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Abstract

Change detection is a fundamental problem in various fields, such as image surveillance,

remote sensing, medical imaging, etc. The challenge of change detection in medical

images is to detect disease-related changes while rejecting changes caused by noise,

patient position change, and imaging acquisition artifacts such as field inhomogeneity.

In this thesis, first, we overview the existing change detection methods, their under-

lying mathematical frameworks and limitations. Second, we present our contributions

in solving the problem. We design optimal subspaces to approximate the background

image in more efficient fashion. This is based on our structure principal component

analysis, aiming to capture the structural similarity between scans in the context of

change detection. We theoretically and numerically discuss the proper choices of norms

used in the subspace approximation.

The mathematical frameworks developed in this thesis consist of: (i) a new mathemat-

ical model to change detection by defining it as an optimization problem involving a

cost function, input and output image sets, projection onto a subspace, and a similar-

ity measure; (ii) development and implementation of numerical pipelines to compute

the clinical changes by designing four mathematical algorithms; (iii) refining our al-

gorithms by introducing the co-registration step utilizing the local dictionaries; and

(iv) two new structure subspace learning models that are robust to outliers and noise,

reduce the dimensionality of the dataset, and computationally efficient. We defined

the co-registration step as a minimization problem involving a cost function, input

and output image sets, a set of transform functions, projection onto a subspace, and a

similarity measure.

Based on the mathematical frameworks discussed above, numerical schemes are devel-

oped to automatically filter out clinically unrelated changes and identify true structure
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changes that may be of clinical importance. Our approaches are data-driven and utilize

the knowledge of machine learning. We quantitatively analyze the performance of these

algorithms using both synthetic and real human data. Our work has the potential to

be used in computer aided diagnosis.
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Chapter 1

Introduction

1.1 Background

Change detection is the process of identifying differences in the state of an object or

phenomenon by observing it at different times [28]. As illustrated in Fig. 1.1.1, change

detection algorithms are used to identify regions of changes in multiple images of the

same scene taken at different times. Change detection techniques and algorithms are

critical to many applications in several areas, such as remote sensing, video surveil-

lance, medical imaging, etc. These techniques have witnessed continuous development

over the years, and as a result, there are now various algorithms, methods, and auto-

mated systems available.

Figure 1.1.1: a) through c) images of the same scene, my kitchen table, taken at three
different times t1, t2, and t3 respectively. At time t2, the only change is the position
of one of the fruits, i.e., the banana has been rotated, or the tip of the banana has
being pulled up. One of the fruits is not present at time t3, mimicking a lesion that
has disappeared.

In particular, identifying the changes in medical images taken at different times is of

great relevance in clinical practice. Change detection is relevant to all imaging modal-
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Figure 1.1.2: a) T1-weighted MRI of a normal brain. b) T1-weighted MRI of a
brain with MS lesions, c) image containing only disease related changes. Images from
http://mouldy.bic.mni.mcgill.ca/brainweb.

ities such as MRI, CT, Sonography etc, but we focus here mostly on MRI. Imaging

datasets may include multiple sequences each consisting of many images obtained at

one time needing comparison with the immediate previous study or multiple prior stud-

ies. The size of datasets that radiologists are dealing for CT or MRI can be hundreds or

thousands of images for each time point. The key issue of change detection algorithms

in serial MR images is to detect disease-related changes while rejecting ’unimportant

ones’ induced by noise, mis-alignment, and other acquisition-related artifacts, such as

intensity inhomogeneity,[4].

Despite the diversity of approaches [2, 3, 4], a change detection algorithm usu-

ally consists of many common pre-processing steps to suppress or filter out ’irrelevant

changes’ before making change detection decision and using the core algorithm to de-

termine the set of pixels that are significantly different from the previous images and

are disease-related. In medical diagnosis and treatment, serial MRI examinations are

often performed on patients with diseases such as cancer or multiple sclerosis; radiol-

ogists routinely detect subtle changes in images of the same anatomical location that

may be clinically significant, as shown in Fig. 1.1.2. Trying to find subtle changes in

extent or character, by using a side-by-side presentation mode of films, can be very

difficult. Radiologists usually try to visually correct errors, due to patient reposition-

ing, and they use their professional knowledge to identify and reject certain artifacts.

Challenges the radiologists face during visual comparison include:
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• Scanner software and hardware related changes (variation in appearance due

to pulse sequences, acquisition parameters, gradient coils, RF inhomogeneities,

registration).

• Separation of acquisition changes from disease related changes

• Information overload

• Change Blindness, the inability to detect changes in objects or scenes being

viewed, and the inability to make comparisons between two scenes

• Satisfaction of Search

• Change occurs in an unexpected location

• Change occurs eonly in a part of a complicated lesion

• Side-by-side presentation is very poorly matched to the human visual system.

Computer automated systems for identifying, correcting, or ignoring these artifacts,

would be very helpful. Authors in [27] made the case that automated change detection

systems would be a great help for the radiologists to correctly interpret data. In [7, 8, 9]

the MRI examinations of brain tumors are studied and the automated techniques are

used to improve the results. The main purpose of these studies was to reduce human

error and minimize the enormous amount of data that radiologists have to process to

reach a conclusion. The authors found that implementing a scientifically useful tool is

most clinically viable when it is efficiently integrated into clinical work flow. They con-

cluded that automated change detection can improve efficiency, accuracy and reader

agreement.

An efficient computer-based system that automatically reduces the quantity of data

and directs radiologists’ attention to clinically-relevant areas would be very useful. The

automated change detection system created by them,[7, 8, 9], was a great improvement

over previous automated system, however, the process is inherently time-consuming

and the tissue classification task itself remains very difficult.

Authors in [4] reviewed a large number of change detection algorithms and they
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classified them into two groups, statistical analyses and background modeling tech-

niques. Authors in [2] presented an automatic change detection system for serial MRI

with applications in multiple sclerosis - follow ups. It is one of the statistical analysis

methods and it is based on the use of multimodal information for change detection,

Generalized Likelihood Ratio Test, and nonlinear joint histogram normalization. The

performance of the algorithm is low when noise is not-stationary.

The work of [3, 7, 8] is among the statistical analysis methods that is perhaps

better recognized in the medical field. They implemented an integrated system for

detecting changes in serial multi-spectral MRI examination, based on post classifica-

tion of image pixels in multi-spectral MR intensity feature space. Their rational for

using multi-spectral space was based on the observation that an abnormal tissue may

”look like” a tissue transitioning from one normal tissue to another in the feature space

and an assumption that change tends to occur along lines connecting pairs of cluster

centroids in the feature space. The detected changes were presented in the form of

a color-coded change map, superimposed on the anatomical images. The system ad-

ditionally formats the output as a quantitative summary. Preliminary clinical studies

show that their system can visually identify subtle changes related to disease. However,

the tissue classification task itself is very difficult; in addition, the whole process of cal-

culating transition tissue types and fractional membership for each pixel is inherently

time-consuming.

Another change detection method for interval MR images is proposed in [11] using

a general nonparametric statistical framework based on local steering kernels. Calcu-

lation of test statistics was derived from cosine similarity. However, their work does

not address registration nor alignment, and also it is limited to one imaging modality.

Among background modeling methods, background subtraction has been used espe-

cially in video surveillance. In [10], background subtracted images are recovered using

compressive sensing (CS). This works when important changes occupy a small portion

of the test image, and therefore the changed image is sparse in the spatial domain.

Assuming that both background and foreground fulfills the sparsity criteria, they solve

the problem using L1 minimization with total variation (L1 TV) algorithm [5, 6].
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Another breakthrough work [19] proposed the use of principle component pursuit

method to detect foreground changes in video surveillance. The work is based on

low-rank and sparse decomposition of image matrices. Robust Principal Component

Analysis (PCA) has applications in many other areas, such as face recognition, etc.

This method applies to a series of video frames and may be considered for a series of

MR images as well.

Authors in [20] use robust dictionary learning to solve the background subtraction

problem. Their approach appears to produce a better dictionary than more traditional

K-SVD algorithm [21]. However, the same assumptions for sparsity must hold. Any

application of CS to background subtraction models involves the use of various L1

minimization algorithms. Many MRI reconstruction techniques employ compressive

sensing methods. Among others, work in [18] is very well known for a direct applica-

tion to MR images of the brain. It uses a well known fact that MR images are sparse

on some domains such as wavelet, finite differences, etc. An undersampled MR image

is recovered by using L1 minimization which allows for more rapid MR imaging.

Authors in [22] applied dictionary learning techniques to solve the reconstruction

problem. They proposed an adaptive patch-based sparsifying learning dictionary which

is obtained using the k-space data and is used to remove aliasing and noise. The dic-

tionary is created using the K-SVD algorithm and is updated for each image block.

One of the major challenges in change detection algorithms for medical images is to

detect disease-related changes while rejecting changes caused by noise and acquisition-

related artifacts such as mis-alignment and intensity inhomogeneity. Despite the diver-

sity of approaches [2, 3, 4, 7, 8, 9, 10, 11], a change detection algorithm usually consists

of many common pre-processing steps to suppress or filter out ”unimportant” changes

before making change detection decisions and using the core algorithm to determine

the set of pixels that are significantly different from the initial reference image and are

disease-related. The sequence of pre-processing steps complicate the algorithm as a

whole, increase the processing time, and most important, may distort clinical relevant

information in the original images.

Work in [15] addressed mis-alignment in change detection problem by employing
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a series of sparse optimization problems. However, their method only works well for

highly sparse images, such as synthetic aperture radar (SAR) images that are much

sparser than most medical images.

Authors in [1, 13] used eigenfaces for face recognition and pattern recognition by

finding the principal components of the distribution of faces, or the eigenvectors of

the covariance matrix of the set of face images, where each image is treated as a vec-

tor. Eigenvectors are called the eigenfaces and each of them accounts for a different

amount of the variation among the images. Then, each test image is compared with

many training reference images from a database. In our work we consider a training

set obtained from only one image.

These challenges motivated us in designing three algorithms that automatically tol-

erates noise and acquisition-related artifacts and capture subtle and important clinical

changes between two or more medical images that are not necessary spatially sparse.

1.2 The Objectives of the Dissertation

Computer-aided diagnosis (CAD) has become one of the major research subjects in

medical imaging and diagnostic radiology. Radiologists in collaboration with mathe-

maticians, physicists, and researchers in other related fields are working on designing

and developing new CAD methodologies [95, 96]. Creating an automated system for

detecting the changes of consecutive scans in medical images remains an important

area of computer-aided diagnosis. The increasing need for early, reliable and accurate

disease detection and diagnosis generates interdisciplinary challenges in acquiring, pro-

cessing and interpreting these medical images.

This thesis is inspired by the new developments in the mathematics of medical im-

ages, which have led to exciting and innovative ways to improve and develop medical

imaging technology. The main objective of the dissertation is development of a new

mathematical framework for change detection and design of new algorithms that can

be used to detect clinical changes automatically while rejecting unimportant changes

due to patient position, noise, and other related acquisition artifacts.

We developed three variants of automated change detection systems for medical
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images: Adaptive EigenBlock Dictionary Learning (AEDL), EigenBlock Change De-

tection (EigenBlockCD), and EigenBlock Change Detection 2 (EigenBlockCD-2). They

take two or more images as input and automatically produce an image which contains

only clinically related changes. The core ideas of these algorithms are based on local

dictionary learning and background modeling.

Our key technical contributions are in the area of subspace learning and the proper

selection of similarity measure in subspace learning. We use principal component anal-

ysis (PCA) to re-express the columns of the dictionary learning in more meaningful

ways, i.e., for dimensionality reduction, feature extraction, computational efficiency,

background modeling, sparse representation, and for reducing the redundancy among

columns of the dictionary. We developed a new Structure Principal Component Anal-

ysis method, S-PCA, more robust to outliers and better selects the features required

in our change detection algorithms.

Our first algorithm, (Adaptive EigenBlock Dictionary Learning (AEDL), performs

image registration locally to capture the local spatial changes in the test image using a

series of local sparse minimization processes and the knowledge of Compressive Sens-

ing. The method takes two images as input, and gives two images as output, the sparse

recovery of the reference image aligned with the test image, and the change detection

image. The reconstructions of overlapping blocks using L1 minimization algorithms

makes the AEDL algorithm computationally expensive.

To reduce the running time of the algorithm, we designed the second algorithm,

EigenBlock Change Detection (EigenBlockCD), which uses the L2 norm as a similarity

measure to learn the dictionary. Both, the AEDL and the EigenBlockCD algorithms

detect clinical relevant changes while ignoring insignificant changes due to patient’s

position, noise, and other acquisition related artifacts, when these unrelated disease

changes are within a small neighbourhood. To account for large sizes of insignificant

changes, i.e., large shifts and rotations, we designed the third algorithm, EigenBlock

Change Detection 2 (EigenBlockCD-2). We also extended all three algorithms for 3

dimensional volumetric MR scans.
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1.3 Dissertation Outline

The rest of this dissertation is organized as follows. Problem formulation is given

in Section 1.4. In Chapter 2, we review the mathematical frameworks of existing

change detection methods relevant to our research. These methods are classified into

three broad overlapping groups: General change detection methods are discussed in

Section 2.1, background modeling in Section 2.2, and change detection problems in

medical images in Section 2.3. Some of the methods include differencing, statistical-

based, background modeling, sparsity-based methods, etc. We emphasize the recent

mathematical advancement in the area of compressed sensing and dictionary learning.

In Chapter 3, we introduce Adaptive EigenBlock Dictionary Learning Algorithm

(AEDL), [23], the first algorithm that we propose in this thesis. We describe the math-

ematical foundation of the AEDL algorithm, which is inspired by the recent results in

compressed sensing theory. We propose a solution based on dictionary learning via

projection onto Eigen-subspace. To demonstrate the accuracy of the algorithm, we

present simulations with both synthetic and real MR images of human brain.

The second algorithm, EigenBlock Change Detection (EigenBlockCD), [24], is pre-

sented in Chapter 4. We build the EigenBlock dictionary by applying principal compo-

nent analysis (PCA) to achieve dimensionality reduction and feature extraction.Then,

we make the case for selecting the L2 norm as similarity measure between corresponding

blocks in reference and test images, and demonstrate the properness and effectiveness

of using L2 minimization. The performance of the EigenBlockCD algorithm is demon-

strated through numerical simulations on synthetic and real MR images of human

brain.

In Chapter 4 we also provide a thorough analysis of different similarity measures,

such as L1 and L2. We first analyze the properties of both norms related to the pro-

jection onto orthonormal subspaces, and rotation. Then, we provide theoretical and

numerical investigation of the proper selection of similarity measures in change detec-

tions, i.e., L2 versus L1 norm.

To account for large ranges of shifts and rotations, and to improve computational

efficiency, an improved version of the EigenBlock CD algorithm, EigenBlockCD-2,
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[25, 26], is presented in Chapter 5. We introduce an additional step, pre-alignment of

two consecutive images named as reference and test image, before detecting changes.

This co-registration algorithm ultilizes EigenBlockCD to find the optimal values of

shifts and rotation that co-registers the two sets of images the best. We numerically

demonstrate the advantages of this pre-processing step to change detection. Finally,

we describe the EigenBlockCD-2 algorithm to detect clinical relevant changes of two

consecutive MR scans of human brain. Numerical simulations with both synthetic and

real MR images are provided.

In Chapter 6, we provide the performance analysis of the AEDL, the EgenBlockCD,

and the EigenBlockCD-2 algorithms, [25, 26]. We describe the quantitative and qual-

itative measures that can be used to validate our algorithms. Numerical simulations

between two consecutive synthetic images and serial MR images are presented. We

compare the performance analysis of our algorithm with the other ones in the litera-

ture.

In Chapter 7 we extend our algorithm to three dimensional volumetric data. Nu-

merical simulations with real MR images are shown.

Chapter 8 is dedicated to our newest contribution, Structure Principal Component

Analysis (S-PCA). We provide the properties of S-PCA and compare it with some other

recent non weighted L2 and L(2,1) norm-based PCA. We investigate the performances

of standard PCA and the SPCA using L2 or L(2,1) minimizations, and introduce the

weighted L2 and L(2,1) - S-PCA , as a better principal component-based analysis for

detecting the changes of MR images.

In Chapter 9, we provide the conclusions of this dissertation research and discuss

the road map for future work.

1.4 Problem Formulation

Let I1, I2, · · · , In, represent images of size N1×N2, of the same anatomic location, taken

at different times, t1, t2, · · · , tn respectively. Let Icd(1, 2), Icd(2, 3), · · · , Icd(n − 1, n)

represent the true changes between I1 and I2, I2 and I3, · · · , In−1 and In, where true

changes are not caused by patient position or noise as shown in Fig. 1.4.1. Let Is(i, j),
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s = 1, 2, · · · , n , i = 1, · · · , N1, j = 1 · · · , N2, be image intensity of a pixel at i-th row

and j-th column.

The question is: Can we automatically detect true changes while ignoring the

changes that are clinically unrelated?

Figure 1.4.1: Top row: T2-weighted MR images of the brain taken at different times,
t1, t2, · · · , t5. Bottom row: Four images representing the ground truth (true changes)
between two consecutive MR images in the first row

.

Definition of change detection of an image set: Let the set of input images of the

same size, N1 ×N2, be Iin = {Ii, i = 1, 2, · · · , n}, where Ii is the image corresponding

to time ti. We define the change image set by Iout:

Iout = G(Iin, T , C, ρ) (1.4.0.1)

where:

• G: The mathematical model.

• Iin: Input image set.

• T : A set of transform functions, i.e., change of basis functions, such as those of

wavelet transform, Fourier transform, etc.

• C: The cost function to be minimized using a similarity measure, which compares

and checks feature changes between It1 and It2 . Features in spatial domain for

some applications include the intensity of a pixel/voxel or a block of pixels/voxels

from the same location.
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• ρ: Similarity measure, i.e., distance measures such as L1, L2, L(2,1), cosine simi-

larity, similarity maps, etc.

• Iout: Output, a set of images with changes between Ii−1 and Ii, that is, Iout =

{Icd(i− 1, i), i = 2, 3, · · · , n}.

For simplicity, we aim to detect changes between two consecutive images, I1 and

I2, initial (reference) and follow-up (test), taken at two different times. Similar to Eq.

(1.4.0.1) we define Icd as the image of changes between I1 and I2:

Definition of change detection between two images:

Icd = G(I1, I2, T , C, ρ) (1.4.0.2)

where:

• G: The mathematical model.

• I1, I2: Input images of the same size.

• T : A set of transform functions.

• C: The cost function to be minimized.

• ρ: Similarity measure.

• Icd: Output, the image of changes between I1 and I2.

An automated change detection algorithm between two images, I1 and I2, takes

these two images as input and produces a change image, Icd, as an output. A change

detection algorithm should also be able to identify whether the change is considered

significant (important) or insignificant according to a particular application, therefore

the algorithm should maximize the number of significant changes found, while mini-

mizing the insignificant ones. Furthermore, the output should be the one that is the

closest to the real (true) change image, from all the change images determined. The

problem can be formulated as:
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Problem Formulation:

Given I1, I2, find the optimal G, T , C, and ρ which are then used to compute Icd.

Desirable solutions require an automated system to:

• Detect changes in medical images which are subtle and disease related, while

rejecting changes caused by patient position, noise, and other acquisition related

artifacts.

• Reduce the quantity of data presented to the radiologist.

• Present changes in the way that matches the perception of the human eye, are

easy to read, see, and understand.
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Chapter 2

Literature Review

We discuss the major approaches towards the categorization or classification of change

detection methods in general. This task has been undertaken several times and we will

present relevant previous work, as well as our perspective on the recent developments

in the field.

Authors in [4] and [29] surveyed a large number of image change detection algo-

rithms and created a very useful classification. Most methods surveyed in their work

are based on either statistical analyses or background modeling techniques. For the

purposes of our work, in Sections 2.1 through 2.3 we provide a slightly different clas-

sification and describe those methods that are still relevant in current applications.

We categorize these methods according to those used in general applications and those

used particularly for medical images. We elaborate on the background modeling as

it is one of the most popular methods and also is the fundamental approach of our

algorithms.

We classify the change detection methods in three overlapping groups, change detec-

tion methods in general, background modeling methods, and change detection methods

used in medical images. We focus more on the methods and algorithms described in

Sections 2.2 and 2.3 as our research work presented in this thesis apply knowledge

mostly from the background modeling methods and dictionary learning.

Change detection methods in general are discussed in Section 2.1, which include

methods based on differencing and statistical hypothesis test methods. Background

modelling methods are presented in Section 2.2. They include parametric, non-parametric,
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sparsity and CS-based, and robust PCA methods. Change detection methods applied

specifically to medical images are discussed in Section 2.3. We present the advantages

and discuss the limitations of these approaches.

2.1 Change Detection in General Applications

We discuss various methods based on differencing in Section 2.1.1, and methods based

on statistical hypothesis tests in Section 2.1.2.

2.1.1 Differencing

Simple differencing and its closely related methods such as image rationing, change

vector analysis (CVA) and gradient images make a pixelwise comparison between im-

ages. Therefore, images must go through the preprocessing step of registration.

2.1.1.1 Image Differencing

As in Section 1.4, I1 and I2 represent two images of size N1 × N2 of the same scene,

taken at two different times, t1 and t2 respectively. The change image between I1 and

I2 is denoted as Icd. A changed mask B(i, j) is obtained by a simple thresholding as:

B(i, j) =

 1 if |Idif (i, j)| ≥ τ ;

0 otherwise.
(2.1.1.1)

where τ → represent the threshold value and Idif (i, j) is the image difference ob-

tained by pixelwise simple differencing method as:

Idif (i, j) = I2(i, j)− I1(i, j) (2.1.1.2)

Is(i, j) represent the image intensity of a pixel at row i and column j, s = 1, 2, i =

1, · · · , N1 and j = 1, · · · , N2.

The value of τ is chosen empirically or statistically by a specialist using several
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thresholding selection methods. It is preferred that either both images are normalized

with zero mean, or only the second image I2(i, j) is normalized to have the same mean

and the same standard deviation as I1(i, j), i.e.,

Ĩ2(i, j) =
σ1

σ2

(I2(i, j)− µ2) + µ1 (2.1.1.3)

Then, the image difference is computed as:

Idif (i, j) = Ĩ2(i, j)− I1(i, j) (2.1.1.4)

Finally, the change image pixel Icd(i, j) is equal to the absolute difference Idif (i, j)

everywhere the values of the mask B(i, j) are one and is zero otherwise:

Icd(i, j) =

 |Idif (i, j)| if B(i, j) = 1;

0 otherwise.
(2.1.1.5)

Simple differencing is sensitive to misregistration, to noise, variation in illumina-

tion. Global thresholding does not take into consideration local features of the change,

and it might result in false positives or false negatives.

2.1.1.2 Image Rationing

Image rationing method calculates Iratio(i, j), the ratio between the first image and the

normalized second image.

Iratio(i, j) =
Ĩ2(i, j)

I1(i, j)
(2.1.1.6)

If the values of Iratio(i, j) is close to one, then pixel (i, j) appears in both images

with the same intensity, which suggests the pixel intensity has not changed and the

pixel is part of the background: other values suggest a change. Similar to image

differencing, to decide whether (i, j) pixel belongs to the change image or not, we need

to know how big the change is, or if it is greater than a selected threshold. The choice

of the threshold depends on the application as before. The changed mask is created
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by thresholding Iratio(i, j):

B(i, j) =

 0 if 1− τ ≤ Iratio(i, j) ≥ 1 + τ ;

1 otherwise.
(2.1.1.7)

The image difference Idif is computed as in Eq. (2.1.1.4), then the Icd(i, j) is deter-

mined with a very small value of τ as in Eq. (2.1.1.5).

2.1.1.3 Change Vector Analysis

Change Vector Analysis (CVA) was first used by [32] to identify and analyze changes

between pairs of multi-date spectral data. A change vector is the difference vector

between two vectors in N-dimensional feature space defined for two images of the same

scene during two different dates as shown in Fig. 2.1.1 a). CVA computes spectral

change vectors and compares their magnitudes to a specified threshold as shown in

Fig. 2.1.1 b).

Figure 2.1.1: a) An illustration of change vector analysis; b) An illustration of deci-
sion making constraint by a specific threshold. The magnitude of change equals to√

(x2 − x1)2 + (y2 − y1)2, and the angle θ equals to tan−1
(
y2−y1
x2−x1

)
.

The method processes and analyses change in all multi-spectral input data concur-

rently. Although CVA method for detecting changes avoids compounding of spatial-

spectral errors which may be inherited from multi-date classifications, it requires spatial

registration, spectral transformation, accurate geometric registration and radiometric

normalization of the input data, as indicated in [29] and [33].
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2.1.1.4 Gradient Images

Authors in [34] applied gradient image methods for automatically detecting changes

in video surveillance applications. Gradient image method introduces structural infor-

mation within the background model of a change detection algorithm. It captures the

structural information by means of low-level features which is done by estimating the

gradient components and then analyzing the edges.

The first step of this method is to obtain a reduced-resolution image, I1R and I2R,

from I1 and I2 respectively, by a δ-scale factor as Fig. 2.1.2 shows. IsR(i, j) is the

average gray-level of a δ×δ block centered at (i, j) position from I1 and I2 respectively.

The reduced-resolution image IsR(i, j) is computed as:

Figure 2.1.2: a) Reference image of size 12 × 12; b) The reduced-resolution image of
size 12

δ
× 12

δ
with δ = 6.

IsR(i, j) =
1

δ2

δ−1∑
k=0

δ−1∑
l=0

Is(δ × i+ k, δ × j + l) (2.1.1.8)

where s = 1, 2. Each reduced-resolution image IsR is now of size N1

δ
× N2

δ
.

Secondly, the structures of I1 and I2 is determined, by computing the gradient in

the i and j directions of the reduced-resolution images for all (i, j) pixels as:

DiIs(i, j) = IsR(i+ 1, j)− IsR(i, j) (2.1.1.9)

DjIs(i, j) = IsR(i, j + 1)− IsR(i, j) (2.1.1.10)
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where s = 1, 2 corresponds to the reference and test image respectively. The structure

of each image is then calculated a set of all the ordered pairs:

S(Is) = {(DiIs, DjIs)|∀(i, j) ∈ Is} (2.1.1.11)

Thirdly, a delta-structure image, ∆S[I1, I2], is computed:

∆S[I1, I2] = max
d∈{x,y}

{|DdI1(i, j)−DdI2(i, j)|} (2.1.1.12)

Finally, the delta-structure image is thresholded to discriminate between the true

changes and those caused by changes in the brightness. This method is designed

to detect changes in video surveillance where the initial background structure has been

estimated by using many frames. Medical image modalities do not have the number of

frames which image surveillance methods require. Therefore, in our change detection

problem we aim to detect changes between two or more consecutive frames in 2 or 3

dimensional spaces.

2.1.2 Statistical Hypothesis Test

In this section, we will discuss three of the many available statistical hypothesis test

methods: significance tests, likelihood ratio tests, and probabilistic mixture models.

2.1.2.1 Significance Test

Deciding if a pixel belongs to the foreground (change) or the background (no change)

is related to choosing one out of two hypothesis, the null hypothesis H0 implies no

change and H1 implies change. Under null hypothesis, the only change appearing in

Idif (i, j) is due to noise [30]. If we model the noise with Gaussian distiribution with

zero mean and σ2
0 variance, then the conditional probability of a pixel (i, j) from the
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difference image Idif under the null hypothesis is:

p(Idif (i, j)|H0) =
1√

2πσ2
0

exp

(
−
I2
dif (i, j)

2σ2
0

)
(2.1.2.1)

Then the significance test S(i, j) is:

S(i, j) = p(Idif (i, j)|H0) ≶ τ (2.1.2.2)

This shows that a pixel (i, j) belongs to the background if p(Idif (i, j)|H0) < τ , or to the

foreground otherwise. This can easily be extended to a block-based significance test.

Let Bm be a block with m pixels from Idif (i, j), and I
(m)
dif (i, j) be the pixel values in the

block centered at position (i, j). The significance test for the block can be calculated

by:

p(Imdif (i, j)|H0) =

(
1√

2πσ2
0

)m

exp

−
∑

(i,j)∈Bm

I2
dif (i, j)

2σ2
0

 (2.1.2.3)

To eliminate block artifacts, overlapping blocks are considered, although it is more

computationally expensive.

2.1.2.2 Likelihood Ratio Test (LRT)

Likelihood ratio test is based on the comparison of likelihood ratio to a threshold τ .

The likelihood ratio is calculated as:

L(i, j) =
p(Idif (i, j)|H1)

p(Idif (i, j)|H0)

Calculating p(Idif (i, j)|H1) is not straightforward. In some applications [30], both

hypothesis are modelled by a Gaussian distribution with zero mean and σ2
0 and σ2

1

standard deviation respectively. σ2
0 can be estimated from a number of very small

unchanged regions in Idif , and similarly, σ2
1 is calculated from a very large changed
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region of Idif . We can then compute

p(Imdif (i, j)|Hs) =

(
1√

2πσ2
s

)m

exp

−
∑

(i,j)∈Bm

I2
dif (i, j)

2σ2
s



for s = 0, 1. The likelihood ratio of a block Bm is:

Lm(i, j) =
p(Imdif (i, j)|H1)

p(Imdif (i, j)|H0)
=

(
σ0

σ1

)m
exp

− ∑
(i,j)∈Bm

I2
dif (i, j)

(
1

2σ2
1

− 1

2σ2
0

)
One of the limitations of this method is that properly selecting threshold τ is a difficult

task.

2.1.2.3 Probabilistic Mixture Models

Authors in [31] and [36] proposed an automatic technique for the analysis of the dif-

ference image based on the Bayes theorem, under the assumption that pixels in the

difference image are independent of one another. The method minimizes the overall

change detection error probability. It performs an unsupervised estimation of means

and variances of the changed and unchanged pixels in the difference image by an iter-

ative method based on the Expectation-Maximization (EM) algorithm. The method

assumes that probability density function p(Idif ) of pixel values in the difference image

Idif can be modeled as a mixture density distribution:

p(Idif (i, j) = p(Idif (i, j)|H0)× P (H0) + p(Idif (i, j)|H1)× P (H1)

where p(Idif |H0), P (H0), p(Idif |H1) and P (H1) are estimated by applying EM algorithm

as a generalization of maximum-likelihood (ML) estimation for incomplete data.

Authors in [35] took the idea of probability mixture model framework further. They

propose a method which decomposes the appearance change into multiple causes due

to object or camera motion, illumination phenomena, specular reflections, and “iconic

20



or pictorial changes”. Motion is modeled as warpping, illumination change by a smooth

function that amplifies image contrast, specular reflection, which are local and located

near regions of high curvature, are modeled by near saturation of image intensity,

and iconic or pictorial (i.e; eye blinking) are considered to have high correlation with

the object and therefore are learned using eigenspace techniques. Iconic change is

represented as a linear combination of learned basis images. Also, changes that do not

belong to any class or that are not modelled by four classes are called outliers.

Let I((i, j), t) represent an image at location (i, j) at time t. They assume that

this image can be explained using only five causes, IM for motion, IL for illumination

variations, IS for specular reflections, IP for pictorial changes, and lastly, IO for outliers.

Let ak, k = 1, ..., 5, be the kth cause, Ik((i, j), t; ak) be the predicted model image at time

t caused by ak, pk(Ik(i, j), t)|ak, σk) be the correspondent component probability, and

the residual ∆Ik be calculated as the difference of the image and one of the predicted

image models:

∆Ik = I((i, j), t)− Ik((i, j), t; ak)

then the probability mixture is:

pk(Ik(i, j), t)|{ak, σk}5
k=1) =

5∑
k=1

wk(i, j)pk(Ik(i, j), t)|ak, σk)

where σk is a scale parameter, and
∑5

k=1wk(i, j) = 1

pk(Ik(i, j), t)|ak, σk) =
2σ3

k

π(σ2
k + ∆I2

k)
2

with π =
∑
(i,j)

wk(i, j)

N
. The EM - algorithm calculates wk((i, j);σk):

wk((i, j);σk) =
pk(I(i, j), t)|ak, σk)
5∑
l=1

pl(I(i, j), t)|al, σl)

This method incorporates many appearance changes caused by multiple object mo-

tions, shadows, specular reflections and deformable models in a single framework. The
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likelihood function is robust and drops more rapidly than a Gaussian distribution to-

ward the tales, as shown in Fig. 2.1.3. This speeds up the separation of the appearance

changes into more distinct classes.

Figure 2.1.3: Robust likelihood probability distribution

2.2 Background Modeling

Background modeling and background subtraction are well known techniques that are

used in video surveillance systems. In such systems the detection of changes is achieved

by comparing each new frame with a modeled background image [38]. This is known

as background subtraction. Background modeling is in fact the selection of features

which represent the background (i.e., pixel intensity).

There are various classifications for background modeling methods, [4] and [38]. We

introduce the following classification: parametric, non-parametric, sparsity based, com-

pressed sensing based, and robust PCA methods, which are discussed in Sections 2.2.1

through 2.2.5.

2.2.1 Parametric Methods

The most well known method of the group is Mixture Of Gaussian (MOG) techniques

and its derivations. The MOG is a parametric method that models the values of

a particular pixel as mixture of Gaussians. Then, as described in [41], based on the

persistence and the variance of each of the Gaussians of the mixture, the method deter-

mines whether a pixel belongs to background or foreground. There are two parameters

used in this method: α - the learning constant and T - the proportion of data that
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should be accounted for the background. The model uses a series of pixel values for

gray values or a vector for color images:

{x1, ..., xt} = {I(i0, j0, k) : 1 ≤ k ≤ t}

where I is the image sequence. The recent history of each pixel {x1, ..., xt} is modeled

by a mixture of s Gaussians. The probability of observing the current pixel is:

P (xt) =
s∑

k=1

ωk,t ∗ η(xt, µk, t,Ωωk,t
)

where ωk,t is the weight (portion of delta for this Gaussian) of this kth Gaussian in the

mixture at time t, µk is the mean value of the kth Gaussian in the mixture at time t,

Ωωk,t
is the covariance matrix of the kth Gaussian in the mixture at time t, and η(xt)

is the Gaussian probability density function:

η(xt, µk, t,Ωωk,t) =
1

(2π)
n
2 |Ωωk,t

| 12
e−

1
2

(xt−µt)T Ω−1
ωk,t

(xt−µt)

where Ωωk,t
= σ2I for simplicity.

2.2.2 Non-Parametric Methods

In this section, we describe background subtraction methods based on kernel density

estimation (KDE, [38]) and also an adaptive version of the KDE method from [37].

The background is modeled as a probabilistic model by kernel density estimation. A

probability distribution function is estimated for each pixel and it is computed directly

from background data, without prior knowledge of the underlying distribution. There

is no model selection or distribution parameter estimation, unlike the MOG which tries

to fit Gaussians to each pixel.

Kernel density estimation techniques [38] are non-parametric methods with many

applications in video surveillance. The idea behind the KDE is to construct a statistical

representation of the background scene that does not change over time and to build

statistical representations of the moving objects or the scene that changes over time,
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the foreground. This technique assumes that the intensity value of a pixel over time

in a static scene is modeled with a Gaussian distribution N (µ, σ2), and that noise is

modeled by a zero mean Gaussian distribution N (0, σ2).

Let I1, I2,..., IN be N frames from video surveillance, then x1, x2, · · · ,xN , represents

a sequence of samples of intensity values for a pixel x at time point t, where t =

1, 2, · · · , N . The method uses kernel density estimation to estimate the probability

density distribution of a pixel intensity at any given time t. The probability of observing

xt is:

P(xt) =
1

N

N∑
i=1

Kσ(xt − xi) (2.2.2.1)

where Kσ is a kernel function and σ is the bandwidth. By choosing a Gaussian kernel

function, the probability density distribution is given as:

P(xt) =
1

N

N∑
i=1

1√
2πσ2

exp

(
−1

2

(xt − xi)2

σ2

)
(2.2.2.2)

The method uses a probability estimate to determine whether a pixel xt belongs to

foreground or background.

xt ∈

 Foreground if P(xt) < τ ;

Background otherwise.

where τ is a global threshold. The choice of a suitable kernel bandwidth is very

important and may be difficult to make. Larger values of σ lead to over-smoothing and

smaller values of σ lead ragged density estimate. For an infinite number of samples,

the choice of σ is insignificant. In practical applications, the number of samples is

finite; therefore, [38] proposed to use a different kernel bandwidth σ for each pixel:

σ = m
0.068

√
2
. This value derives from the equation:

P(N(0, 2σ2) > m) = 0.25 (2.2.2.3)
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where N(0, 2σ2) is the distribution for the deviation (xi − xi+1) and m is the median

of absolute deviation of all the consecutive intensity values of pixels in the sample, i.e.,

m = median{|xi+1 − x1|, i = 1, 2, ..., N}

Two major problems associated with the non-parametric kernel density estimation

methods are the long processing time and the large memory requirement. Authors

in [37] modified the original KDE method by using the first frame to initialize the

KDE background model. The KDE Gaussian model is updated at every frame and the

probability obtained by the KDE method is added to the prior probability density at

every frame. The probability P(xt) is based on each pixel and can be expressed as:

P(xt) = P̂(xt−1) +
1

Gt

√
2πσ2

exp

(
−1

2

(
x− xt
σ

)2
)

(2.2.2.4)

2.2.3 Sparsity Based Methods

Sparsity

Background modeling methods which are reviewed in our work, are based mainly on

sparse representations and compressive sensing theory. In this section we include the

necessary definitions and main results for both sparse representations and compressive

sensing relevant to background modeling methods and our algorithms in particular.

Authors in [62] discussed sparse solutions to the systems of equations derived from

sparse modeling of signals and images. We present the problem definition as outlined

in [62].

