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Abstract

DNA sequencing technology is quickly evolving. The latest developments ex-

ploit nanopore sensing and microelectronics to realize real-time, hand-held devices.

A critical limitation in these portable sequencing machines is the requirement of

powerful data processing consoles, a need incompatible with portability and wide

deployment. This thesis proposes a first step towards addressing this problem, the

construction of specialized computing modules – hardware accelerators – that can

execute the required computations in real-time, within a small footprint, and at a

fraction of the power needed by conventional computers. Such a hardware accel-

erator, in FPGA form, is introduced and optimized specifically for the basecalling

function of the DNA sequencing pipeline. Key basecalling computations are identi-

fied and ported to custom FPGA hardware. Remaining basecalling operations are

maintained in a traditional CPU which maintains constant communications with

its FPGA accelerator over the PCIe bus. Measured results demonstrated a 137X

basecalling speed improvement over CPU-only methods while consuming 17X less
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power than a CPU-only method.

Keywords: DNA Sequencing, Nanopore, Real-time, Hand-held, Sequencing
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sumption
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1 Introduction

1.1 Background and Motivation

Deoxyribonucleic nucleic acid (DNA) is a biomolecule present in the cells of living

organisms. It is a complex organic compound of which the chromosomes in the

nucleus of an animal’s cell mainly consist. As the “blueprint of life”, DNA is fa-

mously understood as the carrier of its host creature’s genetic information. The

structure of DNA molecules consist of two polymer chains symmetrically coiled

around one another to form the famous double-helix shape. Each chain is com-

posed of four monomeric nucleotide molecules, each nucleotide distinguished by

the base molecules contained within them: Adenine (A), Thymine (T), Cytosine

(C), Guanine (G). These bases appear in some unique sequence in each chain of an

organism’s DNA. The coiled chains form links (pairs) with one another via their

base constituents. The links occur in a “complementary” fashion (A links to its

complement T and vice-versa while C links to its complement G and vice-versa) [1]

as shown in Fig. 1.1. Two linked bases are referred to as a base pair (bp).
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Figure 1.1: Double helix structure of the DNA.

Sequencing is the process of identifying the sequence of bases comprising a DNA

molecule [2]. An efficient means of executing this process was forwarded by Fredrick

Sanger over 40 years ago and has rapidly evolved since [3]. Today, high-end “next-

generation sequencing” (NGS) machines such as the Illumina Hi-SeqX (pictured

in 1.2) can sequence quantities of DNA equivalent to roughly 10 human genomes

per hour [4, 5].

1.1.1 First Generation Sequencing

DNA sequencing machine evolution is mainly divided into three generations as

shown in Fig. 1.3. As early as the 1980s, the first-generation sequencing technology,

distinguished by its reliance on Maxam-Gilbert and Sanger dideoxy methods (of

chain termination and chemical degradation), was widely used [8]. The Human

Genome Project (HGP) heavily relied on this technology [9].
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Figure 1.2: The Illumina Hi-SeqX mode ultra high throughput sequencing sys-

tem [6].

Figure 1.3: Currently available commercial sequencing technologies and correspond-

ing manufacturers [7].
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1.1.2 Second Generation Sequencing

With the arrival of second-generation sequencing technology (the aforementioned

NGS) in 2005, tremendous gains in DNA sequencing rates were achieved. NGS

came up with two novel sequencing approaches: sequencing by ligation (SBL) and

sequencing by synthesis (SBS). Briefly, these utilize DNA polymerase to synthesize

DNA one-base-at-a-time. By utilizing modified bases, each synthesis reaction emits

a unique signal allowing a suitable sensor to then infer the identity of the base and

thus implement a form of sequencing [10, 11, 12].

Although extremely accurate, the chemical challenges of this process only al-

low it to handle DNA samples 100 to 200 base-pairs (bp) long (so-called “short

reads”). Thus, long DNA molecules must first be carefully fragmented into short

samples before measurements with NGS technology. Prominent manufacturers of

NGS machines include Illumina and Ion-Torrent (now Thermo-Fisher).

NGS has led to the realization of unprecedented sequencing throughputs and has

driven a rapid acceleration in genomic information gathering. It is now the most

mature and dominant sequencing solution on the market. However, it requires

not only a large amount of chemical processing (e.g. PCR amplification) but also

increased costs before sequencing. Meanwhile, its capability of only handling short

reads makes the genome assembly more sophisticated.
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Figure 1.4: The first handheld sequencer developed by Oxford Nanopore [15].

1.1.3 Third Generation Sequencing

In 2014, ONT released a handheld sequencer, the MinION (Fig. 1.4). This is

essentially a single-molecule DNA sequencing technology as it can directly sequence

from native DNA without the need for chemical amplification or reconstruction as

with NGS [13]. Its significant departure from existing methods has prompted the

MinION’s designation as a third generation sequencing technology [14].

The MinION measures DNA by deploying an electrochemical direct current

(DC current) through a nanoscale hole (a sensor referred to as a nanopore) made

of a protein or synthetic material immersed in an ionic bath [16]. When DNA also

translocates through this hole it disrupts the ionic current in ways indicative of its

structure [17].

ONT’s nanopore technology holds several advantages over its NGS counterparts:

• Real-time sequencing (DNA can be physically introduced into the device and
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measured in a continuous, streaming, fashion).

• Ultra-long reads (average read lengths exceeding 2,000 bp are standard in the

technology with some researchers developing protocols allowing in excess of

1-Mbp DNA strands to be read).

• Miniaturization (the nature of this sensing technology has allowed +100× size

reduction by volume over the next smallest sequencer).

As part of its DNA sequencing process, the MinION (or rather the computer to

which it feeds its data) “figures out” the most likely DNA sequence by inspecting

this signature current [18]. This process is referred to as basecalling and addressing

the computational challenges associated with it through custom hardware is the

main focus of this thesis.

1.1.4 Nanopore Sequencing: Limitations and Motivation

Some caveats to the breakthroughs realized by the MinION technology are worth

noting. The accuracy of the MinION sequencers are currently worse, significantly

worse for some applications, than NGS technologies. Roughly, perhaps a 10%-20%

error rate is present in the MinION relative to less than 1% in Illumina machines [19,

20, 21].

Also, no bioinformatic computing is done within the MinION itself, but rather

6



an adjoining computer; arguably making the standalone MinION more of a DNA

sensor rather than a DNA sequencer [22]. Nonetheless given the heavy reliance of

this device on microelectronics and the historical trends exhibited by such tech-

nologies it is highly probable that the MinION’s computing needs will eventually

be closely integrated with the MinION itself. It is with this anticipated trajectory

in mind that this thesis focuses on custom compute hardware implementations

of critical bioinformatics functions required by the MinION and nanopore-based

sequencing in general.

The importance of this effort is amplified by the small footprint of sequencers

such as the MinION. The portability of this device has already started to have

fascinating impacts on genomic field science, the ability to carry out analyses of

DNA molecules outside the lab. Many other applications will likely be facilitated

by the miniaturized molecule measurement opportunities opened up by nanopore-

based sequencers such as the MinION.

But to truly realize the scales at which nanopore-based sequencing technology

may be deployed, associated functions, such as computing, must scale in propor-

tion; a small sensor attached to a large computer is inadequate for field genomics.

The saturation of Moore’s Law [23], and the associated slow-down in traditional

microprocessor computing speed (per unit power) [24] can no longer be expected to

provide sufficient computing capability at low-power (to maintain nanopore-based

7



sequencer mobility) from commodity devices. This is certainly the case for the

compute-intensive bioinformatic operations required of noisy nanopore sequencer

signals. Rather, custom microelectronic computing hardware solutions are needed

to assist the advancement of nanopore-based technologies towards the vision of

“ubiquitous sequencing” [25].

1.2 Thesis Goals

Only the basecalling function of a nanopore-based DNA sequencing pipeline is

considered in this thesis. As already alluded to above, basecalling is the process

of converting noise current signals gathered by a nanopore sequencer such as the

MinION to a text representation of its base sequence, that is, a sequence of letters

drawn from the alphabet A, C, G, T. This is the first intense computation faced by the

nanopore sequencing pipeline and will likely have to be solved natively (within the

sequencing device) rather than remotely (i.e. in the cloud) as the cost and latency of

moving high-fidelity raw measurement current signals to remote computing centres

at large scales does not seem imminently feasible.

A semi-custom hardware computing implementation of the basecaller is the

target in the form of a field-programmable-gate-array (FPGA). FPGAs are chip

containing thousands of copies of standard digital logic gates (AND, OR, etc.),

digital signal processing blocks, and memory units. In contrast to fully-custom
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chips (namely: application specific integrated circuits – ASICs) where the designer

is free to construct any component feasible within the semiconductor substrate,

FPGA designers can only reconfigure the connections between the aforementioned

pre-made computing blocks on their FPGA chip to realize their intended hardware.

Nonetheless, a great deal of flexibility remains to parallelize operations and achieve

efficient computations in FPGAs [26].

