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Abstract 

Tree genera information is useful in environmental applications such as forest 

management, forestry, urban planning, and the maintenance of utility transmission line 

infrastructure. The ability of small foot print airborne LiDAR (Light Detection and 

Ranging) to acquire 3D information provides a promising way of studying vertical forest 

structures. This provides an extra dimension of information compared to the traditional 

2D remote sensing data. However, the techniques for processing this type of data are 

relatively recent and have becoming an innovative research direction. The existing 

perspective for processing LiDAR data for tree species classification involve calculating 

the statistics attributes of the vertical point profile for individual trees. This method 

however does not explicitly utilize the geometric information of the tree form such as 

shapes of the tree crown and geometric features that are derivable inside of the tree 

crown.  

Therefore, the aim of this dissertation research is to derive geometric features from 

individual tree crowns and use these features for genera classification. The second goal of 

this research is to improve classification results by combining the newly developed 

features with the conventional vertical point profile features through ensemble 

classification system. Final goal of this research is to design a classification system to 

cope with the situation where the number of classes in the validation data exceeds the 

number of classes in the training data.  
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24 geometric features were initially derived and six of them are selected for the 

classification of pine, poplar and maple. Average classification accuracy of 88.3% is 

achieved by using this method. When the geometric features are combined with vertical 

profile features by ensemble classification system, the average classification accuracy 

increased to 91.2%. While the individual performance of geometric classifier and vertical 

classifier is 88.0% and 88.8% respectively for the classification of pine, poplar and 

maple. Lastly, when samples that do not belong to pine, poplar and maple are added to 

the validation data, the classification accuracy dropped to 72.8% by using randomly 

selected samples for training. However, through diversified sampling technique, the 

classification accuracy increased to 93.8%.  
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1 Chapter 1 Introduction 

1.1 Research Motivation and Problem Domain  

The measurement of forest attributes such as tree height, stem density, is important 

in monitoring the forests. Most importantly, species or genera information is valuable for 

the management of forest in predicting production yield and growth and to describe forest 

ecosystems. The species / genera information not only is important in updating the forest 

resource inventory (FRI), knowing the genera can also have better estimates on tree 

growth rate and is important in the management of vegetation around human 

infrastructure. One example is the vegetation management of the Right of Ways (ROWs) 

near power transmission lines, such that the management companies can have better 

estimates on trimming or clear cutting schedules. The measurements of attributes can be 

obtained by field surveying or remote sensing techniques. Field surveying provide a 

direct measurement of the tree attribute but is extremely time and cost ineffective, as a 

result, remote sensing technology can be beneficial tools for obtaining this information.  

Tree species / genera information can be obtained (or inferred) from spectral 

signatures of remotely sensed imagery, especially when the hyperspectral information is 

given (Clark et al. 2005; Cochrane, 2000; Buddenbaum et al. 2005). In order to yield 

detailed map, higher spatial resolution aerial photographs can be obtained allowing 

species classification for individual tree crown (Brandtberg, 2002). These imagery based 

methods extract tree species information from two dimension data and have been proven 
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effective. In fact, the standard means of collecting highly accurate forest inventory data 

still relies on ground surveys (cruising) or photogrammetric methods (Gillis and Leckie, 

1996).  In Ontario, the Forest Resources Inventory (FRI) is created by the Ministry of 

Natural Resources. FRI is standardized and stored in a geographic information system 

(GIS) that is updated from aerial photography (Leckie and Gillis, 1995). Developments in 

geoinformatics technologies (e.g., GIS data, remotely sensed data) are providing 

additional opportunities for detailed updates to the FRI (e.g., Gillis, 2001; Morrison et al., 

1999; Hilker et al., 2008; Wulder and Seemann, 2003). Until the relatively recent 

development of LiDAR (Light Detection and Ranging) data provided new insights in 

remote sensing as it provide three dimensional data. In Woods et al. (2011), the authors 

discuss the applications and issues of large scale Light Detection and Ranging (LiDAR) 

operational in Ontario boreal forests in terms of lowering the cost on an “area” based 

classification. Indicating that for individual tree classification, a higher point density data 

is required.  

The motivation of this dissertation is to investigate the possibility of using high 

density LiDAR for individual tree genera classification.  As LiDAR technology matures, 

the point density acquired for the recent studies are becoming higher. The existing 

methodologies of tree classification using LiDAR can be categorized into three groups 

and will be discussed further in Chapter 2. The first group is a top centric approach 

including researches that combines spectral information with LiDAR data. The second 

group of research studies the vertical point profile of the tree and the third group of 

research utilizes the geometric information of LiDAR point distribution reflected from 
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the individual tree. Geometric information is especially useful in representing the form of 

a tree and can be easily related to the biophysical condition. The top-centric approach 

was not able to highlight the LIDAR signals that have reached the lower part of the tree; 

the vertical point profile approach is computationally efficient but does not tie close 

relationship to the biophysical implications of tree form as compared to the geometric 

approach. This research focuses on the geometric approach and will compensate the 

existing geometric approaches where geometric features relate to the outer shape of the 

tree crown (e.g. curve fitting, alpha shapes). LiDAR points reflected from the lower and 

inner part of the tree crown is as important as the points reflected from the surface of the 

tree crown. However, only limited amount of research has been performed in this 

direction with airborne systems, most of them are based on terrestrial systems (Busksh 

and Fleck,  2011; Pfeifer and Winterhalder, 2004; Park et al., 2010; Xu et al., 2007; Côté 

et al., 2009, 2011) where point density per tree is significant. The biggest drawback on 

using terrestrial systems on forest applications is that it only covers a small area whereas 

aerial systems can cover a larger area with a lower cost. As a result, this research explore 

the potential of using airborne LiDAR data for developing geometric features that are 

related to the internal (branching structures) and external (overall shape of the tree) tree 

crown shape (Chapter 3).  

Ensemble classification is an emerging strategy that is being used for improving 

classification accuracy. The advantage of using ensemble classification is that the training 

data can be trained independently by the individual base classifiers. The base classifiers 

learn about the classification independently and therefore potentially makes the same or 
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different decisions. By combining the decisions wisely, classification accuracy can be 

improved (Chapter 4). The multiple classifier systems (ensemble classifiers) are 

especially appropriate for the inventory of large scale data because individual classifier 

can be trained on independent dataset where each one represents the different geographic 

locations. Trees grow differently in different environmental conditions even though the 

overall tree form may appear similar. The benefit of selecting a wide variety of training 

data from different geographic locations is that the base classifiers can learn with 

maximum diversity. The benefits and discussions on training data diversity are included 

in Chapter 5.  

1.2 Applications of LiDAR 

Airborne LiDAR have many field of applications; some research use bathymetric 

LiDAR for coastal boundary mapping (Lefsky et al., 2002 and Irish et al., 1999) and 

some for Digital Terrain Model (DTM) generation (such as Kraus and Pfeifer, 2001 and 

Brovelli et al., 2003). LiDAR is also popular for urban studies because of the rich three 

dimension information provided, allowing many research in building reconstructions (for 

example: Becker and Haala, 2007; Malllet et al., 2008; Schenk and Cshato, 2007; 

Baillard and Maître, 1999 and Rottensteiner et al., 2005). Other than the above 

applications, LiDAR has also been used widely in forest applications particularly in 

retrieving tree height information as tree height is one of the most important biophysical 

parameters in forest studies. The history of airborne LiDAR on forest study can trace 

back to 1980s and even further, Nelson et al. (1984) suggested using laser to derive 

height profile for retrieving forest characteristics. Aldred and Bonnor (1985) suggested 
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the use of waveform for canopy height estimation and since then, a lot of research has 

been developed and conducted aiming at the acquisition of tree height, canopy volume, 

biomass estimation, growth estimation and many more mainly for forest management. 

These researches have two main approaches, a distribution based approach and individual 

tree based approach (Hyyppä et al., 2008). Distribution based approach consider forests 

as points of distribution, therefore, the forest attributes (such as height, biomass volume) 

are obtained using statistical method, examples are: Næsset (2004); Hollaus (2006) and 

Means et al. (1999). These methods could be area sensitive and therefore calibration is 

needed. However, these approaches are especially efficient if the study area is large. 

Another approach is individual based approach, where the forest attributes are collected 

or calculated on a single tree basis, examples are: Reitberger et al. (2007); Solberg et al. 

(2006) and Korpela et al. (2007). These studies can be arithmetically expensive due to 

complexity in the algorithms and the large amount of data points but the results are much 

more in detailed, the objective of this dissertation is in-line with this type of research.   

1.3 Research Objectives  

The three main objectives of this research are discussed in three chapters.  

1. Chapter 3: The first objective of this dissertation is to develop methodologies for 

using LiDAR data for single tree genera classification. Geometric features were 

derived as attributes for classification. In contrast to the conventional method 

using vertical profile attributes, geometric features provide a better understanding, 

visualization and classification results. The chapter discusses both internal and 
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external geometric features, where internal features tackle features inside of the 

tree crown such as locating the branches. On the other hand, external features 

tackle features related to the boundary of the tree crown such as the overall shape 

of the tree. The methods developed can be applied to vegetated areas such as 

forests.  

2. Chapter 4: In this chapter, two classifiers are to be built from two sets of features, 

the first is from geometric features (Chapter 3) and the second is from the vertical 

profile features. The second objective involves two tasks; the first is to reduce the 

number of features for the two classifiers. This is to reduce the model complexity 

by selecting only the important features in each classifier. The second task is to 

combine the two classifiers by ensemble techniques in order to improve 

classification accuracy.  Ensemble classification a classification strategy that 

combines the decisions from multiple classifiers for making the final decision, 

this approach combines the advantage of both classifiers. 

3. Chapter 5: The third objective of this research is to study the effects of 

inconsistent quality found in the collected LiDAR tree samples. The inconsistency 

could be a result of occlusion or tree crowns overlapping each other where single 

tree crowns are unable to be isolated clearly. This chapter first quantify sample 

quality and study the distribution of quality over the training sample. By 

experimenting with different training sample distributions, the classification 

accuracy can be improved by including the most diversified sample quality. 
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Additionally, this chapter improves the practicality of the classification scheme by 

considering the existence of “unknown” instances. A common problem in the 

classification of environmental objects is that the number of classes in the 

validation sample exceeds the number of classes in the training sample. Ideally, 

an “unknown” class will be generated in the classification results categorizing all 

the data that does not belong to any of the training classes. However, this is not an 

easy task because of two reasons. First, typically the “unknown” class will not be 

available for training. Therefore classifier is not able to learn about the feature 

distribution of the “unknown” class. Second, the “unknown” class normally 

include a variety of objects, meaning a variety of feature distributions, that are 

difficult to group properly. This goal is achieved by decomposing the multi-class 

classification problem into a series of binary classification problems. 

In summary, the thesis of this research is that the individual tree crowns isolated from 

LiDAR point cloud can be automatically classified into three genera, four categories 

(pine, poplar, maple and “unknown”). Four classification labels will be generated 

including an “unknown” label that includes tree that does not belong to the genera 

provided by the training data.  

1.4 Methodology Overview  

Section 1.3 describes the research objectives and this section provides the methodology 

overview to achieve the above objectives. 
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1. In Chapter 3, few experiments were performed by the following methods to 

achieve objective 1:  

a. 24 geometric features are derived in Chapter 3. First, points recorded for 

each tree crown are clustered into representative groups by a merging-and 

splitting algorithm. They are grouped according to their spatial 

organization of the points and each group is designed to represent one 

main branch of the tree. Then, a best fit line and best fit plane is fitted 

through each cluster. For volumetric features, alpha shapes and convex 

hulls are also calculated for each cluster and for the entire tree crown. The 

orthogonal distances from each point to the closest facet of the tree crown 

convex hull is also calculated. Next, each point is buffered outward to 

become an individual sphere, the overlapped volume and count is recorded 

for each tree crown. Lastly, ratios such as tree crown height divided by 

tree height for the overall tree form are calculated.  

b. A sensitivity analysis is performed to determine the optimal training size 

needed for the classification. Data is partitioned randomly from 5% to 

95% for training and the classification accuracy is recorded for each 

partition.  

c. A geometric classifier is built based on the 6 most significant geometric 

features using Random Forests algorithm. The mean decrease accuracy is 
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calculated for each feature for assessing the contribution of each feature to 

the classification. 

d. Classification accuracy is calculated for individual field sites  

2. In Chapter 4, the following experiments were performed by the following 

methods to achieve objective 2:  

a. 78 Vertical point profile features were calculated. These features 

summarize the properties of return types, mean, standard deviation, 

kurtosis of variation, skewness of variation for height and intensity values. 

These calculations are performed for at the 10th height percentile, 50th 

height percentile, 90th height percentile and for the entire canopy.  

b. 24 geometric features and 78 vertical profile features are reduced to 6 and 

26 respectively for simplifying the model complexity. This is performed in 

two steps, first, features with high correlations are removed. Next and 

objective function is set up for Sequential Backward Selection method, 

using the mean decrease accuracy values obtained from Random Forests. 

The optimal number of features for each set of features is selected by 

minimizing the pre-defined objective function J.  

c. An ensemble classification system is built for combining two sets of 

features (geometric features derived by Chapter 3 and vertical profile 

features calculated in this chapter). A sequential followed by a parallel 
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model is built, first validation samples are judged by geometric classifier. 

Potentially mis-classified trees are filtered out automatically. These trees 

are assessed again by both geometric and vertical profile classifier and the 

final decision for these samples is made based on the comparisons of the 

margin differences between two classifiers.  The classification accuracy is 

calculated for 1) geometric classifier alone 2) vertical profile classifier 

alone and 3) ensemble classifier for the purpose of comparison. 

d. A sensitivity analysis is performed to study the relationship between 

classification accuracy and LiDAR point densities. This is also done to 

investigate the lower limits of point density for this classification scheme, 

potentially lowering the cost of data acquisition in the future.  

3. In Chapter 5, the following experiments were performed by the following 

methods to achieve objective 3:  

a. 3 binary one-versus-all classifiers are created for the classification of pine 

versus non-pine; poplar versus non-poplar and maple versus non-maple. A 

parallel ensemble classification system is built for combining the three 

binary classifiers together. This method is to achieve the objective of 

classifying “unknown” classes in the validation data.  

b. The quality of each LiDAR tree is quantified by the ratio between the 

number of times a sample is being classified correctly and the number of 

times a sample is being selected as out-of-bag data from Random Forests. 
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A sensitivity analysis is performed to study the relationship between the 

classification accuracy and the distribution training data quality. Result 

shows training data contained the most diversified quality yield the best 

accuracy rate.    

c. Classification is performed using 1) random sampling method with 

ensemble classification 2) diversified sampling method with ensemble 

classification and 3) diversified sampling method with Random Forests 

classification. 

4. Chapter 6 concludes and summarizes this research. Figure 1-1 shows the structure 

and organization of the dissertation. 
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Figure 1-1 Structure of the dissertation  
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classification 
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labels with overall 
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classification  
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labels with overall 
classification accuracy 
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Density analysis for vertical profile classifier, geometric classifier and ensemble classifier 
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sample 

OVA 
decomposition 

Generate “Pine” 
“Poplar”, “Maple” and 
“unknown” labels with 
overall classification 
accuracy 93.8% 

Chapter 6: Conclusion 
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2 Chapter 2 Background  

2.1 Introducing the research – present knowledge  

2.1.1 Light Detection and Ranging (LiDAR) 

Light Detection and Ranging (LiDAR) is an active remote sensing sensor based 

on distance (range) measurements and can be mounted on an airborne device for data 

acquisition. The detection systems are categorize into waveform digitization (or 

continuous-wave) and discrete return. Waveform digitization produces a continuous 

waveform (a time series) that fully describes the vertical structure of the ground targets 

whereas discrete return detected peaks when the return signal exceeds a detection 

threshold. Therefore discrete return system produces discrete points throughout the 

vertical profile of the structure (usually up to five multiple returns per pulse). The data 

type used for this dissertation belongs to discrete return system; as a result, the following 

discussion will focus on the discrete return system. 

For discrete return system, or pulse ranging, range is determined by the time of 

pulses emitted from the sensor and the return of the reflected signals. On the other hand, 

continuous wave systems measures range by the phase difference between the transmitted 

and received signal (Mallet and Bretar, 2009). Equation (2.1) to (2.4) summarizes the 

fundamental parameters that describe the discrete systems (Wehr and Lohr, 1999).  

