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Researchers in the behavioral sciences are often interested in comparing the means of
several treatment conditions on a specific dependent measure. When scores on the
dependent measure are not normally distributed, researchers must make important deci-
sions regarding the multiple comparison strategy that is implemented. Although
researchers commonly rely on the potential robustness of traditional parametric test sta-
tistics (e.g.,t andF), these test statistics may not be robust under all nonnormal data con-
ditions. This article compared strategies for performing multiple comparisons with
nonnormal data under various data conditions, including simultaneous violations of the
assumptions of normality and variance homogeneity. The results confirmed that when
variances are unequal, use of the traditional two-samplet test can result in severely
biased Type I and/or Type II error rates. However, the use of Welch’s two-sample test sta-
tistic with the REGWQ procedure, with either the usual means and variances or with
trimmed means and Winsorized variances, resulted in good control of Type I error rates.
The Kruskal-Wallis nonparametric statistic provided good Type I error control and
power when variances were equal, although Type I error rates became severely inflated
when variances were unequal. Furthermore, for researchers interested in eliminating
intransitive decisions or comparing potential mean configuration models, a protected
model-testing procedure suggested by Dayton provided good overall results.
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Pairwise Multiple Comparisons
for Nonnormal Data

An underlying assumption of the test statistics used with many multiple
comparison procedures (MCPs) is that the populations from which the data
are sampled are normal in shape. Although it may be convenient (practically
and statistically) for researchers to assume that their samples are obtained
from normal populations, this assumption may rarely be accurate (Micceri,
1989; Wilcox, 1990). Researchers falsely assuming normally distributed
data (and adopting methods of analysis designed for normally distributed
data) risk obtaining biased Type I and/or Type II error rates for many patterns
of nonnormality, especially when other assumptions (e.g., variance homoge-
neity) do not hold.

A common recommendation that has been put forth for conducting multi-
ple comparisons with nonnormally distributed data is to simply apply MCPs
with traditional parametric test statistics. Several researchers have demon-
strated that under many conditions of nonnormality the usualt andF statistics
are robust with respect to Type I error rates and power (e.g., Boneau, 1960;
Sawilowsky & Blair, 1992). The robustness of thet andF statistics does not
necessarily hold, however, for all degrees of nonnormality, when
nonnormality is paired with unequal variances and sample sizes or when the
distribution shapes are not identical (e.g., Keselman, Lix, & Kowalchuk,
1998; Wilcox, 1990).

Beyond recommendations supporting the use of traditional parametric
test statistics, recent publications have discussed novel testing strategies that
purport to provide specific advantages for researchers performing multiple
comparisons tests with nonnormal data. Sprent (1993) proposes the use of
nonparametric test statistics that place no restrictions on the shape of the
underlying distributions and can be much more powerful than parametric
tests with nonnormally distributed data (e.g., Penfield, 1994). Wilcox (1990)
and others have recommended that researchers substitute trimmed means and
Winsorized variances for the least squares estimators; Westfall, Tobias, Rom,
Wolfinger, and Hochberg (1999) propose that researchers adopt bootstrap-
ping methods; and Dayton (1998) has recommended the use of model-testing
procedures. These new strategies for performing multiple comparisons with
nonnormal data provide interesting alternatives to applied researchers,
although it is important that researchers understand the properties of the pro-
posed procedures, as well as how the proposed procedures perform relative to
each other and existing procedures. Therefore, the objectives of this article
are (a) to summarize the recently proposed multiple comparison strategies
for nonnormal data, and (b) to report the results of a Monte Carlo study that
compares Type I error and power rates of the different multiple comparison
approaches under various distribution shapes.
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Design, Notation, and Test Statistics

A mathematical model that can be adopted when examining pairwise
mean differences in a one-way completely randomized design is

Yij j ij= + +µ α ε ,

whereYij is the score of theith subject (i = 1, . . .,nj) in thejth group (j = 1, . . .,
J),µ is the population grand mean,α j is the fixed treatment effect associated
with thejth group (µ −µj ), andεij is the random error for theith subject in the
jth group. In the typical application of the model, it is assumed that theεijs are
normally and independently distributed and that the group variances (σ j

2 ) are
equal. An omnibus test ofΗο : µ = µ µ1 2 3= can be conducted using an
appropriate omnibus test statistic. TheC = (J2 – J)/2 pairwise multiple com-
parisons (Ηο : µ = µj j j j′ ≠ ′; ) can be conducted with an appropriate MCP,
as discussed below.

Nonparametric Approach

A popular alternative for analyzing data from nonnormal populations is to
select a nonparametric, or distribution free, test statistic. Nonparametric tests
require that ranks be substituted in place of the original scores when testing
for mean differences. The Kruskal-Wallist (Sprent, 1993) begins by ranking
the observations in the combined sample (N). Let the rank of theith observa-
tion in thejth group be represented byrij and the sum of the ranks for thejth
group be represented bysj = Σir ij. The null hypothesisΗο : λ = λj j ′ (whereλ
represents the population mean only under the assumption that the popula-
tion shapes are identical, see below) is rejected ift t dfKW W≥ ( , )α , where

t m m S B n n n n N J NKW j j r j j j j= − − + − −′ ′ ′/ {[ )( ) / [ ( )( )]} /1 1 2,

wheremj = sj/nj, Sr = Σijrij
2 , B= [N(N+ 1)2]/4, and KW is the statistic from the

omnibus Kruskal-Wallis test (which is available in most introductory statis-
tics texts and is not reproduced here).