Relative to an ASIC, the FPGA suffers in achievable speed and power efficiency,

however it offers tremendous savings in up-front costs (no need to fabricate a chip

from scratch) and can be reconfigured and updated after initial roll-out. Relative

to a traditional CPU microprocessor (incommensurate semiconductor technologies)

the FPGA may still offer orders of magnitude improvement in speed and power

consumption if well designed [27].

The goal of this thesis is thus to realize an FPGA-enabled basecaller capa-

ble of demonstrating orders-of-magnitude improvements in speed and power effi-

ciency over CPU-only equivalents [28]. For maximum flexibility an hardware ac-

celerated basecaller realization in targeted wherein particularly intense basecalling

sub-operations are delegated to an FPGA working in tandem with a traditional

CPU. Thus, the flexible computing and data processing functions of the CPU can

be leveraged for complex controls and data management tasks, while intense stream-

ing operations are handled by the adjoining FPGA accelerator.
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1.3 State-of-the Art and Thesis Outline

For deeper context we describe in more detail the operation of a state-of-the-art

nanopore-based sequencer. In commercial units from ONT the nanopore sensor is

a protein molecule in the shape of a hole positioned in a synthetic bilayer mem-

brane [29]. An array of such sensors is usually realized, around 2,000 over a thumb-

nail area resting in close proximity to an analog/digital chip which detects sensor

currents (essentially a noisy time-series signal), amplifies, filters, and digitizes them

for the ensuing bioinformatics computational pipeline (basecalling being the first

step). As already noted, this sensor array is immersed in an ionic fluid and a small

baseline DC current (about 200 picoamperes) is made to flow through each pore.

Although the nanopore’s diameter is small enough to accommodate only one

DNA molecule at-a-time, the barrel of the sensor is long, housing roughly 10 DNA

bases at-a-time. Thus, the ionic current flowing through the sensor is simultane-

ously interrupted by k > 1 bases at a time. Assuming these interrupting bases are

contiguous we would say the interruptions are generated by some k-Mer.

The measured time-series signals produced by the nanopore sensor’s interaction

with DNA (see Fig. 1.5 for details), are logged and saved in data files that are then

passed onto the basecaller.

The basecaller, as a tool for converting the measured time-series to its (molecu-
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SENSOR  BASE-
CALLER

…TTCGAATA
TCCATAGT…  ALIGNER
…ACGCGGA
ATTCGTCG…

…GCCCTCTA
ATATTCAG…

…TTCGAATA
GCCCTCTA
ATATTCAG
ACGCGGA
TCCATAGT
ATTCGTCG…

DNA 
input snippets

measured 
time-series signal

basecalled
signal strings

reconstructed
genome string

direction of signal flow

Figure 1.5: A simple DNA processing steps. DNA input snippets are sensed and

converted to corresponding electronic time-series signals; these are basecalled into

separate reads and finally assembled into a complete genome text string [30].

lar) text equivalent, plays a crucial role in the ultimate extraction of the complete

sequences associated with the DNA being measured. ONT offers open-source and

proprietary software, some of which even runs on proprietary FPGA-based hard-

ware accelerators (in their enterprise-level machines). Although ONT has made

announcements of portable FPGA-based basecalling acceleration methods, none

have yet been released [31].

1.4 Contributions of the Thesis

The contributions of this thesis are list as follows.

1. The HMM-based Viterbi basecalling algorithm was implemented on MAT-

LAB, and the its functionality validation was passed by processing the simu-

lated event sequence.
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2. A high-performance communication implementation which based on an open-

sourced project was achieved and tested to satisfy the requirement of high-

throughput sequencing.

3. A hardware solution of the basecalling accelerator on the FGPA was imple-

mented. Its functionality and speed was verified.

4. A basecaller algorithm was completed on a system that constructs with CPU

and FPGA involved.

5. The whole measurements which includes power consumption, maximum clock

frequency and resource utilization were finished.

1.5 Thesis Outline

There are six chapters in the thesis, and the second chapter describes the basic

concepts of HMM nanopore DNA sequencing and the associated Viterbi algorithm

for basecalling. The third chapter describes the actual FPGA design. In the fourth

chapter, we introduce the practical application principle of hardware communica-

tion via the Reusable Integration Framework for FPGA Accelerators (RIFFA) and

the adaptation of these solutions for our basecaller. In chapter five, measurement

results of the implemented basecaller are described. Chapter six summarizes the

thesis, discusses the challenges and makes proposals for future work.
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2 Basecalling Algorithm

2.1 Overview

Basecalling is a time-series to text-sequence conversion process [32]. Machine learn-

ing methods based on neural networks (NNs) and hidden Markov models (HMMs)

are two well known ways of addressing this problem. This thesis focuses on HMM-

based methods, a computationally milder approach than NNs [33, 34, 35], albeit

with lower accuracy in certain nanopore-based sequencers. Still, HMMs have been

shown to achieve satisfactory accuracy in cases where nanopores of sufficient quality

are available [36]. In this chapter, we discuss an HMM of a nanopore-basecalling

process and the Viterbi algorithm applied to this model to compute time-series to

text conversion.
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Figure 2.1: The raw signal from the nanopore [39].

2.2 Nanopore Signals

The discrete nature of DNA, as imposed by its discernible set of molecular building

blocks (i.e. the four bases), tends to result in a nanopore output signal, the “raw”

signal, approximating a step-wise time-series, albeit one with significant noise dis-

turbances atop it [37]. An example of this signal is shown in Fig. 2.1. Before

submitting such a signal to a basecaller it is typical to extract statistical features

from this raw output indicative of this underlying step-wise pattern [38]. These

features are typically referred to as events, which themselves form a time-series (an

event-series) where each event consists of a three-element vector

ei = [xi, yi, ti] (2.1)
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where i is the event index in the sequence, xi is the mean value of the raw signal

samples comprising the event, yi is the standard deviation value of these raw signal,

and ti stands for the relative time at which the event starts.

The basecaller’s job is then to convert some sequence of n events, (ei)
n−1
i=0 , emerg-

ing from a nanopore sequencer into their underlying text equivalent, the basecall

sequence drawn from the alphabet, A, C, G, T [40].

2.3 State Sequence Detection

Given that our idealized DNA consists of only four base-molecule building blocks

it would be ideal if the event-series emerging from a nanopore sequencer – the

input to the basecaller – consisted of only four unique levels. In this case it would

be straightforward to implement the basecaller as some base-by-base statistical

threshold detector that effectively looks at a single event at a time and determines

which of four bases that singular event corresponds to.

As already mentioned in the previous chapter, the realistic scenario is not so

simple. The current, at the very least, depends on a k-Mer sequence of DNA bases.

That is, at any i, the value ei is a reflection of k bases, not one. If k is say 3, then

we would expect there to be m = 43 = 64 different levels that any ei may take. Of

course due to noise, in the raw signal from which the ei’s are derived, no event will

exactly assume any of these assumed 64 levels. We must then resort to statistical
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methods of sequence detection (in contrast to the base-by-base approach mentioned

above) to associate an event measurement with an expected level. An elaboration

on these concepts follows.

To allow for the construction of a more formal model we map the constituent

bases A, C, G, T to the number key 0, 1, 2, 3, respectively. This base-4 number

system allows us to replace any k-Mer with a numerical label that we refer to as a

state number. For example, the 3-Mer CGT denotes the state 1·42+2·41+3·40 = 27.

Thus, in a 3-Mer model, our event current is indicative of the states 0 to 63 (in

increments of 1). As a DNA sequence progresses through the pore so does the state

sequence. That is, choosing the convention that a k-Mer label read right-to-left

denotes DNA progression through the pore, then after our CGT state we expect

some GTγ state to excite the next event where γ ∈ {A, C, G, T}.

Conceptually, this does not change the basecalling situation from the simple

4-level case at all. Instead of detecting four different levels, now 4k levels must be

detected. Just a more finely tuned version of the statistical threshold detector may

be considered. With each identity a new state is identified (or statecalled) and from

this it is trivial to identify the base sequence. For example, referring to our example,

if the state 27 is identified by the detector we convert to its base equivalent and

basecall the left most letter, C in this example.

Practically however the situation is dire. Just because more bases are encoded
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within each fluctuation of the current (i.e. a k-Mer rather than 1 base) does not

mean that the physical signal (the peak-to-peak current span say) is bigger. The

signal “strength” is the same, but now the detector is forced to identify a factor

of 4k/4 = 4k−1 more unique signals within it. Since the noise fluctuations do not

depend on the k-Mer to first order, effectively the signal-to-noise ratio has dropped

by 4k−1 relative to the ideal case. The implication is that the accuracy of our

basecalls will get worse.

Luckily the nature of this signal opens the door for more complex detection and

hence better accuracy. Rather than detecting one event at a time, we can take

advantage of the fact that consecutive states overlap. That is, as noted above,

one state (27 ≡ CGT) is related (overlaps) with the ensuing state (say 44 ≡ GTA).

Sequence detection methods (in contrast to symbol detection) do exactly this. They

observe an extended run of events, then based on their internal model of the possible

state relations from one index i to the next i+1 they make a more educated guess of

the underlying state (base) sequence and hence achieve more accurate basecalling.