Sparse Solutions

Let A ∈ Rn×m, with n < m, be a full-rank matrix. Consider the underdetermined

linear system of equations A x = b. As we know, there are an infinite number of

solutions for such a system. In many problems it is reasonable to look for those solutions

based on some criteria. For example, if we are interested in a solution of A x = b,

which minimizes a given function G(x), then the general optimization problem can be
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expressed as follows:

Problem P: min
x
G(x) subject to: Ax = b (2.2.3.1)

The type of function G(x) determines the uniqueness of the solution. If function

G(x) is convex, the above problem has a unique solution. For example, if G(x) is the

squared Euclidean norm of x, i.e., ||x||22, the minimization problem in Eq. (2.2.3.1),

namely problem P2, can be written as:

Problem P2 : min
x
||x||22 subject to: Ax = b (2.2.3.2)

Problem P2 in Eq. (2.2.3.2) has a unique solution x̂ which is called the minimum-norm

solution and it is computed explicitly as:

x̂ = A†b = AT (AAT )−1b (2.2.3.3)

However, L2 norm measures the energy of the signal. Minimizing the L2 norm will

result in minimizing the energy of the system. When the signal is sparse, minimizing

the L2 norm is equivalent to minimizing the energy of the signal. This may not lead

to the solution with the expected sparsity.

Natural images are not necessary sparse in the spatial domain. However, they can

be sparsely represented in a transformed domain such as Fourier, Wavelet, etc. There-

fore, many image processing tasks can be transformed into finding sparse solutions

to underdetermined systems of linear equations. Simple examples include using the

discrete wavelet transform (DWT) in image coding (JPEG-2000). Approximating the

image by zeroing the coefficients with small values and quantizing the large ones pro-

duces a smaller number of coefficients to be efficiently stored. Also, sparse coefficients

can be inverted easily to obtain a very good approximate representation of the original

image. The success of the DWT in image coding is thus directly tied to its ability to

sparsify image content more than discrete cosine transform (DCT) representation used

in JPEG. The sparsity of signal representation is used in image compression, image

denoising, image deblurring and many other image processing tasks.
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The L0 ”norm” of a signal or vector x is the number of nonzero elements in x and

is given as:

||x||0 = #{i : xi 6= 0}

A signal or a vector is sparse if many of its elements are zero. That is, a signal x

is sparse if ||x||0 << m where m is the dimension of the signal. If we substitute the

function G(x) with L0 norm of x, i.e., G(x) ≡ ||x||0, then the general minimization

problem in Eq. (2.2.3.1) becomes:

Problem P0: min
x
||x||0 subject to: b = Ax (2.2.3.4)

While the solution to Problem P2 is easy, the solution to Problem P0 is, in general,

NP-hard. In many applications, instead of solving the P0 Problem, an approximate

solution is obtained by minimizing the L1 norm: ||x||1 =
∑
|xi| [112, 111, 113]. In this

case the Problem P1 is considered:

Problem P1: min
x
||x||1 subject to: b = Ax (2.2.3.5)

This is a convex optimization problem and among convex problems it is in some

sense closest one to Problem P0. For matrices A with incoherent columns, whenever

Problem P0 has a sufficiently sparse solution, that solution is unique and is equal to

the solution of Problem P1 [62]. Since Problem P1 is convex, the solution can thus be

obtained by standard optimization tools, such as linear programming. Also there are

various well-established greedy algorithms that find the sparsest solution to Problem

P0. Donoho and Huo [112] have shown that in case b has a ”very” sparse representa-

tion, i.e., when there exists x so that b = A x and ||x||0 � n, where n is dimensions

of the vector x, then this sparse representation is the unique solution of not only P0

Problem but also of the P1 Problem.

Sparse Dictionaries

Representing a signal involves the choice of a dictionary, the set of elementary signals

called atoms. A signal can be decomposed into linear combination of these atoms.
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When the dictionary forms a basis, such a linear combination is unique and can be

expressed as:

x = Φα (2.2.3.6)

where x is a signal or an image, Φ is the dictionary, and α are the coefficients or the

linear combination representation.

Dictionary learning can be built by a) analytic modeling, b) data-driven or c) hybrid

approaches [63].

a) Analytic dictionaries model a signal by using a class of mathematical functions.

For example, the Fourier dictionary is designed around smooth functions, while the

Wavelet dictionary is designed around piecewise-smooth functions with point singular-

ities. Such dictionaries are formulated analytically and therefore enjoy a fast implicit

implementation which does not involve multiplication by the dictionary matrix. On

the other hand, the dictionary can only be as successful as its underlying model, and

indeed, these models tend to be over-simplistic compared to the complexity of natural

phenomena.

b) Trained dictionaries utilize the learning approach. The structure of the signal is

extracted directly from the data rather than by using a mathematical function. This

leads to finer adaptation to specific instances of the data. A key contribution to the

area of dictionary learning was provided by Olshausen and Field [106, 107, 108]. They

proposed to train a dictionary from small image patches collected from a number of

natural images. The use of such a trained dictionary possesses a higher degree of sta-

tistical independence among its output scans, and therefore can produce a sparse and

more efficient representation for the full set that spans the image space.

c) Hybrid dictionaries learn the sparse dictionary using knowledge of dictionary’s

specific structure [109]. Such dictionaries often benefits of both analytic and trained

dictionaries

Note that dictionary training is a much more recent approach to dictionary design,

and has been strongly influenced by the latest advances in sparse representations the-

ory and algorithms. The main advantage of trained dictionaries is that they lead to

state-of-the-art results in many practical signal processing applications.
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Sparsity based methods are based on the assumption that the foreground image is

sparse and the background can be learned from a dictionary [13, 14, 15, 20]. Authors

in [13] proposed a general classification algorithm for image-based object recognition.

They argued that a test sample can be represented as a sparse linear combination of

training samples:

y = a1x1 + a2x2 + · · ·+ anxn, (2.2.3.7)

where aj ∈ R, j = 1, 2, ....n. Then the linear representation of y can be rewritten in

terms of all training samples as

y = Ax (2.2.3.8)

The above system is typically under-determined and so its solution is not unique.

The sparsest solution to Eq. (2.2.3.8) can be obtained by solving the following opti-

mization problem:

x̂0 = argmin
x
||x||0 s.t y = Ax (2.2.3.9)

The problem of finding the sparsest solution of an under-determined system of

linear equations is NP-hard. However, for x sparse, the solution of the L0 minimization

problem is equal to the solution of the following L1 minimization problem:

x̂1 = argmin
x
||x||1 s.t y = Ax (2.2.3.10)

The sparse modeling and dictionary learning approach proposed in [13] has been

successfully applied to classification and detection problems.

Authors in [20] proposed a robust learning approach which simultaneously detects

foreground pixels as outliers and builds a correct background model at the learning

stage. Their approach appears to produce a better dictionary that the more tradi-

tional K-SVD algorithm does [21]. The method takes into consideration two spar-

sity assumptions, the background has a sparse linear representation with respect to a

learned dictionary, and that the foreground is sparse since most of the pixels belong

to the background. The background in the frames is a low-dimensional structure and

therefore can be expressed by a linear combination of basis vectors. From the above

29



assumption, xB has a sparse representation over a dictionary D as:

xB = Dα (2.2.3.11)

Each frame x can be decomposed as a sum of two components: the background xB

and the foreground xF , i.e.,

x = xB + xF (2.2.3.12)

From Eq. (2.2.3.12), xF = x− xB has a sparse representation as well. The method

aims to find α with the most sparsity by solving the L0 minimization problem.

α̂ = argmin
α
||x−Dα||0 + λ||α||0 (2.2.3.13)

Since the problem (2.2.3.13) is NP hard, authors solved the corresponding L1 min-

imization problem (2.2.3.14) instead

α̂ = argmin
α
||x−Dα||1 + λ||α||1 (2.2.3.14)

Designing an appropriate dictionary D is very important to the success of this

method. Therefore, the dictionary is learned from training samples by collecting a

few representative background frames as training samples, and then find an optimal

dictionary D satisfying the following:

D = argmin
D,α
||X−DA||1 + λ||A||1 (2.2.3.15)

where X is the matrix of training samples, and A is the matrix of coefficient vectors.

Authors in [15] applied the knowledge of dictionary learning techniques to determine

changes between a pair of images of the same scene taken at different times. Their

method, Sparsity-driven joint Image REgistration and Change Detection (SIRE-CD),

constructs the dictionary from training samples taken from one of the images, then

find the sparsest representation that best approximates the second image. One of

the assumptions is that both images must be very sparse in some domain. They
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successfully applied the SIRE-CD to SAR images that are very sparse spatially. Images

are registered at first, then one of the images is divided into many overlapping patches

of the same size, which then are stacked as a column vectors, y and can be represented

as a sparse linear combination over a dictionary Φ.

y = Φx (2.2.3.16)

They find the best sparse approximation of y by solving the under-determined

problem for the sparsest vector x̂

x̂ = argmin
x
||x||0 s.t y = Φx (2.2.3.17)

A subspace pursuit algorithm has been used to solve Eq. (2.2.3.17).

Many background modeling methods utilize knowledge of both sparsity and com-

pressive sensing [10]. Sparsity is a key concept of compressive sensing framework and

compressive sensing exploits the fact that many signals are sparse in the sense that

they have concise representations when expressed in the proper basis [110].

2.2.4 Compressed Sensing Based Methods

Compressive sensing theory (CS) was introduced by Candes et al [5, 6, 61]. Using

compressive sensing theory one can recover certain signals and images from far fewer

samples or measurements than needed by traditional methods. Compressive sampling

relies on two concepts: sparsity that pertains to the signals of interest and incoherence

that pertains to the sensing modality.

• Sparsity: Compressive sampling exploits the fact that many natural signals are

sparse or compressible. That is, that they have concise representations when

expressed in the proper basis Ψ [110].

• Incoherence extends the duality between time and frequency and expresses

the idea that objects having a sparse representation in Ψ must be spread out

in the domain in which they are acquired, similar to a Dirac or a spike in the
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time domain is spread out in the frequency domain [110]. In other words, a low

coherence value indicates that a signal which is sparse in one of the bases will

have a dense representation in the other one.

Candes, Romberg and Tao [58, 59, 60] showed that sparse representations can be

recovered exactly from redundant dictionaries thanks to uncertainty principles. They

proved that, in general, undetermined systems can be inverted if the solution is sparse:

Given y = Φ x and x is sparse, where Φ is a matrix of size m × n (m < n), we say

that x is S-sparse if S of its components are non-zero.

According to [58], if the following inequality (2.2.4.1) holds,

(1− δ)||x||22 ≤ ||Φx||22 ≤ (1 + δ)||x||22 (2.2.4.1)

then we say that matrix Φ satisfies the restricted isometry property (RIP) for sets of

size 2S columns. It is also called the ”2S-RIP”. It is clear that we need m > 2S rows

in Φ to have the 2S-RIP.

Theorem (Candes, Romberg): A m × n sub Gaussian matrix (entries are i.i.d

random variables) obeys the 2S-RIP for m ≥ C · S log(n/S) with high probability.

This means that for y = Φ x with Φ Gaussian matrix and x a S-sparse signal then

the signal x can be recovered from ' S · log(n/S) Gaussian measurements. Given

measurement y, x0 can be recovered by solving:

min
x
||x||0 subject to: y = Φx (2.2.4.2)

Eq. (2.2.4.2) is hard to solve. However, if Φ obeys the 2S-RIP, we can recover an

S-sparse x0 from y = Φx0 by solving Eq. (2.2.4.3):

min
x
||x||1 subject to: b = Φx (2.2.4.3)

Not only  L1 minimization perfectly recovers the signals that are exactly sparse, but

it also recovers good approximations to signals that are approximately sparse. Robust

recovery in presence of noise is also possible.
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CS theory is recently used in background modeling methods. In applications of CS

theory for background modeling, the foreground objects can be recovered by learning

a sparse representation of the background image in some other domains.

The method in [10] recovered background subtracted images in video surveillance

with the use of CS theory. The background subtraction problem can be seen as a

sparse signal recovery problem where L1 minimization can be applied. They utilize the

sparsity of the foreground to perform background subtraction by using fewer measure-

ments than the conventional methods.

If vector y of size M × 1 represents the compressive samples and Φ of size M ×N

is the measurement matrix, based on CS theory, y can be expressed as:

y = Φx = ΦΨα (2.2.4.4)

where Ψ is the sparsity basis that provides a S-sparse representation of x, and α is an

N × 1 column vector with K-nonzero elements. α can be recovered by solving the L1

minimization problem [5, 6]:

α̂ = argmin ||α||1 s.t y = ΦΨα (2.2.4.5)

Let x1, x2 and xdif be the background, test and their difference image respectively.

Note that xdif = x2−x1 is sparse in the spatial domain. We have y1 = Φ x1, y2 = Φ x2.

Samples ydif = y2−y1 can be used to recover the foreground objects. Authors in [5, 6]

reconstructed the background, test and difference images using L1TV minimization.

2.2.5 Robust PCA Methods

Robust PCA has applications in many other areas, such as video surveillance, face

recognition, etc. In [19], the use of principle component pursuit (PCP) method was

proposed to detect foreground changes in video surveillance. They assumed that each

image matrix M can be written as a sum of a low-rank matrix L and a sparse matrix S,

i.e., M = L+S. Video frames are stacked as columns of a matrix M, then the low-rank

component L corresponds to the stationary background and the sparse component S
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captures the moving objects in the foreground. A simple principal component pursuit

(PCP) solution recovers the low-rank and the sparse components, provided that the

rank of the low-rank component is not too large, and that the sparse component is

reasonably sparse:

minimize ||L||∗ + λ||S||1 (2.2.5.1)

subject to: L + S = M

It is worth emphasizing that in both sparsity and CS based background modeling,

the solution involves the use of various L1 minimization algorithms. Also, recently,

many MRI reconstruction techniques employ compressive sensing methods. Work of

[5, 6] is very well known among others for a direct application to MR images of the

brain. They use the well known fact that MR images are sparse on some domains

such as wavelet, finite differences, etc. Recovery of undersampled MR image using L1

minimization allows for rapid MR imaging.

Work in [22] applied dictionary learning techniques to solve the reconstruction prob-

lem. They proposed an adaptive patch-based sparsifying dictionary learning in the k-

space (i.e., the Fourier frequency domain) and used it to remove aliasing and noise. The

dictionary is created using the K-SVD algorithm and is updated for each image block.

In most recent research, the CS sparse models, and dictionary learning algorithms are

used often for classification and detection problems.

2.3 Change Detection in Medical Images

Some of the methods described in the previous section have also been used for detect-

ing changes of medical images. In this section we review several methods or change

detection systems that have been used in MR imaging during the last decade. The au-

thors in [27] presented a detailed review of change detection methods in serial imaging

studies of the brain, and classified them in manual inspection, measurement sampling,

volumetric, warping, and temporal analysis methods.

Measurement sampling methods include one-diameter measure and two-diameter
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measure. The one-diameter measure method [48] measures the maximum diameter

and the maximum corresponding perpendicular of a tumor to assess the progression or

regression of the disease. In the two-diameter approach [49] the radiologists compute

the maximum area which is used to rate each patient’s progression or regression of the

disease. One of the drawbacks of such a method is the ability to detect small changes,

because of the difficulty of the radiologists to reach a consensus.

In some of volumetric methods, the global volume of each anatomical tissue of in-

terest at each acquisition time is calculated, and the results are subtracted [50, 51].

This increases the uncertainty and error is additive when regions are large. Two other

volumetric methods [52, 53] identify the tumor first and then compute its volume each

time. The growth rate is computed as a ratio of the difference between the computed

volumes and time interval.

Some nonlinear linear registration methods (warping) [54] utilize an elastic image

registration algorithm to match surfaces between acquisitions and to compute the vol-

umetric deformation fields such as dilation and contraction. One of the problems with

the nonlinear registration is that it is not a one-to-one tissue correspondence based on

intensity, since there is an infinite number of displacement fields corresponding to a

given pair of acquisitions.

Temporal analysis methods [55, 56] are based on computing various metrics for

each voxel. Based on the computed metric, these methods calculate the probability

of a voxel belonging to the change over time series. By analyzing these methods and

pointing out their drawbacks, authors in [3, 7] made the case that automated change

detection systems would be a great help for the radiologists to correctly interpret data.

The work of [57] provides a review of the methods and algorithms for detection

of multiple sclerosis lesions (MS) in serial MR images of the brain. They also make

the case for an automated change detection system. Visual inspection is still the most

common approach in change detection. According to [57], methods for detecting MS

are classified into two main categories: intensity based methods, and deformation based

approaches. Each of these categories is sub-classified into sub-categories, as shown in

Fig 2.3.1.
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Figure 2.3.1: A flowchart showing the classification of change detection methods in in
serial MR brain scans of multiple sclerosis patients, according to Lladò et al.

2.3.1 Intensity based approaches

Intensity based approaches are based on comparison between the baseline’s voxels in-

tensities and its corresponding follow ups. Patient’s position change and movements

lead to errors which make the registration a very important pre-processing step. One

possible way to reduce this miss-alignment caused by the lesion evolution is to use a

similarity metric robust to local differences. The group of intensity based methods is

sub-classified into: statistical, deterministic and temporal change methods [57].

2.3.1.1 Statistical change detection techniques

Statistical change detection techniques are an alternative to simple differencing. Some

of statistical methods [2, 68] deal with multi-modal image data, using multidimen-

sional Gaussian models of image intensities. False detection rate is lower with respect

to standard single-modal methods. The work in [68] presents an automated system to

detect subtle changes in mixed-signal MR brain lesions by scan matching and spatial

normalization. ”Match scan” represents the scan to be registered to the ”base scan”,

a scan chosen as the registration target. Scan matching or co-registration is performed

by multi-scalar iterative searches through six parameters (three for translations and

three for rotations) at the multi-resolution levels which are done by Gaussian blurring
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of images. This is followed by global intensity matching, subtraction of the images, and

filtering out the difference image. Finally, in order to detect active lesions and their

evolutions, a statistical model of intensity changes between successive scans is built,

and the quantification of changes is performed by structured difference filtering based

on the statistical likelihood of ”structure” in a Gaussian field, followed by thresholding

the structure differences. The methods rely on the changes of the lesions not on the

changes of the individual voxels.

Registration is a very important component of medical image analysis. Registered

images are easier to compare as only differences between scans can be evaluated to

further facilitate the detection of change. Errors are introduced during the registration

process as the accuracy of registration techniques relies on the applied interpolation

methods, motion artifacts, and image resolution [66]. Many treat the registration prob-

lem as a mathematical optimization, using a cost function to quantify the quality of

the registration for some given transformations. A thorough review of how the choice

of the cost function and the number of transformational parameters effect the quality

of registration is discussed in [69, 70].

2.3.1.2 Deterministic approaches

Deterministic approaches are based on subtraction of two consecutive registered tem-

poral volumes. Unchanged voxels may represent normal tissues or unchanged lessons,

or the background, while changed areas may be due to appearance, disappearance,

shrinkage, or enlarging lesions. Positive values of changes represent new or enlarging

lesions, while negative values of changes are the result of shrinkage or disappearance.

Another example in the intensity-based methods proposed in [64] initially aligns

two volume sets of data to a fraction of the linear dimension of a voxel, and then

utilizes by simple differencing of the aligned source images to find intensity differences

due to evolving lesions. The registration step involves finding the solution of the least
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square error of the difference volume.

min
α,β,γ,Tx,Ty ,Tx

1

Nvoxels

∑
voxels

(I2 − I1)2 (2.3.1.1)

where α, β, γ, Tx, Ty, Tx are rotation angles and translations with three directions x, y,

and z. The authors in [65] found that it is unlikely to have a perfect interobserver

agreement when new lesions have only moderately altered signal intensity, and that

the use of subtraction results in moderate interobserver agreement for enlarging lesions.

2.3.1.3 Temporal analysis

Temporal analysis is based on the analysis of series of MR images over time, with at

least more than two examinations. Time series scans are used to monitor disease activ-

ity and progression and provide information about subtle morphological and functional

changes [72, 73]. These methods are based on the fact that lesions found by segmen-

tation methods are significantly correlated over time. By introducing the time as the

fourth dimension, the segmentation of series of 3D data sets of the temporal change at

each voxel is replaced with a 4D image set [72]. In temporal analysis, 3D MR data sets

acquired at different time interval, are combined to 4D (x, y, z, t) data sets, allowing

for the intensity and the brightness of each voxel to be considered as a function of

time. The dynamic changes in lesion voxels are detected by analyzing the time series

of each voxel over time. The method assumes that data sets are perfectly registered

and normalized.

This is a big issue in MR images as the MR intensity is not absolute. The same

tissue may have different image intensities at different scans. Both normalization and

regististration are necessary steps. Preprocessing includes registration, normalization

of image brightness, brain mask within brain white and gray matter by segmentation

system [71], and sets of corrected 3D data are combined to form 4D data sets. Time

series were analysed by developing features to describe variation of lesions. They vali-

dated their methods using simulated lesion pattern in 4D data sets.

Authors in [73] presented a method of time-series analysis (TSA) that performs
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direct quantitative analysis of signal intensity in the time domain. Their method seeks

the integration into a 4D spatio-temporal data set by spatial and intensity normaliza-

tion, artifact filtering, fusion into a 4D volume, and analysis by creating parametric

images and feature maps. They claim that correct 4D integration minimizes artifacts

due to mis-registration, partial-volume effects, and scanner float.

2.3.2 Deformation field-based approaches

Deformation field-based approaches refer to the modification of the surrounding tis-

sues, due to lesion expansion or contraction. A non-linear registration is performed

between successive scans, and the structural changes are determined based on the local

deformation of voxels. These methods are divided into deformation field morphometry

methods and vector displacement fields [76, 77, 57].

2.3.2.1 Deformation field morphometry

Deformation field morphometry [76] calculates the deformation vectors related to the

grid points between the images to indicate shifted voxels in the source image (a de-

formed image to target image). A local volume ratio is defined as the volume of the

deformed voxels in the source image divided by the volume of the non-deformed voxels

in the target image. A local volume ratio greater than one shows a local increase of an

existing lesions and vice-versa, a local volume ratio less than one shows a local decrease

[76].

2.3.2.2 Vector displacement fields

Vector displacement fields are a semi-automatic approach using vector displacement

fields obtained by a non-rigid registration of two successive scans to track MS lesions.

Both the divergence and the norm of the displacement vector fields are used in order to

detect deformations and intensity changes. Therefore, high values of the norm indicate

large deformation areas, while high divergence indicates evolving lesions, where the
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sign of the divergence operator shows whether the lesion was growing or shrinking. As

showed in [77], noise can be characterized by high divergence and low norm while the

norm is large and the divergence low in the case of a translation.

2.3.3 Automated Change Detection System

An automatic change detection system for serial MRI with applications in MS - follow

ups is presented in [2]. The method is based on the use of multi-modal information

for change detection, generalized likelihood ratio test (GLRT), and nonlinear joint

histogram normalization. This method does not work well when noise is not-stationary.

Their change detection algorithm goes through four steps:

1. Brain extraction. In this step, the method extracts the head from the background

noise using Otsu’s thresholding method at first, and then the brain extraction is

done using an atlas-based segmentation.

2. Repositioning and correction of deformation artifacts. In this step, an image is

chosen randomly from the database as a reference image, and all other images of

the dataset are aligned according to the reference image.

The algorithm applies the iterative affine registration techniques. In each itera-

tion an affine registration is followed by a re-computation of the brain extractions,

which is computed as the intersection of the brains of the registered images at

that step.

Deformable registration is done by the deformable matching method which es-

timates a parametric displacement field decomposed on multiresolution B-spline

basis functions. Then, image resampling is performed using interpolation tech-

niques. A global geometric transform is computed by composing the transforms

obtained during the affine and deformable registration steps. A 5-degree box

spline kernel is used in the last deformable registration step [101].

3. Intensity normalization is achieved using a nonlinear normalization method which

relies on the estimation of joint probability distributions of intensities in two
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images;

j(u, v) = p
(
I1(s) = u, I2(s) = v

)
: s ∈ Ω (2.3.3.1)

After images are registered and their intensities are normalized, the obtained dif-

ference image is composed of noise, residual artifacts and the real image changes

which are small in scale compared to the RF artifacts. The method applies a

large low-pass Gaussian filter with a large standard derivation σ = 15mm on the

difference image, to isolate the RF artifacts.

4. A single or multimodal statistical change detection test is the last step. The

generalized likelihood ratio test (GLRT) is used to compute the ratio of the

probabilities of two hypotheses: the null hypothesis H0 → there is no change

between I1 and I2 inside a window W , orH1→ there is significant change between

I1 and I1 inside W .

The generalized likelihood ratio is defined as:

RGLRT =
p(I1, θ1)p(I2, θ2)

p(I1, θ0)p(I2, θ0)
(2.3.3.2)

For a single modality the average θ = µ, the maximum likelihood estimate of µ is

µ̂, where µ̂ =
∑

(i,j)∈W
I(i,j)
n

and n is the number of voxels in the window W . The

logarithm of Eq. (2.3.3.2) is computed. The expression used to decide whether a

voxel belongs to the change or no change is:

(H1 : change)⇐⇒
√
n

2σ
|µ̂2 − µ̂1| > λ

(H0 : no change)⇐⇒
√
n

2σ
|µ̂2 − µ̂1| < λ

(2.3.3.3)

where λ is a threshold

A similar approach is taken for the multimodality case. The probability of observing

intensity values I(i, j), for (i, j) ∈ W , for a given mean µ, for m modalities is:

p(I, µ) =

(
1√

(2π)m|C|

)m

exp

−1

2

∑
(i,j)∈W

(I(i, j)− µ)TC−1((I(i, j)− µ)

 (2.3.3.4)
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Authors in [7, 8, 9] developed an automated system to examine the MR scans of

brain tumors. The main purpose of these studies is to reduce human error and minimize

the enormous amount of data that radiologists have to process to reach a conclusion.

They found that implementing a scientifically useful tool is most clinically viable when

it is efficiently integrated into clinical work-flow, and that automated change detection

improves efficiency, accuracy and agreement. Therefore, it is very useful to have an

efficient computer-based system that automatically reduces the quantity of data and

directs radiologists’ attention to clinically-relevant changes.

Their integrated system for detecting changes in serial multi-modal MRI exami-

nationa or scans is based on post classification of image pixels in multi-spectral MR

intensity feature space. The rational behind their method is based on the observation

that an abnormal tissue is a tissue transitioning from one normal tissue to another in

the feature space and an assumption that change tends to occur along lines connecting

pairs of cluster centroids in the feature space. The system additionally formats the

output as a quantitative summary. The change detection algorithm goes through the

following steps:

1. Pre-processing: multi-contrast images, such as T1-weighted, FLAIR, or T1-

weighted post Gd at least at two different times undergo four preprocessing steps.

Inhomogeneity correction and registration were done with Insight Segmentation

and Registration Toolkit (ITK) [102]. Registration of serial examination pairs,

both within a particular exam and between serial exams, is important to estab-

lish a common spatial framework. In the third and the fourth pre-processing

steps a brain mask is manually defined, separating the brain and cerebrospinal

fluid (CSF) from the non-brain tissues. Samples of normal-appearing white mat-

ter (NAWM) are defined by using the image edit component of the ”Analyze”

software package.

2. Characterization of the contents of voxels based on image intensity (e.g., white

matter, gray matter, or CSF). The algorithm locates sample points for CSF,

normal gray matter, and also locates or synthetically creates sample points for

three pathological ”tissues”. The algorithm makes assumptions that voxels don’t
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contain more than two different tissues, called a ”tissue pair”, and that changes

between two different times occur between the pairs, forming duel tissue classes.

For this algorithm, the dual tissue classes were: NAWM and NETTA, NAWM

and enhancement, NETTA and enhancement, enhancement and necrosis, and

NETTA and necrosis.

3. Feature extraction: A scatter-plot of the feature space and partial membership

lines connecting the centroids of the contributing tissues in each of the relevant

pairs is drawn in multispectral intensity space. They assume that the multispec-

tral intensity of a voxel will follow such a line, thus all points in this feature space

are projected onto this line, which results in the dimensionality reduction. The

distance from a point P to its projection Pproj is calculated using Mahalanobis

distance D. As shown in Fig 2.3.2, if the coordinates of any point P is known

Figure 2.3.2: Points A and B are the centroid of NETTA and NAWM respectively.
Pproj is the projection of point P onto the line segment joining centroids A and B.

.

then the coordinates of its projection Pproj can be found by Eq. (2.3.3.5).

|
−−→
OPproj| =

(
−−→
OB−

−−→
OA) • (

−−→
OP−

−−→
OA)

|
−−→
AB|2

=

−−→
AB •

−−→
AP

|
−−→
AB|2

(2.3.3.5)

4. Membership assignment: each voxel is assigned to the closest dual tissue class.

Let µA and µB represent the mean intensities of both tissues which make up the
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partial membership line. Let xP represents the intenisity of the voxel P. Then,

VA, and VB represent the fractional volumes (or the membership) calculated using

the following formulas:

VA =
xP − µA
µA − µB

VB =
xP − µB
µA − µB

5. The inverse of the square of Mahalanobis distance, 1
D2 , is calculated to decide

whether or not a point is a member of a given dual-tissue class. A point belongs

to a given dual-class if Mahalanobis distance for that point is low.

6. This is the noise reduction step, which is done by thresholding the mean mem-

bership change. If the mean membership change exceeds the threshold then the

the change is considered real, otherwise the change is ignored.

To validate and compare the performance of their algorithm the specificity and sen-

sitivity measures on nine serial phantom pairs are computed. The values of specificities

were in the range [0.8, 1] and sensitivities in [72, 96] with a p-value 0.008.

Preliminary clinical studies show that their system can identify visually subtle

changes related to disease. However, tissue classification task itself is very difficult;

in addition, the whole process of calculating transition tissue types and fractional

membership for each pixel is inherently time-consuming.

Another change detection method for two MR images was introduced in [11]. The

method is based on local steering kernels (LSK) and calculation of test statistics is

derived from cosine similarity [47]. Their work does not address registration and align-

ment. They assume that images have undergone two preprocessing steps: geometric

co-registration and the intensity adjustment.

For both the reference image I1 and the test image I2, the LSK are calculated as a

measure of the local similarity of a pixel xj to its neighbors within a window W of size

m×m, i.e.,

KIs(xi − xj) =

√
det(Ωi)

h2
exp

(
(xi − xj)TΩi(xi − xj)

−2h2

)
, (2.3.3.6)
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where s ∈ {1, 2} and i ∈ {1, ...,m2}, Ωi is the covariance matrix of spatial gradient

vectors within W and around xi, and h is a global smoothing operator.

Next, the LSK are normalized as:

KIs(xi − xj) =
KIs(xi − xj)∑m2

i=1KIs(xi − xj)
= kjIs , for s ∈ {1, 2} (2.3.3.7)

For each pixel xj, they will have m2 of kjIs which are stacked as column vectors. Next

the cosine similarity is applied as the ”distance measure” between pairs (kjI1 , k
j
I2

) as:

ρ(kjI1 , k
j
I2

) = cosθj =
(kjI1

T )(kjI2)

||kjI1|| ||k
j
I2
||

= ρj (2.3.3.8)

Finally, the dissimilarity map (DM) is computed at each xj as:

DM : f(ρj) =
1− ρ2

j

ρ2
j

(2.3.3.9)

The significance test is performed on the DM with a 99% confidence interval to de-

tect regions with significant changes. Sensitivity, specificity and similarity index (SI)

performance measures are computed to validate the method. They reported that their

method achieved a sensitivity = 0.877, specificity = 0.998, and SI = 0.879.

2.4 Remaining Challenges

Change detection methods mentioned in Section 1 and Section 2 present an improve-

ment over simple visual inspection and classical statistical approaches. However, most

methods require many preprocessing steps such as registration before using the core

algorithm [7, 8, 9]. Some methods require spatially sparse images [15] while the others

require a large database of images [13, 14]. To the best of our knowledge there are no

well known change detection methods that would work without such limitations. For

this reason we have looked at mathematical frameworks that take into consideration

the information obtained from measurements themselves. These approaches include

dictionary learning techniques and subspace learning which will be discussed in our
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contributions in Sections 3 through 8.
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Chapter 3

The Adaptive EigenBlock

Dictionary Learning Algorithm

3.1 An Introduction

Our approach to change detection problem is based on background modeling and back-

ground subtraction. Background subtraction is the separation of the moving object

called the ”foreground” from the static information called the ”background” [105].

Background subtraction is a particular case of change detection when the reference

image is the background and the second is the test image. Changes can be revealed

by subtracting the image background from the test image. Background modeling de-

scribes the kind of model used to represent the background [105].

Most images are sparse in either spatial domain or some transformed domain. In

particular, the background subtracted image is generally sparse spatially. With recent

developments in the area of compressive sensing (CS) [5, 6], and availability of various

sparse image reconstruction algorithms, it is natural to explore the use of CS in change

detection as in [10, 15]. Any application of CS in background subtraction models in-

volves the use of various L1 minimization algorithms.

We first explored the possibility of utilizing image sparsity and compressive sens-

ing to automatically detect changes between two consecutive images by designing the

Adaptive EigenBlock Dictionary Learning (AEDL) algorithm [23]. The AEDL algo-

rithm captures local spatial differences between two or more consecutive images and
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detects the significant changes between them. Changes are linearly modeled by a local

dictionary trained from the images themselves and reconstructed locally by L1 min-

imization. The AEDL algorithm is designed to ignore insignificant changes due to

mis-alignment (spatial shift, rotation), field inhomogeneity and noise. We use the prin-

ciple component analysis (PCA) to reduce the size of local dictionaries in the algorithm

and to identify the linear relationship in the data. This helps to speed up the com-

putations for practical applications. Performance of our algorithm is validated using

synthetic and real images.

To simplify the problem, we focus on detecting differences between two consecutive

images of the same anatomical location taken at times t1 and t2. The image correspond-

ing to t1 is referred to as the reference image, and similarly, the image corresponding to

t2 as the test image. Note that these two images are not necessarily aligned and may

contain different noise levels, intensity inhomogeneity, and other acquisitions related

artifacts. Roughly speaking, the AEDL algorithm consists of three stages as shown

in Fig. 3.1.1: 1) Capture local spatial changes between the reference and test images

by averaging all the absolute differences of test image blocks with their best linear

approximations given by a local dictionary trained from the reference image. The local

background image, modeled as a sparse linear combination of the image blocks in the

dictionary, can be reconstructed by an L1-minimization algorithm. 2) Repeat Stage

one by averaging all the absolute differences of reference image blocks with their best

linear approximations given by a local dictionary trained from the test image. 3) Fi-

nally, the change image is computed as the average of change images from Stages one

and two.

The AEDL algorithm extends previous works of [1, 13, 14, 15, 16]. It is designed for

medical images to automatically detect the anatomic changes in the test image. The

AEDL algorithm is different from [1, 13, 14, 15, 16] in the following aspects:

i. We focus on change detection in medical images where we deal with mis-alignment

at different scans and imaging acquisition related artifacts.

ii. We use only two consecutive MR images, hence our dictionary is not learned from

a database of images. It is built on one image and trained from local blocks of
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Figure 3.1.1: Three stages of the AEDL algorithm

that image.

iii. The size of the local dictionary is further reduced using PCA to improve compu-

tational efficiency.

3.2 The AEDL Algorithm With L1 Minimization

Let I1 and I2 represent two images of size N1 ×N2 of the same anatomic structure at

two different times, t1 and t2 respectively. I1 is referred as the reference image and I2

as the test image. Is(i, j) is image intensity of the pixel at the i-th row and the j-th

column, for s = 1, 2.

We assume that the differences of these two images include disease related changes

that have occurred from time t1 to time t2 and also changes caused by registration

shifts, rotations, noise, and other acquisition related artifacts. During this time in-

terval most blocks from the reference images have undergone a few disease related

changes. Most pixels of the image at time t1 will appear again in the second image I2

either at the same or a nearby location. This means that a block from the reference

image, with some structure, would appear again in the test image, having a similar
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Figure 3.2.1: a) An example of an inquiring block Bij in orange of size 9 × 9 from
the reference image I1 corresponding to b) the test block bij from the test image I2

centered at ith row and jth column. Here δ=1 and ∆ = 4. There are 81 overlapping
aij blocks of size 3 × 3, examples of them shown in light green in a), which form the
local dictionary corresponding to the test block bij.

structure, either at the same location or within the neighbourhood. In other words, the

background of each block from I2 image can be learned by I1 image blocks. Therefore,

the background of a block from the test image, located at (i, j), can be learned from

the reference image blocks located in some ∆ neighborhood of (i, j).

Let bij be a block of size (2δ+1)×(2δ+ 1) in the test image centered at pixel (i, j),

where parameter δ is a positive integer, representing the radius of the bij block. There

are (2δ+1)×(2δ+1) pixels in bij. Let aij be a block in the reference image of the same

size as bij, centered at the same location. It follows from our assumptions that for a

test block bij, we can define a neighborhood of length ∆ and centered at position (i, j)

in the reference image, such that the background of bi,j can be learned from the dictio-

nary blocks within the neighborhood ∆. Let Bij be the inquiring block corresponding

to the test block bi,j, which is given by the sub-image defined on the neighborhood ∆

in the reference image. The background of bi,j can be mathematically expressed by

blocks extracted from the block Bij in the reference image centered at (i, j). Fig. 3.2.1

shows an example of a block bij in the test image of size (2δ+1)×(2δ + 1) with δ = 1,

its corresponding overlapping training blocks aij in a neighbourhood ∆ of (i, j) in the

reference image with ∆ = 4.
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Basic Conventions and Notations:

To simplify the notation, we drop the subindex ij and we set the following notations

for the rest of this section:

• I1 and I2 images corresponding to time points t1 and t2 are referred as reference

and test image, respectively.

• The block bij from test image, located at pixel (i, j), is named as the Block of Interest,

and is denoted by b.

• The ∆ neighbourhood of (i, j) pixel in reference image, B, is called the ”Inquiry Block”,

and is given by:

B =

{
I1(̃i, j̃) : ĩ ∈ [i−∆, i+ ∆], j̃ ∈ [j −∆, j + ∆]

}

• D is the set of all the blocks ak of the same size as the block of interest b, from

inquiry block B.

D =

{
ak : k = 1, 2, ...(2∆ + 1)2

}

• Blocks ak from the inquiry block are called the ”Training Blocks”. Blocks ak

are of sizes (2δ+ 1)× (2δ+ 1) centered at (p, q), where k = (2∆ + 1)× (q−1) +p.