 

𝑅𝑎𝑛𝑔𝑒 = 𝑅 = 1
2

× 𝑐 × 𝑡𝐿       (2.1) 
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𝑅𝑎𝑛𝑔𝑒 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  ∆𝑅 =  1
2

× 𝑐 × ∆𝑡𝐿     (2.2) 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑎𝑛𝑔𝑒 =  𝑅𝑚𝑎𝑥 =  1
2

× 𝑐 × ∆𝑡𝐿𝑚𝑎𝑥    (2.3) 

𝑅𝑎𝑛𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝜎𝑛 =  𝑐
2

× 𝑡𝑟𝑖𝑠𝑒 × 1
�𝑆/𝑁

     (2.4) 

Where  tL = travelling time of a light pulse 

R= distance between the reflecting object and the sensor 

c= speed of light = 3 × 108𝑚𝑠−1 

 ∆𝑡𝐿 = time resolution 

trise = rise time for the pulse ranging 

S/N = signal-to-noise-ratio 

 

From equation (2.2), it shows that the range resolution ∆𝑅 is directly proportional 

to the time resolution∆𝑡𝐿, however, for airborne laser scanning (ALS), the resolution is 

less important because in most cases it is much lower than the range accuracy 

(Baltsavias, 1999). For discrete return systems, the maximum unambiguous range 

depends on two factors. The first is the maximum range (the number of bits) of the time 

interval counter and the pulse rate where the maximum time interval can be measured by 

the time counter of the laser (Baltsavias, 1999). In practice, to avoid the confusion 

between pulses, a pulse has to be received before another pulse can be sent. Normally, the 

time interval is large enough so that the maximum range is affected by laser energy losses 

rather than ∆𝑡𝐿𝑚𝑎𝑥. Therefore is affected by factors such as laser power and beam 

divergence, atmospheric transmission, target reflectivity, etc. (Wehr and Lohr, 1999; 
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Baltsavias, 1999). Range accuracy 𝜎𝑛 is affected by the rise time for the pulse and 

inversely proportional to the signal-to-noise ratio (S/N), where S/N is affected by the 

power of the received signal, input bandwidth, background radiation and other factors 

controlled by the systems. (Wehr and Lohr, 1999). According to Mallet and Bretar (2009) 

and Wagner et al. (2006), the reflected signals for targets are the superposition of echoes 

and therefore can be expressed as equation (2.5). 

 

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 =  𝑃𝑟(𝑡) = 𝐷𝑎
4𝜋𝜆2 ∫

𝜂𝑠𝑦𝑠𝜂𝑎𝑡𝑚
𝑅4

𝐻
0 𝑃𝑡 �𝑡 −

2𝑅
𝑣𝑔
� 𝜎(𝑅)𝑑𝑅   (2.5) 

Where  t = time 

 Da = diameter aperture of the receiver optics 

 Pt = emitted power 

 𝜆 = wavelength 

 H = flying height for the aircraft 

 R = distance between the reflecting object and the sensor 

 𝜂𝑠𝑦𝑠 = system transmission factor 

 𝜂𝑎𝑡𝑚 = atmosphere transmission factor 

 vg = group velocity of the laser pulse 

 𝜎(𝑅)𝑑𝑅 = apparent effective differential cross-section   

 

It is also worth to note that although this research relies on data collected 

airborne, LiDAR data can be collected as ground based systems as well, called terrestrial 

LiDAR. Terrestrial LiDAR operates under the same principle described in equation (2.5) 
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and is suitable for studies that have a smaller area of interest and data are collected 

laterally whereas airborne LiDAR is suitable for studies that have a larger area of 

interested and are collected aerially. For airborne LiDAR, the location of the flight path is 

usually documented by differential GPSs (GPS stations on the ground) and the precise 

measurement of the sensor location and orientation (mounted on the aircraft) is recorded 

by the inertial measurement unit (IMU), where the yaw, pitch and row attributes are 

recorded. The sensor sends out laser signals and measure the time needed for a laser 

signal to return back from ground target; knowing the speed of light, range can be 

calculated for each signals. Common wavelengths for measuring vegetation is usually 

900nm, 1064nm, 1470nm and 1560nm due to the high reflectance in those regions  and 

the pulse width is usually 7ns wide (full-width at half the maximum amplitude) (Petrie 

and Toth, 2009).  

2.1.2 Tree species/genera classification using airborne LiDAR 

The use of LiDAR for forestry applications has become popular in the past 

decades with LiDAR technology becoming more available. Existing and related studies 

can be categorized into three major groups with different perspectives of looking at the 

LiDAR data in relation to vegetation. The first group focuses on extracting information 

near or at the tree top. This tree top centric approach assumes that the most important 

characteristics for crown classification are contained in the upper and central portion of 

the crown. Holmgren and Persson (2004) found that point density generally decreases as 

depth from the canopy top increases; therefore, more information for classification is 

available at the upper part of the crown. Rahman and Gort (2008) and Rahman et al. 
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(2009) reported that the point density also decreases from the center of the tree outward, 

meaning that most of the information is contained in the central portion of the crown. 

Thus, some studies retrieved the information for classification features from the surface 

of the tree crown by using the combination of LiDAR data and spectral information 

(Persson et al., 2004; Koukoulas and Blackburn, 2005; Hill and Thomson, 2005; Hilker et 

al., 2008; Holmgren et al., 2008). These approaches have demonstrated successful and 

promising perspectives in species classification. Recently, LiDAR sensor technology has 

rapidly advanced, which achieves a higher foliage penetration rate and provides more 

opportunities to retrieve the information from inside of crown. In this regard, the tree top 

centric classification methods cannot highlight the LiDAR signals that have reached the 

lower part of the tree, and it might bias points at or near the top of the forest canopy, 

overlooking the importance of points within crowns. 

To overcome the problem of biasing the tops of crowns and to emphasize the 

importance of LiDAR points reflected from the lower part of the canopy, the second 

group of research focuses on the retrieval of tree species information and has considered 

internal points for the analysis of the vertical height and (or) intensity distributions of 

LiDAR point clouds (Holmgren and Persson, 2004; Brandtberg, 2007; Ørka et al., 2009; 

Kim et al., 2009; Korpela et al., 2009; Suratno et al., 2009). These studies measured the 

frequencies, means, and standard deviations of first and single returns for the entire tree 

height profile (Brandtberg, 2007; Kim et al., 2009) or by height percentiles (Holmgren 

and Persson, 2004; Ørka et al., 2009; Korpela et al., 2009). These vertical profile methods 

show that it is important to address the LiDAR points that were reflected from the lower 
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part of the canopy or from within the crown. Studies that utilize the entire vertical profile 

take advantage of LiDAR’s ability to penetrate tree canopies, permitting the calculation 

of attributes related more closely to the entire tree, whereas characteristics related to the 

percentiles specify the importance of point distributions relative to ranges of tree height. 

Both perspectives support the use of LiDAR points located deep in the crown. Moreover, 

with better equipment, allowing a lower flying altitude and stronger LiDAR signals, a 

dataset with higher point density can be obtained. This provides a better method of 

studying the relationship between points reflected from within the crown and genera 

information, as more points are recorded from lower in the crown. A limitation of using 

the vertical profile method is that the information retrieved from point distributions does 

not explicitly consider the geometric characteristics of tree crown. Tree form, however, is 

important and should be taken into consideration to ensure accurate tree classification. 

The third group of research focuses on investigating and extracting geometric 

information of the outer surface of the tree crown from point clouds. Barilotti et al. 

(2009) fit curved surfaces to tree tops of different species to consider canopy geometry, 

and Kato et al. (2009) used an iso-surface algorithm to wrap surfaces around crowns for 

retrieving parameters like crown volume, width, and base height. Considering tree 

crowns as individual objects, some studies have resorted to computing representative 

alpha shapes for individual trees, with boundaries that enclose a set of points similar to a 

convex hull but that allow internal curvature (Vauhkonen et al., 2008; Vauhkonen et al., 

2009; Vauhkonen et al., 2010). These approaches are an improvement over simple 

segmentation of points with height percentiles, and suggest that geometric information is 
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important for tree species classification. The features derived from convex hulls, alpha 

shapes, and parabolic fitting focus on the overall shape of trees (external features) with 

LiDAR pulse density ranges from 4 returns per m2 (Barilotti et al., 2009) to 40 returns per 

m2 (Vauhkonen et al., 2008, 2009). The aforementioned studies have concentrated on 

geometric characteristics of the outer surface of tree crowns. However, using a hand-held 

camera, Niccolai et al. (2010) showed that information about the colour, shape, patterns 

of tree form (stems and branches), and leaves within a crown are considered critical 

components at the crown level.  

This study used a high pulse density of 40 pulses per m2 dataset, with up to five 

returns per pulse, putting it in line with the high density studies; this allows us to consider 

geometry derived from within the crown and to use this information for genera 

classification. Chapter 3 of this dissertation will focus on the derivation of geometric 

features for genera classification. 

2.1.3 Ensemble classification systems 

Ensemble methods in classification is the training of multiple classifiers to solve 

the same problem, in different community, it is also called committee-based learning, 

multiple classifier systems, mixture of experts etc (Samadzadegan et al. 2010; Zhou, 

2012; Ruta and Gabrys, 2000). The criteria of a good ensemble system should provide an 

increase in classification accuracy. There are numerous ways of combing classifiers 

suggested in the previous research (Oza et al. 2005), with a wide variety of applications 

such as text categorization (Bell et al. 2005), speech recognition (Linares et al. 2003) and 
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hand written words recognition (Koerich et al. 2005). In particular, a few example of 

such studies in remote sensing includes Samadzadegan et al. (2010); Lodha et al. (2006); 

Kumar et al. (2002) and Kavzoglu and Colkesen. (2013).  

Unlike the traditional classification learning where one learner train and classify 

the dataset, ensemble classification assemble various learners through different models 

and make decision in collaboration of all learners (Zhou 2012). In general, there are two 

ensemble models. The first is parallel ensemble model where base learners make the 

decision in parallel (an example will be bagging methods) and sequential ensemble model 

where base learners make decision in sequence (an example will be boosting methods). 

One of the objectives for combining classifiers is to reduce the overall error and hence 

increase overall classification accuracy as compared to a single classifier (Ali and 

Pazzani 1996; Breiman 1998; Dietterich 2000; Bryll et al. 2003 and Kavzoglu and 

Colkesen 2013).  

Generally, parallel models decrease errors by combining base classifiers that are 

as independent as possible (diverse). Classifiers that have different perspectives can 

correct the errors made by the other base classifiers. For sequential models, errors are 

reduced in a residual decreasing way, if the subsequent base classifiers are able to correct 

the error made by the previous base classifiers, overall error will decrease (Zhou 2012).   

In parallel models, Zhao (2012) has showed that errors reduce exponentially to 

ensemble size T by Hoeffding inequality using the following example:  

Let ℎ𝑖be the binary base classifier {+1,-1} with error 𝜖 such that 
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𝑃�ℎ𝑖(𝑥) ≠ 𝑓(𝑥)� = 𝜖        (2.6) 

 

And by combining T classifiers, one can form the ensemble classifier 𝐻(𝑥), and 

can be written as: 

 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ ℎ𝑖(𝑥))𝑇
𝑖=1         (2.7) 

 

Assume the final decision is made by majority scheme, 𝐻(𝑥) will misclassify if at 

least half of the base classifiers make an error, therefore, the generalization error can be 

written as: 

 

 𝑃�𝐻(𝑥) ≠ 𝑓(𝑥)� = ∑ �𝑇𝑘�(1 − 𝜖)𝑘𝜖𝑇−𝑘𝑇/2
𝑘=0 ≤ exp (−1

2
𝑇(2𝜖 − 1)2) (2.8) 

 

This shows that the generalization error reduces exponentially as T becomes 

larger, also, as 𝑇 → ∞,𝑃�𝐻(𝑥) ≠ 𝑓(𝑥)� → 0.       

On the other hand, in sequential models, the overall errors are reduced in a 

residual decreasing manner. An efficient sequential model has base classifiers ordered in 

a way that the subsequent base classifier is able to correct the mistake of the prior base 

classifier. Also, base classifiers will have to be diverse enough so that same mistake will 

not be made in the succeeding level. Ensemble methods are applied in both Chapter 4 and 
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Chapter 5. In Chapter 4, a hybrid of parallel and sequential model is built using Random 

Forests as base classifier. Chapter 5 decomposes a multiclass problem into a series of 

binary classification problems, ensemble methods are applied by combing the binary 

classifiers in parallel. The binary classifiers are also running Random Forests. The 

following subsections will review the methods of 1) decomposing a multi-class problem 

into binary classification problems. 2) Random Forests as an ensemble classifier. 

2.1.3.1 Multi-class to binary classification 

In Chapter 5, the multi-class classification is being broke down into a series of 

binary classification. There are two major motivations on ensembling the binary base 

classifiers. The first is the production of a class label “unknown” that categorizes all the 

validation data that does not belong to any class exhibited in the training data. The second 

is the flexibility of concept change, the removal or addition of extra class label can be 

done without changing the rest of the model, for future studies. 

There are three poplar techniques for reducing a multi-class problem into a series 

of binary classification problems (Galar et al. 2011), the first one is called “one-vs-

one”(OVO) (Hastie and Tibshirani 1998) and the second one is called the “one-vs-all” 

(OVA) (Rifkin and Klautau, 2004) and the third one is called the Error Correcting Output 

Codes (ECOC). OVO consists of binary classifiers that differentiate between two classes 

(for example pine vs maple) and therefore for a k class problem, �𝑘2� classifiers are 

needed for ensemble. On the other hand OVA consist of binary classifiers that 

discriminate between particular classes from the rest of the classes (for example, pine vs 

23 
 



non-pine) and therefore k classifiers are needed for solving a k class problem. ECOC is a 

method where a code word is generated from a series of binary classifiers for each class 

label. For any validation sample, a code word from that sample will be generated and will 

be compared to the code word generated from the training samples. The class with the 

minimum Hamming distance will be labeled (Dietterich and Bakiri, 1995). 

To compare the performance between OVO and OVA, study such as Galar et al. 

2011 shows that although there are no significant difference found in OVA and OVO, but 

both strategies outperformed the original classifier. In another study, Hashemi et al. 2009 

show that OVA attains better classification when compared with concept-adapting very 

fast decision tree (CVFDT), a single multiclassifier; weighted classifier ensemble (WCE), 

and streaming ensemble algorithm (SEA), both are ensemble of multiclass classifiers; and 

ultrafast forest tree (UFFT), an OVO method. In Hsu and Lin (2002), they show that 

OVO outperformed OVA, however, in Rifkin and Klautau (2004) study, authors 

suggested that OVA is performing just as well as OVO. These literatures show that 

neither OVO nor OVA consistently outperform one another. Instead, these studies 

indicate that the decomposition of a multiclass problem into series of binary classification 

problems is an efficient approach and often outperformed the original multi-class 

classifier. In fact, OVO and OVA are poplar methods for combining Support Vector 

Machine (SVM) classifiers (Duan et al. 2007; Milgram et al. 2006; Hsu and Lin 2002; 

Liu and Zheng 2005)  
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2.1.3.2 Random Forests classification 

Random Forests is an effective classification algorithm and is being applied in 

various experiments in the dissertation. Random Forests is an ensemble classifier 

comprised of many classification trees for categorical data, or regression trees for 

continuous data trained from a subset of the data (Breiman, 2001, Liaw and Wineder, 

2002). Unlike classification tree or regression tree analysis, where a single classification 

tree is produced for classification, Random Forests constructs a user-defined number of 

trees, Ntree, by using randomly selected feature variables.  

For each iteration of classification tree construction, a subset of the data is drawn 

by sampling with replacement (a bootstrap sample), where about 37% of the data (out-of-

bag data or OOB data) is set aside for testing the classification accuracy of the current 

tree and 63% of the data (in-bag data) is used to construct a single decision tree. 

According to Zhou (2012), given m training examples, the probability of the ith sample 

will be selected at least once can be approximate by Poisson distribution with 𝜆=1 and 

therefore is 1 − 1/𝑒 ≈ 63%. Therefore, about 37% of the original data have never been 

used for training. In Random Forests, the decision tree grows by consequently splitting a 

parent node into binary descendent nodes, by using the random subset of features. The 

best split at each node is defined by an optimal feature subset that minimizes the class 

impurity within the descendant nodes.  

Random Forests classification has successfully been employed in forestry 

applications. For example, Falkowski et al., (2009) used 34 features derived from 

LiDAR, then reduced the number to 9 to classify successional forest stages. Martinuzzi et 
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al., (2009) used Random Forests to classify snag types by deriving 34 LiDAR features 

(19 of them related to the canopy height point distribution and 15 of them related to the 

topographic information). The implementation for this dissertation is performed within 

the randomForest package for R (R Development Core Team, 2013; Breiman, 2001).  

 

The main input parameters of Random Forests for classification include:  

1. Training sample labeled with known species and geometric features 

2. the number of feature variables randomly sampled at each split (mtry, 

approximately �𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) (Strobl et al., 2009) 

3. the number of trees generated within each iteration (Ntree, 1000 for this 

dissertation) 

4. Minimum size of terminal node (Nodesize, 1 for this dissertation) 

Random Forests produces the following output:  

1. a classification tree generated using in-bag training data 

2. the percentage of mis-classification using OOB data passing through the 

constructed tree (OOB classification error) 

3. a ranking of each feature variable's importance measured using OOB data. The 

overall prediction error (OOB classification error) is the majority vote from all 

individual trained trees 

4. vote and margin calculated for every LiDAR tree and class 
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The definition of the following terms will be discussed in further details as background 

information for the methods described in the following Chapters.  