2.4 HMM Model

An HMM is an internal model of the possible state relations from one index i to

the next index i + 1 [41]. A pictorial depiction of this model, “unwrapped” over

time (i.e. over the succession of observations . . . , i−1, i, i+1, . . .) – also referred to
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as a trellis model – is shown in Fig. 2.2.

The ith column of circles denotes the possible states, 0 to 4k−1, that might

be measured by the nanopore at some time i. The straight lines, the transition

branches, emerging from the right side of each state circle denote the possible

(probable) state transitions (weighted by the probability terms τ). These transition

branches indicate how the model may evolve over time, that is which states in

column i may transition to states in column i+ 1 as time increments. For example,

we showed above that state 27 at i could transition to state 44 at i+ 1, but we can

also show that state 27 cannot transition to state 5 at i + 1 (i.e. there would not

be a transition line joining these two).

Figure 2.2: HMM with the optimal path traversing the trellis as found by the

Viterbi algorithm.
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Formally, the wavy lines emerging from each state denote the probable state

emission from each state. In other words, these lines, weighted by the terms bj,

denote the probability that the state at i (in the HMM trellis) actually corresponds

to the (noisy) event observed at state i.

Together, this model – its states, transition (probabilities), and emission (prob-

abilities) – forms the means by which a formal detection algorithm can seek to

identify the most likely state sequence based on a sequence of observations. The

essential result sought by such an algorithm is embodied by the thick red path il-

lustrated in Fig. 2.2. This path denotes the sequence of states in the trellis that the

detection algorithm thinks are most likely behind the sequence of events observed.

This estimate is based on the emission and transition probabilities the algorithm

computes by considering the measured events and HMM parameters. The algorithm

that achieves this, and the main object for hardware acceleration in this thesis, is

the Viterbi algorithm and it is discussed next in the context of basecalling.

2.5 Viterbi Algorithm

The Viterbi algorithm (VA) is a dynamic programming algorithm that finds the

most probable sequence of states (the most probable path) in the HMM based on

its consideration over a sequence of event observations [42].

.
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Algorithm 1 Optimized basecaller algorithm pseudo-code

1: for j = 0→ m− 1 do . initializing the initial posterior and pointers
2: vj(e0) = bj(e0)
3: end for
4: for i = 1→ n− 1 do . updating the posterior and record the pointers
5: for j = 0→ m− 1 do
6: for ν = {ωj}20

0 do
7: vj(i) = bj(ei) maxν∈ω(j) [vν(i− 1)τ(ν, j)]
8: ptrj(i) = arg maxν∈ω(j) [vν(i− 1)τ(ν, j)]
9: end for
10: end for
11: end for
12: ζn−1 = arg maxj(vj(n− 1)) . finding the end state
13: for i = n− 1→ 1 do . traceback
14: ζi−1 = ptr(ζi)
15: end for

The algorithm’s operation is summarized with the pseudocode in Algorithm 2.5.

We elaborate on it below, for now we draw the reader’s attention to key proper-

ties. The methodical nature of the VA is apparent from the three nested for-loops

iterating over the heart of this algorithm. These for-loops iterate over:

• Events: i = 1 → n − 1. The total number of events in a measurement. In

practice this approximately corresponds to the number of bases in a DNA

strand that passed through a nanopore. This varies and depends on, among

other things, the manner in which the DNA to be measured is experimentally

prepared, but n ≈ 1,000 is a representative approximation.

• States: j = 1 → m − 1. The total number of states in the model. For a

sensor modelled with k-Mer response of k = 3, m = 64.
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• Transitions: ν = {ωj}20
0 . The state numbers (from the set {ωj}20

0 ) of states

that may transition into any particular state j. In the model considered here,

21 such transitions are possible (hence the set of possible state numbers for

any state j is indexed from 0 to 20).

The core of the algorithm is to repeatedly calculate:

vj(i) = bj(ei) max
ν∈ω(j)

[vν(i− 1)τ(ν, j)] (2.2)

ptrj(i) = arg max
ν∈ω(j)

[vν(i− 1)τ(ν, j)] (2.3)

From a high-level, (2.2) calculates the posterior (probability), vj(i), that at time

i the observation ei corresponds to state j given that the most likely preceding

state j at time i − 1 is accounted for. The product of probabilities (i.e. the

product of the emission probability, bi(ei), with the most likely (max[·] term in (2.2))

preceding probability (the product of the preceding state’s posterior, vν(i− 1), and

its associated transition probability, τ(ν, j), into state j) achieves an accumulation

of state probabilities from i− 1 to i. As noted above, this operation is carried out

iteratively for all states m. As a result of this iteration, the posterior vj(i) is an

accumulated measure that accounts for all the (most likely) states preceding it (i.e.

from i = 0 on).

At the same time (2.3) extracts the state number, ν, of the state at i− 1 which

most likely transitioned into the state with state number j at i. This extracted
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state number is associated with the pointer βj(i).

After the VA’s iterative procedure completes the terminal state of the most

likely path is identified by choosing the state j corresponding to the maximum

value of the sequential probability. This is calculated in Algorithm 2.5 by

ζn−1 = arg max
j

[vj(n− 1)]. (2.4)

Finally, the rest of the states making up the most likely sequence are recovered

by applying a traceback procedure (lines 13 to 15 in Algorithm 2.5) relying on the

pointers accumulated during the iteration phase. This last loop accomplishes the

aforementioned statecalling from which the final basecalling is trivially obtained.

2.6 Viterbi Algorithm: Component Details

In the following sub-sections we examine the details of the VA’s component pieces.

A summary of the key VA terms is provided in Table 2.1.

2.6.1 Emission Probability

The emission probability depicts a correlation between an observed event signal

and the modelled event features associated with a state. In particular, the emission

probability bj(ei) reports the probability that observed event ei is associated with
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Table 2.1: Symbol Table

Parameters Definition

i index number of the event

j index number of the state

n number of events in the sequence

m number of the states that related to the Mer size

Mer number of DNA bases in the nanopore at one moment

ei i-th event in the sequence

bj(ei) emission probability function in basecalling algorithm

ν state number of neighbor to next state

τ(ν, j) transition probability function

τj(i) sequential posterior probability

vj(i) accumulated posterior probability

ptrj(i) pointer that indicates the minimal path
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state j. In our model we express the emission probability with (2.5)

bj(ei) = bj (xi, yi) = N (xi|µj, σj) · IG(yi|ηj, λj) (2.5)

where N denotes the Gaussian distribution and IG denotes the inverse-Gaussian

distribution.

Figure 2.3: Multivariate Gaussian emission probabilities for xi.

The Gaussian models the likelihood that an event’s mean-feature, xi, is associ-

ated with state j. It is given by the expression

N (xi|µj, σj) =
1√
2πσj

exp

(
− (xi − µj)2

2σ2
j

)
where µj and σj are the mean and standard deviation Gaussian model parameters

associated with each state. In essence, we can think of our this model as a series

of Gaussian distribution centred around 4k µj level parameters with some spread

proportional to σj (see Fig. 2.3)
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Figure 2.4: Multivariate Gaussian emission probabilites for xi

Where the Gaussian associates the mean of our measurement with our model,

the IG characterizes our measurement according to the nature of their variations

within the pore. That is, it compares the standard deviation, yi, of our event with

another set of model parameters. Specifically, the IG expression is

IG(yj|ηj, λj) =

[
λj

2πy3
i

] 1
2

exp

(
λj

(yi − ηj)2

2µjyi

)
(2.6)

where, similar to the Gaussian discussion above, λj and ηj are another set of model

parameters associated with each model state j. A qualitative depiction of the IG

distributions is shown in Fig. 2.4.
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2.6.2 Transition Types

The transition probabilities, τ(j, l) enumerates the probability that state j (com-

puted for an event at time i − 1) will transition into state l (being computed for

an event at time i). Modelling these transitions adequately requires some deeper

thinking about the way molecule properties may be captured by the nanopore sen-

sor.

2.6.2.1 Steps

Ideally, DNA bases flow through the sensor in an orderly manner, and each event

corresponds to the entry/exit of a base to/from the pore. For example, suppose k is

three and that a DNA sequencing fragment, ACGTC, is going through the nanopore.

The first registered event is corresponds to the first three bases, ACG. The following

event will be a signal indicative of CGT when the new base T enters the pore (and

the “oldest” base, A, exits). Next, GTC will be responsible for the following event.

This ideal progression of DNA through the pore is referred to as a step transition.

Ideally this would be the only such transition registered by our measurement

system. Unfortunately non-idealities in our sensing system give rise to other pos-

sible mechanisms. The logic of these is illustrated in Fig. 2.5 (which considers

transitions from the example state AACGAC) and elaborated below. Hence, we can

26



only assume that step transitions occur with some probability pstep (black arrow

shown in Fig. 2.5).

2.6.2.2 Stays

An easy alternative “transition” to imagine is the possibility that the same base has

been accounted for twice. That is, a new event is reported at time i, but this event

actually corresponds to exactly the same base molecule for which another event

was registered at time i− 1. In essence, we have not measured a new state. In the

HMM trellis we essentially have a transition from state j to state j and we should

account for its possibility. This transition is referred to as a stay and is depicted

by the blue arrow in the example of Fig 2.5. The probability that this transition

happens is denoted with pstay.

