml 0.125% Trypsin. Swirl around the dish and remove the majority of Trypsin. Cells 

should start to lift off of the plate. Tap if necessary to expedite the process.  

3) Add 10 ml GM. Pipette up and down several times, and then use as necessary.  

4) To form myotubes, allow cells to reach 90% confluency and then change to Differentiation 

Media (DM; 2% Horse Serum, 1% Pen-Strep, 1% Glutatmine). Add fresh medium every two 

days. 

 

Freezing C2C12 cells 

1) Grow cells to 80% confluency.  

2) Dissociate cells from plate using Trypsin. 

3) Prepare 1 ml Freezing Medium (GM+10%DMSO) for each plate of cells that is to be frozen. 

4) Resuspend the cells in Freezing Medium and aliquot 1ml into cryotubes. Place in -80 freezer 

or in liquid nitrogen for long term storage. 

 

Luciferase Assay 

 

1) On ice, wash cells 2X with PBS. 

2) Add 300 μl Luciferase assay Lysis buffer (20 mM Tris, pH 7.4, 0.1% Triton-X 100) and scape 

cells using a rubber policeman into labelled tubes. 

3) Vortex 10 sec. 

4) Spin at max speed for 15 minutes at 4 degrees. 

5) Transfer the supernatant to new tubes. Use 25-50 μl of solution in the luciferase assay. 
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Bioinformatic Analysis 

 

General workflow of RNA-seq processing 

Done by MUGQIC: 

1: Sequence trimming (trimomatic) 

2: Genome alignment (tophat/bowtie) 

3: Read and alignment statistics (RNAseQC) 

4: FPKM (cufflinks) 

5: De novo transcript estimation (CuffCompare) 

6: Raw read counts (htseq-count) 

7: Saturation and correlation analysis (R) 

8: UCSC tracks (Wiggle) 

9: exploratory anlysis (R - gqSeqUtils) 

10: Differential gene expression (edgeR & DESeq) 

11: Differential transcript expression (cuffdiff) 

12: Gene ontology analysis (goseq) 

13: HTML report (nozzle) 

 

edgeR or DESeq genes and/or transcripts were used for downstream analysis: 

 

DAVID Gene Ontology:  

1) First upload (paste) your gene list on the left-hand side bar. Select identifier: This is 

usually “OFFICIAL_GENE_SYMBOL”. List type: Gene List. Identify species (e.g. 

mouse) 

2) Expand “Gene Ontology” from the list of options generated. GOTERM_BP_FAT will 

tell you GO terms for Biological Processes (BP). Other GO terms are available as well. 

3) You can scroll down and use Functional annotation clustering to combine all potential 

annotations into clusters 

 

oPossum 3.0: opossum.cisreg.ca/ 

1) Upload gene list to find regulatory regions in silico 

2) There are different genomes and analysis options available 

 

General workflow of ChIP-seq processing 

1) Reads were aligned to mm10 or rn5 genome by Peconic 



157 
 

2) BAM files provided by Peconic were filtered using bedtools or samtools using functions 

to exclude reads with phred scores lower than 37 and to remove duplicates (Picard) 

3) Resulting IgG or ChIP sequencing BAM files were used as inputs for MACS peak calling 

using “no model” option which generates bed files for downstream analysis 

Programs 

1) MACS (Model-based analysis for ChIP-Seq) http://liulab.dfci.harvard.edu/MACS/ 

2) Picard http://broadinstitute.github.io/picard/ 

3) Samtools http://samtools.sourceforge.net/ 

4) Bedtools http://bedtools.readthedocs.org/en/latest/ 

Definitions 

Expanded definitions can be found under UCSC Frequently Asked Questions: Data File Formats 

at https://genome.ucsc.edu/FAQ/FAQformat.html 

BED files: multiple data sets; format .bed (tabs) or .gz or .gff (general feature format, no tabs) 

A header line gives a reference spot to examine in the genome. Therefore if you have two 

headers you can have two datasets to look at on the genome browser.  

 

BAM: compressed binary file. Must be converted to sam to visualize with human eyes. 

Blue and red alignments represent sequenced hits 

Pink are maps at more than 1 place, low mapability 

.bai: indexed bam file 

 

Redundant read: maps to multiple places 

Non-mappable read: Doesn’t map to anywhere in the genome 

Duplicate read: can be real or may be an experimental artefact from PCR 

 

Analysis of ChIP-seq data 

Bed files generated by MACS were uploaded to different programs using DEFAULT setting 

unless otherwise indicated. 

1) GREAT (Genomics regions enrichment of annotation tool): predicts associated genes and 

functions. Input is a bed file 

2) Centdist: find cis elements in bed file (input) 

3) UCSC Liftover function: lets you convert genome alignment files between species. To 

compare rat vs mouse (cardiac vs skeletal muscle) we used mm9. To compare AP-1 sites 

to MEF2A sites in skeletal muscle we also converted everything to mm9. 

http://liulab.dfci.harvard.edu/MACS/
http://broadinstitute.github.io/picard/
http://samtools.sourceforge.net/
http://bedtools.readthedocs.org/en/latest/
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4) UCSC intersect: We found overlapping MEF2A (cardiac vs skeletal muscle) or MEF2A 

and AP-1 binding events using UCSC Table Browser, uploading custom tracks, and 

selecting intersection. DEFAULT settings were used 

5) Integrative Genome Viewer (IGV): Similar to UCSC genome browser in the sense that 

you can visualize ChIP-seq data but works much faster and lets you move around the 

genome faster. Does not allow manipulation of data, only visualization 