 

Importance: Importance is being assessed two different ways in RandomFoests, the first 

is called the mean decrease accuracy (MDA) and is calculated by estimating the OOB 

error that is recorded for each tree, e. Then, by random permutation, the fth feature will 

produce a new OOB error ef. Importance can be measured by calculating ef – e, averaged 

over all trees and normalized by the standard deviation; this is called the mean decrease 

accuracy (MDA). If a feature has a large value for the mean decrease accuracy, it 

signifies that the feature is more important. This definition is chosen as a measurement of 

feature importance for this dissertation. The second means of measure for classification 

tree is obtained by the total decrease in node impurities (measured by Gini index) from 

splitting; averaged over all trees.  

 

Vote: When each classification tree is generated, a subset of the feature is selected, let 

𝑋 ⊂ ℝ𝑓be the features selected and y is the predicted class label. Where 𝑦 ∈ 𝐿, L is the 

all the possible predicted labels. According to Schwing et al. (2011), the binary indicator 

variable for voting L can be written as 𝑝𝑖(𝑦|𝑋). For a particular instance L, average vote 

can be calculated by summing all the votes for the particular class divided by the number 

of classifiers (T).   
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𝑉(𝑋) = 1
𝑇
∑ 𝑝𝑖(𝑦|𝑋)𝑇
𝑖=1 , where 𝑉 ⊂ ℝ𝐿     (2.9) 

 

Margin: Margin is the distance from the data point to the decision boundary. In 

randomForest package of R, it is recorded as the proportion of the votes for the correct 

class minus the maximum proportion of the incorrect class. Recall y is the predicted class 

label. Let Y be the correct class label obtained from field validation. Margin can be 

written as the following: 

 

𝑀𝐺(𝑋) = 1
𝑇
∑ 𝑝𝑖(𝑦 = 𝑌|𝑋)𝑇
𝑖=1 − max𝑦≠𝑌 �

1
𝑇
∑ 𝑝𝑖(𝑦 ≠ 𝑌|𝑋)𝑇
𝑖=1 �   (2.10) 

 

In this dissertation, Random Forests is applied in three different experiments:  

1. In Chapter 3, 24 geometric descriptors (features) are used for the classification of 

tree genera, Random Forests is employed as the classifier 

2. In Chapter 4, two different sets of features (geometric and vertical profile) forms 

two classifiers, both using Random Forests as base classifier and are ensemble 

(combined) to improve classification accuracies obtained from Chapter 3 

3. In Chapter 5, the multi-class classification scheme from Chapter 3 is broken down 

into a series of binary classification. Each of the binary classifiers runs Random 

Forests  
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2.2 Description of study area and data 

LiDAR data was collected on 7 August 2009, about 75 km east of Sault Ste. Marie, 

Ontario, Canada (Figure 2-1) by a Riegl LMS-Q560 scanner at an altitude of 122 to 250 

m above ground level. Multiple flight passes was flown to ensure a combined pulse 

density of 40 pulses per m2. The altitude for the power-line corridor site is lower as a 

higher point density is required for power line risk management, whereas the forested 

sites were acquired at a higher altitude. The point density of LiDAR data collected is 

approximately 40 pulses per m2 with up to five returns per pulse.  

 

Figure 2-1 Map of the study area and the locations of the eight field survey sites. 
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Summer validation field surveys were conducted in 2009 and 2011. The eight field 

sites (Table 2-1) were selected to capture a diversity of environmental conditions and to 

sample the complexity of the region. One of the tasks for the first visit was to identify the 

tree species and measure tree attributes such as tree height, tree crown base height, tree 

crown diameter and diameter breast height (dbh) for validation purposes for the first field 

survey. The objective of the second survey is to record only tree location, species and 

dbh. The poplar sites (Poplar1 and Poplar2) are dominated by poplar trees and are 

situated in the northern part of the study area; Poplar1 has substantially less understory 

vegetation than Poplar2. The maple-dominated sites (Maple1, Maple2, and Maple3) share 

very similar characteristics, as each site has a closed canopy and is interspersed with 

other deciduous species such as white birch and oak. The understory growth is vigorous 

with an abundant immature layer. The Corridor site is the most complex, which was 

selected especially to include trees that are difficult to identify.  
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Table 2-1 Plot distribution and characteristics of canopy structures. 

            Tree Height (m) Crown height (m)  
Site N. Trees   Species Structure* Cover Mean  Min Max Mean Min  Max 
Poplar1 6   Po (6) M, SS > 65% 27.7 26.2 28.9 6.9 5.2 8.3 
                        
Poplar2 40   Po (40) D, MS > 65% 25.0 20.0 27.1 7.5 5.4 9.8 
                        
Maple1 20   Bw (8), Maple  (12) D, MS > 65% 21.3 12.7 27.2 19.2 11.4 24.5 
                        
Maple2 20   Bw (1), Maple (16), 

Oak (3) 
D, MS > 65% 21.1 16.5 27.8 19.0 14.9 25.0 

                        
Maple3 6   Maple (6) D, MS > 65% 19.3 15.7 21.0 19.3 15.7 21.0 
                        
Corridor 48   Pw (12), Pr (4), Po 

(14), Bw (2), Pj (4), 
Sw (10), La (2) 

D, MS > 65% 19.9 2.2 28.5 13.3 2.2 24.7 

                        
Pine1 40   Pw (17), Pr (23) O 35%-

65% 
26.1 20.2 33.6 13.6 8.5 22.2 

                        
Pine2 6   Pw (6) M, SS > 65% 24.9 22.3 27.1 12.8 10.3 16.8 

* M = Moderate, D = Dense, O = Open, SS = Single Stratum, MS = Multiple Strata 
Po = Poplar, Bw = white birch, Pw = white pine, Pr = red pine, Pj = jack pine, Sw = white spruce, La = larch 
bracketed number in species column indicate the number of tree belong to the species  
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Individual tree crown isolation is difficult in this site due to partial occlusion by 

shadows, a high percentage of tree crown overlap with neighboring trees, and vigorous 

understory growth. In the Corridor site, growing conditions vary between the two sides 

of the transmission corridor due to differences in topography and sunlight penetration, 

which ultimately influence understory growth. The pine-dominated sites (Pine1 and 

Pine2) were selected to represent an open red and white pine canopy (Pine1) and a white 

pine-dominated stand (Pine2). Of the 186 trees sampled, 160 of them belong to one of the 

three genera Pinus (pine), Populus (poplar) or Acer (maple), which were selected to be 

considered in this paper not only because they represent the majority of the field 

validation, but also because they represent the dominant tree forms as depicted in Figure 

2-2. Figure 2-2 shows an example of a LiDAR point cloud from each genera sampled at 

the northern Ontario field sites. Field validation identified species to include white birch 

(Betula papyrifera Marsh.), maple (Acer saccharum Marsh.), red oak (Quercus rubra L.), 

jack pine (Pinus banksiana Lamb.), poplar (Populus temuloides), white pine (Pinus 

strobus L.), white spruce (Picea glauca (Moench Voss)), and larch (Larix laricina).  
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Figure 2-2 An example of LiDAR point cloud for each species identified in the field study and 

are grouped by three forms: 1) sphere, 2) cylinder, and 3) cone. 

 

2.3 Preprocessing of the LiDAR data 

There are two main preprocessing procedures; the first is the segmentation of 

LiDAR point cloud for individual trees and the removal of understory points for the 

isolation of tree crown points. The segmentation of individual tree is a manual process; 

the LiDAR trees are isolated prior to the field visits. The centres of the trees are estimated 

by the centroids of the isolated point clouds and are used for the verification of location 

in the field using a handheld GPS.  

The understory is generally defined as the lowest layer of vegetation in an 

ecosystem, persisting below the main forest canopy, often representing a significant 

component of the total ecosystem biomass. However, the focus of this research is the 

geometry of tree crown and therefore the LiDAR points that belong to the understory is 
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removed before the extraction of geometric features. This is a semi-automatic process, an 

algorithm was written and was applied to each single tree. However, a visual check for 

each tree is performed and in the case where the algorithm does not match the visual 

check, visual interpretation was used to locate the tree crown base. The algorithm involve 

plotting a point density vertical profile for each tree, then, a best fit 4th degree polynomial 

function was fit onto the profile. By solving for second derivative of the best fit function 

would locate the point of inflections. The higher point of inflection will be used as base 

of the tree crown and the lower point of inflection will be used as the top of the 

understory (not useful for this research). 

All sampled trees (as LiDAR point clouds) undergo preprocessing that isolate 

individual tree crowns and remove understory points by analyzing point frequency 

distributions along height axes and the results from both processes are verified by visual 

interpretation. The understory points are removed prior to feature derivation because 

ecologically, understory points cause classification confusion and do not add to the 

characterization of tree crown interiors or outer surfaces. Trees that have distinct gaps 

between the overstory and the understory (bimodal distributions) can be segmented by a 

simple height threshold to eliminate points belonging to the lower group. Trees that have 

no distinct gap between the overstory and the understory had the understory removed 

manually by visual interpretation. This time-consuming procedure was typically required 

at the Corridor, Maple1, and Maple2 sites due to the abundance of immature saplings.
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3 Chapter 3 Tree genera classification with 
geometric features  
 

Published as: Ko, C., G. Sohn, and T.K. Remmel. 2013. Tree genera classification with 

geometric features from high-density airborne LiDAR. Canadian Journal of Remote 

Sensing 39(S1):S1-S13.1 

Categorical recognition of a tree’s genus is known to be valuable information for 

the effective management of forest inventories. This chapter will present a method for 

learning a discriminative model using Random Forests to classify individual trees into 

three genera: pine, poplar and maple. It is believed that both internal and external 

geometric characteristics of the tree crown are related to tree form and therefore useful in 

classifying trees to the genus level. The approach involves the extraction of both internal 

and external geometric features from a LiDAR point cloud because geometric features 

provide important information about the organization of the points inside the tree crown 

along with overall tree shape and form. This chapter originally developed 24 geometric 

features and then reduced the number of features in order to increase efficiency. These 

geometric characteristics, computed for 160 sampled trees from eight field sites, were  

1 I thank the journal, Canadian Journal of Remote Sensing, and my co-authors who have 

granted me the right to reproduce this article as a chapter in this dissertation.   
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classified using Random Forests and achieved an 88.3% average accuracy rate by using 

25% (40 trees) of the data for training. 

3.1 Introduction 

The use of Light Detection and Ranging (LiDAR) has been useful for many 

applications and is gaining attraction for retrieving forest inventory attributes such as tree 

height and diameter (Hilker et al., 2008; Korpela et al., 2009). Among the many forest 

inventory attributes, tree genus (or species, if possible) is particularly valuable 

information to assist with estimating biomass, forest composition, wood volume, wildlife 

habitat, or disturbance effects (Bortolot, 2006; Niccolai, 2010; Suranto, 2009). In addition 

to forest inventory applications, genus information is often coupled with growth and yield 

tables or structural metrics of individual trees, which can facilitate the estimation of 

growth potential or leaning hazards of trees; therefore informing the scheduling of 

pruning or removal to ensure safe clearance zones along transmission line corridors (Jwa 

and Sohn, 2012). 

The objective of this chapter is to investigate contributions of both internal and 

external geometric information about tree crowns, such as shape, branching, trunk 

structure, volumetric surface and height for genera classification, from discrete LiDAR 

point cloud data with high density (e.g. 40 pulses per m2). This chapter categorized 

geometric features into two groups: external features which relate to the overall shape of 

the tree, and internal features which relate to the inner characteristics and branching 

structures. This chapter focuses on discussing methods deriving six important geometric 
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features from LiDAR point clouds through clustering and convex hull construction. 

These were selected from 24 geometric features by conducting feature reduction analysis 

in order to increase efficiency. Random Forests have been successfully studied for the 

prediction of forest inventory from LiDAR (Falkwski et al., 2009; Martinuzzi et al., 

2009; Coulston et al., 2012; Yu et al., 2011). Random Forests predicts classification 

decision variables using ensembles of multiple classifiers, which often yield better 

classification results than single classifier (Na et al., 2010). Random Forests is a non-

parametric discriminative classifier that allows us to effectively incorporate the internal 

features and external features for classification. This chapter explores potentials of 

Random Forests as a supervised learning classifier to predict three genera classes 

including maple, pine and poplar using LiDAR point clouds.   

3.2 Methods 

3.2.1 Overview of the methodology 

To characterize genera that are believed to be ecologically different, this chapter 

rely on geometric features categorized into five broad families: 1) lines, 2) clusters, 3) 

volumes, 4) 3D buffers of points, and 5) overall tree height ratios. The geometric features 

characterize the spatial distribution of LiDAR points within the crowns of the individual 

trees which comprise the forest canopy. The line and cluster families of geometric 

features were selected to capture different elements of the primary linear structures within 

each tree crown. The geometric volume family characterizes tree crown volume, surface 

area of convex hulls, and alpha shapes, focusing on the outer surfaces of tree crowns, 
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while the 3D buffering family differentiates between clustered tree crowns and 

distributed LiDAR points. The final category (overall tree height ratios) considers the 

cloud of LiDAR points within individual crowns as a single object rather than 

segmentations relative to height profiles. 

This chapter developed and computed 24 geometric feature summaries for each 

tree. A complete list of these features can be found in Table 3-1. The original 24 features 

were reduced to six according to their importance in order to increase the efficiency of 

classification by the Random Forests classifier. These six features are detailed in the 

following section. All sampled trees (as LiDAR point clouds) underwent preprocessing 

that isolated individual tree crowns and removed understory points by analyzing point 

frequency distributions along height axes. 

The understory points were removed prior to feature derivation because they 

cause classification confusion and do not contribute to the characterization of tree 

crowns. Trees that have distinct gaps between the overstory and the understory were 

segmented by a simple height threshold to eliminate points belonging to the lower group. 

The understory was removed manually from trees that have no distinct gap. This time-

consuming procedure was typically required at the Corridor, Maple1, and Maple2 sites 

due to the abundance of immature saplings; the automation of this procedure is complex 

and part of future research. 
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Table 3-1 List of derived 24 geometric features derived. (a) describes line related geometric 

features; (b) describes cluster related geometric features; (c) describes convex hull and alpha 

shape related geometric features; (d) describes 3D buffering related geometric features and (e) 

describes overall tree shape related geometric features. (Source: Ko. et al., 2012c) 

Table 3-1 (a) 

No. Equation Description 

F1 ∑ 𝐿𝑛𝑘
𝑛=1  
𝑘 × 𝐻𝑡

 
Average line segment lengths divided by tree height 

F2 ∑ 𝐿𝑛𝑘
𝑛=1

𝑘 × 𝐻𝑐
 

Average line segment lengths divided by crown height 

F3 ∑ 𝐿𝑛𝑘
𝑛=1

𝑘
×
𝐻𝑐
𝐻𝑡

 
Average line segment lengths multiplied by the ratio 
between tree and crown heights 

F4 ∑ 𝑎𝑥𝑦𝑛𝑘
𝑛=1

𝑘
 

Average line segment angles (rad) measured from the x-y 
plane to the line 

F5 ∑ 𝑏𝑥𝑦𝑛𝑘
𝑛=1

𝑘
 

Average line segment angles (rad) measured from the y 
axis to the line projected onto the x-y plane 

where k = number of clusters at the end of the clustering algorithm, Nc =  number of 

points in the crown, Ln = length of the line in the cluster, Ht = Tree height, Hc = Tree 

crown height, axy= angle between each line segment to xy plane, bxy =  angle between the 

projected line to y-axis  
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Table 3-1 (b) 

No. Equation Description 
F6 

(�
𝑁𝑛
𝑁𝑐

𝑘

𝑛=1

) ÷ 𝑘 
Average number of points in each cluster divided by 
the number of points in the crown 

F7 
(�

∑ 𝑑𝑁𝑛
𝑙=1 𝑙
𝑁𝑛

)
𝑘

𝑛=1

÷ 𝑘 
Average of the average orthogonal distance from each 
point to the line in the crown 

F8 
(�

∑ 𝑑𝑁𝑛
𝑝=1 𝑝

𝑁𝑛
)

𝑘

𝑛=1

÷ 𝑘 
Average of the average orthogonal distance from each 
point to the plane in the crown 

F9 (F7 ÷ 𝐻𝑐) × (F8
÷ 𝐻𝑐) 

 

F7 divided by the crown height multiplied by F8 
divided by the crown height 

F10 
(�

𝑉𝑛
𝑁𝑛

)
𝑘

𝑛=1

÷ 𝑘 
Average volume of the convex hull for each cluster 
divided by the number of points in the cluster 

Where  Nc =  number of points in the crown, Nn = number of points in the cluster, dl = 

orthogonal distance from each point to the line, dp = orthogonal distance from each point 

to the plane, Vn = convex hull volume for cluster n, Nc =  number of points in the crown. 
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Table 3-1 (c) 