2.6.2.3 Skips

Alternatively, it is also possible that more than one bases pass through the pore

between registered events at i − 1 and i. That is, our measurement system has

effectively failed to provide events for intervening bases. This transition mechanism

is called a skip(red arrow shown in Fig. 2.5). The probability that this transition

happens is denoted with pskip.
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Figure 2.5: Three different types of transition mechanisms.
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2.6.3 Transition Probability

From Fig. 2.5 it is clear that, under the above noted transition mechanisms, a state

at time i has some chance of transitioning into any of a number of possible states

at time i + 1 (21 to be exact, under our assumptions elaborated below). All these

transitions may be encapsulated by the one relation [43].

τ(j, l) =δl=j · pstay

+ δsuffix(j,Mer−1)=prefix(l,Mer−1) · pstep ·
1

4

+
Mer−1∑
i=2

δsuffix(j,Mer−i)=prefix(l,Mer−i) ·
pi−1
skip1

4i

+
∑
i≥Mer

·pi−1
skip1 ·

1

4Mer

(2.7)

we elaborate on the structure and components of this expression now.

The expression is a sum of four main terms, each written in a separate row.

The top three rows are filtered with a Kroenecker-delta adhering to the following

behaviour: delta is 1 if its subscripts are equal, 0 otherwise. These identifier terms

allow (2.7) to methodically assign appropriate probabilities to any transition (from

any state j to any state l).

In (2.7), the prefix(a, b) (suffix(a, b)) functions, returns the equivalent base-4

numerical index of the left-most (right-most) b baes of state (number) a. They are

essentially a way for us to relate the bases that are in the pore at consecutive times

(i and i+ 1).
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Thus the first addend in (2.7) denotes that a stay occurred if the function

areguments are such that l = y. The second addend accounts for the probability of

a simple step, the third addend accounts for all the ways that the next state could

be reached via a skip between 2 and Mer − 1 and the final addend (bottom row)

accounts for all other potential skip contributors (i.e. greater than Mer− 1 bases).

Of note is that pskip is the overall probability of making a skip of any type. It

says that a state was skipped, but it does not say how many states were skipped.

In general one can express this as the combination of probabilities to skip 1, 2, 3,

and so on states:

pskip = pskip1 + pskip2 + pskip3 + . . . (2.8)

Assuming that that multiple-state skips are just combinations of single-state skips

we have

pskip = p1
skip1 + p2

skip1 + p3
skip1 + . . . (2.9)

which is

pskip =
pskip1

1− pskip1
(2.10)

and therefore

pskip1 =
pskip

1 + pskip
. (2.11)

An enumeration of all possibilities in our model (which assumed that only one

state or more than Mer − 1 are skipped) results in 21 possible transitions from
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state j to l

21 transitions = 1 stay + 4 steps + 16 skips. (2.12)

2.7 Algorithmic Improvements

2.7.1 Logarithmic Probabilities

Algorithm implementation on hardware requires some optimizations to reduce hard-

ware design complexity. A nearly universal simplification for problems of this type

(in pure software implementation as well) is to replace absolute probabilities with

their logarithms. This converts multiplications to sums, a great simplification.

Since the logarithm is monotonic it does not compromise the max function’s result

in the VA. Thus, the critical calculations are transformed from

vj(i) = bj(i) ·max
v

[vv(i− 1) · τ(v, j)] (2.13)

to

αj(i) = ln vj(i) = ln bj(i) + max
v

[ln vv(i− 1) + ln τ(v, j)]. (2.14)
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Thus our emission calculation becomes

ln bj(xi, yi, ti) =− ln 2π − lnσj

−
[
xi − µj√

2σj

]2

− lnλj
2
− 3

2
ln yi

− 1

2yi
· λj
η2
j

· (yi − ηj)2.

(2.15)

Considering the negative of this is convenient (hardware additions can be made

slightly more efficient than hardware subtractions) giving

− ln bj(xi, yi, ti) = ln 2π + lnσj

+

[
1√
2σj

(xi − µj)
]2

+
lnλj

2
+

3

2
ln yi

+
1

2yi
· λ
η2
j

(yi − ηj).

(2.16)

The proposed hardware design has not provisioned the IG parameters when im-

plementing the emission calculation module, a simplification that has been left to

future work. It should be noted however that ignoring the IG part of the emission

calculation only marginally affects the accuracy for the scenarios considered; how-

ever it remarkably boosts the computational speed. After removing the IG related

items, the new emission equation presented in hardware is

− ln bj(xi, yi, ti) = ln 2π + lnσj +

[
1√
2σj

(xi − µj)
]2

. (2.17)
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For the transition probability ln τ(ν, j), a look-up table containing pre-computed

transition probability logarithms for any combination of states can be used to

achieve the calculation. This is the case since the transition structure (and values)

are fixed and independent of any particular measurement. This trades computa-

tional power for storage area. The memory location to access for any particular

transition is dictated by the results of the prefix and suffix functions which may be

implemented with

prefix(i, k) = i � (2(Mer− k)) (2.18)

suffix(i, k) = i ∧ (1 bit and(2k)− 1) (2.19)

where the� operator denotes a bit shift to the right and where the wedge operator

denotes an exclusive OR logic expression.

2.7.2 Continuous Traceback

As a reminder, the VA’s traceback procedure refers to the backward progression

through the trellis after the m posteriors corresponding to the last event (stage),

n, have been computed. This backward progression is, of course, through the set of

pointers, ptrj(i), that have been computed alongside the posteriors. The sequence

of states traversed in this backwards recapitulation achieves the aforementioned

statecall (and practically concludes the majority of the basecalling process).

In the VA summary provided in Algorithm 2.5, the traceback segment, in its
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entirety, follows the “forward” calculation. This obviously imposes a delay, a whole

sequence of length n must be processed before traceback may commence. Besides

compromising throughput this also has memory implications as the pointers for a

whole strand sequence must be retained.

As the reader may appreciate however this is only an artificial constraint. There

is nothing stopping the basecaller from starting traceback before the completion

of a strand. Naturally this may compromise accuracy somewhat (as only partial

sequence information is used to predict the most likely path up to the chosen

traceback point), but this compromise is usually negligible if the “depth” at which

an abbreviated traceback starts is not too small (often a matter of experimental

adjustment given the non-linear nature of the sequence detection procedure).

What’s important about this procedure is that once our calculations have reached

some chosen depth, ensuing outputs can be achieved in a continuous manner if the

calculation is properly pipelined. That is, one does not have to wait for another

depth to produce a sequence detection, basecalls may then emerge at the same rate

as events are processed, albeit delayed by the size of the traceback depth. This con-

tinuous traceback [44] approach essentially results in (latent) real-time basecalling.

An abbreviarte pseudo-code description of the VA, this time incorporating con-

tinuous traceback, is given in Algorithm 2. As shown, a traceback window (i.e.

depth) of length, l is defined, accumulated, and then progressively updated and
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traversed to produce continuous outputs.

Algorithm 2 VA Basecalling with Continuous Traceback

define l is window size
define window array[l]
for i = 1→ n− 1 + l do

for j = 0→ m− 1 do
for v = 0→ 20 do

compute posterior probability
record pointer

end for
end forcontinuous traceback:
if i < l then

push pointers to the window
else if i ≥ l and i ≤ n− 1 then

for z → l do
do traceback in the window

end for
else

for z = l − 1→ 0 do
find the end state at z col.
do traceback with the end state

end for
end if

end for

2.8 Chapter Summary

In this chapter, the structure and solution of an HMM-based DNA basecaller is

described. The behaviour of a nanopore DNA sensor is explained in terms of an

HMM. The associate of a sequence of (event) observations is then associated with

this model and a means of detecting the underlying base sequence to traverse the
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sensor explained in terms of the Viterbi algorithm. Means of improving the algo-

rithm by simplifying its calculations such that simpler hardware may be employed

are given.
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3 Basecalling Engine Implementation on FPGA

3.1 System Level Architecture Overview

To maintain a flexible and scalable basecalling accelerator we implement an FPGA

co-processor that communicates with a host CPU via PCIe as drawn in Fig. 3.1(a).

More exactly, a portion of the basecaller is implemented in standard procedural

code (e.g. a program called basecaller.cpp written in C++) that interacts directly

with the FPGA accelerator (an illustration of this idea is given in Fig. 3.1(b)).

This communication link is facilitated by the Reusable Integration Framework

for FPGA Accelerators (RIFFA), an open-source collection of software libraries

and hardware designs to enable CPU-FPGA communication over PCIe [45]. A

discussion of this link is given in Chapter 4.

The e(i) term is the accelerator input, which is transmitted from the CPU. In

response, M ptrj(i) terms (M is the number of HMM states) are generated by

the accelerator and are sent back to the CPU. These exchanges correspond to one

event-loop iteration (see line 4 of Algorithm 1 in the previous Chapter). The CPU
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Figure 3.1: The overview of the basecalling accelerator.
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then starts embarking on a traceback procedure.