Two caveats are necessary regarding the use of nonparametric tests. First,
the general nonparametric null hypothesis relates to the equality of popula-
tion distributions, which considers differences in the scale, shape, and loca-
tion of the distributions, not just location. This hypothesis relates specifically
to location differences only when it can be assumed that the distributions are
identical in scale and shape. Second, nonparametric tests are themselves not
necessarily robust to violations of the variance homogeneity assumption
(Gibbons & Chakraborti, 1991; Penfield, 1994; Zimmerman, 1996). The
Kruskal-Wallis tests can become extremely liberal or conservative depend-
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ing on the degree of variance heterogeneity and the pattern of variance and
sample size heterogeneity (see also Zhou, Gao, & Hui, 1997).

Trimmed Means Approach

When researchers feel that they are dealing with populations that are
nonnormal in form (Tukey [1960] suggested that outliers should be a com-
mon occurrence in distributions and others [e.g., Miller, 1988; Zumbo &
Coulombe, 1997] have indicated that skewed distributions frequently depict
psychological [e.g., reaction time] data) and thus subscribe to the position
that inferences pertaining to robust parameters are more valid than inferences
pertaining to the usual least squares parameters, then procedures based on
robust estimators should be adopted. Wilcox (1990, 1995, 1997) and others
have discussed the use of robust estimators such as the trimmed mean and
Winsorized variance with nonnormal data.

Trimmed means are computed by removing a percentage of observations
from each of the tails of a distribution. Letg nj s j= [ ]γ , whereγ s represents
the proportion of observations to be trimmed from each tail of the distribution
and [x] is the largest integer less than or equal tox. Furthermore, lethj repre-
sent the remaining (effective) sample size following removal of the trimmed
observations. Recommendations have been made in the literature for 15%
symmetric trimming (Mudholkar, Mudholkar, & Srivastava, 1991) and 20%
symmetric trimming (Wilcox, 1995). The trimmed mean is represented as

X h Xij j ij
i g

n g

j

j j

=
= +

−

∑( / )1
1

and thejth sample Winsorized mean as

X n Ywj j ij
i

n j

=
=
∑( / )1

1

,

where

Y X X Xij g j ij g jj j
= ≤+ +( ) ( )1 1if

= < <+ −X X X Xij g j ij n g jj j j
if ( ) ( )1

= ≥− −
X X Xn g j ijj j n j g j j( ) ( )

if .

An associated Winsorized variance is computed by replacing the censored
observations from each tail with the lowest uncensored observation (lower
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tail) or highest uncensored observation (upper tail). The Winsorized variance
equals:

s h Y Xwj j ij ij

i

n j
2 2

1

1 1= − −
=
∑/ ( ) ( ) .

The trimmed sample means and Winsorized sample variances can then be
substituted into Welch’s (1938) test statistic to yield the following statistic
(Yuen, 1974):

t X X s h s ht t t w w= − +( ) / [( / ) ( / )] /
1 2 1

2
1 2

2
2

1 2,

with error degrees of freedom,

ν t
w w

w w

s h s h

s h h s
= +

− +
[( / ) ( / )

{ / ( ( ))} { / (
1

2
1 2

2
2

2

1
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1
2

1 2
41 h h2

2
2 1( ))}−

.

When trimmed means are being compared, the null hypothesis relates to the
equality of population trimmed means, instead of population means. There-
fore, instead of testingΗο : µ = µj j ′ , a researcher would test the null hypoth-
esis,Ηο : µ = µtj tj ′ , whereµ t represents the population trimmed mean.

One important application of trimmed means and Winsorized variances is
in analyzing data that violate the assumptions of normality and variance
homogeneity by using these robust estimators with the heteroscedastic
Welch (1938) statistic. Although Penfield (1994) advocated using Welch’s
test with nonnormal heterogeneous data, Welch’s test is not always robust for
all degrees and patterns of assumption violations (Cressie & Whitford, 1986;
Keselman, Lix, et al., 1998). Wilcox (1997) compared the power and Type I
error rates of the REGWQ (Einot & Gabriel, 1975; Ryan, 1960; Welsch,
1977), Hayter (1986), and Dunnett (1980) MCPs, and found that substituting
trimmed means and Winsorized variances for the usual least squares means
and variances resulted in better Type I error control and power when the data
were nonnormal and variances were heterogeneous. Keselman, Lix, et al.
(1998) compared the power and Type I error rates of several pairwise MCPs
with the usual least squares estimators or robust estimators and found that
MCPs using trimmed means and Winsorized variances provided better Type
I error control for some skewed distributions with unequal sample sizes and
variances.

Bootstrap Tests

Researchers conducting multiple comparisons with nonnormal data also
have the option of adopting a bootstrap analysis. With bootstrapped tests, the
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researcher generates an empirical distribution from the sample residuals
( � )∈ = −ij ij jY µ , instead of assuming that the underlying distribution is normal
in shape. The empirical distribution is generated by resampling, with replace-
ment, from the distribution of�∈ ij . p values are computed for each of theC
pairwise comparisons (p1, . . .,pC,c= 1, . . .,C) for numerous (e.g.,S= 10,000)
bootstrap-generated samples (s= 1, . . .,S). Bootstrap-adjustedpvalues (pc+)
for thecth comparison are the proportion ofSfor whichpcs≤ pc (wherepcs is
thepvalue for thecth comparison in bootstrap samples). Multiplicity adjust-
ment can be applied using several methods, although a step-down procedure
suggested by Westfall et al. (1999), dubbed the “Stepboot” procedure, is
especially appealing because it is more powerful than many simultaneous
methods of multiplicity control and it is available through SAS’s
MULTTEST program (see Westfall et al., 1999).