• Let m = (2δ + 1)2 and n = (2∆ + 1)2. Then, the block of interest b and every

training block ak are of size
√
m×

√
m. Similarly, the inquiry block B is of size

√
n×
√
n.

From our assumptions, the block of interest is learned from training blocks in the

inquiry block. In our model we express b as a linear combination of blocks ak:

b =

(2∆+1)2∑
k=1

γkak =
n∑
k=1

γkak, ak ∈ D (3.2.0.1)

where k ∈ {1, 2, . . . , n}

Training blocks ak and the block of interest b are stacked as m×1 column vectors xk

and y respectively, where m = (2δ +1)2 and δ is a positive integer representing the
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radius of these blocks. Then, Eq. (3.2.0.1) can be written as:

y =
n∑
k=1

γkxk, k ∈ {1, 2, . . . , n} (3.2.0.2)

Figure 3.2.2: a) Reference and b) test images. c) Inquiry block B from reference image
of size 5× 5 (δ = 1,∆ = 5). d) The corresponding block of interest b of size 3× 3 from
test image, centered at 64th row and 64th column. e) Dictionary Φ of size 9× 25, that
is 25 blocks of size 3× 3.

Let Φ = [x1,x2, . . . ,xk, . . . ,xn] be a matrix of all the training blocks ak stacked as

column vectors xk. We call matrix Φ the dictionary.

Remark 1. The dictionary Φ is used in our model to learn the background of the

block of interest. Remark 2. The dictionary Φ is adaptive in a sense that the columns

of Φ get updated every time we move to a different block of interest in the test image.

Figure 3.2.3: a) Reference image with an inquiry block B. b) Test image with a block
of interest b. c) Magnified inquiry block B with many overlapping training blocks. d)
Training blocks, akfork = 1, 2, ..., n from the inquiry block. e) Dictionary Φ formed
by stacking training blocks as column vectors and vector y representing the block of
interest.
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Fig. 3.2.2 shows an example of how the dictionary Φ is created for a given block of

interest b with δ = 3, and ∆ = 5. Also, Fig. 3.2.3 illustrates how the block of interest

b is extracted from the test image and stacked as a column vector y, and how the

training blocks are extracted from the inquiry block and stacked as column vectors to

form the dictionary Φ. Then Eq. (3.2.0.2) can be written as:

y = Φγ (3.2.0.3)

where:

Φ = [x1,x2, . . . ,xk, . . . ,xn]

xk ∈ Rm×1, k = 1, 2, ...n, obtained by stacking the entries of the training block ak,

i.e., xk = [x1k, x2k, · · · , xmk]T , y ∈ Rm×1 is the vector representation of the stacked

block of interest, i.e., y = [y1, y2, · · · , ym]T and γ ∈ Rn×1 is the vector of coefficients in

Eq. (3.2.0.3), i.e., γ = [γ1, γ2, · · · , γn]T .

Dictionary Φ is of size m× n where m = (2δ + 1)2 and n = (2∆ + 1)2. Columns of

Φ represent training blocks, and rows are the number of pixels in each training block.

Therefore, dictionary Φ can be interpreted as a 2-dimensional matrix with n samples

(observations represented by training samples) in m dimensions. Finding γ involves

solving an underdetermined set of m equations with n unknowns, and hence must be

done subject to additional requirements on the solution.

We made the assumptions that there are only a few changes occurring from time t1

to time t2 and that all the training blocks are in a ∆ neighbourhood of (i, j). It follows

that the block of interest b can be sparsely represented as a linear combination of a few

blocks ak from the inquiry block B in the reference image for some small values of ∆.

That is, y can be represented as a sparse linear combination of columns of dictionary

Φ, which means that the vector of coefficients γ is sparse as Fig. 3.2.4 illustrates. The

additional requirement is that γ should be sparse.

The problem then becomes finding the sparsest γ such that Eq. (3.2.0.3) holds.

Most existing methods such as those in image surveillance and face recognition

[1, 13, 14, 15, 16] learn the dictionary by using training samples from a database of
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Figure 3.2.4: An illustration of Eq. (3.2.0.3), a block of interest y expressed as a linear
combination of the columns from the dictionary Φ, which is formed by training atoms
ak.

images. In our algorithm, during Stage one, we use the reference image to learn the

dictionary. Our model is a block based dictionary which captures only local disease

related changes and ignores the changes due to the patient positioning, etc. It uses

overlapping blocks to reduce image block artifacts. From the assumption that the

vector of coefficients γ is sparse, our method seeks to solve Eq. (3.2.0.3) for the sparsest

γ. Let’s consider the following minimization problem:

Problem Pp :
γ∗ = arg min

γ
||γ||p

subject to: y = Φγ

(3.2.0.4)

where ||.||p represents the Lp norm. The Lp norm for a matrix X is:

||X||p =
( n∑
j=1

m∑
i=1

xpij

) 1
p

(3.2.0.5)

For p = 2, we get the Frobenius norm or the Euclidean norm L2:

||X||2 =
( n∑
j=1

m∑
i=1

x2
ij

) 1
2

(3.2.0.6)

For p = 1, we get the L1 norm as:

||X||1 =
n∑
j=1

m∑
i=1

|xij| (3.2.0.7)
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Similarly, the Lp of a column vector x ∈ Rm×1 can be derived directly from Eq. (3.2.0.5),

Eq. (3.2.0.6) and Eq. (3.2.0.7), i.e.,

||x||p =
( m∑
i=1

xpij

) 1
p

(3.2.0.8)

The Euclidean norm or L2 norm of x is defined as:

||x||2 =
( m∑
i=1

x2
ij

) 1
2

(3.2.0.9)

The L1 norm is the sum of absolute values of the elements of x:

||x||1 =
m∑
i=1

|xij| (3.2.0.10)

For p = 0, the L0 norm of a vector x gives the total number of non-zero coefficients in

x:

||x||0 = {#i|xi 6= 0} (3.2.0.11)

Finding a sparse γ can be done by minimizing the support of γ, i.e., number of

non-zero coefficients in γ. It follows from the definition of ||x||0 that the sparsest

solution γ to Eq. (3.2.0.4) is obtained for p = 0. That is, by solving the minimization

P0 problem:

Problem P0 :
γ∗ = arg min

γ
||γ||0

subject to: y = Φγ

(3.2.0.12)

If there is no change in the test image and in the ideal noiseless case, i.e, the

reference and test image are identical, then the block of interest is represented by

only one training block. Then, the solution γ∗ to Eq.(3.2.0.12) is a vector of only one

nonzero element. In reality, there is always noise, therefore solution γ∗ vector will have

a few nonzero elements of small magnitudes. To account for noise, Eq. (3.2.0.3) can be

modified to:

y = Φγ + n (3.2.0.13)
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where n = y−Φγ represents the random noise and the residual errors in the approxi-

mation algorithm. It is clear that we aim to compute the sparsest γ while minimizing

the residual errors, n. Then, the minimization problem P0 in Eq. (3.2.0.12) can be

written as:

Problem P0 :
γ∗ = arg min

γ
||γ||0

subject to: y = Φγ + n

(3.2.0.14)

The solution γ∗ is sparse, that is, ||γ∗||0 << n where n is the dimension of the vec-

tor. The solution to P0 problem is in general NP-hard (non-deterministic polynomial-

time hard). In many applications, instead of solving the P0 problem, an approximate

solution is obtained by replacing the L0 norm with L1 norm [112, 111, 113]. In this

case, the L0 minimization problem in Eq. (3.2.0.14) can be relaxed into the following

L1 convex minimization problem P1:

Problem P1 :
γ∗ = arg min

γ
||γ||1

subject to: y = Φγ + n

(3.2.0.15)

The solution to the convex problem P1 can be computed by standard optimization

tools such as linear programming. As described in Section 2.4, authors in [112] have

shown that for very sparse representation of y when there exists γ so that y = Φ γ and

||γ||0 � n, then the solution to problem P0 is also a solution to the P1 problem. In other

words, Problem P1 is among convex optimization problems that is the closest to the P0

optimization problem under sparsity and incoherence conditions. For dictionary Φ with

incoherent columns, if there is a sufficiently sparse solution to the P0 problem, then the

solution is unique and it is equal to the solution of the P1 problem, [5, 6, 111, 112, 113].

We write Eq.(3.2.0.13) in matrix representation:

y = [Φ I]

 γ

n

 ≡ Aα (3.2.0.16)

For every vector y from the test image we determine the sparsest representation α∗

of all α’s ∈ Rn+m which minimizes the error and satisfies Eq.(3.2.0.15). For efficient
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computation, we solve the following minimization problem.

Problem P1 :
α∗ = arg min

α
||α||1

subject to: y = Aα

(3.2.0.17)

where

α =

 γ

n

 and α∗ =

 γ∗

n∗


If there are changes in the test image then the block of interest may not be well

represented as a linear combination of a few blocks from the inquiry block. Enforcing

the sparsity conditions when solving the P1 minimization problem leads to a noisy

approximation of the block y∗ from all the training blocks of Φ. To reduce the noise,

we modify A slightly by spreading out the mean value µ of the inquiry block B.

A = [Φ µI] (3.2.0.18)

where I is the m×m identity matrix. An orthogonal matching pursuit algorithm can

be used to solve Eq.(3.2.0.17). In our numerical computation we use the compressive

sampling matching pursuit (CoSaMP) algorithm [12] to compute α∗ by minimizing

the L1 norm. The CoSaMP algorithm compares with the best optimization-based

approaches. Moreover, it is computationally more efficient, requires less storage, and is

more efficient for practical problems since it requires only a matrix multiplied with the

sampling matrix [12]. The best approximation y∗ of the background of y, the block of

interest from the test image, can be computed as a linear combination of these training

blocks from inquiry block in the reference image.

y∗ = Φ γ∗ (3.2.0.19)

and the foreground r which represent clinically relevant changes are computed as:

r = |y − y∗| (3.2.0.20)
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3.3 Dictionary Learning and The AEDL Algorithm

via Eigen-Subspace

In Eq.(3.2.0.18), dictionary Φ of size m×n where n = (2∆+1)2 composed of reference

image atoms, presents high level of redundancy. This is because these atoms highly

overlap and many atoms differ by only one row or column. We use principal component

analysis, PCA, to reduce the dimensionality of the dictionary dataset and eliminate

such redundancy. The general idea is to approximate each column x of Φ with its

projected column x̂ of Φ̂ over a projection matrix T, such that:

Φ̂ = T Φ (3.3.0.21)

where T is a m×m linear transform. The best choice for the transform T would be

the one that minimizes the residual error of the approximation in the least mean square

sense (MSE) [79]. If x is approximated with its projection x̂, then the estimated MSE

of the approximation is defined in [115] as:

MSE =
1

m

m∑
i=1

(x̂i − xi)2 (3.3.0.22)

and the unbiased MSE is defined in [114] as:

MSE =
1

m− 1

m∑
i=1

(x̂i − xi)2 (3.3.0.23)

Let T be the orthogonal projection onto the space spanned by U1,U2, . . . ,Ur

eigenvectors of covariance matrix of Φ, i.e.,

T =
r∑
s=1

Us UT
s (3.3.0.24)

To do so, we first center the dictionary Φ to have zero mean, by subtracting xc the

mean column of Φ. The centered dictionary with zero mean Φc is:

Φc = [xc1,x
c
2, . . . ,x

c
n] (3.3.0.25)
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where xci = xi − 1
n

∑n
k=1 xk. Φc can be written as:

Φc = Φ− xc = Φ− 1

n

n∑
k=1

xk (3.3.0.26)

Eigenvalues and eigenvectors of the covariance matrix Ω = Φc(Φc)T are then com-

puted. We project the dictionary Φc onto eigen-subspace of Ω to obtain the projection

Φ̂ as:

Φ̃ = UT Φc (3.3.0.27)

We use r eigenvectors to learn the dictionary, extract the features and reduce the

dimensions of the dictionary, where r ≤ to the rank of Φc and r � m. The low

dimensional dictionary Φ̂ is obtained by projecting Φc onto eigen-subspace:

Φ̂ = UT
r Φc (3.3.0.28)

where Ur is the matrix of r eigenvectors corresponding to the r largest eigenvalues.

The vector y is also projected into the subspace obtained by the eigenvectors of the

covariance matrix as:

ŷ = UT
r yc (3.3.0.29)

where yc is the centered block of interest, obtained by subtracting xc the mean

column of the dictionary Φ. Then, the Eq.(3.2.0.18) can be written as:

Â = [Φ̂ µI] (3.3.0.30)

The initial problem (3.2.0.17) in eigen-subspace can be now written as:

Problem P1 :
α̂∗ = arg min

α̂

||α̂||1

subject to: ŷ = Âα̂

(3.3.0.31)

where α̂ =

 γ̂

n̂

 and α̂∗ =

 γ̂∗

n̂∗


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Using the solution α̂∗ of Eq. (3.3.0.31) the AEDL algorithm computes ŷ∗, i.e., an

estimate of the projected background of ŷ in the selected eigen-subspace, by solving

the following linear system:

ŷ∗ = Φ̂ γ̂∗ (3.3.0.32)

Therefore, we reconstruct y∗, the background of y in spatial domain, by solving

the following equation.

ŷ∗ = UT
r y∗ (3.3.0.33)

We observe that the matrix of eigenvectors Ur is full rank and the number of rows is

greater or equal to the number of columns, m ≥ r. Therefore, the (left) pseudo inverse

of UT
r exists. Note that the left pseudo inverse of a matrix V is: V† = (VTV)−1VT .

Hence, the left pseudo inverse of UT
r can be computed as:

(
UT
r

)†
=
((

UT
r

)T
UT
r

)−1(
UT
r

)T
(3.3.0.34)

=
(
UrU

T
r

)−1
Ur (3.3.0.35)

The background in the spatial domain is then given as:

y∗ =
(
UrU

T
r

)−1
Urŷ

∗ (3.3.0.36)

and the residual error of the approximation y∗ with the block of interest y is then

computed as:

r = |y − y∗| (3.3.0.37)

The AEDL algorithm uses overlapping training blocks to learn the background of

the block of interest. Therefore, to compute the foreground with significant changes

corresponding to the block of interest b, this process is repeated m times, the number

of pixels in the block of interest. F[1] represents the foreground of the block of interest

b in the test image and is learned from training blocks in the reference image.

F[1] =
1

m

j+δ∑
k=j−δ

i+δ∑
l=i−δ

r
[1]
k,l (3.3.0.38)
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where r
[1]
k,l represents residual vectors and F[1] is the foreground represented by

significant changes corresponding to the appearance or disappearance of a lesion, the

growth or shrinkage of an existing lesion and also changes in the intensity level of a

lesion. The foreground blocks are image blocks of size
√
m×
√
m = (2δ+ 1)× (2δ+ 1),

centered at the pixel (i,j), and divided by m, the number of blocks that contain the

pixel (i,j). In Stage one the AEDL algorithm computes the change image I
[1]
cd between

the reference and the test images using the following equation:

I
[1]
cd =

1

m

N2−δ∑
j=δ

N1−δ∑
i=δ

r[1](i, j) (3.3.0.39)

In Stage two the background of each block of interest in reference image is learned

from training blocks in the test image. Hence, we repeat the process of Stage one by

switching the reference image with the test image. The foreground F[2] of a block in

the reference image is computed as:

F[2] =
1

m

j+δ∑
k=j−δ

i+δ∑
l=i−δ

r
[2]
k,l(i, j) (3.3.0.40)

The change image I
[2]
cd between the reference and test images is computed as:

I
[2]
cd =

1

m

N2−δ∑
j=δ

N1−δ∑
i=δ

r[2](i, j) (3.3.0.41)

Then in Stage three, the two change images I
[1]
cd and I

[2]
cd are averaged to create the final

change image Icd between the reference and the test image:

Icd =
1

2

(
I

[1]
cd + I

[2]
cd

)
(3.3.0.42)

which can be simplified as:

Icd =
1

2

(
1

m

N2−δ∑
j=δ

N1−δ∑
i=δ

r[1](i, j) +
1

m

N2−δ∑
j=δ

N1−δ∑
i=δ

r[2](i, j)

)
(3.3.0.43)
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and finally the change image Icd is

Icd =
1

2m

N2−δ∑
j=δ

N1−δ∑
i=δ

(
r[1](i, j) + r[2](i, j)

)
(3.3.0.44)

3.4 Simulations

First, we tested the AEDL method with synthetic images of size 128× 128 as shown in

Figs. 3.4.1, 3.4.2, 3.4.3, 3.4.4. In each reference image, there are three 12 sided poly-

gons placed in the first 32 rows. The size of each polygon increases from left to right

and pixels inside each polygon were given intensities using Gaussian distribution with

maximum intensity 0.3, 0.2, 0.4 respectively, from left to right. To test the algorithm

for different shift’s sizes, rotation angles, noise and intensity levels, the first 32 rows

have been repeated for the second, third and fourth 32 rows of the reference image.

The test image is created by making two types of changes to the reference image,

significant and insignificant changes. Changes such as shifts, rotations, and different

noise levels, added to different strips of the reference image, are considered as in-

significant changes. In addition to insignificant changes, the reference image has gone

under other changes, considered as significant, such as object disappearing (the sec-

ond shape in the second 32 rows is deleted), a new object appearing (a new shape

is added down-right), object enlarged (the shape in the fourth 32 rows and first 32

columns is enlarged) , and finally, object shrinkage (the third polygon of the second 32

rows is shrunk).

These significant changes make up our ground truth image. The desired outcome

of a change detection algorithm is to detect only the significant changes that make up

the ground truth image. The performance of the AEDL algorithm is compared with

the ground truth and the absolute differencing method.

In Fig. 3.4.1 from the top to the bottom, the polygons in the strips of 32 rows of

reference image are shifted 1-down and 1-left, 3-down and 2-right, 2- down and 3-left,

and 3-up and 4-right respectively. All considered insignificant changes. The AEDL al-

gorithm ignores the changes related to horizontal and vertical translations of polygons

in the strips when the radius of the inquiry block B is no less than the size of the shift.
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As Fig. 3.4.1 shows, it detects the real and significant changes closer to the ground

truth, with δ = 1, c = 3 and ∆ = δ + c = 4, compared to the absolute difference.

In Fig. 3.4.2 from the top to the bottom, the polygons in the strips of 32 rows

of reference image are rotated by 2 degrees clockwise, 3 degrees counter-clockwise, 4

degrees clockwise respectively and the polygons in the last 32 rows by 6 degrees counter-

clockwise. All considered as insignificant changes. Results show that the AEDL al-

gorithm ignores the changes related to rotation of strips when the radius of B is no

less than the angle of rotation and detects the significant changes closer to the ground

truth with δ = 2, c = 3 and ∆ = δ + c = 5.

In Fig. 3.4.3, Gaussian noise is added to the reference image, with SNR = 30, 40,

50, and 60 for the first, second, third, and fourth 32 rows respectively. Noise is con-

sidered as another type of insignificant change. The simulations show that the AEDL

algorithm still detects the real changes closer to the ground truth for SNR≥ 30 with

δ = 1, c = 3 and ∆ = δ + c = 4.

In Fig. 3.4.4, starting from the second strip of 32 rows in the reference image, the

intensities of shapes on the second, third, and fourth strips are increased by 0.1, 0.3,

and 0.5 respectively. We want our algorithm to detect changes due to the intensity

changes, as they are considered disease related by the radiologists. Note that the poly-

gons at the bottom of the test image have a maximum intensity of 0.9 in the reference

images. We added these changes to mimic different lesion activities. Fig. 3.4.4 shows

that the AEDL algorithm detects the significant changes closer to the ground truth,

with δ = 1, c = 1 and ∆ = δ + c = 2 compared to the absolute difference.

In Fig. 3.4.5, we also tested the AEDL algorithm with MR images. The image

at row i) and column c) shows the results of two real T2-weighted MR images taken

in 2010 and 2012. Both images have the same inactive and visible MS lesion, which

hasn’t grown or changed between two exams periods, as confirmed by the radiologist.

The overlaid test image with the colored changed image is the same as the test image

as shown in Column e). This confirms that there are no significant changes for the

algorithm to detect, whereas the absolute difference shows changes due to the image

registration which are insignificant and should be ignored. Row ii) columns a) and b)
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Figure 3.4.1: Testing the algorithm performance in the presence of object shifts. a)
Reference image, b) Test image, c) Ground truth image showing only the significant
changes, d) Absolute difference image between the test and reference images, e) Change
image obtained by the AEDL algorithm shows that the algorithm ignores the changes
related to translations that can be captured by local dictionaries, but detects the real
and significant changes closer to the ground truth.

Figure 3.4.2: Testing algorithm performance in the presence of object rotations. a)
Reference image, b) Test image, c) Ground truth image showing only the significant
changes, d) Absolute difference image between the test and reference images, e) Change
image obtained by the AEDL algorithm shows that our method ignores the changes re-
lated to rotations that can be captured by local dictionaries, but detects the significant
changes closer to the ground truth.

show that two T2-weighted MR images of a normal brain and a brain with moderate

MS lesions, with 1mm slice thickness, 3% noise, and 0% intensity non-uniformity (RF).

Images are obtained from brainWeb: simulated brain database [17]. Column c) shows

that the AEDL algorithm finds the significant changes related to the new MS lesion

formation and ignores changes detected by the absolute difference method as shown in

column d).

3.5 Summary

In this section we presented an application of adaptive dictionary learning techniques

with our first change detection algorithm, the AEDL. The algorithm captures local

spatial changes between the reference and test images and consists of three stages. In

the first stage, the change image is obtained by averaging all the absolute differences
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Figure 3.4.3: Testing the AEDL algorithm performance in the presence of different
noise level. a) Reference image, b) Test image, c) Ground truth image showing only
the significant changes, d) Absolute difference image between the test and reference
images, e) Change image obtained by the AEDL is very closer to the ground truth and
shows that our algorithm method detects the real changes for SNR ratio > 25.

Figure 3.4.4: Testing the AEDL algorithm performance in the presence of different
intensity level. a) Reference image. b) Test image c) Ground truth image showing only
the significant changes. d) Absolute difference image between the test and reference
images. e) Change image obtained by the AEDL algorithm detects the significant
changes closer to the ground truth image.

Figure 3.4.5: Row i) Columns a) and b) are the reference and test images, c) the change
image computed by the AEDL method, d) the absolute difference image between the
reference and test images, e) the test image overlaid with the coloured change image.
Row ii) Columns a) and b) are T2-weighted MR images of a normal brain and a brain
with moderate MS lesions respectively, simulated by BrainWeb [17]. Column c) the
change image computed by the AEDL algorithm, d) the absolute difference image
between the reference and test images, e) the test image overlaid with the coloured
change image.
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of a test image block with its best linear approximations given by a local dictionary

trained from the reference image. In Stage two the process is similar, but the local

dictionaries are learned from the test image blocks. In the third stage, the change im-

age between the reference and test image is computed as the average of change images

from Stages one and two.

The sparse approximation is computed by the L1 - minimization algorithm. This

algorithm automatically detects the significant structural changes in the test image

while ignoring unimportant changes related to mis-alignments, noise and acquisition-

related artifacts. Experiments on synthetic images illustrated that our algorithm de-

tects changes due to appearance or disappearance of objects in the presence of object

translations, rotations, intensity changes, and moderate noise level. Experiments on

MR images showed that our algorithm identifies clinically significant changes and re-

jects clinically insignificant changes. Note that the rejection of unimportant changes

has to be within areas of local dictionaries. In addition, we introduced the use of PCA

to reduce the size of a local dictionary for each image block, to find the sparse repre-

sentation of the background and improve computational efficiency.

The AEDL algorithm is able to detect changes in presence of small shifts and rota-

tions, and noise. To account for large shifts, rotations, and noise, the AEDL algorithm

employs large sizes for both block of interest and inquiry blocks. This requires re-

construction of relatively larger blocks, and hence the L1 minimization becomes more

computationally expensive. This limitation of the AEDL algorithm is addressed in Sec-

tion 4 by designing our second adaptive dictionary learning based algorithm, named

EigenBlock Change Detection algorithm (EigenBlockCD).
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Chapter 4

EigenBlock Change Detection

Algorithm In Two Dimensions

4.1 An Introduction

In Chapter 3 we described the AEDL algorithm for detecting changes between consec-

utive medical images. The AEDL algorithm detects relevant clinical changes close to

the ground truth while ignoring changes due to patient position and other acquisition

artifacts. The AEDL algorithm is based on local adaptive dictionary learning tech-

niques and computes the background for each block of interest using L1 minimization

techniques. The reconstruction of the background for each block of interest makes this

method computationally expensive. We adapted the idea behind AEDL and designed

a new algorithm to overcome this limitation.

In this Chapter we describe our second algorithm EigenBlock Change Detection

algorithm (EigenBlockCD) for detecting changes based on local dictionary learning

techniques. Similar to AEDL algorithm, our goal is to perform a local image registra-

tion for identifying important structural changes such as appearing of a new lesion or

disappearing of an existing one, and the growth or the shrinkage of a lesion. Meanwhile

our method aims to automatically reject unimportant changes due to spatial position

of patients and noise.

To simplify the problem we focused on detecting changes between two images,

namely, reference and test images. As in Chapter 3, the two images are not necessarily
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aligned and may contain different noise levels and other acquisitions related artifacts.

For each block in the test image, we aim to find the best matching block from the

corresponding local dictionary learned from the reference image, instead of seeking a

linear approximation of these dictionary blocks as in AEDL algorithm. This idea is

inspired by face recognition in [1]. The EigenBlockCD algorithm [23] consists of three

stages as illustrated in Fig. 4.4.1:

1. Both reference and test images are divided into many overlapping blocks as shown

in Fig. 4.4.1. For each block in the test image, a local dictionary is built by all

blocks of the same size existing in a neighborhood of the position (i, j) in the

reference image. Blocks from the test image and its corresponding dictionary are

projected onto a low dimensional eigen-subspace of the covariance matrix of the

dictionary to speed up the process. The algorithm captures local spatial changes

between the reference and test images by averaging all the absolute differences of

a test image block with its best approximations block found in a local dictionary

trained from neighboring blocks in the reference image.

2. Stage One repeats by averaging all the absolute differences of a reference image

block with its best approximation block found in a local dictionary trained from

the test image.

3. Finally, the two images obtained from Stages One and Two are averaged to form

the change image.

The algorithm uses the L2 norm as similarity measure, i.e., the minimum error of re-

constructed change image. We also apply knowledge of principal component analysis

to eliminate the redundancy and hence to increase the computational efficiency. In

Section 4.3 we discuss theoretical and numerical advantages of using L2 norm in our

EigenBlockCD algorithm. The performance of the algorithm is demonstrated using

both synthetic and real images.

In Section 4.2 we discuss PCA-based learning as a way to obtain the best approx-

imation of the dictionary. In Section 4.3 we give the rationale of using L2 norm in

our EigenBlockCD algorithm. In Section 4.4 we discuss the the implementation of the
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EigenBlockCD algorithm. In Section 4.5 we present the numerical experiments with

synthetic and real images and analyze the results to evaluate the performance of the

algorithm. Results of our simulations are shown in Figs. 4.5.1 through 4.5.9.

4.2 PCA-Based Learning

In both the AEDL and the EigenBlockCD algorithms the dictionary Φ is of size m×n

with n = (2∆ + 1)2. The dictionary is composed of reference image atoms and has

high level of redundancy because many pixels are included in more than one atom.

We thus use PCA to reduce the dimensionality of the dictionary dataset and eliminate

such redundancy, therefore decrease the computational time.

Figure 4.2.1: L2 error versus the percentage of variance preserved in the image block.
Horizontal axis: Percentage of variance from 10 to 100. Vertical axis: error calculated
as the mean error of ten different blocks

The purpose of using the PCA in our algorithm is two-fold: 1) it is used as a feature

extraction tool by emphasizing most significant features within each local dictionary. 2)

it is used as a dimensional reduction tool to reduce the dimensionality of the dictionary

and hence increase its computational efficiency [24].

To quantify the runtime reduction by the use of the PCA in our algorithm we

compared runtime versus block size curves of the algorithms with and without the use

of PCA. The optimal number of eigenvectors selected is determined by the percentage

of the variance that minimizes the L2 norm of the error as shown in Fig.4.2.1. The

error is defined as the L2 norm of the difference between the block of interest and the

best matching block found by the algorithm.
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Figure 4.2.2: Comparison of the runtime of the algorithm versus block size with and
without the use of PCA. The number of eigenvectors is selected respectively according
to (a) 65% (b) 75% and (c) 85% of the total variance.

We run experiments with 23 blocks of interest chosen at different locations in the

test image. Blocks are of size 21 × 21 and their corresponding inquiry blocks are of

size 51× 51 producing a dictionary of size 441× 2601. Fig.4.2.1 shows that, in general,

average error for all 23 blocks decreases as the variance increases. Moreover, there is

no significant reduction in error when the percentage of the variance reaches above a

certain value, e.g., 65%.

To see how the PCA dimensional reduction decreases the runtime we performed

three experiments with the dictionary size reduced by choosing 65%, 75% and 85%

variances. The size of the block of interest varies from 3×3 to 49×49, while the inquiry

block size varies from 15×15 to 73×73. We estimated the runtime for both the reduced

and the full size dictionary. As we can observe in Fig.4.2.2, the runtime is reduced by

at least 50% when the block size is more than 3×3. The time saving is more significant

as the block size increases.

4.3 Effects of L1 And L2 Norms In Subspace Learn-

ing

The choice of metric is critical in determining which block from the dictionary Φ is

the ”closest” to the block of interest b. Furthermore, the use of PCA requires that the

projection of dictionary atoms onto eigen-subspace preserves distances. We exploit the

fact that L2 norm is invariant under an orthonormal transformation of image functions.

We show that such a property does not hold for L1 norm, that is, L1 norm doesn’t
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preserve the distance and the the ordering of the distances and image structures under

orthonormal transformations.

Here we represent an image as an N-dimensional matrix of pixels where the value

of each entry is the grayscale value of the corresponding pixel and N represents the

total number of pixels in the image. This is the spatial domain representation of an

image and it is one of infinitely many spaces in which the image can be examined.

Eigenspace is one of the most interesting spaces which is created by the eigenvectors

of the covariance matrix of the training data.

Projecting images into a subspace of such an eigenspace has been widely used in

image recognition and particularly in face recognition [1]. First, a subspace is selected

to project images and then all the training images and the test image are projected

into this subspace. Finally, the projected test image is compared to each projected

training image using a distance measure. The training image which is the ”closest” in

terms of the selected distance measure is labeled as found.

In many applications PCA is used as a linear transformation for reducing dimen-

sionality of a data set. Unlike other linear transforms, its basis vectors depends on the

data set, therefore PCA does not have a fixed set of basis vectors. The first principal

component is the direction in feature space along which the projections have the largest

variance. The second is the direction which maximizes the variance of all directions

orthogonal to the first component. Similarly, each kth principal component is the di-

rection which maximizes the variance among all directions orthogonal to the previous

k-1 components.

We extend the idea of eigen-subspace learning to find the changes between two MR

images. Selecting the appropriate distance measure greatly affects the performance of

the algorithm. Therefore, it is useful to examine the performance of two metrics in the

algorithm from both theoretical and practical point of view.

In the change detection problem for MR images we are interested in identifying

blocks from the reference image that are most similar to the block of interest. Similar-

ity in this case means that they have similar structural features.

Projecting data into eigen-subspace is similar to rotating the original coordinate
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system around the origin. When selecting the distance measure, or the similarity

measure, we need to ensure that the selected measure preserves distances under an

orthonormal change of basis. It can be easily proven that L2 norm is invariant under

an orthonormal change of basis.

The concept of vector space can be generalized to a function space spanned by a

set of basis functions. Let us consider the function space of image functions. A two-

dimensional image can be viewed as a function of the image intensity f(x) at a pixel

or voxel x: f : R2 → R for gray images and f : R2 → R3 for colored images, where

x ∈ X ⊂ R2. The inner product in this space is defined as:

< f(x), g(x) >=

∫
f(x)g(x)dx (4.3.0.1)

The following theorem proves that the L2 norm, as a distance measure, is invari-

ant with respect to orthonormal projections. This means that if a vector is projected

into an orthonormal subspace then the length of the projected vector computed via L2

would not change. It is also true that the covariance between a set of vectors is in-

variant with respect to an orthonormal projection. In other words, the angles between

vectors in one domain are equal to angles between their corresponding projections into

an orthonormal subspace.

Theorem 4.3.1: Orthonormal Transformations Preserve L2 Norm Of An Im-

age Function Let P = {p(x) |x ∈ R2} be an orthonormal basis, i.e.,< p(x), p(y) >= 0,

for x 6= y and, < p(x), p(y) >= 1, for x = y. Let span(P) be the space spanned by this

orthonormal basis. If g(x) is the projected image function of f(x) into this orthonormal

basis, i.e., g(x) =< p(x), f(x) >= p(x) f(x), then

||g(x)||2 = ||f(x)||2 (4.3.0.2)

Note: These are known facts about L2 norm, we want to include the proof here so that

the thesis is self-contained.
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Proof : Following the definition of L2 norm,

||f(x)||22 =
∫
x∈X
|f(x)|2dx =

∫
x∈X

f(x)f(x)dx, and

||g(x)||22 =
∫
x∈X
|g(x)|2dx =

∫
x∈X

g(x)g(x)dx, where x ∈ X ⊂ R2

we have:

||g(x)||22 =
∫
x∈X
|g(x)|2dx

=
∫
x∈X
|p(x)f(x)|2dx

=
∫
x∈X

(
p(x)f(x)

)(
p(x)f(x)

)
dx

=
∫
x∈X

(
p(x)f(x)

)(
f(x)p(x)

)
dx

=
∫
x∈X

p(x)
(
f(x)f(x)

)
p(x)dx

=
∫
x∈X

p(x)
(
|f(x)|2

)
p(x)dx

=
∫
x∈X
|f(x)|2

(
p(x)p(x)

)
dx

=
∫
x∈X
|f(x)|2

(
p(x)p(x)

)
dx

=
∫
x∈X
|f(x)|2dx

= ||f(x)||22 �

Next, we provide another proof using matrices.

Theorem 4.3.2: Orthonormal Transformations Preserve L2 Norm Of A Ma-

trix Let X and Y be two m × n matrices and let U be a matrix of size m × r where

r � n and columns of U are orthonormal. Then

||UTX − UTY ||2 = ||X − Y ||2 (4.3.0.3)

Proof : Following the definition of L2 norm:

||UTX − UTY ||22 = (UTX − UTY )T (UTX − UTY )

||X − Y ||22 = (X − Y )T (X − Y )
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we have:

||UTX − UTY ||22 = ||UT (X − Y )||2

= XTX −XTY − Y TX + Y TY from U -orthonormal

= (XT − Y T )(X − Y )

= (X − Y )T (X − Y )

= ||X − Y ||22 �

This means that the L2 norm preserves the distance during an orthonormal pro-

jection. This result does not hold for L1 norm which we illustrate below with four

counter-examples.

Counter-Example 4.3.1-Graphical Illustration of L1 not preserving distance

in 2D

Rotation is an isometric transform, it preserves the Euclidean distances between two

points or two segments and the angle between two segments. As shown in Fig. 4.3.1,

when vector AB is rotated around origin O obtaining vector A′B′, the L2 norm is the

same but the L1 norm is different. The only case when the L1 norm is preserved is

when the angle of rotation is a multiple of 90 degrees, i.e., θ = k × n
2

, for k ∈ Z.

Figure 4.3.1: The L2 norm is preserved when the Cartesian system has been rotated
around O with angle θ. However, L1 norm is not preserved. Note: θ is chosen such
that the transformed vector A′B′ of AB under this rotation is vertical vector.

Counter-Example 4.3.2-Specific Counter-Example for L1-Distance Preser-

vation in 2D :

Let x1, x2, and y be three vectors in two dimensional space spanned by the traditional
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orthonormal basis e1 and e2.

x1 =

 −2

0

 ,x2 =

 −1

2

 , y =

 −5

4

 , e1 =

 1

0

 , and e2 =

 0

1


The distance between pairs (x1,y) and (x2,y) using L1 norms is:

||y− x1||1 =
2∑
i=1

|yi − x1i| = |(−5)− (−2)|+ |(4)− (0)| = | − 3|+ |4| = 7

||y− x2||1 =
2∑
i=1

|yi − x2i| = |(−5)− (−1)|+ |(4)− (2)| = | − 4|+ |2| = 6

Similarly, we calculate the L2 norm of the differences y− x1 and y− x2.

||y− x1||2 = (
∑2

i=1 |yi − x1i|2)
1
2

=
√

(−5)− (−2))2 + ((4)− (0))2

=
√

(−3)2 + (4)2

=
√

25 = 5

||y− x2||2 = (
∑2

i=1 |yi − x2i|2)
1
2

=
√

(−5)− (−1))2 + ((4)− (2))2

=
√

(−4)2 + (2)2

=
√

20 = 2
√

5

Let P be a matrix as shown below

P =
1√
13

 2 3

−3 2

 .
It is easy to see that the columns p1 and p2 of P form an orthonormal basis.

< p1,p2 >=

[
2 −3

] 3

2

 = 0
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and

< pi,pi >=
1

13
(22 + (−3)2) = 1, for i = 1, 2

We project all three vectors x1, x2 and y onto this orthonormal basis P to obtain

vectors xp1, xp2 and yp respectively

xp1 = (PT )(x1) =
1√
13

 2 −3

3 2


 −2

0

 =
1√
13

 −4

−6



xp2 = (PT )(x2) =
1√
13

 2 −3

3 2


 −1

2

 =
1√
13

 −8

1



yp = (PT )(y) =
1√
13

 2 −3

3 2


 −5

4

 =
1√
13

 −22

−7

 .
We then calculate the differences between vector yp and vectors xp1 and xp2 respec-

tively:

yp − xp1 =
1√
13

 −18

−1

 and yp − xp2 =
1√
13

 −14

−8


Finally, we calculate the L1-distances between vector yp and vectors xp1 and xp2

||yp − xp1||1 =
2∑
i=1

|ypi − x
p
1i| =

1√
13

(| − 18|+ | − 1|) =
19√
13

||yp − xp2||1 =
2∑
i=1

|ypi − x
p
2i| =

1√
13

(| − 14|+ | − 8|) =
22√
13
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and similarly we compute their L2-distances

||yp − xp1||2 = (
∑2

i=1 |y
p
i − x

p
1i|2)

1
2

= 1√
13

√
(−18)2 + (−1)2

= 1√
13

√
325

=
√

25 = 5

||yp − xp1||2 = (
∑2

i=1 |y
p
i − x

p
1i|2)

1
2

= 1√
13

√
(−14)2 + (−8)2

= 1√
13

√
260

=
√

20 = 2
√

5

This example shows that for this specific case the L2-distance between two vectors

is invariant under P , the change of orthonormal basis.

||y− x1||2 = 5 = ||yp − xp1||2

||y− x2||2 = 2
√

5 = ||yp − xp2||2

In fact, according to Theorem 4.3.2, that L2 norm preserves distances between two

vectors projected into any subspace spanned by an orthonormal basis.