These main processing steps are summarized in Algorithm 3, below. The

fpga send and fpga recv functions (handles) are RIFFA commands used by the

CPU-based software to communicate inputs and outputs with the CPU (they are

further discussed in Chapter 4).

Algorithm 3 An accelerated HMM statecaller

1: fpga send(e(0), e(1), ..., e(N − 1))

2: fpga recv(ptr0(0), ..., ptr63(0), .., ptr0(N − 1), ..., ptr63(N − 1))

3: π∗(N−1)← fpga recv(arg minj[vj(N−1)])

4: for i← N−1:1 do

5: π∗(i−1)← ptrπ∗(i)(i)

6: end for

From the CPU’s perspective then, the states-loop (line 5 of Algorithm 1 in Ch.

2) is simply replaced by the aforementioned RIFFA application program interface

(API) handles to the FPGA hardware (details in Ch. 4). This is shown in the

updated basecaller code of Algorithm 3 where line 1 dispatches the new event e(i)

to the FPGA and line 2 records the state (at time i−1) most likely to have preceded

the state j (at time i). The traceback procedure is contained in lines 4 and 5 of

Algorithm 3.
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3.2 The Potential of Hardware Solutions

An examination of the basecalling algorithm discussed in Chapter 2 shows that

approximately 1.5×106 arithmetic operations are needed to process an event if M

is 4096 (k = 6) [46]. Thus, for a device such as the MinION, which possesses about

500 simultaneous sensor channels, each channel working at a rate of 1000 events/sec,

then the total number of operations are 750 GOPS (Giga-operations-per-second).

For reference, a performance-laptop processor such as the 14-nm, 2.6-GHz, 4-

core, Intel R©CoreTMi7-6700HQ is benchmarked at 83 (GOPS) on 56 W of power

consumption [47]. According to the above estimate, this has the potential to achieve

5.5 × 104 events/s. An 8-thread run of a C++ basecaller implementation on such

a machine achieved a total throughput of only 10,400 events/s [48] however, a 39×

shortfall relative to the rate desired for real-time operation.

A number of technologies are becoming available to accelerate algorithms such

as the basecaller under consideration here. Prominent examples include many-

core coprocessors such as the Xeon Phi family which can sustain ∼200 threads

and graphics processing units (GPUs) which have the ability to launch 1000s of

threads [49]. Such units regularly achieve +10× acceleration over standard imple-

mentations. Capable of interfacing to a standard computing platform via a PCIe

bus, these units are very convenient for use, but their performance boost comes at
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too large a power requirement for the mobile solution sought here.

Systems-on-chip (SoC) approaches provide another possibility [50]. In this space

high-end smartphones may be able to sustain 20 GFLOPS within a 3-W power

window [51]. Alas the availability of such extreme solutions for bioinformatics

remains distant and much more immediate solutions are necessary. We detail our

approach next.

3.3 Basecaller Hardware Used

The FPGA hardware chosen for this work is a device from the Xilinx Virtex-7

(V7) family, specifically the VC707. The test-board housing the VC707 is shown

in Fig. 3.2. This chip is built using a 28-nm planar CMOS technology [52]. The

V7 device consists of 485k logic cells and 2800 DSP units each of which contains

arithmetic components for addition/subtraction, multiplication, logic, and shift-

ing [53, 54]. These components are used to implement computationally intensive

parts of the basecaller, other parts remaining in the CPU working simultaneously

in conjunction with the FPGA as already noted above.
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Figure 3.2: Xilinx VC707 FPGA board for the hardware implementation [52].

Emission Probability (EP)
calculator block

Posterior/Pointer (PP) calculator
block

Basecaller

Figure 3.3: The accelerator architecture shown in high-level.

3.4 The Basecalling Accelerator Architecture

A high-level picture of the FPGA accelerator’s architecture is shown in Fig. 3.3. As

shown, the system is composed of two main blocks, an emission probability (EP)

calculator block and a posterior/pointer (PP) calculator block, both ultimately

operating in parallel.

At this level, the general operation of the accelerator is as follows (and is de-
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tailed in the following sub-sections): EP consumes events e(i) (from the CPU) in

a streaming fashion and produces corresponding emission probability calculations

bj(i) (rather its logarithm, recall Eq. (2.17) in Ch. 2). The M = 64 bj(i), {bj(i)}64,

outputs of EP are fed into the PP block. The PP block uses this to continually

update the posterior probabilities vj of all states (j ∈ M). This is an iterative

process, updated with each new i, as indicated by the feedback loop drawn across

the PP block in Fig. 3.3. At the same time, pointer values associated with each

state are calculated by and output from the PP and sent back into the CPU which

uses these to complete basecalling. We elaborate on these basecaller blocks now.

3.4.1 Emission Probability (EP) Hardware Architecture

The EP block is tasked with executing the following emission probability calculation

for each input event e(i)

− ln bj(xi, yi, ti) = ln 2π + lnσj +

[
1√
2σj

(xi − µj)
]2

. (3.1)

As noted in Ch. 2, xi is the mean feature of each event e(i) and the standard

deviation feature, yi, is not considered in this work to simplify the complexity of

the algorithm, but it still be considered as the constant value and pre-treated when

going to the FPGA. Thus, the parameter to represent the event we will discard yi

so that parameters lnσj and 1√
2σj

can be removed.
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Emission Probability (EP) calculator block 

Figure 3.4: The breakdown drawing of the EP calculator block.

Some simplifications to this expression are possible that make hardware imple-

mentation simpler without sacrificing accuracy. For example, the constant offset

ln 2π, does not numerically distinguish state emission probabilities from one an-

other. Therefore, there is no need to compute it. A similar argument applies to

the
√

2 value.

Also, we can avoid having to divide in the hardware, by pre-scaling our input

(xi) and model parameters (µj) with σj and pre-computing model terms such as

lnσj which do not change during measurement. Thus, EP may be tasked with

computing the following:

− ln b′j(xi, yi, ti) = lnσj +

[(
xi
σj
− µj
σj

)]2

. (3.2)

A block diagram of EP (for just one bj(i) out of M = 64 operating in parallel)

is shown in Fig. 3.4 corresponding to the elemental operations comprising (3.2).

44



3.4.2 Posterior/Pointer (PP) Hardware Architecture

The state-loop can be partitioned and mapped into identical, and independently

operating hardware units. Each of these units is tasked with the calculation of (3.3)

and (3.4)

ln vj(ei) = ln bj(ei) + min
ν

[ln vν(e(i−1)) + ln τ(ν, j)], (3.3)

ptrj(i) = min
ν

[ln vν(e(i−1)) + ln τ(ν, j)], (3.4)

for a particular state j. We refer to each such unit as a state slice. The architecture

of one state slice is shown in Fig. 3.5 where double-stroke arrows indicate a bundle

of signals (i.e. 21 transition signals τωj
and 21 posteriors from the previous iteration

vωj
(i − 1) in Fig. 3.5 where the ln function is dropped for symbolic brevity) and

the single-stroke arrows indicate an individual signal.

Each state slice consumes at least 21 + 1 adders (recall there are 21 possible

transitions into a state and one more addition needed to process the emission prob-

ability bj(i)) and needs to achieve a 21-way sort (as shown in Fig. 3.5) that identifies

the state with a minimum (negative logarithm) transition probability into a state.

3.4.3 Complete Basecaller Architecture

Finally, a blow-by-blow accelerator architecture as shown in Fig. 3.6 breaks down

into an EP block, a PP block composed of M state slices, a transition model, a
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Figure 3.5: The breakdown drawing of the PP block (one of 64)

distributor, and a normalization block.

The transition model is a register array storing the pre-computed transition

probabilities between the HMM states. The distributor block, a look-up-table

(LUT), makes sure that the appropriate 21 posteriors are funnelled back to each

state slice. The normalization block, composed of an M -input multiplexer and a

subtractor, sets the current epoch’s posterior calculations to

vj(i)← vj(i)−min ({vj(i)}M) . (3.5)

Thus, it prevents numerical overflow of the accumulated posteriors values.
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Figure 3.6: The thorough basecalling accelerator system architecture [30].

3.5 The Selection of Bitwidth

Another critical factor that should be considered in our basecaller IP design is the

accuracy with which it represents its internal variables. That is, the number of

bits (i.e. the bitwidth) with which the numerical quantities in the basecaller are

described.

The input and the inner data variables are uniformly described with 40 bits

in this design. This value, chosen as a conservative setting at the outset of the

basecaller design efforts, allows essentially a 1012 fluctuation numerical fluctuation.

The 48-bit width that could be accommodated by the FPGA’s DSP hardware

certainly makes this choice executable, but it is not an optimum setting to use.
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The reason for this is that, for one, the data, e(i), coming from the CPU to the

FPGA is only 32 bits (the smallest floating-point format available in C). Second,

the nanopore model used to generate the e(i) values, produced quantities requiring

only an 18-bit range. Accounting for the multiplication operation (i.e. the square

in the emission block), only a maximum 36-bit range would have been required.