Dayton’s Model-Testing Procedure

Dayton (1998) proposed an innovative strategy for performing multiple
comparisons that eliminates intransitive decisions by comparing all possible
transitive population models (i.e., mean configurations). One of the distinct
advantages of this procedure is that it can be applied with normally or
nonnormally distributed data. To summarize the logic of the model-testing
procedure, assume that a researcher is interested in testing all pairwise com-
parisons in aJ = 3 design. With the model-testing procedure, the researcher
would compare (and select the best of) thek= 2J – 1 = 23 – 1= 4 transitive popu-
lation models, instead of testing if any or all of theC = 3 pairwise compari-
sons are significant (as with a traditional MCP). WithJ = 3, the researcher
would be comparing the models: {µ µ µ21 3}, { µ µ µ21 3}, { µ µ µ21 3}, and
{ }µ µ µ21 3 , where means separated by commas represent distinct populations.
In addition to eliminating intransitive decisions, Dayton’s approach takes a
more “wholistic” approach to the testing of multiple comparisons. That is,
the model comparison approach allows researchers to examine, and thus
compare, the relative competitiveness of various models.

The model-testing procedure is based on the information criteria due to
Akaike (1974), or AIC. Mutually exclusive and transitive models are each
evaluated using AIC and the model having the minimum AIC is retained,
where

AIC SS n X X qw j j kj
j

J

= + − +
=
∑ ( )2

1

2 ,

SSw is the within-group sums of squares from an appropriate omnibus test,Xj

is the mean of thejth group,Xkj is the estimated sample mean for thejth group
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(given the hypothesized population mean configuration for thekth model),
andq is the number of independent parameters estimated in fitting the model.
In addition, Dayton (1998) has also shown that the MTP can be modified to
handle heterogeneous treatment group variances. Like the original proce-
dure, mutually exclusive and transitive models are each evaluated using
AIC and the model having the minimum AIC is retained. For heterogeneous
variances,

AIC N n S qj j
j

J

= − − + − +
=
∑2 2 2 1 1 2 22

1

{( / ){(ln( ) ) / ( ln( ))}π ,

whereN is the total number of subjects in the experiment (%jnj) andSis the
biased variance for thejth group, substituting the estimated group mean
(given the hypothesized mean configuration for thekth model) for the actual
group mean in the calculation of the variance. The heterogeneous variance
AIC statistic adopted in this article is referred to by Dayton (1998) as the
unrestricted heterogeneous model (in contrast to the restricted heterogeneous
model also presented by Dayton).

Dayton (1998) and Cribbie and Keselman (in press) report that the model-
testing procedure is more likely to identify the true underlying population
mean configuration than several traditional MCPs (e.g., Tukey’s, 1953, Hon-
estly Significant Difference [HSD]). However, one finding reported by
Dayton is that the AIC has a slight bias for selecting more complicated mod-
els than the true model, and consequently it is recommended that an omnibus
test be used to screen for the complete null. Cribbie and Keselman reported a
significant improvement in the overall accuracy of the model-testing proce-
dure to detect the correct underlying model when an omnibus test was
utilized.

Multiple Comparison Procedures

Four multiple comparison procedures were selected for investigation with
the two-sample test statistics described above. Tukey’s (1953) HSD proce-
dure (Tukey) was selected for its familiarity and frequent use by applied
researchers (see Keselman, Huberty, et al., 1998), Hommel’s (1988) proce-
dure (Hommel) was selected as a powerful modified Bonferroni procedure,
and Hayter’s (1986) modified LSD procedure (Hayter) and Ryan (1960),
Einot and Gabriel (1975), and Welsch’s (1977) protected stepwise
studentized range procedure (REGWQ) were selected because previous
research has found them to provide an excellent balance between Type I error
control and power (e.g., Kromrey & La Rocca, 1995; Seaman, Levin, &
Serlin, 1991).
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Tukey. Tukey (1953) proposed an MCP for testing all pairwise compari-
sons in what Toothaker (1991) described as possibly “the most frequently
cited unpublished paper in the history of statistics” (p. 41). Tukey’s HSD uses
a critical value obtained from the Studentized Range (q) distribution. The
Tukey procedure accounts for dependencies among the pairwise compari-
sons (i.e., nonorthogonality and the use of a common error term) in deriving a
simultaneous critical value. A pairwise null hypothesis is rejected with the
Tukey procedure if

t q J≥ ( , , ) / ( ) /α ν 2 1 2,

whereν represents the degrees of freedom.

Hommel. Hommel (1988) proposed a stagewise (step-up) modified
Bonferroni procedure. The first phase of the Hommel procedure containsI
steps (i = 1, . . .,I), with each step (i) containingkstages (k= 1, . . .,i), whereI
is the largesti such that allp k /iC i k( )− + > α . The second phase of the Hommel
procedure rejects all pairwise null hypotheses wherep≤ α / I I.

