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Abstract 

 

Creativity is the ability to generate novel associations and has been linked to better problem-

solving and real-world functional abilities. Creative ability has been implicated in successful 

aging including psychological, social, spiritual and, cognitive functioning (Duhamel, 2016).  

Creative thinking is associated with connectivity between default and executive control regions 

in the young brain. In aging, this pattern of functional coupling is observed across multiple tasks 

and associated with better performance on tasks that closely mirror real-world functioning, 

where prior knowledge is congruent with task goals. This has been described as the Default-

Executive Coupling Hypothesis of Aging (Turner & Spreng, 2015), and proposes that this 

changing neural architecture reflects greater reliance on internally stored representations and 

knowledge.  This shift towards greater semanticized cognition in later stages of life reflected in 

changes in network connectivity and interactivity may also support creative cognition into older 

adulthood. However, age-differences in brain networks of creativity have yet to be directly 

investigated. This dissertation explored age-related functional connectivity patterns of creative 

thought among default and executive control networks using task-based and intrinsic functional 

connectivity methods. In study one, old and young participants completed a divergent thinking 

task measuring creative thinking, while undergoing fMRI scanning. Consistent with predictions, 

analyses demonstrated that default and executive networks are more functionally coupled during 

creative thinking for older than younger adults. Critically, despite similar performance on an in-

scanner creativity task, increased global network efficiency of default-executive nodes was 

associated with creative ability for older adults only. These findings provide novel evidence of 

default-executive coupling as a putative mechanism supporting creative ability in later life. Next, 

we investigated whether this pattern of default-executive coupling supporting creative thinking is 
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reflected in the intrinsic architecture of the aging brain. Younger and older adults underwent 

fMRI scanning at rest and completed a divergent thinking task to assess creative ability outside 

the scanner. Results indicated that both younger and older adults have equivalent performance on 

offline measures of creativity. However, relative to the younger adults, older adults showed a 

pattern of greater between-network intrinsic functional connectivity among default-executive 

networks associated with creative ability. Results from both study one and two provide evidence 

for a greater reliance of the aging brain on default-executive coupling to support creative 

cognition. In study three, we investigated whether creativity is associated with fluid or 

crystallized intelligence in young and older adults, as further, albeit preliminary, evidence in 

support of a ‘semanticization of cognition’ hypothesis of creative cognition in later life. Results 

showed that fluid intelligence was reliable predictor of creativity across both young and older 

adults. Contrary to the semanticization hypothesis, crystallized intelligence was not a significant 

predictor of creativity in older adults. However, this may reflect the limited sample size for an 

individual difference analysis and the narrow assessment of crystalized knowledge. Taken 

together, the dissertation findings presented here extend previous research in aging and creative 

thinking by demonstrating that creativity is preserved in normal aging yet relies on a different 

functional network architecture than has been reported in young. These functional brain changes 

may reflect a cognitive shift towards greater reliance on semantic knowledge that has important 

implications for understanding and predicting functional capacity in later life. Future 

investigations of creative ability in aging may provide a novel lens through which we can better 

understand the implications of creative thought in aspects of successful aging including 

maintenance of an agentic self-view, independence and a positive personal self-view that is key 

for mental health (Duhamel, 2016; Runco, 2004).  



  iv 

 

Acknowledgements 

 

Firstly, I would like to express my deep appreciation to my supervisor, Dr. Gary Turner. Your 

guidance, mentorship and unwavering support over the past six years have allowed me to 

develop not only as a scientist, but also a critical thinker, writer, and clinician.  Thank you for 

your steadfast support in my research endeavours (including brain camp), and fostering my love 

of knowledge and academic adventure. I would also like to thank Drs. Roger Beaty, Nathan 

Spreng and Dale Stevens for their support, collaboration, and feedback through the course of this 

dissertation. Finally, I am forever grateful to Dr. Jill Rich for the valuable discussions and 

mentorship every step of the way.  

I am thankful for all the support I have received from the Cognitive Aging Neuroscience 

& Neuro-intervention Group. Each and every member of the lab has had an invaluable part to 

play in my years as a graduate student. A special thank you to Sabrina, my partner in crime from 

the first day; Sam, for being the leader in organization and keeping me on track; Leah, for always 

giving me sage advice and, Katie, for being a huge emotional support at each and every step.  

Finally, this dissertation would not be possible without my village. First and foremost, 

words cannot express my gratitude towards my parents, Ammi and Abbu for affording me the 

opportunity to pursue a career in psychology, and to my siblings, Jaudat and Hamza for always 

believing in me. Thank you to my husband, Shafi, for always being the bearer of the ‘big picture’ 

and his unwavering support. Thank you to my father-in-law, Baba – for stepping in and 

supporting me when I was in the trenches. And last, but not least, thank you to my vivacious, 

intelligent, and talented daughter, Liyana Maryam for the endless hugs and kisses on the hard 

days, and for being a huge motivation and inspiration in this journey.  

 



  v 

 

TABLE OF CONTENTS 

Abstract ........................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iv 

Table of Contents ............................................................................................................................ v 

List of Tables ................................................................................................................................. vi 

List of Figures .............................................................................................................................. viii 

Chapter One: Introduction .............................................................................................................. 1 

Section A:Defining Creativity .................................................................................................... 1 

Section B: Dual Process Models of Creativity ........................................................................... 3 

Section C: Neural Mechanisms of Creative Cognition ............................................................... 7 

Section D:Aging and Creative Cognition ................................................................................. 11 

Section E:Age-related Brain Changes and Creative Cognition ................................................ 13 

Section F:Default-Executive Coupling Hypothesis of Aging ................................................... 14 

Section G:Current Dissertation ................................................................................................. 15 

Chapter Two: Study One - Functional Brain Networks Associated with Divergent Thinking in 

Older and Younger Adults ............................................................................................................ 18 

Section A: Introduction ............................................................................................................. 18 

Section B: Methods ................................................................................................................... 21 

Section C: Results ..................................................................................................................... 30 

Section D: Discussion ............................................................................................................... 50 

Section E: Conclusions ............................................................................................................. 54 

Chapter Three: Study Two - Intrinsic Default – Executive Coupling of the Creative Aging Brain

....................................................................................................................................................... 56 

Section A: Introduction ............................................................................................................. 56 

Section B: Methods ................................................................................................................... 60 

Section C: Results ..................................................................................................................... 67 

Section D:Discussion ................................................................................................................ 83 

Chapter Four: Study Three -Cognitive Substrates of Divergent Thinking in Young and Older 

Adults ............................................................................................................................................ 87 

Section A: Introduction ............................................................................................................. 87 

Section B: Methods ................................................................................................................... 89 

Section C: Results ..................................................................................................................... 93 

Section D:Discussion ................................................................................................................ 97 

Chapter Five: General Discussion .............................................................................................. 101 

References ................................................................................................................................... 119 

Appendix A ................................................................................................................................. 135 

 

 

 

 



  vi 

 

List of Tables 

 

Table 2.1: ROI-to-ROI connectivity findings using Gordon et al., (2014) nodes for the default 

network (DN), salience network (SN), and fronto-parietal network (FPN) for young adults with a 

Create>Object Contrast, corresponding to results in Figure 2.2. Each row denotes significant 

connections between-network node and other network nodes and their network 

affiliation....................................................………………………………………………………31 

 

Table 2.2: ROI-to-ROI connectivity findings using Gordon et al., (2014) nodes for the default 

network (DN), salience network (SN), and fronto-parietal network (FPN) for older adults with a 

Create>Object Contrast, corresponding to results in Figure 2.3. Each row denotes significant 

connections between-network node and other network nodes and their network  

affiliation …………………………………………………………………………………..……………37 

 

Table 2.3: ROI-to-ROI connectivity findings using Gordon et al., (2014) nodes for the default 

network (DN), salience network (SN), and fronto-parietal network (FPN) for all participants 

with a Create>Object Contrast, corresponding to results in Figure 2.4. Each row denotes 

significant connections between-network node and other network nodes and their network 

 affiliation ……………………………….………………………………………………...……………41 

 

Table 2.4: ROI-to-ROI connectivity findings using Gordon et al., (2014) nodes for the default 

network (DN), salience network (SN), and fronto-parietal network (FPN), corresponding to 

results shown in Figure 2.5. ROI-to-ROI functional connectivity maps were first contrasted at 

the within-subject level using a Create>Object contrast. Next, between-subject analyses were 

conducted using an Old > Young contrast. Positive findings correspond to significant ROI-to-

ROI connectivity for older adults during the Create Condition, while negative findings 

correspond to significant ROI-to-ROI Connectivity for young adults during the Create 

Condition.  Each row denotes significant connections between-network node and other network 

nodes and their network affiliation……….……..………………...……………………………..45 

 

Table 3.1: ROI-to-ROI connectivity positively correlating with divergent thinking ability in 

young adults, controlling for the personality trait, openness to experience and scanner site 

(corresponding to Figure 3.1)…………………………………………………..………….…….69 

 

Table 3.2: ROI-to-ROI connectivity positively correlating with divergent thinking ability in older 

adults, after controlling for scanner site and personality (openness to experience) 

(corresponding to Figure 3.2)……………………………………………….…………………...73 

 

Table 3.3.  ROI-to-ROI connectivity positively correlated with divergent thinking ability and 

overlapping between young and older adults, after controlling for scanner site and personality 

(openness to experience) (corresponding to Figure 3.3)…………………………………………..…77 

 

Table 3.4: ROI-to-ROI connectivity correlating with divergent thinking ability contrasted 

between young and older adults (Older Adults > Young Adults), after controlling for the 

personality trait, openness to experience and scanner site (BFAS-O)(corresponding to Figure 

3.4………………………………………………………………………………………………...80 



  vii 

 

 

Table 4.1. Participant Characteristics…………………………………………………………………..93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  viii 

 

List of Figures 

 

Figure 2.1: Visual representation of task paradigm used in study with a 4-6 second fixation 

cross, followed by condition cue (Panel A – Create; Panel B – Object). Following the condition 

cue, participants were provided with the name of the object for which they had 12 seconds to 

think of creative and novel uses (Create condition) or everyday common uses (Object condition). 

Following the idea generation period, they were asked to provide a verbal response (response 

generation period – 3 seconds) for their most creative use for the object………………………25 

 

Figure 2.2: ROI-to-ROI results for a Create > Object contrast for young adults. Colour coded 

nodes include regions from the default network (DN), fronto-parietal network (FPN), and 

salience network (SN).  The colour of the edges (connections between nodes) indicates the 

direction of the contrast. Red edges indicate ROI-to-ROI connectivity between nodes during the 

Create condition while blue edges indicate ROI-to-ROI connectivity during the Object condition 

in young adults. These results correspond to findings detailed in Table 2.11………………….32 

 

Figure 2.3: ROI-to-ROI results for a Create > Object contrast for older adults. Colour coded 

nodes include regions from the default network (DN), fronto-parietal network (FPN), and 

salience network (SN).  The colours of the edges (connections between nodes) indicate the 

direction of the contrast. Red edges indicate ROI-to-ROI connectivity between nodes during the 

Create condition while blue edges indicate ROI-to-ROI connectivity during the Object condition 

in young adults. These results correspond to findings detailed in Table 2.2…………………….....36 

 

Figure 2.4: ROI-to-ROI results for a Create > Object contrast for all participants. Colour coded 

nodes include regions from the default network (DN), fronto-parietal network (FPN), and 

salience network (SN).  The colour of the edges (connections between nodes) indicate the 

direction of the contrast. Red edges indicate ROI-to-ROI connectivity between nodes during the 

Create condition while blue edges indicate ROI-to-ROI connectivity during the Object condition 

in all participants. These results correspond to findings detailed in Table 2.3…………………….40 

 

Figure 2.5: (Panel A) Age by Condition Interaction of ROI-to-ROI connectivity between nodes 

from the default network (DN), fronto-parietal network (FPN), and salience network (SN). 

Nodes are colour coded by network affiliation. A within-subject condition contrast was 

conducted at the first level using a Create > Object contrast. Next, a between-groups analysis 

was conducted to look at ROI-to-ROI functional connectivity differences between young and 

older adults. Red edges indicate ROI-to-ROI connectivity between nodes for Create > Object 

contrast in older adults. Blue edges indicate ROI-to-ROI connectivity between nodes during the 

Create > Object contrast in young adults.  (Panel B) Scatter plots depicting the correlation 

between creativity ratings and global efficiency of the divergent thinking network in Panel A in 

young and older 

adults……………………………………………………………………………………………..44 

 

Figure 3.1: Resting state functional connectivity correlating with divergent thinking ability in 

young adults. Colour coded nodes include regions from the default network (DN), fronto-parietal 

network (FPN), and salience network (SN). The colour of the edges, denote the direction of 

correlation between functional connectivity and divergent thinking ability. Only positive 



  ix 

 

correlations between ROI-to-ROI functional connectivity and divergent thinking ability survived 

a seed-level FDR correction at an alpha level of 0.05……………………………….…………..68 

 

Figure 3.2: Resting state functional connectivity correlated with divergent thinking ability in 

older adults. Colour coded nodes include regions from the default network (DN), fronto-parietal 

network (FPN), and salience network (SN). The colour of the edges, denote the direction of 

correlation between functional connectivity and divergent thinking ability Only positive 

correlations between ROI-to-ROI functional connectivity and divergent thinking ability survived 

a seed-level FDR correction at an alpha level of 

0.05………………...……………………………………………………………………………..72 

 

Figure 3.3: Overlap between resting state functional connectivity correlated with divergent 

thinking ability across young and older adults, after controlling for scanner site and personality 

(openness to experience). Color coded nodes include regions from the default network (DN), 

fronto-parietal network (FPN) and salience network (SN). The color of the edges denotes the 

direction of correlation between functional connectivity and divergent thinking ability. Only 

positive correlations between ROI-to-ROI functional connectivity and divergent thinking ability 

survived a seed-level FDR correction at an alpha level of 0.05. Connections displayed are 

corrected a seed-level FDR correction at an alpha level of 0.05. Results correspond to findings in 

Table 3.3………………………………………………………………………………………....76 

 

Figure 3.4: Group by behaviour interaction for intrinsic connectivity correlated with divergent 

thinking. Figure shows resting-state ROI-to-ROI functional connectivity that correlated with 

divergent thinking ability, significantly different between young and older adults, after 

controlling for the personality trait openness to experience. Colour coded nodes include regions 

from the default network (DN), fronto-parietal network (FPN) and salience network (SN). The 

colour of the edges (connections between nodes) indicate the direction of the contrast. Red edges 

indicate greater connectivity between regions that are associated with divergent thinking in older 

adults, while blue edges indicate greater connectivity between regions that are associated with 

divergent thinking in young adults……………….………………………………………..…….80 

 

Figure 4.1: Partial correlation for young adults, after controlling for the effect of openness to 

experience, between fluid intelligence and divergent thinking (Panel A), and crystallized 

intelligence and divergent thinking (Panel B). X and Y axis values reflect residual values, after 

the effect of personality is kept constant……………………………...……………………..…...94 

 

Figure 4.2: Partial correlation for older adults, after controlling for the effect of openness to 

experience, between fluid intelligence and divergent thinking (Panel A), and crystallized 

intelligence and divergent thinking (Panel B). X and Y axis values reflect residual values, after 

the effect of personality is kept constant………………………………………………………....96



 1 

 

CHAPTER ONE  

Introduction 

Defining Creativity 

 

Creativity is a quintessential and arguably unique human characteristic. It conjures forms 

of expression most commonly found in art galleries, architectural feats, concert halls, and science 

laboratories, but also in the small wonders of our everyday lives. Creative cognition is essential 

for economic and political advancement, and serves as the foundation for artistic, scientific, and 

technological innovations. Creative ability is a complex, multidimensional construct that is 

typically defined in terms of its end product, or the generation of novel and useful outcomes 

(Stein 1953; Sternberg and Lubart 1996; Runco and Jaeger 2012). Indeed, common conceptions 

of creativity often invoke the idea of ‘creative talents’, producing artistic outputs in the 

performing arts. Creativity is increasingly considered to hold vaulted status in the sciences, 

commerce, and in the millennial era of technological development.   

Consistent with its oft-ascribed stature as a highpoint of human endeavor, creativity has 

been associated with real world success across multiple functional domains. Creative ability has 

been shown to predict success in conflict situations (De Dreu, Nijstad, & van Knippenberg, 

2008) as well as academic performance (Furnham & Bachtiar, 2008) and appears to be an 

adaptive trait for success across multiple aspects of functioning in everyday life including self-

expression, adaptability, problem solving, and health (Runco, 2004). A longitudinal study of 

creative ability in school-aged children, for example, has found that top performers in divergent 

thinking continued on to lead successful careers in both the arts and sciences (Plucker, 1999; 

Torrance, 1988).  
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Most research investigating associations between creative cognition and human 

achievement, including those referenced above, have stepped away from the idea of creativity as 

a domain specific capacity (e.g. in the arts or sciences). Instead, creativity is considered to be a 

more domain general ability, typically operationalized as divergent thinking ability. Similarly, 

emerging research investigating the cognitive and neural bases of creativity almost universally 

assess creative cognitive ability as performance on a divergent thinking task.  In keeping with 

this tradition, throughout the dissertation, the terms creativity, creative cognition, and creative 

ability are used interchangeably and operationalized here as performance on divergent thinking 

tasks. Next, we describe measures of divergent thinking and provide evidence for this approach 

as an assay of creative cognition.  

Divergent thinking was first introduced as a construct to measure creativity by Guilford 

(1950) and advanced using ecologically valid modes of assessment, specifically open-ended 

tasks requiring novel idea generation. During these tasks, individuals generate ideas in response 

to verbal or figural prompts (Wallach and Kogan, 1965; Michael and Wright, 1989). In a typical 

verbal task (e.g. Alternate Uses Task), people are asked to generate unusual uses for common 

objects (Alternate Uses Task; e.g. bricks, knives, and newspapers), exemplars of common 

objects (Instances Task; e.g. objects that are loud, strong or round) or consequences of 

hypothetical events (Situations Task; e.g. what would happen if people went blind or no longer 

needed sleep). In a typical nonverbal task, people are asked to provide creative solutions to 

completing a provided stimulus (Incomplete Figures Task) and creative ways to use stimuli to 

create a figure (Circles and Squares Task and Creative Design Task).   

Divergent thinking tasks are perhaps most analogous to fluency tasks which require 

individuals to produce as many exemplars as possible given a phonemic (the letter A), semantic 
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(grocery items) or other categorical cue.  Both divergent thinking and fluency tasks require 

generative ability, or an endogenous drive to produce responses that are subsequently quantified 

as a metric of task performance and ultimately serve as a measure of cognitive ability. Unlike 

fluency tasks, divergent thinking tasks capture both the quantity and quality of the responses. 

Response quality on a divergent thinking task is typically analyzed along several dimensions 

including originality (i.e. how novel or rare the response is), spontaneous flexibility (the number 

of conceptual shifts between responses), adaptive flexibility (changing of strategies to produce 

responses), ideational fluency (i.e. speed of response production) and the ability to produce 

transformations (changing or modifying an object from its original state) (Guilford, 1967).  

Evidence supporting the ecological validity of divergent thinking as an assay of creativity has 

been demonstrated in recent work showing that divergent thinking predicts both the quantity of 

self-reported creative achievement (Jauk, Benedeck and Neubauer, 2014) as well as the quality 

of expert-rated creative performances on jazz improvisation ability (Beaty, Smeekens, Silvia, 

Hodges and Kane, 2013).   

Dual Process Models of Creativity  

 

Paralleling the dual definition of creativity i.e. the ability to produce ideas that are both 

novel and useful (Amabile and Tighe, 1985), research investigating the cognitive architecture of 

creativity has led to a dual process hypothesis, suggesting that creative cognition unfolds over 

generative and evaluative phases. The generation stage begins with crudely formed ideas and 

associations. This formative stage is then followed by an evaluative phase wherein ideas are 

tested for novelty and utility (Basadur et al.,1982; Fink et al., 1992). Theoretical accounts of 

creative cognition, specifically the production of novel ideas through the generative and 

evaluative stages, assume that novel ideas rely on meaningful variations or recombinations of 
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available knowledge (Koestler, 1964). Highly novel and creative ideas are conceptualized as a 

recombination of unrelated concepts (Mednick, 1962).  

The associative theory is one of the most influential models of creative cognition 

(Mednick, 1962). This theory suggests that differences in individual levels of creativity can be 

explained by variations in the structural organization of concepts within semantic networks. 

Mednick described the process of creative thinking as “the forming of associative elements into 

new combinations which either meet specific requirements or are in some way useful” (1962, 

p.221). Mednick observed that whereas most people have rather steep associative hierarchies 

(i.e., a given stimulus evokes only highly related items in memory), creative people have flat 

associative hierarchies (i.e., a given stimulus evokes not just highly related but also remotely 

related items). Associative elements in this context are defined as those existing in an 

individual’s cognitive schema and encompass semantic and episodic memory processes. 

According to the associative theory, memory plays a significant role in both domain general (e.g. 

divergent thinking) and domain specific (e.g. performing arts) creative abilities, as both require 

engaging acquired knowledge to construct novel and useful solutions to open-ended problems. 

Recent behavioural evidence is consistent with this idea. Associative memory processes 

(Benedek et al., 2012; Silvia et al., 2013) including both semantic (Abraham & Bubic, 2015; 

Leon et al., 2014) as well as episodic memory (Addis, Musicaro & Schacter, 2016; Madore, 

Addis & Schacter, 2015) have been associated with creative cognition. Following the dual 

process hypothesis, memory and associative processes play an important role in creative idea 

generation.   

However, evidence suggests that creativity engages additional cognitive processes beyond the 

domain of memory. Despite the importance of memory in facilitating creativity, substantial 
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evidence also suggests that it can also be a limiting factor in idea production by imposing 

functional fixedness (Duckner, 1945; Osman, 2008; Chrysikou and Weisberg, 2005; Ward et al., 

2005). For example, deficits on a commonly reported divergent thinking task, the Alternate Uses 

Task, have been attributed to an inability to move beyond salient conceptual knowledge (Beaty 

and Silvia, 2012; Chyrsikou et al., 2016; Gilhooly et al., 2007).  Executive control may help to 

overcome the rigidity imposed by anchoring creative cognition to mnemonic representations. 

Control processes such as response inhibition (Benedek et al., 2012), controlled memory 

retrieval (Benedek et al., 2012; Silvia et al., 2013) and conceptual category switching (Finke et 

al., 1992; Nusbaum & Silvia, 2012) have been associated with better performance on tasks of 

creative cognition, presumably by enabling creative thought processes to monitor, evaluate and 

ultimately overcome the gravity, or ideational inflexibility, imposed by prior knowledge. 

Specifically, executive control is seen to be necessary to support mental simulations necessary to 

continually evaluate and ultimately reconfigure existing knowledge representations to produce 

truly novel or original outputs (Bendek et al., 2017). Within the dual process model of creativity, 

executive control processes appear to support creativity by facilitating the second stage of 

creativity, creative idea evaluation. Taken together, both associative and executive control 

processes interact to facilitate both the generative and evaluative phases of creative cognition.  

Other models of creativity have proposed a similar dual-process approach. Basadur et al. 

(1982) proposed the notion of ideation-evaluation cycles. The authors distinguished between 

three major stages in the creative thinking process — problem finding, problem solving, and 

solution implementation — and suggested that ideation and evaluation are involved at each stage 

in varying degrees according to the domain. For instance, domains that emphasize problem 

finding have a high ratio of ideation to evaluation, whereas domains that emphasize solution 
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implementation show the opposite pattern. They propose that dispositional differences in the 

tendency to ideate vs. evaluate lead to differences in the domain best suited to an individual.   

Similarly, Finke, Ward and Smith’s (1992) ‘Genoplore’ model proposes that creative 

thinking may be divided into two overarching stages: Idea generation and exploration. These are 

further subdivided into discrete sub-stages with multiple operations occurring at each stage. For 

instance, generation can involve retrieval of items from memory, formation of associations 

between items, and synthesis and transformation of the resultant ‘preinventive’ structures. 

Exploration can involve identifying the attributes of these pre-inventive structures and 

considering their potential function in different contexts. Evidence for this model comes from 

findings suggesting that as people generate ideas, they appear to utilize exemplars from the same 

or a related domain. They then endow the new idea with many of the attributes of the previous 

exemplar. Another recent dual process theory of creative thinking, proposed by Nijstad, De 

Dreu, Rietzschel and Baas (2010), suggested that creativity can arise through two pathways: a 

flexibility pathway and a persistence pathway. Greater cognitive flexibility is viewed as 

generating more categories of ideas, as well as more frequent shifting between them, leading to 

greater originality. The persistence pathway represents the possibility of achieving creativity 

through effortful exploration of only a few categories or perspectives. This systematic search will 

lead to creative idea generation, after the readily-available solutions have been exhausted.  

In summary, a common thread between these multiple theories of creativity is the 

presence of multiple stages or steps in the creative process. Completion of these stages likely 

involves multiple aspects of cognitive functioning including both associative or mnemonic 

abilities as well as executive control processes.  
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Neural Mechanisms of Creative Cognition 

 

 The involvement of memory and executive control processes in creativity is further 

supported by recent neuroimaging studies investigating the neural basis of creative cognition. 