No. Equation Description 
F11 𝑉ℎ − 𝑉𝑎

𝑉ℎ
 Difference between the convex hull and alpha 

shape volumes compared to the convex hull 
volume 

F12 𝐴ℎ − 𝐴𝑎
𝐴ℎ

 
Difference between the convex hull and alpha 
shape areas compared to the convex hull area 

F13 𝑉ℎ
𝑁𝑐

 Volume of the crown convex hull divided by the 
number of points within the crown 

F14 𝑉𝑎
𝑁𝑐

 Volume of the tree crown alpha shape divided by 
the number of points within the crown 

F15 ∑ 𝑑𝑁𝑐
𝑛=1 ℎ
𝑁𝑐

 
Average distance from each point to the closest 
facet of the convex hull  

F16 
�∑ (𝑑ℎ

𝑁𝑐
𝑛=1 − F15)2

𝑁𝑐
 

Standard deviation of orthogonal distances from 
each point to the convex hull 

F17 F15 ÷ F16 Coefficient of variation 
Where Va = volume of the alpha shape of the tree crown, Vh= volume of the convex hull 

of the tree crown, Aa = area of the alpha shape of the tree crown, Ah = area of the convex 

hull of the tree crown, dh = orthogonal distance form each point to the closest convex hull 

facet, Nc =  number of points in the crown. 
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Table 3-1 (d) 

No. Equation Description 
F18 

� � 𝑉𝑖𝑗

𝑁𝑐

𝑗=𝑁1

𝑁𝑐

𝑖=𝑁1

 
Where i≠j; sum of overlapped volume between ith and jth 
spheres 

F19 𝑁𝑖𝑗 Overlapped count of points captured by ith and jth spheres 
F20 F18 ÷ 𝑁𝑐 Overlapped volume divided by the number of points within the 

crown 
F21 F19 ÷ 𝑁𝑐2 Count divided by the square of the number of points in the 

crown 
Where Vij = overlapped volume between ith and jth speheres, Nij = count of points 

captured by ith and jth spheres, Nc = number of points in the crown 

 

 

Table 3-1 (e) 

No. Equation Description 
F22 

𝐻𝑡 ÷ �𝐴𝑥𝑦
𝜋

 
Tree height divided by the radius of the crown is circular when 
projected to x-y plane 

F23 
𝐻𝑐 ÷ �𝐴𝑥𝑦

𝜋
 

Crown height divided by the radius of the crown is circular 
when projected to x-y plane 

F24 𝐻𝑐
𝐻𝑡

 Crown height divided by tree height 

Where Axy = area of tree crown projected to x-y plane 
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3.2.1.1 Feature reduction analysis 

Feature reduction aims to produce a compact classification model by removing 

redundant features, whereby classification accuracy may decrease slightly, but at the 

benefit of a much simpler model and data requirement. Therefore, feature reduction is a 

trade-off between efficiency and accuracy, and it is often a subjective choice on how 

many features should be removed. To select six features from the original 24, first, 

correlations among features are examined so that highly correlated features can be 

removed to avoid issues of multi-collinearity. Five features are removed if feature 

correlation value is higher than pre-specified threshold of 0.85, which was empirically 

determined.  

This simple threshold scheme facilitated eliminating obvious cases in feature 

correlation at the beginning of selection process; then further feature selection process 

concentrated on remained features. The features are sorted with mean decrease accuracy 

provided by Random Forests in descending order and analyzed the cumulative mean 

decrease accuracy for the 19 features. The rate of change in cumulative mean decrease 

accuracy measures the relative importance of a feature in relation to the rest of the 

features. The slope of the linear regression is steeper for the first 6 features (2.6) 

compared to the rest of the features (0.9) because relative importance for the first six 

features is higher from the rest of the features. To further support the decision, a method 

similar to Hudak et al. (2008) is applied, analogues to backward stepwise analysis: the 

classification was performed 20 times with the remaining set of 19 features and the 
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average classification accuracy was recorded. Features were removed one at a time 

followed by re-classification until a single feature remained. In general, it can be 

observed that the classification accuracy decreased when more features are being 

removed. The rate of change of classification accuracy is less for the first six features 

compared to the rest of the features. Smaller changes were observed during the removal 

of six important features because by removing one of these important features from the 

classification, there are other important features remained in the bin that is sustaining the 

high classification accuracy, therefore, further reduction is required. As the classification 

rate dropped more rapidly (steeper slope), that means this process have removed enough 

important features so that accuracy is dropping at a higher rate. It can be observed that 

from the dataset, the six most important features will lead to 8% classification reduction 

whereas the rest of the 13 (not as important) features will lead to a 43% accuracy 

reduction. From the above analyses, six features are retained for further classification 

purposes. To show the correlation between the selected six features, the pairwise 

correlation among the selected six features is listed in Table 3-2. These features are 

renamed to Features I, II, III, IV, V and VI for this paper. 
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Table 3-2 Pairwise correlation among the selected six features 

  FI FII FIII FIV FV FVI 

FI 1.00 0.07 -0.01 0.04 0.02 0.03 

FII 0.07 1.00 0.46 0.73 0.60 0.75 

FIII -0.01 0.46 1.00 0.23 0.58 0.40 

FIV 0.04 0.73 0.23 1.00 0.42 0.58 

FV 0.02 0.60 0.58 0.42 1.00 0.70 

FVI 0.03 0.75 0.40 0.58 0.70 1.00 

 

3.2.2 Selected feature derivation 

The six selected features are described in Table 3-3. Features I, II and III relate to 

LiDAR point distributions within the crown (internal) and features IV, V, and VI relate to 

LiDAR point distributions at the outer surface of the crown (external). This dissertation 

defines external features as those related to the 3D boundary of interest and describes the 

shape of the crown. In contrast, internal features are those that describe the geometric 

structures within the defined boundary (clusters, lines, and planes that summarize the 

LiDAR point cloud). However, hard boundary for the crown is not defined, thus surface 

points and internal points are not mutually exclusive, meaning a particular point can be 

considered as an external point or internal point. 
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Table 3-3 List of the selected six features 

No. Equation Description 

I 

t

k

n
n

Hk

L

×

∑
=1  

Average line segment lengths divided by tree height 

II 

t

c

k

n
n

H
H

k

L
×

∑
=1  

Average line segment lengths multiplied by the ratio between 
tree and crown heights 

III 
c

N

Ni

N

Nj
ij NV

c c

÷







∑∑
= =1 1

 
Overlap volume divided by the number of points within the 
crown 

IV 

c

h

N
V  

Crown’s convex hull volume divided by the number of points 
within the crown 

V 

c

N

n
h

N

d
c

∑
=1  

Average distance from each point to the closest facet of the 
convex hull 

VI 

t

c

H
H  

Crown height divided by tree height 

Where k = number of clusters at the end of the clustering algorithm, Ln = primary axis 

length of cluster, Ht = Tree height, Hc = Tree crown height, Vh= volume of the convex 

hull of the tree crown, Nc =  number of points in the crown, dh = orthogonal distance form 

each point to the closest convex hull facet, Vij = overlapping volume between ith and jth 

spheres 
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3.2.2.1 Internal features (I, II and III) 

The aim for Features I and II was to characterize the linear structures within tree 

crowns, which would require the construction and extraction of linear features evident 

within the LiDAR point clouds defining individual trees. Such extractions further 

necessitate the linking of nearby points, based on their association in space and in 

belonging to common elements within the crown. In order to derive the line and cluster 

related geometric features, a cluster merging-and-splitting algorithm is written in 

MATLAB®. The merging process involves over-segmenting given LiDAR points and 

then iteratively merging the segments to produce a coarsely clustered crown. The 

subsequent splitting process involves identifying the errors produced by the merging 

process due to over-merging, and accordingly splitting those clusters into an appropriate 

number by testing hypotheses until a final and optimally clustered crown is generated.   

In the first part of the algorithm, the cluster merging process takes input from a 

LiDAR point cloud for a single tree, which is initially segmented into clusters using k-

means clustering. The initial clustering partitions the individual tree crown into k = 100 

clusters of LiDAR points. A 100 clusters tree (empirically selected) is chosen as a 

starting point because at this level, tree crowns were observed to be over-segmented; 

thus, points clearly belonging to a single branch were separated into multiple clusters. 

Then, pairs of these over-segmented clusters were merged if the candidate pair met 

certain conditions.  
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In order to determine whether two clusters should be merged, first, Euclidian 

distances between the k centroids of the over-segmented clusters are calculated. The 

centroids were then paired with the next closest centroid according to a computed 

distance. The centroid pairs were ranked based on this distance, with the closest distances 

being ranked highest. Additionally, the angle difference between the normal of the best-

fit planes for each of the paired clusters is calculated. To estimate this angle difference, 

this algorithm adopted Principal Component Analysis (PCA) to approximate 3D planes 

for each cluster. PCA computes the principal components of each of the clusters within 

the tree; the first principal component defines the dominant direction of the cluster and is 

used as the direction vector in the following step. The second component is perpendicular 

to the first and is used as the normal for the plane. Planes for each cluster were defined by 

the normal vector and the centroid of the cluster, where a is the angle between the normal 

vectors of the paired planes. Cluster pairs with a lower a show a higher degree of surface 

normal similarity. Cluster pairs based on these two criteria (distance proximity and 

surface normal similarity) were ranked in order and used for a final hypothesis-validation 

process that determined the two clusters to be merged. In this step, each candidate pair 

was forced to merge, by which the original (prior to merging) and final (post merging) 

residuals (sum of distances from each point to the best fit plane) were calculated and the 

change (difference) was recorded. The change in residual is presented as a percentage 

from Equation (3.1), where Ro is the summation of residual distances prior to merging 

and Rn is the new summation of residual distances after merging. A small change 
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indicated that the pairs are likely to be coplanar and there was a higher chance that these 

two pairs belong to one bigger cluster. 

 

%100×
−

=
o

on

R
RRRδ                  (3.1) 

 

An optimal merging pair was determined by selecting the pair that has the 

smallest percentage change in Equation (3.1) among all potential pairs considered for 

merging within a predefined threshold. In this chapter the threshold was determined by 

using the 75th percentile of the percentage change Equation (3.1) at k =100, such that the 

value varied among individual trees. The merging process continued until no candidate 

pair satisfied the aforementioned three conditions (proximity, surface normal similarity, 

potential merge test). The result from the clustered crown was used as an input for 

refining the splitting process.   

As the second part of the algorithm, the splitting process served two purposes; the 

first was to identify clusters that were incorrectly merged (overly merged) and the second 

was to correct them. All clusters derived from the merging process produced the 

following five values for evaluation. 

 

Let Vk be the convex hull volume for cluster k and Nk be the number of points in cluster k   
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Vk
Nk

      (3.2) 

As this value increase, it indicates that a cluster have a large volume relative to 

the number of points within the cluster; thus the cluster is likely better represented by 

more than one cluster.  

Let dp be the orthogonal distance from each point to the best fit plane and Nk be the 

number of points in cluster k.  

 

∑ dNk
p=1 p

Nk
      (3.3) 

 

As this value increase, the cluster is likely non-planar.  

 

Let dl be the orthogonal distance from each point to the best-fit line and Nk be the number 

of points in cluster k.  

 

  
∑ dNk
l=1 l
Nk

      (3.4) 

 

As this value increase, the cluster is likely non-linear.  
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Let )ˆ,ˆ,ˆ( kkk zyxp =  be the direction vector of the best-fit line passes through cluster k 

pointing away from the center of the point cloud 

  

tan-1 zk�

�x�k
2+y�k

2
 ∈ �0, π

2
�     (3.5) 

 

As this value increase, or closer to 𝜋
2
 , the line derived from the cluster is likely 

vertically oriented, which would be better represented by multiple lines, assuming that 

branching is typically more horizontal. 

Let )ˆ,ˆ( kk yxq =
  be the x and y component of p  described in Equation (3.5); 

c=(
∑ xji
j=1

i
,
∑ yji
j=1

i
) and i represent the number of points in the given tree crown. Let r=(cx, 

cy) be the x and y component vector point from point c to mid-point of the segment q . 

 

cos-1 q��⃗ ∙r�⃑
|q��⃗ ||r�⃑ | ∈ �0, π

2
�          (3.6) 
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As this value increase, or closer to 
2
π , the derived line does not originate from the 

centre of the tree; instead, the line forms a skew line with the vertical, central axis of the 

crown.  

Since Equation 3.2 to 3.6 have different ranges, to capture the potential 

commission errors from the merging step, each of the five criteria was used to select eight 

clusters with the highest values of each. The number of clusters was determined 

heuristically to achieve optimal performance. The total number of clusters needed to be 

considered in the splitting step equals to the union of all clusters was recorded. They will 

be assigned for testing in the next step.   

The last step of the algorithm iteratively splits each of the identified clusters into 

an increasingly larger number of clusters (up to four clusters) by k-means clustering and 

the percentage change of residual distances from each point to the line is calculated using 

Equation (3.1). For any identified cluster, the residual distance will decrease as the 

number of splits increases. This is because fitting multiple lines through a fixed number 

of points will improve fitting, until an extreme case where each line consists of only two 

points; in this case, the residual distance will be 0. The changes in residual distances were 

recorded in each split and the optimal number of splits was determined by the maximum 

change in residual distances. A tree crown with multiple clusters was formed. Figure 3-1 

is a flow chart that summarizes the merging-splitting algorithm for deriving the cluster, 

line and plane geometric features. Feature I records the average line segment lengths with 
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respect to the tree height and Feature II records the average line segment lengths with 

respect to the ratio between tree crown height and tree height. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Flow chart summarizing the merging-splitting algorithm for deriving 

geometric features 

 

Feature III quantifies the amount of clustering among points within the tree 

crown. In this section, the idea from Ko et al. (2009) was extended to three dimensions. 

Step 1: Over- segmentation of tree points, using k-means clustering (k = 100) 

Step 2: Merging candidate cluster one by one (three criteria) 

1. Euclidean distance of centroids 
2. Normal vector of planes 

3. Residual distances 

Step 3: Splitting candidate cluster for refinement (five criteria) 

1. Large cluster size with few points 
2. Cluster does not appear planar 

3. Cluster does not appear linearly 
4. Derived lines appear vertical 

5. Derived lines does not originate from center of the tree 

Step 4: Draw best fit lines and planes through resulting clusters, derive geometric 
attributes 
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The points from the point cloud were buffered into spheres and the amount of 

overlapping volume between spheres was calculated. This information was used to study 

point proximity within crowns. Similar to 2D buffering, where circles intersect and 

overlap with a common area, three dimensional buffering has an intersection of spheres, 

where the intersection is measured as a common volume. If the spheres are not touching, 

the volume overlap will equal zero. If the point clouds are spatially clustered within the 

tree crown, the probability of each sphere overlapping each other increases, which will 

result a higher total overlap volume. The buffering distance was chosen to be 2% of the 

crown height to avoid scaling issues because if a fixed radius is chosen, small trees will 

end up having a relatively large sphere overestimating the volume of overlap. Feature III 

totals all of the overlap volumes and divides that value by the total number of points 

within the tree crown.  

3.2.2.2 External features (IV, V and VI) 

Features IV and V involve the calculation of a 3D convex hull, and the goal of 

these two features is to capture the geometric characteristics of tree crowns as a whole, 

rather than as segmented clusters. A convex hull is a convex 2D shape containing a set of 

points (Hornberg, 2006). In three dimensions, the convex hull of a tree crown becomes a 

solid convex volume formed by three-dimensional triangulations that contain all of the 

LiDAR points within the given tree crown. Feature IV calculates the total volume of the 

convex hull, dividing that value by the total number of enclosed points; this feature 

quantifies whether the crown has points that are tight and compact (low volume per the 

number of LiDAR points in each cluster) or loose and sparsely distributed clusters (high 
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volume per the number of LiDAR points in each cluster). Feature V provides the average 

distances from each point to the closest convex hull triangular facet. If all the LiDAR 

points lie on the facets (perfectly smooth crown), the value of this feature would be 0. 

However, if the LiDAR pulses penetrate deep inside the crown, the value of this distance 

will be large. The distance from each point to the closest triangular facet of the convex 

hull is  

 

dh = |Projvw���⃑ | = |v��⃗ ∙w���⃗ |
|v��⃗ |         (3.7) 

 

where v is the normal vector of the closest triangular facet with a given LiDAR 

point, and  | v | = 1; w  is the vector from the LiDAR point to one of the closest convex 

hull vertices. The distances were recorded in a column matrix and the sum of the 

distances was recorded. The distances from each point within the LiDAR cloud to the 

internal wall of the convex hull differentiates tree crowns based on their ability to permit 

penetration by LiDAR pulses. Feature VI outlines the shape of the tree as a whole object, 

describing the height of the crown relative to tree height. 