REGWQ. Ryan (1960) proposed a modification to the popular Newman-
Keuls procedure that ensures that the familywise error rate is maintained atα,
even in the presence of multiple partial null hypotheses. Instead of control-
ling the Type I error rate atα for each stretch size,p= J, J– 1, . . ., 2, the Type I
error rate is controlled atαp, whereαp = p(α)/J. Ryan’s original procedure
became known as the REGWQ after modifications to the procedure by Einot
and Gabriel (1975) and Welsch (1977). Einot and Gabriel proposed that the
Type I error rate should be controlled atα απ = − −1 1( ) /p J to increase power
slightly and Welsch proposed thatαp be controlled atα for p = J andJ – 1,
given that the original Newman-Keuls procedure is only liberal forp < J – 1.
The REGWQ procedure sequentially tests all ordered mean differences for
stretch sizesp = J, J – 1, . . ., 2, and rejects a pairwise null hypothesis if

t q pp≤ ( , , ) / ( ) /α ν 2 1 2,

whereαp =α for p= J, J– 1, andα αp
p J= − −1 1( ) / , for p= J– 2, . . ., 2. If any

Hcs are retained forp = ′p then allHcs contained in that stretch are retained
and not tested at later stages (i.e.,p< ′p ). If all Hcs are retained forp= ′p then
all Hcs with p æp’ are retained. A final modification proposed by Shaffer
(1979) is that an omnibus ANOVAF test first be performed on theJmeans. If
the omnibus test is significant, means separated byp= Jsteps are tested using
the critical value forp= J– 1, and if the omnibus test is not significant allHcs
are retained.
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Hayter. Hayter (1986) proposed a modification to Fisher’s LSD that
would provide strong control (i.e., control under conditions where all treat-
ment group means are equal, as well as when a subset of the treatment group
means are equal) of the familywise error rate. Like the LSD procedure, no
comparisons are tested unless the omnibus test is significant. If the omnibus
test is significant, thenHc is rejected if

t q J≥ −( , , ) / ( ) /α ν1 2 1 2.

Method

A Monte Carlo study was used to compare the Type I error and power rates
of the traditional and recently proposed multiple comparison strategies for
nonnormal data.

Eight variables were manipulated in this study: (a) number of levels of the
independent variable, (b) total sample size, (c) degree of sample size imbal-
ance, (d) degree of variance inequality, (e) pairings of unequal group sizes
and variances, (f) configuration of population means, (g) population distribu-
tion shape, and (h) two-sample (and omnibus if necessary) test statistic
applied.

To evaluate the effect of the number of pairwise comparisons computed
(an important consideration for techniques involved in controlling for the
effect of multiplicity of testing) on Type I error control and power, the num-
ber of levels of the independent variable was set atJ= 4 andJ= 7, resulting in
6 and 21 comparisons, respectively.

To investigate the effects of sample size, the total sample size (N) was
manipulated by setting the averagenj = 10, 15, and 25, resulting inN= 40, 60,
and 100 forJ = 4, andN = 70, 105, and 175 forJ = 7. For the nonnull mean
configurations used in this study, the group sizes 10, 15, and 25 result in a pri-
ori omnibus (F statistic) power estimates of approximately .5, .7, and .9,
respectively (assuming equal group sizes and variances).

Sample size balance or imbalance was also manipulated. Keselman,
Huberty, et al. (1998) reported that unbalanced designs were more common
than balanced designs in a review of studies published in educational and
psychological journals. In addition, the effects of variance heterogeneity can
be exacerbated when paired with heterogeneous sample sizes. Therefore,
three sample size conditions were examined (equalnj, moderately unequalnj,
and extremely unequalnj). The specific sample sizes used in this study are
enumerated in Table 1.

Degree of variance heterogeneity was also manipulated. According to
Keselman, Huberty, et al. (1998), ratios of largest to smallest variances of 8:1
are not uncommon in educational and psychological studies and can have
deleterious effects on the performance of many MCPs, especially when
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paired with unequal sample sizes. Therefore, three levels of variance equality/
inequality were utilized in this study: (a) equal variances, (b) largest to small-
est variance ratio of 4:1, and (c) largest to smallest variance ratio of 8:1. See
Table 1 for specific group variances forJ = 4 andJ = 7.

The specific pairings of unequal variances and sample sizes can have dif-
fering effects on the Type I error and power rates of many test statistics. Spe-
cifically, when variances and sample sizes are directly (positively) paired,
Type I error estimates can be conservative (with correspondingly deflated
power). On the other hand, when variances and sample sizes are inversely
(negatively) paired, Type I error estimates can be liberal (with correspond-
ingly inflated power). Therefore, both positive and negative pairings were
evaluated.

Several configurations of nonnull population means were investigated in
this study, in addition to the complete null case. Following Toothaker’s
(1991) definitions of mean configuration, equally spaced, minimum variabil-
ity, and maximum variability configurations were utilized (see Table 2 for a
listing of the mean configurations used in this study).

Another factor examined in this study was population distribution shape.
The three distribution shapes investigated were (a) normally distributed data,
(b) moderately skewed data from aχ 3

2 distribution (skewness = 1.63, kurtosis
= 4.00), and (c) substantially skewed data from theg and h distribution
(Hoaglin, 1985), whereg= 1 andh= 0 (skewness = 6.20, kurtosis = 114). The
moderately skewed case is representative of values reported by Micceri
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Table 1
Sample Sizes and Population Variances Used in the Simulation Study

J Sample Sizes Population Variances

4 10, 10, 10, 10 1, 1, 1, 1
9, 10, 10, 11 1, 2, 4, 4
5, 8, 12, 15 1, 3, 5, 8
15, 15, 15, 15
13, 15, 15, 17
7, 12, 18, 23
25, 25, 25, 25
20, 25, 25, 30
10, 20, 30, 40

7 10, 10, 10, 10, 10, 10, 10 1, 1, 1, 1, 1, 1, 1
9, 9, 10, 10, 10, 11, 11 1, 1, 2, 2, 3, 3, 4
5, 6, 8, 10, 12, 14, 15 1, 2, 2, 4, 7, 7, 8
15, 15, 15, 15, 15, 15, 15
13, 14, 15, 15, 15, 16, 17
7, 9, 12, 15, 18, 21, 23
25, 25, 25, 25, 25, 25, 25
20, 22, 24, 25, 26, 28, 30
10, 15, 20, 25, 30, 35, 40



(1989), and the substantially skewed case is intended to give one a picture of
what could occur with respect to Type I error and power in an arguably worst-
case scenario, with the premise being that if a method performs well in an
extreme case, it is also likely to perform well for other cases not investigated.