Research in younger adults suggests that generation processes are associated with engagement of 

a functionally connected assembly of brain regions known as the default network which has been 

implicated in associative or elaborative processing (Beaty et al., 2018). The default network is 

composed of a set of midline, inferior parietal, lateral temporal, and prefrontal brain regions. 

This network was originally seen to be engaged in the absence of externally directed tasks 

(Gusnard and Raichle, 2001; Shulman et al., 1997), prompting its early label as a ‘task negative’ 

network. More recently, the default network is considered to be active and necessary to support a 

range of internally directed, or self-generated cognitive processes that typically involve 

associative or elaborative processing (Andrew-Hanna et al., 2014).  

The network is also important for cognitive processes that rely on internal 

representational knowledge of oneself and the world, including future thinking (Schacter et al., 

2012), perspective taking (Buckner et al., 2007), mental simulation (Andrews-Hanna et al., 2014; 

Zabelina and Andrews-Hanna, 2016), navigation, and theory of mind (Spreng et al., 2009). In the 

context of creativity, the default network has been investigated during divergent thinking tasks 

using both structural and functional neuroimaging methods (Fink et al, 2013, Jauk et al., 2015; 

Jung et al., 2010; Takeuchi et al., 2010; Benedek et al., 2014; Fink et al., 2014; Takeuchi et al., 

2011). Specifically, the posterior cingulate cortex (Fransson et al., 2008) and the inferior parietal 

lobule (Abraham et al., 2012, Benedek et al., 2014, Fink et al., 2009, Fink et al., 2010) have been 

implicated in divergent thinking ability. Further, creative idea generation appears to engage a 

left-lateralized brain network, closely overlapping the default network, comprising of the inferior 
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parietal lobe, medial prefrontal cortex and posterior cingulate cortex (Abraham et al., 2012; 

Beaty et al., 2017; Gonen-Yaacovi et al., 2013; Fink et al., 2009). 

Similarly, and consistent with the dual process accounts of creativity, neuroimaging 

studies have also associated activity in brain regions implicated in executive control with 

creative cognitive ability, specifically those in the fronto-parietal network (FPN). The 

dorsolateral prefrontal cortex has been implicated in studies of domain general creative cognition 

(Chen et al., 2017; Gonen-Yaacovi et al., 2013; Wu et al., 2015) as well as domain specific 

artistic abilities (Beaty, 2015; Pinho et al., 2014,2016). Further, the left inferior frontal gyrus has 

also been implicated in creative cognition (Gonen-Yacovi et al., Vartanian et al., 2014). This 

region is typically activated during cognitive tasks that require controlled retrieval and 

monitoring processes, particularly when task demands require target response selection amongst 

competing alternatives (Zhang et al., 2004). Evaluative or monitoring processes are essential for 

the evaluative stages of creative cognition in the dual stage models reviewed above (e.g. Mednik, 

1962).   

A putative role for default and executive control regions in idea generation and 

evaluation suggests that these brain regions interact to support creative cognition. Consistent 

with this idea, a number of studies have now shown that default and executive control networks 

do indeed functionally interact to support performance across a range of creative cognition tasks 

including divergent thinking (Beaty et al., 2015; Mayseless et al., 2015), creative drawing 

(Ellamil et al., 2012), poetry generation (Liu et al., 2012) and musical improvisation (Pinho et 

al., 2016). Further, this pattern of network interactivity is observed both during task as well as at 

rest, suggesting the task-free, or intrinsic, network architecture of the brain may be a marker of 

creative ability (Beaty et al., 2014; 2018).  
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Finally, with respect to the neural network architecture underlying creative cognitive 

ability, a third, functional network, spatially interposed between default and frontal brain regions, 

has also been implicated in creative cognition. The salience network is considered to be a sub-

component, along with the FPN, in the dual-component model of executive control (Dosenbach 

et al., 2007). In the context of creativity or divergent thinking ability, the salience network is 

thought to be important for facilitating the transition from the generation to evaluation phases of 

creative cognition, mediated by the default and executive control networks respectively (Beaty et 

al., 2015). In this interacting network account, the right anterior insula, a salience network node, 

is postulated to couple with the default network (specifically the posterior cingulate cortex) to 

facilitate idea generation, as well as the left dorsolateral prefrontal cortex to facilitate idea 

evaluation (Beaty et al., 2016).
1
  

Together, these investigations into the neural correlates of creative thought suggest 

default and executive control networks (FPN and salience) interact to support creative cognition. 

Reflecting this idea, a recent neural network model of creative thought suggests that functional 

coupling among default and executive control networks is a core neural substrate for creative 

thought (Beaty et al., 2015). Further, the extent of network interactivity appears to be modulated 

by the demand for cognitive control during creative task performance. Consistent with this idea, 

verbal creativity tasks requiring generation of semantically distant verbs (i.e., responses that are 

more remotely associated with target nouns) are associated with co-activation of control regions 

and the medial prefrontal cortex, a hub of the default network (Green et al., 2015).   

Further evidence for cooperation between default and executive control regions to 

support creative processes comes from both domain-general (e.g. divergent thinking discussed 

                                                      
1
 While the executive control network within this literature largely overlaps with the fronto-parietal network (Vincent et al., 2008), throughout 

the dissertation, I will refer to the broader executive control network as being comprised of both fronto-parietal and salience networks.  
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earlier; Beaty et al., 2015; 2016) and domain specific studies of creativity. In domain-general 

forms of creativity, the creative quality of divergent thinking responses predicted increased 

functional coupling of the ventral anterior cingulate and the left angular gyrus, regions involved 

in cognitive control and self-generated thought, respectively (Beaty et al., 2015). The temporal 

pattern of connectivity between these networks, unfolding throughout the creative process, also 

appears to be an important neural substrate supporting distinct stages of creative thought. 

Coupling between default and salience networks occurs at the early generative stage of divergent 

thinking while this pattern of functional coupling shifts to default and executive control networks 

at the later evaluative stage of creativity (Beaty et al, 2015). Thus, different neural substrates 

implicated in executive control (i.e. salience network and FPN) exhibit varying patterns of 

connectivity with the default network based on the stage of creative thought.  

Within the context of domain-specific creative abilities, such as musical improvisation, 

default and control networks also show increased functional coupling (Pinho et al., 2015). 

Improvising requires executive control processes to guide internally generated ideas while 

holding task goals online, necessary to support ongoing generation of creative thought as 

improvisation proceeds (Pinho et al., 2015). Default and executive control networks, specifically 

the posterior cingulate and dorsolateral prefrontal cortex, also exhibit coupling during the 

evaluation of visual ideas (Ellamil et al., 2012). Art students were asked to sketch ideas for a 

book cover and then evaluate their ideas while undergoing fMRI scanning. Idea generation was 

associated with widespread activity of default regions, whereas idea evaluation was associated 

with both default (e.g., medial prefrontal cortex and posterior cingulate cortex) and control 

network activity (e.g., dorsolateral prefrontal cortex and anterior cingulate cortex).  

Taken together, these findings suggest that both default and executive control networks 
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are engaged and interact in the service of creative cognition. Interestingly, these neural network 

results closely align with dual component cognitive accounts of creativity involving both 

associative (mediated by default network regions) and evaluative processes (mediated by 

executive control regions). These data have significantly advanced our understanding of the 

neural network architecture associated with creative cognition. However, most of the work in 

this area has involved younger adults. Few studies have investigated how this neural substrate 

may be altered over the adult life course. The following sections of the Introduction now turn to 

a review of creativity in older adulthood and identify current research gaps that are the focus of 

the dissertation.   

Aging and Creative Cognition 

 

There is reason to suspect that both the cognitive and neural mechanisms supporting 

creativity may change from younger to older adulthood. It is now well established that aging is 

accompanied with declines in cognitive control processes (Park et al., 2001), which have been 

implicated in creative cognition in young (e.g. Addis et al., 2016). In contrast, more crystallized 

abilities including consolidated prior knowledge representations, or semantics, also implicated in 

creativity in young (e.g. Abraham & Bubic, 2015; Leon et al., 2014) are relatively preserved into 

old age (Verhaeghen, 2003; Park et al., 2001). This suggests that in typical aging, the 

architecture of cognition shifts from controlled to increasingly semanticized cognition (Spreng 

and Turner, in revision). Similarly, brain networks implicated in creative cognition also show 

normal age-related changes. Specifically, brain networks become increasingly dedifferentiated 

with reduced within-network and increased between-network connections (e.g. Chan et al., 2014; 

Geerligs et al., 2014). While there is strong evidence that both the cognitive and neural 

mechanisms implicated in creative cognition are altered with typical aging, surprisingly few 
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studies have investigated the impact of these changes on creativity in older adulthood. The 

behavioural evidence for age-related changes in creativity is briefly reviewed below.  

Early work exploring changes in creativity with age was primarily founded upon two 

cognitive models (Levy and Langer, 1999). The peak and decline model (Lindauer, 1998) argued 

that creativity is a discrete ability that follows a course of growth into early adulthood followed 

by a period of decline beginning by the fourth or fifth decade of life. Several studies have 

provided support for this line of thinking, demonstrating that creativity, as measured by 

divergent thinking tasks, does indeed show decline beginning around middle adulthood (Alpaugh 

& Birren, 1977; Guilford, 1967; Palmiero et al., 2015; Jaquish and Ripple, 1981). A second 

lifespan developmental model (Sasser-Coen, 1993) suggests that it is not creativity per se that 

declines with age, but rather that creativity declines as a consequence of changing cognitive 

abilities. Support for this idea has emerged from several recent studies where visual working 

memory (Roskos-Ewoldsen et al., 2008) and processing speed (Foos and Boone, 2008, Leon et 

al., 2014) demands on the divergent thinking tasks were adjusted to be equivalent for both age-

cohorts. This manipulation virtually eliminated age differences on the creative tasks. Evidence 

for age differences in creative cognition was also reported in an episodic study involving 

episodic induction (Madore et al., 2015). Older and younger participants were trained to mentally 

simulate past experiences, a technique which has been shown to enhance episodic memory 

performance (Madore & Schacter, 2014).  This simulation training improved generative ability 

on a divergent thinking task, demonstrating the importance of episodic memory for creative 

cognition. While the magnitude of gains was not directly tested across age cohorts, these findings 

suggest that declining episodic memory ability in older age should have a relatively larger impact 

on creative ability in older adulthood. This line of investigation raises the intriguing possibility 
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that creativity relies on different cognitive capacities, and associated neural mechanisms, in older 

versus younger adults.  

Age-related Brain Changes and Creative Cognition   

 

There is mounting evidence for age-related changes within the specific brain networks 

implicated in creative cognition (default, fronto-parietal, and salience networks). The default 

network shows decreased within-network connectivity and reduced suppression during 

externally-directed tasks (Andrews-Hanna et al., 2014; Damoiseaux, 2017 for reviews). These 

changes occur in the context of increased functional coupling of the default network with other 

functional networks including executive control networks (Grady et al., 2014).  Executive 

control networks also show decline in within-network and corresponding increases in between-

network connectivity (Geerligs et al., 2012; 2014; Madhyastha and Grabowski, 2014; Sala-

Llonch et al., 2012). Similar findings have been observed for the salience network with age-

related decreases in within-network (Onoda et al., 2012; Geerligs et al., 2014) and greater 

between-network coupling (Siman-Tov et al., 2017). 

These studies demonstrate that normal aging is associated with altered connectivity 

patterns in brain networks implicated in creative cognition (Beaty et al., 2016; 2018). While this 

generalized pattern of network dedifferentiation (i.e. increased between-network connectivity) 

has been typically associated with cognitive decline in later life, greater functional coupling 

between default and executive networks is associated with increased creativity in young adults 

(Beaty et al., 2015). This leads to the intriguing possibility that greater network coupling in older 

adulthood may support specific cognitive abilities, such as creativity, In later life. An emerging 

model of neurocognitive aging, the Default-Executive Coupling Hypothesis of Aging (DECHA, 

Turner and Spreng, 2015) provides preliminary support for this idea. We explore the DECHA in 
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more detail in the following section.   

Default-Executive Coupling Hypothesis of Aging  

 

 A recent hypothesis has attempted to reconcile two of the most widely reported findings 

in neurocognitive aging: increased recruitment of prefrontal brain regions and reduced 

suppression of the default network (Turner and Spreng, 2015). The DECHA predicts that 

reduced modulation of lateral prefrontal activity and reduced default network suppression are 

functionally coupled and this pattern of altered brain activity represents a neural network marker 

of neurocognitive aging. Support for this idea comes from studies demonstrating that for older 

versus younger adults, increased recruitment of lateral prefrontal regions co-occurs with reduced 

default network suppression as cognitive control demands increase (see Turner and Spreng, 

2015). These findings are interpreted as reflecting greater access to stored representational 

knowledge, mediated by default network regions and to support goal-directed task performance, 

mediated by executive control brain regions. Turner and Spreng (2015) hypothesize that 

successful suppression of default network regions with age, could in fact be detrimental for older 

adults when task demands are congruent with default-network function, including mnemonic 

demands to access prior knowledge and experiences.  

 As discussed above, interactivity between default and executive control networks (FPN 

and salience network) has been shown to be important for creativity in younger adults.  In older 

adults, functional networks show greater coupling during rest (Geerligs et al., 2014; Spreng, 

Stevens, Viviano & Schacter, 2016) and during task (Turner and Spreng, 2015; Spreng, Stevens, 

Viviano & Schcter, 2016); however, the DECHA argues that this coupling may be beneficial 

when default network structures can be recruited to access stored representational knowledge to 

support task performance (Spreng et al., 2018). This connectivity pattern may support older adult 
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performance on tasks when access to prior knowledge, subserved by the default network, is 

congruent with task goals. Support for this idea in the context of creative cognition is hinted at 

by the episodic simulation research wherein engaging episodic memory processes, associated 

with default network functioning, led to higher levels of creativity in older adults (Madore et al., 

2016). In this dissertation, we integrate prior research suggesting that greater coupling of default 

and executive networks is associated with creative cognition in young, and the DECHA model of 

neurocognitive aging to explore the network neuroscience of creativity in older adulthood.  

Current Dissertation 

 

 The central research objective of the dissertation is to investigate differences in both task-

driven and resting state neural networks associated with creative cognition in young and older 

adulthood. Investigations into the neural correlates of creativity in young adults show that 

functional connectivity between default and executive control systems is associated with creative 

ability (Beaty et al., 2015). Critically these networks show increased coupling with age 

(Damoiseaux, 2017) and this pattern may support performance on tasks when access to prior 

knowledge is congruent with task goals (Spreng et al., 2018). This leads to the prediction that 

greater default-executive coupling may support creative cognition in later life.  However, there 

are no published investigations of the neural network basis of creative cognition in older 

adulthood. To address this gap, the current dissertation has two primary research aims and 

hypotheses.  

The first aim is to investigate age-differences in functional brain networks implicated in 

creative thinking ability. To address this aim, older and younger adults completed a divergent 

thinking task, an assay of creative thought, while undergoing fMRI scanning. Functional 

connectivity patterns within and among three functional brain networks, implicated in creative 
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thought in young, were investigated and contrasted between young and typically-aging older 

adults. Previous evidence of age-related dedifferentiation of functional networks as well as the 

DECHA leads to two hypotheses: (i) greater default-executive control network connectivity 

during divergent thinking will be observed in older versus younger adults and (ii) this pattern of 

greater network coupling in older adults will be associated with better task performance.   

The second aim of the dissertation is to examine whether intrinsic functional connectivity 

patterns (i.e. measured at rest) within and among these target brain networks predict creative 

ability, and how these brain-behaviour associations differ between older and younger adults. 

Here, in a separate cohort of younger and older adults, patterns of intrinsic functional 

connectivity were associated with performance on an offline measure of divergent thinking 

obtained outside of the scanner. As intrinsic functional connectivity between default and 

executive control networks has been associated with creative cognition in young, the core 

hypothesis for this aim is that intrinsic coupling of default and executive regions would be more 

robustly associated with creative cognition in older versus younger adults.  

A third preliminary aim is to investigate the putative cognitive substrates of divergent 

thinking ability in younger and older adults.  Given the equivocal nature of the evidence for age-

differences in creativity, here data collected from aims one and two is leveraged to conduct a 

preliminary investigation of age-differences in the cognitive profiles of creative thought in 

younger and older adulthood. In addition to aiding with our interpretation of the findings from 

aims one and two, this preliminary aim will lay the groundwork for larger, individual difference 

investigations into the cognitive substrates of creative thought.  

Overall, the studies included in the dissertation will provide the first investigations of 

age-differences in the neural network architecture of creative cognition. While there has been 
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little consensus in the field with respect to changes in creative cognition across the adult lifespan, 

recent evidence suggests that creativity may in fact be relatively preserved in later life. A novel 

model of neurocognitive aging, the DECHA, identifies a candidate neural network mechanism 

underlying the maintenance of creative cognition into older adulthood, however this possibility 

has yet to be investigated. Given the importance of creativity to real world problem-solving and 

the maintenance of functional independence, of critical importance in later life, characterizing 

the neural basis of creative cognition may provide new insights and open novel avenues of 

inquiry into the neural and cognitive determinants of successful aging.   
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CHAPTER TWO 

Study One: Functional Brain Networks Associated with Divergent Thinking in Older and 

Younger Adults 

 

 

Introduction 

 

Creative cognition is a broadly defined ability that is presumed to require generation and 

flexible combination of concepts to form novel and useful ideas (Guilford, 1950). Divergent 

thinking is perhaps the most common operationalization of creative cognition (Guilford, 1950). 

Divergent thinking is most commonly measured by the alternate uses task, which involves 

producing novel uses for common objects such as a brick. These tasks are well established in the 

literature and have the unique advantage of having predictive ability. Past work has shown that 

creative ability as measured by divergent thinking in school aged children is predictive of 

success later in life. Children with higher divergent thinking ability continue to have more 

successful careers in arts and sciences later in life (Plucker, 1999; Torrance, 1988). Further, 

creativity performance has been positively associated with academic success as well as conflict 

resolution abilities (Furnham & Bachtiar, 2008).  

Taking into account its importance in life and predictive ability, characterization of 

creativity across the lifespan is an emerging area of research. This work has primarily focused on 

divergent thinking and has resulted in mixed findings. Early work has shown that aging is 

marked with both a reduced number of creative responses and the originality of responses 

(Alpaugh and Birren, 1977) and that this does not occur until middle adulthood (Jaquish and 

Ripple, 1984; Lee and Puckett, 2001). More recently, it has been shown that creativity is 

maintained into older adulthood and does not follow a trajectory of decline as proposed by 

earlier work (Roscos-Ewoldson, Black and McCown,2008; Palmiero, et al 2014; Addis, et al, 
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2016; Foos and Boone, 2008). It has been hypothesized that creative ability is preserved in older 

adults as consequence of preserved crystallized intelligence (Palmiero, Giacomo and Passafium, 

2014) and reported differences could be due to differences in other cognitive abilities, such as 

working memory (Roscos-Ewoldson, Black and McCown, 2008) and processing speed (Foos 

and Boone, 2008).  

Acknowledging that creative thinking abilities are important predictors of real world 

functioning, efforts to understand the neural basis of creativity have also grown in recent years. 

These investigations of creativity using both whole brain multivariate approaches (Beaty et al., 

2015) and a priori ROI based investigations (Beaty et al., 2018, Vartanian et al., 2018) have 

demonstrated that creativity is associated with interactions between key default and executive 

control regions. Here we build from these earlier findings in young to investigate changes in 

these networks between younger and older adults. 

While the vast majority of empirical work investigating the neurocognitive basis of 

creative cognition has focused on young adults, there is no work to date investigating the neural 

basis of creativity in aging. Functional neural networks and their interactions change with age 

(Damoiseaux, 2017). Overall, the most consistent evidence from cross-sectional investigations is 

that older adults show reduced functional connectivity within the default (Dennis and Thompson, 

2014) and executive control networks (Damoiseaux, 2017) as well as increased between-network 

connectivity (e.g. Geerligs et al., 2015). While the implications of these network changes for 

cognitive aging have been partially explored, few task paradigms have involved access to prior 

knowledge, where greater default-executive interactivity may be advantageous for older adults. 

Here we explore this possibility within the realm of creative cognition, where access to prior 

knowledge is known to support creative ability (Madore et al., 2016).   
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 We recently proposed a novel neural network hypothesis of cognitive aging, positing that 

greater, and less flexible, coupling of default and executive control networks is associated with 

declines in cognitive control and gains in semanticized cognition, two hallmarks of cognitive 

aging. The DECHA (Turner & Spreng, 2015) suggests that reduced modulation of the lateral 

prefrontal cortex (PFC) and attenuated suppression of default network are functionally coupled 

in aging. This shift towards greater coupling between default and executive regions may reflect 

greater reliance on crystallized cognitive abilities, or the semanticization of cognition, in the 

context of declining fluid, or cognitive control abilities (Turner & Spreng, 2015; Spreng et al., 

2018; Spreng & Turner, in revision). If default-executive coupling is associated with creative 

cognition in young, and is a hallmark of neurocognitive aging in older adulthood, this raises an 

intriguing possibility that default-executive coupling, while associated with declining cognitive 

control, can be adaptive in cognitive domains where associative abilities (e.g. creative thought) 

are congruent with task goals.  Here we explore this possibility directly.  

Given the overlap in patterns of functional connectivity between the divergent thinking 

network in young (Beaty, 2015; 2018) and DECHA in older adults (Turner & Spreng, 2015), we 

focused our analyses on examining activity and interactivity within default and executive control 

networks during creative cognition, assayed by a divergent thinking task. Based on previous 

work, we predicted that all participants, young and old, would show greater default-executive 

coupling during creative (divergent) thinking. Next, we investigated whether the strength of 

default-executive coupling differed with age. We reasoned that if this pattern of network 

coupling is associated with creativity in young adults, and is both greater and less flexible for 

older adults (Turner & Spreng, 2015), default-executive coupling would be greater for older 

adults than young adults during the divergent thinking task. Lastly, we were interested in 
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examining the association between-network coupling, as measured by graph theory metrics of 

functional network integration, during divergent thinking and performance on the in-scanner 

divergent thinking task. Based on our DECHA model, we predicted that greater levels of default-

executive coupling would be predictive of higher creative ability and, consistent with DECHA, 

this association would be stronger for older versus younger adults. If these hypotheses are 

supported, this study will provide the first evidence for altered network coupling associated with 

creative thought in older adults. Further, these findings would support the DECHA, suggesting 

that functional interactions between default and executive control regions can support goal-

directed cognitive performance when activation of prior knowledge is congruent with task goals.  

Methods 

 

Participants. 

 

The original sample consisted of 30 young adults and 30 older adults recruited at 

University of North Carolina at Greensboro (UNCG). Participants received course credit or cash 

payment for their involvement in the study. Five older adults were excluded from the final 

analysis. Three were excluded due to noncompliance with the task instructions and two others 

due to brain anomalies, resulting in a final sample of 25 older adults (13 females; mean age: 

69.56 years, age range: 63-75) and 30 young adults (19 females; mean age: 21.17 years, age 

range: 18-34). Of note, females were over represented in the final samples for both age groups, 

and slightly more so in the young adult sample.  However, previous research has failed to find 

evidence for sex effects in creativity (Reese et al., 2001), suggesting that this difference should 

not impact the interpretability or generalizability of the findings. All participants were right-

handed with normal or corrected-to-normal vision and no reported history of CNS-affecting 

drugs or neurological disease. All participants completed the Mini Mental State Exam (MMSE) 
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and had scores above 25 to be eligible for the current study. All participants provided written 

informed consent. The study was performed in accordance with the guidelines and regulations of 

UNCG’s Institutional Review Board, who approved the study methods.  

Procedure. 

 

Participants completed a divergent thinking task during fMRI scanning. This task paradigm has 

been described previously (Beaty et al., 2015; 2018) and the younger adult sample reported here 

was included in these earlier reports. An alternate uses task served as the divergent thinking 

condition (Create) and an object characteristics task (Object), provided the control condition. 

The alternate uses task required participants to generate creative uses for everyday objects (e.g., 

a brick); the object characteristics task required participants to generate typical properties of 

everyday objects. These two tasks provide an optimal contrast for isolating brain activity related 

to the creative manipulation of objects during divergent thinking while controlling for activity 

related to the mental visualization of objects (see also Fink et al., 2009; 2010). We contrasted 

these two experimental conditions in our analyses and refer to these as Create > Object. This 

contrast examines whether and how functional connectivity differs between divergent thinking 

(i.e. Create) and a control task (Object), which was closely matched on factors of non-interest 

(e.g. visualization). Participants received thorough training on both tasks and completed several 

practice trials prior to scanning.  