3.6 Chapter Summary

In this chapter, we described a scalable (via the state-slice architecture and mod-

ified emission computations) and robust (40-bit width, posterior normalization)

architecture of the basecaller accelerator platform. The whole platform consists of

a program running on the CPU that offloads computationally intensive workloads

to the FPGA co-processor.
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4 System Communication and Timing

4.1 Communication Interfaces

Establishing a robust communication link between the CPU and its FPGA accel-

erator is a critical part of this thesis work. A streaming (i.e. continuous) link

between the CPU software and its FPGA co-processor is essential for realizing effi-

cient computations, especially for real-time DNA processing systems as envisioned

in this thesis. That is, as measurement data continually flows through the CPU, we

expect a similar, uninterrupted exchange between the CPU and the FPGA. Thus,

no need for excessive buffering or delay will be encountered during the basecalling

process. The faster that this CPU-to-FPGA communication can work, the more

data we can process per unit time (i.e. the higher the data throughput).

The FPGA board provides various external communication connections such

as USB, Ethernet, GPIO, and PCIe through which links to outside peripherals

can be made. Since the basecalling process needs high throughput data streaming

transmission, we chose PCIe as the communication link between the CPU and
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FPGA. For PCIe 2.0, a typical 16-lane PC motherboard can sustain peak data

exchanges of 64-Gbps, far outstripping all other readily available communications

options [55, 56, 57].

However, PCIe is a sophisticated, multi-layer, transmission protocol that is very

hard to implement from scratch. For example, it must be able to handle disor-

dered and overlapping communication packets and deal with data redundancy [58].

Specifically, it requires the designer to implement a virtual communications inter-

face spanning several layers in a sophisticated communication hierarchy.

The RIFFA CPU-FPGA communications framework mentioned in the previous

chapter helps address this challenge. It provides a streaming low-level protocol

to our basecaller that can be interpreted with custom hardware implemented di-

rectly on the FPGA. All high-level PCIe protocol concerns are also implemented,

but effectively hidden by RIFFA from the FPGA designer. The overall (low and

high-level) RIFFA link allows the FPGA core to maintain coherent access to the

CPU’s main memory and thus the CPU itself (which communicates with the FPGA

though main memory). To accomplish this, RIFFA is essentially a direct-memory-

access (DMA) bus master powered by vendor-specific PCIe IP [59, 60], such as

Xilinx, Altera. This IP implements the physical protocol implementation in FPGA

hardware.

We summarize the advantages of employing RIFFA in our project:
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• RIFFA has good flexibility with up to 12 independent channels. These chan-

nels share one PCIe bus at one time.

• RIFFA provides support for a communicating with multiple FPGAs in par-

allel, a facility important for our evolving research.

• RIFFA is an open-source project without financial and copyright issue [61].

• RIFFA provides a user-friendly communication interface on both the software

and the hardware side (a compact handshaking protocol) of a CPU-FPGA

implementation and hides complex PCIe protocol details from FPGA design-

ers.

• RIFFA’s maximum utilization takes advantage of up to 97% of the available

PCIe bandwidth thus satisfying very high-speed communication needs [45].

The manner in which RIFFA may interface with the software and hardware

components of an FPGA-accelerator project is detailed in the following two sub-

sections.

4.1.1 RIFFA Software Interface

RIFFA provides designers with communication tools for both the software (CPU-

side) and hardware (FPGA-side) of the accelerator interface. On the CPU side,

RIFFA provides a C based API (the RIFFA API commands are listed in Table 4.1).
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The API function fpga list() enumerates all recognized FPGA devices and

returns their unique IDs. This is essentially the means by which a program running

on the CPU identifies the FPGAs with which it may communicate. Based on the

ID, the corresponding FPGA is initialized by a CPU program through the function

fpga open(). Then, the function fpga send() is used to send the content of some

appointed memory address and its data size (both appearing as arguments in that

function) from the CPU to the FPGA. Specifically, the data size denotes how many

32-bit words we intend to send to the FPGA.

After sending data to the FPGA, the CPU invokes the fpga recv() RIFFA

command. This command is called to look for and fetch any data that may have

been transferred from the FPGA to the PC’s memory. Also, fpga recv() has

to point out which FPGA and which channel should be monitored and where to

store the returned data. Eventually, when the FPGA operation is done, the FPGA

should be closed by invoking the RIFFA command fpga close() from the CPU.

4.1.2 RIFFA Hardware Interface

RIFFA not only provides the software interface but also builds the hardware inter-

face present on the FPGA itself. All ports are divided into two groups: Receive

(“RX”) and Transmit (“TX”) as interpreted from our FPGA accelerator’s per-

spective.
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Table 4.1: RIFFA software API

function name parameters return value type

fpga list fpga info list* list int

fpga open int id fpga t*

fpga reset fpga t* fpga fpga t* fpga

fpga send
fpga t* fpga, int chnl, void* send data,

int len, int offset, int last, long timeout

int

fpga recv
fpga t* fpga, int chnl, void* recv data,

int len, long timeout

int

fpga close fpga t* fpga void
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Figure 4.1: The diagram of the RX signal waveform.
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CHNL_TX_OFF[30:0] 0
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Figure 4.2: The diagram of the TX signal waveform.

In Table 4.2, the port names and their stream direction (again, from the FPGA

accelerator core’s perspective) are illustrated. The port CHNL RX CLK and the

CHNL TX CLK separately define the clock signals for reading and writing FIFOs

inside the RIFFA architecture. In our case, the clock signal is generated by the

vendor’s (i.e. Xilinx) clock generator IP.

Examples of, the waveforms on the RIFFA RX and TX ports are shown in

Fig. 4.1 and Fig. 4.2, respectively. They illustrate the simulation waveform in a

situation 12 RIFFA packets are sent and received. The purpose of the ports is

explained further in the following paragraphs.
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The signal on the CHNL RX port from RIFFA informs the user’s FPGA IP that

the FIFO on the RX side has started to receive new data from the CPU. When

the CHNL RX signal goes high, the CHNL RX ACK signal should be pulsed high

(for at least one clock cycle) by the user’s custom FPGA communication logic to

acknowledge the new incoming data.

The CHNL RX DATA port is the FIFO output, the data to be actually pro-

cessed by the FPGA. The bitwidth of this signal is set by the DWIDTH parameter,

which is also the reference value of the PCIe packet size defined in the vendor’s IP.

The DWIDTH parameter can be set to two values: 64 bits and 128 bits [45].

In order to maximize the number of data bits processed per cycle, and thereby

maximize the throughput, we set this to 128 bits.

The signals on the CHNL RX DATA VALID and CHNL RX DATA REN ports

implement a simple flow control, the former coming from the CPU side and indi-

cating when data on the FIFO output port is safe to get and the ladder coming

from the FPGA side and indicating when a FIFO output has been registered by

the FPGA. When the CHNL RX DATA VALID and CHNL RX DATA REN are

both high, the value on the CHNL RX DATA is considered to be consumed by the

FPGA.

The TX ports are similar to the RX’s, the only difference is the direction of

the ports are opposite, and the user needs to specify when the TX should be active
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Table 4.2: RIFFA hardware API

RX I/O definition I/O TX I/O definition I/O

CHNL RX CLK O CHNL TX CLK O

CHNL RX I CHNL TX O

CHNL RX ACK O CHNL TX ACK I

CHNL RX LAST I CHNL TX LAST O

CHNL RX LEN[31:0] I CHNL TX LEN[31:0] O

CHNL RX OFF[31:0] I CHNL TX OFF O

CHNL RX DATA[DWIDTH:0] I CHNL TX DATA[DWIDTH:0] O

CHNL RX DATA VALID I CHNL TX DATA VALID O

CHNL RX DATA REN O CHNL TX DATA REN I

and what data should be sent to CPU. Similarly, the CHNL TX DATA is consumed

only when both the CHNL TX DATA VALID and the CHNL TX DATA REN are

high.

Because RIFFA IP generates one REN and one VALID on either RX or TX,

the FPGA should fully concentrate on how to set the appropriate controlling signal

to ensure the data is processed properly. Also, since the FIFO has an external oper-

ation to confirm the valid data, it causes the first data packets to always duplicate

as shown in Fig. 4.1. The simple solution is to postpone the CHNL RX DATA REN
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or to move CHNL TX DATA VALID forward one clock period for inactivating the

repeated data.

4.2 RIFFA Customization

For the purpose of improving the throughput, reducing the delay times between

the FPGA and CPU memory, and increasing the efficiency of the RIFFA channels,

we have slightly adjusted RIFFA and attached some other functional blocks. These

changes included software and hardware additions as described below.

4.2.1 Software Configuration

On the software side, the main improvement was a multithreaded implementation

of the fpga send and the fpga recv functions thus allowing simultaneous send-receive

operation. A process flow diagram (PFD) indicating the incorporation of this into

the CPU-side basecaller is shown in Fig. 4.3. As shown in this figure, the multi-

thread implementations is capable of running the fpga send and the fpga recv in

parallel.