3.2.3 Random Forests Classification 

Random Forests is used to perform the classification of tree crowns. Random 

Forests is an ensemble classifier comprised of many classification trees for categorical 

data, or regression trees for continuous data trained from a subset of the data (Breiman, 
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2001, Liaw and Wineder, 2002). Unlike classification tree or regression tree analysis, 

where a single classification tree is produced for classification, Random Forests 

constructs a user-defined number of trees, Ntree, by using randomly selected feature 

variables. For each iteration of classification tree construction, a subset of the data is 

drawn by sampling with replacement (a bootstrap sample), where about ⅓ of the data 

(out-of-bag data or OOB data) is set aside for testing the classification accuracy of the 

current tree and ⅔ of the data (in-bag data) is used to construct a single decision tree. In 

Random Forests, the decision tree grows by consequently splitting a parent node into 

binary descendent nodes, by using the random subset of features. The best split at each 

node is defined by an optimal feature subset that minimizes the class impurity within the 

descendant nodes.  

Random Forests classification has successfully been employed in forestry 

applications. For example, Falkowski et al., (2009) used 34 features derived from 

LiDAR, then reduced the number to 9 to classify successional forest stages. Martinuzzi et 

al., (2009) used Random Forests to classify snag types by deriving 34 LiDAR features 

(19 of them related to the canopy height point distribution and 15 of them related to the 

topographic information). The implementation of classification algorithm is completed 

within the randomForest package for R (R Development Core Team, 2011; Breiman, 

2001). The main input parameters of Random Forests for classification include: 1) 

training sample labeled with known species and geometric features, 2) the number of 

feature variables randomly sampled at each split (mtry, 3 for this research paper), 3) the 

number of trees generated within each iteration (Ntree, 1000 for this research paper) and 
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4) Minimum size of terminal node (Nodesize, 1 for this research paper). Random Forests 

produces the following output: 1) a classification tree generated using in-bag training 

data, 2) the percentage of mis-classification using OOB data passing through the 

constructed tree (OOB classification error), and 3) a ranking of each feature variable's 

importance measured using OOB data. The overall prediction error (OOB classification 

error) is the majority vote from all individual trained trees.  

The importance of each feature can be calculated by estimating the OOB error 

that is recorded for each tree, e. Then, for each feature, ff, where f=1…6, the randomly 

permuted fth feature is used and therefore will produce a new OOB error ef. Importance 

can be measured by calculating ef – e, averaged over all trees and normalized by the 

standard deviation; this is called the mean decrease accuracy. If a feature has a large 

value for the mean decrease accuracy, it signifies that the feature is more important in 

classifying the tree genera.  

When considering the optimal amount of data for training for any supervised 

classification, one need to consider the error caused by changing the training size. The 

bias of classification measures the quality of match, and the variance measures the 

precision of match; both can be lowered with a large training size (Duda and Harts, 

2000). Unfortunately, the reality of having a large training size is impractical because it 

would involve abundant ground validation data that is prohibitively expensive to collect. 

In order to select the optimal percentage for segregation training and validation data 

while running Random Forests, the classification accuracy is tested with an increasing 

proportion of training data. Starting with 5% of the data for training (95% for validating), 
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the training data increment in 5% steps until it reached 95%; at each partition, Random 

Forests is ran 20 times. 

3.3 Results and discussion 

3.3.1 Selected features 

Features I and II are the average derived line lengths of the tree height and the 

ratio between crown height and tree height respectively. They are both obtained from the 

results from the merging-and-splitting algorithm. Figure 3-2 shows an example of a pine 

tree (it is found that pine trees have the most organized structure and therefore use them 

for illustation). Figure 3-2(a) shows a pine tree with clustering completed manually by 

visual analysis, where lines on the figure represent the best-fit lines through each cluster. 

Figure 3-2(b) shows the same pine tree with lines derived after the merging process 

(merging in adherance to the three defined conditions). It is evident that some lines are 

vertically oriented and are thus representative of clusters that are overly merged. Figure 

3-2(c) shows the same pine tree after running both the merging and splitting algorithms. 

These two features are designed to separate trees that have long line lengths (larger 

cluster size) with short line lengths relative to the tree height and crown height. Maples 

have relatively longer line segments due to their large crowns, while poplars tend to have 

shorter line segments due to their smaller crowns. 
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Figure 3-2(a) shows the result of a manually clustered conical tree; (b) shows the result of 

the lines derived from the merging process and (c) shows the result of the lines derived 

from the splitting process. 

 

The 3D buffering feature (Feature III) is designed to distinguish trees that have 

clusters detected inside their crowns from those trees that do not. This feature highlights 

the spatial distribution of points by clumping points that are close together and it is 

important for the analysis of the spatial relationship (proximal spacing) among the points; 

the density of the points within a given volume plays a substantial role in determining the 

general tree form, and hence genera and perhaps species. Pine trees have layered 

branching structures, resulting in LiDAR points that are located as compact, horizontally 

layered clusters mimicking the branching, whereas poplars with spherical crowns have 

LiDAR points that are more evenly distributed within the volume of the crown, causing a 

lower value for this feature. Figure 3-3 shows the result for this feature that sums all the 
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volumes from overlapping LiDAR points if each point were buffered outward by a 

distance equaling 2% of the crown height.  

 

 

Figure 3-3 Example (a) pine tree, (b) poplar tree, and (c) maple tree; all crown points 

buffered outward by a distance equal to 2% of the crown height. 

 

Feature IV is designed to quantify the point density of a given crown (i.e., how 

much space each point occupies within a crown); poplars tends to have smaller values 

whereas maples have the largest values. This is explained by the fact that most maple 

samples have a high density of points at the crown top and center portion of the tree, and 

less at the bottom and the sides, resulting in an underestimation of tree crown volume 

when constructing convex hull. Moreover, there is a lot of crown overlap with 

neighboring trees; therefore, single tree delineation may sometimes only consider the 
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central portion of the maple tree, resulting in an overestimation of crown point density. 

Conversely, poplars have smaller crowns but with LiDAR points more evenly distributed 

throughout. The disadvantage of this feature (compared to buffering) is that it averages 

the point density over the entire crown, so localized clusters (portion of the tree crown 

with high point density) are not well represented.  

Feature V is designed to differentiate crowns that permit LiDAR signals to reach 

to the inside of the crown from the tree crowns that do not. Large values indicate points 

that are far away from the convex hull wall (more points are deep inside the crown). Pine 

has the highest value because pine tree crowns are more open and are comprised of 

smaller leaves, thus more points are recorded within the crown. Feature VI calculates the 

ratio between the crown and tree heights. Figure 3-4 shows a schematic diagram of the 

pine, poplar, and maple trees; box plots for tree and crown heights are included to show 

the distribution of tree size sample of the dataset. Maples have a ratio close to one and 

poplars tend to have the smallest ratio.  

  

61 
 



 

 

Figure 3-4 A schematic describing the components of Feature VI; box plots for tree 

height and crown height for each tree shape is included to show the distribution of tree 

size sample of the dataset. 

 

3.3.2 Random Forests results 

An optimal training set size is tested to maintain an effective classification by 

randomly partitioning the 186 tree samples into training and validation sets in varying 

proportions, using the six selected features. At each partition, Random Forests is 

performed 20 times and mean classification accuracies were recorded as indicators of 

classifier performance. Figure 3-5 shows the learning curve presenting the mean 

classification accuracy versus the proportion of training samples relative to those used for 

validation. The mean validation accuracy does not change much with a larger training 

62 
 



proportion above ~25%. The figure also shows that by using only 5% of the data for 

training, the accuracy already approaches 74%. In this chapter, 25% of the data is 

designated to run Random Forests and 75% of the data to validate the results. 

 

 

Figure 3-5 The average change in classification accuracy with increasing proportion of 

training data. Bars represent the minimum and maximum accuracy over 20 iterations. 

 

When using a 25:75 percent ratio of training to validation data, the average 

classification accuracy was 88.3% over 20 iterations (Table 3-4) shows a confusion 

matrix for the validation accuracy averaged over 20 iterations. Figure 3-6 depicts the 

mean decrease in accuracy for the six selected features; Feature VI is the most important 

and indicates the importance of visualizing a tree as a whole object. Although the density 

of point distribution decreases with the depth of penetration within the tree crown, Yu et 

al. (2011) demonstrated that the most important features for predicting tree attributes are 
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situated near the top of the tree. It is nevertheless important to consider all points within 

the tree structure because the overall shape of the tree plays a significant role in 

classification. The second most important feature is Feature III, 3D buffering, and this 

shows the importance of inspecting information internal to the crown. Internal geometric 

information from the crown is difficult to obtain by methods of data acquisition other 

than high density LiDAR data, which allowed the derivation of such information. Of the 

six selected features from the entire set of 24, three features are related to internal crown 

geometry (I, II and III), further demonstrating the significance of internal geometry for 

tree genera classification.  

 

 

Figure 3-6 The mean decrease permutation accuracy for selected 6 features. 
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Table 3-4 Confusion matrix for the validation accuracy averaged over 20 iterations using 

25% of the data for training using Random Forests. 

      Expected     

    Pine Poplar Maple User's Accuracy (%) 

Pr
ed

ic
te

d Pine 43.0 6.7 0.7 85.5  
Poplar 5.0 37.8 0 88.4  
Maple 1.7 0.2 25.1 93.1  

  
Producer's 
Accuracy (%) 86.6 84.8 97.5   

 

 

3.3.3 Classification performance for individual site 

Figure 3-7 shows the classification rate for individual sampling sites using 25% of 

the data for training and 75% of the data for validation. The classification rate was 

calculated as the number of times a tree is correctly classified during the 20 iterations. 

Poplar2 had the highest classification accuracy (close to 100%) because spherical trees 

alike to poplars are the most unique in overall tree form, where the size of the tree crown 

is smallest and the spatial point distribution within the tree crown is even, relative to the 

crown height. The poplars at Poplar2 are well separated, as they are open canopy sites 

with minimal understory growth; thus, tree detection and crown isolation are simplified 

and improve classification accuracy. Pine1, Pine2, Maple1, Maple2, and Maple3 have 

classification rates ranging from 76% (Pine2) to 98% (Maple2). The Corridor site had the 

lowest classification rate (66%), as trees on that site represent more heterogeneous 
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environmental conditions than other sites (shadowing, high density of stems, intertwined 

crowns, tall and dense understory). 

 

 

Figure 3-7 Classification rate for individual field sites averaged over 20 iterations. 

 

3.4 Conclusions 

In this chapter, the possibility of using geometric features to classify trees into three 

genera with a perspective different from the traditional vertical profile approach is 

examined. New descriptors for point cloud processing designed for tree classification 

applications are developed. Flying at low altitudes allowed LiDAR signals to better 

penetrate the tree canopy, providing a dataset with high point density and the possibility 

of deriving geometric features representative of crown interiors. Six geometric features 

are identified, which help to efficiently classify tree genera. Of all features, the overall 
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shape of the tree plays a significant role in identification, meaning that it is important to 

interpret trees as whole objects. As a result, a precise single-tree segmentation algorithm 

is important for classification accuracy. In this chapter, a manual approach is chosen to 

isolate single trees within the LiDAR point cloud to test the performance of the geometric 

features. However, for operational applications, automatic tree delineation will have to be 

implemented. 

3D buffering of features was the second-most important feature, and was 

particularly effective in highlighting the tree branching structures observed in coniferous 

trees (Figure 3-3.). Random Forests is performed for the classification and it is found that 

by using only 5% of the data for training, 74% classification accuracy can be achieved. 

The average accuracy over 20 iterations when using 25% of the data for training was 

88.3%. Additionally, Random Forests produced feature importance measurements that 

allowed us to gain knowledge about the effectiveness of each feature for genus 

identification. Three selected features are associated with the internal structures of the 

crown and three related to the overall tree crown. This project selected 160 trees from 

eight field sites, taking local environmental variations in considerations. The 

classification rate for Corridor was lower than for Poplar1, Poplar2, Maple1, Maple2, 

Maple3, Pine1 and Pine2 because of the heterogeneous environmental conditions. It is 

believe that the classification accuracy is related to the quality of the segmentation of 

LiDAR point cloud, such as the completeness of the tree crown (no shadow), effective 

removal of understory, and minimally intertwined crowns. The classification accuracy for 
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any site that is near or on the transmission lines, with good quality single-tree 

segmentation, will yield a high classification rate.  

Further investigation is necessary in order to successfully classify trees from the 

genus, to the species level. This would require having substantially more samples as well 

as additional features and classes to train the Random Forests algorithm. This chapter 

also emphasizes the importance of having high quality LiDAR data that includes a 

sufficient point density, non-occluded crowns, and crowns are spatially separated to 

permit easy extraction of individual trees. While this may allow the development of high 

quality exemplars of tree genera, in reality, the development of second-generation 

algorithms will need to deal with closed canopy situations. Finally, techniques for 

understory removal or suppression are warranted to yield accurate measurements of 

crown base heights for overall tree shape analysis.  

 

  

68 
 



4 Chapter 4 Ensemble classification of tree genera   
 

This chapter will discuss an ensemble method for the classification of tree genus 

using LiDAR (Light Detection and Ranging) data. The two classifiers use different sets 

of features: 1) features derived from geometric information, and 2) features derived from 

vertical profiles using Random Forests as the base classifier. The result shows that 

classification accuracy can be improved by combining these two classifiers compared 

with classification using an individual classifier. An additional point-density analysis is 

performed to study the influence of decreased point density to classification accuracy 

results. The training genera include pine, poplar, and maple within a study area located 

north of Thessalon, Ontario, Canada. The average classification accuracy for the 

geometric classifier and vertical profile classifier are 88.0% and 88.8%, respectively, 

with improvement to 91.2% using the ensemble method. 

4.1 Introduction 

The ability of airborne LiDAR to acquire 3D information has spawned many 

forestry applications, for example: Holmgren and Persson (2004); Barilotti et al. (2009); 

Brandtberg (2007); Kato et al. (2009); Ørka et al. (2007, 2009); Vauhkonen (2008, 2009, 

2010); Korpela et al. (2010) and Kim et al. (2011). The objective of this chapter is to 

discuss and apply classification using an ensemble method using two types of features. 

An ensemble method in classification is the training of multiple classifiers to solve the 

same problem. Ensemble classification in different disciplines has been called 

committee-based learning, multiple classifier systems, or the mixture of experts 
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(Samadzadegan et al., 2010; Ruta and Gabrys, 2000; Zhou 2012). The major criterion for 

an effective ensemble system is to provide an increase in classification accuracy (Ali and 

Pazzani, 1996; Breiman 1998 and Kavzoglu and Colkesen 2013); examples of such 

studies in remote sensing include Samadzadegan et al. (2010); Liaw and Wiener (2002); 

Kumar et al. (2002) and Kavzoglu and Colkesen (2013).  

The first set of features used for classification derived from the geometry of the 

LiDAR point distribution reflected from the tree. Previous studies with a similar 

approach for obtaining tree species/genera metrics include Barilotti et al. (2009) and Kato 

et al. (2009), both fitting curved surfaces to the individual LiDAR tree crowns to obtain 

characteristic shape metrics. Vauhkonen (2008, 2009, 2010) compute the alpha shapes of 

tree crowns and obtain metrics from the shapes for tree species classification; in 

particular, Vauhkonen (2010) showed a classification rate of 78% classifying Scot pine, 

Norway spruce and deciduous trees.  

The second set of features used derived from the vertical profile of the reflected 

LiDAR points, including the statistics summarizing the point distribution within specific 

height percentiles or the entire profile. Examples of research using the vertical 

distribution of height and/or intensity include Holmgren and Persson (2004) who 

classified Norway spruce and Scots pine, achieving an accuracy of 95%, Brandtberg 

(2007) classified oak, red maple and yellow poplar with an accuracy of 64%; Ørka et al. 

(2007, 2009) achieved an accuracy of 74% for classifying spruce, birch and aspen, and 

88% for classifying large Norway spruce and birch trees respectively. Korpela (2010) 

achieved an accuracy of up to 90% classifying Scots pine; and Kim et al. (2011) 
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distinguish 8 deciduous from 7 coniferous genera with up to 74.9% classification 

accuracy. 

In the previous chapter (Chapter 3), 24 features were derived based on geometric 

information; a full list of geometric and vertical profile features are shown in Table 3-1 

and Table 4-1 Subsequently the number of features were reduced to 6 and 26 respectively 

and an ensemble method was introduced that combines the two classifiers and improves 

classification results. Vauhkonen et al. (2008) Magnusson et al. (2007) also demonstrated 

that the accuracy in estimating tree attributes decreases when pulse density decreases; 

thus an additional density sensitivity analysis was performed to assess the lower limit for 

the suggested classification scheme.  