Last, three two-sample test statistics (with corresponding omnibus statis-
tics when required) were evaluated and compared in this study. These statis-
tics include (a) Welch’s (1938)t (omnibus Welch, 1951); (b) the trimmed
Welcht (omnibus trimmed Welch), based on 20% symmetric trimming; and
(c) Kruskal-Wallist (omnibus Kruskal-Wallis).

Familywise error rates were recorded for all procedures, except the
model-testing procedure, which is not designed to control a specific error
rate. In this article the robustness of a procedure, with respect to Type I error
control, will be determined using Bradley’s (1978) liberal criterion. That is, a
procedure is deemed robust with respect to Type I errors if the empirical rate
of Type I error falls within the range +/-.5α. Three conceptualizations of sen-
sitivity were used in this study: (a) all-pairs power, (b) average per-pair
power, and (c) the true model rate. All-pairs power is defined as the probabil-
ity of rejecting all false pairwise null hypotheses. Average per-pair is defined
as the average probability of rejecting any false pairwise null hypothesis. The
true model rate is defined as the probability of selecting the correct model for
the Dayton procedures, and as the probability of rejecting all false pairwise
null hypotheses and not rejecting any true null hypotheses for the remaining
MCPs.

The simulation program was written in SAS/IML (SAS Institute, 1999a).
Pseudorandom normal variates were generated with the SAS generator
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Table 2
Population Mean Configurations Used in the Simulation Study

Population Means

J 1 2 3 4 5 6 7

4
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.917
0.000 0.000 0.477 0.954
0.000 0.000 0.791 0.791
0.000 0.353 0.706 1.059

7
0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.970
0.000 0.000 0.000 0.000 0.000 0.750 0.750
0.000 0.000 0.000 0.366 0.732 0.732 0.732
0.000 0.000 0.450 0.450 0.450 0.900 0.900
0.000 0.169 0.338 0.507 0.676 0.845 1.014



RANNOR (SAS Institute, 1985). IfZij is a standard normal deviate, thenXij =
µ σj j ijZ+( ) is a normal variate with meanµ j and varianceσ j

2 . To generateχ 3
2

data, three standard normal variates were squared and summed. Theχ 2 vari-
ates were standardized and transformed to variates with meanµ j and variance
σ j

2 . To generate data from thegandhdistributions, standard unit normal vari-
ables were converted to the random variable

X gZ g hZij ij ij= −{[exp( ) ] / } {exp( / )}.1 22

To obtain a distribution with standard deviation &j, we multiplied eachXij by
a value ofσj. With g= 1 andh= 0, thegandhdistribution population mean is
.6487. Thus, .6487 was subtracted fromXij before being multiplied byσj.
When working with trimmed means, the population trimmed mean for thejth
group (µ ij = 0.111) was also subtracted from the variate before multiplying
byσj. Five thousand replications were performed for each condition, using a
nominal significance level of .05.

Results

The pattern of Type I error and power results were consistent across
unequal sample size conditions (moderately unequalnj, very unequalnj),
unequal variance conditions (moderately unequalσ j

2 , very unequalσ j
2 ), and

nonnull mean configurations, and were therefore averaged across these con-
ditions. Similar results were also found over the number of levels of the inde-
pendent variable (J= 4, 7) and the sample size conditions (averagenj = 10, 15,
and 25); thus, only results forJ = 7 and averagenj = 25 are reported. The
results were also consistent across the two skewed distributions (χ 3

2 andg= 1,
h = 0) and were thus averaged over these distributions, unless otherwise
noted. Last, partial null familywise error rates were controlled within
Bradley’s limits in all cases where complete null Type I error rates were con-
trolled within Bradley’s limits, and therefore are not reported (the complete
set of results can be obtained from the first author).

Type I Error Control

Normal distribution. Complete null familywise rates forJ = 7 and nor-
mally distributed data are presented in Table 3. The Stepboot procedure
maintained complete null rates within Bradley’s liberal bounds when vari-
ances were equal or sample sizes and variances were positively paired, but
not when sample sizes and variances were negatively paired (13.52%). The
remaining procedures (Hommel, Tukey, Hayter, and REGWQ) maintained
complete null rates within Bradley’s liberal bounds when Welch’s statistic
was used with either the usual sample means and variances or with trimmed
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means and Winsorized variances. When the Kruskal-Wallist was used, only
the Tukey procedure (with negatively paired sample sizes and variances) had
complete null rates (8.95%) that exceeded Bradley’s criterion.

Skewed distributions. Complete null familywise error rates forJ = 7 and
skewed data are presented in Table 3. The Stepboot procedure, as with nor-
mal data, was not able to maintain complete null rates below Bradley’s upper
bound when sample sizes and variances were negatively paired (17.92%).