The task paradigm consisted of a jittered fixation cross (four to six seconds), a cue 

indicating the upcoming condition (“create” or “object”; three seconds), an idea generation 

period presenting an object in text (e.g., “umbrella”; 12 seconds), and a response period requiring 

participants to vocalize their response into an MRI-compatible microphone (five seconds); an 

experimenter logged responses for subsequent coding (Beaty et al., 2017, 2018; Benedek, Beaty 
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et al., 2014; Fink et al., 2015). Participants were encouraged to continue to think of possible 

responses until the end of the idea generation period to maintain active engagement with the 

tasks, and to vocalize their most original response in the Create condition or the most 

characteristic object feature in the Object condition (Beaty et al., 2015, 2018). A total of 46 trials 

were administered in an event-related design. For each participant, experimental stimuli were 

randomly assigned to either condition (alternate uses or object characteristics). All trials were 

included in the subsequent analysis (Beaty et al., 2015, 2018). Figure 2.1 provides a visual 

representation of the task paradigm.  

Responses provided by the participants in the response period were rated by three 

independent raters blind to participants age, using the subjective scoring method (Benedek, 

Mühlmann, Jauk, & Neubauer, 2013; Christensen, Guilford, & Wilson, 1957; Silvia et al., 2008), 

an approach grounded in the consensual assessment technique of creativity assessment (Amabile, 

1982).  This approach has been popular for several decades in the study of creative products. It 

requires independent raters who are not necessarily experts in creativity, to rate products for 

creativity. This rating is based on the rater’s tacit, personal meaning of creativity. Prior work has 

shown that raters have high consistency and agreement (Amabile, 1982; Baer, Kaufman, & 

Gentile, 2004; Kaufman, Gentile, & Baer, 2005; Kaufman, Lee, Baer, & Lee, 2007). The 

consensual assessment technique has worked in a wide range of contexts and samples, indicating 

that the subjective scores have sufficient validity (see Amabile, 1996).  

The three raters were trained to score responses for creative quality, using a 1 (not at all 

creative) to 4 (very creative) scale. Training was provided in an independent session with the 

author of this dissertation, where raters practiced rating dummy responses in a group setting. 
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Ratings for examinee responses were then provided in a subsequent group session, with the 

writer present.  

This rating score was averaged across raters to yield a single rating for each participant. 

This rating is referred to as ‘creativity rating’ in subsequent analyses and discussion.  The 

interrater reliability between the three raters across all participants was ICC = 0.52, 0.55, 0.61. 

This level of moderate inter-rater reliability is consistent with previous reports and aligns with 

the overall literature employing this scoring method (Benedek et al., 2013) 
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Figure 2.1. Visual representation of task paradigm used in study with a 4-6 second fixation cross, 

followed by condition cue (Panel A – Object; Panel B – Create). Following the condition cue, 

participants were provided with the name of the object for which they had 12 seconds to think of 

creative and novel uses (Create condition) or everyday common uses (Object condition). 

Following the idea generation period, they were asked to provide a verbal response (response 

generation period – 3 seconds) for their most creative use for the object.  
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fMRI data acquisition and connectivity pre-processing. 

 

Participants completed the tasks in a single fMRI run. Whole-brain imaging was 

performed on a 3T Siemens Magnetom MRI system (Siemens Medical Systems, Erlangen, 

Germany) using a 16-channel head coil. A structural MP-RAGE was acquired following a 

standard acquisition protocol (TR=2350 ms, TE=2.26 ms, FOV=256x256, slice thickness=1mm, 

voxel size=1mm isotropic) as reported in previous work (Beaty et al., 2015, 2018). BOLD-

sensitive T2*-weighted functional images were acquired using a single shot gradient-echo EPI 

pulse sequence (TR=2000ms, TE=30ms, flip angle=78°, 32 axial slices, 3.5×3.5×4.0mm, 

distance factor 0%, FoV=192×192mm, interleaved slice ordering) and corrected online for head 

motion. An average of 580 volumes were collected per participants and the first two volumes 

were discarded to allow for T1 equilibration effects. Head motion was restricted using firm 

padding that surrounded the head. Visual stimuli were presented using E-Prime and viewed 

through a mirror attached to the head coil. Following functional imaging, a high resolution T1 

scan was acquired for anatomic normalization. 

 Imaging data were slice-time corrected and realigned using the Statistical Parametric 

Mapping (SPM) 12 package (Wellcome Institute of Cognitive Neurology, London). 

Additionally, the ARTifact Detection Toolbox (ART) was used to identify motion outlier values 

in the fMRI time series. A global signal threshold of z = 9 and a motion displacement threshold 

of two mm was used to scrub outlying time points. A scrubbing approach has been shown to 

effectively minimize motion-related artifacts in seed-based correlation analyses (Power et al., 

2011, 2012). This was used in addition to the six motion parameters (three translational and three 

rotational) obtained during motion realignment. For each participant, principal components 

associated with segmented white matter signal and cerebrospinal fluid signal (Behzadi et al., 
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2007) were identified. These components were entered as confounds along with realignment 

parameters in a first-level analysis.  We used this approach in lieu of global signal regression, 

given previous reports of spurious correlations which may be generated by removal of the global 

signal (Murphy and Fox, 2017). 

Finally, functional volumes were co-registered and resliced to a voxel size of two mm3, 

normalized to the MNI template brain (Montreal Neurological Institute), and smoothed with an 

eight mm FWHM Gaussian kernel.  

Network functional connectivity matrices.  

 

Region of interest (ROI) nodes for the fronto-parietal, default, and salience (cingulo-

opercular) networks were pre-defined using the network parcellation scheme by Gordon and 

colleagues (2014). The parcellation was derived using resting state data and has 333 ROI’s, 

providing sufficient resolution to capture individual differences prominent in aging (Fornito et 

al., 2010), and to avoid compromising sensitivity and blurring regional boundaries when 

networks are decomposed into simpler parcellations (Power et al., 2011).Supplementary Figure 1 

in Appendix A shows the overlay between the Gordon et al (2014) parcellation and another 

prominent parcellation by Yeo and colleagues (2011).  For our purposes, we used 105 ROI’s 

corresponding with default (41 nodes) and executive control networks (40 – salience network; 24 

FPN).  

The CONN toolbox (http://www.nitrc.org/projects/conn;Whitfield-Gabrieli & Neito-

Castanon, 2012) was used to examine ROI-to-ROI functional connectivity. Mean percent signal 

change within each of the 105 ROI’s was averaged within-condition and a cross correlation 

matrix was created for each ROI. Resulting Pearson-correlation coefficients for each ROI, within 
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condition, were then converted to a z score, using Fisher’s transformation and are referred to as 

functional connectivity in analyses (detailed below in Analytic Approach).  

Analytic approach. 

 

Past investigations have shown that an interactive network of default and executive control 

regions is associated with creative cognition (e.g. Beaty et al., 2016; Ellamil et al., 2012; 

Vartanian et al., 2018). These networks are also greatly affected as a consequence of aging and 

show greater coupling with each other (Damoiseaux, 2017). Given this a priori rationale, we 

were specifically interested in isolating functional connectivity within default-executive regions 

that are associated with creative cognition using an in-scanner divergent thinking task. To do so, 

we examined functional connectivity among ROI’s falling within default and executive networks 

(fronto-parietal and salience networks). We next examined age interactions in the pattern of 

observed network connectivity for all participants. Finally, we examined associations between-

network coupling during divergent thinking and objective ratings of creativity during the 

divergent thinking task.    

Functional connectivity during divergent thinking task performance.  

First, we looked at functional connectivity between our apriori nodes within each group, for the 

Create > Object contrast. Statistically, we looked at the simple main effect of condition, using a 

weighted general linear model, with individual participant functional connectivity maps, defined 

by bivariate correlations (as per functional connectivity matrices) for all specified ROI’s for 

Create > Object. Functional connectivity between all possible ROI pairs was tested using 

individual level t-tests, between each seed and target ROI pair, for this contrast. All results 

reported are corrected for multiple comparisons using an alpha level of 0.05, at the seed level. 
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Using this statistical approach, we report group level ROI-to-ROI connectivity findings for 

young and older adults for Create > Object.  

Age differences in functional connectivity during divergent thinking.   

Next, to examine age related differences in creative thought, we conducted between group 

analyses. Statistically, we used a second level general linear weighted model with group as a 

between-subject variable and examined group differences via a contrast in functional 

connectivity between the two conditions, Create > Object. To control for differences in gray 

matter volume due to age-related atrophy, we included individual gray matter volume as a 

regressor.  Between group comparisons looking at differences in ROI-to-ROI functional 

connectivity was tested using a t-test between each seed ROI-to-ROI pair. All results reported 

are corrected for multiple comparisons using an alpha level of 0.05 at the seed level. Positive 

findings reflect greater ROI-to-ROI connectivity for the Create condition in older adults (OLD 

[Create > Object] > YOUNG [Create > Object]). Negative results reflect greater ROI-to-ROI 

connectivity for the Create condition in young adults (YOUNG [Create > Object] > OLD [Create 

> Object]). 

   Age differences in associations between functional connectivity and creative ability. 

We explored whether measures of connectivity among nodes of the default, fronto-parietal and 

salience networks predicted individual differences in creative ability as measured by divergent 

thinking task performance. Previous work has shown that functional networks become 

increasingly integrated as a function of age (Damoiseaux, 2017), which can be reflected in 

coupling between-networks. Given our apriori hypothesis that default-executive coupling is 

associated with creative cognition, we used graph theory measures of functional integration to 

examine this relationship. Functional integration in the brain is the ability to combine 
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information from distributed brain regions and is measured by global efficiency and path length. 

Global efficiency reflects effective information transfer within a network of nodes (i.e., ROIs) 

and edges (i.e., correlations or “paths” between nodes). It is mathematically expressed as the 

inverse of the average shortest path length in a graph G to all other nodes in the graph. For our 

purposes, global efficiency provided a marker of information flow across the three networks of 

interest and has previously been shown to be correlated with creative ability in young adults 

(Beaty et al., 2015). To investigate whether brain network organization predicts creative ability, 

we examined the relationship between global efficiency and the independent ratings of responses 

generated during the Create condition. Given the categorical nature of the creative ratings, we 

used Spearman rank correlations.  Global efficiency values were extracted for the 105 default, 

FPN and salience network nodes based on the Create > Object subject level contrast, using the 

CONN toolbox. Spearman rank order correlations were conducted for young and older adults to 

examine the relationship between global efficiency and creative ratings, then compared the 

correlations between groups.  

Results 

Behavioural Results 

 

Neurocognitive. 

 

To assess fluid intelligence, we used the series completion task from Cattell's Culture Fair 

Intelligence Test (Cattell & Cattell, 1961/2008). To assess crystallized intelligence, we 

administered two tests of vocabulary knowledge from the Educational Testing Services Kit of 

Factor-Referenced Cognitive Tasks: The Advanced Vocabulary Test II” (Note that these data 

were not available for three young and two older participants). Consistent with previous reports 

in typical aging cohorts (e.g. Park et al., 2001; Verhaeghen et al., 2002; Verhaeghen, 2003), 



 31 

older adults performed lower than young on fluid intelligence [M(young)=8.07, SD=1.41, 

M(old)=5.74, SD=1.14, t (48)=6.38, p <.001] and higher on crystalized intelligence [Advanced 

Vocab: M(young)=9.67, SD=2.50; M(old)=13.17, SD=2.66, t (48)= -4.81, p<.001; Extended 

Vocab: M(young)=13.11, SD=2.71; M(old)=17.48, SD=3.50, t (48)= -4.97, p <.001] 

Divergent Thinking.  

 

Three independent raters provided creativity ratings for each response generated by all 

participants during trials for the Create condition. There was no significant difference in 

creativity ratings for responses generated by older adults during the Create condition (M =2.9, 

SD = 0.18) and young adults (M =3.08, SD = 0.20), t (40) = 1.16, p = 0.25.   

Functional Connectivity during Divergent Thinking Task Performance 

 

Young Adults. 

 

Here, we looked at the simple main effect of group and associated ROI-to-ROI 

connectivity using a Create>Object contrast for young adults. During the Create condition, 

young adults showed greater positive functional connectivity between (1) the right cingulate 

gyrus (salience network) and the right middle frontal gyrus (FPN); (2) right superior frontal 

gyrus (default network) and the left anterior insula (salience network). In contrast, during the 

Object condition, young adults showed greater positive functional connectivity between nodes of 

the salience network, specifically between the left postcentral gyrus and, right cingulate gyrus 

and right supramarginal gyrus. These findings are visually depicted in Figure 2.2 and detailed in 

Table 2.1. 
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Figure 2.2. ROI-to-ROI results for a Create > Object contrast for young adults. Colour coded 

nodes include regions from the default network (DN), fronto-parietal network (FPN), and 

salience network (SN).  The colour of the edges (connections between nodes) indicates the 

direction of the contrast. Red edges indicate ROI-to-ROI connectivity between nodes during the 

Create condition while blue edges indicate ROI-to-ROI connectivity during the Object condition 

in young adults. These results correspond to findings detailed in Table 2.1.  
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Table 2.1 

 

ROI-to-ROI connectivity findings using Gordon et al., (2014) nodes for the default network (DN), 

salience network (SN) and fronto-parietal network (FPN) for young adults with a Create>Object 

Contrast, corresponding to results in Figure 2.2. Each row denotes significant connections 

between-network node and other network nodes and their network affiliation as defined by 

Gordon and colleagues (2014).  

 

    
Netwo

rk 
Hem Node 

  

T  p  

 

MNI Coordinates Beta 

X Y Z  

Create                    

Between-network Connectivity 

SN-FPN 

Cingulate Gyrus SN R 185 8.6 4.2 40.1 
 

   

  

MFG FPN R 182 7 25.7 47.3 6.21 0.001 0.19 

DN-SN           

SFG DN R 165 11.9 21.9 59.9     

 Anterior Insula SN L 82 -37.3 8.9 -0.9 5.99 0.002 0.18 

Object                    

Within-Network Connectivity 

SN-SN 

Postcentral Gyrus SN L 105 -58.8 -23.9 31     

  
Cingulate Gyrus SN R 185 8.6 4.2 40.1 -5.82 0.003 0.16 

 Supramarginal 

Gyrus 
SN R 223 54.9 -27 29.6 -5.76 0.003 0.17 

Note: DN – Default Network; FPN – Fronto-parietal network; Hem – Hemisphere; L – Left; MFG – Middle Frontal 

Gyrus; MNI – Montreal Neurological Institute; R – Right; SFG – Superior Frontal Gyrus; SN – Salience Network.   
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Older Adults.  

 

Here, we looked at the simple main effect of group and associated ROI-to-ROI 

connectivity using a Create>Object contrast for older adults.  

During the Create condition, older adults had significant positive functional connectivity 

both within-network and between-network. Specifically, there was significant positive functional 

connectivity between nodes of the default network including between (1) left medial superior 

PFC and right ventromedial prefrontal cortex (vmPFC) and, (2) left middle temporal gyrus and 

left vmPFC.  

Older adults also had significant positive functional connectivity between-networks 

which corresponded to between default and executive coupling (default network and FPN, 

default network and salience network), as well as coupling between executive subnetworks (FPN 

and salience network). The default network and FPN were connected via the following 

significant positive connections: (1) right vmPFC and, left intraparietal sulcus and right inferior 

frontal gyrus; (2) right middle temporal gyrus and left middle frontal gyrus. The default and 

salience networks were connected via the following significant positive connections: (1) right 

superior temporal gyrus and, left precentral gyrus, left superior insula, left anterior insula (2) left 

post central gyrus and, left middle temporal gyrus and left angular gyrus and (3) left angular 

gyrus and left posterior insula.  

During the Object condition, older adults had significant positive functional connectivity 

between-networks. Specifically, this was noted between the (1) default network and salience 

network and, between (2) FPN and salience network. The default and salience networks were 

connected by positive functional connectivity between the right medial superior frontal gyrus and 
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left postcentral gyrus. The FPN and salience network were connected by positive functional 

connectivity between the right superior frontal gyrus and left precentral gyrus. These findings are 

visually displayed in Figure 2.3 and detailed in Table 2.2. 
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Figure 2.3. ROI-to-ROI results for a Create > Object contrast for older adults. Colour coded 

nodes include regions from the default network (DN), fronto-parietal network (FPN) and 

salience network (SN).  The colours of the edges (connections between nodes) indicate the 

direction of the contrast. Red edges indicate ROI-to-ROI connectivity between nodes during the 

Create condition while blue edges indicate ROI-to-ROI connectivity during the Object condition 

in young adults. These results correspond to findings detailed in Table 2.2. 
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Table 2.2 

 

ROI-to-ROI connectivity findings using Gordon et al., (2014) nodes for the default network (DN), 

salience network (SN) and fronto-parietal network (FPN) for older adults with a Create>Object 

Contrast, corresponding to results in Figure 2.3. Each row denotes significant connections between-

network node and other network nodes and their network affiliation as defined by Gordon and 

colleagues (2014).  

 

    Network Hem Node 

  

T  p  

 

MNI Coordinates Beta 

X Y Z  

 

Create 
                  

 

Within-Network Connectivity 

 

DN-DN 

AG DN L 6 -47.2 -58 30.8     

 
vmPFC DN R 184 7.7 44.1 5.5 3.88 0.03 0.18 

MTG  DN L 126 -63.2 -28.7 -7.2    

 
vmPFC DN L 152 -6 44.9 6.3 3.82 0.04 0.16 

Between-network Connectivity 

DN-FPN 

vmPFC  DN R 184 7.7 44.1 5.5    

 IPS FPN L 96 -34.1 61 42.4 3.66 0.005 0.18 

 IFG FPN R 168 38.1 45.9 7.7 4.46 0.008 0.18 

           

MTG  DN R 290 57.5 -7.4 -16.4    

 MFG FPN L 108 -43 19.4 33.5 4.56 0.013 0.16 

           

DN-SN           

STG  DN R 225 62.5 -25.6 -5.5    

 
Precentral 

Gyrus 
SN L 112 -48.6 7.5 11.1 4.21 0.03 0.13 

 
Superior 

Insula 
SN L 76 -37.7 2.9 11.7 3.87 0.03 0.11 

 
Precentral 

Gyrus 
SN L 111 -51.8 -0.6 5 3.53 0.03 0.13 
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Anterior 

Insula 
SN L 81 -36.6 1.4 6.4 3.33 0.03 0.13 

Medial 

SFG 
 

DN L 114 -27.5 53.6 0    

 
Posterior 

Insula 
SN L 71 -38.7 -16 -5.3 5.17 0.003 0.19 

Postcent

ral 

Gyrus 
 

SN L 105 -58.8 -23.9 31    

 
MTG DN L 126 -63.2 -28.7 -7.2 2.88 0.03 0.16 

 
AG DN L 6 -47.2 -58 30.8 3.88 0.03 0.16 

 

Object           

Between-network Connectivity 

DN-SN 

 

Medial 

SFG 

 DN R 165 11.9 21.9 59.9    

 Postcentral 

Gyrus 
SN L 105 -58.8 -23.9 31 -4.37 0.02 0.16 

FPN-SN 

SFG  FPN R 277 28.4 57 -5.1    

 
Precentral 

Gyrus 
SN L 40 -42.1 -4.5 47.3 -3.76 0.03 0.16 

Note: AG – Angular Gyrus; DN – Default Network; FPN – Fronto-parietal network; Hem – Hemisphere; IFG – Inferior 

Frontal Gyrus; IPS – Intra Parietal Sulcus; MFG – Middle Frontal Gyrus; L – Left; MNI – Montreal Neurological Institute; 

MTG – Middle Temporal Gyrus; R – Right; SFG – Superior Frontal Gyrus; STG – Superior Temporal Gyrus; SN – 

Salience Network; vmPFC – Ventromedial Prefrontal Cortex 
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All participants. 

 

For all participants, young and old, during the Create condition, nodes of the salience and default 

networks were functionally connected. Specifically, this was observed between (1) the left 

posterior insula and frontal pole and (2) the left medial prefrontal cortex and posterior cingulate 

cortex. In contrast, connectivity associated with the Object condition was limited to two nodes of 

the salience network: left postcentral gyrus and right cingulate gyrus. These findings are detailed 

in Figure 2.4 and Table 2.3, where results are organized by within-network and between-network 

interactions.  
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Figure 2.4.  ROI-to-ROI results for a Create > Object contrast for all participants. Colour coded 

nodes include regions from the default network (DN), fronto-parietal network (FPN) and 

salience network (SN).  The colour of the edges (connections between nodes) indicate the 

direction of the contrast. Red edges indicate ROI-to-ROI connectivity between nodes during the 

Create condition while blue edges indicate ROI-to-ROI connectivity during the Object condition 

in all participants. These results correspond to findings detailed in Table 2.3. 
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Table 2.3 

 

ROI-to-ROI connectivity findings using Gordon et al., (2014) nodes for the default network (DN), 

salience network (SN) and fronto-parietal network (FPN) for all participants with a 

Create>Object Contrast, corresponding to results in Figure 2.4. Each row denotes significant 

connections between-network node and other network nodes and their network affiliation. 

 

 

    Network Hem Node 

  

T  p  MNI Coordinates 

X Y Z 

Create 

Within Network Connectivity 

DN-DN 

PCC DN L 1 -11.2 -52.4 36.5    

  dmPFC DN L 25 -5.6 42.2 35.1 4.49 0.034 

          

DN-SN          

Frontal 

Pole 
 DN L 114 -27.5 53.6 0 4.83 0.034 

                 Insula SN L 71 -38.7 -16 -5.3 
   

Object 

Within Network Connectivity 

SN-SN 

Postcentral Gyrus SN L 105 -58.8 -23.9 31    

  Cingulate 

Gyrus 
SN R 185 8.6 4.2 40.1 -4.77 0.034 

Note: dmPFC – dorsomedial Prefrontal Cortex; DN – Default Network; FPN – Fronto-parietal network; Hem – 

Hemisphere; L – Left; MNI – Montreal Neurological Institute; PCC – Posterior Cingulate Cortex; R - Right; SN – 

Salience Network.   
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Age Differences in Functional Connectivity during Divergent Thinking  

  

A within-subject condition-based contrast (Create > Object) was used at the first level to 

generate within-subject ROI-to-ROI functional connectivity maps. At the first level, no negative 

ROI-to-ROI connectivity values survived a threshold of p = 0.05, FDR corrected at the seed level 

(see Table 2.1 and Table 2.2). Hence, between-group differences in connectivity evaluated at the 

second level, reflect positive connectivity between nodes for young and older adults respectively.  

At the second level, a between-subject contrast was conducted to examine group differences in 

ROI-to-ROI functional connectivity that corresponded with Create > Object. We also controlled 

for any differences in gray matter volume by including it as a regressor. Hence, positive findings 

reflect greater ROI-to-ROI connectivity for the Create condition in older adults. On the other 

hand, negative results reflect greater ROI-to-ROI connectivity for the Create condition, in young 

adults.  

Young adults showed greater positive connectivity during divergent thinking, compared 

to older adults, between default and salience network nodes (Figure 2.5A). Specifically, this was 

noted between left post central gyrus (salience network) and right superior frontal gyrus (default 

network).  

Older adults showed greater positive functional connectivity during divergent thinking 

both within and between-networks (warm colours, Figure 2.5.A).  

Within-network positive functional connectivity within the salience network was 

observed between (1) left post central gyrus and, left supramarginal gyrus, left anterior insula, 

left rolandic operculum, left precentral gyrus, right middle anterior cingulate cortex and right 

post central gyrus. Within-network positive functional connectivity within the default network 

was observed between left middle temporal gyrus and left vmPFC.  
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Older adults also showed greater between-network functional connectivity. First, older 

adults had greater between-network coupling between default and both executive control 

networks; FPN and SN. Specifically, the left angular gyrus had significant positive functional 

connectivity with the right inferior frontal gyrus and left post central gyrus.  There was additional 

between-network positive functional connectivity between key nodes of the default and salience 

network specifically, between (1) between left precentral gyrus and right vmPFC; (2) left post 

central gyrus and, bilateral posterior cingulate cortex, left angular gyrus and left middle temporal 

gyrus and (3) left inferior temporal gyrus and, right anterior insula and left post central gyrus. 

These findings are visually depicted in Figure 2.5 and also detailed in Table 2.4, where results 

are organized by within-network and between-network interactions. 
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Figure 2.5. (Panel A) Age by Condition Interaction of ROI-to-ROI connectivity between nodes 

from the default network (DN), fronto-parietal network (FPN) and salience network (SN). Nodes 

are colour coded by network affiliation. A within-subject condition contrast was conducted at the 

first level using a Create > Object contrast. Next, a between-groups analysis was conducted to 

look at ROI-to-ROI functional connectivity differences between young and older adults. Red 

edges indicate ROI-to-ROI connectivity between nodes for Create > Object contrast in older 

adults. Blue edges indicate ROI-to-ROI connectivity between nodes during the Create > Object 

contrast in young adults.  (Panel B) Scatter plots depicting the correlation between creativity 

ratings and global efficiency of the divergent thinking network in young and older adults. 
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Table 2.4 

 

ROI-to-ROI connectivity findings using Gordon et al., (2014) nodes for the default network 

(DN), salience network (SN) and fronto-parietal network (FPN), corresponding to results shown 

in Figure 2.5. ROI-to-ROI functional connectivity maps were first contrasted at the within-

subject level using a Create>Object contrast. Next, between-subject analyses were conducted 

using an Old > Young contrast. Positive findings correspond to significant ROI-to-ROI 

connectivity for older adults for the Create > Object contrast, while negative findings 

correspond to significant ROI-to-ROI Connectivity for young adults during the Create > Object 

contrast.  Each row denotes significant connections between-network node and other network 

nodes and their network affiliation.  