4.2 Methods 

Geometric features were derived by clustering LiDAR point clouds that represent 

individual trees. The merging-splitting algorithm that groups representative points 

(belonging to a single branch) into a common cluster is described in Chapter 3. Best-fit 

lines passing through each cluster centroid are drawn and the characteristics of those lines 

are calculated. The feautres also include metrics related to the convex hull of the LiDAR 

point cloud and 3D buffering of individual points.  
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Table 4-1 Summary of features derived from vertical point profile: F= first; S= single; L= 

last; SD= standard deviation; CV = coefficient of variation, source: Ko et al. (2012a) 

10th percentile 50th Percentile 90th percentile 

% of canopy return (V1F, V2S, V3L) 

% return count (V4F, V5S, 
V6L) 

% return count (V7F, V8S, 
V9L) 

% return count(V10F, V11S, 
V12L) 

Mean height (V13F, V14S, 
V15L) 

Mean height (V16F, V17S, 
V18L) 

Mean height (V19F, V20S, 
V21L) 

Mean height of canopy return (V22F, V23S, V24L) 

SD of height (V25F, V26S, 
V27L) 

SD of height (V28F, V29S, 
V30L) 

SD of height (V31F, V32S, 
V33L) 

SD height For canopy return (V34F, V35S, V36L) 

CV height For canopy return (V37F, V38S, V39L) 

Kurtosis of variation height For canopy return (V40F, V41S, V42L) 

Skewness of variation height For canopy return (V43F, V44S, V45L) 

Mean intensity (V46F, 
V47S, V48L) 

Mean intensity (V49F, 
V50S, V51L) 

Mean intensity (V52F, 
V53S, V54L) 

Mean intensity of canopy return (V55F, V56S, V57L) 

SD of intensity (V58F, 
V59S, V60L) 

SD of intensity (V61F, 
V62S, V63L) 

SD of intensity (V64F, 
V65S, V66L) 

SD intensity of canopy return (V67F, V68S, V69L) 

CV intensity of canopy return (V70F, V71S, V72L) 

Kurtosis of variation intensity of canopy return  (V73F, V74S, V75L) 

Skewness of variation intensity of canopy return  (V76F, V77S, V78L) 
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The second set of features (height attributes and intensity attributes) summarizes 

the properties of vertical point distribution within each tree crown, including the mean, 

standard deviation, coefficient of variation, kurtosis and skewness of the height and 

intensity distribution for the entire crown. There are 78 features for each tree derived. 

Table 4-1 summarizes these features. Each tree is height normalized and segmented into 

10 vertical slices. The 10th percentile features represent the LiDAR points belonging to 

the bottom 10th percentile of the tree crown height whereas the 90th percentile features 

represents the points located at the top of the tree. Features include “first of many” 

returns; “single return” and “last of many” returns. Feature numbers are in bold. V1 to 

V12 are attributes related to counting the percentage of points belonging to the first, 

single, or last category in different percentiles. V13 to V45 are features related to 

statistics of height and V46 to V78 are features related to statistics of un-calibrated 

intensity values. Figure 4-1 shows an example tree with its vertical point distribution 

profile from each genus of interest, Figure 4-1 (a), Figure 4-1 (b), Figure 4-1 (c) are an 

examples of pine, poplar and maple respectively.  
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Figure 4-1 LiDAR data for pine (a), poplar (b) and maple (c) examples together with their 

corresponding vertical point distributions. source: Ko et al. (2012b) 

 

4.2.1 Random Forests  

Random Forests itself is an ensemble classifier; it combines many classifications 

(categorical data) or regression trees (continuous data) for making a final labeling 

decision (class labels) (Breiman 2001; Liaw and Wiener, 2002). The classification 

algorithm was implemented within the randomForest package for R (R Development 

Core Team, 2013; Breiman 2001). In Random Forests, about 37% of training data is 

partitioned for estimating the classification accuracy and it is called the out-of-bag (OOB) 

data, whereas using the rest of the data (in bag) for tree construction. The importance of 

each feature can be calculated by first, estimating the OOB error from a classification 

(a)                          (b)                                 (c) 
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tree, e. Second, by random permutation, the fth feature will produce a new OOB error ef. 

Third, the mean decrease accuracy (MDA) value for each feature can be calculated by ef 

– e. This value is averaged over all trees and normalized by the standard deviation. If a 

feature has large mean decrease accuracy, it is a more important feature. Additionally, the 

proportion of vote and margin for each LiDAR tree are calculated and recorded.  

Let 𝑋 ⊂ ℝ𝑓 be the features selected for classification, y be a predicted class label such 

that 𝑦 ∈ 𝐿. According to Schwing et al. (2011), binary indicator variable for voting the L 

instances can be written as 𝑝𝑖(𝑦|𝑋), therefore the average vote for a LiDAR tree to be 

assigned as one of the classes with given X can be defined as (4.1), the summation of all 

votes for the particular class divided by the number of classifiers (T) that make this 

decision: 

 

𝑉(𝑋) = 1
𝑇
∑ 𝑝𝑖(𝑦|𝑋)𝑇
𝑖=1 , where 𝑉 ⊂ ℝ𝐿        (4.1) 

  

The final label (y*) is decided by the majority voting scheme over T base classifiers 

described by (3.1): 

 

𝑦∗ = 𝑀𝑉(𝑋) = argmax𝑦∈𝐿
1
𝑇
∑ 𝑝𝑖(𝑦|𝑋)𝑇
𝑖=1               (4.2) 

 

For the partitioned training data, one can obtain margin, described by Brieman 2001 as: 
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𝑀𝐺(𝑋) = 1
𝑇
∑ 𝑝𝑖(𝑦 = 𝑌|𝑋)𝑇
𝑖=1 − max𝑦≠𝑌 �

1
𝑇
∑ 𝑝𝑖(𝑦 ≠ 𝑌|𝑋)𝑇
𝑖=1 �         (4.3) 

 

For the partitioned validation data, although the field-validated Y is known, 

however, this section will treat it as unknown for estimating the prediction accuracy. 

Assume the correct class label is the maximum proportion of the vote; therefore, the first 

term of the margin is replaced by (4.2) and the pseudo-margin (PG) for the validation 

from the classifiers becomes: 

 

𝑃𝐺(𝑋) = max𝑦∈𝐿
1
𝑇
∑ 𝑝𝑖(𝑦|𝑋)𝑇
𝑖=1 − second_max𝑦∈𝐿

1
𝑇
∑ 𝑝𝑖(𝑦|𝑋)𝑇
𝑖=1  (4.4) 

 

The margin is defined as the distance from the data point to the decision 

boundary. In the randomForest package of R, margin is recorded as the proportion of 

votes for the correct class minus the maximum proportion of the incorrect classes. The 

larger the value 𝑀𝐺(𝑋), the more confident is the correctness of the classification. For 

prediction purposes, margin is calculated by assuming the correct prediction equals to the 

class label from the maximum vote, denoted by 𝑃𝐺(𝑋). The larger the value, the more 

confident can be placed in the prediction and this value will be used to filter out LiDAR 

trees that potentially exhibit incorrect classification from the base classifier. The main 

input parameters of Random Forests include: 1) labeled training samples, 2) the number 

of feature variables randomly sampled at each split (mtry = 2 for the geometric classifier 

and 5 for the vertical profile classifier), 3) the number of trees generated within each 

iteration (Ntree = 1000 for this example) and 4) minimum size of terminal nodes 
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(Nodesize = 1 for this example). Random Forests produces the following output: 1) a 

ranking of each feature variable's importance calculated by mean decrease accuracy 

measured using (OOB) data, 2) a randomForest classification object for testing the 

validation data, and 3) vote and margin calculated for every LiDAR tree and class. 

4.2.2 Feature reduction  

Feature reduction for each classifier is performed in two steps. The first is to 

remove the highly correlated features to avoid issues of multi-collinearity. This is done 

by calculating the pairwise correlation table and then removing features with r > 0.85, an 

empirically determined threshold. The second step is performed by Sequential Backward 

Selection (SBS) (Jain and Zongker, 1997 and Serpico et al., 2002). In SBS, a user-

defined objective function J is needed to assess the performance of the feature subset; the 

optimal subset of features can be chosen by removing one least important feature at a 

time, starting with the full feature set until a single feature remains. By either maximizing 

or minimizing the objective function, the optimal number of features can be determined. 

This framework is applied with MDA values obtained from randomForests. 

First, the cumulative MDA values are calculated and ranked in descending order 

for both classifiers, then plotted against the number of features being removed. Both 

graphs (one for geometric features and one for vertical profile features) show that 

cumulative MDA values decrease as the number of features removed increases. The rate 

of decrease increases because the important features are being removed later. The 

objective function is derived from fitting two linear functions through each curve. The 

first line will regress through cumulative MDA values that are being removed from SBS 
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and the second line will regress through the cumulative MDA values remaining. The rate 

of change (slope) measures the relative importance of the removed feature with respect to 

the rest of the features; the optimum fitting is then found by minimizing the residual sum 

of squares from each point to the lines Equation (4.5). The framework of the feature 

reduction analysis for geometric and vertical profile classifier is shown in Figure 4-2 as a 

flow chart. The result of the analysis for the geometric classifier is shown in Figure 4-3 

(a) and result of the vertical profile classifier is shown in Figure 4-3 (b).  

Let MDA1...MDAf be the mean decrease accuracy calculated from Random Forests 

for features,  f1…ff ranked in descending order, the cumulative MDA plot for geometric 

classifier can be found in Figure 2 and denoted as A(n), where n is the number of features 

removed. f is the total number of features available (19 in this example, reduced from 24 

by the removal of highly correlated features). 

Let li be the linear function through the 1st to nth values and lj be the linear function 

through the nth to fth values such that Pi and Pj be the predicted MDA for the best fit line li 

and lj, respectively.  

 

𝐽 = 𝑚𝑖𝑛 �∑ (𝑃𝑖 − 𝐴(𝑖))2𝑛
𝑖=1 + ∑ �𝑃𝑗 − 𝐴(𝑗)�

2𝑓
𝑗=𝑛 �              (4.5)  
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Figure 4-2 Flow chart showing the framework for the feature reduction analysis 

performed to the geometric and vertical profile classifier.  

Calculate pairwise correlation tables for geometric features and 
vertical profile features, separately  

Remove features with r>0.85 

Calculate Mean Decrease Accuracies (MDA) for the remaining 
features, rank the features in descending order and calculate 

  

Plot cumulative MDA against number of features to be removed 
from the model (n) 

Derive 2 best fit lines where n = 2, calculate the addition of the 
sum of residuals  

Repeat for n = n+1 until n = (all features -2) 

Plot addition of sum of residuals against n, locate minimum n 

Step 1: Removal of highly correlated 
features 

Step 2: Implementation of Sequential 
Backward Selection 

79 
 



 

  

Figure 4-3 (a) Cumulative MDA values for geometric classifiers ((b) Cumulative MDA 

values for vertical profile classifiers) and residual sum of square residual for fitting two 

linear lines through the cumulative MDA curve. Dotted line shows where the residual 

sum of square minimizes. Solid lines represents li and lj at optimized J. 
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In Figure 4-3(a) the result demonstrates that the best subset of features should be 

chosen when 13 features are removed (6 remaining) for geometric classifier. In Figure 

4-3(b), the result demonstrates that the best subset of feature should be chosen when 39 

features are removed (26 remaining) for vertical profile classifier. The advantage of using 

MDA instead of accuracy for setting up J is that MDA calculation can be obtained from 

training data alone.   

4.2.3 Geometric Classifier, Vertical Profile Classifier and Ensemble methods 

Random Forests classifications are performed by using the geometric features and 

vertical profile features selected from the feature reduction procedure. 25% of the 

randomly selected (stratified by class size) data is partitioned for the classification 

scheme and the rest of the data (75%) is partitioned for validation. This 25:75 ratio was 

chosen from Chapter 3. This process is repeated 20 times with 20 different sets of 

training and validation samples and an average accuracy is obtained.  

In this section an ensemble model is described that has been constructed to 

combine decisions sequentially and then in parallel. First the classifiers are run 

individually, from the training data, with the margin of each LiDAR tree recorded from 

Equation (4.3). From the validation data, the proportion vote for each LiDAR tree is 

recorded and the pseudo margin for the validation data can be calculated from Equation 

(4.4). Second, a procedure is adopted to automatically filter out LiDAR trees that are 

potentially misclassified by the first classifier by examining the MG of the training data 

and PG of the validation data. Let σ be the MG boundary in the validation data that 
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separates trees that are potentially incorrect from the trees that are potentially correct. 

Then, σ is estimated from the training data. From the frequency distribution of the 

LiDAR trees that are correctly classified for at least 80% (and less than 80%) in Figure 

4-4, σ is obtained from testing σ = 0,0.05…1.00. Figure 4-4 (a) shows the frequency 

distribution of LiDAR trees that are correctly classified for at least 80% (and less than 

80%) with 20 randomly selected sample subsets. Since both distributions are equally 

important hence the frequency count for both distributions are normalized with a 

maximum of 1. Figure 4-4 (b) shows the normalized frequency distribution of Figure 4-4 

(a). By testing with different σ values, Figure 4-4 (c) shows that the total incorrect 

classification minimizes at σ =0.45 with this given dataset. The MG for the incorrect 

classification at each σ is obtained; σ is chosen such that the total misclassification is 

minimized (at σ = 0.45). Third, from the first classifier, LiDAR trees with PG less than 

0.45 are filtered out and run with the other classifier, ultimately accepting the 

classification decision from the classifier that has a larger PG (parallel ensemble). The 

ensemble processes are repeated 20 times and mean ensemble classification accuracy is 

obtained. The scheme of the ensemble method is depicted in Figure 4-5 for the Geometric 

classifier as the base classifier.  

  

82 
 



   

 Figure 4-4 (a) Frequency distribution of the LiDAR trees that are correctly classified for 

at least 80% (and less than 80%) with 20 randomly selected sample subsets. (b) 

Normalized frequency distribution of (a). (c) Margin for incorrect classification (for more 

and less than 80% chance) and total margin for incorrect classification at different 𝜎. 
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Figure 4-5 Summary of the ensemble method using Geometric classifier as base 

classifier. MGg, MDv = margin obtained from Geometric classifier and Vertical profile 

classifier respectively. Voteg, Votev = Vote proportion obtained from Geometric 

classifier and Vertical profile classifier respectively. Yg*, Yv* = Final prediction from 

Geometric classifier and Vertical profile classifier respectively. 

 

The densities of individual trees are reduced by removing every other point (with 

respect to GPS time recorded by the scanner). Therefore, each LiDAR tree will have its 

original density level (40 pulses / m2), and reduced to 20 pulses / m2, 10 pulses / m2, 5 

pulses / m2, 2.5 pulses / m2 and 1.25 pulses / m2. The classification procedures (individual 

classifiers separately and jointly) are repeated for the different density levels, Figure 4-6 

shows an example of a pine tree with various pulse densities.  
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Figure 4-6 Example pine tree with (a) 40 pulses per m2; (b) 20 pulses per m2; (c) 10 

pulses per m2; (d) 5 pulses per m2; (e) 2.5 pulses per m2; (f) 1.25 pulses per m2 , source: 

Ko et al. (2012b) 

 

4.3 Results and Discussion 

4.3.1 Selected Feature Tables  

From the feature reduction experiment using the geometric classifier, the numbers 

of features have been reduced from 24 to 6 and 78 to 26 for the vertical profile classifier. 

The list of selected geometric classifier features are shown in Table 4-2 and the list of 

selected vertical profile classifier features are shown in Table 4-3.  

 

 

Table 4-2 List of Selected geometric features 

(a) (b) (c) 

(d) (e) (f) 
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No.  Description  

F1 Average derived best bit line segment lengths divided by tree height 

F2        
. 

Average line segment lengths multiplied by the ratio between tree crown 
height and tree height 

F3   
. 

Volume of the tree crown convex hull divided by the number of points in 
the crown 

F4   
. Average distance from each point to the closest facet of the convex hull  

F5             
.                       
. 

Buffer each LiDAR point outward at a radius of 2% of the tree height, 
calculate the overlapped volume of the spheres divided by the number of 
points in the tree crown  

F6 Tree crown height divided by the tree height 

 

  

86 
 



Table 4-3 List of selected vertical profile featureS, F= first; S= single; L= last; SD= 

standard deviation; CV = coefficient of variation 

10th percentile 50th Percentile 90th percentile 

% of canopy return (V1S, V2L) 

% return count (V3F, V4S, 
V5L) 

  % return count(V6F, V7S, 
V8L) 

Mean height of canopy return (V9F, V10L) 

    SD of height (V11F, V12S) 

SD height for canopy return (V13F, V14L) 

CV height for canopy return (V15F, V16S) 

Kurtosis of variation height for canopy return (V17S, V18L) 

Skewness of variation height for canopy return (V19S, V20L) 

Mean intensity (V21L)   Mean intensity (V22F, 
V23S) 

SD of intensity (V24F)     

CV intensity of canopy return (V25L) 

Skewness of variation intensity of canopy return  (V26S) 

 

4.3.2 Classification performance 

By using the geometric and vertical profile classifiers alone, each method 

achieved comparable classification accuracy (88.0% and 88.8% respectively). The 

confusion matrix for classification by geometric and vertical profile derived features is 

shown in Table 4-4. By using the ensemble method, the accuracy is improved to 91.2% 

when the geometric classifier is used as the base classifier and to 90.3% when the vertical 
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profile classifier is used as the base classifier. The confusion matrix for the ensemble 

results is shown in Table 4-5. By using 75% of the 160 LiDAR trees for classification, 

repeated 20 times, results in 2400 trees are being assessed.  