The REGWQ procedure maintained complete null rates within Bradley’s
liberal bounds under all conditions when Welch’s statistic was used with
either the usual sample means and variances or with trimmed means and
Winsorized variances. The remaining procedures (Hommel, Tukey, and
Hayter) were unable to maintain rates below .075 with the Welch statistic
(usual means/variances) when sample sizes and variances were negatively
paired; however, these procedures were able to maintain rates below .075
under all conditions when the Welch statistic was applied with trimmed
means and Winsorized variances. When the Kruskal-Wallist was applied, all
the procedures maintained complete null rates within Bradley’s liberal crite-
rion when variances were equal, although none of the procedures was able to
maintain rates below .075 when sample sizes and variances were unequal.
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Table 3
Complete Null Familywise Error Percentages for J = 7 (N = 175)

Welcht Welch Trimmedt Kruskal-Wallist

= σ j
2 PP NP =σ j

2 PP NP =σ j
2 PP NP

Normal distribution
Hommel 4.08 4.25 4.00 4.32 4.31 4.57 4.25 3.46 7.18
Tukey 5.54 5.75 5.37 6.28 6.32 6.68 5.61 4.388.95
Hayter(P) 4.37 4.76 4.70 5.11 5.24 5.68 3.36 2.95 6.98
REGWQ(P) 3.52 3.96 2.97 3.76 3.84 3.45 3.22 2.87 6.63
Stepboota 5.81 4.15 13.52 5.81 4.15 13.52 5.81 4.1513.52

Skewed distributionsb

Hommel 3.25 3.39 9.10 2.72 2.97 5.28 4.4819.39 32.91
Tukey 4.25 4.6711.08 3.87 4.33 7.20 5.7922.62 36.51
Hayter(P) 4.58 4.8710.77 4.01 4.21 6.63 4.6223.07 35.76
REGWQ(P) 2.56 2.53 4.11 2.74 2.65 3.14 3.9521.45 34.00
Stepboota 5.61 5.19 17.92 5.61 5.19 17.92 5.61 5.1917.92

Note: = σ
j
2= equal population variances; PP and NP = positive and negative pairings of sample sizes and vari-

ances, respectively; (P) = protected test.
a. The Stepboot procedure does not use any of the above two-sample test statistics and is included for compar-
ison only
b. The results for the skewed distribution are averaged over theχ

3
2 andg= 1,h= 0 distributions; values that are

in italics are liberal according to Bradley’s (1978) limits of +.5.



Power

Normal distribution. Per-pair and all-pairs power rates forJ = 7 and nor-
mally distributed data are presented in Tables 4 and 5, respectively. Per-pair
and all-pairs power rates were similar across the familywise error controlling
procedures. With respect to test statistics, both per-pair and all-pairs power
rates were lower when the Welch procedure was applied with trimmed means
and Winsorized variances than when either the Welch procedure was applied
with the usual means and variances or the Kruskal-Wallis statistic was uti-
lized, although the differences were not substantial.

Skewed distributions. Per-pair and all-pairs power rates forJ = 7 and
skewed data are presented in Tables 4 and 5, respectively. The Stepboot pro-
cedure had per-pair and all-pairs power rates (approximately 25% and 2%,
respectively, with equal variances) that were comparable to the remaining
procedures when the Welch statistic was used, although rates for the Stepboot
procedure were consistently greater than the rates for the other procedures
with trimmed means and Winsorized variances, and considerably less than
rates for the other procedures with the Kruskal-Wallis statistic. Differences in
all-pairs power were minimized by floor effects.

Per-pair and all-pairs power rates for the Hayter and REGWQ procedures
were greater than the rates for any of the remaining procedures under all con-
ditions and across all test statistics, although the differences were in most
cases minimal.

With respect to test statistics, both per-pair and all-pairs power rates were
significantly lower when the Welch procedure was applied (usual means/
variances or trimmed means/Winsorized variances) than when the Kruskal-
Wallis statistic was utilized. For example, per-pair and all-pairs power rates
with the REGWQ and equal variances were 16.94% and 2.31% when the
Welcht was applied with the usual means and variances, 13.67% and 0.69%
when the Welcht was applied with the trimmed means and Winsorized vari-
ances, and 41.49% and 13.64% when the Kruskal-Wallis statistic was
applied, respectively.

In comparing the Welcht with the usual means and variances and the
Welcht with trimmed means and Winsorized variances, the degree of skew-
ness had a significant effect on the power of the MCPs (nontabled values).
When the distributions were moderately skewed (zero distribution), the per-
pair and all-pairs power rates for the Welch test with the usual means and
variances (e.g., 10.82% and 0.27%, respectively, with the REGWQ proce-
dure and negatively paired sample size and variances) were substantially
greater than the rates for the Welch test with trimmed means and Winsorized
variances (e.g., 2.14% and 0.00%, respectively, with the REGWQ procedure
and negatively paired sample size and variances). However, for theg= 1,h=
0 skewed distribution, the per-pair and all-pairs power rates for the Welch test
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Table 4
Average Per-Pair Power Percentages for J = 7 (N = 175)

Welcht Welch Trimmedt Kruskal-Wallist

= σ j
2 PP NP =σ j

2 PP NP =σ j
2 PP NP

Normal distribution
Hommel 31.21 6.12 9.24 26.42 4.79 7.50 33.22 4.88 11.25
Tukey 32.32 7.11 10.55 27.32 5.86 8.95 33.49 5.51 12.19
Hayter(P) 34.12 7.69 11.69 31.65 6.26 9.84 36.58 6.08 13.43
REGWQ(P) 32.33 7.12 6.51 27.24 5.40 5.17 37.54 5.75 12.75
Stepboota 35.13 6.47 11.19 35.13 6.47 11.19 35.13 6.47 11.19