However, this is not true for L1 norm. We calculate the L1 norm of yp − xp1 and

yp − xp2 respectively:

||y− x1||1 = 7 6= 19√
13

= ||yp − xp1||1

||y− x2||1 = 6 6= 22√
13
||yp − xp2||1

Moreover, order of distances is not preserved:

||y− x1||1 = 7 > 6 = ||y− x2||1, but

||yp − xp1||1 =
19√
13

<
22√
13

= ||yp − xp2||1
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This counter-example not only shows that L1 norm doesn’t preserve distances nor

the order of distance under the change of orthonormal basis. But preserving the dis-

tance order among elements in a sequence is important in our algorithm because we

seek to find the block which is the ”closest” to the block of interest.

Counter-Example 4.3.3 - Specific Counter-Example for L1-Distance Preser-

vation With Real MR Data:

In this example we consider data from real MR images. We select the ”block of interest”

b of size 2× 2 from the test image:

b =

 116 123

128 120


The inquiry block B in the reference image is a block of pixels containing the blocks

that are in a neighborhood of the position of the block of interest in the reference image.

For this counter-example we consider the inquiry block of size 4 × 4 so that we can

show our arguments explicitly with all the dictionary atoms inside the inquire block.

The inquiry block B is:

B =



114 125 130 117

111 115 136 114

115 130 148 139

135 133 151 167


As similarity measures we use both L1 and L2 norms. We create a dictionary Φ

by extracting ak blocks from inquiry block of the same size as the ”block of interest”,

k = 1, 2, ...16. Blocks ak serve as the training blocks. Both b and ak blocks are stacked

into column vectors, denoted as y and xk respectively and are projected into eigen-

subspace which is spanned by the eigenvectors of the dictionary atoms, namely the
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Figure 4.3.2: a) the reference image with the ”Inquiry Block” B in cyan magnified
and overlapping training blocks ak in yellow. b) dictionary Φ formed by stacking ak
training blocks into column vectors. c) the test image showing the ”block of interest
b” enlarged in cyan color.

training blocks shown in Figs. 4.3.2, 4.3.3 .

y =



116

128

123

120



The dictionary Φ is:

Φ =



114 125 130 117 111 115 136 114 115 130 148 139 135 133 151 167

111 115 136 114 115 130 148 139 135 133 151 167 95 104 113 77

125 130 117 93 115 136 114 100 130 148 139 133 133 151 167 148

115 136 114 100 130 148 139 133 133 151 167 148 104 113 77 57


We center columns of Φ and y by subtracting the mean µ of the dictionary Φ.

The Φc is the centered dictionary with zero mean. In this example µ is 126.6719 and

Φc is:

Φc =



−12.67 −1.67 3.33 −9.67 −15.67 −11.67 9.33 −12.67 −11.67 3.33 21.33 12.33 8.33 6.33 24.33 40.33

−15.67 −11.67 9.33 −12.67 −11.67 3.33 21.33 12.33 8.33 6.33 24.33 40.33 −31.67 −22.67 −13.67 −49.67

−1.67 3.33 −9.67 −33.67 −11.67 9.33 −12.67 −26.67 3.33 21.33 12.33 6.33 6.33 24.33 40.33 21.33

−11.67 9.33 −12.67 −26.67 3.33 21.33 12.33 6.33 6.33 24.33 40.33 21.33 −22.67 −13.67 −49.67 −69.67


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Figure 4.3.3: a) magnified ”Inquiry Block” from the reference image B, in cyan color
with many overlapping training blocks ak in yellow, k = 1, 2, ..., 16. b) magnified ”block
of interest” from the test image b in cyan color. c) the dictionary Φ formed by stacking
training blocks ak into column vectors.

Then we calculate the covariance matrix Ω of Φc as:

Ω = Φc
(
Φc
)T

(4.3.0.4)

Ω for this counter-example is:

Ω =



3979 −1245 3024 −3082

−1245 7883 −1753 7883

3024 −1753 5708 −1887

−3082 7883 −1887 12489


The matrix of the eigenvectors U and their corresponding eigenvalues λ are also

calculated.

U =



−0.2351 0.5244 0.4981 0.6494

0.5612 0.2293 0.6396 −0.4726

−0.2223 0.7891 −0.3945 −0.4151

0.7618 0.2231 −0.4326 0.4274


We keep only the eigenvectors corresponding to the non-zeros eigenvalues λ =

{19798, 6674, 2663, 924}. We compute ŷ and Φ̂, the projections of the zero-mean ”block
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of interest” yc and the dictionary Φc into the eigen-subspace.

Φ̂ = UT Φc (4.3.0.5)

Φ̂ =



−14.34 0.21 −3.05 −17.67 2.27 18.79 21.99 20.65 11.50 16.57 36.62 34.58 −38.41 −30.04 −60.20 −95.17

−14.16 1.15 −6.58 −40.50 −19.36 6.76 2.53 −23.45 −0.17 25.45 35.49 25.46 −2.96 14.27 30.36 11.04

−10.63 −13.65 16.92 11.90 −12.11 −16.59 17.95 9.36 −4.54 −13.23 3.87 20.21 −8.80 −15.03 8.95 10.05

−5.12 7.04 −3.65 2.28 1.61 −3.91 6.51 −0.28 −10.19 0.72 14.47 −4.56 8.06 −1.12 −15.71 11.03



ŷ =



−1.0125

−9.6777

−0.1310

−8.8853


Finally, we calculate distances using L1- and L2- distances between pairs y and

each column xk of the dictionary Φ. Similarly, we calculate distances between the

corresponding projected pairs into the eigen-space, i.e., the distances between ŷ and

each column vector x̂k of the dictionary Φ̂. We are interested in examining the minimum

values and ordering of the L1- and L2- distances preserved in physical and eigen-spaces

under orthonormal projections. We compute:

min
k
||y − xk||1, min

k
||ŷ − x̂k||1, min

k
||y − xk||2, min

k
||ŷ − x̂k||2

for k = 1, 2, · · · , 16.

Table. 4.3.0.1 below shows the result of these distances.

Table 4.3.0.1: Results of L1 and L2 norms in both spatial and eigenspace domains

Norm / k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
||y − xk||1 26.0 45.0 34.0 65.0 36.0 44.0 68.0 49.0 28.0 75.0 118.0 100.0 78.0 76.0 137.0 190.0

||ŷ − x̂k||1 32.1 41.5 27.4 70.7 35.4 57.7 68.7 53.5 27.7 75.4 110.2 95.4 69.7 75.6 115.1 145.0

||y − xk||2 17.9 23.6 18.2 38.7 18.9 31.0 35.2 28.7 16.4 42.5 63.4 54.2 42.5 41.2 72.4 99.0

||ŷ − x̂k||2 17.9 23.6 18.2 38.7 18.9 31.0 35.2 28.7 16.4 42.5 63.4 54.2 42.5 41.2 72.4 99.0

The minimum for each row in Table 4.3.0.1 is shown in red. The last two rows are

identical showing that the distances between the ”block of interest” and each training

block from the ”inquiry block” in the reference images are equal both in image and in

the eigenspace domains.

We further observe that in both the image domain and the eigenspace L2 minimiza-
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tion is achieved at the ninth atom k = 9 for both original dictionary and its projection

and the minimum distance is 16.4. Thus, the L2 norm produces the same value on a

pair of un-projected vectors and on a pair of projected vectors into the eigenspace.

Table 4.3.0.1 also shows that this doesn’t hold for L1 norm. The first two rows of

the table show that L1 norm do not produce the same values for pairs of vectors in

image domain and their projections into the eigenspace. Moreover, it is easy to observe

that L1 norm doesn’t preserve the order. We consider vector pairs shown in blue colour

in Table 4.3.0.1 and compare the results. Note that

45.0 = ||y− x2||1 > ||y− x6||1 = 44.0

but

41.5 = ||ỹ− x̃2||1 < ||ỹ− x̃6||1 = 57.7

Similarly, we consider pairs in green colour and compare the results, i.e.,

78.0 = ||y− x13||1 > ||y− x14||1 = 76.0

but

69.7 = ||ỹ− x̃13||1 < ||ỹ− x̃14||1 = 75.6

We display these results visually in Fig 4.3.4.

The choice of metric is important when determining which block from the dictionary

Φ is the ”closest” to the block of interest b. For instance, in our counterexample the

minimum of L2-distances between block b and each block ak from the dictionary Φ,

k = 1, 2, ..., 16, is reached for k = 9, in both spatial and in the eigenspace domain. As

shown in Fig. 4.3.4, the block outlined in yellow is the ”closest” to block b in spatial

domain consistent with the block outlined in red which is the ”closest” to block b in

the eigenspace domain.

On the other hand the minimum distance via L1-distance in spatial domain between

each block of the dictionary Φ and the block of interest b is reached for k = 1,

corresponding to the block with green border. However Fig. 4.3.4 shows that the
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Figure 4.3.4: i) The block of interest b from the test image. ii) dictionary Φ formed
with training blocks ak chosen from inquiry block in reference image. a) the block from
Φ which is the ”closest” to b via L1 norm in spatial domain. b) the block from Φ
which is the ”closest” to b via L1 norm in the eigenspace domain. c) and d) blocks
from Φ which are the ”closest” to b via L2 norm in both spatial and in the eigenspace
domain respectively.

minimum L1-distance in eigenspace is achieved at k = 3 instead of k = 1, i.e., the 3rd

block of Φ outlined in magenta.

Counter-Example.4.3.4 - Real MR Data:

Furthermore, we experiment with blocks of bigger sizes as shown in Fig 4.3.5 in order

to observe whether the statements above hold.

Figure 4.3.5: a) The reference image with the ”inquiry block” magnified B in cyan and
overlaping training blocks ak in yellow. b) Dictionary Φ formed by stacking ak training
blocks into column vectors. c) Test image showing the enlarged ”block of interest” b
highlighted in cyan.

In this counterexample the ”block of interest” from the test image b is of size

5× 5. The inquiry block B from the reference image is of size 9× 9. All ak blocks are
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Figure 4.3.6: i) The block of interest b from the test image. ii) Inquiry with ak blocks
determined from L1 and L2 minimization. iii) Dictionary Φ formed with blocks ak
chosen from inquiry block in reference image. Blocks in Φ, bordered in green, magenta,
yellow and red correspond to blocks chosen as ”closest” to b via L1 and L2 in spatial
and in eigenspace domain respectively. a) the block from Φ which is the ”closest” to
b via L1 norm in spatial domain. b) the block from Φ which is the ”closest” to b via
L1 norm in the eigenspace domain. c) and d) blocks from Φ which are the ”closest” to
b via L2 norm in both spatial and in the eigenspace domain respectively.

extracted from the inquiry block and are of the same size as the ”block of interest”.

The minimum of L2-distance between block b and each block ak from the dictionary

Φ, k = 1, 2, ..., 81, is reached for k = 13 in both spatial and in the eigenspace domain.

As it is shown in Fig 4.3.6, the block bordered in yellow is the ”closest” to block b in

spatial domain which is consistent with the block outlined in red as the ”closest” to

block b in eigenspace domain.

On the other hand, the minimum distance via L1 norm in spatial domain between each

block of the dictionary Φ and the block of interest b is reached for k = 73, the block

outlined in green. In the eigenspace domain, the minimum via L1 norm isn’t reached

for k = 73, but for k = 47 instead as shown in Fig 4.3.6, which corresponds to the 47th

block of Φ outlined in magenta. This is not consistent with the best matching block,

the 73rd, as identified in spatial domain.

Counter-Example 4.3.5 -Preserving Structure With Real MR Data:

The next logical question to ask is: does the inconsistency of the L1 minimization in

different spaces matter visually? What retains the visual similarity between the best

matching blocks in different spaces, the L1- or L2-minimization? We experiment with
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blocks of larger sizes to observe whether the structure between the ”inquiry block” and

the block chosen from Φ via L1 and L2 norms in both spatial and eigensapce domain

is preserved as Figs. 4.3.8 and 4.3.9 show.

Figure 4.3.7: a) Inquiry block magnified with many overlapping training blocks ak. b)
Reference image with ”inquiry block” in cyan. c) Test image with ”block of interest”
in cyan. A magnified version of the block of interest is placed at the bottom right

Figure 4.3.8: i) the block of interest b outlined in cyan from the test image. ii)
Inquiry block magnified with the best matching blocks determined from L1 and L2

minimization in spatial and eigenspace domains. iii) The block of interest. iv) The
block from Φ which is the ”closest” to b via L1 norm in spatial domain. v) The block
from Φ which is the ”closest” to b via L1 norm in the eigenspace domain. vi) and
vii) The blocks from Φ which are the ”closest” to b via L2 norm in both spatial and
eigenspace domains.

In this example the size of ”block of interest” and of all the training blocks is

19× 19, and the ”inquiry block” is of size 37× 37. We know that L2 norm is invariant
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from the change of basis. We also know that L1 norm doesn’t preserve the distances

and does not preserve the minimum. We get the best matching block in spatial and

in eigenspace domain when L2 norm is used, but may result in two different blocks if

L1 norm is used. The question is: How similar are these two blocks with each other

and how similar is each one to the ”block of interest”? Figs. 4.3.7, 4.3.8 and 4.3.9

show that the blocks determined via L2 minimization in spatial and in eigenspace

domain have similar structure to the block of interest. The block determined by L1

minimization norm in eigenspace domain, outlined in magenta, looks very different in

structure from the one determined from L1 minimization in spatial domain, outlined in

green. Moreover, the block determined by L1 minimization norm in eigenspace domain

looks different from the two blocks determined by L2 minimization in both spatial and

eigenspace domains, outlined in yellow and red respectively. It also looks very different

in structure from the ”block of interest” outlined in cyan.

Figure 4.3.9: a) The block of interest b enlarged from the test image and outlined in
cyan. b) Inquiry block magnified with the best matching blocks determined from L1 and
L2 minimization in different domains. c) Dictionary Φ comprised of blocks ak chosen
from inquiry block in reference image. Blocks of Φ outlined in green, magenta, yellow
and red correspond to blocks chosen as ”closest” to b via L1 and L2 minimizations in
spatial and in eigenspace domain respectively.

In summary, in this section we discussed the effects of L1 and L2 norms in sub-
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space learning and showed theoretically and experimentally that L2 norm preserves

the distance and the order under an orthonormal change of bases. We also presented

counterexamples to prove that L1 norm does not satisfy such properties.

4.4 The EigenBlockCD Algorithm with L2 Mini-

mization

In this section we describe the EigenBlock Change Detection (EigenBlockCD) algo-

rithm for detecting changes between two consecutive fully sampled medical images.

We use the same notations and make the same assumptions as in Chapter 3.

As described in Chapter 3, the AEDL algorithm uses the knowledge of sparsity and

compressed sensing to reconstruct the background of each block of interest using L1

minimization algorithms. This makes the AEDL algorithm computationally expensive.

We reiterate here that in the AEDL algorithm a block b from the test image is

sparsely represented as a linear combination of a few ak blocks from the reference

image over a dictionary Φ, i.e.,

b =

(2∆+1)2∑
k=1

γkak =
n∑
k=1

γkak, ak ∈ B (4.4.0.6)

where k ∈ {1, 2, . . . , (2∆ + 1)2}

Blocks ak and b are stacked as column vectors xk and y respectively of sizes m×1,

where m = (2δ +1)2 and δ is a positive integer representing the radius of these blocks.

Then the Eq. (4.4.0.6) can be written as:

y =
n∑
k=1

γkxk, k ∈ {1, 2, . . . , n} (4.4.0.7)

To account for noise Eq. (4.4.0.7) in matrix format can be written:

y = Φγ + n (4.4.0.8)

The AEDL algorithm as described in Section 3 finds the sparsest vector γ that

87



satisfies Eq.(4.4.0.8) by solving the L1 minimization problem.

γ∗ = arg min
γ
||γ‖1 s.t. y = Φγ + n (4.4.0.9)

By spreading out the mean of block B we solved L1 minimization problem:

Problem P1 :
α∗ = arg min

α
||α||1

subject to: y = Aα

(4.4.0.10)

where: A = [Φ I], α =

 γ

n

 and α∗ =

 γ∗

n∗


The background y∗ of y is then computed as y∗ = Φγ∗.

To reduce the running time, the EigenBlockCD algorithm seeks to find the best

matching block to the block of interest from the dictionary atoms instead of repre-

senting it as a linear combination of the dictionary atoms as in the AEDL algorithm.

In fact, it derives from the assumptions that each block b from the test image its

closest block in the reference image will be in some neighbourhood of ak named the

inquiry block B, i.e., it will be one of the atoms of the dictionary. The block of interest

with some structure either is one of the atoms of the dictionary (when there are no

changes between the two consecutive times) or close to one of the atoms (when there

are changes).

To reduce the redundancy among columns of the dictionary and therefore the di-

mensionality of the dictionary and to help extract the features, as in the AEDL al-

gorithm, the EigenBlockCD algorithm projects columns of the dictionary onto the

eigen-subspace, which explains the choice of the L2 norm as the similarity measure,

i.e., projections onto the eigen-subspace preserves the L2-distances and the L2-distance

orders.

The EigenBlockCD algorithm consists of three stages as illustrated in Fig. 4.4.1.

During Stage 1 we use the reference image to learn the dictionary. The algorithm

is a block based dictionary which captures only local disease related changes and ig-
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Figure 4.4.1: Three stages of the EigenBlockCD algorithm

nores the changes due to the patient positioning. We use overlapping blocks to reduce

image block artifacts. Columns of the dictionary are obtained by projecting blocks

from reference image onto the eigen - subspace. In our algorithm for each block b in

the test image we consider an inquiry block B in the reference image I1 of size (2∆

+1)×(2∆+1) and centered at a pixel (i, j), where ∆ is a positive integer.

The EigenBlockCD algorithm models the background y∗ of y by finding the best

matching block to the block of interest from all dictionary blocks [24]. This is done by

minimizing the L2 norm of the absolute differences between the block of interest and

its best matching block found or by solving the minimization problem:

emin = min
xk∈Φ
||y − xk||2 (4.4.0.11)

Let us consider again the dictionary Φ:

Φ = [x1,x2, . . . ,xn] (4.4.0.12)

As in Chapter 3, dictionary Φ is centered by subtracting the mean and both the
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zero mean dictionary Φc and vector yc are projected onto the subspace obtained by

the eigenvectors of the covariance matrix Ω = Φc
(
Φc
)T

.

Φ̂ = UT
r Φc and ŷ = UT

r yc (4.4.0.13)

where Ur is the matrix of the r eigenvectors corresponding to the r largest eigenvalues

and r.

If the L2 norm of the residual errors ek between ŷ and x̂k are computed as ek =

||ŷ − x̂k||2, then the minimum of all the errors will be:

emin = min
k∈{1,2,...,n}

{ek} = min
x̂k∈Φ̂
||ŷ − x̂k||2 (4.4.0.14)

where the x̂k are the columns of the projected dictionary Φ̂ in the eigen-subspace

Φ̂ = [x̂1, . . . , x̂k, . . . , x̂n]

The background y∗ of y is the best approximation to y in the reference image, that

is, a vector xl from dictionary Φ that minimizes the residual errors, i.e.,

y∗ = xl such that: el = ||ŷ − x̂l||2 = min
x̂k∈Φ̂
||ŷ − x̂k||2 (4.4.0.15)

where xl ∈ Φ. The residual of y with significant changes is computed as:

r = |y − y∗| (4.4.0.16)

Similar with our AEDL method in Chapter 3, the change image Icd1 is created by

placing the residual blocks of b as blocks of size
√
m×
√
m = (2δ+1)×(2δ+1), centered

at the pixel (i,j) and divided by m, where m is the number of blocks b that contain

that pixel. We repeat the process in Stage Two by switching the reference image with

the test image and, finally, we compute the average of the two change images from
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stages one and two. The final change image is:

Icd =
1

2m

N2−δ∑
j=δ

N1−δ∑
i=δ

(
r[1](i, j) + r[2](i, j)

)
(4.4.0.17)

where r[1](i, j) and r[2](i, j) represent the foreground of a block of interest calculated

as in Eq. (4.4.0.16).

4.5 Numerical Results

4.5.1 Simulations with Synthetic Images

We first test the performance of the EigenblockCD using the same set of synthetic

images that we used to test the AEDL algorithm. We compare the results to the ground

truth and simple difference methods. More comprehensive performance analysis of the

AEDL and the EigenblockCD will be provided in Chapter 6.

We test our method first by using synthetic images of size 129 × 128 as shown in

Figs. 4.5.1 to 4.5.4. The reference image is created by stacking three strips of size

43 × 128 each. In each strip we placed three polygons with Gaussian distribution

intensities 0.3, 0.2 and 0.4 respectively, from left to right. To test the performance of

the algorithm in the presence of mis-alignment caused by shifts, rotations and other

acquisition related artifacts caused by noise, the test image is created by including two

types of changes to the reference image: significant and insignificant changes. As in

Chapter 3, the significant changes are disease related and hence make up the ground

truth.

The desired outcome of a change detection algorithm is to detect only the significant

changes while rejecting the unimportant ones. The performance of the EigenBlockCD

algorithm is compared with the ground truth and the absolute difference method.

In Fig. 4.5.1 strips of 43 rows of reference image are shifted 1-down and 1-left, 3-

down and 2-right and 2- down and 3-left respectively which are considered insignificant

changes. The EigenBlockCD algorithm ignores the changes related to horizontal and

vertical translations of images’ strips when the radius of the inquiry block Bij is not
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Figure 4.5.1: Testing the algorithm performance in the presence of object shifts. a)
Reference image. b) Test image c) Ground truth image showing only the significant
changes. d) Absolute difference image between the test and reference images. e) Change
image obtained by the EigenBlockCD algorithm shows that the algorithm ignores the
changes related to translations that can be captured by local dictionaries, but detects
the real and significant changes closer to the ground truth.

Figure 4.5.2: Testing the algorithm performance in the presence of object rotations.
a) Reference image. b) Test image c) Ground truth image showing only the significant
changes. d) Absolute difference image between the test and reference images. e) Change
image obtained by the EigenBlockCD algorithm shows that our method ignores the
changes related to rotations that can be captured by local dictionaries, but detects the
significant changes closer to the ground truth.

less than the size of the shift, but detects the real and significant changes closer to

the ground truth than the absolute difference method does, with δ = 1, c = 3 and

∆ = δ + c = 4.

Figure 4.5.3: Testing the algorithm performance in the presence of different noise level.
a) Reference image. b) Test image c) Ground truth image showing only the significant
changes. d) Absolute difference image between the test and reference images. e)
Change image obtained by the EigenBlockCD algorithm is very close to the ground
truth and shows that our algorithm method detects the real changes for SNR ratio >
25.

In Fig. 4.5.2 strips of 43 rows of reference image are rotated by 2 degrees clockwise,

1 degree counter-clockwise and the last 42 rows by 3 degrees counter-clockwis, which
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are considered insignificant changes. Results show that the EigenBlockCD algorithm

ignores the changes related to rotation of strips when the radius of the inquiry block

Bij not less then the angle of rotation and detects the significant changes closer to

the ground truth than the absolute difference method does, with δ = 2, c = 3 and

∆ = δ + c = 5.

Figure 4.5.4: Testing the algorithm performance in the presence of different intensity
level. a) Reference image. b) Test image. c) Ground truth image showing only the
significant changes. d) Absolute difference image between the test and reference images.
e) shows that the change image obtained by the EigenBlockCD algorithm detects the
significant changes closer to the ground truth image.

In Fig. 4.5.3 Gaussian noise is added to the reference image with SNR = 30, 40, and

50 for the first, second and third 43 rows respectively which are considered insignificant

changes. The simulations show that the EigenBlockCD algorithm still detects the real

changes closer to the ground truth for SNR ≥ 30 with δ = 1, c = 3 and ∆ = δ+ c = 4.

In Fig. 4.5.4 starting from the second strip of 43 rows in the reference image,

the intensities of shapes on the second and third strips are increased by 0.2, and 0.3

respectively. We want our algorithm to detect changes due to the intensity changes as

they are considered disease related by the radiologists. Shapes at the bottom of the

test image have a maximum intensity of 0.7. Therefore, we added these changes to our

previous ground truth image which now serves as the ground truth for this experiment.

The EigenBlockCD algorithm still detects the significant changes closer to the ground

truth, with δ = 1, c = 1 and ∆ = δ + c = 1.

4.5.2 Applications to MR Images

We tested the EigenBlockCD algorithm with real MR images. Our results are confirmed

by a radiologist and are shown in Figs. 4.5.5 to 4.5.8.

Fig. 4.5.5 shows the results of two real T2-weighted MR images taken in 2011
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and 2013. The change image obtained by EigenBlockCD as shown in Fig. 4.5.5 c)

and the superposition of the test image with the colored change image as shown in

Fig. 4.5.5 d) demonstrate that the EigenBlockCD algorithm detects significant changes

as confirmed by the radiologist, i.e., it detects the interval development of bilateral

small hyperintense foci in the periventricular region on the follow-up image.

Figure 4.5.5: a) and b) Selected axial T2-weighted images of the brain of a patient
who had undergone serial MRIs in 2011 and 2013. Images are at the level of the
lateral ventricles and demonstrate interval development of bilateral small hyperintense
foci in the periventricular region on the follow-up image. c) and d) Corresponding
change image detected by EigenBlockCD algorithm and overlay image highlighting
these regions.

Fig. 4.5.6 shows the results of two real T2-weighted MR images. The follow-up

image in Fig. 4.5.6 b) demonstrates multiple periventricular foci of increased signal. A

few of these foci show interval enlargement on the follow-up image. The change image

obtained by the EigenBlockCD algorithm and the superposition of the test image with

the colored change image in Fig. 4.5.6 c) and d) show that the EigenBlockCD algorithm

detects these significant changes between scans which are confirmed by the radiologist.

Figure 4.5.6: Axial T2-weighted images of the brain of the same patient at the level
of the lateral ventricles more superiorly. Here (a) initial and (b) follow-up images
demonstrate multiple periventricular foci of increased signal. A few of these foci show
interval enlargement on the follow-up image. c) and d) Corresponding change image
and overlay image are highlighting these regions.
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Fig. 4.5.7 shows axial T2-weighted image of the brain of a patient at the level of the

lateral ventricles further superiorly demonstrating bilateral small hyperintense foci in

the periventricular region on both the initial and follow-up images with only one region

of interval change. Corresponding change image and overlay image are highlighting this

region as significant changes as shown in Fig. 4.5.7 c) and d).

Figure 4.5.7: Axial T2-weighted image of the brain of a patient at the level of the
lateral ventricles further superiorly demonstrating bilateral small hyperintense foci in
the periventricular region on both a) the initial and (b) follow-up images with only one
region of interval change. c) and d) Corresponding change image and overlay image
are highlighting this region.

Identifying that there is no change in the follow-up is as tricky as identifying a

change. Fig. 4.5.8 shows axial T2-weighted images of the brain of a patient who had

undergone serial MRIs in 2010 and 2012. Both images have the same inactive and

visible MS lesion which hasn’t grown or changed between two exams periods. Images

are at the level of the lateral ventricles and demonstrate a large and several smaller

hyperintense foci in the periventricular region on both the initial and follow-up images

without interval change in size or intensity. The corresponding change image and the

overlay image are showing no interval change as shown in Fig. 4.5.8 c) and d).

We also tested our method with images obtained from the simulated brain database

BrainWeb [17]. Reference is an image of a normal brain and the test is an image of

a brain with moderate MS lesions. Other variables were kept constant: both are

T2-weighted MR images with 1mm slice thickness, 3% noise and 0% intensity non-

uniformity (RF). Both the change image and the superposition of the test image with

the colored change image in Fig. 4.5.9 c) and d) show that our algorithm captures the

significant changes related to the new MS lesions formation while rejecting insignificant

changes.
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Figure 4.5.8: a) and b) Selected axial T2 images of the brain of a patient who had
undergone serial MRIs in 2010 and 2012. Images are at the level of the lateral ventricles
and demonstrate a large and several smaller hyperintense foci in the periventricular
region on both the initial and follow-up images without interval change in size or
intensity evident. c) and d) Corresponding change image and overlay image shows no
interval change.

Figure 4.5.9: a) Reference is an image of a normal brain. b) Test image is an image
of a brain with moderate MS lesions. c) Results of change detection image via our
EigenBlockCD algorithm. d) Superimposed test image with change image obtained by
EigenBlockCD. Images are are taken from BrainWeb [17].

4.6 Summary

In this section we presented the EigenBlock Change Detection algorithm (EigenBlockCD)

as an application of adaptive dictionary learning techniques. The main differences be-

tween the EigenBlockCD algorithm and the AEDL algorithm are:

1. The EigenBlockCD algorithm finds the best matching block from the blocks in

the reference image to approximate the background of the block of interest in the

test image, while the AEDL algorithm expresses the block of interest in the test

image as a sparse linear combination of training blocks in the reference image.

2. The EigenBlockCD algorithm computes the background of a block of interest by

minimizing the L2-distances between the block of interest and all the training

blocks in a dictionary, whereas the AEDL algorithm approximates the back-

ground by using L1 minimization techniques.
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The algorithm captures local spatial changes between the reference and test images

and consists of three stages. In the first stage change image is obtained by averaging

all the absolute differences of test image blocks with their best approximation blocks

given by a local dictionary trained from the reference image. In Stage Two the process

is similar, but the local dictionaries are learned from the test image blocks. In the

third stage the change image between the reference and test image is computed as the

average of the two outputs from stages one and two. Using L2 norm as a similarity

measure the method finds the closest block from the inquiry block in the reference

image to a block from the test image via adaptive dictionary learning technique.

This algorithm automatically detects the significant structural changes in the test

image while ignoring unimportant changes related to mis-alignments, noise and acquisition-

related artifacts. Experiments on synthetic images illustrate that the EigenBlockCD

algorithm detects changes due to appearance or disappearance of objects in the presence

of object translations, rotations, intensity changes and moderate noise level. Experi-

ments on MR images show that our algorithm identifies clinically significant changes

and rejects clinically insignificant changes within the area of the local dictionary. In

addition, we make use of PCA to reduce the size of a local dictionary for each image

block, to find the best matching blocks and improve computational efficiency.

The EigenBlockCD algorithm is more computational efficient than the AEDL al-

gorithm. However, for large misalignments between images it requires larger blocks of

interests and inquiry blocks and therefore larger dictionary learning, which relatively

increases the computational time. Although the EigenBlockCD algorithm performs

faster compared to the AEDL algorithm, the computational efficiency is still a limi-

tation. In Chapter 5 we present an improved version of the EigenBlockCD algorithm

(EigenBlockCD-2) which is computationally more efficient, accounts for large image

shifts, rotations and other misalignments.

In summary, the choice of metric is vital to preserve consistent solutions from the

image space to the eigenspace. The L1 norm fails to preserve the distance ordering

and may produce different solutions in image space and the eigenspace. Meanwhile,

the L2 norm is certainly invariant from the change of orthogonal basis and preserves
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the distance ordering. Hence the solution given by the L2 minimization is consistent

in both the image space and the eigenspace.

In Section 4.3, we provided theoretical and numerical support that L2 norm is dis-

tance invariant from the change of orthonormal basis. That is, the L2 norm preserves

distances between two vectors projected onto any subspace spanned by an orthonor-

mal basis. Also, L2 norm is order invariant from the change of orthonormal basis as

it preserves the order between two vectors projected onto a subspace spanned by an

orthonormal basis. The same claim doesn’t hold for L1 norm.

We provided four counter-examples to show that the L1 norm isn’t distance invari-

ant and isn’t order invariant from the change of orthonormal basis. We also showed that

L1 norm doesn’t preserve the structure of a block when projected onto an orthonormal

basis.
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Chapter 5

The Effect of Co-Registration in

Change Detection

5.1 An Introduction

In Chapter 3, we explored the possibility of utilizing image sparsity and compressive

sensing to automatically detect changes between reference and test images by design-

ing the Adaptive EigenBlock Dictionary Learning algorithm [23]. However, because

of the long processing time of L1 minimization, we adapted the rational behind the

AEDL algorithm and established a simpler but more effective new algorithm, namely

EigenBlock Change Detection (EigenBlockCD) [25, 26], as described in Chapter 4.

Both the AEDL and the EigenBlockCD algorithms are based on dictionary learning

techniques which are widely used in face and pattern recognition problems, and also

with applications in sparse images [13, 15]. The AEDL and the EigenBlockCD use

local dictionaries learned from one of the images to detect the changes in the consec-

utive MRI follow-up scans. The key idea for both the AEDL and the EigenBlockCD

algorithm is to perform a local image registration for approximating a common back-

ground between two images in order to identify important structural changes, such as

appearance, disappearance, growth or shrinkage of a lesion, while automatically reject-

ing unimportant changes due to spatial position of patients and measurement noise.

The main difference between these two algorithms is that in the AEDL algorithm

the block of interest is expressed by a sparse linear combination of training blocks from
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the inquiry block and the best matching block to the block of interest is determined

by using L1-minimization. The EigenBlockCD aims to find the best matching block

from the local dictionary in the inquiry block using L2-minimization as the similarity

measure. The core of both methods is minimizing a cost function which expresses the

dissimilarity map between the images. The minimization of the cost function finds

the background information that includes insignificant changes and is used to identify

significant changes.

The earlier versions of both the AEDL and the EigenBlockCD algorithms perform

well if the size of the inquiry block is large enough [23, 24]. As the size of the in-

quiry block increases, the run-time increases significantly. Also, as the size of the

inquiry block decreases, the error increases leading to the increase of false positives.

To overcome these limitations, we add the co-registration step as the key to solving this

problem. We design an improved versions for both the AEDL and the EigenBlockCD

algorithms for detecting changes between consecutive MR images of the brain, based

on dictionary learning techniques. The improved algorithms have no additional prepro-

cessing steps and employ L1 and L2 norm respectively as the most effective similarity

measure. By bringing the co-registration step the improved algorithms can automati-

cally correct large shifts and rotations and their performance is improved significantly.

In general, a change detection algorithm maps two input images to a third image,

namely change image, consisting of only the significant changes between the two in-

put images. In this chapter we explain the improved version of the EigenBlockCD

algorithm, named as the EigenBlockCD-2. Note that the conclusions and the numer-

ical results obtained for the EigenBlockCD-2 also apply to the improved version of

the AEDL algorithm, named the AEDL-2, but we focus our discussion mostly to the

EigenBlockCD-2 algorithm.

The EigenBlockCD-2 algorithm is different from the initial version EigenBlockCD

in the following aspects:

1. Includes its own co-registration step, a very important step for any change de-

tection algorithm.

2. Accounts for large rotations and translations.
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3. Reduces the computations significantly.

4. Reduces the error and hence improves the detection accuracy significantly.

We describe the EigenBlockCD-2 algorithm and provide a comprehensive comparison

of the two algorithms. In both cases, we assume that the differences between the two

images may come from disease related changes occurred from time t1 to time t2, and/or

from misalignment due to subject position shifts and rotations, and other common

imaging acquisition artifacts. During this time interval, each block from the reference

image has undergone a few disease related changes. Most pixels of the reference image

will appear again in the test image either at the same location or nearby. Hence, the

insignificant changes in the follow-ups are within a neighborhood.

Experiments with synthetic and real MR images show that the EigenBlockCD-2

algorithm performs better in cases with large shifts and rotations compared to the

previous version EigenBlockCD algorithm. The rest of this chapter is organized as

follows. In Section 5.2 we discuss the core of the co-registration step followed by the

implementation of the EigenBlockCD algorithm in Section 5.3. We compare the two

versions, the EigenBlockCD and the EigenBlockCD-2 algorithms in Section 5.4 using

synthetic and real human data.

5.2 The EigenBlockCD-2 Algorithm

The EigenBlockCD-2 consists of the following main steps:

1. Initial global alignment of images by first determining three parameters fol-

lowed by linear transformations to align one of the images with the other one.

In this step the radii of blocks of interest and the inquiry blocks are selected

significantly large to account for large shifts and rotations.

2. Computing the significant changes between the two images by running the

EigenBlockCD algorithm with fixed small blocks of interest.
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5.2.1 Initial Global Co-Registration of Images

We introduce a dictionary-based co-registration step as a very important step for our

change detection algorithm. Detecting only relevant and significant changes by de-

creasing false positives and increasing true positives is one of the benefits of the co-

registration. The initial global image registration step is a major improvement which

enables the algorithm to identify important structural changes, such as appearance, dis-

appearance, growth or shrinkage of a lesion while automatically rejecting unimportant

changes due to spatial changes of patients and common imaging acquisition artifacts.

In general, the registration problem is finding a transformation that best aligns the

two images. It involves determining and handling of a transformation space and a cost

function that quantifies the quality of the registration. In the registration problem,

the transformation space includes six rigid transformations in 3D with six degrees of

freedom (three translations and three rotations) and three transformations with three

degrees of freedom in 2D (two for translations and one for rotation). In this chapter,

we discuss the initial global co-registration problem between two images in two dimen-

sional space. The cost function expresses the dissimilarity map between the images.