 

 

  Network Hem Node MNI Coordinates 

 

T  p 

X Y Z 

 

Young Adults 

        

Between-network Connectivity 

SN-DN 

       

 

Postcentral Gyrus 

 

SN 

 

L 

 

105 

 

-58.8 

 

-23.9 

 

31 

  

 SFG DN R 165 11.9 21.9 59.9 -2.74 0.04 

Older Adults         

Within-Network Connectivity        

SN-SN          

Postcentral Gyrus SN L 105 -58.8 -23.9 31   

          

 SMG SN L 63 -57.7 -40.6 35.8 2.89 0.04 

 Anterior Insula 

 

SN L 82 -37.3 8.9 -0.9 2.99 0.04 

 Anterior Insula 

 

SN L 84 -28.8 23.7 8.4 3.31 0.03 

 Rolandic 

Operculum 

SN L 101 -59.8 -4.1 8.8 2.85 0.04 

 Precentral 

Gyrus 

SN L 111 -51.8 -0.6 5 3.72 0.017 

 mACC SN R 185 8.6 4.2 40.1 3.45 0.03 
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 Postcentral 

Gyrus 

SN R 223 54.9 -27 29.6 2.78 0.04 

 Postcentral 

Gyrus 

SN R 274 50.1 3 3.9 2.82 0.04 

          
 

Postcentral Gyrus 

 

SN 

 

L 

 

223 

 

54.9 

 

-27 

 

29.6 

  

          

  

Rolandic 

Operculum 

 

 

SN 

 

L 

 

101 

 

-59.8 

 

-4.1 

 

8.8 

 

4.15 

 

0.013 

 Postcentral 

Gyrus 

SN L 103 -55.1 -32.3 23 3.51 0.04 

 

DN-DN 

         

 

MTG 

 

DN 

 

L 

 

126 

 

-63.2 

 

-28.7 

 

-7.2 

  

  

vmPFC 

 

DN 

 

L 

 

152 

 

-6 

 

44.9 

 

6.3 

 

3.51 

 

0.04 

          

 

Older Adults 

Between-network Connectivity 

       

DN-FPN-SN          

 

AG 

 

DN 

 

L 

 

6 

 

-47.2 

 

-58 

 

30.8 

  

 IFG FPN R 240 42.8 48.3 -5.1 3.52 0.04 

 Postcentral 

Gyrus 

SN L 105 -58.8 -23.9 31 4.26 0.004 

 

SN-DN 

         

 

Precentral Gyrus 

 

SN 

 

R 

 

198 

 

42.5 

 

-2.3 

 

47.2 

  

 vmPFC DN R 184 7.7 44.1 5.5 3.66 0.04 

 

Postcentral Gyrus 

 

SN 

 

L 

 

105 

 

-58.8 

 

-23.9 

 

31 

  

 PCC DN L 1 -11.2 -52.4 36.5 3.61 0.04 

 PCC DN L 26 -1.7 -17.7 39.1 2.78 0.04 
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 AG DN L 94 -39.3 -73.9 38.3 2.84 0.04 

 MTG DN L 126 -63.2 -28.7 -7.2 4.36 0.004 

 PCC DN R 162 12.3 -51.6 34.5 2.94 0.04 

          

ITG DN L 127 -53.1 -11.4 -16   

 Anterior 

Insula 

SN R 246 36.5 5.7 6 2.97 0.04 

 Postcentral 

Gyrus 

SN L 105 -58.8 -23.9 31 2.77 0.04 

 

Young Adults 

        

Between-network Connectivity 

SN-DN 

       

 

Postcentral Gyrus 

 

SN 

 

L 

 

105 

 

-58.8 

 

-23.9 

 

31 

  

 SFG DN R 165 11.9 21.9 59.9 -2.74 0.04 

          

Older Adults         

Within-Network Connectivity        

SN-SN          

         

          

 SMG SN L 63 -57.7 -40.6 35.8 2.89 0.04 

 Anterior Insula 

 

SN L 82 -37.3 8.9 -0.9 2.99 0.04 

 Anterior Insula 

 

SN L 84 -28.8 23.7 8.4 3.31 0.03 

 Rolandic 

Operculum 

SN L 101 -59.8 -4.1 8.8 2.85 0.04 

 Precentral 

Gyrus 

SN L 111 -51.8 -0.6 5 3.72 0.017 

 mACC SN R 185 8.6 4.2 40.1 3.45 0.03 

 Postcentral 

Gyrus 

SN R 223 54.9 -27 29.6 2.78 0.04 

 Postcentral 

Gyrus 

SN R 274 50.1 3 3.9 2.82 0.04 
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Postcentral Gyrus SN      L   223   54.9   -27 29.6   

  

Rolandic 

Operculum 

 

 

SN 

 

L 

 

101 

 

-59.8 

 

-4.1 

 

8.8 

 

4.15 

 

0.013 

 Postcentral 

Gyrus 

SN L 103 -55.1 -32.3 23 3.51 0.04 

 

DN-DN 

         

 

MTG 

 

DN 

 

L 

 

126 

 

-63.2 

 

-28.7 

 

-7.2 

  

  

vmPFC 

 

DN 

 

L 

 

152 

 

-6 

 

44.9 

 

6.3 

 

3.51 

 

0.04 

          

 

Older Adults 

Between-network Connectivity 

       

DN-FPN          

 

AG 

 

DN 

 

L 

 

6 

 

-47.2 

 

-58 

 

30.8 

  

 IFG FPN R 240 42.8 48.3 -5.1 3.52 0.04 

 

SN-DN 

         

 

Precentral Gyrus 

 

SN 

 

R 

 

198 

 

42.5 

 

-2.3 

 

47.2 

  

 vmPFC DN R 184 7.7 44.1 5.5 3.66 0.04 

 

Postcentral Gyrus 

 

SN 

 

L 

 

105 

 

-58.8 

 

-23.9 

 

31 

  

 PCC DN L 1 -11.2 -52.4 36.5 3.61 0.04 

 AG DN L 6 -47.2 -58 30.8 4.26 0.004 

 PCC DN L 26 -1.7 -17.7 39.1 2.78 0.04 

 AG DN L 94 -39.3 -73.9 38.3 2.84 0.04 

 MTG DN L 126 -63.2 -28.7 -7.2 4.36 0.004 

 PCC DN R 162 12.3 -51.6 34.5 2.94 0.04 
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ITG DN L 127 -53.1 -11.4 -16   

 Anterior 

Insula 

SN R 246 36.5 5.7 6 2.97 0.04 

 Postcentral 

Gyrus 

SN L 105 -58.8 -23.9 31 2.77 0.04 

Note: AG – Angular Gyrus; dmPFC – dorsomedial Prefrontal Cortex; DN – Default Network; FPN – Fronto-parietal 

network; Hem – Hemisphere; IFG – Inferior Frontal Gyrus; ITG – Inferior Temporal Gyrus; mACC – middle Anterior 

Cingulate Cortex; MNI – Montreal Neurological Institute; MTG – Middle Temporal Gyrus; PCC – Posterior 

Cingulate Cortex; PFC - Prefrontal Cortex; SFG – Superior Frontal Gyrus; SMG – Supramarginal Gyrus; SN – 

Salience Network; vmPFC – ventromedial Prefrontal Cortex.  
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Age Differences in Associations Between Functional Connectivity and Creative Ability  

 

 Lastly, we were interested in graph theoretical metrics of the default-executive regions 

that demonstrated greater ROI-to-ROI functional connectivity for older and young adults, during 

divergent thinking. Spearman rank-order correlations were used to determine the relationship 

between-network global efficiency observed during the individual level Create>Object contrast 

and creativity ratings for ideas generated during the Create condition.   

Consistent with predictions, for older adults, global efficiency values for this network were 

positively correlated with creativity ratings (rs (23) = .46, p = .02, 95% CI: 0.06 – 0.77) (Figure. 

2.5B). This correlation was not significant in young adults (rs (24) = -.13, p = .54, 95% CI: -0.54 

– 0.28) (Figure. 2.5B). The correlation between global efficiency and creativity ratings in older 

adults was significantly greater than that observed in young adults (z = 2.11, p = 0.03). 

Discussion 

 

 The present study determined functional connectivity interactions of the default and 

executive networks associated with divergent thinking in young and older adults. We first 

demonstrated that both young and older adults show task-driven coupling between regions of the 

default and executive control networks during creative cognition, consistent with recent work 

implicating components of these networks in divergent thinking (Chen et al., 2017; Gonen-

Yaacovi et al., 2013; Wu et al., 2015; Vartanian et al., 2014; Beaty et al., 2015, 2018). Next, we 

demonstrated that although both age groups performed similarly on the task, network 

interactions differed for young and old adults during the Create task condition. Specifically, 

older adults showed greater positive connectivity, when compared to young adults, between 

default and executive control networks, consistent with predictions.  Finally, we reported that the 

global efficiency of these networks, a measure of network integration, was positively correlated 
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with independent creativity ratings on the divergent thinking task for older adults, and was 

significantly different than young adults. Taken together, these findings suggest that positive 

coupling between default and executive networks, associated with divergent thinking ability in 

young (e.g. Vartanian et al., 2018; Pinho et al., 2015; Elamil et al., 2012; Green et al., 2015), is 

enhanced in older adults, and more efficient crosstalk between these networks may serve as a 

putative neural marker of creative cognition in later life.    

We observed positive functional connectivity between default and executive regions 

during divergent thinking in older adults, when compared to young adults. Divergent thinking-

related nodes consisted of default network regions (vmPFC, posterior cingulate cortex, angular 

gyrus, middle temporal gyrus) and executive control regions (inferior frontal gyrus, precentral 

gyrus, postcentral gyrus, and inferior temporal gyrus). We also observed positive functional 

connectivity between key nodes of the salience network (e.g. precentral gyrus and anterior 

insula). Our findings extend previous work conducted with younger adults using both resting 

state (Vartanian et al., 2018; Beaty et al., 2014) and task based studies of creativity (Beaty et al., 

2015; 2018) showing greater connectivity between core default regions (precuneus, posterior 

cingulate cortex), FPN regions (inferior frontal gyri) and salience network (insula). 

Models of creative cognition propose a two-stage creative process that includes both 

generative and evaluative components. Creativity begins with crudely formed ideas and 

associations (the generation stage), followed by the exploration of ideas through evaluation and 

testing (the evaluation stage) (Basadur et al.,1982; Finke et al., 1992). Brain based models of 

creativity propose that the default network is critical for generation of candidate ideas retrieved 

from long term memory. Executive control networks, including the salience and fronto-parietal 

networks, are subsequently engaged to evaluate these ideas in the latter stages of creative 
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cognition (Beaty et al., 2016). Our findings are consistent with this model, and implicate two 

candidate control processes in creative cognition in older adulthood. First, the pattern of 

increased functional connectivity between default network brain regions and the right inferior 

frontal gyrus, implicated in inhibitory processing (Rae et al., 2014), suggest that greater 

inhibitory control may be required at the generative stage to enable older adults to escape the 

constraints of overlearned associations to set the stage for their reconfiguration in the latter 

evaluation stage, as has been shown in young (Beaty et al., 2014; Vartanian et al., 2018).  

Second, default network coupling with left lateralized nodes, including middle temporal 

gyrus as well salience network regions, implicated in semantic control processing (Jefferies, 

2013; Noonan et al., 2011), suggests that greater semantic control is necessary to retrieve weak 

semantic associations (Kreiger-Redwood et al., 2016) and ultimately evaluate and reconfigure 

these as necessary in the service of creative cognition. Further, the semantic control network is 

spatially adjacent to both default and executive systems (Davey et al., 2016; Jackson et al., 2016; 

Ralph et al., 2017) and is thus well positioned to engage control processes necessary to retrieve 

and reshape semanticized knowledge. Taken together our findings strongly support the default-

executive coupling hypothesis as a candidate neural mechanism necessary to both suppress 

overlearned, and enhance weaker, semantic associations to support the emergence of creative 

thought. However, it is important to note that previous findings in young, derived from both 

whole-brain and ROI-based approaches (e.g. Beaty et al., 2015), as well as our neural network 

model, led us to propose strong a priori hypotheses associated with default-executive 

interactivity. While these hypotheses were supported by our findings, we cannot rule out 

contributions of other network interactivity patterns to the maintenance of creative abilities in 

older adulthood. 
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As proposed by the DECHA, older adults rely to a greater extent on stored 

representational knowledge structures mediated by the default network. In the DECHA 

framework, stored representations assume an increasingly central role in goal-directed cognition 

(Turner and Spreng, 2015). Previous work has shown that the strength of default-executive 

coupling at rest in older adults predicted more semanticized autobiographical recall in older 

adults (Spreng et al., 2018), suggestive of less reliance on controlled recollective processes and 

greater engagement of semantic representations. While a broader, individual difference analysis 

of neurocognitive contributions to creativity is beyond the scope of the study, it is worth noting 

that this interpretation is consistent with our finding that older adults had lower fluid, and higher 

crystalized intelligence than their younger counterparts. In the context of creative thought in 

older adults, default network engagement may facilitate enhanced retrieval of prior knowledge 

representations to support divergent thinking in the context of declining cognitive control 

abilities in later life. Beaty and colleagues (2016) propose that creative thought involves similar 

cognitive and neural mechanisms as goal-directed tasks and that interplay between the default 

network and executive control regions subserve the sub-components of goal-directed cognition. 

Specifically, the default network may be important for the generation of creative ideas, 

leveraging prior knowledge or when decisions are required to be made based on information 

represented in memory (Konishi et al. 2015; Murphy et al., 2018). Executive regions, in turn, are 

necessary to constrain or shape these ideas via top-down monitoring to align with the goals of the 

task. This may also require top-down exertion of semantic control to allow the reshaping of 

knowledge from memory to fit the current task goals (Jeffries, 2013; Lambon-Ralph et al., 2016).  

 Overall, our results suggest that older adults are able to benefit from the consequences of 

a shifting neural architecture in the context of creative thinking. Past work has reliably 
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demonstrated that large scale functional networks become decreasingly segregated and “merge” 

over time (Chan et al., 2014). This network dedifferentiation, involving more positive 

connectivity between default and executive regions has been reported during goal-directed tasks 

(Rieck et al., 2017; Sambataro et al., 2010; Spreng & Schacter, 2012; Turner & Spreng, 2015) 

and at rest (Ng et al., 2016). The DECHA proposes that this changing neural architecture reflects 

greater reliance on internally stored representations and knowledge, acquired by virtue of a 

longer life, as compared to young adults. In our study, we demonstrate that cognitively healthy 

older adults are able to leverage their knowledge base to support divergent thinking and generate 

creative responses at a level equivalent to that of younger adults. This may be a domain specific 

exemplar of the semanticization of cognition in older adulthood, and specifically, how accessing 

prior knowledge representations can support cognitive performance on tasks where these 

representations are consistent with task goals (Spreng et al., 2018).  

Conclusions 

 

 These findings suggest that functional coupling of default and executive control regions 

support creative cognition in older adulthood. Despite equivalent behavioural performance with 

young adults, functional coupling between default and executive control regions was associated 

with creative cognition in older adults. We also show that the overall level of functional 

integration between the default and executive networks, as measured by global efficiency, was 

significantly related to creative ability, when compared to young adults. This indicates that older 

adults are engaging in greater default-executive coupling which is positively associated with 

creative cognition. This pattern of functional coupling suggests that prior knowledge, accessed 

through default network regions, may contribute more to creativity in older versus younger 

adults.  Given the paucity of investigations characterizing the neural basis of creative ability in 
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later stages of life, future research will be necessary to replicate and extend these findings to 

elucidate the neural substrates of creativity in aging. Creative pursuits are implicated in 

numerous facets of successful aging including physiological, social, spiritual, and cognitive 

functioning (Duhamel, 2016). Given the importance of creativity to preserved independence and 

a sense of agency and purpose in later life, better understanding as to how brain changes promote 

or impede creative thought will be an important avenue for future research. In this context, work 

to generate a brain-based account of creative ability would serve to advance the development of 

interventions to foster creative cognition, towards the goal of sustaining functional capacity and 

independence in older adulthood. 

 While speculative, the finding that default-executive coupling is associated with 

creativity in older adulthood may hold translational potential as an avenue for future intervention 

research. Functional neuroimaging is increasingly used to inform neurorehabilitation research, 

with evidence from several sources suggesting that neural biomarkers can inform the design of 

more effective training programs (Adnan et al., 2017; Chen et al., 2011; Gallen et al., 2016). 

Training in creative thought presents a novel approach to shape default-executive coupling, 

which may in turn be leveraged to support cognitive function when prior knowledge is congruent 

with task goals. Although translational implications are outside the scope of the current 

investigation, we suggest that future research investigating the neural basis of creative thought in 

later life offers an exciting opportunity to explore the cognitive benefits associated with the 

changing architecture of cognition and brain function in older adulthood (Spreng & Turner, in 

revision). 
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CHAPTER THREE   

Study Two - Intrinsic Default – Executive Coupling of the Creative Aging Brain 

 

Introduction 

 

Creativity is commonly defined as the ability to produce something novel and useful 

(Stein, 1953). Creativity is critical for social and economic development, but also for almost all 

areas of daily living (Duhamel, 2016). Creativity has been measured using divergent thinking 

measures, since it was operationalized as a construct by Guilford (1950). Creativity is a predictor 

of academic and career success (Plucker,1999; Torrance, 1988) and is positively associated with 

problem solving abilities (Furnham and Bachtiar, 2008). Positive associations between creativity 

and functional independence have been observed in older adulthood (Duhamel et al., 2016). 

Early work examining divergent thinking, a common measure of creativity, in older adulthood 

suggested a progressive decline in creative cognition commencing in middle age (Alpaugh and 

Birren, 1977; Jaquish and Ripple, 1984; Reese et al., 2001).  However, this pattern of decline 

may also be explained by age-related declines in fluid cognitive abilities such working memory 

(Roskos-Ewoldson, Black and McCown, 2008) or processing speed (Foos and Boone, 2008) 

rather than reduced creative ability per se.  

More recent findings have failed to identify an age-related decline in creativity (Roskos-

Ewoldson et al., 2008; Palmeiro et al., 2014; Addis et al., 2016; Foos and Boone, 2008; Madore, 

Jing & Schacter, 2016). These studies observe similar levels of creativity between younger and 

older adults but speculate that the cognitive substrates of creativity may change with age. One 

hypothesis suggests that creative cognition becomes increasingly reliant on semantics or 

crystalized knowledge which is relatively preserved into older age (Palmiero, 

Giacomo and Passafium, 2014). Consistent with this idea, older adult performance on a divergent 
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thinking task benefited from a pre-task episodic simulation exercise involving recollection of a 

personal past event (Madore et al., 2016). The authors interpreted this as reliance on mnemonic 

processes to support creativity in older adults.  

In recent years the field of creativity neuroscience has focused on the neural substrates of 

creative cognition. The vast majority of reports have employed functional MRI methods to 

record brain activity in younger adult subjects during performance on measures of divergent 

thinking (Abraham, Beudt, Ott, & von Cramon, 2012; Cousijn et al., 2014; Fink, Grabner, 

Benedek, & Neubauer, 2006; Fink et al., 2009; Fink et al., 2010; Kleibeuker, Koolschijn, et al., 

2013; Kleibeuker et al., 2017). The pattern of task-based brain activity associated with creative 

cognition in these studies closely overlaps two canonical functional brain networks, the default 

network and the fronto-parietal network (FPN).  

The default network, including in part the inferior parietal lobe, posterior cingulate cortex 

and middle temporal gyrus, has been consistently implicated in divergent thinking (Gonen-

Yaacovi, 2013), particularly in the early, generative phases of task performance (Beaty et al., 

2015;2016).  Regions of the FPN, including the right dorsolateral prefrontal cortex are 

hypothesized to be important for exerting cognitive control during the latter, idea evaluation 

phase (Wu et al., 2015; Chen et al., 2015, 2017; Beaty et al., 2015; Benedek et al., 2014). While 

executive control and default networks can demonstrate an antagonistic relationship during 

cognitive control tasks, recent work suggests that they positively couple during control tasks 

when access to prior knowledge is congruent with task goals (Spreng and Schacter, 2012; Spreng 

et al., 2014). Recent investigations of functional connectivity in young adults performing various 

creative tasks and domains reveal a pattern of default-executive coupling that was positively 

associated with task performance (Zabelina and Andrews-Hanna, 2016; Jung et al., 2013; Beaty 
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et al., 2016; Christoff et al., 2016; Green et al., 2015; Mayseless et al., 2015). While speculative, 

this pattern of functional coupling is consistent with behavioral evidence suggesting that access 

to prior knowledge, mediated by default network brain regions, can support creative cognition 

(Madore et al., 2015; 2016).    

The salience network has also been shown to couple with the default and executive 

control networks during creative cognitive tasks (Beaty et al., 2015). The salience network has 

been implicated in the detection of behaviorally relevant stimuli and redirecting attentional 

resources to salient stimuli in one’s external or internal milieu (Uddin, 2015). Two nodes of the 

salience network, the dorsal anterior cingulate cortex and anterior insula, are important for 

creative cognition. Interestingly, both FPN and salience network nodes are interconnected and 

have been postulated to form a broader executive control network (Dosenbach et al., 2007). 

During divergent thinking tasks, the default network shows dynamic coupling with the executive 

control network (salience and FPN) at different phases of creative thought (Beaty et al., 2015). In 

the early, generative phase coupling is increased between the default and salience networks. In 

the latter, evaluative phase of the task, default network coupling shifts from salience to FPN 

regions (Beaty et al., 2015). Recent work from our group observed a similar pattern of default- 

executive control coupling that was greater for older versus younger adults, despite equivalent 

performance on the divergent thinking task (Adnan et al., 2019). Here we extend beyond task 

activation paradigms to examine the relationship between creativity and the intrinsic functional 

architecture of the brain in older and younger adults. 

 Patterns of functional connectivity observed in the brain during the resting state may be 

shaped by the repeated entrainment of functional connections associated with cognitive 

processing (Aziz-Zadeh et al., 2013; Dietrich and Kanso, 2010; Stevens and Spreng, 2014; Wei 
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et al., 2014; Zhao et al., 2014). Resting state functional connectivity (RSFC) measures have been 

associated with numerous cognitive abilities and are increasingly investigated as putative neural 

markers for cognitive functioning in health and disease (Fox and Raichle, 2007). Consistent with 

this idea, creative thought has been associated with greater static and dynamic connectivity 

among hubs of the default and executive networks at rest (Sun et al., 2018; Zhu et al., 2017; 

Beaty et al., 2014; Beaty et al., 2018a). This connectivity pattern has also been positively 

associated with creative cognition outside the scanner (Beaty et al., 2018a). A similar pattern of 

network coupling has also been associated with the personality trait of ‘openness’, reflecting 

individual differences in one’s tendency to engage in imaginative and creative processes (Beaty 

et al., 2018b).    

Our recent task-based findings suggest that greater coupling between default and 

executive control systems may support creative thought in older adulthood (Adnan et al., 2019). 

As discussed above, the pattern of functional connectivity we observed is consistent with a 

recent report suggesting that older adults show greater reliance on mnemonic processes, 

associated with default network functioning, during creative task performance (e.g. Madore et 

al., 2016). Similarly, engagement of executive control regions has been shown to be modulated 

by the level of complexity in creativity tasks (Beaty et al., 2015). As older adults are known to 

over-recruit executive control brain regions at lower levels of task demand (Reuter-Lorenz and 

Cappell et al., 2008), it follows that these patterns of greater default and executive network 

activity during creative cognition may be functionally coupled. This idea is consistent with the 

default-executive coupling hypothesis of aging (DECHA, Turner and Spreng, 2015). The 

DECHA suggests that functional connectivity between these two networks is a core feature of 

neurocognitive aging and may support cognitive performance when access to prior knowledge is 
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congruent with task goals (Spreng and Schacter, 2012; Spreng et al., 2018; Turner and Spreng, 

2015). Enhanced default-executive coupling observed during a divergent thinking task would be 

consistent with the idea that access to prior knowledge may support creative thought in older 

adults (Madore et al., 2016; Palmeiro et al., 2014).  

Whether this pattern of altered functional connectivity represents a task-specific 

alteration in brain networks implicated in creative thought or reflects a more enduring shift in the 

intrinsic connectivity of the brain in later life has yet to be investigated. Here we use resting state 

functional connectivity (RSFC) MRI to investigate whether patterns of RSFC within and among 

brain network implicated in creative cognition predict creativity measured outside of the scanner, 

and whether observed brain and behavioral associations differ by age. Consistent with the 

DECHA model, we predict that intrinsic coupling between regions of the default and executive 

control networks will be associated with better performance on a divergent thinking task and that 

this association would be more robust in older versus younger adults.  