Skewed distributionsb

Hommel 19.57 3.28 11.27 13.16 1.52 5.79 38.62 3.35 34.52
Tukey 20.87 3.93 12.41 14.57 2.06 6.77 39.98 3.78 34.95
Hayter(P) 22.18 4.29 13.32 15.24 2.17 7.14 40.27 4.02 37.47
REGWQ(P) 16.94 3.77 7.48 13.67 1.74 3.60 41.49 3.70 37.84
Stepboota 24.08 4.03 10.97 24.08 4.03 10.97 24.08 4.03 10.97

Note. = σ
j
2 = equal population variances; PP and NP = positive and negative pairings of sample sizes and vari-

ances, respectively; (P) = protected test.
a. The Stepboot procedure does not use any of the above two-sample test statistics and is included for compar-
ison only.
b. The results for the skewed distribution are averaged over theχ

3
2 andg = 1,h = 0 distributions.

Table 5
All-Pairs Power Percentages for J = 7 and (N = 175)

Welcht Welch Trimmedt Kruskal-Wallist

= σ j
2 PP NP =σ j

2 PP NP =σ j
2 PP NP

Normal distribution
Hommel 3.48 0.31 0.06 2.56 0.19 0.02 6.74 0.15 0.45
Tukey 3.69 0.33 0.07 2.74 0.21 0.03 7.04 0.16 0.45
Hayter(P) 5.25 0.44 0.10 3.13 0.28 0.04 8.93 0.20 0.58
REGWQ(P) 7.67 0.82 0.19 4.86 0.56 0.10 11.63 0.47 1.29
Stepboota 6.44 0.57 0.17 6.44 0.57 0.17 6.44 0.57 0.17

Skewed distributionsb

Hommel 1.03 0.06 0.05 0.20 0.01 0.01 7.10 0.03 3.59
Tukey 1.17 0.07 0.06 0.23 0.01 0.01 6.97 0.03 3.49
Hayter(P) 1.34 0.09 0.08 0.38 0.02 0.01 8.07 0.04 4.05
REGWQ(P) 2.31 0.21 0.15 0.69 0.04 0.02 13.64 0.09 7.17
Stepboota 2.42 0.24 0.27 2.42 0.24 0.27 2.42 0.24 0.27

Note. = σ
j
2 = equal population variances; PP and NP = positive and negative pairings of sample sizes and vari-

ances, respectively; (P) = protected test.
a. The Stepboot procedure does not use any of the above two-sample test statistics and is included for compar-
ison only.
b. The results for the skewed distribution are averaged over theχ

3
2 andg = 1,h = 0 distributions.



with the usual means and variances (e.g., 4.14% and 0.02%, respectively,
with the REGWQ procedure and negatively paired sample size and vari-
ances) were less than the rates for the Welch test with trimmed means and
Winsorized variances (e.g., 5.87% and 0.05%, respectively, with the
REGWQ procedure and negatively paired sample size and variances).

True Model Rates

Normal distribution. True model rates forJ = 7 and normally distributed
data are presented in Table 6. True model rates for the Protected Dayton pro-
cedure (approximately 22% with equal variances, and 16% with unequal
sample sizes and variances) were similar to the rates of the familywise con-
trolling procedures (approximately 18% to 21% with equal variances, and
15% to 17% with unequal sample sizes and variances).

True model rates for the REGWQ and Hayter procedures were consis-
tently larger than the rates for the Hommel or Tukey procedures. In addition,
no substantial differences existed between true model rates with either the
Welch, Welch with trimmed means and Winsorized variances, or Kruskal-
Wallis test statistics.

Skewed distributions. True model rates forJ = 7 and skewed data are pre-
sented in Table 6. True model rates for the Protected Dayton procedure
(approximately 21% with equal variances) were similar to the rates for the
familywise error controlling procedures. True model rates for the REGWQ
were consistently larger than the rates of the remaining familywise error con-
trolling procedures, although the differences were small (less than 5%).

With respect to test statistics, true model rates for procedures using the
Kruskal-Wallis test were approximately 3% to 5% larger than the same pro-
cedures using the Welch statistic with the usual means and variances, and
approximately 4% to 7% larger than the same procedures using the Welch
statistic with trimmed means and Winsorized variances.

Discussion

Researchers in the behavioral sciences are often confronted with the task
of evaluating pairwise multiple comparisons with nonnormal data. This arti-
cle discussed available multiple comparison strategies that each purport to
offer the researcher distinct advantages relative to other available strategies.

The Welch two-sample test (Welch, 1938) with the usual means and vari-
ances (with the REGWQ MCP), as well as the Welch two-sample test with
trimmed means and Winsorized variances (with the Hommel, Tukey, Hayter,
or REGWQ MCPs) maintained Type I error rates below Bradley’s upper lib-
eral bound under all of the conditions investigated in this study. However,
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although both strategies provided strong control of the Type I error rates
under the conditions investigated, the per-pair and all-pairs power of the tests
with the usual means and variances were consistently larger than the rates of
the tests with trimmed means and Winsorized variances. More specifically,
however, with moderately skewed data, the per-pair and all-pairs power rates
of tests based on the usual means and variances were substantially larger than
the rates of the tests based on trimmed means and Winsorized variances,
although with substantially skewed data the per-pair and all-pairs power rates
of the tests based on trimmed means and Winsorized variances were larger
than the rates of the tests based on the usual means and variances. These find-
ings are consistent with those reported by Keselman, Lix, et al. (1998) and
highlight the importance of the degree of nonnormality in deciding between
the use of the Welch test with the usual means and variances or with trimmed
means and Winsorized variances.