Let T represent a set of transform functions, P a set of transformations’ parameters

and C the cost function to be minimized. The registration problem in two dimensional

case is finding three parameters to align the images. That is, if either one or both

images go through linear transformations using these parameters, the two transformed

images will be aligned to each other. The cost function measures the accuracy of the

alignment, that is, smaller values of cost function correspond to higher accuracy of

the co-registration. We use the L2 norm to measure the accuracy of the initial global

alignment, that is, the accuracy of the co-registration is maximal when the L2 norm of

the difference between one image and the second image transformed is minimal. Thus,

we define the co-registration problem with the following minimization problem:

min
T ,P
C
(
T , I1, I2,P

)
(5.2.1.1)

where C, T , P , I1, and I2 respectively are:
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• C is the cost function in the minimization problem. In our case, the cost function

is the L2 norm, i.e., C = ||.||2.

• T is the set of transform functions. In our case, T is any composition of transform

functions from the set {Th,Tv,Rθ}, where Th,Tv,Rθ are the horizontal, vertical,

and rotational transform functions respectively.

• P = {(h, v, θ) : h ∈ Th, v ∈ Tv, θ ∈ Rθ} is a set of all triples (h, v, θ) represent-

ing the three parameters needed to align the two images, i.e., the magnitudes

of horizontal shift, vertical shift and rotation angle that one image should be

transformed to be aligned to the other image.

• I1 and I2 represent the two images to be aligned. It is easy to extend the model

to align more than two images in 2D or two sets of 3D image volumes.

Let I(i, j) represent the intensity of the image pixel at location (i, j). Image I is of

size N1 ×N2. The horizontal and vertical transform functions can be applied to each

image pixel as follows:

ThI(i, j)
)

= I(i, j + h)

Tv

(
I(i, j)

)
= I(i+ v, j)

Rθ

(
I(i, j)

)
= I
(

(i− N1

2
)cosθ − (i− N2

2
)sinθ, (i− N1

2
)sinθ − (i− N2

2
)cosθ

)
In our case we consider a composition of all the three transform functions, i.e.,

Th,v,θ = Th ◦Tv ◦Rθ. In matrix form Th,v,θ can be written as:


i′

j′

1

 =


1 0 v

0 1 h

0 0 1




cosθ sinθ 0

−sinθ cosθ 0

0 0 1



i

j

1


where (i, j) and (i′, j′) represent the original and the transformed coordinates respec-

tively. The co-registration problem in Eq. (5.2.1.1) can be written as:

min
T ,P
||T (I1)− I2||2 (5.2.1.2)
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The problem seeks to find a triple (h∗, v∗, θ∗) that minimizes Eq. (5.2.1.2):

min
(h,v,θ)∈P

||T (I1)− I2||2 = min
(h,v,θ)∈P

||Th,v,θ(I1)− I2||2 (5.2.1.3)

Eq. (5.2.1.3) can be written as:

(
min

(h,v,θ)∈P
||Th,v,θ(I1)− I2||2

)
=⇒ (5.2.1.4)

=⇒
(
∃(h∗, v∗, θ∗) ∈ P , s.t: Th∗,v∗,θ∗(I1) ≈ I2

)

where triples (h, v, θ) are automatically determined by the co-registration step.

The two translation parameters are determined directly without any input and the

rotation parameter is selected from a range of given angles with integer values, i.e.,

θ ∈ [−10o, 10o]. Theoretically there are infinite values ∈ [−180o, 180o] for the parameter

θ representing the rotation angles, but practically good enough to correct the rotation

with 1 degree accuracy. This is because in the second step, our algorithm ignores

changes due to small degrees of rotations. We define a good alignment between the

two images if the original image and a transformed image do not differ more than 1o in

terms of rotation and no more to three pixels in terms of translations. Hence there are

only a finite number of values for the parameter θ. It derives from the nature of our

problem that the two translation parameters h and v consist of only integer values.

Remark: The insignificant changes between two consecutive images due to affine

transformations (translations and rotations) are bounded. More specifically, the sizes

of the horizontal and vertical shifts cannot be greater than the one half of the maximum

image dimension. That is, |h∗| ≤ 1
2

max{N1, N2} and |v∗| ≤ 1
2

max{N1, N2}, where

N1, N2 are number of rows and columns in the image respectively. Similarly, size of

the rotation angle is the range [−180o, 180o]. This means that there is a solution to the

minimization problem in Eq. (5.2.1.4). In other words, there exists a triple (h∗, v∗, θ∗)

that minimizes the cost function.
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5.2.2 Selection of Blocks during the Co-Registration Step

To align the reference and test images, the EigenBlockCD-2 algorithm automatically

selects a few blocks in the test image and their corresponding inquiry blocks from the

reference image as shown in Fig.5.2.1.

First, we describe how the blocks of interest are selected. The test image is divided

into 25 sub-images. Their sizes should be large enough to contain some anatomical

structures. The sub-images shown in Figs.5.2.1 a) to 5.2.3 a) are of size 77× 77. The

EigenBlockCD-2 algorithm first identifies nine sub-images inside the brain and then

for each selected sub-image, it randomly picks a center to form a block of interest. To

account for large shifts and rotations, the radii of blocks of interest and corresponding

inquiry blocks are chosen relatively large. In our experiments blocks of interest are of

size 25 × 25 and their corresponding inquiry blocks are of size 65 × 65. The output

of these computations is composed of two translations and one rotation needed to

globally co-register the images. More specifically, the EigenBlockCD-2 algorithm in

the co-registration step:

• Determines the shifts and a rotation parameters needed to globally align 2D

images with:

- Inputs: reference and test images, radius of the block of interest, radius of the

inquiry block in the reference image and a range of rotation angles about x-axis.

- Outputs: two translation parameters and a rotation angle needed to globally co-

register images, i.e., vertical and horizontal shift parameters and rotation angle

about x-axis.

• Aligns the 2D images by performing a linear transformation to one image to be

aligned with its follow-up image. The linear transformation is a composition of

two translation transforms and one angular rotation.

The EigenBlockCD-2 algorithm identifies the inquiry blocks in the reference image

for each given block of interest in the test image. The dictionary is created with

training blocks from the inquiry block. The dictionary is rotated about x-axis with an

angle selected from a given range of angles, i.e., [−10o, 10o], as shown in Fig.5.4.7 and
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Figure 5.2.1: Top row: three parameters (two for the vertical and horizontal shifts and
one for rotation angles) for nine selected blocks from the test image. bottom row: a)
MR image in 2012 with nine blocks of interest of size 25× 25 selected randomly from
nine inner areas; b) An MR image taken in 2010 with corresponding inquiry blocks of
sizes 65 × 65; c) Reference image aligned with test image after two translations and
one rotation. In this case the reference image is rotated one degree counter−clockwise,
shifted 20 pixels down and one pixel to the left.

Figure 5.2.2: Top row: three parameters (two for the vertical and horizontal shifts and
one for rotation angles) for nine selected blocks from the test image. Bottom row: a)
MR image in 2012 with nine blocks of interest of size 25× 25 selected randomly from
nine inner areas; b) An MR image taken in 2010 with corresponding inquiry blocks of
sizes 65×65; c) Reference image aligned with test image after two translations and one
rotation. In this case reference image is rotated one degree counter-clockwise, shifted
19 pixels down and two pixels to the left.

Fig.5.4.9. Then, the best matching block for a selected block of interest is computed by

minimizing the L2 differences between the block of interest and all the training blocks

projected into the eigen-subspace with only 85% of the total variance.

The process is repeated for all the other angles in that given range and the block
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Figure 5.2.3: Top row: three parameters (two for the vertical and horizontal shifts and
one for rotation angles) for nine selected blocks from the test image. Bottom row: a)
MR image in 2012 with nine blocks of interest of size 25× 25 selected randomly from
nine inner areas; b) An MR image taken in 2010 with corresponding inquiry blocks of
sizes 65 × 65; c) Reference image aligned with test image after two translations and
one rotation. In this case the reference image is rotated 2 degrees counter-clockwise,
shifted 20 pixels down and one pixel to the left.

with the minimum L2 value is selected as the best matching block to the block of

interest. The position of this block in the inquiry block relative to the center of the

inquiry block determines the vertical and horizontal translations as shown in Figs.5.4.6

and 5.4.8. The angle for which this minimum is reached determines the rotation angle.

The algorithm repeats for all other selected blocks of interest. The three parameters

needed to align the images are those that correspond to the median of the parameters

determined as described above for all the nine blocks of interest as shown in Figs.5.2.1,

5.2.2 and 5.2.3. Finally, rigid transformations with these three computed parameters

are performed to one of the images to align it with the other image.

5.2.3 Effect of Choices of Blocks in Co-registration Step

The robustness of the co-registration step guarantees our assumption that pixels in

the follow-up scan will be either at the same location or nearby. To demonstrate

co-registration accuracy we run two tests with real MR scans of size 384 × 384 and

synthetic MR images.

More specifically, in the first test, we run the co-registration step experiment 30

times using a pair of real MR images. Three parameters are computed for each ex-
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Figure 5.2.4: a) and b) Vertical and horizontal shifts from 30 experiment identified
from the co-registration step, c) Rotation angles of 30 experiments identified from the
co-registration step, d) Mean of the three parameters and their standard deviation. Co-
registration parameters are along x-axis ( vertical shift, horizontal shift and rotation
angle). Values of these parameters are along the y-axis.

periment, as described above. The mean and standard deviation for each parameter

is determined and the results are displayed in Fig.5.2.4. Vertical and horizontal shifts

and their averages from 30 experiments computed from the co-registration step are

shown in Fig.5.2.4 a) and b) respectively. Rotational angles calculated from the co-

registration step of 30 experiments and their averages are shown in Fig.5.2.4 c). The

means of the three parameters and their standard deviations are shown in Fig.5.2.4 d).

The error-bars in Fig.5.2.4 d) show that all three parameters obtained from 30 trials

are closer to their mean which explains the correctness of the co-registration step.

We also tested the co-registration accuracy with synthetic images created from real

MR images. To validate the performance of our co-registration step, we created a test

image by applying linear transformations on the reference image. The transformation

set consists of two types of translations (vertical and horizontal) with values of their

parameters chosen randomly in a range [-20 20] and [-16 16] respectively and a rota-

tion with an angle chosen randomly in [-6 6]. Each triple of transformation parameters
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obtained in this way forms the ground truth, that is, the true transformations that

need to be applied to reference image to be aligned it with the test image. For each

pair of synthetic images created in this way, we run the co-registration step which then

computes the three co-registration parameters.

To compare the computed and the true parameters, the differences between them

are calculated as shown in Fig.5.2.5. We repeat this experiment 20 times. The means

and the standard deviations of the differences for the 20 experiments are also com-

puted. The differences of the vertical and the horizontal shifts and their averages from

20 experiments are shown in Fig.5.2.5 a) and b) respectively. The differences of rota-

tion angles calculated from the co-registration step of 20 experiments and their average

are shown in Fig.5.2.5 c). Fig.5.2.5 d) shows the mean and standard deviation of the

differences. The error-bars in Fig.5.2.5 d) show that all three parameters obtained

from 20 experiments are close to their mean. It can be easily seen that the absolute

values of the differences for all three parameters are less than 2. This guarantees that

after co-registration step, pixels in the follow-ups will be either at the same location or

close enough for any inquiry block of size ≥ 5 to contain the best matching block for

a selected block of interest.

A visual comparison of Experiment 1 and 5 are shown in Fig.5.2.6. Images obtained

after co-registration step shown in Fig.5.2.6 Column c) are aligned with their follow-ups

images as shown in Fig.5.2.6 Column b).
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Figure 5.2.5: a) and b) Differences between true and computed vertical and horizontal
shifts from 20 experiments, c) Differences between true and computed rotation angles
of 20 experiments, d) Means and standard deviations of the three differences. Co-
registration parameters are along x-axis, vertical shift, horizontal shift, and rotation
angle. Values of the differences of these parameters are along the y-axis.

Figure 5.2.6: a) Baseline-reference image, Column b) Follow-up images from the first
and fifth experiment with synthetic data, Column c) Corresponding reference aligned
with its follow-up image, d) Values of the ground truth parameters and its correspond-
ing computed ones by the co-registration step of the EigenBlockCD-2 algorithm.
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5.3 Using EigenBlockCD in EigenBlockCD-2

In Section 5.2, we described the co-registration step of the EigenBlockCD-2 algorithm

and its effects in our change detection algorithm. In this section we briefly discuss

the second step of the EigenBlockCD-2 algorithm, determining the significant changes.

The detailed explanation can be found in in Chapter 4 and also in Nika et al [23, 24].

We use the same notations of Chapters 3 and 4: I1 - reference image, I2 - test

image, b - block of interest, B - inquiry block, ak - training blocks from inquiry block,

δ - diameter of the block of interest and also the diameter of each training block, ∆ -

diameter of inquiry block, and the dictionary Φ formed by stacking training blocks as

columns vectors:

Φ = [x1,x2, . . . ,xn] (5.3.0.1)

The EigenBlockCD algorithm computes the background y∗ of y by seeking to find the

best approximation to y in the reference image, a vector xl from dictionary Φ that

minimizes the residual error. That is:

y∗ = xl such that: el = ||ŷ − x̂l||2 = min
x̂k∈Φ̂
||ŷ − x̂k||2 (5.3.0.2)

where xl ∈ Φ, x̂l ∈ Φ̂, and Φ̂ is the projected dictionary Φ onto the eigen-subspace.

Then, we compute the significant changes in the image domain:

r = |y − y∗| (5.3.0.3)

The change image block for a block of interest b, in other words the foreground of b

is:

F =
1

2

(
1

m

j+δ∑
k=j−δ

i+δ∑
l=i−δ

r
[1]
k,l +

1

m

j+δ∑
k=j−δ

i+δ∑
l=i−δ

r
[2]
k,l

)
(5.3.0.4)

where rk,l computed as in Eq. (5.3.0.3), is centered at pixel (k,l). Then, the change

image is:

Icd =
1

2

(
1

m

N2−δ∑
j=δ

N1−δ∑
i=δ

r[1](i, j) +
1

m

N2−δ∑
j=δ

N1−δ∑
i=δ

r[2](i, j)

)
(5.3.0.5)
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which can be simplified as:

Icd =
1

2m

N2−δ∑
j=δ

N1−δ∑
i=δ

(
r[1](i, j) + r[2](i, j)

)
(5.3.0.6)

5.4 Comparison of EigenBlockCD-2 and EigenBlockCD

In order for the initial EigenBlockCD algorithm to account for large shifts and rota-

tions, due to patient position, blocks of interest and their corresponding inquiry blocks

need to be large. A small block of interest might not have enough structure that allows

L2 norm to identify the best matching block from the reference image. Furthermore, if

the inquiry block is not large enough it may not contain the best matching block when

the patient’s position has significantly changed in the follow-up scan, that is, shifts and

rotations are large. Lesions that initially appear in the follow-up scan might be missed

and lesions that disappear in the next scan might also be missed.

As the size of the inquiry block increases, the run-time of the previous Eigen-

BlockCD algorithm increases significantly. To make it computationally efficient the

size of blocks of interest and their corresponding inquiry blocks should be small. The

best matching block for a selected block of interest is found by computing the L2 min-

imization of the differences between the block of interest and all the training blocks in

the projected local dictionary. These differences contain clinical related changes (true

positives) and insignificant changes due to the patient’s position in the follow-up scans

(false positives).

The error of the algorithm consists of these insignificant changes and depends on

the size of the inquiry block. As the radius of the inquiry block decreases, the L2 norm

of the differences between the block of interest and all the training blocks increases,

and hence, the error increases leading to the increase of false positives.

To overcome these limitations, we added the co-registration step to the EigenBlockCD-

2 algorithm. This key step significantly improves the performance of the algorithm in

the following aspects:

1. Automatically corrects large rotations and translations.
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2. Significantly reduces the sizes of blocks of interest and their corresponding inquiry

blocks which results in decreasing the computations and improving the detection

accuracy significantly.

To compare the two versions of the algorithms we run three tests with real MR scans

of size 384× 384.

Figure 5.4.1: a) Runtime of both algorithms versus the radius of inquiry block, b) The
L2 norm of the error between each block of interest and its best matching block versus
the radius of inquiry block.

In the first test, we compare the computational efficiency of the algorithms by run-

ning the experiment 10 times. Fig.5.4.1 a) shows the averages of run-times versus the

radius of inquiry blocks for all 10 runs. Fig.5.4.1 a) shows that the EigenBlockCD-2

algorithm computes a change image close to the ground truth in about 60 seconds.

This is confirmed by the radiologist. In such time the EigenBlockCD algorithm detects

both significant and insignificant changes due to shifts, rotations and other acquisition

related artifacts, and hence it produces more false positives as shown in Figs.5.4.2,

5.4.3 and 5.4.4.

In the second test we show the error for each algorithm. This is done by computing

the L2 norm of the change image for different sizes of inquiry blocks as Fig.5.4.1 b)

shows. For this pair of MR images used, it is clinically confirmed by the radiologist

that the disease related changes are very small. Therefore, we expect the L2 norm of

the desired change images to be small, hence the L2 norm of the error to be small.

The results of Test 2 is also consistent with the results in the third test. In
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Figure 5.4.2: Left: Two real T2-weighted axial MR images of the brain of a patient
at the lateral level. Baseline is a MR image taken in 2011 and follow up scan in 2013.
Middle: Four change images via the EigenBlockCD algorithm with different block
sizes. The radii of blocks of interest are δ = 2, 4, 5, and 7 and the corresponding radii
of inquiry blocks ∆ = 5, 10, 13, 17. Right: change image obtained by the improved
EigenBlockCD-2 with δ = 2, and∆ = 5.

Figure 5.4.3: Left: Two real T2-weighted axial MR images of the brain of a patient
at the lateral level, baseline scan in upper left corner and its follow-up scan in down
left corner. Middle: four change images via the EigenBlockCD algorithm. The radii of
blocks of interest are δ = 2, 4, 5, and 7 and the corresponding radii of inquiry blocks
are ∆ = 5, 10, 13, 17. Right: change image obtained by the improved EigenBlockCD-2
with δ = 2, and ∆ = 5.

this test we run the algorithms for three different pairs of real MR images, baselines

and their corresponding follow-ups. The radius of blocks of interest and their corre-

sponding inquiry blocks for the EigenBlockCD algorithm vary, i.e., δ = 2, 4, 5, 7 and
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∆ = 5, 10, 13, 17. For the EigenBlockCD-2 algorithm we use two fixed pairs of δ and

∆. In the co-registration step, δ = 12 and ∆ = 20, and then in the second step both

radii are chosen small, i.e., δ = 2 and ∆ = 5. By visually comparing the images in

Figs.5.4.2, 5.4.3 and 5.4.4, one can observe that the performance of the EigenBlockCD

algorithm gets closer to that of the EigenBlockCD-2 algorithm as the size of inquiry

block increases and eventually converges to the performance of the EigenBlockCD-2

algorithm for very large blocks sizes.

Figure 5.4.4: Left: Two real T2-weighted axial MR images of the brain of a patient
at the lateral level, baseline and follow-up scans, Middle: Four change images via the
EigenBlockCD. The radii of blocks of interest are δ = 2, 4, 5 and 7 and the correspond-
ing radii of inquiry blocks are ∆ = 5, 10, 13, 17. Right: Change image obtained by the
improved EigenBlockCD-2 with δ = 2 and ∆ = 5.

The error between the block of interest from the test image and its best matching

block from the reference image depends on the size of the inquiry block. As the radius

of the inquiry block decreases, the error increases and vice versa. The co-registration

step solves this problem. Fig.5.4.1 b) shows that L2 minimum value of this error for

the EigenBlockCD algorithm is reached for a radius of inquiry block greater than the

size of the shifts and rotations, i.e., ∆ ≥ 30. Whereas the same minimum is reached

by the EigenBlockCD-2 algorithm for ∆ ≥ 5.

The results for change image via the EigenBlockCD-2 with real MR data are shown

in Fig.5.4.5. The first and second rows in Columns a) to c) show selected axial T2-

weighted images of the brain of a patient at the level of the lateral ventricles who had
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undergone serial MRIs in 2011 and 2013. The third row shows changes obtained by

the EigenBlockCD-2 algorithm, overlayed onto the MR 2013 image. Column d) shows

selected axial T2 image of the brain of another patient who had undergone serial MRI

in 2010 and 2012.

Figure 5.4.5: First row: Axial T2-weighted images of the brain of two patients at the
lateral level. Second row: Corresponding follow-up images of the same patients. Third
row: Overlay change images computed via the EigenBlockCD-2 algorithm onto the
follow-up images.

We also run experiments with another pair of real MR scans. The initial global

co-registration step of two MR images taken in 2010 and 2012 namely reference and

test images are shown in Fig.5.2.1, Fig.5.2.2 and Fig.5.2.3. Both images are of size

384 × 384. Blocks of interest selected randomly from nine inner areas from the test

image are of sizes 25×25 and their corresponding inquiry blocks in the reference image

are of sizes 65 × 65. The maximum values of vertical and horizontal translations are

half sizes of each dimensions in the inquiry block B, i.e., translation parameters of

Fig.5.2.1, Fig.5.2.2, Fig.5.2.3 are in the range [-32, 32] pixels and rotation angles is

randomly selected from [−10o, 10o].

For each degree from [−10o, 10o], the best matching block is chosen among 4225 dic-

tionary blocks. In total, it results in 21 blocks selected for the 21 angles. In Fig.5.2.1

the L2 minimum was reached for vertical shift = -20, horizontal shift 1 and rotation
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Figure 5.4.6: i) and ii) Baseline and its follow up MR images respectively. A block of
interest of size 25× 25 centered at pixels (198,120) in the test image, its corresponding
inquiry block of size 65 × 65 in the reference image, iii) Enlarged inquiry block with
overlapping training blocks to form the dictionary. iv) Block of interest b, v) Inquiry
block B with the first best 8 matching blocks in red from 21 blocks determined by
the algorithm for each angle of rotation, vi) The best 8 blocks closest to the block of
interest.

Figure 5.4.7: Three parameters identified by the algorithm in ascending order of their
L2 minimums.

angles about x-axis of −1o. Hence, the reference image is rotated 1 degree clock-wise,

shifted 20 pixels down and one to the left to be aligned with test image as Fig.5.2.1

Column c) shows.

Figs.5.4.6 and 5.4.8 show that the L2 minimum for one block of interest is reached

117



Figure 5.4.8: i) and ii) Baseline and its follow-up MR images respectively. A block of
interest of size 25×25 centered at pixels (198, 250) in the test image, its corresponding
inquiry block of size 65 × 65 in the reference image, iii) Enlarged inquiry block with
overlapping training blocks to form the dictionary. iv) Block of interest b, v) Inquiry
block B with the first best 8 matching blocks in red from 21 blocks determined by
the algorithm for each angle of rotation, vi) The best 8 blocks closest to the block of
interest.

Figure 5.4.9: Three parameters identified by the algorithm in ascending order of their
L2 minimums.

for a rotation angle with x-axis of -3 degrees. Blocks of interest of size 25 × 25 and

centered at pixels (198,120) and at (198, 250) and their corresponding inquiry blocks

B in cyan color of sizes 65 × 65 from the reference image are selected. Column v) in

the second rows of Figs. 5.4.6 and 5.4.8 show that the best 8 matching blocks from the
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inquiry block (in red) are positioned at the top middle location of the inquiry block,

that is 22 pixels above the centre of the inquiry block and one pixel to the right from it.

In other words, this means that the reference image needs to be rotated first, shifted

22 pixels down and one pixel to the left to be aligned with the test image.

5.5 Summary

In this chapter we presented an improvement of the EigenBlockCD algorithm. The

improved version, namely the EigenBlockCD-2, uses a co-registration step to achieve

global alignment of images. It allows the algorithms to account for large shifts and

rotations. We defined the co-registration of two medical images as an optimization

problem. The solution finds three non-rigid transformation parameters, two for trans-

lation and one for rotation. The algorithm then performs a linear transformation to

align the first image with the second one. In the second step, the EigenBlockCD-2

algorithm computes the significant changes between medical images by employing the

EigenBlockCD algorithm.

We showed the consistent performance of the co-registration step and demonstrated

the results of the EigenBlockCD-2 algorithm with real MR images. The results show

that the EigenBlockCD-2 performs significantly better than the earlier version the

EigenBlockCD algorithm in the following aspects: It accounts for large shifts and ro-

tations, it is computationally more efficient, and it increases the accuracy of change

detection. The same conclusions can be applied to the AEDL-2 algorithm compared

to the AEDL algorithm.
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Chapter 6

Numerical Validation

Performance analysis of change detection methods is essential to the design of auto-

mated change detection systems for MR images. Such an analysis should take into

account all possible non-significant changes. We provide a complete mathematical

characterization on the performance of the EigenBlockCD-2 algorithm in the presence

of such changes. We also thoroughly discuss the results of several performance mea-

sures as applied to the EigenBlockCD and the AEDL algorithms and their improved

versions the EigenBlockCD-2 and the AEDL-2 algorithms [23, 24, 25]. To validate

the performance of our algorithms, the obtained performance prediction, namely the

ground truth, is compared to the results obtained by the algorithms with synthetic MR

Images for which the ground truth is known.

In this dissertation, we have used both quantitative and qualitative performance

measures utilized in previous works in [7, 8, 9, 27, 29, 42, 43]. We calculated the fol-

lowing performance measures: GT/IP (ratio of number of ground truth pixels and

the total number of image pixels), PCC (Percentage correct classification), Jaccard,

Yule, Sensitivity, Specificity, SI (Similarity Index and SSIM (Structure Similar-

ity). We briefly describe these performance measures in this section followed by the

simulations and results.
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6.1 Performance Measures

Performance measures tell us how well an algorithm performs when its output is com-

pared with an output from a well established algorithm which sometimes is called the

gold standard or the ground truth. We have designed the ground truth image for

validating the results. These measures are based on the unions, intersections and com-

plements of the ground truth images and the computed change images obtained by the

algorithms. The first six measures, the PCC, Jaccard, Yule, Sensitivity, Speci-

ficity and the SI are binary measures where 1 suggest correct and 0 suggest incorrect

detection of change or absence of change. Binary measures are computed based on four

sets of data:

We denote with IP the total number of image pixels, i.e., N1×N2 where N1 and N2

are the dimensions of an image, e.g., 256×256. GT stands for the ground truth image

which contains only significant changes, i.e., the total number of true changed pixels.

Computed change (CC) image represents the change image obtained by an algorithm,

i.e., the total number of changed pixels detected by an algorithm. False positive (FP)

represents the number of non-changed pixels incorrectly detected as change, that is,

the difference between CC and TP. False negative (FN) is the number of changed

pixels incorrectly detected as no-change, that is, the difference between GT and TP.

True positive (TP) represents the number of pixels correctly detected as change by the

algorithms, that is, the intersection of GT with CC. True negative (TN) represents

the number of non-changed pixels correctly detected.

An illustration of these four sets is shown in Fig 6.1.1, i.e., FP in yellow, FN in

magenta, TP in red and TN in white: the equations are given below:

TP = GT ∩CC

FP = CC−TP

FN = GT−TP

TN = (GT ∪CC)C

= (GT)C ∩ (CC)C
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Figure 6.1.1: Venn diagram of pixel based comparison between the ground truth set
(GT) and the computed change (CC).

Based on these sets we describe six quantitative measures which we apply to validate

our algorithms. Percentage correct classification measure (PCC) is the most commonly

used performance measure with values in the range [0, 1]. It represents the ability of the

algorithm to correctly detect true changes (TP) and non-changes (TN). PCC values

close to 1 indicate higher performance. The PCC ratio approaches 1 if the ground

truth image contains very few changes, i.e., the ratio GT
IP
≤ 0.043r [29]. Therefore it is

not a sufficient measure for images that have undergone little changes.

PCC =
TP + TN

TP + FP + TN + FN
(6.1.0.1)

The Jaccard measure avoids this limitation by excluding TN and using only the

detection of changed pixels:

Jaccard =
TP

TP + FP + FN
(6.1.0.2)

The Jaccard measure gives values in [0, 1]. It is easy to see from Eq. (6.1.0.2) that

higher values of this measure indicate higher performance of an algorithm. The Yule

coefficient is another quantitative performance measure in [−1, 1] and is given by:

Yule =
TP

TP + FP
+

TN

TN + FP
− 1 (6.1.0.3)
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Sensitivity measures the probability that an algorithm correctly detects true

changes. The Eq. (6.1.0.4) is used to calculate the sensitivity value:

Sensitivity =
GT ∩CC

GT
=

TP

TP + FN
(6.1.0.4)

Specificity measures the probability that an algorithm correctly detects non-

changes and it is given by Eq. (6.1.0.5).

Specificity =
TN

TN + FP
=

(IP−GT) ∩ (IP−CC)

IP−CC
(6.1.0.5)

The similarity index (SI) with values in [0,1] is defined as the ratio of twice the

common area to the sum of individual areas:

SI = 2× GT ∩CC

GT ∪CC
= 2× TP

TP + FP + FN
(6.1.0.6)

Quantitative measures described above do not take into account the structural sim-

ilarities between two images. The Structural SIMilarity index (SSIM) [45] measures

the similarity between two images by introducing structural information, with one of

the images being compared, provided the other image is regarded as of perfect quality:

SSIM(I1, I2) =
(2µI1µI2 + C1)(2σI1I2 + C2)

(µ2
I1

+ µ2
I2

+ C1)(σ2
I1

+ σ2
I2

+ C2)
(6.1.0.7)

where µI1 , µI2 , σI1 and σI1 are the mean and the standard deviation of images I1

and I2 and σI1I2 is the covariance between I1 and I2, i.e.,

µIs =
1

N1 +N2

N1∑
i=1

N2∑
j=1

Is(i, j), for s ∈ {1, 2}

σIs =

(
1

N1 +N2 − 1

N1∑
i=1

N2∑
j=1

(Is(i, j)− µIs)
2

) 1
2

, for s ∈ {1, 2}
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σI1I2 =
1

N1 +N2 − 1

N1∑
i=1

N2∑
j=1

(I1(i, j)− µI1)(I2(i, j)− µI2)

where I1(i, j) and I2(i, j) represent pixel intensity of the baseline image and its follow-

up at location (i,j). C1 = (k1L)2, C2 = (k2L)2, k1 = 0.01, k2 = 0.03, and L =

2(# of bits per pixel) − 1, ( i.e., L = 255 for gray-scale images).

6.2 Simulations and Results

In this section we describe the details of the experiments and results. First, we design

the reference image. The test image is created by applying two types of changes to

the reference image, significant and insignificant. We are able to control both types

of changes as shown in Fig. 6.2.1. Significant changes regarded as the ground truth

include enlargement, shrinkage, disappearance, intensity changes of an existing lesion,

and appearance of new lesions as shown in Fig. 6.2.1 third row.

6.2.1 Simulations and Results With Synthetic Images

The reference image, as shown in Fig. 6.2.1 Column a), is created by stacking three

sub-images (image strips) of size L
3
× L, where L = 129 . Number L is chosen such

that it is divisible by 3, so that L/3 is a positive integer. The reference image is of size

L× L. For each image strip:

- We place three polygons with vertices that are created at random within a given

range.

- Each polygon is filled with intensities whose distribution is random Gaussian, using

maximum intensity chosen at random in [.45, .55], [.35, .45] and [.25, .35], respectively,

from left to right.

- Four corresponding test images, as shown Fig.6.2.1 Column b), are obtained from

each reference image by applying two kinds of changes:

• Insignificant changes: shift, rotation, and noise. These changes will mimic the

changes due to patient position, contrast changes, and other acquisition related

artifacts.
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– horizontal and vertical shift sizes are chosen at random in the range [-3,3].

Negative values represent shifts in negative directions (i.e., up or left respec-

tively). Positive values represent shifts in positive directions (i.e., down or

right respectively).

– Rotation angles are chosen at random in the range [-3, 3]. Negative values

represent clockwise direction of rotation. Positive values represent counter-

clockwise direction of rotation.

– White Gaussian noise with signal-to-noise ratio (SNR) chosen at random in

range [25, 55].

– Changes in intensity due to changes in field inhomogeneity.

• Significant changes forming the ground truth, as shown in Fig.6.2.1 Column c),

include clinical changes to an existing lesions and the appearance of new lesions.

a) We considered the following changes for an existing lesion:

– Enlargement which mimics whether a lesion has grown between time t1 and

its follow-up at time t2.

– Shrinkage of a lesion showing whether a lesion has shrunk between the two

examination times.

– Disappearance of a lesion present in the previous scan but it has disappeared

in the follow-up scan.

– intensity changes of an existing shape which has clinical significance for a

patient.

b) Appearance of a new shape which mimics the appearance of a new lesion.

The ground truth image contains only the significant changes, such as enlargement,

shrinkage, disappearance, and intensity changes of an existing lesion. It also contains

new shapes or lesions as shown in Fig 6.2.1. We create four ground truth images cor-

responding to each pair (Reference, Test) images.

The change image is computed via the AEDL-2, EigenBlockCD-2, and the simple
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Figure 6.2.1: First row: reference images. Second row: Corresponding test images
with same significant and insignificant changes. Third row: ground truth images which
contains only significant changes for each pair of reference and test images. Insignificant
changes are due to: Column a) shifts, Column b) rotations, Column c) shifts plus
rotations, and Column d) shifts and intensity changes.

differencing algorithms for each pair of reference and test images. Performance mea-

sures are calculated by comparing the ground truth with the change image obtained

from the algorithm. We calculate the following performance measures: GT/IP (ratio

of number of ground truth pixels and the total number of image pixels), PCC (Per-

centage correct classification), Jaccard, Yule, Sensitivity, Specificity, and SSIM

(Structure Similarity).

We ran four sets of experiments, where each experiment ran 100 times to test the

performance of the AEDL-2 and the EigenBlockCD-2 algorithms in the presence of

insignificant changes due to shifts, rotations, shifts + noise, and shifts + rotations

changes. The change image is computed via simple differencing, the AEDL-2, and the

EigenBlockCD-2 algorithms. The computed change image is compared to the ground

truth based on the performance measures discussed earlier, and the results are shown
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in Figs. 6.2.3, 6.2.5, 6.2.7 6.2.9. A comparison between the EigenBlockCD-2 and

the simple differencing algorithms for all the performance measures described in this

section is shown in Fig. 6.2.2.

The reference and test image pairs, created as described above, are different for

each experiment, because of the randomness of the vertices of the polygons, the ran-

domness of their intensities, noise level, rotation angles, translation sizes, and the level

of intensity changes.

Figure 6.2.2: Mean of the performance measures of 100 experiments. The significant
changes include enlargement, shrinkage, noise, intensity changes, appearance, and dis-
appearance of shapes. The insignificant changes are due to shifts, rotations, shifts and
noise, and shifts and rotations changes.

It is difficult to provide a fair comparison among automatic change detection algo-

rithms due to the fact that there is no gold standard and implementation of state-of-the

art methods are not publicly available [11]. Work in [42] evaluated the performance of

their methods on simulated lesion images and reported their SI value around 0.75.

Authors in [43] tested their lesion detection method based on segmentation to le-

sions generated from MRI [102] and reported their SI values on the simulated target

slices with 20%, 40% and 60% intensity reduction as 0.867, 0.879 and 0.724 respec-

tively.

The method in [42] obtained an average value of 0.879 for SI. As an overall mea-

sure of performance, they were able to achieve sensitivity = 0.877, specificity = 0.998

and similarity index (SI) = 0.879. They claim that it performs comparably with the

method used by [43]and outperforms the method used by [42]. Work in [29] used three

measures: the PCC, the Jaccard, and the Yule coefficients.

Authors in [7],[8] also used the Sensitivity and the Specificity measures to validate
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their algorithm. They obtained values of SI in range [0.54-0.94] with P-value = 0.004

and SI values in range [0.71 - 0.96] for P-value = 0.008. The specificity values they

obtained are in the range [0.87 - 1] with P-value = 0.035.

In the first 100 experiments, insignificant changes applied to test images consist

of horizontal and vertical translations, which are chosen randomly in range [-3, 3].

Fig 6.2.3 shows the mean and standard deviation of these results. The mean values for

the PCC measure are 0.9690, 0.9947 and 0.9934. These values are very high due to the

low ratio of GT/IP. The mean values of the Jaccard measure for the AEDL-2 and

the EigenBlockCD-2 algorithms are respectively 0.6042 and 0.5809, which are higher

than the mean value for the Jaccard measure 0.3102 obtained by simple differencing,

and also much higher than 0.2202 value reported in [29] for the image rationing.

Figure 6.2.3: Mean and standard deviation for the performance measures of the first 100
experiments.The significant changes include enlargement, shrinkage, noise, intensity
changes, appearance and disappearance of lesions. The insignificant changes are due
to shifts.

The mean values of the Yule measure for the AEDL-2 and the EigenBlockCD-2

algorithms are respectively 0.7223 and 0.7383, which are higher than the mean value

for the Yule measure 0.3103 obtained by simple differencing and much higher than

0.4783 value reported in [29] for their own Fuzzy XOR algorithm. Mean values of the

Sensitivity measure for the AEDL-2 and the EigenBlockCD-2 algorithms are respec-

tively 0.7254 and 0.7415, which are higher than the mean value for the Sensitivity

measure 0.3381 obtained by simple differencing. Our values are comparable with value
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Figure 6.2.4: Computed change images from an experiment where the insignificant
changes are due to shifts. First row: From left to right- the reference, test, and ground
truth images. Second row: from left to right the computed change images via simple
differencing, the AEDL-2, and the EigenBlockCD-2 algorithms.

0.877 reported in [11] on their algorithm.

The mean values of the Specificity measure for the AEDL-2 and the EigenBlockCD-

2 algorithms are respectively 0.9977 and 0.9965, which are comparable with 0.998 value

reported in [11]. Our values are also comparable with values in range [0.87 - 1] reported

in [7],[8] with P-value = 0.035. Finally, the mean value of the SSIM index is almost

one for both the AEDL-2 and the EigenBlockCD-2 algorithms.

This shows that the computed change images from both the AEDL-2 and the

EigenBlockCD-2 algorithms have similar structure with the ground truth as Fig 6.2.4

shows. In other words, this means that both algorithms detect significant clinical

changes from one scan to another while ignoring the insignificant changes caused by

shifts.