 

Table 4-4 Confusion matrix for individual classifier, Bold number: geometric classifier 

(average accuracy of 88.0%); italic numbers: vertical profile classifier (average accuracy 

of 88.8%). 

  

    Expected 
User's Accuracy (%) 

    Pine Poplar Maple 

Pr
ed

ic
te

d 

Pine 856 906 115 132 19 12 86.5 86.3 

Poplar 123 87 771 736 2 7 86.0 88.7 

Maple 27 13 1 19 486 488 94.6 93.8 

Producer's Accuracy (%) 85.1 90.1 86.9 83.0 95.9 96.3     

 

 

When individual classifiers are compared (Table 4-4), both classifiers have the 

largest errors when trying to separate pine from poplar; this is attributed to the similarity 

between the vertical point distributions for pine and poplar, with points located mostly at 

the top of the tree crown. For the geometric classifier, the ratio between the tree crown 

height and tree height for both genera are also similar, again resulting in confusion. 

Conversely, highest accuracy is observed in maple classification by both classifiers.   

By comparing the results from the geometric classifier alone with the ensemble 
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classification using the geometric classifier as base classifier and results from vertical 

profile classifier alone with the ensemble classification using the vertical profile classifier 

as a base classifier, accuracies for all genera are improved (except for producer’s 

accuracy for maple; vertical profile classifier). This implies that using the margin is 

effective in automatically filtering out LiDAR trees that are difficult to classify by the 

base classifier. The improvements in accuracies also suggest the ensemble method 

outperforms the single classifier alone.  

 

Table 4-5 Confusion matrix for ensemble classification, Bold number: geometric 

classifier as base classifier (average accuracy of 91.2%); italic numbers: vertical profile 

classifier as base classifier (average accuracy of 90.3%). 

     Expected 
User's Accuracy (%) 

    Pine Poplar Maple 

Pr
ed

ic
te

d 

Pine 903 908 94 109 5 21 90.1 87.5 

Poplar 86 80 786 777 3 5 89.8 90.1 

Maple 17 18 7 1 499 481 95.4 96.2 

Producer's Accuracy (%) 89.8 90.3 88.6 87.6 98.4 94.9     

 

 

4.3.3 Density Results  

The relationship between classification accuracy with different pulse densities is 

shown in Figure 4-7, with error bars showing the standard error for each point within the 
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20 trials. For all classifiers, the accuracy stays at about the same level for 40, 20 and 10 

pulses⋅m-2, and then begins decreasing at 5, 2.5 and 1.25 pulses⋅m-2. The geometric 

classifier and vertical classifier show similar results for all density levels except at 1.25 

pulses⋅m-2, where the accuracy for vertical profile classifier is 3% lower than geometric 

classifier. Also, ensemble classification shows higher classification accuracy at all 

density levels. It can be concluded that there are opportunities to reduce the pulse density 

to 10 or 5 pulses⋅m-2, resulting in lower costs in data acquisition and processing handling 

for comparable results, although the tradeoff between classification accuracy and pulse 

density will need to be considered if the pulse densities decrease further. 

4.4 Conclusions 

In this Chapter applied ensemble methods is performed to combine features derived from 

the geometry of LiDAR points reflected from individual trees with features derived from 

vertical point distribution. The advantage of using geometric features is that these feature 

tie close relationship to the biophysical interpretation of trees and the advantage of 

vertical profile features is that they are computationally simple. Table 4-4 shows that 

individual classifiers make different decisions, for example the producer’s accuracy for 

pine has the largest difference. The differences indicate there are potentials for improving 

accuracy after combining the classifiers. By combining the decisions made by the two 

classifiers, the classification accuracy improved from 88.0% to 91.2% if geometric 

classifier is being used as base classifier and 88.8% to 90.3% if vertical profile classifier 

is being used as base classifier. Since the original accuracies (with single classifier alone) 
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are already very high, the marginal improvement that has been made is very challenging. 

The ensemble method has improved the overall classification accuracy however the 

contribution of ensemble to a single classifier has not been studied in this chapter.  

 

 

Figure 4-7 Classification accuracy of Geometric classifier, Vertical Profile classifier and 

Ensemble Classifier, using Geometric classifier as base classifier at different LiDAR 

pulse density levels. 

 

In order to study the performance of the classifiers with the reduction of LiDAR 

point density, an experiment studying the relationship between classification accuracy 

and point density is performed. Result shows that (Figure 4-7) similar classification 

accuracy can be obtained at lower density level (down to 5 pulses /m2) and accuracy 
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dropped for individual classifiers as well as ensemble classifier when density level is 

lower than 5 pulses / m2. Indicating that there is a trade-off between classification 

accuracy and pulse density, however, the trade-off is higher when the pulse density falls 

beyond 5 pulses / m2. This result shows there is room for reducing the pulse density to 

trade for slightly lower classification accuracy, and this normally results in lower costs.  
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5 Chapter 5 Classification with Unknown Class  

The detection of unknown class in a classification system is essential and often a 

common problem. This situation arises when the number of classes in the training sample 

is less than the number of classes in the population. For supervised classifications, 

training samples are required and the selection (or method of selection) of training 

sample (training class size, sample quality) is often a subjective choice. This chapter will 

use ensemble methods to classify tree genera with airborne LiDAR (Light Detection and 

Ranging) data, including an “unknown” class that does not exist in the training sample. 

This chapter also shows that by altering the training sample composition, classification 

accuracy result varies. This indicates classification accuracy can be improved by 

selecting training samples with certain criteria rather than random sampling. This chapter 

uses Random Forests as base classifiers with six derived geometric features from the 

LiDAR data. The training sample contains three tree genera (pine, poplar and maple) and 

the validation sample contains four labels (pine, poplar, maple and “unknown”). 

Classification accuracy improved from 72.8% if training samples are selected randomly 

(with stratified sample size), to 93.8% if samples are selected with criteria; and from 

88.4% to 93.8% if ensemble method is being used.  
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5.1 Introduction 

The use of LiDAR (Light Detection and Ranging) data for tree species / genera 

classification has proven successful in research such as Holmgren and Persson (2004); 

Holmgren et al. (2008); Brandtberg (2007); Kato et al. (2009); Ørka et al. (2007, 2009); 

Vauhkonen (2008, 2009, 2010); Korpela et al. (2010) and Kim et al. (2009, 2011) and is 

gaining more attention because of its ability to obtain 3D information.  However, there 

ar`e two common challenges for using LiDAR to classify tree species / genera and have 

not been discussed in the literature. The first challenge is the existence of tree species 

(classes) in the forest that has not been field validated. In supervised classification, this is 

the problem when the validation data has more classes than the training data. In this case, 

normally an “unknown class” will be assigned to the extra class(es), e.g. Mantero et al. 

(2005) and Muñoz- Marí et al. (2007).  

The second challenge is the acquisition of consistent 3D tree object, due to 

scanning angle, often portions of the tree are occluded by another object (especially 

trees). Moreover, when trees are growing in a closely together, branches (and therefore 

LiDAR points) are often mingled together and become problematic when one try perform 

single tree segmentation. Trees appeared to have multiple tree tops could also be 

confused with multiple single trees. Furthermore, in different environmental conditions 

and age of trees, same tree species can appear very differently in the acquired LiDAR 

data. This results a large variation in training and validation samples, in terms of 

appearance as well as quality. However, this paper take advantage of the variability 

observed from data collected within the same genera. Training data set that contain the 
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most variability were able to educate the base classifiers with better decision boundaries 

and hence improve the overall classification accuracy.  

As discussed in Chapter 2, there are three main approaches for decomposing a 

multi-class classification problem into a series of binary classification problems. The 

OVO, OVA and ECOC, this chapter will use OVA for decomposition, where each binary 

classifier is trained on solving only one genus. The two advantages of using OVA for this 

problem is that first, this ensemble method is flexible to concept change. In the future, if 

another genus is being added to the dataset, one can add another base classifier without 

changing the rest of the classifier system. Secondly, this classification system using OVA 

classifiers has the capability of classifying trees that does not belong to any of the 

training labels, generating an “unknown” class. This achieves one of the goals for this 

research and results also show that this method outperforms the original multi-class 

classifier. 

It is not always easy to obtain a complete, single segmented tree for data analysis 

with LiDAR data and the quality of segmented tree can vary within the dataset. As a 

result, the frequency distribution of segmented LiDAR tree versus data quality is not 

uniform. Consequently, when training data is randomly selected from the population, the 

problem of imbalance training (with respect to data quality) arises. Normally, the 

problem of imbalance data distribution refers to the differences in the number of samples 

for each class (Chawla et al. 2004, Fernández et al. 2013) and is a common problem in 

real world data simply because some phenomena occurred infrequently naturally. 

Classifiers generated from imbalanced training sample will be specialized in classifying 
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the majority classes and therefore bias the results towards the majority class. At the data 

level solution, there are three common techniques to overcome this problem 1) 

oversampling the minority class 2) under sampling the majority class or 3) a combination 

of both methods (Chawla et al. 2004, Fernández et al. 2013, Barandela et al. 2004, Weiss 

2004, Japkowicz 2000). The goal of these strategies is to diversify the sampling 

distribution in terms of the number of samples per class and these studies show that the 

distribution of training sample is important in affecting the classification accuracy. 

However, this chapter investigates this problem with a slightly different perspective. On 

top of diversifying the number of sampling distribution, this chapter also diversifies the 

data quality in the training samples. RandomForests is use as the base binary classifiers 

and the RandomForests algorithm solve the problem of diversifying number of training 

sample by bootstrap aggregating (bagging) in two ways. First, the same number of 

samples are drawn from the minority and majority class; balancing the minority / 

majority sample (Chen et al. 2004). Second, a heavier penalty is placed on misclassifying 

the minority class and gives the class a higher weight (Chen et al. 2004), and the final 

label takes the majority voting of the individual classification trees. Results generated 

from RandomForests will be used to quantify training sample quality and this matter will 

be discussed further in the method section.   
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5.2 Methods 

5.2.1 Overview of the methodology 

As discussed in Chapter 2, there are two major ways of combining classifiers, in 

parallel and in sequence. This chapter has performed classification with the two models 

(parallel and sequential), but because parallel model shows better classification accuracy, 

therefore, the discussion will be limited to the parallel model. Also, one of the goals for 

this chapter is to design a classification scheme that is capable for classifying the negative 

samples (the non-pine, non-poplar and non-maple), therefore OVA decomposition is 

more suitable for this task. OVA decomposition will be used with parallel model for 

classifying pine, poplar, maple and “unknown” with Random Forests as base classifier. 

This section will contain three main components: 1) Selection of training and validation 

sample, 2) Using Random Forests as base classifiers and 3) Parallel ensemble model. 

Random Forests classification will be discussed first although it is the second step of 

overall method because the other components require the understanding of Random 

Forests.  

5.2.2 Random Forests Classification 

Random Forests is being used in two different areas in this paper. First is for 

quantifying the quality of each LiDAR tree and this information can be used for the final 

selection of training data. The second is for base classifier construction, the three base 

classifiers are: ℎ𝑝 (classifier that will produce class labels of pine (p) and non-pine (p’)); 
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ℎ𝑜 (classifier that will produce class labels of poplar (o) and non-poplar (o’)); and ℎ𝑚 

(classifier that will produce class labels of maple (m) and non-maple (m’)).  

Random Forests algorithm itself is also an ensemble classifier, the final 

classification labels are predicted by combining multiple classification trees for 

categorical data, or regression trees for continuous data trained from a subset of the data 

(Breiman, 2001, Liaw and Wineder, 2002). Random Forests uses approximately 63% of 

the data for training (in-bag data) and therefore uses approximately 37% of the data (out 

of bag data) for validation. The main input variables for Random Forests relevant for this 

chapter are 1) training sample labeled with known genera and a description of the 

geometric features is listed in Table 5-1, the detail for deriving these features can be found 

in Ko, et al. (2013). 2) The number of feature variables randomly sampled at each split 

(mtry, 2 for this research paper), 3) the number of trees generated within each iteration 

(Ntree, 1000 for this research paper) and 4) Minimum size of terminal node (Nodesize, 1 

for this research paper). Random Forests produce the following output relevant for this 

paper: 1) a classification scheme generated using in-bag training data, 2) the percentage 

of mis-classification rate using OOB data, and 3) average vote calculated for each class, 

each LiDAR tree, where final prediction of the OOB data is made by the maximum 

average vote.  
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Table 5-1 Description of the six geometric features 

No.  Description  
F1 Average derived best bit line segment lengths divided by tree height 

F2        
. 

Average line segment lengths multiplied by the ratio between tree crown height and 
tree height 

F3   
. Volume of the tree crown convex hull divided by the number of points in the crown 
F4   
. Average distance from each point to the closest facet of the convex hull  

F5             
.                       . 

Buffer each LiDAR point outward at a radius of 2% of the tree height, calculate the 
overlapped volume of the spheres divided by the number of points in the tree crown  

F6 Tree crown height divided by the tree height 
 

 

5.2.3 Training sample selection 

Training samples are selected from the pine, poplar and maple only whereas the 

validation samples have more than three genera. This is to mimic the fact that one can 

only able to field validate certain tree genera but there are more genera than measured in 

the field. This research originally select training data with stratified random selection, the 

previous study (Ko, et al. 2013) shows a 25% : 75% ratio for training and validation is 

optimal for this dataset and therefore this chapter will perform the following experiments 

with the same ratio. As discussed, this chapter suggests that diversifying data quality in 

the training sample will improve classification accuracy. In order to validate this 

hypothesis, first, data quality need to be quantified. To achieve this goal, a sensitivity 

analysis is performed to study the effect of diversity measurement on classification 

accuracy. 
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To quantify the quality of segmented LiDAR tree for training data selection, 

Random Forests is first run with three class label predictions (pine, poplar and maple). 

Since only known LiDAR trees are used for training (160 trees), this part of the 

assessment do not require “unknown” trees and therefore are removed from this 

assessment. Random Forests randomly select approximately 37% of the data (OOB data) 

as validation and a prediction is made for each LiDAR tree that are selected as OOB data. 

With Ntree = 1000, 1000 different OOB data sets are selected and predicted, the ratio of 

how many times a LiDAR tree has been predicted correctly to the number times a LiDAR 

tree has been selected as an OOB data is calculated. If the ratio is small, it means that the 

particular LiDAR tree cannot be correctly predicted easily and vice versa. Hence, this 

ratio is used as an assessment. First, the frequency distribution over the ratio for 10 bins 

is plotted, from the 160 trees. Then, 47 trees are selected for training (25% of 186 trees) 

and therefore, with an even distribution, one would keep approximately 5 trees for each 

bin in order to maximize the diversity of quality in the training sample. However, some 

of the bins have less than 5 trees in the dataset. As a result, to maximize the quality 

diversity, for bins that have less than 5 trees, all the trees within that particular bin is 

selected for training. For bins that have more than 5 trees, the bins are downsized to 5 

trees and distribute the excessive trees as evenly as possible among all bins. The original 

data contains 67 pines, 59 poplars and 34 maples and using this method, 19 pines, 18 

poplars and 10 maples are selected for training.   
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5.2.4 Ensemble architecture 

The training samples (47 trees) from the previous section are being used as 

training the base classifiers and the rest of the trees (139 trees) are used as validation 

data. The same training data are used for training the three base classifiers, ℎ𝑝, ℎ𝑜 and ℎ𝑚 

with maximized diversity, allowing the base classifiers to learn as much variability as 

possible. Each of these classifiers are binary classifiers; for ℎ𝑝, trees will be labeled as p 

(positive) for pines and p’ (negative) for poplars and maples; for ℎ𝑜, trees will be labeled 

as o (positive) for poplars and o’ (negative) for pines and maples and for ℎ𝑚, trees will be 

labeled as m (positive) for maples and m’ (negative) for pines and poplars. One of the 

goals is to be able to correct detect “unknown” class, where three base classifiers vote for 

negative. 