Methods 

Participants 

 Young and older adults were recruited from the community and completed a comprehensive 

cognitive test battery and magnetic resonance image (MRI) scanning as part of a larger ongoing 

multi-site study at York University and Cornell University. 32 older adults were included in the 

current study from York University while 12 older adults were included from Cornell University, 

giving a final sample of 44 older adults (mean age = 70.03 years, SD = 4.75; 21 females). 18 

young adults were included from York University while 4 young adults were included from 

Cornell University, giving a final sample of 22 younger adults (mean age: 24.76, SD = 3.36; 15 

females) that were included in the current study.  Of note, females were over represented in the 

final samples for both age groups, and slightly more so in the younger adult sample.  There was 
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no difference in creativity between men (M = 2.79, SD = 0.55) and women (M = 2.68, SD = 0.4), 

F (1, 62) = 0.37, p = 0.55, and between younger (M = 2.81, SD = 0.38) and older (M = 2.59, SD 

= 0.53) adults, F (1, 62) = 3.3, p = 0.07. Furthermore, previous research has failed to find 

evidence for sex effects in creativity (Reese et al., 2001), suggesting that this difference should 

not impact the interpretability or generalizability of the findings. Participants received monetary 

compensation for their time (equivalent to $50 CAD/USD for the MRI scan and $10 CAD/USD 

per hour). To be eligible for the study, participants had to be: a) between the ages of 18-35 

(Young) or over age 60 (Old); b) right-handed; and c) a fluent English speaker. Exclusion criteria 

included any MRI contraindications and/or a history of neurological, neuropsychiatric, or 

cardiovascular disease. All participants provided informed consent consistent with procedures 

approved by the Institutional Review Boards of York University and Cornell University. All 

participants were cognitively normal based on self-report on intake and cognitive screen (MMSE 

> 26).  

Previous work has shown that both creative ability (Feist, 1998; McCrae, 1987; Silvia, 

Nusbaum, Berg, Martin, & O'Connor, 2009) and default network engagement (Beaty et al., 

2018b) are predicted by the ‘Big-Five’ personality trait of ‘openness’. All participants completed 

both the divergent thinking measures and a comprehensive personality inventory, the Big Five 

Aspect Scales (BFAS) (Goldberg, 1992). A two-tailed t-test revealed that there was a significant 

difference in self-reported openness to experience between young (M = 3.52, SD = 0.26) and 

older (M = 3.81, SD = 0.24), t (64) = -2.19, p = 0.032, Cohen’s d = 1.16) adults. Furthermore, 

openness to experience was significantly correlated with creative ratings across all participants 

[r(62) = 0.26, p = 0.03], in older adults [r(42) = 0.39, p = 0.008] and in young adults [r(20) = 

0.44, p = 0.04]. Given prior work associating creativity and openness, and recent investigations 
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showing that intrinsic networks associated with creativity also co-vary with openness to 

experience (Beaty et al., 2018) we used BFAS-O as a control variable in all subsequent analyses.   

Offline measures of creative ability. 

The divergent thinking task was completed by all participants outside of the scanner and 

consisted of three paper-pencil alternate uses tasks (Kaufman et al., 2008). The alternate uses 

tasks required participants to generate creative uses for three common objects: a box, a rope and 

a knife. Participants had three minutes to verbally articulate as many responses as possible, 

which were recorded by the test administrator. After each task, participants were presented with 

their list of responses and asked to rank them for creative quality. Ranking permits the use of a 

top-scoring method wherein the originality score is based on the creativity evaluation of a 

predefined number of top-ideas (Silvia et al., 2008). The top-scoring method addresses 

confounds of fluency and “represents people’s best efforts, in their own judgment, and it thus 

represents people’s best level of performance when they are instructed to do their best (p. 71).” 

In addition, the top-scoring method has a psychometric benefit of standardizing the number of 

responses across participants.  

Participant-identified top-ideas were then scored by three trained raters who were blind to 

participant’s age group (Benedek, Mühlmann, Jauk, & Neubauer, 2013; Christensen, Guilford, & 

Wilson, 1957; Silvia et al., 2008). The three raters were trained to score responses for creative 

quality, using a 1 (not at all creative) to 4 (very creative) scale. We applied the Top 3 scoring 

procedure (Silvia et al., 2008; Benedek et al., 2014) involving selection of the three most creative 

responses indicated by participant rankings and averaged across the three raters' scores. Overall 

creativity ratings were obtained by averaging ratings for each of the three common objects.  
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There was a moderate level of convergence between ratings provided by raters for the 

three tasks. The interrater reliability between the three raters was ICC = 0.62, 0.59, 0.61 for the 

tasks “box”, “rope” and “knife”. This level of moderate inter-rater reliability is consistent with 

previous reports and aligns with the overall literature employing this scoring method (Benedek et 

al., 2013). We also computed interrater reliability for responses generated by young and older 

adults. There was moderate interrater reliability observed between raters for older adults, [ICC = 

0.51, 0.57, 0.53] and for young adults [ICC = 0.56, 0.61, 0.59] for the tasks “box”, “rope” and 

“knife”.   There was no significant difference in creative ability as measured by average ratings 

between young (M = 2.79, SD = 0.3) and older (M = 2.59, SD = 0.14) adults, t (42) = 1.39, p = 

0.17, Cohen’s d = 0.85. Thus, older adults provided similarly creative ideas as their younger 

counterparts.  

RSFC Analyses 

 

Multi-echo fMRI data acquisition and preprocessing.  

  

Imaging data for participants recruited at Cornell University were acquired using 3T GE 

Discovery MR750 scanner (General Electric, Milwaukee, United States) with a 32-channel 

receive-only phased-array head coil at the Cornell Magnetic Resonance Imaging Facility in 

Ithaca. Imaging data for participants recruited at York University were acquired using a Siemens 

3T Magnetom Tim Trio MRI scanner.  All scanning protocols were carefully matched across 

sites.  

 Anatomical scans from the Cornell MRI Facility were acquired with a T1-weighted 

volumetric MRI magnetization prepared rapid gradient echo (repetition time (TR)=2530ms; echo 

time (TE)=3.44ms; flip angle (FA)=7°; 1.0mm isotropic voxels, 176 slices). Anatomical scans 

were acquired during one 5m25s run with 2x acceleration with sensitivity encoding. Anatomical 
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scans from the York University MRI Facility were acquired with a T1- weighted volumetric MRI 

magnetization prepared rapid gradient echo (TR= 900ms; TE=2.52ms; TI=900ms; FA=9°; 

1.0mm isotropic voxels, 192 slices). Anatomical scans were acquired during one 4m26s run with 

2x acceleration with generalized auto calibrating partially parallel acquisition (GRAPPA) 

encoding with an iPAT acceleration factor of 2. Structural data was corrected for non-uniform 

intensities, affine-registered to Montreal-Neurological Institute (MNI) atlas and skull-stripped 

using FSL.  

Multi-echo fMRI was developed as a data acquisition sequence to facilitate removal of 

noise components from resting fMRI datasets (Kundu et al., 2012, 2013; Power et al., 2018). 

This acquisition method can lead to a four-fold improvement in the temporal signal-to-noise ratio 

in resting-state fMRI (Kundu et al., 2015) and has been found to effectively remove distance 

dependent motion confounds in RSFC analyses (Power, et al., 2018). The method relies on the 

acquisition of multiple echoes, allowing direct measurement of T2* relaxation rates. Blood 

oxygen level dependent (BOLD) signal can then be distinguished from non-BOLD noise on the 

basis of TE dependence. The multiple echo-times are recombined and analyzed using 

independent components analysis to remove noise components (such as those originating from 

white matter, CSF, movement). This method has shown to be successful in denoising BOLD 

signal of motion and physiological artifacts (Kundu et al., 2013; Kundu et al., 2012). Participants 

completed one 10m 6s resting-state multi-echo BOLD functional scans with eyes open, blinking 

and breathing normally in the dimly lit scanner bay. At Cornell University, resting-state 

functional scans were acquired using a multi-echo echo planar imaging (ME-EPI) sequence with 

online reconstruction (TR=3000ms; TE’s=13.7, 30, 47ms; FA=83°; matrix size=72x72; field of 

view (FOV)=210mm; 46 axial slices; 3.0mm isotropic voxels]. Resting-state functional scans 
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were acquired with 2.5x acceleration with sensitivity encoding. At York University, resting-state 

functional scans were acquired using a multi-echo echo planar imaging (ME-EPI) sequence with 

online reconstruction (TR=3000ms; TE’s=14, 30, 46 ms; FA=83°; matrix size=64x64; 

FOV=216mm; 43 axial slices; 3.4x3.4x3mm voxels]. Resting-state functional scans were 

acquired with 3x acceleration with GRAPPA encoding. Data were preprocessed with multi-echo 

independent components analysis (ME-ICA) version 2.5 (https://afni.nimh.nih. 

gov/pub/dist/src/pkundu/meica.py) and aligned to MNI space. ME-ICA processing was then run 

with the following options: -e 13, 30, 46, -b 15s; –no_skullstrip; –space = Qwarp_meanE+tlrc. 

Qwarp_meanE+tlrc represented an averaged MNI-space template of our younger and older 

adults. As we were interested in functional brain networks, smoothing was not applied as this has 

been shown to artificially affect the similarity of networks across subjects (Alakörkkö et al., 

2017).  Data were not further filtered as ME-ICA has shown to be successful in denoising BOLD 

signal of artifacts (Kundu et al., 2013; Kundu et al., 2012). Components identified as both noise 

and signal were visually inspected for further quality control. Accepted components identified as 

signal were compiled in a single 4D file to be used for further connectivity analyses.  

RSFC matrices.  

 

ROI’s for the fronto-parietal, default, and salience networks were defined using the 

network parcellation scheme by Gordon and colleagues (2014). In total, we used 105 ROI’s (40 

– salience network; 41 default network; 24 FPN).  

The CONN toolbox (http://www.nitrc.org/projects/conn;Whitfield-Gabrieli & Neito-

Castanon, 2012) was used to examine ROI-to-ROI functional connectivity. The mean time series 

of voxels within each of the 105 ROI’s were averaged across the resting-state run, and correlated 

with the average time series of all other ROI’s. Resulting Pearson-correlation coefficients were 
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then fisher-to-z transformed and are referred to as functional connectivity in analyses (detailed 

below in Analytic Approach). Given that this was a multi-site study, we included scanner 

location as a nuisance regressor in all analyses. 

Analysis Approach. 

 

 

Within-group RSFC associated with creative ability. 

 

First, we used a within-group approach to examine creativity associated patterns of RSFC 

among our networks of interest in young and older adults, while controlling for openness to 

experience and scanner site.  Here, we examined within group patterns of connectivity (young 

and older adults) independently, and offline measures of creativity were used as a second level 

regressor of interest in both analyses. Functional connectivity between all possible ROI pairs was 

tested using individual level t-tests, between each seed and target ROI pair. Results were 

corrected for multiple comparisons using a false discovery rate threshold of 0.05, at the ROI 

level. For both groups, positive findings reflect patterns of ROI-to-ROI connectivity that 

positively correlate with creative ability, while negative findings indicate negative correlations 

with creative ability.  

Between-group RSFC associated with creative ability. 

 

Second, to examine age-related differences in creativity, we adopted a between group 

analysis. Here we contrasted group level maps of ROI-to-ROI functional connectivity correlated 

with offline measures of creativity, while controlling for openness to experience. This contrast 

was specified as Older Adults > Young Adults. Results were corrected for multiple comparisons 

using a false discovery rate threshold of 0.05, at the seed level. For this analysis, warm colours 

reflect patterns of positive functional connectivity that correlate with creative ability in older 
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adults; cool colours indicate patterns of positive functional connectivity that correlate with 

creative ability in young adults.   

Results 

 

Within-Group Patterns of Functional Connectivity Associated with Creative Cognition 

 

We examined the patterns of intrinsic functional connectivity that were significantly predictive 

of creative ability in older and young adults. We also examined the overlap in patterns of 

functional connectivity predictive of creativity in young and older adults. In these analyses, we 

controlled for the personality trait openness to experience and scanner site.  

Young Adults. 

 

Young adults showed a distributed pattern of between-network functional connectivity that 

positively predicted divergent thinking performance outside of the scanner. Between-network 

connectivity predictive of creativity comprised of significant connections between (1) salience 

and FPN (left inferior frontal gyrus and, left middle anterior cingulate cortex and left anterior 

insula); (2) key nodes of the FPN and default networks (e.g. vmPFC, PCC, medial superior 

PFC); (3) default and salience network nodes.  

Young adults also showed patterns of within-network connectivity, specifically between 

nodes of the salience network (left rolandic operculum and left anterior insula) and nodes of the 

default network (e.g. left vmPFC and right medial PFC). These findings are detailed in Table 3.1 

and Figure 3.1. 
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Figure 3.1. Resting state functional connectivity correlating with divergent thinking ability in 

young adults, after controlling for scanner site and personality (openness to experience). Color 

coded nodes include regions from the default network (DN), fronto-parietal network (FPN) and 

salience network (SN). The color of the edges denotes the direction of correlation between 

functional connectivity and divergent thinking ability. Only positive correlations between ROI-

to-ROI functional connectivity and divergent thinking ability survived a seed-level FDR 

correction at an alpha level of 0.05. Results correspond to findings in Table 3.1.  
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Table 3.1 

 

ROI-to-ROI connectivity positively correlating with divergent thinking ability in young adults, 

controlling for the personality trait, openness to experience and scanner site (corresponding to 

Figure 3.1).   

 

    Network Hem Node MNI Coordinates T p 

  

 
   

X Y Z 
 

  

Young Adults 

      

  

Between Network Connectivity 
      

  

SN-FPN 
 

 
      

  

  
 

 
      

  

 IFG 
 

FPN L 109 -43 19.4 33.5 
 

  

  mACC SN L 28 -9 25.3 27.7 3.94 0.01 

  
Anterior 

Insula 
SN L 84 -28.8 23.7 8.4 3.37 0.03 

  
        

  

DN-FPN 
        

  

  
        

  

 vmPFC 
 

DN R 279 7.2 48.4 -10.1 

 

  

  ITG FPN L 9 -55.9 -47.7 -9.3 4.09 0.006 

  MFG FPN L 108 -43 19.4 33.5 3.94 0.006 

  
        

  

vMPFC 
 

DN L 117 -6.8 38.2 -9.4 
 

  

  DLPFC FPN R 328 38.9 9.6 42.7 3.41 0.04 

  
        

  

IFG 
 

FPN R 276 38.6 18.8 25.5 
 

  

  vmPFC DN L 152 -6 44.9 6.3 3.91 0.013 

  
        

  

MFG 
 

FPN L 108 -43 19.4 33.5 
 

  

    PCC DN L 1 -11.2 -52.4 36.5 4.27 0.004 

  

Medial 

Superior 

PFC 

DN L 6 -47.2 -58 30.8 4.21 0.004 

  vmPFC DN L 116 -5.9 54.8 11.3 3.98 0.01 

          

  

       
 

  

MFG 

 

FPN L 149 28.6 50.9 10.1 
 

  

  DLPFC DN L 156 -29.3 16.8 50.7 3.51 0.04 

DN-SN 
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Precentral Gyrus SN 
 

22 -9.4 -0.1 42.9 
 

  

  medPFC DN R 200 21.9 21 46.2 3.49 0.04 

  
        

  

ACC 
 

SN L 27 -8.4 14.6 33.8 
 

  

  vmPFC DN L 116 -5.9 54.8 -11.3 3.57 0.01 

  
        

  

PCC 
 

DN L 26 -1.7 -17.7 39.1 
 

  

  SFG SN R 181 6.7 5 55.9 3.38 0.03 

  mACC DN R 185 8.6 4.2 40.1 3.37 0.04 

  PCC DN R 186 3 -19.6 37.9 3.61 0.03 

  
        

  

Within Network Connectivity 
      

  

SN-SN 
        

  

Rolandic Operculum SN L 101 -59.8 -4.1 8.8 
 

  

  
Anterior 

Insula 
SN L 82 -37.3 2.9 11.7 3.8 0.01 

  
        

  

DN-DN 
        

  

medPFC 
 

DN R 323 5.9 54.9 29.4 
 

  

  MTG DN R 290 57.5 -7.4 -16.4 4.43 0.002 

  

        

  

vmPFC 

 

DN L 152 -6 44.9 6.3 
 

  

  
medPFC DN R 322 8.2 53.8 14 4.3 

0.003

6 

  
        

  

vMPFC 
 

DN L 117 -6.8 38.2 -9.4 
 

  

  DLPFC DN R 165 11.9 21.9 59.9 3.3 0.004 

  
        

  

medPFC 
 

DN R 200 21.9 21 46.2 
 

  

  medFG DN R 165 11.9 21.9 59.9 3.81 0.01 
Note: AG – Angular Gyrus; DN - Default Network; DLPFC – Dorsolateral PFC; FPN - Fronto-parietal network; 

Hem = Hemisphere; IFG – Inferior Frontal Gyrus, ITG – Inferior Temporal Gyrus; L – Left; mACC – middle 

Anterior Cingulate Cortex; PCC – Posterior Cingulate Cortex; PFC – Prefrontal cortex; R – Right; SN - Salience 

Network; vmPFC – Ventromedial Prefrontal Cortex. 
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Older Adults. 

  

For older adults, both within- and a more spatially distributed between- network connectivity 

profile was positively associated with creative task performance. Within-network connectivity 

was observed between (1) nodes of the salience network (insula, postcentral gyrus, frontal eye 

fields) and default network (right medial PFC and middle frontal gyrus); (2) nodes of the FPN 

(dorsolateral PFC, superior frontal gyrus, middle frontal gyrus, inferior parietal lobule) and 

default network (medial PFC, vmpFC, inferior temporal gyrus, posterior cingulate cortex). 

Widespread between-network connectivity was observed among (2) core nodes of default 

network (e.g. between angular gyrus and medial PFC). These findings are visually depicted in 

Figure 3.2 and detailed in Table 3.2. 
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Figure 3.2. Resting state functional connectivity correlated with divergent thinking ability in 

older adults, after controlling for scanner site and personality (openness to experience). Color 

coded nodes include regions from the default network (DN), fronto-parietal network (FPN) and 

salience network (SN). The color of the edges denotes the direction of correlation between 

functional connectivity and divergent thinking ability. Only positive correlations between ROI-

to-ROI functional connectivity and divergent thinking ability survived a seed-level FDR 

correction at an alpha level of 0.05. Results correspond to findings in Table 3.2.  
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Table 3.2 

 

ROI-to-ROI connectivity positively correlating with divergent thinking ability in older adults, 

controlling for the personality trait, openness to experience, and scanner site (corresponding to 

Figure 3.2).   

 

  
 

Network Hem Node 
 

T  p MNI Coordinates 

X Y Z 

Older Adults 

       

  

Between Network Connectivity 
      

  

 

       

  

 DN-SN 

        

  

  

        

  

medPFC 
 

DN R 322 8.2 53.8 

  

  

  

Superior 

Insula 

SN R 238 36.7 5.2 12.7 

3.78 0.01 

  

        

  

medPFC 

 

DN R 325 6.8 44.5 34.8 

 

  

  FEF SN R 198 42.5 -2.3 47.2 3.74 0.02 

  

        

  

Precentral 

Gyrus 

 

SN L 111 -51.8 -0.6 5 

 

  

  medPFC DN R 200 21.9 21 46.2 4.25 0.0035 

  MFG DN R 326 30.6 18.9 48.7 4.1 0.0035 

 

FPN-DN 

        

  

DLPFC 

 

FPN L 7 -38.1 48.8 10.5 

 

  

  medPFC DN L 150 -6.5 54.7 18.1 4.17 0.005 

  

        

  

SFG 

 

FPN R 327 42.4 19.5 48.2 

 

  

  PCC DN R 186 3 -19.6 37.9 4.05 0.008 

  PCC DN L 26 -1.7 -17.7 39.1 3.91 0.01 

  

        

  

  

        

  

DLPFC 

 

FPN L 7 -38.1 48.8 10.5 

 

  

  medPFC DN R 322 8.2 53.8 14 3.8 0.01 

  

        

  

MFG 

 

FPN R 168 38.1 45.9 7.7 

 

  

  medPFC DN R 322 8.2 53.8 14 3.62 0.01 

  

        

  



 74 

DLPFC 

 

FPN L 7 -38.1 48.8 10.5 

 

  

  Frontal Pole DN L 151 -15.7 64.7 13.7 3.46 0.02 

  vmPFC DN L 116 -5.9 54.8 -11.3 3.44 0.02 

  ITG DN L 127 -53.1 -11.4 -16 2.98 0.04 

  

        

  

MFG 

 

FPN R 168 38.1 45.9 7.7 

 

  

  vmPFC DN R 278 4.8 65.1 -7.1 4.08 0.007 

  PCC DN R 1 -11.2 -52.4 36.5 3.36 0.03 

  

        

  

medPFC  DN L 150 -6.5 54.7 18.1 

 

  

  DLPFC FPN L 7 -38.1 48.8 10.5 3.66 0.03 

  IPL FPN R 167 47.9 -42.5 41.5 3.4 0.03 

Within Network Connectivity 
 

  
   

  

DN-DN  

        

  

AG 

 

DN L 94 -39.3 -73.9 38.3 

 

  

  medPFC DN R 200 21.9 21 46.2 3.52 0.04 

  

        

  

  

 

DN L 145 -15.9 48.6 37.2 

 

  

  medPFC DN R 200 21.9 21 46.2 3.32 0.04 

  medPFC DN L 114 -27.5 53.6 0 3.28 0.04 
Note: FPN - Fronto-parietal Network; Hem – Hemisphere; IFG – Inferior Frontal Gyrus; L – Left; MNI – Montreal 

Neurological Institute DN – Default Network; mACC – middle Anterior Cingulate Cortex; medFG – medial Frontal 

Gyrus; medPFC – medial prefrontal cortex; MFG – Middle Frontal Gyrus; MTG – Middle Temporal Gyrus; PFC – 

Prefrontal Cortex; R – Right; SN – Salience Network SMG – Supramarginal Gyrus; SN – Salience Network; PCC – 

Posterior Cingulate Cortex; vmPFC – ventromedial prefrontal cortex 
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All Participants 

 

Both younger and older adults have some overlap in patterns of intrinsic functional connectivity 

predictive of creativity. This was noted within-networks (within salience network) and between 

networks (between default and salience network nodes and between default and FPN nodes). 

There was also overlap in within-network connectivity between default network nodes.  Table 

3.3 and Figure 3.3 provide details for these nodes and associated connectivity results.  
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Figure 3.3. Overlap between resting state functional connectivity correlated with divergent 

thinking ability across young and older adults, after controlling for scanner site and personality 

(openness to experience). Color coded nodes include regions from the default network (DN), 

fronto-parietal network (FPN) and salience network (SN). The color of the edges denotes the 

direction of correlation between functional connectivity and divergent thinking ability. Only 

positive correlations between ROI-to-ROI functional connectivity and divergent thinking ability 

survived a seed-level FDR correction at an alpha level of 0.05. Connections displayed are 

corrected a seed-level FDR correction at an alpha level of 0.05. Results correspond to findings in 

Table 3.3.  
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Table 3.3.   

 

ROI-to-ROI connectivity positively correlated with divergent thinking ability and overlapping 

between young and older adults, after controlling for scanner site and personality (openness to 

experience) (corresponding to Figure 3.3).   

 

    Network Hem Node MNI Coordinates T p 

      X Y Z    

Between Network Connectivity         

DN-SN 

        

  

Rolandic Operculum SN L 101 -59.8 -4.1 8.8 

 

  

  AG DN R 257 7.4 -69.3 49.9 4 0.008 

  

        

  

Insula 

 

SN L 248 33.7 22.6 3.7 

 

  

  medPFC DN R 316 21.4 42.8 35.1 3.85 0.008 

  

        

  

PCC 
 

DN L 26 -1.7 -17.7 39.1 

 

  

  

Superior 

Insula 
SN R 246 36.5 5.7 6 

3.83 0.01 

  

Precentral 

Gyrus 
SN L 111 -51.8 -0.6 5 

3.58 0.03 

  

Superior 

Insula 

SN R 238 36.7 5.2 12.7 

3.54 0.04 

  

        

  

vmPFC 
 

DN R 184 7.7 44.1 5.5 

 

  

  

Postcentral 

Gyrus SN R 274 50.1 3 3.9 3.7 0.02 

  Insula SN L 248 33.7 22.6 3.7 3.56 0.02 

  

        

  

mACC 

 

SN L 22 -9.4 -0.1 42.9 

 

  

  medPFC DN R 200 21.9 21 46.2 3.69 0.03 

  

        

  

DN-FPN 
       

  

 vmPFC 
 

DN R 279 7.2 48.4 -10.1 

 

  

  ITG FPN L 9 -55.9 -47.7 -9.3 3.57 0.03 

  MFG FPN L 108 -43 19.4 33.5 3.46 0.03 

  

        

  

Between Network Connectivity         

DN-DN           

vmPFC 

 

DN L 152 -6 44.9 6.3 
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  medPFC DN R 322 8.2 53.8 14 2.53 0.04 

  

        

  

PCC 
 

DN L 26 -1.7 -17.7 39.1 

 

  

  PCC DN R 186 3 -19.6 37.9 3.73 0.02 

  mACC DN R 185 8.6 4.2 40.1 3.37 0.03 

  
          

SN-SN 
          

Rolandic Operculum SN L 101 -59.8 -4.1 8.8 

 

  

  

Anterior 

Insula 
SN L 82 -37.3 2.9 11.7 

4.33 0.0033 

  mACC SN L 22 -9.4 -0.1 42.9 3.62 0.03 

  ACC SN L 27 -8.4 14.6 33.8 3.33 0.04 
Note: FPN - Fronto-parietal Network; Hem – Hemisphere; IFG – Inferior Frontal Gyrus; L – Left; MNI – Montreal 

Neurological Institute DN – Default Network; mACC – middle Anterior Cingulate Cortex; medFG – medial Frontal 

Gyrus; medPFC – medial prefrontal cortex; MFG – Middle Frontal Gyrus; MTG – Middle Temporal Gyrus; PFC – 

Prefrontal Cortex; R – Right; SN – Salience Network SMG – Supramarginal Gyrus; SN – Salience Network; PCC – 

Posterior Cingulate Cortex; vmPFC – Ventromedial Prefrontal Cortex 

 

 

Age Differences in Patterns of Functional Connectivity Associated with Creative Ability. 