In the second 100 experiments, insignificant changes applied to test images consist

of rotations with rotation angles chosen randomly in the range [-3, 3]. Fig 6.2.5 shows

the mean and standard deviation of these results. The mean values for the PCC

measure are 0.9857, 0.9981 and 0.9953. These high values are due to the low ratio of
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GT/IP which is 0.0295. The mean values of the Jaccard measure for the AEDL-2 and

the EigenBlockCD-2 algorithms are 0.8102 and 0.6747, respectively, which are higher

than the mean value for the Jaccard measure 0.5427 obtained by simple differencing

and much higher then 0.2202 value reported in [29] for the image rationing.

Figure 6.2.5: Mean and standard deviation for the performance measures of the second
100 experiments.The significant changes include enlargement, shrinkage, noise, inten-
sity changes, appearance and disappearance of shapes. The insignificant changes are
due to rotations.

The mean values of the Yule measure for the AEDL-2 and the EigenBlockCD-2

algorithms are 0.9773 and 0.8676 respectively which are higher than the mean value

for the Yule measure 0.6073 obtained by simple differencing and much higher than

0.4783 value reported in [29] for their own Fuzy XOR algorithm. Mean values of the

Sensitivity measure for the AEDL-2 and the EigenBlockCD-2 algorithms are 0.9775

and 0.8693 respectively which are higher than the mean value for the Sensitivity mea-

sure 0.6181 obtained by simple differencing and are also higher than with 0.877 value

reported in [11].

The mean values of the Specificity measure for the AEDL-2 and the EigenBlockCD-

2 algorithms, are 0.9983 and 0.9969 respectively which are comparable with 0.998 value

reported in [11] and with values in range [0.87 - 1] reported in [7],[8] with P-value =

0.035. Finally, the mean value of the SSIM index is one for both the AEDL-2 and the

EigenBlockCD-2 algorithms. This shows that the probability of having similar struc-

ture between the computed change images from both algorithms and the ground truth
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Figure 6.2.6: Computed change images from an experiment with rotations as the in-
significant changes. First row: From left to right- the reference, test and the ground
truth images. Second row: from left to right the computed change images via simple
differencing, the AEDL-2 and the EigenBlockCD-2 algorithms.

is almost one. In other words, the computed change and the ground truth images look

very similar as Fig 6.2.6 shows.

In the third 100 experiments, insignificant changes applied to test images consist

of horizontal and vertical shifts and also additive white Gaussian noise with signal to

noise ratio in the range [25, 55]. Fig 6.2.7 shows the mean and standard deviation of

these results. The mean values for the PCC measure are very high, 0.9555 and 0.9826,

for both algorithms due to the low ratio of 0.0231 of GT/IP. The mean values of the

Jaccard measure for the AEDL-2 and the EigenBlockCD-2 algorithms are 0.6360 and

0.7377 respectively which are higher than the mean value for the Jaccard measure

0.351 obtained by simple differencing and much higher then value 0.2202 reported in

[29] for the image ratioing.

The mean values of the Yule measure for the AEDL-2 and the EigenBlockCD-2

algorithms are 0.6753 and 0.7342 respectively which are higher than the mean value

0.15522 for the Yule measure obtained by simple differencing and much higher than

0.4783 value reported in [29] for their own Fuzy XOR algorithm. Mean values of
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Figure 6.2.7: Mean and standard deviation for the performance measures of the third
set of 100 experiments. The significant changes include enlargement, shrinkage, noise,
intensity changes, appearance and disappearance of shapes. The insignificant changes
are due to shifts and noise.

Figure 6.2.8: Computed change images from an experiment where the insignificant
changes are due to shifts and noise. First row: From left to right- the reference,
test and the ground truth images. Second row: from left to right the corresponding
computed change images via simple differencing, the AEDL-2 and the EigenBlockCD-2
algorithms.

the Sensitivity measure for the AEDL-2 and the EigenBlockCD-2 algorithms are

0.7181 and 0.7514 respectively which are higher than the mean value 0.6181 for the

Sensitivity measure obtained by simple differencing and they are comparable with
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0.877 value reported in [11].

The mean values of the Specificity measure for the AEDL-2 and the EigenBlockCD-

2 algorithms are 0.9969 and 0.9992 respectively which are comparable with 0.998 value

reported in [11] and with values in range [0.87 - 1] presented in [7],[8] with P-value =

0.035. Finally, the mean value of the SSIM index is 0.9999 for both the AEDL-2 and

the EigenBlockCD-2 algorithms. This shows that change images computed are very

close to the ground truth image in terms of their structure as Fig 6.2.8 shows.

In the fourth 100 experiments, insignificant changes applied to test images consist

of horizontal and vertical shifts and also rotations. Intensity of some shapes is increased

or decreased randomly chosen in [0.20, 0.50]. We consider increases in intensity of a

lesion as significant changes because they have clinical significance. Fig 6.2.9 shows the

mean and standard deviation of these results. The mean values for the PCC measure

are 0.9810, 0.9946 and 0.9903. These very high values are due to the low GT/IP

ratio of 0.0405. The mean values of the Jaccard measure for the AEDL-2 and the

EigenBlockCD-2 algorithms are 0.6092 and 0.7957 respectively which are higher than

the mean value 0.5746 for the Jaccard measure obtained by simple differencing and

much higher then 0.2202 value reported in [29] for the image ratioing.

Figure 6.2.9: Mean and standard deviation for the performance measures of the fourth
100 experiments.The significant changes include enlargement, shrinkage, noise, inten-
sity changes, appearance and disappearance of shapes. The insignificant changes are
due to shifts and rotations.

The mean values of the Yule measure for the AEDL-2 and the EigenBlockCD-2
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Figure 6.2.10: Computed change images from an experiment where the insignificant
changes are due to shifts and rotations. First row: From left to right- reference, test,
and ground truth image. Second row: from left to right the computed change image
via simple differencing, the AEDL-2 and the EigenBlockCD-2 algorithms.

algorithms are 0.7284 and 0.7713 respectively which are higher than the mean value

0.6101 for the Yule measure obtained by simple differencing and much higher than

0.4783 value reported in [29] for their own Fuzy XOR algorithm. The mean values

of the Sensitivity measure for the AEDL-2 and the EigenBlockCD-2 algorithms are

0.7314 and 0.7778 respectively which are higher than the mean value 0.6260 for the

Sensitivity measure obtained by simple differencing and they are comparable with

0.877 value reported in [11].

The mean values of the Specificity measure for the AEDL-2 and the EigenBlockCD-

2 algorithms are 0.9977 and 0.9965 respectively which are comparable with 0.998 value

reported in [11] and with values in range [0.87 - 1] obtained in [7],[8] with P-value

= 0.035. Finally, the mean value of the SSIM index is 0.9999 for both the AEDL-2

and the EigenBlockCD-2 algorithms. This means that our methods computes change

images very close to the ground truth image in terms of their structure as Fig 6.2.10

shows.
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6.2.2 Simulations and Results With Serial MR Images

We created a series of images from real MR images. In order to validate our change

detection methods quantitatively and qualitatively, we simulated lesions and applied

them to real MR images. Because the exact sizes and locations of each lesion are

known, we regard them as the ground truths. Fig 6.2.11 shows an example of a serial

MR images created from a T2-weighted real MR scan, namely the reference image.

Figure 6.2.11: From left to right: Reference, first, second, third and fourth follow-up
images, respectively.

Taking into the consideration what a radiologist might be looking into a follow-up

MR scan, we simulated seven lesions by applying two kinds of changes: insignificant

and significant changes. Significant changes, which make up the ground truth, include

enlargement, shrinkage, disappearance, intensity changes of an existing lesion, and

also the appearance of a new lesion. Four ground-truth images corresponding to pairs

(reference, first follow-up), (first follow-up, second follow-up), (second follow-up, third

follow-up) and (third follow-up, fourth follow-up) are designed as shown in Fig.6.2.11.

Insignificant changes include horizontal and vertical shifts, clockwise and coun-

terclockwise rotations, changes in contrast and different noise level. Horizontal and

vertical shift sizes are chosen at random in the range [-5,5], rotation angles are chosen

at random in the range [-5, 5], and white Gaussian noise is chosen at random with

signal-to-noise ratio in range [25, 55]. Intensity value are chosen randomly in [0.2, 0.5]

and coordinates of the vertices for each polygon are generated randomly.

From the 7 simulated lesions, six lesions are inserted into the reference image, la-

beled with numbers from 1 to 6. Lesion 7 will appear in the first follow-up. Some

of these shapes act as inactive lesions and the other remaining shapes mimic active

lesions. Fig 6.2.12 and table 6.2.2.1 show in more details changes between each pair

of two consecutive serial MR images. Lesion 1 is inactive in the first follow-up, disap-
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Figure 6.2.12: From left to right: The reference, the first, the second, the third and
the fourth follow up images respectively.

Figure 6.2.13: Top row shows the ground truth images with significant changes between
two consecutive images: a) the reference and the first follow-up images, b) the first and
the second follow- ups. c) the second and the third follow-ups. d) the third and the
fourth follow-ups, Bottom row from left to right: the reference, the first, the second,
the third, and the fourth follow-up images, respectively.

pears in the second and it remains gone. Lesion 2 stays inactive in the first and second

follow-ups, then it grows for the next two follow-ups. Lesion 3 is inactive and stays

inactive during all five scans. Lesion 4 shrinks in the next three scans until it disap-

pears in the last scan. Lesion 5 grows in the first follow-up and then it shrinks until

it disappears in the last scan. Lesion 6 is present in the reference image, disappears

in the next follow-up and remains gone in the rest of the scans. Lesion 7 appears as a

new lesion in the first follow-up, grows in the next two scans and then shrinks in the

last scan.

We performed 48 experiments with both significant and insignificant changes ap-

plied to test images consisting of horizontal and vertical shifts, rotations, intensity
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Table 6.2.2.1: Description of simulated lesions in a series of MR images

Images/ Reference First Second Third Fourth
lesion image follow up follow up follow up follow up

Significant four four four three
changes changes changes changes changes

first inactive inactive disappears stays stays
lesion 1 then disappears disappeared disappeared

inactive inactive inactive grows with grows more
lesion 2 which grows increased with increased

intensity intensity

inactive inactive inactive inactive inactive
lesion 3 lesions

shrinks until shrinks shrinks shrinks disappears
lesion 4 it disappears further more

grows grows with shrinks disappears stays
lesion 5 shrinks increased disappeared

disappears intensity

disappears disappears stays stays stays
lesion 6 and stays disappeared disappeared disappeared

disappeared

appears appears grows with grows shrinks
lesion 7 grows as a new increased more

then shrinks lesion intensity

changes, enlargements of lesions, shrinkage, appearance of a new lesion, and disap-

pearance of an existing one. Fig 6.2.14 shows the mean and standard deviation of

these results. We compared our results with results of several algorithms as presented

by their authors [7, 8, 25, 29] shown in Table 6.2.2.2. The mean values for the PCC

measure are 0.9989 and 0.99883 for the AEDL-2 and the EigenBlockCD-2 algorithms

which are higher than 0.35952 obtained by the simple differencing. The values of the

PCC measures are very high due to the low GT/IP ratio of 0.00822. The mean

values of the Jaccard measure for the AEDL-2 and the EigenBlockCD-2 algorithms

are 0.7653 and 0.7558 respectively which are much higher than the mean value 0.03267

for the Jaccard measure obtained by simple differencing and much higher then 0.2202

value reported in [29] for the image rationing.

The mean values for the Yule measure for the AEDL-2 and the EigenBlockCD-2

algorithms are 0.75467 and 0.76532 respectively which is higher than the mean value

-0.62180 for the Yule measure obtained by simple differencing and much higher than

0.4783 value reported in [29] for their own Fuzy XOR algorithm. The mean values of

Sensitivity measure for the AEDL-2 and the EigenBlockCD-2 algorithms are 0.7735
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Figure 6.2.14: The mean and the standard deviation for the performance measures of 48
experiments. The significant changes include enlargement, shrinkage, noise, intensity
changes, appearance and disappearance of shapes. The insignificant changes are due
to shifts, rotations and noise level.

and 0.75584 respectively which are higher than 0.03267 the mean value for Sensitivity

measure obtained by simple differencing and they are comparable with 0.877 value re-

ported in [11].

The mean values of the Specificity measure for the AEDL-2 and the EigenBlockCD-

2 algorithms are 0.9999 and 1.0000 respectively which are comparable with 0.998 value

reported in [11] and with values obtained in [7, 8] which are in range [0.87 - 1] with

P-value = 0.035. Finally, the mean value of the SSIM index are 1.000 and 0.9999 for

the AEDL-2 and the EigenBlockCD-2 algorithms. This means that our methods com-

pute change images very close to the ground truth images in terms of their structure

as Fig 6.2.15 shows.

6.3 Summary

In this chapter we presented a thorough performance analysis of the AEDL-2 and

EigenBlockCD-2 algorithms. Our analysis was both qualitative and quantitative. We

used well known performance measures such as the PCC, the Jackard, the Yule, the

Sensitivity, the Specificity, and the SSIM coefficients. We ran a significant number of

experiments and compared our results to those published in the related literature. The

simulations showed that our both algorithms, the AEDL-2 and the EigenBlockCD-2
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Figure 6.2.15: Serial MRI results. First row: the reference image and its four follow-ups.
Second row: the corresponding ground truth images for each change image computed.
Third row: the computed change images in serial MRI via the EigenBlockCD-2 algo-
rithm. Fourth row: the computed change images in serial MRI via simple differencing
method.

algorithms, perform better than the previous algorithms cited in the previous sections.

We included both synthetic and real MR images in our simulations. We also created a

series of MR images from real MR scans.
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Table 6.2.2.2: Performance measures comparing algorithms presented in [29, 7, 8, 25,
26].

Algorithms PCC Jaccard Yule Sensitivity Specificity SSIM

Image differencing [29] 0.8082 0.1888 0.4451

Image rationing [29] 0.8054 0.2202 0.4072

Image regression [29] 0.8024 0.1861 0.3971

CVA [29] 0.8081 0.1809 0.4512

Fuzzy XOR [29] 0.8023 0.1044 0.4783

Background Sub [29] 0.7945 0.2125 0.4285

CD-Change Detector [7, 8] [.68, .94] [.91, 1.0]

CS-Classify Subtract [7, 8] [.55, .65] [.80, .98]

AEDL-2 [25, 26] 0.9989 0.7653 0.7653 0.755 1.0 1.0

EigenBlockCD-2 [25, 26] 0.9988 0.7558 0.7547 0.7735 0.999 0.9999
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Chapter 7

Extensions to Volumetric Imaging

Data

In this section we extend the EigenBlockCD-2 and AEDL-2 algorithms to detect the

changes of 3D volumetric data. This is motivated by the fact that MR images are

originally volumes in 3D as shown in Fig. 7.1.1. Similar to the 2D case, we consider the

3D volumes of the same anatomical objects taken at two different times. The obtained

image slices are generally misaligned due to patient position and other acquisition

related artifacts. We define the problem of change detection in 3D and present the

EigenBlockCD-2 algorithm for volumetric data. The algorithms include two steps:

1) the interpolation step for which a transformation model is created to describe the

alignment process and 2) the detection step of 3D change detection algorithm. The

algorithms are tested with real MR images.

7.1 Problem Formulation And Notation

MR imaging provides a very detailed anatomical view of soft tissues such as human

brain and is the best among all structural imaging modalities. As such, MRI can be

used to detect brain tumors, multiple sclerosis, stroke etc. An original MR image pro-

duced by MRI machine software depicts the anatomic variations of signal intensity in

thin slices as shown in Fig. 7.1.1. As a result, a set of images, each describing a slice

of the object (brain, etc), is obtained and stored by MRI software in a special format.
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Geometrically speaking, a 3D image obtained from MRI scans is a volume of voxels.

A voxel or a volume element is the 3D corresponding term for a pixel in 2D image. An

automated change detection system compares two 3D volumes from a patient taken at

two different times.

The extension of the EigenBlockCD-2 and the AEDL-2 algorithms to 3D case takes

into consideration a new transformation model, a interpolation step, a similarity mea-

sure, and an optimization method which are the usual steps for any medical registration

software package [97, 98, 99, 100].

Figure 7.1.1: An illustration of a 3D MR volume of a brain

We extend the notations we used in the 2D case to the 3D case:

• V1 and V2 represent volumes of the same anatomical structure corresponding to

times t1 and t2 respectively. V1 and V2 are referred to as the reference and the

test volume.

• The block bijk from the test volume is centered at voxel (i, j, k) and it is referred

to as the Block of Interest. For simplicity we denote it by b.

• The ∆ neighbourhood of (i, j, k) voxel, denoted by B, in reference volume is

called the ”Inquiry Block”.

B =

{
V1(̃i, j̃, k̃) : ĩ ∈ [i−∆, i+ ∆], j̃ ∈ [j −∆, j + ∆], k̃ ∈ [k −∆, k + ∆]

}

• D is the set of all blocks al of the same size as the block of interest b from the
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inquiry block B.

D =

{
al : l = 1, 2, ...(2∆ + 1)3

}

• Blocks al from the inquiry block are referred to as the ”Training Blocks”.

Blocks al are of sizes (2∆ + 1) × (2∆ + 1) × (2∆ + 1) and centered at (p, q, s),

where l = (s− 1)× (2∆ + 1)2 + (q − 1)× (2∆ + 1) + p.

• Let Φ = [x1,x2, . . . ,xk, . . . ,xn] be the dictionary formed by stacking all the

training blocks aj to column vectors xj. Fig. 7.1.2 shows two 3D volumes, a

block of interest b stacked as a column vector y from the test volume, and the

training blocks al stacked as column vectors xj. Training blocks al are extracted

from the inquiry block B.

• Let m = (2δ + 1)3 and n = (2∆ + 1)3. Then, the block of interest b and each

training block al are of sizes m
1
3 × m

1
3 × m

1
3 . The inquiry block B is of size

n
1
3 × n 1

3 × n 1
3 .

To achieve a more precise alignment in the 3D case we need to generate more slices

between the existing ones. The 3D anatomical data sets we have used in our simulations

are of size 384×384×20, i.e., 20 slices of size 384×384 each and with a slice thickness

of 5 mm. Between every two slices we insert four slices by applying cubic spline

interpolation, thus, obtaining a volume of size 384 × 384 × 96. In the co-registration

step, our algorithms aligns the baseline volume with its follow-up first. After the two

volumes are aligned, the algorithm extracts the 20 original slices from the volume that

hasn’t been transformed and the corresponding 20 aligned slices from the transformed

volume.

We make similar assumptions as in the 2D case. That is, two consecutive volumes

differ from one another due to disease related changes, shifts, rotations and noise. We

assume that the background of each block from the test volume can be learned from

the reference volume blocks. Each block of interest can be sparsely approximated using

a linear combination of a few blocks from the reference volume over a dictionary Φ.

Therefore we express b as a linear combination of blocks al by the following equation:

143



b =

(2∆+1)3∑
l=1

γ lal =
n∑
l=1

γ lal, al ∈ D (7.1.0.1)

where l ∈ {1, 2, . . . , (2∆ + 1)3}

Blocks al and b are stacked as m×1 column vectors xl and y, respectively, where

m = (2δ +1)3 and δ is a positive integer representing the radius of these blocks.

Eq. (7.1.0.1) can be written as:

y =
n∑
l=1

γ lxl, l ∈ {1, 2, . . . , n} (7.1.0.2)

Eq. (7.1.0.2) in matrix form can be written as:

y = Φγ + n (7.1.0.3)

where n accounts for noise.

The reference and test volumes are not necessarily aligned. Fig. 7.1.4 a) and b)

show that the tenth slices from the reference and the test volumes are not aligned and

do not represent the same anatomical structure, meaning that they do not represent

pictures of the same scene taken at different times. To accurately detect the relevant

clinical changes, we first perform the global initial alignment between the reference and

the test volumes. After the co-registration step, the tenth slice from the test volume

and its corresponding tenth transformed slice from the reference volume are aligned as

shown in Fig. 7.1.4 b) and c), respectively. The algorithms used in 2D can be easily

extended for 3D volumes which we present below. Next, we discuss the co-registration

step followed by change detection step. In the end we provide a summary of the

EigenBlockCD-2 algorithm for volumetric data.

7.1.1 Initial Global Alignment of 3D Volumes

As in Chapter 6, the co-registration problem finds the transformation parameters that

best aligns the two volumes by determining a transformation space and a cost function

that quantifies the quality of alignment. In our 3D registration problem, the transfor-
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Figure 7.1.2: An illustration of two 3-dimensional volumes, a block of interest b from
the test volume, b is stacked as a column vector y, its inquiry block B from the
reference volume, B contains overlapping training blocks aj which are then stacked as
column vectors xj of the dictionary Φ.

mation space includes six rigid transformations with six degrees of freedom, i.e., three

parameters for translations and three for rotations. Fig. 7.1.3 illustrates the three ro-

tation parameters to be determined by the co-registration step of our algorithm. As

with the EigenBlockCD-2 algorithm, we use the L2 norm as the cost function. The

minimization of the cost function finds the optimal parameters for which the changes

between the two consecutive volumes are clinically relevant and disease related.

As in Chapter. 6, we let T to be a set of transform functions, P a set of transforma-

tion’s parameters and C the cost function to be minimized. For any two 3D volumes of

the same anatomical part, the registration problem finds six parameters such that the

two volumes are to be geometrically aligned after transforming one or both volumes

using these parameters. The cost function checks the accuracy of the alignment, that

is, maximizing the accuracy of the co-registration by minimizing the cost function,

minimizing the norm of the difference between one volume and the second volume

transformed.

Suppose that the reference volume has to be rotated by angles α, β and γ to be
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Figure 7.1.3: An illustration of the three rotation parameters (α, β, γ) to be determined
by the extended EigenBlockCD-2 algorithm for 3D volumes during the co-registration
step.

Figure 7.1.4: a) and b) The reference and the test volumes of real T2-weighted volumes
of a brain taken in 2011 and in 2013, respectively. c) The reference volume aligned
with the test volume after six affine transformations.

aligned with the test volume. This is equivalent of rotating x, y and z-axis by angles

α, β, and γ. In Fig. 7.1.3, if line M (in green) represents the intersection of the xy-plane

(in blue) and its rotated xy-plane (in red), then the angle α is the angle between the

x-axis and the line M, which can be interpreted as rotation around z-axis. Angle β is

the angle between the two z-axis, (in blue and red), and γ is the angle between the

new x-axis and line M. The co-registration problem can be written as a minimization
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problem:

min
T ,P
C
(
T ,V1,V2,P

)
(7.1.1.1)

where:

• V1,V2 represent the two volumes to be aligned.

• C is the cost function in the minimization problem, i.e., the L2 norm given by

C = ||.||2.

• T is the set of transform functions; in our case T is any composition of transform

functions from the set {T(tx, ty, tz),R(α, β, γ}, where T are translation trans-

forms and R are rotational transform functions.

• P = {(tx, ty, tz, α, β, γ)} : tx ∈ T, ty ∈ T, tz ∈ T, α ∈ R, β ∈ R and γ ∈ R, is a

set of 6-tuples (tx, ty, tz, α, β, γ) representing the six parameters needed to align

the two volumes, i.e., the sizes of the three shifts in x, y and z directions and the

sizes of the three rotation angles, α, β and γ.

Let V(i, j, k) represent the intensity of a volume voxel at location (i, j, k). Image V

is of size N1 × N2 × N3. The translation transform functions can be applied to each

volume voxel as follows:

Tx,y,z

(
V(i, j, k)

)
= V(i+ tx, j + ty, k + tz)

Rα

(
V(i, j, k)

)
= V

(
(i− N1

2
) cosα− (j − N2

2
) sinα, (i− N1

2
) sinα− (j − N2

2
) cosα, k

)

The formulas for Rβ

(
V(i, j, k)

)
and Rγ

(
V(i, j, k)

)
are obtained in similar fashion.

In our initial co-registration problem we consider a composition of all the six transform

functions: Ttx,ty ,tz ,α,β,γ = T ◦ R, where T = Ttx,ty ,tz and R = Rα,β,γ. In matrix form
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Ttx,ty ,tz ,α,β,γ can be written as:



i′

j′

k′

1


=



1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1





1 0 0 0

0 cosα −sinα 0

0 sinα cosα 0

0 0 0 1





cosβ 0 sinβ 0

0 1 0 0

−sinβ 0 cosβ 0

0 0 0 1





cosγ −sinγ 0 0

sinγ cosγ 0 0

0 0 1 0

0 0 0 1





i

j

k

1


where (i, j, k) and (i′, j′, k′) represent the original and the transformed coordinates,

respectively. Then, the co-registration problem in Eq. (7.1.1.1) can be written as:

min
T ,P
||T (V1)−V2||2 (7.1.1.2)

The problem seeks to find a 6-tuple (t∗x, t
∗
y, t
∗
z, α

∗, β∗, γ∗) that minimizes Eq. (7.1.1.2):

min
(tx,ty ,tz ,α,β,γ)∈P

||T (V1)−V2||2 (7.1.1.3)

where T = T ◦R, T = Ttx ◦ Tty ◦ Ttz and R = Rα ◦Rβ ◦Rγ.

Eq. (7.1.1.3) can be written as:

(
min

(tx,ty ,tz ,α,β,γ)∈P
||T (V1)−V2||2

)
=⇒ (7.1.1.4)

=⇒
(
∃(t∗x, t∗y, t∗z, α∗, β∗, γ∗) ∈ P , s.t: T (V1) ≈ V2

)

The 6-tuples (t∗x, t
∗
y, t
∗
z, α

∗, β∗, γ∗) are automatically determined by the co-registration

step. The three translation parameters have integer values and are determined directly

without any input. On the other hand, the rotation parameters are selected from a

range of given angles with integer values, i.e., θ ∈ [−10o, 10o]. The co-registration step

is sufficient if the difference between the original test and the transformed reference

volumes is no larger than 2o angle about each axis. It derives that there are only finite

values ∈ [−180o, 180o] for the rotation parameters.

Remark: For two consecutive volumes, the insignificant changes due to affine

transformation, i.e., translations and rotations, are bounded. More specifically, the

sizes of the shifts cannot be greater than half of the maximum of each edge of the vol-
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ume. That is, |t∗x|, |t∗y| and |t∗z| ≤ 1
2

max{N1, N2, N3}, where N1, N2 and N3 are number

of rows, columns and the number of slices in a volume. Therefore the sets of the three

translation parameters are finite. Similarly, the sets of the rotation angles as integers

from [−180o, 180o] are finite. This means that the minimum in Eq. (7.1.1.4) is always

reached.

Figure 7.1.5: Rows 1 - 4 represent real T2-weighted MR slices of a brain of the reference
volume taken in 2011 and its follow-up in 2013. Columns a) and b) Reference volume
and Test volume, c) Reference aligned to test after six affine transformations, Columns
d) and e) change volume via differencing before and after the co-registration step
respectively done by our algorithm, Column f) change volume via the extension of
EigenBlockCD-2 for 3D volumes.

We tested the EigenBlockCD-2 for 3D volumes algorithm with real MR volumes

and the results of the initial co-registration step are displayed in Figs. 7.1.5, 7.1.6,

7.1.7, 7.1.8 and 7.1.9 Columns a), b) and c). Columns a) represent real T2-weighted

MR slices of a brain in 2011 named as the reference volume, Columns b) show cor-

responding follow-ups slices of the T2-weighted MR volume in 2013 named as test

volume and Columns c) show the reference volumes aligned to test volumes after six

affine transformations, three shifts and three rotations. The six parameters in this case

are: t∗x = 9, t∗y = −3, t∗z = −5, α∗ = −9o, β∗ = 2o and γ∗ = −3o.
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Figure 7.1.6: Rows 1 - 4 represent real T2-weighted MR slices of a brain of the reference
volume taken in 2011 and its follow-up in 2013. Columns a) and b) Reference volume
and Test volume, c) Reference aligned to test after six affine transformations, Columns
d) and e) change volume via differencing before and after the co-registration step
respectively done by our algorithm, Column f) change volume via the extension of
EigenBlockCD-2 for 3D volumes.

7.1.2 Detecting Clinical Changes

In this step, the problem becomes a 2D optimization problem. As in Chapter 6, the

dictionary Φ is formed by stacking training blocks as column of Φ:

Φ = [x1,x2, . . . ,xn] (7.1.2.1)

In case of using the AEDL algorithm, the background of the block of interest is

modeled by solving the minimization problem (P1):

Problem P1 :
γ∗ = arg min

γ
||γ||1

subject to: y = Φγ + n

(7.1.2.2)

The residual errors r of the approximation algorithm given by Eq. (7.1.2.2) is com-

puted as:

r = |y − y∗| (7.1.2.3)
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Figure 7.1.7: Rows 1 - 4 represent real T2-weighted MR slices of a brain of the reference
volume taken in 2011 and its follow-up in 2013. Columns a) and b) Reference volume
and Test volume, c) Reference aligned to test after six affine transformations, Columns
d) and e) change volume via differencing before and after the co-registration step
respectively done by our algorithm, Column f) change volume via the extension of
EigenBlockCD-2 for 3D volumes.

The EigenBlockCD algorithm computes the background y∗ of y by finding the best

approximation to y in the reference volume, that is, a vector xl from dictionary Φ that

minimizes the residual error.

y∗ = xl such that: el = ||ŷ − x̂l||2 = min
x̂k∈Φ̂
||ŷ − x̂k||2 (7.1.2.4)

where xl ∈ Φ, x̂l ∈ Φ̂ Φ̂ is the projected dictionary Φ onto the eigen-subspace. The

residual error block with changes is computed as:

r = |y − y∗| (7.1.2.5)

The foreground block F containing only the significant changes is computed as:

F =
1

2m

(
k+δ∑

a=k−δ

j+δ∑
c=j−δ

i+δ∑
h=i−δ

(
r

[1]
a,c,h + r

[2]
a,c,h

))
(7.1.2.6)
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Figure 7.1.8: Rows 1 - 4 represent real T2-weighted MR slices of a brain of the reference
volume taken in 2011 and its follow-up in 2013. Columns a) and b) Reference volume
and Test volume, c) Reference aligned to test after six affine transformations, Columns
d) and e) change volume via differencing before and after the co-registration step
respectively done by our algorithm, Column f) change volume via the extension of
EigenBlockCD-2 for 3D volumes.

where, r
[1]
a,c,h is the block r centered at voxel (a, c, h) when the background of the

block of interest in the test image is learned from the training blocks in the reference

image, and similarly, r
[2]
a,c,h is the block r centered at voxel (a, c, h) when the background

of the block of interest in the reference image is learned from the training blocks in the

test image. The change volume between the baseline and its follow-up is:

Vcd =
1

2m

(
N3−δ∑
k=δ

N2−δ∑
j=δ

N1−δ∑
i=δ

r[1](i, j, k) + r[2](i, j, k)

)
(7.1.2.7)

The detection step results of our simulations with real MR volumes are displayed

in Figs. 7.1.5, 7.1.6, 7.1.7, 7.1.8 and 7.1.9 Columns d) to f). We compared the change

volume obtained by the extension of the EigenBlockCD-2 algorithm for 3D volumes

with one obtained by simple differencing.

First, simple differencing is performed between the original reference and test vol-

umes before the co-registration step. These results for 20 slices are shown in Figs. 7.1.5,
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Figure 7.1.9: Rows 1 - 4 represent real T2-weighted MR slices of a brain of the reference
volume taken in 2011 and its follow-up in 2013. Columns a) and b) Reference volume
and Test volume, c) Reference aligned to test after six affine transformations, Columns
d) and e) change volume via differencing before and after the co-registration step
respectively done by our algorithm, Column f) change volume via the extension of
EigenBlockCD-2 for 3D volumes.

7.1.6, 7.1.7, 7.1.8 and 7.1.9 Columns d).

Second, simple differencing is performed after the co-registration step by the ex-

tension of the EigenBlockCD-2 co-registration step algorithm, i.e., after the initial

alignment of the two volumes. These results are shown in Figs. 7.1.5, 7.1.6, 7.1.7, 7.1.8

and 7.1.9 Columns f).

The results of the extension of the EigenBlockCD-2 algorithm for 3D volumes are

shown in Figs. 7.1.5, 7.1.6, 7.1.7, 7.1.8 and 7.1.9 Columns f). As confirmed by the radi-

ologist, these results show that the extended version of our EigenBlockCD-2 algorithm

for 3D volumes detect clinical and significant changes while rejecting changes due to

patient position or other acquisition related artifacts which are clearly visible by the

simple differencing method as shown in Columns d) and f).
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7.2 Summary

In this section we presented the solution to the change detection problem for 3D volu-

metric data. The EigenBlockCD-2 is extended to process 3D MR images as obtained

from MRI machine software. Interpolation is used to generate extra slices between ex-

isting slices to include details and help co-registration process. We describe in details

both the co-registration and the change detection steps.

The co-registration step is formulated as a minimization problem where the cost

function is defined as the L2 norm of the difference between one of the original volumes

and the other volume transformed by an affine transformation. Simulations with real

3D volumetric data show that co-registration step performs an excellent alignment of

the reference and the test MR volumes.

The change detection problem is defined as a 2D optimization problem. The sim-

ulations with real 3D MR images demonstrate that the EgienBlockCD-2 algorithm

detects the significant changes between consecutive MR scans while rejecting changes

due to patient position and noise.
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Chapter 8

Subspace Learning - Structure

Principle Components Analysis

8.1 Motivation

As discussed in Chapters 3, 4, 5 and 7, the dictionaries used in the AEDL, the

EigenBlockCD and the EigenBlockCD-2 algorithms are formed by stacking training

blocks from the inquiry block as shown in Figs. 8.1.2 and 8.1.1. For our application

these dictionaries are often very large. For example, Fig 8.1.1 shows a dictionary Φ for

a block of interest in 2D of size 361× 1369. Fig 8.1.2 illustrates the construction of the

dictionary Φ for a block of interest in 3D of size of which is 6859× 50653.

Dictionary atoms are highly correlated vectors in 361 dimensional space for the 2D

case and 6859 dimensional space for the 3D case as spatially they are highly overlapped.

We use principal component analysis (PCA) to find a more effective orthonormal basis

to re-express the data set instead of the standard coordinate basis. Such a basis is a

linear combination of the original basis and best represents the data set. In our change

detection algorithms we use PCA for dimensionality reduction, feature extraction and

recognition, background modeling, computational efficiency, sparse representation of

the data (AEDL) and de-correlating highly correlated data.

Although PCA achieves dimensionality reduction and feature extraction, its results

can be highly influenced by outliers [79]. To visualize this, let us consider a toy example.
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Figure 8.1.1: a) The reference image is a 2D real T2-weighted MR image, b) The test
image is its follow up scan containing the magnified block of interest of size 19× 19, c)
The enlarged corresponding inquiry block B of size 37× 37, d) The dictionary of size
361 × 1369 formed by stacking training blocks from inquiry blocks, e) The dictionary
with 1369 training blocks of size 19× 19.

Let X be a 2 by 10 data matrix, i.e., 10 observations in 2-dimensional space:

X =

−2 0.5 1 1.5 2 4 5 6 7 7.5

−8 3 9 5.5 7 15 25 30 33 40


The mean and the standard deviation of X are:

µx =

 3.25

15.95

 , σx =

 3.13

15.38


The data matrix X is first centered by subtracting the mean and scaling by standard

deviation. The centered and scaled data matrix is:

X =

−1.678 −0.879 −0.719 −0.559 −0.399 0.240 0.559 0.879 1.198 1.358

−1.558 −0.842 −0.452 −0.680 −0.582 −0.062 0.589 0.914 1.109 1.564



Fig. 8.1.3 shows a strong positive correlation among the data points. This means

that the data can be expressed without much loss in one dimension. The matrix U of
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Figure 8.1.2: An example of an 3-dimensional volume of the brain. A block of interest
b from the test volume is stacked as a column vector y. Overlapping training blocks aj
are extracted from inquiry block B in the reference volume and are stacked as column
vectors xj of the dictionary Φ.

Figure 8.1.3: a) original data, b) centered data, c) centered and scaled data

eigenvectors and its corresponding matrix Λ of the eigenvalues of the data matrix X

are:

U =

 0.7071 −0.7071

0.7071 0.7071

 and Λ =

 1.9845 0

0 0.0155



The first and the second columns of U are the first and the second principal com-

ponents. Fig. 8.1.4 a) shows that all the data points either lie on the first principal

component (PC1) or are very close to it. The angle that the PC1 forms with the first
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axis is: θ = arctan 0.7071
0.7071

= 45o. We project the data onto PC1 and compute the L2

Figure 8.1.4: a) Centered and scaled data with the first and the second principal
components. b) The L2 error of the projections of each data point to the x-axis, the
y-axis, the xy-axis and the first principal component PC1.

errors of the projections between each data point and the x-axis, the y-axis, the xy-

axis and the PC1. Fig. 8.1.4 b) shows that there is not much information lost among

the data if these data are examined in one dimensional space represented by the first

principal component instead of examining them in the two dimensional original space.

Let us now add an outlier to the data, i.e., a point not consistent with the rest of

the data as shown in Fig. 8.1.5. The matrix of eigenvectors Unew and its corresponding

Figure 8.1.5: Centered and scaled data in green. PC1 is the original first principal
component and PC1 new is the new first principal component in the presence of outliers.
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matrix of the eigenvalues Λnew for this perturbed data set are:

Unew =

−0.4404 −0.8978

−0.8978 0.4404

 Λnew =

 2.2377 0

0 1.0123


The angle that the first principal component PC1new forms with the first axis is:

θ = arctan −0.8978
−0.4404

= 63.8687o. Just one outlier has rotated the old principal component

basis by 19o. But the trend of the data is still along the first original principal com-

ponent as Fig. 8.1.5 shows, that is, the data could be expressed more precisely by the

original PC1 then by the PC1new. Our goal is to make these outliers less ”influential”

from the rest of the data. The most commonly used approaches to handle the outliers

tend to robustify the covariance matrix. This is done by replacing the original covari-

ance matrix with a robust estimator of the covariance matrix [79, 93]. An important

step of these approaches is finding weights that could make use of some information

that is application specific. A weighted PCA would then use a robust covariance ma-

trix that gives higher weights to data that are considered to be more important.