The parallel model is summarized in Table 5-2, where ℎ𝑝, ℎ𝑜 and ℎ𝑚 are the base 

classifiers. In the cases where there are no conflict in decision between the base 

classifiers, (case 1, 2, 3, 8), the final decision will be made by the classifier voted for a 

positive case (case 1, 2 and 3). For case 8, where all three classifiers vote for negative 

(case 8), the tree will be labeled as “unknown”. In the cases where classifiers are 

conflicting each other (case 4 to case 7), the final decision will be made by the classifier 

that has a larger maximum vote calculated for its positive label. Table 5-2 Summary of 

the parallel ensemble model  
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Case 
# 

Decision 
made by 
ℎ𝑝 

Decision 
made by 
ℎ𝑜 

Decision 
made by 
ℎ𝑚 

Final Decision 

1 p o’ m’ p 
2 p’ o m’ o 
3 p’ o’ m m 
4 p o m’ If max vote (p)>max vote(o), p; else, o  
5 p’ o m If max vote(o)>max vote(m), o; else, m 
6 p o’ m If max vote(p)>max vote(m), p; else, m 
7 p o m Label with max(max vote) 
8 P’ o’ m’ u 
p= “pine”; p’= "non-pine”; o= “poplar”; p’= "non-poplar”; m= “maple”; m’= "non-

maple”; u= “unknown”   

 

5.3 Results and discussion 

5.3.1 Quality diversity and training sample selection 

To quantify the quality of the LiDAR trees data, the ratio between the number of 

times a tree can be classified correctly and number of times it has been selected as OOB 

data for prediction is calculated. Figure 5-1 (a) shows the frequency distribution of the 

ratio over 10 bins for 160 trees and Figure 5-1(b) shows the frequency distribution of the 

ratio for selected training samples (47 trees). In Figure 5-1 (a), it shows that most of the 

LiDAR tree data collected are considered easily identifiable, with a ratio between 0.8 - 

1.0, meaning these trees have above 80% chance to be classified correctly. To visualize 

the differences between the calculated ratios, Figure 5-2(a) shows six examples of 

LiDAR trees with lower ratio values and Figure 5-2(b) shows six examples with higher 

ratio values. From Figure 5-2(b), it can be observed that these LiDAR trees have less 
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occlusion, overlapping tree crown points with neighbourhood trees and larger in size 

(more data points per tree) and are therefore easier to be classified.  

When training samples are selected randomly, the distribution of the training data 

will be similar to the distribution shown in Figure 5-1 (a), with several bins being empty 

because of the low frequency count of the original data. If the base classifiers are trained 

base on randomly selected samples, more emphasis will be placed on the LiDAR trees 

that has high ratio. Hence, this chapter maximizes the diversity of the training sample by 

including as much variability as possible in terms of data quality, Figure 5-1 (b) shows 

the frequency distribution the training sample selection. 

To verify the relationship between the diversity of training dataset and 

classification accuracy, trees from 0.0-0.1 bin are removed manually (9 bins left from 

Figure 5-1(b)) and the same number of removed trees are redrawn and redistributed to the 

other bins in order to maintain the same total number of training samples. The 

classification accuracy is obtained from this new distribution and this procedure is 

repeated for 0-0.2 bin (8 bins left) until only 1 bin is left. Figure 5-3 shows the result of 

the analysis performed with and without the “unknown” samples in the validation data, 

and is performed by using regular Random Forests (without ensemble method) and 

parallel ensemble for comparison.  
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Figure 5-1 (a) Frequency distribution of ratio (number of trees can be classified correctly 

over number of times being selected as OOB data) for all trees (160 trees); (b) Frequency 

distribution of ratio for selected training sample (47 trees) 
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Figure 5-2 (a) example LidAR trees that has a lower (less than 0.4) ratio (number of 

times it can be classified correctly over number of times it has been selected for 

prediction); (b) example LidAR trees that has a higher (larger than 0.9) ratio  
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Figure 5-3 Classification accuracy changes over number of bins being filled 

 

In Figure 5-3, result shows that as the number of bins being filled increases (more 

diversified training data), the classification accuracies increases, with or without 

unknown samples in the validation data. Also, when unknown samples are included in 

the validation data, ensemble classification outperformed regular Random Forests by 

4.3% and 13.9% when the 9th and 10th bin are (0.0-0.1 bin and 0.1-0.2 bin) being filled, 

respectively. Meaning that these samples, although have lower quality, or their feature 

distributions deviate from the majority of the training sample, are important in classifying 

the “unknown” data in the validation sample. Also, when “unknown” data are removed 

from the validation sample, ensemble classification shows lower classification accuracy, 
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by 8.0% and 7.1% when classified with only 1 or 2 bins (0.9-1.0 bin and 0.8-1.0 bins) 

and ensemble methods should be avoided in this case.  

 

5.3.2 Classification for Random Forests and ensemble Random Forests 

This section performs two comparisons, first is to compare the classification 

results obtained from random sampling (ensemble classification) versus the diversified 

training sample (ensemble classification) (Figure 5-1(b)). The second is to compare the 

classification results obtained from Random Forests and ensemble Random Forests, both 

using the diversified training sample. Table 5-3 shows the confusion matrix obtained 

from ensemble classification using random sampling and Table 5-4 shows the confusion 

matrix obtained from ensemble classification using diversified training sample. The 

overall accuracy improved from 72.8% to 93.8% (Table 5-3 and Table 5-4) when the 

training samples have maximum diversification. The commission and omission error has 

reduced 60% and 53% respectively for “unknown” class when the training sample is 

diversified. This is because “unknown” classes are labeled based on the classification 

accuracies of negative samples of the base classifiers.  
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Table 5-3 Confusion matrix obtained from ensemble classification using random 

sampling, values are averaged over 20 different random samples  

      Measured     

    pine poplar maple unknown 
Commission 
error 

pr
ed

ic
te

d 

pine 37.45 3.85 0.05 6.75 0.22 
poplar 4.05 35.7 0.2 2.45 0.16 
maple 1.15 0.15 23.9 12.55 0.37 
unknown 4.15 1.8 0.55 4.25 0.60 

Omission error 0.20 0.14 0.03 0.84   
Overall Accuracy: 72.8%         

 

Table 5-4 Confusion matrix obtained from ensemble classification using diversified 

sampling, values are averaged over running ensemble 20 times 

      Measured     

    pine poplar maple unknown 
Commission 
error 

pr
ed

ic
te

d 

pine 47.00 0.00 0.20 3.40 0.07 
poplar 0.00 41.00 0.00 2.95 0.07 
maple 0.00 0.00 23.80 2.00 0.08 
unknown 0.00 0.00 0.00 18.65 0.00 

Omission error 0.00 0.00 0.01 0.31   
Overall Accuracy: 93.8%         

 

When the training samples have low diversity, it indicates most of the training 

samples appear similarly and therefore the distributions of the features related to the 

specific class are narrow. As a result, any validation data that deviates from the training 
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data will be classified as negative (high omission error, 84% in Table 5-3, reduced to 

31% in Table 5-4). Conversely, when the training sample contains larger variety, the 

distributions of values for the features that train the base classifiers are broader allowing a 

broader definition of a specific class, reduce the chance of classifying negative sample as 

positive (commission error of “unknown” class reduced from 60% to 0%), . The error of 

the “unknown” class also come from the difficulties in differentiate genera that appear 

similarly under LiDAR reflected points, it is found that birch and oak trees are normally 

mistaken as maple trees; spruces and larch trees are normally mistaken as pine trees. 

Figure 5-4 shows an example of each mistaken pair.  
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Figure 5-4 Example misclassification from birch and oak to maple; larch and spruce to pine 

 

The second comparison is made between the classification accuracy of Random 

Forests with classification accuracy of ensemble methods. Since the training sample 

contains only pine, poplar and maple, by default, the class labels generated from 

RandomForests will be the three mentioned classes. However, in order to be able to 

compare with ensemble methods, additional condition is included so that “unknown” 
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classes can be identified with Random Forests alone. For each validation sample in 

RandomForests, the final class label is assigned by the class with the maximum vote. The 

condition is that if the maximum vote calculated for the particulate tree is less than 67%, 

it should be classified as “unknown” instead of one of the three classes. 67% is obtained 

from dividing 100% into three classes, assuming if more than 67% of the votes are voting 

for that particular class, the prediction is valid. Hence, the trees are labeled with 

“unknown” if the vote is less that 67%. Table 5-5 shows the confusion matrix obtained 

from Random Forests using diversified samples, values are averaged over running 

ensemble 20 times. By comparing Table 5-5 with Table 5-4, ensemble Random Forests 

classification yields an overall accuracy of 93.8% whereas Random Forests alone yield 

an overall accuracy of 88.4%. The omission error for Random Forests alone is less than 

ensemble methods but the commission error for classifying poplar for Random Forests is 

higher. With ensemble methods, the omission error for pine, poplar and maple is also 

lower.  
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Table 5-5 Confusion matrix obtained from Random Forests classification using 

diversified sampling, values are averaged over running ensemble 20 times  

      Measured     

    pine poplar maple unknown 
Commission 
error 

Pr
ed

ic
te

d 

pine 39.60 0.00 0.00 0.00 0.00 
poplar 7.40 25.00 2.55 4.20 0.36 
maple 0.00 0.00 38.45 1.00 0.03 
unknown 0.00 1.00 0.00 19.80 0.05 

Omission error 0.16 0.04 0.06 0.21   
Overall Accuracy: 88.4%         

 

5.4 Conclusions 

This chapter shows the importance of diversifying the quality of training samples in 

terms of improving classification accuracy. The quality of LiDAR tree samples can vary 

due to reasons such as shadow from scanning angle, overlapping to the neighborhood 

trees or trees that appear to have multiple tree tops making tree crown isolation difficult. 

This chapter hypothesizes that when the classifiers are trained with samples that contain 

as much variability as possible, it will have a better decision boundary between the 

positive and negative class labels. The nature of the data collected for this research 

contains majority of the samples that have similar properties (Figure 5-1(a)), by randomly 

selecting the training data, the training data will have similar distribution as the 

population. In that case, the majority of the training data will be similar to each other, any 

validation data that deviates from the training data will be mis-classified. To solve this 

problem, the quality of collected samples are quantified by the OOB results generated 
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from Random Forests and training samples are re-drawn with maximum quality diversity. 

With a broader definition of each genus, results shows that classification accuracy can be 

improved from 72.8% to 93.8%, both using ensemble methods, the accuracy especially 

improved for the classification of negative labels.   

The base classifiers are the decomposition of k binary classification models for k 

classes. By combining these base classifiers instead of using Random Forests alone as a 

multi-class classifier, a better accuracy result can be obtained (improved from 88.4% to 

93.8%). There are several reasons why this is a better method than the traditional multi-

class classification. 1) Ensemble methods are able to generate “unknown” class without 

pre-defined threshold, 2) the method does not require the presence of “unknown” in the 

training data. 3) The implementation of binary classification is simple, in the future, if 

another class label is being collected in the field, an additional binary classifier will be 

built but all the previous training results can be re-use without any changes. 4) The 

method of combination can be altered and additional rules can be implemented to 

improve the aggregation of information such as Table 5-2. Although the classification 

accuracy can be improved by implementing the ensemble of binary classifiers, the 

omission error for the “unknown” class is still the highest (Table 5-4). This is because of 

the confusion of the similarities shared between genera such as Birch and oak trees are 

normally mistaken as maple trees; spruces and larch trees are normally mistaken as pine 

trees (Figure 5-4). This problem can be resolved if new features for classification can be 

developed that are independent from geometry (the six features described in Chapter 3). 

In conclusion, this chapter shows that by diversifying the training sample characteristic, 
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classification performance can be improved. Also, the ensemble of binary classifiers 

allows us to incorporate the “unknown” class without much extra effort and also 

improves overall classification accuracy. 
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6 Chapter 6 Conclusions 

As the collection of LiDAR data has becoming economically available, the use of 

LiDAR data for environmental applications becomes popular. Using LiDAR data for 

forestry applications can automate measurements for forest structure and the aim is to 

replace the traditional labor-intensive, time consuming manual measurements. Tree 

species / genera is one of the most important information among all attributes but it is not 

easy to obtain directly from only the coordinate of the point clouds.  

As discussed in Chapter 2, there are mainly three successful approaches on 

obtaining tree species / genera information. First approach relies on information located 

near or at the top of the tree, second approach relies on derivation of vertical point profile 

information. The third approach relies on the derivation of geometric features, mostly 

related to the outer shape of the tree, such as convex hull and alpha shape features. The 

geometric features derived in this research not only considers the outer shape of 

individual tree, the geometric features derived in Chapter 3 also considered the structures 

and features observed inside the tree crown. Six of the 24 geometric features are selected 

for classifying pine, poplar and maple in the study area, using Random Forests as the 

classifier. Instead of using the default OOB error for evaluation, where about 63% (in 

bag) of the data are used for training the classifier, leaving 37% of the data for validation. 

A sensitivity analysis was performed to study the relationship between classification 

accuracies and percentage of data used for training. Results shows that by using 25% of 

the data for training is sufficient for obtaining a classification accuracy of 88.3%. In 
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conclusion, Chapter 3 provides a fundamental research by building features that are 

related to the geometry of the tree, which is different from the existing approaches. Three 

main conclusions can be drawn from this Chapter. 1) Geometric features tie close 

relationship to the biophysical interpretation of trees and can be used for genera 

classification. 2) Geometric features provide an alternate perspective for classification. 3) 

The variability in classification accuracies in different field sites suggests the quality of 

LiDAR tree data affects classification accuracy and this issue will be further addressed in 

Chapter 5. This research relies on single tree data that are already segmented from the 

LiDAR scene, which is a manual process. An automatic tree delineation method has to be 

implemented for operational applications.  

Chapter 4 further advance the ideas developed from Chapter 3 by combining the 

classification features derived from Chapter 3 and the conventional features, vertical 

profile features through an ensemble classification. Also, a feature reduction method 

(Sequential Backward Selection) that utilizes the results produced from Random Forests 

(MDA – mean decrease accuracy) is fully discussed in this chapter. This process reduces 

the number of features for geometric classifier (24 to 6) and vertical profile classifier (78 

to 26). Feature reduction is an important process for any classification model, there is 

usually a trade-off between classification accuracies and the number of features being 

used for the model. An optimum number of features should be selected for the model that 

balances model complexity and accuracy. The goal of any effective ensemble 

classification system is to increase classification accuracy, this chapter combines two 

classifiers first sequentially and then in parallel. Without using a predefined threshold, 
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trees that are potentially problematic for the first classifier are automatically filtered out. 

Final decision is made by using both classifiers for those problematic LiDAR trees. At 40 

pulses / m2, the average classification accuracy for vertical profile classifier and 

geometric classifier is 88.0% and 88.8% respectively for 20 random training samples. 

The overall classification accuracy improves to 91.2% by the ensemble system. In this 

chapter, an additional sensitivity analysis is performed to study the relationship between 

point density and classification accuracy. The classification accuracies for the individual 

classifiers as well as ensemble system are expected to drop as point density decreases. 

This analysis is performed to study the lower limit of point density for this type of study, 

the result shows that classification accuracies does not drop significantly until point 

density dropped to 1.25 pulses / m2 from the original 40 pulses / m2
. This indicates there 

is a potential for lowering point density for classification with a slight tradeoff for 

classification accuracy. The two main contribution of this chapter are 1) implemented an 

automatic feature reduction method using Random Forests. 2) Study the potential of 

using ensemble classification to combine geometric and vertical profile features.   

Chapter 5 has two major contributions, the first is by introducing an “unknown” 

class in the validation class label, this increases the practicality of the classification 

model. The classification of environmental objects normally involve obtaining training 

data from field work, therefore the classifier will be trained with field collected data. 

However it is not unusual to have more classes in the validation data than the training 

data. For example, one normally would not survey every tree in the forest and therefore 

cannot guarantee training class label fully represents the validation class labels. Hence, 
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the inclusion of “unknown” class allows categorizing validation samples that does not 

belong to any one of the training labels into a reasonable label instead of forcing it as one 

of the training labels. This is done by breaking up a multi class problem into a series of 

binary classification problems. By combining these binary classifiers, not only an 

“unknown” class can be included, the classification accuracy also increased from 88.4% 

(by using Random Forests alone) to 93.8% (combination of binary classifiers). The 

second contribution of Chapter 5 involves the discussion and quantification of LiDAR 

tree sample quality. As discussed in Chapter 3, some LiDAR trees segmented from the 

LiDAR scene suffers from problem of occlusion and high overlapping tree crown from 

neighborhood vegetation (lower quality samples), lowering the overall classification 

accuracy. Chapter 5 quantify this qualitative description, quality, by calculating the 

number of times a particular LiDAR tree sample is being correctly classified in the OOB 

data divided by the number of times a sample is being selected as OOB data. A 

sensitivity analysis is performed to study the relationship between classification accuracy 

and the inclusion of these low quality samples in the training data. This is done by 

diversifying the quality of training data as much as possible. Results shows that although 

these samples have low classification accuracy itself, by including them in the training 

data allow the base classifiers to learn about the variability within each genera and 

improved the overall classification especially the for the “unknown” class. Overall 

classification accuracy increased from 72.8% (using random sampling) to 93.8% 

(diversified sampling).   
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As a whole, this dissertation advances the science of using discrete airborne 

LiDAR data for tree genera classification. Geometric features are derived for describing 

the internal and external features of the tree crown, rather than relying on only the 

vertical point profile of the LiDAR point distributions. Feature reduction method allow 

the simplification of classification model and therefore increase model efficiency. The 

ensemble of geometric classifier and vertical profile classifier improves overall 

classification accuracy. The decomposition of a multi-class classification problem into a 

series of binary classification problem allows the inclusion of “unknown” class in the 

validation data. Finally, this dissertation discusses the fact that by diversifying the 

training data quality improves the overall classification accuracy especially for the 

“unknown” class. 
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