 

When the brain-behavior correlation maps for both age groups were directly contrasted, 

controlling for BFAS-O and scanner site, a pattern of greater within-network connectivity was 

associated with better divergent thinking performance for the younger cohort.  Specifically, 

greater connectivity between default network nodes, including between (1) left vmPFC and, 

bilateral medial PFC, left inferior temporal gyrus, left frontal pole and left superior frontal gyrus 

(2) right middle temporal gyrus and right medial PFC and (3) right medial PFC and, left vmPFC 

and left medial PFC was associated with better divergent thinking ability for the younger 

participants. Young adults also had greater functional connectivity between (1) default and FPN 

nodes (e.g. between right vmPFC and left inferior temporal gyrus) and (2) default and salience 

network nodes (right posterior cingulate cortex and right anterior cingulate cortex) positively 

associated with divergent thinking ability  
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In older adults, greater between-network functional connectivity was associated with better 

divergent thinking ability. Greater between-network functional connectivity, associated with 

better outside scanner task performance, was also observed between all three networks. This was 

not observed in young adults, and included functional connectivity between right medial PFC, 

right intraparietal sulcus and left superior insula. There was also widespread functional 

connectivity between (1) default and FPN nodes in older adults that predicted creativity, 

including connections between (a) left middle temporal gyrus and right intraparietal sulcus; (2) 

FPN and salience networks nodes: (a) left middle frontal gyrus and right precentral gyrus; (b) left 

inferior parietal lobule and left precentral gyrus; (3) default and salience network nodes (e.g. 

right vmPFC and right superior insula).   

There was also within network connectivity observed among (1) salience network nodes, 

between right superior insula and, right supramarginal gyrus, left middle frontal gyrus middle, 

left postcentral gyrus, left middle anterior cingulate cortex and right anterior cingulate cortex; (2) 

within the FPN, between right inferior frontal gyrus and, the left inferior temporal gyrus and left 

middle frontal gyrus; and (3) within the default network between right middle temporal gyrus 

and right medial PFC.    

Table 3.4 and Figure 3.4 provide details for these nodes and associated connectivity results 
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Figure 3.4. Group by behavior interaction for intrinsic connectivity correlated with divergent 

thinking, after controlling for scanner site and personality (openness to experience). The figure 

shows resting-state ROI-to-ROI functional connectivity that correlates with divergent thinking 

ability and is significantly different between young and older adults. Color coded nodes include 

regions from the default network (DN), fronto-parietal network (FPN) and salience network 

(SN). The color of the edges (connections between nodes) indicate the direction of the contrast. 

Red edges indicate greater connectivity between regions that are associated with divergent 

thinking in older adults, while blue edges indicate greater connectivity between regions that are 

associated with divergent thinking in young adults.  Results correspond to findings in Table 3.4.
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Table 3.4.   

 

ROI-to-ROI connectivity correlating with divergent thinking ability contrasted between young and 

older adults (Older Adults > Young Adults), after controlling for the personality trait, openness to 

experience (BFAS-O) and scanner site.  

 

    Network Hem Node MNI Coordinates T p Beta 

      X Y Z     

Young Adults           

Between-Network Connectivity          

FPN-DN                  

             

MFG  FPN L 108 -43 19.4 33.5     

  PCC DN R 1 -11.2 -52.4 36.5 -4.34 0.0062 0.27 

  AG DN L 6 -47.2 -58 30.8 -4.04 0.017 0.22 

  medial FG DN L 116 -5.9 54.8 -11.3 -4.06 0.016 0.21 

 vmPFC DN R 279 7.2 48.4 -10.1 -3.46 0.016 0.19 

             

vmPFC  DN R 279 7.2 48.4 -10.1     

  ITG FPN L 9 -55.9 -47.7 -9.3 -3.12 0.02 0.15 

 

           

Within-Network Connectivity 

DN-DN 

               

             

vmPFC  DN L 152 -6 44.9 6.3     

  SFG DN R 322 8.2 53.8 14 -3.99 0.02 0.17 

  ITG DN L 127 -53.1 -11.4 -16 -3.51 0.03 0.17 

  SFG DN L 150 -6.5 54.7 18.1 -3.4 0.03 0.17 

  SFG DN L 151 -15.7 64.7 13.7 -3.37 0.03 0.18 

  SFG DN L 44 -19.5 30.1 45.5 -3.29 0.03 0.17 

dorsomedial PFC DN R 323 5.9 54.9 29.4     

  vmPFC DN R 279 7.2 48.4 -10.1 -3.76 0.01 0.14 

  SFG DN L 150 -6.5 54.7 18.1 -3.97 0.02 0.15 

 MTG DN R 290 57.5 -7.4 -16.4 -5.33 0.0002 0.21 

             

Older adults           

Between-Network Connectivity          

DN-FPN-SN                  
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Medial PFC DN R 323 5.9 54.9 29.4     

  IPS FPN R 261 35.7 -56.7 45.2 4.18 0.01 0.17 

  Superior Insula SN L 81 -36.6 1.4 6.4 4.21 0.009 0.21 

             

DN-SN                    

             

vmPFC  DN R 279 7.2 48.4 -10.1     

  TPJ SN R 180 16.2 -33.1 43.2 3.91 0.01 0.15 

  Superior Insula SN R 249 34 24.4 10 3.91 0.01 0.15 

  SMG SN R 219 57.5 -40.3 34.7 3.85 0.01 0.15 

  MFG SN R 318 31.3 39.7 25.6 3.65 0.02 0.16 

  Postcentral Gyrus SN L 105 -58.8 -23.9 31 3.41 0.01 0.18 

vmPFC  DN L 152 -6 44.9 6.3     

  MFG SN L 153 -28.8 38.3 28.2 3.6 0.03 0.15 

             

Within-Network Connectivity 

FPN-FPN 

               

             

IFG  FPN R 240 42.8 48.3 -5.1     

  ITG FPN L 9 -55.9 -47.7 -9.3 4.68 0.002 0.23 

  MFG FPN L 108 -43 19.4 33.5 3.65 0.03 0.13 

 SN-SN            

Superior Insula SN R 238 36.7 5.2 12.7 3.4 0.01 0.16 

  SMG SN R 219 57.5 -40.3 34.7 3.33 0.01 0.16 

  MFG SN L 153 -28.8 38.3 28.2 3.27 0.02 0.17 

  mACC SN L 27 -8.4 14.6 33.8 3.16 0.02 0.17 

Note: AG- Angular Gyrus; DN – Default Network; FPN – Fronto-parietal Network; Hem – Hemisphere; IFG – Inferior Frontal 

Gyrus; IPS – Intra-parietal sulcus; ITG – Inferior Temporal Gyrus; L – Left; mACC – middle Anterior Cingulate Cortex ;MFG – 

Middle Frontal Gyrus; MNI – Montreal Neurological Institute; MTG – Middle Temporal Gyrus; PCC – Posterior Cingulate Cortex ; 

PFC – Prefrontal Cortex; R – Right; SMG – Supramarginal Gyrus ; TPJ – Temporo-parietal junction; SN – Salience Network; 

vmPFC – ventromedial prefrontal cortex.  
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Finally, as a further check on our approach to include the BFAS-O scores as a nuisance 

regressor in the regression model, we performed the above analysis on a subsample of the older 

adult participants (n=22 per age group) who were matched with young adults (n=22) on BFAS-O 

scores. These results are detailed in Appendix A and closely overlap the core findings described 

above (See Appendix A). 

Discussion 

 

We investigated whether creative ability, measured as performance on a divergent 

thinking task, was related to connectivity among the default, FPN and salience networks, and 

how patterns of RSFC associated with creativity differed between young and older adults. Both 

groups demonstrated equivalent performance on the divergent thinking task. However, unique 

intrinsic functional connectivity profiles were associated with creative ability in the two age 

groups. Older adults had a pattern greater functional connectivity between default and the 

broader executive control network, with connections observed between core nodes of the default, 

FPN, and salience networks that was associated with creativity. In contrast, while young adults 

showed default-executive coupling, it was limited to connectivity between default and sub 

networks of executive control (e.g. between default and salience network, default and FPN and, 

FPN and salience) rather than connectivity among all three networks.  

Several studies of younger adults have investigated the relationship between neural 

network properties of the brain at rest and creative ability. Creative ability has been observed to 

be correlated with RSFC between the posterior cingulate cortex and medial PFC, core nodes of 

the default network (Takeuchi et al., 2012). Performance on a common measure of creative 

cognition, divergent thinking, has been also associated with greater connectivity within the 

default network, as well as connectivity between default and executive networks (Beaty et al., 
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2018a). Importantly, this intrinsic network connectivity profile was able to predict creative 

ability in three independent participant samples, with the density of default to executive coupling 

identified as the most predictive feature. The current study replicated this pattern of intrinsic 

network connectivity associated with creativity in our young cohort. Significant connections 

were observed between hubs of the default network and salience network, as well as between the 

default network and the FPN, the default network and FPN and between FPN and salience 

networks. These findings add to the growing body of evidence suggesting that default to 

executive coupling is an important neural marker of creative thought in young adults.   

Building from these young adult findings, here we show that the intrinsic neural substrate 

of creative thought is altered in older adulthood, with the most prevalent differences observed as 

greater coupling between the default and the broader executive control network, including nodes 

of both the FPN and salience sub-components. Consistent with a recently proposed 

neurocognitive aging model of aging, DECHA, (Turner and Spreng, 2015; Spreng et al., 2018) 

we interpret these results to suggest that older adults may access and manipulate information 

contained in their store of crystalized knowledge to generate creative responses. Based on the 

DECHA model, this greater default-executive coupling in typical aging may support cooperation 

between activated prior knowledge representations, mediated by default brain regions, and 

executive control processes necessary to leverage these representations to construct novel 

associations. Consistent with this idea, reliance on mnemonic processes during creative cognition 

has been recently been reported for older adults (Madore et al., 2016).    

Our ability to detect creativity-RSFC associations during the resting state suggest that 

these age differences may be enduring and do not simply reflect changes in strategy or approach 

to the task. As the balance of cognitive resources shifts from controlled to crystalized capacities 
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across the lifespan (Park, 2001), we suggest that creativity becomes increasingly dependent on 

access to prior knowledge representations. With a lifetime of accumulated knowledge and 

experience, this engagement of prior knowledge in the service of goal-directed tasks reduces 

segregation between default and executive networks, with implications for multiple cognitive 

abilities. On tasks where prior knowledge is incongruent or distracting for task goals, greater 

default to executive coupling is associated with poorer task performance (e.g. Rieck et al., 2016; 

Spreng et al., 2018). Critically however, when access to prior knowledge is goal congruent, 

default to executive coupling is associated with better performance, at least in young (Beaty et 

al., 2016; Spreng et al., 2014).  Here we provide evidence that this pattern also holds for older 

adults as greater default-executive coupling was more robustly predictive of creative cognition 

for older adults. We recently reported a similar pattern of default-executive coupling in the 

domain of autobiographical memory, with more semanticized recall associated with a pattern of 

greater default to executive coupling in older, but not younger adults (Spreng et al., 2018).  

Our findings also highlight the role of vmPFC, a core default network node, in creative 

cognition in older adults. We observed that greater intrinsic bilateral coupling of vmPFC, as well 

as well as stronger between-network connectivity to executive control nodes, specifically within 

the salience network, was associated with creativity in our older participants. Our recent task 

findings also revealed greater coupling between vmPFC and the middle temporal gyrus, a region 

of the default network, during divergent thinking (Adnan et al., 2019). While speculative, the 

involvement of this region may hint at an alternative pathway supporting creative thinking in 

later life. The vmPFC is a core hub of the default network and comprises the anterior, self-

referential subsystem of the network (Andrews-Hanna et al., 2010; Andrews-Hanna, 2012). 

Within-network connectivity of this region to medial temporal lobe subsystems as well as 
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between-network connections with executive control regions (such as the temporal-parietal 

junction, insula, middle frontal gyri, supramarginal gyrus) have been implicated in accessing and 

engaging autobiographical knowledge to support goal directed tasks (Andrews-Hanna et al., 

2014). Consistent with this idea, the vmPFC has recently been posited as a gateway node, 

controlling access to consolidated, or more semanticized autobiographical memory (Bonnici & 

Maguire, 2018). Here we suggest that access to ones’ store of consolidated, or crystalized 

experiential knowledge, reflected in the intrinsic connectivity patterns of the vmPFC, may be an 

important mechanism associated with creative cognition in later life.  

 Our findings suggest that intrinsic connectivity between the default and the executive 

control network (including both FPN and salience components) is associated with creative ability 

in later life. While default-executive coupling predicted divergent thinking ability in both young 

and older adults, the between-network connectivity pattern was more distributed and more robust 

for the older adult cohort. While these findings are broadly consistent with our recent task-based 

fMRI results (Adnan et al., 2019), these intrinsic connectivity data suggest that between-network 

coupling is not solely a task-specific neural response, but rather an entrained shift in the neural 

processes underlying creative thinking ability in later life. Moreover, we postulate that access to 

a comparatively preserved repertoire of stored personal knowledge and experiences in later life, 

reflected in greater within and between-network connectivity of the anterior default network, is 

associated with preserved creative thinking ability in older adulthood.  
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CHAPTER FOUR  

Study Three: Cognitive Substrates of Divergent Thinking in Young and Older Adults 

 

Introduction 

 

Creativity is the ability to see the world in new ways. The creative individual is 

characterized by the ability to produce novel and useful ideas and to discern which ideas are 

appropriate and meaningful (Runco, 2003). Current models of creative thought conceptualize it 

as a dynamic, multi-stage process, characterized by interactions between stimulus- or salience-

driven (i.e. bottom-up) attentional processes and intentional or goal driven (i.e. top-down) 

cognitive control. In the recent past, neuroscientific forays into creativity in younger adults have 

shown that large scale functional brain networks provide an essential neural substrate to support 

creative ability (Wu et al., 2015; Jung et al., 2013; Gonen-Yaacovi et al., 2013).  

This work, mostly conducted with younger adults, has shown that the default network is 

involved in the productive process of idea generation while monitoring, or idea evaluation, 

processes are subserved by executive control systems including the fronto-parietal and salience 

networks (Beaty et al., 2016). During creative thought, these networks dynamically interact 

forming a connectivity profile that has been referred to as the ‘creativity network’ (Beaty et al., 

2016; 2018). Studies one and two, demonstrated that this creativity network is altered in older 

adulthood, with greater coupling of default and executive control regions, as well as increased 

interactions between default and salience networks. While speculative, these results suggest that 

older adults may rely more on relatively preserved crystalized, or semantic knowledge 

representations, mediated by the default network, to generate or evaluate novel thoughts or 

actions.    
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Interestingly, recent neurocognitive theories also suggest that functional brain networks 

associated with fluid intelligence closely overlap the ‘creativity network’ (Hearne et al., 2016; 

Jung and Haier, 2007; Kenett et al., 2018). One prominent theory, the Parieto-Frontal Integration 

Theory of Intelligence, proposes frontal and parietal activation in relation to individual 

differences in intelligence (Jung and Haier, 2007).  

Fluid intelligence abilities are known to be prominently impacted in the aging process 

(Horn and Cattell, 1967). In contrast, crystallized intelligence, the repertoire of stored knowledge 

about oneself and the world, remains stable and may even increase throughout the life span (Park 

et al., 2001). This shift from fluid to crystallized abilities, or the semanticization of cognition in 

later life, has been associated with the shifting network architecture of the brain towards greater 

coupling between default and executive regions (Spreng and Turner, in revision).  Consistent 

with this idea, results from Studies one and two of the dissertation demonstrated that default-

executive coupling, known to support creativity in young adults, is greater for older adults during 

divergent thinking (study one; Adnan et al., 2019). Further, greater intrinsic connectivity 

between these networks at rest was associated with creative ability in old but not younger adults 

(study two; Adnan et al., 2019b).  

The central aim of the dissertation was to explore the neural network architecture of 

creative cognition in older adulthood. However, findings from the task and resting state 

neuroimaging studies, considered in the context of cognitive aging research showing a shifting 

balance of fluid versus crystalized intellectual capacities, suggested that the cognitive substrate 

of creativity may differ for younger and older adults. A definitive investigation of this hypothesis 

would require an individual differences study design, sufficiently powered to conduct the factor 

analytic studies necessary to map the cognitive correlates of divergent thinking. However, as all 
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of the participants in the resting state investigation (study two; Adnan et al., 2019b) completed 

tests of fluid and crystalized cognition as part of a larger study, a preliminary examination into 

the cognitive correlates of divergent thinking was conducted. The goals of this secondary 

analysis were twofold: First to provide additional data that may aid in the interpretation of the 

brain findings in Studies 1 and 2; and second, to inform hypothesis development for future 

investigations of the cognitive architecture of creativity in younger and older adults.  

Thus, the rationale for this third, preliminary investigation is simple. Creativity is 

associated with fluid intelligence in young adults (Benedek et al., 2014; Benedek et al., 2017; 

Kenett et al., 2016). Yet, there is growing evidence that creativity is relatively preserved in later 

life (Palmiero et al., 2014), despite the loss of fluid intellectual capacity known to occur with 

age. As crystallized intelligence is relatively preserved in later life, this raises the possibility that 

access to a larger repertoire of prior knowledge may support creative cognition in older adults. 

The results of studies 1 and 2 suggest a neural mechanism, default-executive coupling, consistent 

with this possibility. There are two hypotheses for this study. First, fluid intelligence will be 

positively associated with creative cognition in young adults, with no additional contribution of 

crystalized intelligence. In contrast, crystallized intelligence will be positively associated with 

creative ability in older but not younger adults, with no significant additional contribution of 

fluid intelligence to creative task performance in the older cohort.      

Methods 

Participants. 

 

52 older adults (mean age: 70.35, SD = 6.98; 28 females) and 22 young adults (mean age: 24.76, 

SD = 3.36;15 females) participated in our study. Participants were recruited from the community 

and participated in a comprehensive cognitive test battery and magnetic resonance image (MRI) 

scanning. Participants received monetary compensation for their time (equivalent to $50 for the 
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MRI scan and $10 CAD per hour). To be eligible for the study, participants had to be: a) between 

ages 18-35 or over age 60; b) right-handed; and c) a fluent English speaker. Exclusion criteria 

included any MRI contraindications and/or a history of neurological, neuropsychiatric, or 

cardiovascular disease. All participants signed an informed consent form and completed an MRI 

screening procedure before participating in the study. All procedures were approved by the 

Institutional Review Board of York University. A subset of 32 older adults (mean age: 68.45, SD 

= 4.56; 20 females) and 18 young adults (mean age: 23.23, SD = 2.45; 12 females) had complete 

data for all measures detailed below and were included in the subsequent analyses.   

Creative Ability. 

 

The divergent thinking test battery was completed by all participants outside of the 

scanner and consisted of three paper-pencil alternate uses tasks (Kaufman et al., 2008) which are 

comparable to standard computer-based assessments (Lau & Cheung, 2010). The alternate uses 

tasks required participants to generate creative uses for three common objects: a box, a rope and 

a knife. Participants had three minutes to generate as many responses as possible, while they 

were recorded by the test administrator. After each task, participants were presented with their 

list of responses and asked to rank them for creative quality. Participants provided ranks for their 

top three responses. The main idea behind this ranking was to allow for the use of a top-scoring 

method where the originality score is based on the creativity evaluation of a predefined number 

of top-ideas (Silvia et al., 2008).  

The top-ideas are identified by the participants themselves according to their subjective 

appraisal of the creativity of their ideas and then later scored by three trained raters using the 

subjective scoring method (Benedek, Mühlmann, Jauk, & Neubauer, 2013; Christensen, 

Guilford, & Wilson, 1957; Silvia et al., 2008), an approach grounded in the consensual 
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assessment technique of creativity assessment (Amabile, 1982). The three raters were trained to 

score responses for creative quality, using a 1 (not at all creative) to 4 (very creative) scale. We 

applied the Top 3 scoring procedure (Silvia et al., 2008) by selecting the three most creative 

responses indicated by participant rankings and averaged the three raters' scores. Overall 

creativity ratings were obtained by averaging ratings from the three raters for each of the three 

common objects.  

Participants generated a total of 705 top three responses across all three tasks. Some 

participants only generated two responses for a given task and hence top-ranked those two 

responses in their top-ranking. Three independent raters were asked to evaluate the responses 

using a 1 (not at all creative) to 4 (very creative) scale. All raters received an initial training in a 

joint session where they were familiarized with the sale and the subcomponents of what 

constitutes an original response. The raters rated a small subset of responses (n=10) and 

discussed their ratings in the group setting. They then proceeded to rate the remaining responses 

using the scale. There was a moderate level of convergence between ratings provided by raters 

for the three tasks. The interrater reliability between the three raters was ICC = 0.62, 0.59, 0.61 

for the tasks “box”, “rope” and “knife”. This level of moderate reliability has been reported and 

considered acceptable by others (Benedek et al., 2014), and hence, these ratings were used in 

further analyses. 

Cognitive Ability. 

 

Measures of crystallized and fluid intelligence were evaluated using the NIH Toolbox Cognition 

Battery (NIH Toolbox for Assessment of Neurological and Behavioral Function, 2013; 

Weintraub et al., 2013).  

Crystallized Intelligence.  
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Crystallized Intelligence scores are calculated using a composite score of the NIHTB Oral 

Reading Word Test and Auditory word-visual picture matching. 

Fluid Intelligence. 

 

Fluid intelligence is assessed via the NIHTB Flanker Test of Executive Function-Inhibitory 

Control and Attention and the NIHTB Dimensional Change Card Sort Test of Executive 

Function-Cognitive Flexibility. Episodic memory is assessed using the NIHTB Picture Sequence 

Memory Test of Episodic Memory. Working memory, an integral component of executive 

function, is evaluated using the NIHTB List Sorting Working Memory Test. Finally, the NIHTB 

Pattern Comparison Processing Speed Test tests for processing speed. Raw scores of each test 

are processed according to the standardized NIH procedure to derive a composite measure of 

fluid IQ.  

Personality Assessment. 

 

Previous work has shown that both creative ability and intelligence (Feist, 1998; McCrae, 

1987; Silvia, Nusbaum, Berg, Martin, & O'Connor, 2009) are predicted by one specific 

personality trait, openness to experience (BFAS-O). In our sample of participants, 18 young 

adults (mean age: 23.23, SD = 2.45; 15 females) and 32 older adults (mean age: 68.45, SD = 

4.56; 24 females) completed a comprehensive personality inventory, the Big Five Aspect Scales 

(BFAS).  We used this measure as a control variable in our analyses.  

Analysis Approach. 

 

Correlational Analyses. 

 

To test our hypothesis, we conducted partial correlations between creative ability and 

intelligence (fluid and crystallized) for young and older adults, while controlling for openness to 
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experience. Confidence intervals (CI) for partial correlations (pr) were calculated from the 

bootstrap with 1000 resampling iterations, without replacement. 

 

Results 

 

Participant characteristics can be found in Table 4.1.  Old and Young adults differed 

significantly on education (t (48) = -2.83, p = 0.007), measures of crystallized intelligence (t (48) 

= 2.41, p = 0.02) and the personality trait of openness to experience (t (48) = 2.31, p = -.02).  

Table 4.1 

 Participant Characteristics 

 Young 

(N=18) 

Old  

(N= 32) 

 T test results 

 M SD M SD p T 

Age 23.23 2.45 68.45 4.56 <.001* 1.68 

Education 14.7 1.62 16 2.31 0.007* -2.83 

Divergent Thinking 2.79 0.58 2.71 0.38 0.55 -0.61 

Crystallized Intelligence 122.43 20.13 133.54 12.59 0.02* 2.41 

Fluid Intelligence 105.16 27.55 102.14 13.81 0.61 -0.51 

BFAS Openness to Experience  3.47 0.53 3.8 0.45 0.02* 2.31 

*significant at an alpha of 0.05 

Correlation Results.  