In our solution to change detection problem, from all the dictionary training blocks,

i.e., 1369 blocks in the 2D example shown in Fig. 8.1.1), only a subset of them are very

close to the block of interest. We want to discover the subset containing the most

”influential” blocks from all the dictionary training blocks. This can be done by giving

more weights to the atoms which have similar structure to the block of interest. The

question is how to define and compute the weights for the dictionary atoms such that it

would increase the efficiency of our algorithms to approximate the background between

the test and the reference blocks in a subspace created by eigenvectors of the weighted

covariance matrix Ωw, compared to the performance of the same algorithms in the

subspace created by the eigenvectors of the original covariance matrix Ω = XXT .

Let us first name and list different PCA that we will discuss in Chapter 8:

• PCA or the L2-PCA - Represent the standard principal component analysis which

uses the Frobenious (Euclidean) norm.

• The L2,1-PCA or the R1-PCA [81] - Represent the L2,1 principal component

analysis which uses the L2,1 norm.
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• The S2-PCA -Represent the structure principal component analysis that we pro-

pose in the thesis and that uses weights induced from Structure Similarity Index

(SSIM) and the Frobenious (Euclidean) norm. Sometimes we refer to S2-PCA as

just S-PCA or L2-S-PCA

• S2,1-PCA or L2,1-S-PCA -The L2,1 structure principal component analysis that

we propose in the thesis that uses weights induced from Structure Similarity and

the L2,1 norm.

The rest of this chapter is organized as follows: In Sections 8.2.1 and 8.3.1 we review

the principal component analysis using two different metrics, the L2-PCA and the

L2,1-PCA. In Sections 8.2.2 and 8.3.2 we introduce our structure principal component

analysis, the S2-PCA and the S2,1-PCA, followed by theoretical analysis and numerical

implementation of the solution to the structure principal component analysis problem

and their applications to the change detection problem. In Section 8.4 we present

numerical comparisons among different PCA analysis.

8.2 S2-PCA With SSIM Weights

PCA is the oldest and most well known multivariate analysis technique [79]. PCA takes

high-dimensional data and uses the dependencies between the variables to represent

them in a more tractable, lower-dimensional form without losing too much information.

It is also known as the Karhunen- Loeve transformation, the Hotelling transformation,

the method of empirical orthogonal functions and singular value decomposition.

The main purpose of principal component analysis is to reduce the dimensionality

of a data set described by a large number of interrelated variables. The dimensionality

reduction should retain most of the variation present in the data. The reduction is

achieved by transforming the original set of variables to a new set of variables, called

principal components. Principal components are uncorrelated ordered set of variables

where the first few retain most of the variation present in all the observations of the

original variables.
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8.2.1 The Existence and Uniqueness of L2 - PCA

Computation of the principal components reduces to the solution of an eigenvalue-

eigenvector problem for a positive-semidefinite symmetric matrix [79]. Classical PCA

constructs the optimal rank k subspace approximation to training data in the least

square sense.

Let Xm×n = [x1,x2, ...xj, ...xn] be the data matrix, where xj ∈ Rm×1 are observa-

tions in m dimensional subspace, for j = 1, ..., n. PCA seeks to find eigenvectors of the

covariance matrix Ω which is computed as:

Ω =
1

n− 1
XXT =

1

n− 1

n∑
j=1

xjx
T
j (8.2.1.1)

The element (i, j) of the covariance matrix represents the covariance between the

ith and jth elements of X when i 6= j and the variance of the jth element of X when

i = j. Hence, the covariance matrix Ω is symmetric and positive definite.

PCA finds a set of orthonormal basis vectors U = [u1,u2, ...,uk] with ui ∈ Rm×1, by

solving a constraint optimization problem: 1) minimizing the error between the original

data X and the reconstructed data X̂ from their projections into the eigenvectors and

2) maximizing the variance among the projected data.

Method 1 - Minimizing the Error Function

The PCA constraint minimization problem is:

U∗ = arg min
UT U=I

||X− X̂||p (8.2.1.2)

where |X−X̂| represents the total approximation error which will be explained in more

details later. The standard PCA uses the L2-norm, the Frobenious norm, defined as:

||X||F =
( n∑
j=1

m∑
i=1

x2
ij

) 1
2

(8.2.1.3)

Then Eq. (8.2.1.2) can be written as:

U∗ = arg min
UT U=I

||X− X̂||2 (8.2.1.4)
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More specifically, let zj = UTxj be the projection of xj onto U as illustrated in

Fig. 8.2.1, x̂j = UUTxj is the reconstructed xj and ej = ||xj − x̂j||2 is the error of

the approximation of xj with its reconstructed x̂j. Let fj(U) = ||ej||22 be the error

Figure 8.2.1: An illustration of the error ej between xj and its reconstructed vector x̂j
in a two-dimensional space. zj is the projection of xj onto subspace U.

function of the projection vector xj onto subspace U created by the eigenvectors of the

covariance matrix Ω, i.e.,

fj(U) = ||xj − x̂j||22

= ||xj −UUTxj||22

The square of the L2 norm of the total error as a function of U is:

F (U) = ||X− X̂||2

=
∑n

j=1 fj(U)

=
∑n

j=1 ||xj −UUTxj||22

The constraint minimization problem in Eq. (8.2.1.4) can be written as:

U∗ = arg min
UT U=I

||X−UUTX||22 (8.2.1.5)

where X is the m× n data matrix.

Eq. (8.2.1.5) can be written as:

U∗ = arg min
UT U=I

n∑
j=1

||xj −UUTxj||22 (8.2.1.6)

162



The global minimum of the standard PCA is provided by the SVD solution [94]. The

solution is also the solution of the maximization problem that searches for a projection

matrix U∗ which maximizes the variances of UTX among the projected data.

U∗ = arg max
UT U=I

(
V ar(UTX)

)
= arg max

UT U=I

(
UTΩU

)
(8.2.1.7)

where V ar(UTX) is the variance of UTX and Ω = XXT is the covariance matrix.

Both methods, minimizing the total error or maximizing the variances among the

projected data, require knowledge of convex optimization. For this reason we inves-

tigate the convexity of the PCA optimization problem, the convexity of the problem

domain, the objective function and the convexity of the constraints [103].

1. The convexity of the PCA optimization problem domain.

Definition 8.2.1.1- Convex Sets: A set S is convex if and only if any linear inter-

polation between two points from S is in S. That is:

(
S is convex

)
⇐⇒

(
(∀x1, x2 ∈ S and λ ∈ (0, 1)) =⇒ λx1 +(1−λ)x2 ∈ S

)
(8.2.1.8)

Fig. 8.2.2 illustrates an example of convex and non convex sets.

Figure 8.2.2: a) An example of a convex set and b) an example of a non convex set

Empty sets are examples of convex sets. Interesting and very useful convex sets are

those formed by a given norm, i.e., the set {x ∈ Rn×1 | ||x|| ≤ a} is convex for any

a ∈ R. The proof is simple and derives directly from the triangle inequality property
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of a norm [103]. If x1, x2 ∈ Rn×1, λ ∈ (0, 1), and a ∈ R such that:

||x1|| ≤ a and ||x2|| ≤ a

then, from the triangle inequality of a norm, for any interpolated point λx1 +(1−λ)x2

between x1 and x2, we have:

||λx1 + (1− λ)x2|| ≤ ||λx1||+ ||(1− λ)x2|| = λ||x1||+ (1− λ)||x2||

It’s easy to derive that the intersection of convex sets is also a convex set. If Sk is

a convex sets for every k, then S =
⋂
k Sk is convex. If x1,x2 ∈ S and λ ∈ (0, 1), then

∀k x1,x2 ∈ Sk from the fact that each Sk is convex, we have:

(x1,x2 ∈ Sk,∀k) =⇒ (λx1 + (1− λ)x2 ∈ Sk, ∀k) =⇒ (λx1 + (1− λ)x2 ∈
⋂
k

Sk = S

The same result does not hold for the sum of convex sets.

In the PCA optimization problem we aim to find an eigenvector matrix as a more

efficient basis to re-express the data set. We define the domain of our objective function

F (U) as a set of matrices which leads us to investigate the convexity of such a set.

Definition 8.2.1.2- Let dom(F ) =M = {Mm×r|M is a rectangular m× r matrix}

Property: The set M of all m× r matrices is convex.

Proof : Let M1 and M2 be two m × r matrices ∈ M and λ ∈ (0, 1). It is clear

that any linear interpolation between two m × r matrices is a m × r matrix, that is,

λM1 + (1− λ)M2 ∈M �.

Hence, in the PCA optimization problem the domain is convex.

2. The convexity of the objective function.

Definition 8.2.1.3 - Convex Functions: A function f : Rn → R
⋃
{+∞} is convex

at x̃ ∈ S, where S ⊆ Rn is a convex set, if and only if for any x ∈ S and any λ ∈ (0, 1)

such that λx̃ + (1− λ)x ∈ S, the following inequality holds:

f(λx̃ + (1− λ)x) ≤ λf(x̃) + (1− λ)f(x) (8.2.1.9)
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A function is convex on a set S if it is convex at every point in S. In other words,

a convex function is such that a linear interpolation between any two points never is

lower than the function itself as illustrated in Fig. 8.2.3 a).

Figure 8.2.3: a) An example of a convex function and b) an example of a non-convex
(concave) function

Definition 8.2.1.4 - Strictly Convex Functions: A function f : Rn → R
⋃
{+∞}

is strictly convex at x̃ ∈ S, where S ⊆ Rn is a convex set, if and only if for any x ∈ S

and any λ ∈ (0, 1) such that λx̃ + (1− λ)x ∈ S the following inequality holds:

f(λx̃ + (1− λ)x) < λf(x̃) + (1− λ)f(x) (8.2.1.10)

Definition 8.2.1.5 - Concave and Strictly Concave Functions: A function f :

Rn → R
⋃
{+∞} is concave at x̃ ∈ S, where S ⊆ Rn is a convex set, if −f is convex.

That is, for any x ∈ S and any λ ∈ (0, 1) such that λx̃ + (1 − λ)x ∈ S we have the

following inequality:

f(λx̃ + (1− λ)x) ≥ λf(x̃) + (1− λ)f(x) (8.2.1.11)

Similarly, a function is concave on a set S if it is concave at every point in S.

This means that a concave function is such that a linear interpolation between any

two points is never greater than the function itself as illustrated in Fig. 8.2.3 b). A

function is strictly concave only if the strict inequality holds.

Convexity of Composite Functions: Let S ⊆ Rn be a convex set and P ⊆ R. Let
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g : S → R be a convex function on S and f : P → R be a convex non-decreasing

function, then the composite f(g) is convex on x ∈ Rn such that g(x) ∈ P . Proof can

be found in [103]. Similar property holds for concavity:

Concavity of Composite Functions: [103]Let S ⊆ Rn, P ⊆ R, g : S → R a concave

function on the convex set S and f : P → R a concave non-decreasing function, then

the composite f(g) is concave on x ∈ Rn|g(x) ∈ P .

Convexity of Linear Combinations of Convex Functions: [103] Let S ⊆ Rn,

fk :∈ Rn ∪ {+∞}, k ∈ K, with K finite, be a collection of convex functions at x̃ ∈ S.

Then the linear combination f(x) of fk with αk ≥ 0 defined as below is convex:

f(x) =
∑
k∈K

αkfk(x)

Similar results hold for a collection of concave function which is a concave function.

The theorem below gives the necessary and sufficient conditions for a function in C2

to be convex [103].

Theorem 8.2.1.1: Convexity Characterization in C2

Let f be in C2 on an open, convex set S ⊆ Rn.

a) f is convex on S ⇐⇒ ∇2f(x) is positive semidefinite ∀x ∈ S

b) ∇2f(x) is positive definite ∀x ∈ S =⇒ that f is strictly convex function on S.

The proof of the Theorem 8.2.1.1 can be found in [103].

In the PCA minimization problem in Eq. (8.2.1.5), the error function f(U), where

f(U) = ||X − UUTX||22, is a convex function of UUT as a quadratic function with

positive leading coefficients. This means that if there is a feasible solution UUT to the

PCA minimization problem then the solution is global and unique.

Let us investigate the convexity of the error function fj(U) as a function of U, where

fj(U) = ||xj−UUTxj||22 is the error function corresponding to the vector xj. The error

function fj can be written as fj = h[g(U)], where h = g2 and g(U) = (xj −UUTxj).
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We check the sign of ∇2fj(U).

∇2fj(U) = g′(U)T · ∇2fj[g(U)] · g′(U) +∇fj[g(U)] · g′′(U)

= (−2 ·UTxj)
T · (2) · (−2 ·UTxj) + 2 · (xj −UUTX)T · (−2xj)

= 8 · xTj UUTxj − 4 · xTj xj + 4xTj UUTxj

= 12 · xTj UUTxj − 4 · xTj xj

= 12 · ||UTxj||22 − 4 · ||xj||22

(8.2.1.12)

This means that ∇2fj(U) changes signs, that is, ∇2fj(U) is positive definite if the

length of the projected vector is greater than 1√
3

of the length of the original vector

itself, that is ||UTxj||22 > 1
3
||xj||22. Similarly, ∇2f(U) = 12 · XTUUTX − 4 · XTX =

12 · ||UTX||22− 4 · ||X||22, where f(U) = ||X−UUTX||22 is the total error function, i.e.,

f(U) =
∑n

j=1 fj(U). Although the objective function is neither convex nor concave,

there are subsets of the function domain for which the objective function is strictly

convex and also there are subsets for which the objective function is concave on them.

Before describing the conditions for the constraints let us define the convex opti-

mization problem:

Definition 8.2.1.1: Convex Optimization Problem The standard form of convex

optimization problem is:

minimizef(x)

subject to:gi(x) ≤ bi, i ∈ I

hk(x) = dk, k ∈ E

where I and E are inequality and equality indexes respectively [103].

The domain of the objective function must be convex, the objective function f must

be convex and the equality constraints must be affine. It can be easily seen that the

equality constraints in the PCA optimization problem are quadratic, i.e., UTU = I.

To eliminate the constraint a new objective function, the Lagrangian, is introduced.

Theorem 8.2.1.2 - Existence of the Solutions to the PCA Problem [79]: PCA

has a solution to Eq. (8.2.1.6) and can be obtained by the principal components of the

167



covariance matrix Ω.

Using the Karush Kuhn Tucker (KKT) necessary condition of the Lagrangian, it can

be easily proven that columns of U are orthonormal eigenvectors and the Lagrangian

multiplier Λ is the eigenvalue matrix of the covariance matrix Ω. The complete proof

can be found in [79].

Until now we know from the necessary condition that there is a local minimum to

the PCA minimization problem. If U∗ is a stationary point for the objective function

f(U) as a function of U, then U∗U∗T is a local minimum of the objective function f

as a function of UUT . As we showed previously, function f(UUT ) is strictly convex.

From the fundamental theorem of global optimality, the local minimum is global and

unique if the objective function is strictly convex [103]. This means that f(U∗U∗T )

is global minimum and U∗U∗T is a unique global minimum point. Since the global

minimum value of f is unique, then f(U∗) is global minimum and the point U∗ is

global minimum point which is also unique up to an orthogonal transformation.

Moreover, if the domain of the objective function is restricted to satisfy the inequal-

ity ||UTxj||22 > 1
3
||xj||22 for all atoms xj then the objective function is strictly convex

leading to a global and unique minimum of the objective function on the restricted

domain.

Method 2 - Maximizing the Variance

The PCA maximization problem Eq.(8.2.1.7) maximizes the variances of UTX under

the same constraints UTU = I. The constraint optimization problem is given by:

U∗ = arg max
UT U=I

(
V ar(UTX)

)
= arg max

UT U=I

(
UTΩU

)
(8.2.1.13)

Where V ar(UTX) is the variance of UTX and Ω = XXT is the covariance matrix.

Theorem 8.2.1.3 The optimal solution to Eq.(8.2.1.13) are given by the principal

components of the covariance matrix Ω [79].

The solution obtained by minimizing the total error in Theorem 8.2.1.2 and the one

obtained by maximizing the variance in Theorem 8.2.1.3 are the same up to an or-

thonormal transformation. Let U1 and U2 be two different solutions to the PCA

minimization problem, where U1 and U2 are the m × r eigenvector matrices of the
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covariance matrix Ω. From the equality constraints we have:

UT
1 U1 = Ir×r

UT
2 U2 = Ir×r

From UT
1 U1 = UT

2 U2, it derived that the solution to the PCA optimization problem

is unique up to an orthogonal transformation.

8.2.2 The Existence and Uniqueness of S2-PCA With SSIM

Weights

In most multivariate data analysis methods, including PCA, it is usually assumed

that each data point (observations) contributes equally to the process. However, this

assumption is not true in every application. Joliffe in [79] classifies some observations

as outliers or influential, where the latter is consisted of outliers whose effect is large

on the results of multivariate analysis. Several approaches such as those in [80, 81,

83, 84, 85, 87, 88, 89, 90, 93, 104] have been proposed to reduce the effects of such

observations and find a more robust solution. Using weights with either observations

or variables or both have been a common method in least squares approximation [79].

The effect of differing weights for observations in a PCA problem is examined in [92].

We introduce our newly developed Structure Principles Components Analysis (S2-

PCA) in which we weigh the observations, i.e., the dictionary atoms, by Structure

Similarity measure. More specifically, let Φ be the dictionary created by n training

blocks from the inquiry block in m dimensional space:

Xm×n = Φm×n = [x1,x2, ...xj, ...xn]
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where xj is the jth atom of the dictionary formed by the jth training block.

xj =



x1j

x2j

...

xmj


m×1

j = 1, 2, ...n

Columns of matrix X represent n-samples (observations) and the m-rows represent

the m-dimensions (variables). We introduce an n × n diagonal weight matrix W for

the observations, i.e., the training blocks. Elements on the main diagonal of W are

weights wjj for j = 1, 2, ...n.

The S2-PCA aims to find eigenvectors of the weighted covariance matrix as the most

efficient basis to project the dictionary data matrix X. We want to give more weight

to the training blocks which are similar to the block of interest and less weight to the

ones that are less similar to it. Similarity between two images can be measured using

the Structural SIMilarity index (SSIM) defined in [45]. It is a similarity measure of

the test image being compared to the reference image.

If xj is the jth column vector in the dictionary representing the aj training block

and y is the column vector representing the block of interest b, then we denote by Sj

the SSIM index between the training block aj and the block of interest b.

SSIM index has three components; 1) the luminance comparison l(xj,y), 2) the

contrast comparison c(xj,y) and 3) the structure comparison s(xj,y), i.e.,

l(xj,y) =
2µxjµy + c1

µ2
xj

+ µ2
y + c1

, c(xj,y) =
2σxjσy + c2

σ2
xj

+ σ2
y + c2

, s(xj,y) =
σxj ,y + c3

σxjσy + c3

(8.2.2.1)

where µxj , µy, σxj and σy, are the mean and the standard deviation of xj and y

blocks respectively. Also, c1, c2, k1, k2 and L are constants: for 8 bits images, L =

2(# of bits per pixel) − 1 = 255, c1 = (k1L)2, c2 = (k2L)2, k1 = 0.01, and k2 = 0.03.

Then the formula for SSIM index is:

SSIM(xj,y) = [(l(xj,y)]α × [c(xj,y)]β × [s(xj,y)]γ (8.2.2.2)
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We ignore the luminance comparison since inhomogeneity changes introduced by

magnetic field bias is not related to clinical changes. By choosing c3 = c2
2

and α = β =

γ = 1 the Eq.(8.2.2.2) for SSIM index is:

SSIM(xj,y) = [c(xj,y)]× [s(xj,y)]

=
( 2σxjσy + c2

σ2
xj

+ σ2
y + c2

)( σxj ,y + c3

σxjσy + c3

)

=
( 2σxjσy + c2

σ2
xj

+ σ2
y + c2

) 2σxj ,y + c2

2σxjσy + c2

)

=
( 2σxj ,y + c2

σ2
xj

+ σ2
y + c2

)

Figure 8.2.4: Top row from left to right: Reference image with the inquiry block, the
dictionary and test image with the block of interest magnified. Bottom row from left to
right: the block of interest from test image, training blocks with different SSIM index
and the scatter plot of SSIM indexes of all the training blocks from the dictionary in
ascending order.

We use the SSIM indexes as weights on the main diagonal of the weight matrix W,
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i.e., Sj = wjj

Sj = SSIM(xj,y) =
( 2σxj ,y + c2

σ2
xj

+ σ2
y + c2

)
(8.2.2.3)

The weight matrix W is:

Wn×n =



S1 0 · · · 0

0 S2 · · · 0

...
...

. . .
...

0 0 · · · Sn


(8.2.2.4)

where Sj ∈ [−1, 1] for j = 1, 2, ...n.

The higher the SSIM Sj index is between the training blocks and the block of inter-

est, the more “alike” the two blocks are, that is, the more similar structure they have

as shown in Fig.8.2.4. Negative values of the SSIM index correspond to the negative

values of the structure comparison index c(xj,y). This is because the luminance and

the contrasts indexes have always non negative values. Negative values of the structure

comparison index between xj and y correspond to negative values of correlation coeffi-

cients, which indicates that an increase in the intensity values of the block of interest y

predicts a decrease in the intensity values in the training block xj. For this reason, the

negative values of Sj’s are set to zero because they are unlikely to be from the same

anatomic location as the block of interest.

Sj =

Sj if Sj ≥ 0

0 otherwise

The m×m weighted covariance matrix Ωw is:

Ωw = XWXT =
n∑
j=1

Sjxjx
T
j (8.2.2.5)

where xj is the jth atom of the weighted and centered matrix X.

The weighted covariance matrix Ωw satisfies the following properties:

Property 8.2.2.1: Ωw is symmetric.
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Proof : Need to prove that (Ωw)T = Ωw.

(Ωw)T = (XWXT )T

= (XT )TWTXT

= XWXT

= Ωw �

Property 8.2.2.2: Ωw is positive definite.

Proof : Need to prove that zTΩwz > 0, for vector z 6= 0, z ∈ Rm.

Write W = (
√

W)T (
√

W) = wTw, then;

zTΩwz = zT (XWXT )z

= zTXwTwXTz

= (wXTz)T (wXTz)

= ||wXTz||2 ≥ 0

||wXTz||2 ≥ 0 because ||wXTz|| is the length of the wXTz vector, specifically the L2

norm or the Euclidean norm. In our application, the training blocks and the block of

interest are taken from two images of the same anatomical structure at two consecutive

times. This means that W is very unlikely to be zero. Therefore, from W 6= 0 and

z 6= 0, it derives that ||wXTz||2 6= 0, or that zTΩwz > 0 for any non zero vector z ∈ Rm

�.

Property 8.2.2.3: Ωw has positive and real eigenvalues if W 6= 0.

We first prove that Ωw has real eigenvalues.

Proof : Let λ = a+ ib be a complex eigenvalue of Ωw, i.e.,

Ωwx = λx (8.2.2.6)

then λ = a− ib is the complex conjugate eigenvalue of Ωw, i.e.,

Ωwx = λx (8.2.2.7)
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We take the dot product of Eq.(8.2.2.6) with x

xTΩwx = xTλx (8.2.2.8)

We take the transpose of both sides in Eq.(8.2.2.7) we have:

(Ωwx)T = (λx)T

xTΩT
w = xTλ

T

xTΩw = xTλ
T

By taking the dot product of last equation with x we have:

xTΩwx = xTλx (8.2.2.9)

From Eq.(8.2.2.8) and Eq.(8.2.2.9), we get xTλx = xTλx or xTxλ = xTxλ, with

xTx being the length of vector x. It derives that the two eigenvalues are equal, that

is, a+ ib = a− ib leading to b = 0. �

Now we prove that Ωw has positive eigenvalues.

Proof : If λ and x are an eigenvalue and an eigenvector of Ωw respectively, then we

have:

Ωwx = λx

By taking the dot product of both sides with x we have:

xTΩwx = xTλx

From property 8.2.2.2, Ωw is positive definite, i.e., xTΩwx > 0 for any non zero vector

x ∈ Rm. Since xTλx > 0 and xTx = ||x||2 then λ > 0. �

Property 8.2.2.4: Ωw has orthogonal eigenvectors.

Proof : Need to prove that eigenvectors are orthogonal when they correspond to dif-

ferent λ’s. Let λi and λj be two different eigenvalues of Ωw. Let xi and xj the two
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corresponding eigenvectors in Rm. Then, λi and xi satisfy the equation below

Ωwxi = λixi (8.2.2.10)

Take the dot products with xj

(Ωwxi)
Txj = (λixi)

Txj

xTi Ωwxj = xTi λ1xj

similarly, λj and xj satisfy the equation:

Ωwxj = λjxj (8.2.2.11)

Take the dot products with xi

xTi (Ωwxj) = xTi (λjxj)

xTi Ωwxj = xTi λjxj

One can easily observe that xTi λixj = xTi λjxj and since λi 6= λj, then xTi xj = 0,

which means that xi ⊥ xj proving Ωw has orthogonal eigenvectors. �

Solution to structure principal component analysis, S2-PCA

S2- PCA finds a set of k ≤ m orthonormal basis vectors, U = [u1,u2, ...,uk], ui ∈ Rm,

in two ways; 1) by minimizing the error function and 2) by maximizing the variance

of the projected data into the eigenspace. Let us again consider the data matrix

Xm×n = [x1,x2, ...xj, ...xn]. The covariance matrix is:

Ωw = XWXT =
n∑
j=1

Sjxjx
T
j

where xj is the jth atom of X corresponding to the jth training block of the dictionary.

Observations are first weighed by
√

W and then the weighted observations of the

dictionary are centered by subtracting the mean-block x′µ:

X′ = X
√

W (8.2.2.12)
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X′c = X′ −X′µ (8.2.2.13)

where

X′µ = [x′µ,x
′
µ, ..,x

′
µ]

x′µ =



1
n

∑n
j=1 x′1j

1
n

∑n
j=1 x′2j
...

1
n

∑n
j=1 x′mj


, for j = 1, 2, ...n

For simplicity and without any loss of generality we denote X′c as X. Then the

expression for the weighted covariance matrix is given as:

Ωw = XXT =
n∑
j=1

xjx
T
j

As in Section 8.2.1 the error of the approximation of xj with its reconstructed x̂j

represent the loss function and is defined by fj(U) = ||xj− x̂j||p as shown in Fig. 8.2.1,

where x̂j = UUTxj.

In our S2-PCA subspace learning, we replace Lp with L2 norm. The loss function of

the projection vector xj onto subspace U which is created by the eigenvectors of the

weighted covariance matrix Ωw is defined as:

fj(U) = ||xj − x̂j||22

= ||xj −UUTxj||22

= (xj −UUTxj)
T (xj −UUTxj)

= (xTj − xTj UUT )(xj −UUTxj)

= xTj xj − xTj UUTxj − xTj UUTxj + xTj UUTUUTxj

= xTj xj − xTj UUTxj − xTj UUTxj + xTj U(UTU)UTxj

= xTj xj − xTj UUTxj − xTj UUTxj + xTj UUTxj

= xTj xj − xTj UUTxj

= (xTj xj − xTj UUTxj)
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In the above calculation we replaced UTU = I. The square of the L2 norm of the total

error as a function of U is then:

F (U) =
∑n

j=1 fj(U)

=
∑n

j=1(xTj xj − xTj UUTxj)

Method 1 - Minimizing the error

We solve the S2-PCA problem by minimizing F (U) under UTU = I constraint, i.e.,

by solving the constraint minimization problem

min
UT U=I

F (U) = min
UT U=I

∑n
j=1 ||xj − x̂j||22

= min
UT U=I

∑n
j=1(xTj xj − xTj UUTxj)

The constraint optimization problem is written as:

U∗ = arg min
UT U=I

n∑
j=1

(xTj xj − xTj UUTxj) (8.2.2.14)

Theorem 8.2.2.1: S2-PCA has a solution to Eq.(8.2.2.14) given by the eigenvectors

of the weighted covariance matrix Ωw.

Proof: We define a new objective function, called the Lagrangian, to eliminate the

constraint and introduce new unknowns.

Let L(U,Λ) be the Lagrangian given by: L(U,Λ) = F (U) + Λ(UTU− I)), where

Λ the Lagrangian multiplier. The Lagrangian for this problem can be expressed as:

L(U,Λ) =
n∑
j=1

(xTj xj − xTj UUTxj) + TrΛ(UTU− I)

We need to find a matrix U∗ for which perturbations that satisfy the constraints

do not change the objective function F (U). Instead we find the stationary points

of Lagrangian L with respect to both U and Λ. The extrema of the unconstrained

objective L are the extrema of the original constrained problem. The extrema to L

occurs when:

∇F (U) + Λ∇(UTU− I)) = 0 (8.2.2.15)
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This can be expressed as:

∂L
∂U

= 0 and
∂L
∂Λ

= 0 (8.2.2.16)

Under the KKT necessary conditions the partial derivatives must equal zero. Find-

ing partial derivatives with respect to U in the first expression of Eq.(8.2.2.16) and

considering that Ωw =
∑n

j=1 xjx
T
j we have:

∂L
∂U

= 0

−2
∑n

j=1 xjx
T
j U + 2UΛ = 0

−2ΩwU + 2UΛ = 0

ΩwU = UΛ

UTΩwU = Λ

It derives from the second expression of Eq.(8.2.2.16) that the constraints are sat-

isfied by finding the partial derivatives with respect to Λ:

UTU− I = 0

UTU = I

This shows that columns of U∗ are orthonormal eigenvectors and the Lagrangian

multiplier Λ is the eigenvalue matrix of the covariance matrix Ωw. �

Theorem 8.2.2.2: S2-PCA solution is rotationally invariant.

Proof : This derives directly from the the fact that L2 norm of a vector is rotational in-

variant. If R is a rotation matrix, then we need to show that ||R(xj)−R(UUTxj)||22 =

||xj −UUTxj||22.

From orthogonality of R transform it derives that RTR = I. That is:

||xj −UUTxj||22 = ||xj −UUTxj||22

= ||RTR(xj)−RTR(UUTxj)||22

= ||RT
(
R(xj)−R(UUTxj)

)
||22

= ||R(xj)−R(UUTxj)||22 �
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Method 2 - Maximizing the Variance

The S2-PCA problem can also be formulated as a maximization problem, where the

variances of UTX are maximized, under the same constraints UTU = I. The constraint

optimization problem is:

U∗ = arg max
UT U=I

(
V ar(UTX)

)
= arg max

UT U=I

(
UTΩwU

)
(8.2.2.17)

Where V ar(UTX) is the variance of UTX and Ωw is the weighted covariance matrix.

Theorem 8.2.2.3 The optimal solution to Eq. (8.2.2.17) is given by the eigenvectors

of the weighted covariance matrix Ωw.

Note: The solution obtained by maximizing the variances of UTX is the same as the

one obtained by minimizing the total error showed in Theorem 8.2.2.1.

Proof: As in the Theorem 8.2.2.1, we define the Lagrangian as a new objective function

to eliminate the constraint. We denote G(U) as:

G(U) = UTΩwU = UTXXTU

Let L(U,Λ) be the Lagrangian and Λ is the Lagrangian multiplier. The expression

for L(U,Λ) can be written as:

L(U,Λ) = G(U)− ΛTr(U
TU− I))

Where Tr is the trace of a matrix. By replacing G(U) in the above equation we have:

L(U,Λ) = UTΩwU− TrΛ(UTU− I) (8.2.2.18)

The extrema of the unconstrained objective L are the extrema of the original con-

strained problem. Under the necessary condition, the optimal solution of L satisfies:

∇G(U)− Λ∇(UTU− I)) = 0 (8.2.2.19)
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That is, a solution U∗ to our constraint optimization problem has zero the partial

derivatives in Eq.(8.2.2.18) with respect to U and also with respect to Λ.

∂L
∂U

= 0 and
∂L
∂Λ

= 0 (8.2.2.20)

The first equation of Eq.(8.2.2.20) gives:

∂L
∂U

= 0

2ΩwU− 2UΛ = 0

ΩwU = UΛ

UTΩwU = Λ

The second equation of Eq.(8.2.2.20) ensures that the constraints are satisfied by

finding the partial derivatives with respect to Λ:

UTU− I = 0

UTU = I

This shows that columns of U are the corresponding orthonormal eigenvectors and

the Lagrangian multiplier Λ is the eigenvalue matrix of the weighted covariance matrix

Ωw. Moreover, we showed that the solutions obtained by minimizing the total error in

Theorem 8.2.2.1 and the one obtained by maximizing the variance in Theorem 8.2.2.3

are equal.

Theorem 8.2.2.4 - Global Optimal Solution to S2-PCA Problem: The S2-

PCA problem has a global optimal solution given by the eigenvectors of the weighted

covariance matrix Ωw.

Proof : In the S2-PCA minimization problem Eq.(8.2.2.14), the objective function is

the error function f(U) = ||X − UUTX||22. Let U∗ be a stationary point for the

objective function f(U), then ∇f(U∗) = 0 from the necessary condition. Assuming

that X 6= 0re, and U∗ 6= 0 we have:

∇f(U∗) = 2 · (X−U∗U∗TX)T · (−2U∗TX) = 0 =⇒ (X−U∗U∗TX) = 0
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We compute ∇f(U∗U∗T ). Since U∗TU∗ = I and (X−U∗U∗TX) = 0, we have:

∇f(U∗U∗T ) = 2 · (X−U∗U∗TX)T · (−2X) = 0,

Hence, we derive that U∗U∗T is a stationary point of f as a function of UUT which

means that it has a local minimum at U∗U∗T . The error function f as a function

of UUT is strictly convex as a quadratic function with positive leading coefficients.

Therefore, from the fundamental theorem of global optimality, the local minimum is

global and unique if the objective function is strictly convex [103]. This means that

f(U∗U∗T ) is a global minimum and U∗U∗T is a unique global minimum point. The

global minimum of f(U) is the same global minimum of f(UUT ). Therefore, f(U∗)

is a global minimum and since U∗U∗T is unique, the point U∗ is unique up to an

orthogonal transformation.

8.2.3 Numerical Implementation of the S2-PCA

Description

Structure-2 Principles Components Analysis (S2-PCA) algorithm uses SSIM coefficients

to compute a weighted data matrix on which it applies the standard PCA to obtain

principal components. This specific weighting works well with our change detection

algorithms as illustrated in experiments section. To ensure that we do not use negative

coefficients, we set all negative coefficients to zero. The S2-PCA algorithm can thus be

described as follows:

Structure-2 Principles Components Analysis - S2-PCA Algorithm:

INPUT: Data matrix X ∈ Rm×n and vector y ∈ Rm×1

PROCEDURE:

Compute Sj =
2σxj,y+c2

σ2
xj

+σ2
y+c2

, for j = 1, 2, · · · , n

If Sj < 0, set Sj to zero

Compute the weight matrix W according to Eq. (8.2.2.4)

Compute the weighted data matrix: Xw = X
√

W

Compute U from standard PCA on weighted data matrix
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OUTPUT: matrix of eigenvectors U

8.3 S2,1-PCA with SSIM Weights

Principal component analysis is widely used in many applications for dimensionality

reduction and feature extraction [79]. The classical PCA is based on the L2 norm and

therefore is very sensitive to noise and outliers [79]. The L2-norm tends to increase the

outliers with large norms and treats the variables (dimensions) and the data samples

(observations) the same.

Several variations of PCA have been developed over the last decade to create a

robust solution as in [82, 80, 83, 81, 85, 87, 13, 19, 88]. Many of the studies have

applied the L1-norm to address some of the drawbacks of the L2 based PCA as in

[82, 83, 81, 85, 87, 88].

The L1 norm used in L1−PCA variations originates from LASSO [91] and is defined

as:

||X||1 =
n∑
j=1

m∑
i=1

|xij| (8.3.0.1)

The L1 norm has been widely used in sparse representations, compressed sensing,

machine learning and statistics. The L1 norm emphasizes the sparse solutions and is

less sensitive to the outliers. However, it is computationally more expensive than the

L2 norm and also is not invariant to rotation.

The L1-norm used by Baccini et al. [82] and Ke and Kanade [83] is not invariant to

rotation and the performance is usually very poor when applied to K-means clustering

[81]. To overcome this limitation, Ding et al. [81] proposed the R1-PCA, a rotational

invariant L1 norm based PCA. However, the R1-PCA iteratively performs the subspace

iteration algorithm in the high-dimensional original space and is computationally ex-

pensive [88].

Kwak et al. in [85, 87] and Nie et al. in [88] proposed two different algorithms to

solve the L1 norm maximization problem. Kwak in [85, 87] proposed a greedy strategy

to solve the L1 maximization problem, whereas Nie et al. in [88] developed a non-

greedy solution. Feng et al in [89] noted that although the non-greedy solution used

by Nie et al. performs better in some situations, the results suggest that the L1-PCA-
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VM (variance maximization) is reasonable only with the greedy solutions. Further

explorations with other norms such as L2,1 has been investigated.

8.3.1 The Existence and Computations of R1 - PCA Solutions

The L2,1 -PCA or R1 - PCA in [81] uses the L2,1 norm defined as:

||X||2,1 =
n∑
j=1

( m∑
i=1

x2
ij

) 1
2

= ||X||R1 (8.3.1.1)

The L2,1 norm, also called as R1 -norm, is a hybrid of L1 and L2 norms. One of the

advantages of the L2,1 norm is that it treats the variables (dimensions) and the data

samples (observations) differently. Distances in spatial dimensions are measured in

L2 norm, while the summation over different observations (data samples) is computed

using L1 norm. Index i sums over spatial dimensions and index j sums over data

samples, where i = 1, ...,m and j = 1, ..., n.

R1 - PCA has a global and unique solution up to an orthonormal transformation;

it is rotational invariant and robust to outliers [81]. However, the solution is not

straightforward because Huber’s M-estimator is used [85].