The fixed point converter at the top is arranged to transform the input data

(which is available in floating-point format) into fixed-point format for consumption

by the FPGA. At the bottom, the traceback function is implemented as discussed

in Ch. 2.
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Figure 4.3: The PFD shows the program execution steps on the CPU side.
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4.2.2 Hardware Configuration

A number of hardware additions were made to the base RIFFA FPGA offerings to

make it suitable for the basecalling accelerator.

First, clock generator IP was employed to generate customized clock frequency

for the basecaller (first mentioned in 4.1.2). The on-FPGA RIFFA hardware works

with the PCIe 100-MHz reference clock. Since this setting is not adjustable, other

clock sources are needed to accommodate the alternate clock cycle needs of custom

FPGA basecalling hardware. For this purpose, the clock generator IP can easily

generate any frequency clock cycle with resources such as delay-locked loops (DLLs)

and mixed-mode clock managers (MMCMs) on the FPGA.

Second, we increased the FIFO depth to reduce the data swiping times between

the CPU memory and the RX FIFO in RIFFA. The depth was enlarged from 64 to

1024. Under this setting, the data is never refreshed until all of the data is stored

in the RX FIFO. Correspondingly, the TX FIFO is also enlarged to 1024 so that

once the FIFO is full an interrupt will be made by the controller to notify the DMA

on the PC side to fetch the data and store it into assigned memory space.

Third, we made a periodic pulse control for the CHNL RX DATA REN port

that asserts after each RIFFA packet completes processing. Through this change,

the RIFFA RX FIFO only pumps out the new data in a certain time to make sure
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the basecaller IP core has enough time to process every 128-bit RIFFA packet (each

packet contains 4 observed events mean value).

Last, the bitwidth of the sending and receiving data on the hardware side is

adjusted due to the different definitions of the bitwidth in our IP’s IO. As the

previous Chapter mentioned, the input bitwidth of the basecaller is 40 bits while

the output bit-width is 8 bits. Each RIFFA packet, both on the RX and TX, is

128 bits. On the one hand, we enlarge each incoming event from 32 bits to 40 bits

on RX by filling to zero the left-most 8 bits; on the other hand, each 16 pointers are

loaded into one packet on TX. As the matter of the fact, each event will produce

M = 64 pointers, thus 4 RIFFA packets are required for them.

4.3 RIFFA Receiver and Transmitter Design

Although RIFFA provides a simplified interface protocol between FPGA IP and

PCIe, still needed is on-FPGA receiver and transmitter hardware to manage our

customized low-level communications between the FPGA IP and RIFFA interface.

This includes not only the hardware to manage signalling with RIFFA’s handshak-

ing and flow-control ports (as discussed above), but also means of packing FPGA

data into RIFFA packets. As previously mentioned, each RX packet has 4 event val-

ues, and each event will return M = 64 8bits pointers per iteration process; means

of efficiently loading and unloading such representations in/out RIFFA packets is
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Figure 4.4: The whole accelerator design with RIFFA’s hardware API

needed if efficient computational dataflow is to be maintained.

Fig. 4.4 showcases our design ideas on this subject. In the figure, the clock

generator is used to generate two clock signal for all visible sub-modules. Our

basecalling engine (BE) is naturally deployed in the middle position between RX

(data arriving from the CPU via RIFFA) and TX (data being send to the CPU via

RIFFA) modules.

As shown, two modules are used for handling RX, the RIFFA receiver (RR) and

the Events Normalizer (EN). The RR is a FSM for controlling signal processing.

The RR state machine consists of three states, Initialization, Processing, and
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CHNL_RX=1

Figure 4.5: The state transition diagram of the RIFFA receiver (RR).

Reset (as shown in Fig. 4.5). In the Initialization state, all of RR’s controlling

signals are initialized and held until the CPU, via CHNL RX, notifies the FPGA

that there is the new data stream inflow. Upon such an assertion in CHNL RX

the RR is transferred to Processing state during which the arrived packet will be

received by a temporary-hold register. This register is responsible for transferring

the newly accepted packet to the EN. Then EN orderly extracts 4 the event values

stored in the packet and provides the corresponding valid signal (Event valid in

Fig. 4.4) to the BE. At this point, the Processing state stops updating the packet

until it is completely digested by the EN. When RR detects the Packet Done signal,

its internal packet counter is +1. After all the packets are completely exhausted,

the RR state advances to the Reset state and resets the packet counter and all

controlling signals to wait for the next reception request.

On the TX side, once the pointer normalizer finds that there is a pulse output
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on the pointer ready, it will adjust the 64 pointers sent by the BE. This adjustment

means to put every 16 8-bit pointers into a TX packet, and finally pass the prepared

4 packets and the corresponding Packets Ready signals to the RIFFA transmitter

(RT).

The RT is used to transfer data packets back to the PC main memory for use

by the CPU. To do this, first the RT FSM (as shown in Fig. 4.6), in its Monitor

state, monitors the Packets Ready signal. Once the packets are available, it will set

CHNL TX high in this state and move to the next state, Wait. After receiving the

CHNL TX signal, RIFFA will feed back a CHNL TX ACK signal indicating that

RIFFA is ready to accept a transmission; thus, in conformity with RIFFA’s flow

control procedure (outlined above) RT sets the CHNL TX VALID signal high and

waits for the CHNL TX DATA REN signal in the Dummy state (the purpose of

this is because the CHNL TX DATA REN signal will have a clock delay relative

to the CHNL TX DATA VALID signal). In the Send state, the four packets will

be sent completely and go to the Check state. It will only respond to the last

event process since an additional last state index in the last event needs to be sent.

All variables and counters are reset in the Reset state and wait for the next data

reception.
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Figure 4.6: The state transition diagram of the RIFFA transmitter (RT).

4.4 Timing Analysis

The design of the hardware circuit cannot only be satisfied with the correct func-

tionality but also must meet timing constraints.

As already noted, the 128-bit RIFFA packet sent from the CPU to the FPGA

carries four 32-bit event values. Hence the RIFFA-handling FPGA hardware needs

to make extra efforts to organize each event in order to fetch them from the packets

in orderly fashion and ensuingly feed them to our IP (as shown in Fig. 4.7). Mean-

while, each valid event value should keep valid for some time until the posterior

probability has been updated. In the current design, each event value requires 18

clock cycles by the basecaller (the red line shown in Fig. 4.7 signal) to complete

this update. Thus a RIFFA packet should be kept for 18 · 4 = 72 clock cycles and

then pulse on the CHNL RX DATA REN to inform the RX FIFO update a new

packet (the blue line shown in Fig. 4.7).
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Figure 4.7: Timing waveform showing the organization of RIFFA received data

converted to input data for basecaller.
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Figure 4.8: Timing waveform showing the basecaller’s inner signals. The left-most

curves illustrate the latency is 1 clock when the first incoming event is valid until

the corresponding emission probability has been calculated. The following blue

curves illustrate that pointers are produced 9 clocks after each event input, except

the first event for initialization.

In Fig. 4.8, the event valid signal along with the event value both stream into

the IP. The emission probability calculation model spends 1 clock cycle at the

beginning to work out the corresponding event’s (logarithmic) emission probability.

Furthermore, the pointers are produced at the 9th tick of the entire 18-clock cycle;

the remaining 9 ticks are spent on normalization and update of the posteriors.

The output of the IP has 8× 64 = 512 bits, which is equivalent to four RIFFA

packets (128 bit for each). As shown in Fig. 4.9, the CHNL TX DATA presents

these four TX packets. CHNL TX DATA VALID stays high for four periods until
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Figure 4.9: The waveform of TX part with the basecaller IP.

all valid pointers are safely sent back to the CPU. Correspondingly, the CPU will

receive the packets, arranged in order by the pointer index.

According to the timing analysis, we made the timing overlaps that contribute

to improving the processing speed. First, when RX keeps sending the new event,

the pointers are sending back. Second, the basecaller processing continues finalizing

the posteriors for the previous event by normalization when TX running its own

duty.

4.5 Chapter Summary

The RIFFA framework helps to conceal the full complexity of the PCIe protocol

allowing FPGA accelerator designers employing such an interface to focus on im-

plementing their algorithm of interest. Still a number of customizations are needed

to enable efficient communications even with the RIFFA framework in place. In

this chapter, an explanation of the RIFFA framework and the manner it was used
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(custom receive and transmit on-FPGA systems) and customized (e.g. enlarging

FIFO space, multithreaded communication) to our accelerator needs was given.
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5 Measurements and Prospects for 4096-State

Basecalling

5.1 Measurements

5.1.1 Resource Utilization

As noted in Chapter 3, the FPGA hardware used to implement the ideas described

in the preceding chapters was the Virtex-7 (V7) model from Xilinx [62]. In a

Virtex-7 implementation, the PCIe communication and RIFFA DMA blocks con-

sume roughly 20% of the FPGA’s available hardware resources. As such, an 8-

lane PCIe 2.0 endpoint can be implemented with a peak throughput capability of

25.6 Gbps once on-FPGA implementation overhead is accounted for [63, 64].

After adding the basecaller design, the detailed resource utilization table is

listed in Table 5.1. This low resource usage is, at least in part, a result of the effort

to minimize DSP slice usage to only the EP block (which requires M multipliers

in a fully parallelized implementation) while building state-slice arithmetic out of
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Table 5.1: The FPGA Resource Utilization

Resource Utilizaiton Available percentage

LUT 120,745 303600 39.97%

LUTRAM 6,064 130,800 4.62%

FF 102,468 607,200 16.88%

BRAM 73 1,030 7.08%

DSP 1,664 2,800 59.43%

GT 8 28 28.57%

BUFG 11 32 34.38%

the fabric’s configurable logic blocks (CLBs). A more explicit and clear utilization

diagram is shown in the Fig. 5.1: around half of the resource is taken by the

accelerator design.