 

After controlling for effects of personality, divergent thinking in young adults showed a 

significant correlation with fluid intelligence [ pr (15) = 0.58, p = 0.016, 95% CI: 0.181 – 0.85] 
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as well as crystallized intelligence [pr (15) = 0.59, p = 0.013, 95% CI: -0.006 – 0.852, see Figure 

4.1].  

 

Figure 4.1. Partial correlation for young adults, after controlling for the effect of openness to 

experience, between fluid intelligence and divergent thinking (Panel A) and crystallized 

intelligence and divergent thinking (Panel B). X and Y axis values reflect residual values, after 

the effect of personality is controlled for.  

 

 

 

 

 



 95 

 

In older adults, after controlling for personality, there was a significant correlation 

between divergent thinking and fluid intelligence [pr (29) = 0.38, p = 0.03, 95% CI: -0.05 – 

0.66). However, the correlation between divergent thinking and crystallized intelligence was not 

significant [pr (29) = 0.20, p = 0.28, 95% CI: -0.19 – 0.49].  A Z-transformation of these 

correlations showed that they were not significantly different between young and older adults (Z 

= 0.738, p = 0.46) Figure 4.2 shows these correlations.  
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.  

Figure 4.2. Partial correlation for older adults, after controlling for the effect of openness to 

experience, between fluid intelligence and divergent thinking (Panel A) and crystallized 

intelligence and divergent thinking (Panel B). X and Y axis values reflect residual values, after 

the effect of personality is controlled for.  
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Post-hoc Multiple Regression Analyses. 

 

To further interrogate the associations between age, intelligence-type and creative ability, 

two additional multiple regression analyses were conducted. The first model investigated the 

predictive effect of personality, crystallized intelligence, age and the associated interactions of 

intelligence and age on divergent thinking. The model as a whole was significant, F (4, 45) = 

3.14, p = 0.02. Openness to experience (t (3) = 1.55, p = 0.14, standard beta = 0.19), crystallized 

intelligence (t (3) = 1.02, p = 0.31, standard beta = 0.006) and age (t (3) = -0.89, p = 0.31, 

standard beta = -0.92) were not significant predictors of creative ability. The interaction between 

crystallized intelligence and age was also not a significant predictor of creative ability (t (3) = 

1.18, p = 0.25, standard beta = 0.009) 

The second post-hoc multiple regression analysis investigated the predictive effect of 

personality, fluid intelligence, and, age and, the associated interactions of intelligence and age on 

divergent thinking. The model as a whole was significant, F (4, 45) = 4.71, p = 0.002.  Fluid 

intelligence was a significant predictor of divergent thinking across all participants (t (3) = 2.023, 

p = 0.04, standard beta = 0.01) and accounted for 23.25% of the variance observed in creative 

ability. Openness to experience (t (3) = 0.75, p = 0.46, standard beta = 0.09) and age (t (3) = -

0.19, p = 0.85, standard beta = -0.13) were not significant predictors of creative ability. The 

interaction between fluid intelligence and age was also not significant in predicting creativity (t 

(3) = 0.314, p = 0.75, standard beta = 0.002).  

 

Discussion 

 

This preliminary investigation investigated whether age-related cognitive changes 

marked by a shift from fluid to more crystalized abilities resulted in a shift in the cognitive 

architecture associated with creative cognition from young to older adulthood. The results of 
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Studies 1 and 2 provided evidence for a shifting neural architecture towards default-executive 

coupling which was associated with creative ability in older adults. Consistent with previous 

work (Benedek et al., 2014; Silvia & Beaty, 2012), creative ability was associated with fluid 

intelligence in young adult in our sample. Surprisingly, there was also a reliable association 

between crystallized intelligence and creative ability in this younger cohort. Further, contrary to 

the hypotheses, there was a significant correlation between fluid intelligence, but not crystallized 

intelligence, for older adults. However, this relationship did not significantly differ between 

young and older adults, warranting further study. Post-hoc analyses revealed that fluid 

intelligence is a significant predictor of creative ability in both young and older adults.  

 These preliminary findings suggest that fluid intelligence is associated with creative 

ability for both younger and older adults. These data are consistent with prior work in young 

adults which posits a role for top-down, or goal-directed, control of attention to support creative 

ability. Much of the evidence for such an association is founded on latent variable studies 

showing effects of fluid intelligence (Beaty et al., 2015), working memory capacity (Lee and 

Therriault, 2013; Süß et al., 2002) and verbal fluency (Benedek et al., 2014; Silvia, Beaty and 

Nusbaum, 2013) on creative cognition. In young, these fluid cognitive abilities are hypothesized 

to facilitate divergent thinking by exerting the necessary top-down control of neural resources to 

guide memory retrieval and inhibit salient but unoriginal ideas (Beaty & Silvia, 2012; Silvia and 

Beaty, 2012; Benedek et al., 2014; Gilhooly et al., 2007; Beaty et al., 2014b).  

 Consistent with this idea theories of creativity have highlighted the importance of core 

executive functions including inhibition, updating and shifting in subserving creative ability 

(Koestler, 1964; Mednick, 1962; Nijstad, De Dreu, Rietzschel, & Baas, 2010). Investigations 

into the relationship between inhibition and working memory and creative cognition in young 
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have produced equivocal findings (Benedek et al., 2014; de Dreu et al., 2012; Dorfman et al., 

2008; Lee & Therriault, 2013; Vartanian, Martindale, & Kwiatkowski, 2007). However, there is 

widespread consensus in investigations of shifting and creativity, that creative ability requires 

flexibility in thought processes (Ashby et al., 1999; Benedek et al., 2014; Rowe et al., 2007;). In 

the current study, fluid intelligence composite measures were computed using an aggregate score 

on assessments tapping each of these executive function abilities. Thus, while there may be 

process specific associations, fluid cognitive ability, more broadly appears to be positively 

associated with creative cognition. Moreover, this association was reliable for both young and 

older adults.  

 In contrast to the hypothesized findings, crystallized intelligence was not associated with 

creative cognitive ability for older adults, despite their larger repertoire of prior knowledge.  In 

contrast, a significant relationship was observed between crystalized IQ and creative cognition 

for young adults, and post hoc analyses revealed that this a effect was indeed age-dependent. 

This absence of an association between prior knowledge and creative cognition in older adults 

was unexpected given the semanticization of cognition theory (Spreng and Turner, 2019) as well 

as the support for the default-executive coupling hypothesis in studies one and two. This could 

be in part due to two limitations of this study. First, this study was not designed as an 

examination of individual differences and was likely underpowered to detect differences. Future 

work investigating the relationship between intelligence and creativity in aging may need to 

account for this. Second, we were limited in this study to a composite measure for crystallized 

intelligence which was derived from two vocabulary-based measures. This estimate of 

crystalized intelligence, while based on commonly-reported measures of vocabulary knowledge, 

may be too narrow to detect an association between prior knowledge and experiences, more 
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broadly defined, and creative cognition. As suggested in studies one and two, default-executive 

coupling is indicative of greater reliance on internally directed, self-referential processes which 

in turn may be accessed to support creative thought in older adults. In this context, a broader 

estimate of prior knowledge, beyond simply vocabulary knowledge may be necessary to detect 

these associations. Consistent with this idea, a recent report demonstrated an association between 

semantic autobiographical memory and default-executive coupling in older but not younger 

adults (Spreng et al., 2018). Future studies will require a broader sampling across multiple 

domains of prior knowledge to better characterize the contribution of crystalized IQ to creative 

cognition.  

 This study provided an early investigation into the role of fluid and crystalized 

intelligence in creative ability for young and older adults. While our hypotheses were only 

partially supported by these preliminary findings, future research, involving lager sample sizes, 

individual difference study designs, and a more comprehensive assessment of prior knowledge, 

will be necessary to more accurately map the relationship between the shifting architecture of 

cognition and creative abilities across the adult lifespan. Specifically, adequately powered 

samples and latent variable analyses applied to multiple assays of executive function and 

crystalized cognitive abilities are needed to fully evaluate whether the cognitive substrate of 

creative cognition differs for younger and older adults. The brain-based investigations reported 

in studies one and two of the dissertation suggest that greater interplay between cognitive control 

and prior knowledge is a feature of creative cognition in older versus younger adults. Future 

examinations aimed at investigating the behavioural substrates of the reported neural correlates 

of creativity will be an important future direction for research in the field of creativity and aging.   
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CHAPTER FIVE  

 General Discussion 

 

Creativity has been associated with adaptive and positive functioning across multiple 

domains of daily living (Runco, 2004). While much research has focused on younger adults, 

recent studies (e.g. Palmiero et al., 2014; Addis et al., 2016) suggest that creative cognitive 

ability is preserved into older age, and may be important for successful aging. Over the last 

decade a growing body of research has investigated how creative cognition is manifest in the 

functional network architecture of the brain, yet again much of this work has been conducted 

with younger adults (e.g. Vartanian et al., 2018; Gonen-Yaacovi et al., 2013; Wu et al., 2015; 

Beaty et al., 2015). Given the known changes in cognition and brain function that occur with age, 

this raises intriguing questions as to how creativity may be sustained into older adulthood and 

whether age-differences in brain and behavioural associations might suggest an altered 

architecture of creative cognition in later life. At the time of writing, there are no published 

reports examining the neural correlates of creativity in a typically aging population. To address 

this research gap, this dissertation sought to identify the neural network correlates of creative 

cognition in the aging brain. Two primary research questions were addressed. First, does the 

neural network architecture associated with creative task performance differ between older and 

younger adults? Study one provides the first evidence that, despite preserved performance on a 

creative thinking task, networks subserving creativity (Beaty et al., 2015) are altered in older 

adulthood. Study two investigated whether age-differences in the neural architecture of creative 

cognition are measurable at the level of intrinsic brain networks. The findings from study two 

show that this is indeed the case. Beyond task-driven differences, altered patterns of resting state 

functional connectivity associated with creative ability suggest that differences in the neural 

substrate of creative cognition are more entrained and durable, potentially reflecting an enduring 
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shift in the cognitive architecture of creativity across the adult lifespan.  This latter possibility 

was explored in a final, preliminary study exploring the cognitive correlates of creative cognition 

in young versus older adults. This study showed that creativity, measured here as divergent 

thinking ability, was associated with fluid, or cognitive control ability in young and old. 

However, contrary to predictions, creativity was associated with crystalized or semantic abilities 

only for younger adults.    

This general discussion first summarizes the key findings from the experiments designed to 

address each aim. Next areas of convergence and divergence between the task-based and 

intrinsic connectivity studies are discussed with respect to the shifting neural architecture of 

creativity in later life.  The final section of the Discussion considers whether these results, while 

specifically addressing creativity, can inform a broader conceptualization of the shifting network 

architectures of cognition and brain function across the adult lifespan.  

Key Experimental Findings. 

 

Study one investigated whether there were age-related differences in neural networks 

during creative task performance. Despite equivalent behavioural performance between age 

groups, older adults displayed greater functional connectivity between nodes of the default and 

executive control networks, consistent with previous research showing a similar network in 

younger adults (Beaty et al., 2015). While the current studies cannot address this possibility 

directly, two recent reports suggest a potential explanation for these findings. In these studies, an 

episodic simulation technique was used to investigate the impact of episodic memory on creative 

cognition as measured by performance on a divergent thinking task (Madore et al., 2015, 2016). 

Both younger and older adult performance on the creativity task was enhanced following an 

episodic simulation. The authors considered this as evidence that creative cognition is, at least in 
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part, dependent on episodic memory processes. Importantly, older adults, despite known declines 

in episodic memory ability, continued to benefit from the episodic simulation technique. This 

suggests that older adults engage mnemonic processes to support creative cognition in later life. 

As memory is increasingly semanticized in later life (Spreng et al., 2018; Svoboda et al., 2006), a 

possible inference is that older adults would display relatively greater engagement of brain 

regions implicated in personal semantics, including nodes of the default network. In turn, 

engagement of executive control regions is modulated by demands for cognitive control during 

creative task performance (Beaty et al., 2015). As older adults show greater engagement 

executive control regions at a similar levels of task demand (e.g. Reuter-Lorenz and Cappell, 

2008), older adults would be expected to co-activate executive control and default network brain 

regions during divergent thinking, reflecting engagement of both mnemonic and executive 

control processes to support task performance. Consistent with predictions, the task-based 

findings reported here align with a recent model of neurocognitive aging, the default-executive 

coupling hypothesis of aging (DECHA, Turner and Spreng, 2015).  In this account, older adults 

demonstrate greater, and less flexible, coupling of default and executive control regions during 

goal-directed tasks. This enhanced coupling is postulated to reflect increased engagement of 

semantics, or stored prior knowledge representations, during task performance in older adults. 

On tasks where this prior knowledge is irrelevant or distracting to task goals, performance 

declines (Rieck et al., 2016; Turner and Spreng, 2015). However, to the extent that prior 

knowledge is congruent with task goals, this pattern of increased coupling is associated with 

enhanced performance, at least in young (e.g. Spreng et al., 2014). Taken together, the findings 

from the task-based study, and previous results involving episodic simulation (Madore et al., 
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2016) suggest that increased default-executive coupling reflects greater recruitment of prior 

knowledge during divergent thinking in later life.  

Having identified a task-driven mechanism associated with creativity in later life, the 

next study investigated whether the shift in brain networks towards greater default-executive 

coupling observed during divergent thinking in older adults may reflect a more enduring shift in 

network interactions, measureable at the level of intrinsic, or task-free, network connectivity. 

Consistent with the DECHA and earlier studies in young (Beaty et al., 2015) and old (e.g. 

Madore et al., 2015, 2016), the prediction was that greater intrinsic coupling of default and 

executive control brain regions would be positively associated with creative ability. To test this 

hypothesis, RSFC methods were used to derive measures of functional connectivity within- and 

between- networks implicated in task-based studies of creativity. In this second sample of 

younger and older adult participants, there were no significant age differences in creative 

cognition, measured on the divergent thinking task. Further, default and executive networks 

show greater and more distributed interactivity in older adults, and this pattern more robustly 

predicts creative ability. Specifically, older adults have greater intrinsic coupling between key 

nodes of the default network and both the fronto-parietal network and salience network 

components of the broader executive control network. In contrast, the brain-behaviour pattern 

observed in younger adults included greater within-network coupling and a more circumscribed 

pattern of default-executive coupling, as reported previously (Beaty et al., 2015).  

These findings are consistent with those from the task-based study where, despite 

equivalent performance, older adults relied on greater default-executive coupling to support 

creative cognition. This indicates that the task-driven shift in neural architecture towards 

increased default-executive coupling, and presumably a greater reliance on prior knowledge, is 
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reflected in the intrinsic organization of the aging brain. Further, as default-executive coupling 

more robustly predicted older adult performance on a creative task, this pattern of network 

interactivity may serve as a neural marker of creativity in later life. A similar pattern of network 

interactivity has been observed in younger adults during creative task performance. These 

network interactions are postulated to support interference resolution as prior mnemonic 

representations intrude into creative thought processes necessitating cognitive control to 

overcome past knowledge representations and support novel idea generation (Beaty et al., 2017). 

In this context, greater intrinsic coupling of default and executive brain regions may reflect an 

entrained pattern of activation or suppression of a larger store prior knowledge in support of 

creative cognition. Unfortunately, we cannot distinguish between the suppression versus 

activation accounts with the current data. However, evidence that episodic simulation enhances 

creativity in older adulthood, in the context of declining control processes, suggests that 

accessing mnemonic representations may serve to enhance creative cognition in later life. 

Greater coupling at rest between default and executive networks may therefore reflect an 

entrained pattern of strategic semantic retrieval (a capacity well preserved in later life, Hoffman 

et al., 2018) to access and subsequently reconfigure prior knowledge to formulate novel 

constructs. This pattern of intrinsic functional connectivity, which is a robust predictor of 

creative ability in older adulthood, may serve to potentiate coupling of these regions during 

creative task performance, consistent with findings from study one. Whether the intrinsic 

functional connectivity patterns are a consequence or cause of the task-driven pattern cannot be 

determined using the cross-sectional, correlational design implemented here. However, these 

data provide an important empirical foundation for future research using causal (e.g. transcranial 
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magnetic stimulation) and longitudinal experimental designs. This possibility is discussed further 

as a future direction below.  

Building upon these cognitive neuroscience investigations, which suggest that prior 

knowledge representations play a larger role in creative cognition in later life, a third exploratory 

behavioural study was conducted to investigate whether creativity was in fact correlated with an 

index of prior knowledge in older versus younger adults. While sample sizes were insufficient to 

conduct an adequately powered factor analytic investigation of the cognitive correlates of 

creative cognition (i.e. divergent thinking task performance), all participants were part of a larger 

study of cognitive and brain aging, enabling us to conduct a preliminary investigation of this 

possibility. Contrary to the hypotheses, there was no significant correlation between crystalized 

intellectual ability and divergent thinking performance for either age group.  In contrast, fluid 

intelligence was a significant predictor of creativity for in both age cohorts. As discussed in 

study three, this may reflect a lack of statistical power to detect smaller associations. However, 

an alternate explanation concerns the measure of crystalized knowledge used here. Most 

investigations of semantic or crystalized knowledge involve vocabulary knowledge or 

knowledge of verbal concepts. It is possible, if not likely, that these forms of highly semanticized 

knowledge are difficult to reconfigure into novel constructs. In contrast, creative cognition in 

older adulthood may rely on personal experiential knowledge, a domain of prior knowledge not 

indexed by our standard measure of crystalized cognition. This interpretation is consistent with 

the prominent role for the ventral medial prefrontal cortex, identified in our resting-state analyses 

as a between-network hub. This core node of the default network has been associated with access 

to personal semantics, or crystalized experiential knowledge (Bonnici and Macguire, 2017). 
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Thus, functional connectivity of this region in older adulthood may signal greater reliance on 

personal semantics which we were unable to directly measure here.  

Taken together, using an in-scanner task based approach and standard offline measures of 

divergent thinking, these studies demonstrate that creative ability is preserved in a typical aging. 

Greater and more distributed functional coupling between default and executive control 

networks, both during task and at rest, may be adaptive and facilitate creative cognition in older 

adulthood. The next section further integrates these findings towards the goal of developing a 

neural network model of the creative aging brain.   

The Creativity Network in Older Adulthood: Integrating Evidence from Task and Rest. 

 

Results from this dissertation drawing upon task-based and intrinsic connectivity 

approaches provide support for a default-executive neural network mechanism supporting 

creative cognition in older adults. In young adults, default-executive network coupling has been 

associated with creative thought (Beaty et al., 2016). Within this framework, the default network 

is postulated to support idea generation by engaging episodic and semantic processes in the 

service of task goals. Coupling between the default and the salience network component of the 

broader executive control network facilitates the redirection of attentional resources towards 

mnemonic representations necessary to generate novel ideas. Once ideas have been generated, 

default coupling shifts to the frontal parietal control network to filter out non-relevant 

information and determine alignment with task goals (Beaty et al., 2016).  The findings from the 

studies reported here suggest that older adults express this network pattern more robustly and this 

may support creative cognition in later life. However, there are several areas of convergence and 

divergence between the task and resting state studies that may help to further characterize the 

neural mechanisms underlying creativity in healthy aging.  
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Evidence from both resting-state and task-based functional connectivity studies highlight 

the role of the vmPFC in creative cognition in older adults. The vmPFC is a core node of the 

default network implicated in self-referential processing (Andrews-Hanna et al., 2010). During 

task-based creativity in older adults, the left vmPFC is significantly functionally connected to the 

left middle temporal gyrus, a region critical for supporting semantic knowledge (Levy, Bayley 

and Squire, 2004). The current data suggest that during the divergent thinking task, older adults 

generate creative ideas in part through access to personal and general semantics mediated by 

coupling of vmPFC and middle temporal gyrus regions (Table 2.2; Figure 2.3). The vmPFC may 

be a critical node facilitating engagement of a vast repertoire of personal semantic knowledge as 

well as general semantic knowledge mediated by the medial PFC and lateral temporal lobes 

respectively.  During both task and rest, connectivity of the left and right vmPFC was predictive 

of creative cognition, possibly signalling relatively greater reliance on internal mentation 

processes, including activation of prior knowledge of oneself and the world to support creativity.  

Functional connectivity among key nodes of the salience network was also associated 

with creative cognition during both task and rest. The salience network is implicated in the 

direction and reallocation of attentional resources to task goals (Seeley et al., 2007; Uddin et al., 

2015). Here, greater connectivity within the salience network for older adults may reflect 

increased demand for internally directed attention necessary to engage default network brain 

regions related to idea generation. Consistent with this idea, within-network coupling of the 

salience network has been associated with default network function (Chiong et al., 2013; Jilka et 

al., 2014; Sridharan et al., 2008).  

In contrast, a different pattern of between-network connectivity was observed during rest 

versus task. Older adults showed extensive interactivity between default and executive control 
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subsystems (fronto-parietal and salience) at rest that was associated with creativity. However, 

during task performance this connectivity pattern was more circumscribed. Resting state 

functional connectivity reflects entrainment of task-based connectivity patterns repeated over 

time. This may, in turn, lead to a potentiation of these intrinsic connectivity patterns during task 

performance, albeit in more circumscribed connectivity profile driven by specific task demands 

(Stevens & Spreng, 2014).  In this model, the default network couples with the salience network 

and the fronto-parietal network at different stages of creative thought. For younger adults, idea 

generation involves the coupling of (1) posterior cingulate cortex and right anterior insula, 

followed by idea evaluation marked by coupling of (2) posterior cingulate cortex and the right 

dorsolateral PFC during idea evaluation (Beaty et al., 2015). In our study, older adults showed a 

different pattern of task-based connectivity of the right insula, that was limited to the left inferior 

temporal gyrus, with other salience network nodes showing a more diffuse pattern of 

connectivity to posterior cingulate cortex and vmPFC. This suggests a different neural 

mechanism for creative idea generation in older adults. While speculative, this may reflect a 

redirecting of attentional resources to access general and personal knowledge based 

representations associated with salience default network coupling. This age-related difference in 

functional connectivity patterns may suggest greater reliance on mnemonic retrieval processes or 

post-retrieval monitoring processes, affiliated with anterior nodes of the default network.  

 A second area of divergence between the task-based and resting-state findings can be 

observed in the connectivity profile of the vmPFC, a core anterior node of the default network. 

During the divergent thinking task, the left vmPFC was significantly more functionally coupled 

with the left middle temporal gyrus (See Figure 2.3). However, during rest, connectivity of this 

region is more widespread to homologous regions as well as default and salience network nodes 
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(See Figure 3.2). While both patterns suggest a relationship between within-network default 

network connectivity and creativity, the different connectivity profiles of the vmPFC again 

suggest that task demands may alter the core intrinsic features of the creativity network, and its 

default aspect specifically. The vmPFC is implicated in the consolidation of autobiographical 

memories (Bonnici and Maguire, 2017) while the middle temporal gyrus is associated with 

general semantics, or crystalized knowledge such as word meaning (Jeffries, 2013). Task-based 

connectivity between vmPFC and middle temporal regions may reflect engagement of word 

meaning, elicited by the task stimuli, and subsequent integration with personal experiential 

knowledge of the displayed object, mediated by the vmPFC.  

‘Novelty’ is fundamentally a relative term, adjudicated by its dissociation from prior 

knowledge. Thus, engaging personal past knowledge is a precondition for generating novel 

object uses. At the level of the brain, it follows that accessing word meanings, and mapping 

those meanings to personal semantics is necessary to determine whether a thought or action is 

indeed novel. Interestingly, intrinsic connectivity between vmPFC and middle temporal lobe 

structures did not predict creativity for older adults. This further highlights the enduring 

importance of vmPFC as an amodal gateway, within the broader creativity network, charged 

with accessing personal past knowledge necessary for generating and evaluating a response as 

novel. In contrast, connectivity to middle temporal lobes during the divergent thinking task may 

reflect a more modality-specific access to word meaning in response to visual or possibly, visual 

to verbally-transformed, task stimuli, prior to mapping these meanings to past experiential 

knowledge. This explanation is also consistent with our failure to observe significant correlations 

between measures of crystallized intelligence and divergent thinking performance in older adults. 

While standardized measures of crystallized intelligence typically assess general knowledge, a 
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measure of personal semantics may be necessary to detect the role of prior knowledge in creative 

task performance on older adulthood.    