Let Xm×n = [x1,x2, ...xj, ...xn] be the data matrix where xj ∈ Rm×1 are observations

in m dimensional subspace, for j = 1, ..., n. The R1-PCA [81] finds the eigenvectors of

the weighted covariance matrix Ωw expressed as

Ωw =
n∑
j=1

wjxjx
T
j (8.3.1.2)

Here the weights wj are calculated using Huber’s M-estimator as:

wj =


1 if ||xj −UUTxj|| ≤ c

c

||xj −UUTxj||
, otherwise

183



The R1-PCA finds a set of orthonormal basis vectors U = [u1,u2, ...,uk], ui ∈ Rm×1

by solving the following constraint minimization problem:

U∗ = arg min
UT U=I

||X− X̂||R1 (8.3.1.3)

where X − X̂ represents the total approximation error. If fj(U) represents the error

function of the projection vector xj onto subspace U formed by eigenvectors of the

covariance matrix Ωw, then the expression for the error function is given as:

fj(U) = ρ
(
||xj − x̂j||2

)
= ρ

(
||xj −UUTxj||2

)
= ρ

(√
(||xj −UUTxj||22)

)
= ρ

(√
(xj −UUTxj)T (xj −UUTxj)

)
= ρ

(√
(xTj xj − xTj UUTxj)

)
Where where ρ(t) is the loss function computed using the Huber’s M-estimator, i.e.,

ρ(t) =

 t2 if |t| ≤ c

2c|t| − c2 if |t| ≥ c

Then the L2,1 norm of the total error as a function of U is:

F (U) = ||X− X̂||2,1

=
∑n

j=1 fj(U)

=
∑n

j=1 ρ
(√

(xTj xj − xTj UUTxj)
)

The constraint minimization problem in Eq.(8.3.1.3) can be written as:

U∗ = arg min
UT U=I

n∑
j=1

ρ
(√

(xTj xj − xTj UUTxj)
)

(8.3.1.4)

Theorem 8.3.1.1 - Existence of the Solution to R1-PCA Problem: R1-PCA

has a solution to Eq.(8.2.1.6) given by the eigenvectors of the weighted covariance ma-
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trix Ωw.

Theorem 8.3.1.2 - Rotational Invariance of the Solution to R1-PCA: R1-PCA

solution is rotational invariant.

Theorem 8.3.1.3 - Global Optimal Solution to R1-PCA: The global optimal

solution for R1-PCA are given by the principal eigenvectors of the weighted covariance

matrix Ωw. R1-PCA has a global optimal solution which is unique up to an orthogonal

transformation.

The proofs of Theorems 8.3.1.1, 8.3.1.2 and 8.3.1.3 can be found in [81].

To compare the sensitivity of standard PCA and the R1-PCA to outliers, we ran

a set of experiments. We applied both PCA and the R1-PCA to our toy example in-

troduced in Section 8.1. We have already showed in Fig. 8.1.5 that although the trend

of the data is still along the first old principal component, a single outlier perturbed

the principal component basis by 19o. This means that the data could be expressed

more precisely by the first original principal component PC1 and then by the new first

principal component PC1new.

Figure 8.3.1: a) data points with no outliers and the first principal component PC1 of
standard PCA. b) data points with one outlier, original PC1, new PC1 and R1-PC1.

We applied the R1-PCA to the perturbed data and computed the principal compo-

nents of the R1-PCA. Fig. 8.3.1 a) shows that the angle which the data points with no

outliers forms with the first principal component axis is 45o. We added one outlier to

the data and calculated the new first principal component of the standard PCA and the

first principal component of the R1-PCA as shown in Fig. 8.3.1 b). The angle between
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the new PC1 obtained from the standard PCA and the first axis is 63.87o whereas the

the angle that the first PC1 obtained from the R1-PCA forms with first axis is 49o.

This shows that R1-PCA is less sensitive to outliers as Fig. 8.3.1 b) illustrates.

8.3.2 The Existence and Computation of S(2,1)-PCA Solutions

In this section we discuss the existence and computation of the solution of the structure

principal component analysis which uses the L(2,1) norm, named the S(2,1)-PCA. The use

of the L(2,1) norm allows the variables and the observations to be treated differently. It

satisfies the same properties as the standard PCA because the variables are computed

using the L2 norm, i.e., the solution is global and rotationally invariant. Also, it

satisfies the properties of the L1-PCA because the summation over different observation

is computed using L1 norm which is more robust to outliers than the standard PCA.

Let Φ be the dictionary created by n training blocks from the inquiry block in m

dimensional space

Xm×n = Φm×n = [x1,x2, ...xj, ...xn]

where xj is the jth atom of the dictionary formed by the jth training block.

Atoms are columns of matrix X representing n-samples (observations) and rows

represent the dimensions or the variables

xj =



x1j

x2j

...

xmj


,xj ∈ Rm×1, j = 1, 2, ...n

In Section 8.2.2, we give more weights to training blocks which are similar to the

block of interest and less weight to the ones that are less similar to it. The weights

are computed using SSIM indexes. The weight matrix is an n × n diagonal matrix

W =
(
wj

)
, for j = 1, 2, ...n.

But for the S(2,1)-PCA, the weight matrix W becomes W = (Sj · wj), a product

of two n × n diagonal matrices where Sj are the SSIM indexes as weights on the

main diagonal of the weight matrix S and the weights wj are calculated using Huber’s
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M-estimator. As in Section 8.2.2, the weights Sj are:

Sj = SSIM(xj,y) =
( 2σxj ,y + c2

σ2
xj

+ σ2
y + c2

)
(8.3.2.1)

And the weight matrix S for the observations is:

Sn×n =



S1 0 · · · 0

0 S2 · · · 0

...
...

. . .
...

0 0 · · · Sn


(8.3.2.2)

where Sj ∈ [−1, 1], j = 1, 2, ...n. The wj are introduced due to the use of L(2,1) norm

in the optimization which we will show later. The wj are computed as in [81]:

wj =


1 if ||xj −UUTxj|| ≤ c

c

||xj −UUTxj||
, otherwise

(8.3.2.3)

where parameter c is the ”cutoff” for its regularization effect of the weights in the

weighted covariance matrix [81].

Larger values of the SSIM index between the training blocks and the block of interest

correspond to training blocks with similar structure to the block of interest as shown

in Fig.8.2.4. As in Section 8.2.2, the negative values of Sj’s are set to zero,

Sj =

Sj if Sj ≥ 0

0 otherwise
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because they are unlikely to be from the same anatomic location as the block of

interest. The overall weight matrix W is formed by combining both weights

Wn×n =



S1 · w1 0 · · · 0

0 S2 · w2 · · · 0

...
...

. . .
...

0 0 · · · Sn · wn


Hence the m×m weighted covariance matrix Ωw is:

Ωw = XWXT =
n∑
j=1

Sjwjxjx
T
j (8.3.2.4)

where xj is the jth atom of the weighted and centered matrix X. The weighted covari-

ance matrix Ωw satisfies all the properties proved in Section 8.2.2:

Property 8.3.2.1: Ωw is symmetric.

Property 8.3.2.2: Ωw is positive definite if W 6= 0.

Property 8.3.2.3: Ωw has real and positive eigenvalues.

Property 8.3.2.4: Ωw has orthogonal eigenvectors.

The proofs of properties 8.3.2.1, 8.3.2.2, 8.3.2.3, and 8.3.2.4 are similar to the ones

proved in Section 8.2.2.

Solution to structure principal component analysis, S(2,1)-PCA

S(2,1)- PCA finds a set of k ≤ m orthonormal basis vectors U = [u1,u2, ...,uk] in two

ways: 1) minimizing the error function or 2) maximizing the variance of the projected

data into the eigenspace, where ui ∈ Rm. Let us again consider the data matrix

Xm×n = [x1,x2, ...xj, ...xn]. The covariance matrix is:

Ωw = XWXT =
n∑
j=1

Sjwjxjx
T
j

where xj is the jth atom of X corresponding to the jth training block of the dictionary.

The covariance matrix Ωw depends explicitly on weights Sj and implicitly on

weights wj. For this reason the observations are first weighted by
√

S, i.e., X′ = X
√

S

and then the weighted observations of the dictionary are centered by subtracting the
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mean-block x′µ, X′c = X′ −X′µ: where X′µ, and X′µ respectively are:

X′µ = [x′µ,x
′
µ, ..,x

′
µ]

x′µ =



1
n

∑n
j=1 x′1j

1
n

∑n
j=1 x′2j
...

1
n

∑n
j=1 x′mj


for j = 1, 2, · · · , n.

For simplicity and without any loss of generality, X′c is denoted by X. The weighted

covariance matrix is:

Ωw =
n∑
j=1

wjxjx
T
j

As in Section 8.3.1, if fj(U) represents the error function of the projection vector

xj onto subspace U created by the eigenvectors of the weighted covariance matrix Ωw.

Then the error function is:

fj(U) = wj ||xj − x̂j||2

= wj ||xj −UUTxj||2
)

= wj
√

(||xj −UUTxj||22)

= wj
√

(xj −UUTxj)T (xj −UUTxj)

= wj

√
(xTj xj − xTj UUTxj)

The L2,1 norm of the total error as a function of U is thus computed as:

F (U) =
∑n

j=1 fj(U)

=
∑n

j=1wj

√
(xTj xj − xTj UUTxj)e

Method 1 - Minimizing the error

We solve the S(2,1)-PCA problem by minimizing F (U) under UTU = I constraint, i.e.,
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by solving the constraint minimization problem

min
UT U=I

F (U) = min
UT U=I

n∑
j=1

wj

√
xTj xj − xTj UUTxj (8.3.2.5)

The constraint minimization problem in Eq.(8.3.2.5) can be written as:

U∗ = arg min
UT U=I

n∑
j=1

wj

√
xTj xj − xTj UUTxj (8.3.2.6)

Theorem 8.3.2.1: S(2,1)-PCA has a solution to Eq.(8.3.2.6) given by the principal

components of the weighted covariance matrix Ωw.

Proof: The Lagrangian is defined as a new objective function in which the constraint

are implicit. Let L(U,Λ) = F (U) + Λ(UTU − I)) where L(U,Λ) is the Lagrangian

and Λ the Lagrangian multiplier. The Lagrangian for this problem can be expressed

as:

L(U,Λ) =
n∑
j=1

wj

√
xTj xj − xTj UUTxj + TrΛ(UTU− I)

We need to find a matrix U∗ for which perturbations that satisfy the constraints

do not change the objective function F (U). Instead we find the stationary points

of Lagrangian L with respect to both U and Λ. The extrema of the unconstrained

objective L are the extrema of the original constrained problem. The extrema to L

occurs when:

∇F (U) + Λ∇(UTU− I)) = 0 (8.3.2.7)

This can be expressed as:

∂L
∂U

= 0 and
∂L
∂Λ

= 0 (8.3.2.8)

Under the KKT necessary conditions the partial derivatives must equal zero. Find-

ing partial derivatives with respect to U in the first expression of Eq.(8.3.2.8) and
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considering that Ωw =
∑n

j=1wjxjx
T
j we have:

∂L
∂U

= 0

−2

(∑n
j=1wjxjx

T
j

)
U + 2UΛ = 0

−2ΩwU + 2UΛ = 0

ΩwU = UΛ

UTΩwU = Λ

The second expression of Eq.(8.3.2.8) ensures that the constraints are satisfied. We

find the partial derivatives with respect to Λ, that is, UTU = I. This shows that U

are orthonormal eigenvectors and the Lagrangian multiplier Λ is the eigenvalue matrix

of the covariance matrix Ωw. �

Theorem 8.3.2.2: S(2,1)-PCA solution is rotationally invariant.

Proof : The proof is similar to the one provided in Section 8.2.2. It derives from

the the fact that the L(2,1) norm of a vector equals the L2 norm of that vector and

the well known fact that L2 norm is rotational invariant. So, if R is a rotation ma-

trix, then ||R(xj) − R(UUTxj)||2,1 = ||xj − UUTxj||2. From orthogonality of R

transform, that is, RTR = I, we have that ||xj − UUTxj||2,1 = ||xj − UUTxj||2 =

||xj −UUTxj||2 = ||RTR(xj) −RTR(UUTxj)||2 = ||RT (R(xj)) −R(UUTxj))||2 =

||R(xj)−R(UUTxj)||2. This means that S(2,1)-PCA solution is rotationally invariant.

�

Method 2 - Maximizing the Variance

The S(2,1)-PCA problem can also be formulated as a maximization problem, where the

variances of UTX are maximized, under the same constraints UTU = I. The constraint

optimization problem is:

U∗ = arg max
UT U=I

(
V ar(UTX)

)
=

UT U=I
arg max

(
UTΩwU

)
(8.3.2.9)

where V ar(UTX) is the variance of UTX and Ωw is the weighted covariance matrix.

Theorem 8.3.2.3 The optimal solution to Eq.(8.3.2.9) is given by the eigenvectors of

the weighted covariance matrix Ωw.
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Proof: As in Theorem 8.3.2.1 we define the Lagrangian L(U,Λ) as a new objective

function to eliminate the constraint:

L(U,Λ) = G(U)−ΛTr(U
TU− I))

where

G(U) = UTΩwU =
n∑
j=1

UTwjxjx
T
j U

and Λ is the Lagrangian multiplier. By substituting G(U) =
∑n

j=1 UTwjxjx
T
j U, we

have:

L(U,Λ) =
n∑
j=1

UTwjxjx
T
j U− TrΛ(UTU− I) (8.3.2.10)

The extrema of the unconstrained objective L are the extrema of the original con-

strained problem. By the necessary condition the optimal solution of L satisfies:

∇G(U)− Λ∇(UTU− I) = 0 (8.3.2.11)

We need to find a matrix U∗, a solution to our constraint optimization problem for

some Λ. Under the KKT necessary conditions the partial derivatives must equal zero.

The partial derivatives of Eq.(8.3.2.10) with respect to U and to Λ are given as:

∂L
∂U

= 0 and
∂L
∂Λ

= 0 (8.3.2.12)

Thus, from the first equation of Eq.(8.3.2.12), we have:

∂L
∂U

= 0

2
∑n

j=1wjxjx
T
j U− 2UΛ = 0

2ΩwU− 2UΛ = 0

ΩwU = UΛ

UTΩwU = Λ

The second expression of Eq.(8.3.2.12) ensures that the constraints are satisfied by

finding the partial derivatives with respect to Λ, that is, UTU − I = 0 or UTU = I.
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This shows that U are orthonormal eigenvectors and the Lagrangian multiplier Λ is

the eigenvalue matrix of the weighted covariance matrix Ωw. Moreover, we showed

that the solution obtained by minimizing the total error in Theorem 8.3.2.1 and the

one obtained by maximizing the variance in Theorem 8.3.2.3 are equal.

Theorem 8.3.2.4 - Global Optimal Solution to S(2,1)-PCA Problem:

The S(2,1)-PCA problem has global optimal solution given by the eigenvectors of the

weighted covariance matrix Ωw = XWXT where

Wn×n =



S1 · w1 0 · · · 0

0 S2 · w2 · · · 0

...
...

. . .
...

0 0 · · · Sn · wn


Proof : In the S(2,1)-PCA minimization problem given by Eq. (8.3.2.6), the error func-

tion fj is given as fj(U) = wj

√
xTj xj − xTj UUTxj = wj||xj−UUTxj||2 = |wj

√
||xj −UUTxj||22|.

The error function fj as a function of UUT is strictly convex, therefore, the total er-

ror is convex as the sum of convex functions F (UUT ) =
∑n

j=1 fj(UUT ). From the

fundamental theorem of global optimality, the local minimum is global and unique for

strictly convex functions [103]. This means that if U∗U∗T is a stationary point, then

the function value at that point reaches the global minimum. Moreover, U∗U∗T is a

unique global minimum point. If U∗ is a stationary point of function F (U), then it is

easy to see that U∗U∗T is a stationary point of F as a function of UUT , from which

it derives that the global minimum of F is reached for UUT . The global minimum of

F as a function of U is the same as the global minimum of F as a function of UUT .

Therefore, F (U∗) is a global minimum and since U∗U∗T is unique, the point U∗ is

unique up to an orthogonal transformation.

8.3.3 Numerical Implementation of the S(2,1)-PCA

Description

Structure-(2,1) Principles Components Analysis (S(2,1)-PCA) algorithm uses SSIM co-

efficients to compute a weighted data matrix. However, unlike S2-PCA which applies
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the standard PCA on the weighted data matrix, S(2,1)-PCA applies R1-PCA [81] to ob-

tain principal components. The use of the L(2,1)-norm makes the S(2,1)-PCA algorithm

less sensitive to outliers than the standard PCA and the S2-PCA. As in S2-PCA algo-

rithm, we set any negative SSIM coefficient to zero. With this algorithm, we compare

two different norms, L2 and L(2,1). The S(2,1)-PCA algorithm can thus be described as:
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Structure-(2,1) Principles Components Analysis - S(2,1)-PCA Algorithm:

INPUT: Data matrix X ∈ Rm×n and vector y ∈ Rm×1

INITILIZE:

Compute Sj =
2σxj,y+c2

σ2
xj

+σ2
y+c2

, for j = 1, 2, · · · , n

If Sj < 0, set Sj to zero

Compute the observation weight matrix S according to Eq. (8.3.2.2)

Compute the weighted data matrix: Xw = X
√

S

set Xw to X, and center X with zero mean

Compute the initial weighted covariance matrix Ω0 = XXT

Compute the matrices of eigenvalues and eigenvectors Λ0, U0 of Ω0

Compute the initial error ej = (xTj xj − xjU0U
T
0 xj)

1
2 , for j = 1, 2, · · · , n

Compute c = median(ej)

PROCEDURE:

Set Ω0,Λ0,U0 to Ω,Λ,U

Update U using the power method

Compute the weights for variables wj = c√
xT
j xj−xj UUT xj

, for j = 1, 2, · · · , n

Compute the weighted covariance matrix Ωw =
∑n

j=1 wjxjx
T
j

Compute Unew = Ωw U

Orthogonalize Unew

Set Unew to U

Compute Λ = UT Ωw U

Repeat until converges

OUTPUT: matrix of eigenvectors U
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8.4 Applications of S2-PCA and S(2,1)-PCA to Change

Detection

In this section we describe the experiments and the results in details. Note that S2-

PCA is sometimes referred as S-PCA in this section.

We conducted experiments for two different blocks of interest b from real MR im-

ages. We compared the estimated the background of b backgr(b) by three approaches:

1) SSIM alone, 2) the EigenBlockCD algorithm + PCA, and 3) the EigenBlockCD

algorithm + S-PCA.

In the first set of experiments we investigate the use of SSIM alone as a similar-

ity measure to compute the background of the block of interest, namely as the best

matching block. We provide two examples for two different blocks of interest b. In

each example, the background of b, namely as backgr(b), is determined from inquiry

blocks B using: SSIM alone, the EigenBlockCD algorithm + standard PCA and the

EigenBlockCD algorithm + S-PCA. Various experiments for different blocks of interest

b are shown in Figs. 8.4.1 through 8.4.7.

Figure 8.4.1: Top row from left to right: Reference image, test image, block of interest
enlarged and a sub-image from the test image containing the block of interest. Bottom
row from left to right: backgr(b) via SSIM, the backgr(b) via the EigenBlockCD
algorithm + PCA, the backgr(b) via the EigenBlockCD algorithm+S-PCA and the
inquiry block B containing the three solutions.

Two MR images of the brain of the same patients taken at two different times are

used in our experiments, namely as reference and test images. For the first block of
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interest b as shown in Figs. 8.4.1 to 8.4.4, we compare the estimated backgr(b) in four

different situations: 1) no changes were added to input images in order to learn the

backgr(b) which is considered the true backgr(b) for that particular block of interest.

Fig. 8.4.1 show that the backgr(b) computed by the three algorithms are very similar.

Moreover, the backgr(b) via SSIM and S-PCA are exactly the same. We consider that

block as the true backgr(b). 2) Small changes are added to the block of interest in

Figure 8.4.2: Top row from left to right: Reference image, test image, block of interest
enlarged and a sub-image from the test image containing the block of interest. Bottom
row from left to right: backgr(b) via SSIM, the backgr(b) via the EigenBlockCD
algorithm + PCA, the backgr(b) via the EigenBlockCD algorithm+S-PCA and the
inquiry block B containing the three solutions.

the test image by increasing the intensity of the pixels in the block of interest b. As

Fig. 8.4.2 shows, the backgr(b) obtained by the three algorithms is again almost the

same. Moreover, the backgr(b) via SSIM and the S-PCA are the same. 3) Moderate

changes are added to the block of interest in the test images in a similar fashion, to

mimic the appearance of a new lesson. The backgr(b) obtained by the EigenBlockCD +

PCA and the EigenBlockCD + S-PCA algorithms are almost the same as those shown

in Fig. 8.4.3. However, the backgr(b) computed by SSIM alone is different block in

the inquiry block, which means that it is different from the true backgr(b) defined

previously. 4) Similarly, moderate changes are added to backgr(b) in the reference

image, to mimic the disappearance of an existing lesson. The backgr(b) obtained by

EigenBlockCD+ PCA and EigenBlockCD + S-PCA algorithms are almost the same,

as shown in Fig. 8.4.4. But the backgr(b) computed by SSIM alone is different block
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Figure 8.4.3: Top row from left to right: Reference image, test image, block of interest
enlarged and a sub-image from the test image containing the block of interest. Bottom
row from left to right: backgr(b) via SSIM, the backgr(b) via the EigenBlockCD
algorithm + PCA, the backgr(b) via the EigenBlockCD algorithm+S-PCA and the
inquiry block B containing the three solutions.

Figure 8.4.4: Top row from left to right: Reference image, test image, block of interest
enlarged and a sub-image from the test image containing the block of interest. Bottom
row from left to right: backgr(b) via SSIM, the backgr(b) via the EigenBlockCD
algorithm + PCA, the backgr(b) via the EigenBlockCD algorithm+S-PCA and the
inquiry block B containing the three solutions.

in the inquiry block, that is, it is different from the true backgr(b) defined previously.

For the second block of interest b as shown in Figs. 8.4.5 to 8.4.7, we compare the

estimated backgr(b) in three different situations: 1) to learn the backgr(b), no changes

were added to input images. The backgr(b) is considered the true backgr(b) for that

particular block of interest. Fig. 8.4.5 show that the backgr(b) computed by the three

algorithms are very similar. Moreover, the backgr(b) via SSIM and S-PCA are exactly
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Figure 8.4.5: Top row from left to right: Reference image, test image, block of interest
enlarged and a sub-image from the test image containing the block of interest. Bottom
row from left to right: backgr(b) via SSIM, the backgr(b) via the EigenBlockCD
algorithm + PCA, the backgr(b) via the EigenBlockCD algorithm+S-PCA and the
inquiry block B containing the three solutions.

the same. We consider that block as the true backgr(b). 2) Moderate changes are

Figure 8.4.6: Top row from left to right: Reference image, test image, block of interest
enlarged and a sub-image from the test image containing the block of interest. Bottom
row from left to right: backgr(b) via SSIM, the backgr(b) via the EigenBlockCD
algorithm + PCA, the backgr(b) via the EigenBlockCD algorithm+S-PCA and the
inquiry block B containing the three solutions.

added to the block of interest in the test image to mimic the appearance of a new

lesson. As Fig. 8.4.6 shows, only backgr(b) obtained by EigenBlockCD + S-PCA is

close to the true backgr(b). In contrary, the backgr(b) computed by SSIM alone and

EigenBlockCD + PCA represent different blocks in the inquiry block, that is, they are

different from the true backgr(b). 3) Moderate changes are added to the backgr(b) in
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Figure 8.4.7: Top row from left to right: Reference image, test image, block of interest
enlarged and a sub-image from the test image containing the block of interest. Bottom
row from left to right: backgr(b) via SSIM, the backgr(b) via the EigenBlockCD
algorithm + PCA, the backgr(b) via the EigenBlockCD algorithm+S-PCA and the
inquiry block B containing the three solutions.

the reference image which mimics a disappearance of an existing lesson. As Fig. 8.4.7

shows, only the backgr(b) obtained by the EigenBlockCD + S-PCA algorithm is close

to the true backgr(b). In contrary, the backgr(b) computed by SSIM alone and the

EigenBlockCD + PCA algorithm represent different blocks in the inquiry block, that

is, they are different from the true backgr(b).

Figure 8.4.8: Left: Table showing the percentage of the variance used to create the
subspaces. The first, second, third, fourth and the fifth columns show the variance, the
dimensions of the PCA, the R1-PCA, the S2-PCA and S(2,1)-PCA subspaces respec-
tively. Right: Scatter plot of dimensions of the four subspaces versus the percentage
of the variance in the data.

The second set of experiments compare the efficiency of dimension reduction by the
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standard PCA, the R1-PCA and our two structure-PCAs, the S2-PCA and the S(2,1)-

PCA. The efficiency of dimension reduction is measured by the dimension of subspaces

versus percentage of the data, variance contained in the subspaces. The lower the val-

ues of dimension of subspaces for the same percentage of variance in the data the more

efficient the projections of the data onto these subspaces. For the same percentage of

the variance in the data, dimensions of the subspace created via the S-PCA are much

lower than dimensions of subspace via the standard PCA and the R1-PCA as shown

in Fig 8.4.8. Significant dimensionality reduction leads to a sparser representation of

the data and increases computation efficiency.

Figure 8.4.9: Left: Percentage of variance versus number of eigenvalues for the first
fifteen eigenvalues. First column shows the first number of eigenvalues, second, third,
fourth and fifth columns show the percentage of the variance. Right: Scatter plot show-
ing the percentage of the variance vs the number of eigenvalues for the four subspaces,
the PCA, the R1-PCA, the S2-PCA and the S(2,1)-PCA.

In the third set of experiments we computed the percentage variance average for the

first 15 principle components. The percentage variance average reached by the same

first number of principal components is higher for the structure S2-PCA and S(2,1)-PCA

than for the standard PCA and the R1-PCA as shown in Fig. 8.4.9. For example, 55%

and 67% of the total variance in the S2-PCA and the S(2,1)-PCA is reached by the first

principal component versus 24% and 23% in the PCA and in the R1-PCA respectively.

75% and 82% of the total variance in the S2-PCA and the S(2,1)-PCA is reached by the

first two principal components versus 44% and 42% in the PCA and in the R1-PCA

respectively. This indicates that we could reduce the dimensions to as low as 3 from 441

and preserve 87% of the total variance in the S(2,1)-PCA or 80% of the total variance

201



in the S2-PCA.

Figure 8.4.10: Left: Scatter plot of the runtime of the EigenBlockCD-2 algorithm via
PCA and S2-PCA versus the percentage of the variance in the data. Right: Bar graph
of the runtime of the EigenBlockCD-2 algorithm via PCA and S2-PCA versus the
percentage of the variance in the data

In the fourth set of experiments we compare the runtime of the EigenBlockCD-2

algorithm with data projected into PCA or S2-PCA subspaces with different percent-

age of the variance in the data. The algorithm via S2-PCA runs much faster than via

PCA as shown in Fig. 8.4.10. As the variance in the data increases, the runtime via

PCA increases whereas the runtime via S2-PCA stays almost the same as shown in

Fig. 8.4.10. We didn’t compare the runtime of the R1-PCA and S(2,1)-PCA because

they both are iterative and computationally expensive.

Figure 8.4.11: Left: Table showing the alignment parameters (horizontal and vertical
shifts) calculated by the EigenBlockCD-2 via PCA and S2-PCA for different percentage
of variance in the data. Right: scatter plot showing the same alignment parameters.

The fifth set of experiments test the effect of estimating the alignment parameters

used in the co-registration step by the EigenBlockCD-2 algorithm via PCA and S2-

PCA for different percentage of variance in the data, the horizontal and the vertical
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shifts. The co-registration step via PCA is not stable for smaller percentages of the

variance because the obtained co-registration parameters are different each time the

percentage of the variance changes as the table and the scatter plots in Fig. 8.4.11

show. On the other hand, the co-registration step via S2-PCA is stable even for very

small percentages of the variance (i.e., 10%).

Figure 8.4.12: a) Reference image is a real T2 MR of the brain in 2010. b) column,
follow up T2 MR image in 2012 named as test image. c) to e) Alignment of reference
image to test via PCA (top) and S2-PCA (bottom) with 23 %, 44%, and 80%, of
variance in the data respectively.

As variance increases, the two translation parameters computed via PCA are get-

ting closer to the corresponding parameters computed via S2-PCA. Fig. 8.4.12 visually

demonstrates the performance of the algorithm employing PCA in the co-registration

step is as good as the algorithm employing S2-PCA if total percentage of the variance in

the data is 92%. When percentage of the variance increases from 23% to 44%, the ver-

tical shift needed to align the reference and test images estimated by EigenBlockCD-2

via PCA, changes from 14 to 22 pixels while the vertical shift identified via S2-PCA re-

mains at 20 pixels. The horizontal shift identified by EigenBlockCD-2 via PCA changes

from -12 to 12 pixels, while the horizontal shift identified via S2-PCA is always 5 pixels.

In the seventh set of experiments, the 2601 training blocks from the dictionary are

projected into the PCA and S2-PCA subspaces. Distances between each training block

and its approximated (reconstructed) block using L1 and L2 norms are computed as:

||xj − x̂j||1 = ||xj −UUTxj||1 and ||xj − x̂j||2 = ||xj −UUTxj||2. Note that S-PCA
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Figure 8.4.13: a) and b) The L1 and the L2 projection errors of the 2601 training blocks
into PCA and S2-PCA respectively.

Figure 8.4.14: Shows a more detailed view of Fig. 8.4.13 a), i.e.,projection errors of 200
or 400 training blocks.

in these figures means S2-PCA. Results in Figs. 8.4.13, 8.4.14, and 8.4.15 show that

the L1 and L2 errors of the projected training blocks onto S2-PCA subspace are much

lower than the L1 and L2 errors of the projected training blocks onto the standard

PCA, that is, the S2-PCA subspace approximate the original data with more accuracy.

In the last set of experiments, we applied the EigenBlockCD-2 algorithm to com-

pute the best matching blocks in the reference image to the block of interest in the test

image, with the training blocks projected onto PCA and S2-PCA subspaces. Fig. 8.4.16

shows that when the dictionary is projected into the subspace obtained by PCA,

the EigenBlockCD-2 algorithm computes different best matching blocks to a selected
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Figure 8.4.15: Shows a more detailed view of Fig. 8.4.13 b), i.e.,projection errors of
200 or 400 training blocks.

block of interest for different percentages of the variance in the data. In contrary, the

EigenBlockCD-2 algorithm always computes the same best matching block to the block

of interest when the dictionary is projected into the subspace obtained by S2-PCA even

for very low percentages of the variance in the data.

8.5 Summary

We revisited PCA and R1-PCA, and introduced our newly developed structure prin-

ciple component analysis S2-PCA and S(2,1)-PCA. We investigated several approaches

from the recent literature which address the robustness of PCA and introduced our ro-

bustyfing approaches, tailored to our application, through special weights on the main

diagonal of covariance matrix. Since the objective of change detection is to estimate

the common background between the same anatomical images taken at different times,

we chose SSIM indixes between a block of interest and blocks of the same size from its

corresponding inquiry block as the proper weights for our change detection algorithms

and provided the necessary proofs for our structure PCA problems, the S2-PCA and

the S(2,1)-PCA problems.

We provided a formulation of PCA problem based on convex optimization theory

205



Figure 8.4.16: a) - d) Block detection by the EigenBlockCD-2 via PCA and S2-PCA
with 100%, 58%,40% and 20% of the variance in the data respectively. First rows from
left to right in a)-d) show the test image, the block of interest enlarged and a sub-image
from the test image containing a larger size of the block of interest. Second & third
rows in a)-d) show the best matching block computed by the EigenBlockCD-2 and PCA
and S2-PCA respectively, i.e., a) second rows, from left to right: the reference image
containing the best matching block, the computed best matching block enlarged, a sub-
image in the reference image containing a larger size of the computed best matching
block with 100% of the variance.

and extended this to our S2-PCA. The use of L(2,1) norm was inspired by the differ-

ences in physical meaning of the data matrix X. From this observation we proposed

the S(2,1)-PCA employing the L(2,1) norm.

Our various experiments showed that the both structure principal component anal-

ysis, the S2-PCA and the S(2,1)-PCA, have advantages over the standard PCA and the
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R1-PCA for change detection in the following aspects:

1. Dimensions of both S2-PCA and S(2,1)-PCA decrease much faster than those of

the standard PCA and the R1-PCA as the variance decreases. This effectively

finds the optimal subspaces to describe the background of the block of interest,

and hence reduces data dimensions dramatically and increases computational

efficiency.

2. As the variance decreases, the EigenBlockCD-2 detect changes more accurately

when the data are projected onto S2-PCA then onto standard PCA.

3. The S2-PCA subspace provides an optimal subspace to search for the background

of the block of interest in the reference image than the PCA subspace.

4. Runtime simulations show that the use of the S2-PCA reduces the computational

time by more than 60% on average.

5. Experiments on identifying the best matching block via the EigenBlockCD-2

for the projected data onto standard PCA and onto S2-PCA show that as the

variance decreases the performance of the EigenBlockCD-2 with data projected

onto the S2-PCA is better than when data is projected onto the standard PCA.

The best matching block identified in the PCA case is the same only for higher

percentage of the variance in the data.
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Chapter 9

Conclusions And Future Work

9.1 Summary of Dissertation

Change detection methods play a critical role in medical image processing. In this

dissertation, we investigated the existing mathematical frameworks used in change

detection problems, proposed three new adaptive dictionary learning based change de-

tection algorithms for detecting the changes of consecutive MR images as well as serial

MR images in two dimensional space, extended the algorithms for detecting changes

of consecutive volumetric data and proposed a new robust subspace learning as a most

efficient way to represent the data.

First, we defined a new mathematical model to describe change detection problem

in general. Our model includes a set of transform functions, a cost function to be min-

imized and a similarity measure. We then formulated the change detection problem as

finding an optimal solution for all its parameters. The mathematical model led us to

investigate concrete solutions to the change detection problem.

Based on such general model, we extended previous work in the area of background

modeling and dictionary learning techniques and proposed the Adaptive Eigenblock

Dictionary Learning (AEDL) algorithm to automatically detect the changes of two or

more consecutive medical images of the same anatomical structures taken at different

times. The AEDL algorithm uses knowledge of compressed sensing to reconstruct the

background of the block of interest. The algorithm detects the significant changes

between two consecutive medical images, i.e., the foreground, by approximating the
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background of a block of interest with the use of L1 minimization techniques. The

AEDL algorithm also uses the knowledge of principal component analysis (PCA) as a

feature extraction, sparsifying and a dimensionality reduction tools. Numerical simu-

lations with both synthetic and real MR images demonstrate that the AEDL algorithm

is able to detect clinical changes in MR images of the brain.

While the AEDL provides a new approach among other change detection algorithms

and those for MR images in particular, we also looked into other change detection meth-

ods which are computationally more efficient.

We proposed the EigenBlock Change Detection EigenBlockCD) algorithm to detect

the changes between two or more consecutive MR scans. The EigenBlockCD is based

on L2 minimization, i.e., it uses L2 norm as similarity measure. The use of PCA with

the EigenBlockCD further reduces the data redundancy of dictionary and increases the

performance of the algorithm. The numerical simulations show that the EigenBlockCD

algorithm finds the significant changes in MR images of the brain in less time compared

to the AEDL algorithm.

Although the EigenBlockCD algorithm provides an improvement in terms of compu-

tational time, it does not perform well in case of large shifts and rotations. We proposed

an improved version of the EigenBlockCD algorithm, namely the EigenBlockCD-2 algo-

rithm, by adding a co-registration step first. As a result, the EigenBlockCD-2 algorithm

detects changes between two or more MR images even in the presence of large shifts

and rotations. We implemented the same approach for the AEDL algorithm, i.e., the

AEDL-2 algorithm. Simulations with synthetic and real MR images demonstrate an

excellent performance of the improved versions of the EigenBlockCD-2 and the AEDL-

2 algorithms.

The comparison of the AEDL and EigenBlockCD algorithms, led us to look into

a thorough analysis of similarity measures. We studied and compared the use of L1

and L2 norms as similarity measures of the EigenBlockCD algorithm and provided the

most significant features of these norms relevant to the change detection problem. We

showed that L2 norm is invariant to rotational transforms, preserves the distances and

the orders. We presented counter examples to showed that L1 norm is not invariant
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to rotations, does not preserve the distances and orders and more importantly it does

not preserve the structure.

All the proposed change detection algorithms use PCA for dimensionality reduc-

tion of the dictionary and decreasing the computational time. This led us to looking

into subspace learning frameworks. We proposed a new robust version of principal

component analysis, named Structure Principles Component Analysis (S-PCA), which

robustifies the covariance matrix by applying weights based on structure similarity in-

dex (SSIM).

The key to the S-PCA is to give more weight to the training samples with a sim-

ilar structure to the test sample (block of interest) and less weights to those training

samples that do not ”look like” the test sample. We explored the weighted structured

PCA using two different norms, i.e., the L2andL2,1 norms. We incorporated S-PCA

into the EigenBlockCD-2 algorithm. The numerical results and simulations with real

MR images show that the L2 - S-PCA outperforms the standard L2 - PCA, the L2,1-

S-PCA outperforms the L2,1 - PCA and finally, the L2,1- S-PCA outperforms L2 - S-

PCA.

We extended our change detection algorithms to detect changes between the consec-

utive 3D volumetric data. We implemented the 3D version of AEDL-2 and EigneBlockCD-

2. The simulation with real volumetric MR data offered a very good performance of

the 3D versions as confirmed by the radiologist.

Finally, we provided a thorough performance analysis of our change detection al-

gorithms. We used the well known criteria from change detection field and compared

our results with those published in the change detection literature. Our experiments

showed that both the AEDL-2 and EigneBlockCD-2 algorithms outperfom the existing

algorithms.

9.2 Future Work

The background modeling and dictionary learning techniques are widely used for solv-

ing change detection problems in a broad range of applications and are still an exciting

area of research.
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Also, the machine learning theory and its applications have seen a significant

progress and have attracted great interest from mathematicians, computer scientists

and other cross-disciplinary researchers and industry practitioners.

We will explore other versions of subspace learning and look into adapting them to

solving change detection problems in medical imaging.

We will explore the three dimensional dictionary techniques as another way for im-

plementing change detection algorithms for MR volumetric data.

Another aspect that we want to pursue is using our algorithms as routine tools

by the radiologists. We would like to investigate parallelizing implementation of the

algorithms which we think is necessary for the 3D versions.

We will also look into the possibility of testing our algorithms with a massive set

of clinical data.
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