5.1.2 Power Consumption

When the accelerator is running at its maximum frequency –60MHz, the acceler-

ating system can process about 5M events (shown in Fig. 5.3). In simulation the

power consumption at this frequency is estimated to be 5.167 Watts. This number

indicates the whole FPGA consumption rather than the used logic gates inside the

chip. According to the Xilinx Power Estimator (XPE) [66, 67], the specific power
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Figure 5.1: The chip layout of the accelerator on the FPGA, the highlighted part

is the real assigned hardware resource [65].
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Figure 5.2: The specific total power consumption on the FPGA (statistic data is

from Xilinx Vivado).

consumption is shown in Fig. 5.2, a screen shot taken from the Vivado FPGA design

software suite.

5.2 Performance of the Accelerator Platform

In order to test speed improvement of the accelerator platform against the CPU

solution, we set up a CPU centred testing object platform, Platform A. Its con-

figuration includes an Intel Xeon E5-2620 v3 2.4GHz, 32GB of RAM and a 1 TB

hard disk. The accelerated platform, Platform B, consists of the same CPU con-

figuration, but with the addition of the PCIe-mediated Virtex-7 FPGA accelerator
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card. As the input, a sample file containing 7000 artificially pre-generated events is

repeatedly presented to each platform 1000 times. The the equivalent of 7 million

measured DNA events is presented to both platforms.

On Platform A, a C basecaller runs in multi-thread mode. During operation

on the input sample set, the CPU utilization is 100% percent; memory usage is

about 10%. The average processing time (over 10 runs, each of 7 million events) is

36.06k bp/s in average. On Platform B, the CPU utilization percentage is 1% and

memory usage is 2%. The average speed can reach to 4949k bp/s with an FPGA

clock speed set at 60 MHz.

Generally, the accelerator speed is dependent on the FPGA clock frequency. To

demonstrate, we also tested Platform B at clock speeds ranging from 10 MHz to

60 MHz. According to the records of the experiment, the processing speed linearly

increases with the rise of the frequency (Fig. 5.3).

For more detailed insight, we measured the transmission time on both platforms

by employing a timer function in C. Through setting two timers for the two software

communications functions: the fpga send() and the fpga recv(), the time of

sending all files to be processed plus the overall time during the FPGA worked are

measured. The exact processing time on the FPGA is calculated manually, based

on the clock period and the 18 clock periods needed to consume each event. Thus,

the RX and TX communication time can be extracted from our measurements.
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Figure 5.3: Basecalling speed comparison between the FPGA-based accelerator

(Platform B) vs CPU centred platform (Platform A).
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By measurement, the RX takes 0.0145 ms while the TX takes 0.8723 ms, and the

processing time cost is 1.415 ms at 60 MHz. In contrast, the processing time on

the CPU is 194.1 ms in a 2.4-GHz system, shown as the red dotted line at the top

in Fig. 5.4.

As noted in the previous chapter the RIFFA communications wrapper is driven

by the PCIe reference clock signal, a 100-MHz constant setting. While our IP runs

on the flexible clock frequency. Hence, no matter what the frequency we set, there

is almost no any influence on the communication as demonstrated by the nearly

constant communications times over FPGA-core clock settings in Fig. 5.4.

In addition to the processing speed and resource usage mentioned earlier, an-

other concern is to verify the correctness of our basecalling design. Since the base-

calling engine’s output on the FPGA is a pointer array which indicates the corre-

sponding states for the events, the entire verification is divided into two parts. The

first part is the error verification of the algorithm. This process is implemented

through statistic of the mismatched number of the result from the basecallering

algorithm on the MATLAB after inputting the emulated event vector. As shown

in Fig. 5.5, we sent pass 312 events data to the basecaller and found that there are

3 states that do not match. This result is acceptable because it does not have a

greater impact on the solved base sequence and satisfies the expected requirements.

The second part of the verification is to compare the known error states with the
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Figure 5.4: a). illustrates the processing time comparison between platform A and

platform B. b). illustrates the partial communication speed cost and processing

speed on the platform B.
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result obtained on the FPGA. It has been found through experiments that the error

state gained from the FPGA is exactly the same as the error states obtained from

the first part. This step also proves that the basecalling algorithm runs perfectly

on the FPGA.

5.3 4096-state Basealler Prospect

Contemporary nanopore-based DNA applications are better satisfied by larger

HMMs, with M = 4096 being a more suitable size [68]. The resource overhead

remaining in our design does not allow for a direct implementation of such a sys-

tem, but it does leave enough room for the realization of a system that achieves

such scales in a time-multiplexed manner. A particularly suitable arrangement

would consist of 256 state slices operating in parallel on the FPGA. With such an

implementation the V7’s maximum resource consumption would rise about 40%

leaving room for the overhead needed to manage time-multiplexing.

Increasing the number of parallel components of course has the potential to im-

prove speed, but it costs even more power. More importantly, based on the present

design rate, a 256 parallel state-slice system exhausts the throughput of the Gen2

PCIe system. To increase processing rates without incurring CPU-to-FPGA com-

munication bottlenecks a faster endpoint would be needed. Such capability neces-

sitates an upgrade to, for instance, PCIe Gen4 devices, a reality in contemporary
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Figure 5.5: The error rate of the result from basecaller in MATLAB.

FPGA offerings (e.g. Xilinx Ultrascale+ devices) [69, 70, 71].

Time-multiplexing also adds to the required on-chip storage burden by virtue

of the need to store previous posteriors vj(i− 1) for ready access to state-slices at

altering phases of operation. Emission model parameters must also be stored. At

an 40-bit width, the total memory burden of a 4096-state implementation is around

4% of the V7’s total block RAM (BRAM) memory capacity [72].

The power consumption of the core (plus communications) would rise to roughly

9.5 W while the overall event rate would drop to 0.78 Mevents/s. This still repre-

sents a substantial improvement over CPU-only systems.
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5.4 Chapter Summary

The resource utilization and power consumption of the 64-states basecalling ac-

celerator are presented in this chapter. Also, the extremely fast processing speed

and lower error rate are both presented to illustrate the distinguished performance

gap between two platforms (the platform A with accelerator while the platform B

without accelerator).

In addition, we discuss about the feasibility of expanding the number of states

to 4096 that matches the contemporary nanopore sensor system.
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6 Conclusion and Further work

6.1 Conclusion

This thesis described an HMM basecaller partly implemented on an FPGA to accel-

erate the process of DNA sequencing using nanopore sensors. Although the accel-

erator system has some flaws such as fewer Mer hardly mapping in the state-of-art

nanopore technology for now, it does demonstrate the means by which full-scale

basecallers may be constructed at significant speed-up over CPU-only approaches.

Compared with the CPU-only solution, the FPGA-accelerated approach speeds up

basecalling by 137× with a 17× lower power consumption and a 0.96% error rate.

Thanks to the RIFFA framework, which achieves a high-efficiency PCIe-mediated

communication between the FPGA and the CPU, up to 4949k bp/s may are han-

dled without any communication-induced bottlenecks.
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6.2 Future Work

Further work needs to be done to establish a more robust DNA sequencing accelera-

tion platform capable of working with commercial-grade nanopore-based sequencing

data. Improvements should be considered from both the algorithm and hardware

design perspective. Key objectives for future work are as follows:

• First, although we implemented a 64-state basecalling accelerator on FPGA

current sensor behaviours require implementations capable of processing at

least 1,024 states, with 4,096 states being desirable.

• Second, the current algorithm implementation, does not take the model pa-

rameter training part into account. The training is still a separate part that

needs to be implement. In our project, these parameters are saved into the

registers in the hardware. Second, we remove critical parts (inverse Gaussian

model parameters) in the process of emission calculation in order to simplify

the hardware design. These settings were not deleterious to the data pro-

cessed in these tests presented, but would likely hurt accuracy on realistic

data.

• Third, continuous traceback enables real-time processing capacity of the base-

caller. Although, we described the algorithm needed to carry this out we did

not implement it on the hardware. The next step is a full transplantation
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of basecaller, including traceback, onto the FPGA so as to render a pure

hardware solution.

• Fourth, the bit-width in the FPGA is defined as 40 bits. The reason for

this choice is to fit the data size. However, it takes too many resources on

the FPGA. Thus an effort to reduce the processed data bitwidth should be

undertaken. This may significantly shrink the resource utilization so as to

preserve more available resources for the rest of the design and better enable

scaling to larger state counts.
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