Default-Executive Coupling and Creative Cognition 

 

In the context of equivalent divergent thinking performance, the results of the task and 

resting state neuroimaging studies suggest that greater coupling of default and executive control 

networks may support creative cognition in older adulthood. These findings are consistent with 

the scaffolding theory of aging and cognition (STAC; Reuter Lorenz and Park, 2009). In this 

account, the typically aging brain undergoes both structural and functional changes that may lead 

to age associated cognitive decline. These changes include cortical thinning, regional atrophy, 

loss of white matter integrity, dopamine depletion (Spreng and Turner, 2018). There are also 

changes in functional activation in the aging brain, including bilateral activation of prefrontal 

cortices in older adults. Within the STAC model, cognitive functioning is determined by a 

combined effect of both the negative effects of structural and functional changes, but also 

beneficial processes referred to in the STAC model as compensatory scaffolding. Compensatory 

scaffolding can offset the deleterious consequences of changes in the aging brain. Specifically, 

this scaffolding involves the recruitment and engagement of additional brain regions to provide 

the necessary neural support to sustain cognitive function into older age. Compensatory 

recruitment can occur in the form of bilateral activation in prefrontal regions or additional 

engagement of frontal and parietal regions (Cabeza and Dennis, 2012; Spreng et al., 2010).  

Consistent with a compensatory scaffolding model, these data suggest that greater 

default-executive coupling in older adults may serve as a compensatory neural scaffold to 

support creative cognition. Older adults demonstrated greater connectivity between the right 

inferior frontal gyrus and medial superior frontal gyrus (Figure 2.5). In young adults, the right 
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inferior frontal gyrus via its connectivity with the bilateral inferior parietal lobes (Beaty et al., 

2014; 2018; Varatanian et al., 2018) exerts top down control to support creative cognition (Beaty 

et al., 2014; Vartanian et al., 2018). In older adults, right inferior gyrus was engaged during 

creative thought; however, it is more connected to the medial PFC node of the default network, 

as compared to the middle temporal gyrus and inferior parietal lobe in young adults (Vartanian et 

al., 2018). This evidence supports the STAC model, where compensatory scaffolding stemming 

from the right inferior frontal gyrus to the self-referential subsystem of the default network 

(Campbell et al., 2013), including the medial superior frontal gyrus, supports creative thought in 

older adults. Here, the self-referential system of the default network may serve to activate prior 

experiential knowledge which is later reconfigured during novel idea generation. As noted by 

Beaty and colleagues, this process is aided by inhibitory and monitoring processes during the 

ideas evaluation stage. This coupling of critical default and executive nodes can allow for 

successful reliance on semanticized knowledge and its effective use, when the task demand of 

creativity can benefit from processes subserved by the default network.  This may reflect a 

compensatory shift in strategy towards greater reliance on acquired and accumulated knowledge.  

The hypothesis of compensatory default-executive scaffolding in aging as a neural 

mechanism supporting creative cognition is further supported by the examination of differences 

in connectivity between salience and default networks in older versus younger adults. For young 

adults, the right anterior insula is implicated in switching from idea generation to idea evaluation 

(Beaty and Schacter, 2016). In the task-based experiment, a similar pattern is observed during 

divergent thinking for young adults. In young adults, the right anterior insula is functionally 

connected to hubs of the default network including the posterior cingulate cortex and precuneus 

at early stages of divergent thinking (Beaty et al., 2015). This is thought to be a facilitative 
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mechanism allowing default and executive control mechanisms to couple during the latter, idea 

evaluation stage of creative thought. In older adults, during the same task, the right anterior 

insula is functionally connected to the inferior temporal gyrus node in the default network in 

older adults, and that other salience network nodes show greater connectivity to the default 

network (Figure 2.5). This pattern of increased between-network connectivity for older adults is 

interpreted here as reflecting greater reliance on representational knowledge (both general and 

personal semantics) to support equivalent divergent thinking abilities for older adults.  

Further evidence to suggest that default-executive coupling may serve as a scaffold to 

support creative cognition in older adulthood can be found in the connectivity patterns of the 

vmPFC both during task (Figure 2.5) and rest (Figure 3.3). During rest, older adults showed 

greater connectivity between left and right vmPFC and between bilateral vmPFC and other 

default and salience network nodes. During the divergent thinking task, the left vmPFC showed 

greater connectivity with the middle temporal gyrus and the precentral gyrus. Its coupling at rest 

with other nodes of salience and fronto-parietal networks is notably different than the 

connectivity profiles observed in young, where dorsomedial prefrontal regions are more 

connected to core nodes of the default (posterior cingulate cortex) and salience (anterior insula) 

networks (Beaty et al., 2018). In the resting state findings reported here, young adults showed 

greater connectivity between left vmPFC and other nodes of the default network as well as nodes 

of the fronto-parietal and salience networks.  Further, older adults in the task-based study 

demonstrated connectivity between the vmPFC and the middle temporal gyrus in older adults 

that is not observed in young. As noted above, the vmPFC is important for memory 

consolidation (Bonnici and Maguire, 2017). During divergent thinking, it is connected with the 

middle temporal subsystem of the default network necessary for memory construction and future 
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projection (Schacter et al., 2007). Here the scaffolding necessary to support divergent thinking 

can be inferred as arising from the engagement of general and personal semantic representations, 

which may be reconstituted to support novel idea generation.  

Future Directions 

 

Examinations of creativity from a biopsychosocial perspective suggest that creativity into 

older adulthood is critical for maintaining an agentic self-view, independence and a positive 

personal self-view that promotes better mental health (Duhamel, 2016; Runco, 2004). Future 

investigations of creative ability in aging may provide a novel lens through which we can 

understand the implications of creative thought in successful aging. In this dissertation while 

conducting resting state and task-based investigations to examine the neural correlates of 

creativity in older adults, it was not possible to establish if these patterns of connectivity were 

causal. The analyses reported here are unable to establish if task-based patterns of functional 

connectivity during creative thought processes were influenced by changes in the intrinsic 

connectivity patterns of the aging brain or vice versa. One line of investigation can potentially 

examine both intrinsic and task-based functional connectivity during creativity in a larger subset 

of older adults, using an individual differences approach. Within this approach, it is important to 

consider longitudinal methods and data sampling over multiple time points, to establish if 

creative thought processes subserved by default-executive coupling lead to changes in the 

intrinsic connectivity of the brain or vice versa. Within this approach, fMRI based investigations 

can take advantage of repeated measurements of performance on creative measures and intrinsic 

connectivity to investigate whether they influence each other.  

 An important future direction for research is to investigate causal mechanisms, not only 

between patterns of intrinsic and task-based connectivity related to creativity, but also within 



 115 

specific network nodes. Current mathematical and neuroimaging modelling has provided a path 

for this work to emerge, and early work has examined the casual effects of nodes within the 

creative network (Vartanian et al., 2018). Using dynamic causal modelling, this work has shown 

that the right inferior frontal gyrus unilaterally controls activation in the middle temporal gyrus 

and inferior parietal lobe in young adults during creative thought processes, suggesting a causal 

role of the inferior frontal gyrus in mediating between-network connectivity. Following this line 

of investigation and modelling approach will be equally important in older adults, where it is 

unknown if the pattern of default-executive coupling giving rise to creativity may be similarly 

influenced by critical nodes allowing greater access to prior knowledge. The vmPFC could be a 

key node in this regard by providing a gateway to vast repertoire of stored representational 

knowledge. Through a dynamic causal modelling approach using resting state analyses in a 

larger subset of older adults, this hypothesis can be directly tested by examining the nature of 

control exerted by the vmPFC on other nodes of the creativity network in young and older adults.  

 Another approach to establishing causality and determining which nodes are key in 

giving rise to creativity, or even improving creativity, is via the use of neurostimulation 

techniques. Early work in this domain has used transcranial direct current stimulation (tDCS) of 

the left dorsolateral PFC to show that cathodal tDCS, that suppresses the left dorsolateral PFC, 

leads to greater creativity by reducing the effect of learned constraints (Chrysikou et al., 2012; 

Luft et al., 2017). Another recent study has shown that stimulation of the fronto-polar cortex, via 

anodal tDCS, leads to improvements in creative ability as measured by creative task performance 

(Green et al., 2016).  While this work remains in its infancy, it provides a novel approach to 

examining the use of stimulation via both suppression and enhancement of cortical nodes that are 

implicated in creativity. Default-executive coupling, facilitating retrieval and access to stored 
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and representational knowledge, may be critical for maintaining creativity in older adults and 

may in part be mediated by the vmPFC. Through the use of tDCS and/or transcranial magnetic 

stimulation, future research can aim to modulate vmPFC activity indirectly via stimulation of 

lateral nodes (as in Chrysikou et al., 2012) and look at whether in older adults the ventromedial 

exerts a casual influence on creativity.  

  Thus far, the discussion has focused on domain general forms of creative cognition. 

Domain specific forms of creativity and their associated neural underpinnings, such as musical 

and artistic ability, are an under-studied area of research in the aging population. Earlier the 

pattern of default-executive coupling supporting creative cognition into older adulthood was 

identified as a putative compensatory neural scaffold. Given this, it is important to consider if 

this compensatory scaffold is also important in subserving other forms of creative cognition, 

such as those that are domain specific such as musical ability, that are representative of cognitive 

reserve (Stern, 2003). An aspect of cognitive reserve is the participation in leisurely activities, 

some of which may be hobbies such as music, creative writing and so forth. Future investigations 

of creativity focused at domain specific forms of cognition in aging may hence be useful in 

furthering this program of research in understanding the neural correlates of compensatory 

scaffolding that can be beneficial to older adults. Finally, from a translational standpoint, these 

data, suggesting that default-executive coupling may support creativity in older adulthood, opens 

potentially novel avenues for intervention design to sustain cognitive health in later life. First, as 

creativity is associated with successful aging, interventions aimed at strengthening default-

executive coupling, for example leveraging tDCS techniques (see above) may serve to sustain 

creativity in later life. Alternatively, training in divergent thinking may be integrated into 

multifaceted cognitive training interventions to enhance the flexibility of default-executive 
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coupling in older adulthood. This in turn may lead to more generalized gains in goal-directed 

cognition where prior knowledge may be leveraged to support or potentially compensate for 

declining control abilities.    

 

Conclusions 

 
Overall, findings reported in this dissertation demonstrate that the neural network architecture of 

creativity differs between younger and older adults. Previous work has shown that large scale 

functional networks of the brain, including default and executive control networks show 

coordinated patterns of activity that give rise to creative cognitive processes in young adults. The 

default-executive coupling hypothesis of aging proposes that this pattern of network coupling 

reflects an overall age-related shift towards semanticized cognition and is beneficial to older 

adults when they faced with tasks whose demands rely on stored representational knowledge. 

The findings reported here suggest that default-executive coupling may serve as a compensatory 

neural scaffold to help sustain creative cognition into older adulthood. Further, across both task-

based and resting state analyses examining creativity, the vmPFC emerged as a key node. These 

data implicate the vmPFC as a gateway node in allowing older adults to access semanticized 

knowledge to generate creative ideas. Investigating the role of the vmPFC and as between-

network hub regions will be an important avenue for future research.  

Given the infancy of creativity research in particularly the aging population, a focus on 

proof-of-concept studies using well-established tasks, beyond divergent thinking, should be a 

key focus of future research programs. A focus on more functional or real-world tasks, will allow 

researchers to examine whether the afore mentioned pattern of default-executive coupling in 

aging is generalized across different forms of creative cognition and its expression in more 
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ecologically-valid contexts. Taken together, research investigating the neural network basis of 

creativity in older adulthood will lay the necessary foundation for more translational research to 

sustain creative cognition in later life.  
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Appendix A 

 

Methods 

Participants 

22 old (mean age = 68.9 years, SD = 5.27; 11 females) and 22 young (mean age: 24.76, SD = 

3.36;15 females) were included in the current study and were recruited from the community and 

participated in a comprehensive cognitive test battery and magnetic resonance image (MRI) 

scanning as part of a larger ongoing study. Participants received monetary compensation for their 

time (equivalent to $50 for the MRI scan and $10 CAD per hour). To be eligible for the study, 

participants had to be: a) over age 60; b) right-handed; and c) a fluent English speaker. Exclusion 

criteria included any MRI contraindications and/or a history of neurological, neuropsychiatric, or 

cardiovascular disease. All participants provided informed consent consistent with procedures 

approved by the Institutional Review Board of York University. All participants were 

cognitively healthy based on subjective reports and had MMSE scores greater than 24.  

Previous work has shown that both creative ability (Feist, 1998; McCrae, 1987; Silvia, 

Nusbaum, Berg, Martin, & O'Connor, 2009) and default network engagement (Beaty et al., 

2018b) are predicted by the ‘Big-Five’ personality trait of ‘openness’. Given that our participants 

were a subsample of a larger ongoing study, we chose to match our participants on the 

personality trait of openness. Previous work has shown that intrinsic coupling between networks 

implicated in creativity are also related to openness to experience (Beaty et al., 2018) and that 

divergent thinking is associated with openness to experience (Feist, 1998; McCrae, 1987; Silvia, 

Nusbaum, Berg, Martin, & O'Connor, 2009). Thus, we chose to match our young and older 
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adults on personality to ensure that between group differences were not due to differences in 

personality.   

In the larger sample of participants, 22 young adults (mean age: 24.76, SD = 3.36; 15 

females) and 44 older adults (mean age: 69.80, SD = 7.05; 24 females) had completed both the 

divergent thinking measures and a comprehensive personality inventory, the Big Five Aspect 

Scales (BFAS). A two-tailed t-test revealed that there was a significant difference in self-

reported openness to experience between young (M = 3.52, SD = 0.26) and older adults (M = 

3.81, SD = 0.24), t (64) = -2.19, p = 0.032, Cohen’s d = 1.16). Given prior work associated 

creativity and personality and the rationale set up above, we matched a subset of older adults to 

our young adult sample on the personality trait of openness to experience, based on Big-Five 

Openness (BFAS-O) scores. We obtained two groups with 22 young (mean age = 24.76 years, 

SD = 3.39) and 22 older adults (mean age = 68.9 years, SD = 5.27) who were then subsequently 

used in analyses and did not differ significantly BFAS-O scores, t (42) = -1.05, p = 0.29.  

 
Analysis Approach  

Regions of interest 

Next, we took a within-group approach to examine creativity associated patterns of RSFC among 

our networks of interest in young and older adults.  Here, we examined within group patterns of 

connectivity (young and older adults) independently, and offline measures of creativity were 

used as a second level regressor of interest in both analyses. Results were corrected for multiple 

comparisons using a false discovery rate threshold of 0.05, at the ROI level. For both groups, 

positive findings reflect patterns of ROI-to-ROI connectivity that positively correlate with 

creative ability, while negative findings indicate negative correlations with creative ability.  

Second, to look at age related differences in creativity, we used a between group analysis. Here, 
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we contrasted group level maps of ROI-to-ROI functional connectivity correlating with offline 

measures of creativity. This contrast was specified as Older Adults > Young Adults. Results were 

corrected for multiple comparisons using a false discovery rate threshold of 0.05, at the ROI 

level. For this analysis, positive findings reflect patterns of functional connectivity that correlate 

with creative ability in older adults; in contrast, negative findings indicate findings in young 

adults.   

Results 

Within-Group Patterns of Functional Connectivity Associated with Creative Ability 

Young adults showed a distributed pattern of between-network functional connectivity that 

positively predicted divergent thinking performance outside of the scanner. Functional 

connectivity between nodes of the salience network (left anterior insula) and FPN (left inferior 

frontal gyrus) and between FPN (left inferior temporal gyrus) and default networks (right 

ventromedial PFC) positively correlated with creativity ratings on the divergent thinking task. 

Right dorsolateral PFC, a node of the FPN, was significantly connected to bilateral posterior 

cingulate cortex as well as left anterior cingulate cortex, nodes of the default network and 

positively predicted creative ability in the young adult cohort. Supplementary Table 1 and 

Supplementary Figure 2 provide details for these nodes and associated connectivity results.

 For older adults, both within- and a more spatially distributed between- network 

connectivity profile was positively associated with creative task performance. Within-network 

connectivity was observed between nodes of the salience network (left insula and left 

supplementary motor area). Between-network connectivity was observed among default (right 

middle temporal gyrus) and salience (right cingulate gyrus) network nodes as well as between 

salience network (supplementary motor area) and FPN (inferior temporal gyrus) nodes. 
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Additional between-network connectivity that was positively associated with creativity was 

observed between nodes of the default network (right superior temporal gyrus) and the FPN 

(right superior frontal gyrus). Supplementary Table 2 and Supplementary Figure 3 provide 

details for these nodes and associated connectivity results. 

Age Differences in Patterns of Functional Connectivity Associated with Creative Ability 

When the brain and behavior correlation maps for both age groups were directly contrasted, a 

pattern of greater within-network connectivity was associated with better divergent thinking 

performance for the younger cohort.  Specifically, greater connectivity between default network 

nodes, including between left ventromedial PFC and left superior frontal gyrus, left medial 

frontal gyrus, left superior temporal gyrus and right dorsomedial PFC was associated with better 

divergent thinking ability for the younger participants. Young adults also had greater functional 

connectivity between default and FPN nodes associated with better divergent thinking ability, 

specifically between left inferior precentral sulcus and bilateral posterior cingulate cortex and 

between left ventromedial PFC and right inferior frontal gyrus and posterior middle temporal 

gyrus.  

In older adults, greater between-network functional connectivity was associated with better 

divergent thinking ability. Greater between-network functional connectivity, associated with 

better task performance, was also observed between salience and default networks (right 

ventromedial PFC and right intraparietal sulcus) as well as among nodes of the default, FPN and 

salience networks (left ventromedial PFC, right anterior PFC and right middle frontal gyrus). 

One significant within-network connection, between the left and right ventromedial PFC nodes 

of the default network, was correlated with better creative ability for older adults (Supplementary 

Figure 4, Supplementary Table 3). 
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Supplementary Figures 

 

Supplementary Figure 1. Visualization of our networks of interest. Regions of Interest for the 

default, cingulo-opercular and frontoparietal control networks were taken from a resting state 

parcellation by Gordon and colleagues (2014) and are represented as spheres. For illustrative 

purposes, regions of interest were superimposed on an overlay (Yeo et al., 2011) to validate 

functional network assignment. The cingulo-opercular nodes from Gordon et al (2014) overlap 

with the salience network identified in Yeo at el (2011) and is referred to as the salience network 

in our analyses.  

 

 

  



 

 

 

Supplementary Figure 2. Resting state functional connectivity correlating with divergent 

thinking ability in young adults. Color coded nodes include regions from the default network 

(DN), frontoparietal network (FPN) and salience network (SN). The color of the edges denotes 

the direction of correlation between functional connectivity and divergent thinking ability. Only 

positive correlations between ROI-to-ROI functional connectivity and divergent thinking ability 

survived a seed-level FDR correction at an alpha level of 0.05. Results correspond to findings in 

Supplementary Table 1.  

 

 

 

Supplementary Figure 3. Resting state functional connectivity correlated with divergent 

thinking ability in older adults (n = 22) matched with younger adults on the personality trait, 

openness to experience. Color coded nodes include regions from the default network (DN), 

frontoparietal network (FPN) and salience network (SN). The color of the edges denotes the 

direction of correlation between functional connectivity and divergent thinking ability. Only 

positive correlations between ROI-to-ROI functional connectivity and divergent thinking ability 

survived a seed-level FDR correction at an alpha level of 0.05. Results correspond to findings in 

Supplementary Table 2.  

 

 



 

 

 

 
Supplementary Figure 4. Group by behavior interaction for intrinsic connectivity correlated 

with divergent thinking. The figure shows resting-state ROI-to-ROI functional connectivity that 

correlates with divergent thinking ability and is significantly different between young and 

personality-matched older adults. Color coded nodes include regions from the default network 

(DN), fronto-parietal network (FPN) and salience network (SN). The color of the edges 

(connections between nodes) indicates the direction of the contrast. Red edges indicate greater 

connectivity between regions that are associated with divergent thinking in older adults, while 

blue edges indicate greater connectivity between regions that are associated with divergent 

thinking in young adults.  Results correspond to findings in Supplementary Table 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Table 1.  ROI-to-ROI connectivity positively correlating with divergent thinking 

ability in young adults (corresponding to Supplementary Figure 1).   

 

  
Network Hem Node 

 
T  p MNI Coordinates 

X Y Z 

Young Adults 

       
 

Between Network Connectivity               

SN-FPN 

Anterior Insula SN L 84 -28.8 23.7 8.4 
  

  

 

IFG FPN L 109 -43 19.4 33.5 4.24 0.04 

FPN-DN             

ITG FPN L 9 -55.9 -47.7 -9.3     

 
vmPFC DN R 279 7.2 48.4 -10 4.23 0.043 

FPN-DN-SN               

DLPFC FPN R 328 38.9 9.6 42.7 
  

  

 
PCC DN L 1 -11.2 -52.4 36.5 4.07 0.046 

 
mACC SN L 28 -9 25.3 27.7 3.72 0.047 

 
PCC DN R 162 12.3 -51.6 34.5 0.74 0.047 

Note: DN - Default Network ; DLPFC – Dorsolateral prefrontal cortex; FPN - Fronto-parietal network; Hem = 

Hemisphere; IFG – Inferior Frontal Gyrus; ITG – Inferior Temporal Gyrus; SFG – Superior Frontal Gyrus; PCC – 

Posterior Cingulate Cortex; mACC – Middle Anterior Cingulate Cortex; MTG – Middle Temporal Gyrus; R – 

Right; L – Left; vmPFC – Ventromedial Prefrontal Cortex 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Table 2.  ROI-to-ROI connectivity positively correlating with divergent thinking 

ability in older adults (corresponding to Supplementary. Figure 2).  

 

  
Network Hem Node 

MNI Coordinates 
T p 

X Y Z 

Older Adults 

       
 

Between Network Connectivity               

DN-FPN 

SFG FPN R 277 28.4 57 -5.1 

 

 

  STG DN R 290 57.5 -7.4 -16 3.78 0.001 

DN-SN                   

Cingulate Gyrus  SN R 187 8.8 10.8 45.9 
  

  

  MTG DN R 225 62.5 -25.6 -5.5 2.93 0.008 

SN-FPN 

ITG 

 

FPN R 170 59.7 -41 -11 

 
 

  SMA SN R 181 6.7 5 55.9 3.09 0.006 

Within Network Connectivity               

  

            
  

SN-SN 

SMA SN L 34 -8 8.7 62.9 
  

  

 
Insula SN L 82 -37.3 8.9 -0.9 3.25 0.004 

Note: DN - Default Network ; ; FPN - Fronto-parietal network; Hem = Hemisphere; ITG – Inferior Temporal Gyrus; 

SFG – Superior Frontal Gyrus; SMA – Supplementary Motor Area; PFC - Prefrontal Cortex; PCC – Posterior 

Cingulate Cortex; MTG – Middle Temporal Gyrus; R – Right; L – Left.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

SupplementaryTable 3.  ROI-to-ROI connectivity correlating with divergent thinking ability 

contrasted between young and personality-matched older adults (Older Adults > Young Adults). 

Hence, Positive T values reflect ROI-to-ROI functional connectivity predicting divergent 

thinking in older adults, while negative T values correspond to ROI-to-ROI functional 

connectivity predictive of divergent thinking in young adults (corresponding to Supplementary 

Figure 3). 

 

  
Network Hem Node 

MNI Coordinates 
T p 

X Y Z 

Young Adults 
        

Between Network Connectivity               

FPN – DN 

Inferior Precentral 

Sulcus 
FPN L 328 38.9 9.6 42.7 

  
  

 
PCC DN R 162 12.3 -51.6 34.5 -4 0.028 

  PCC DN L 1 -11.2 -52.4 36.5 -3.9 0.019 

  
DN L 152 -6 44.9 6.3 

  
  

vmPFC 

 
IFG FPN R 276 38.6 18.8 25.5 -3.9 0.033 

  

Posterior 

MTG 
FPN L 9 -55.9 -47.7 -9.3 -3.2 0.042 

Within Network Connectivity               

DN-DN                 

vmPFC DN L 152 -6 44.9 6.3 
  

  

 
MFG DN L 116 -5.9 54.8 -11 -3.6 0.034 

 
SFG DN L 44 -19.5 30.1 45.4 -3.6 0.034 

 
STG DN L 127 -53.1 -11.4 -16 -3.4 0.035 

  
Dorsomedial 

PFC 
DN R 322 8.2 53.8 14 -3 0.047 

Older Adults 

Between Network Connectivity               

SN-DN 

IPS SN R 219 57.5 -40.3 34.7 
  

  

  vmPFC DN R 279 7.2 48.4 -10 4.35 0.009 

DN-FPN-SN 



 

Ventromedial PFC DN L 152 -6 44.9 6.3 
  

  

 

Anterior 

PFC 
FPN R 320 30.9 52.2 9.9 3.36 0.035 

  MFG SN R 317 24.4 50.8 24.3 3.22 0.042 

Within Network Connectivity 

DN-DN 

vmPFC DN L 152 -6 44.9 6.3 
  

  

 
vmPFC DN R 184 7.7 44.1 5.5 3.13 0.042 

Note: DN - Default Network ; FPN - Fronto-parietal network; Hem - Hemisphere; IFG – Inferior Frontal Gyrus; IPS 

– Intraparietal Sulcus; MFG- Middle Frontal Gyrus; SFG – Superior Frontal Gyrus; STG – Superior Temporal 

Gyrus; SMA – Supplementary Motor Area; PFC - Prefrontal Cortex; PCC – Posterior Cingulate Cortex; MTG – 

Middle Temporal Gyrus; R – Right; L – Left.  

 
 

 