The use of the Kruskal-Wallis nonparametric test statistic (Sprent, 1993)
was also investigated in this study. The Kruskal-Wallist, although having lib-
eral Type I error rates when sample sizes and variances were unequal, pro-
vided strong Type I error control with equal variances, and was often much
more powerful than MCPs with the Welch test. For example, with seven lev-
els of the independent variable and skewed data, per-pair and all-pairs power
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Table 6
True Model Rate Percentages for J = 7 and (N = 175)

Welcht Welch Trimmedt Kruskal-Wallist

= σ j
2 PP NP =σ j

2 PP NP =σ j
2 PP NP

Normal distribution
Hommel 18.53 16.22 16.05 17.55 16.10 15.92 18.43 16.22 15.83
Tukey 18.31 15.98 15.83 17.29 15.78 15.58 18.30 16.07 15.54
Hayter(P) 19.14 16.23 15.97 17.61 16.02 15.76 19.12 16.29 15.94
REGWQ(P) 20.89 16.68 16.33 18.87 16.47 16.17 20.99 16.56 16.59
Stepboota 19.91 16.45 14.55 19.91 16.45 14.55 19.87 16.45 14.55
Daytona(P) 22.30 16.42 16.85 22.30 16.42 16.85 22.48 16.71 16.42

Skewed distributionsb

Hommel 17.42 16.15 15.20 16.31 16.18 15.80 20.33 13.46 13.70
Tukey 17.23 15.94 14.87 16.33 15.96 15.47 20.47 12.92 13.06
Hayter(P) 17.53 15.93 14.94 16.42 15.99 15.57 21.12 15.26 16.51
REGWQ(P) 18.54 16.42 16.19 17.11 16.27 16.16 24.49 15.39 18.72
Stepboota 17.92 16.11 14.17 17.92 16.11 14.17 17.92 16.11 14.17
Daytona(P) 20.74 15.42 15.54 20.74 15.42 15.54 20.94 14.20 13.31

Note. = σ
j
2 = equal population variances; PP and NP = positive and negative pairings of sample sizes and vari-

ances, respectively; (P) = protected test.
a. The Stepboot and Dayton procedures do not use any of the above two-sample test statistics and are included
for comparison only.
b. The results for the skewed distribution are averaged over theχ

3
2 andg = 1,h = 0 distributions.



rates for the REGWQ procedure were 17% and 2%, respectively, with the
Welch test (usual means/variances), and 42% and 14%, respectively, with the
Kruskal-Wallist.

Of the familywise error controlling procedures investigated, the REGWQ
procedure performed well relative to the Hommel, Tukey, and Hayter proce-
dures with respect to Type I error control and power. With respect to power,
the Tukey procedure (one of the most widely adopted procedures in the
behavioral sciences) performed poorly relative to the REGWQ, especially
with respect to all-pairs power. In addition, the REGWQ provided more con-
sistent Type I error control than the Tukey procedure. For example, when the
Welch test was applied with skewed data, the Tukey procedure allowed
familywise error rates to exceed Bradley’s upper liberal bound with nega-
tively paired sample sizes and variances, whereas the Protected REGWQ
procedure maintained the familywise error rates within Bradley’s liberal
bounds.

A different strategy that has been proposed for dealing with nonnormal
data is bootstrapping, in which an empirical distribution is generated by sam-
pling repeatedly from the raw data residuals. Although the bootstrapping
procedure evaluated in this study (Westfall et al., 1999) provided strong Type
I error control when variances were equal, Type I error rates became
extremely liberal when sample sizes and variances were negatively paired.
For example, familywise error rates with seven levels of the independent
variable reached more than 13% with normally distributed and chi-square
distributed data. In addition, although the Stepboot procedure provided
strong Type I error control with equal variances when the data was skewed,
per-pair and all-pairs power rates never exceeded those of the REGWQ pro-
cedure with the Kruskal-Wallis statistic. For example, withJ = 7, equal vari-
ances, and skewed data, per-pair power rates for the Stepboot procedure were
approximately 15% less than for the REGWQ procedure.

Although the measurement of power and Type I error rates are often
undertaken separately, the investigation of true model rates in this study
allows for a unique evaluation of the performance of MCPs that considers
Type I error control and power simultaneously. In particular, the true model
rate evaluates the ability of a MCP to reject all false null hypotheses while not
rejecting any true null hypotheses, a definite goal of researchers utilizing
MCPs (or any other inferential statistic). With seven levels of the independent
variable, although the Protected Dayton procedure had minimally larger true
model rates than MCPs with the Welch test, true model rates for the REGWQ
procedure with the Kruskal-Wallis test were equal to or larger than the rates
for the Protected Dayton procedure.

True model rate results also verified previous recommendations based on
separate Type I error and power evaluations. For example, true model rates
for MCPs with the Kruskal-Wallis statistic were consistently larger with
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equal variances and skewed data than with any of the other test statistics eval-
uated, and provide further evidence of the optimal balance between Type I
error control and power for the Kruskal-Wallis statistic with equal variances.
True model rate results also support the recommendation of the REGWQ
procedure over remaining familywise controlling procedures. Across all
conditions and test statistics evaluated in this study, true model rates for the
Hommel, Tukey or Hayter procedures never exceeded the rates of the
REGWQ procedure.

It is important to acknowledge that the primary limitation of this study is
that not all potential data conditions could be investigated, and therefore the
conclusions of this study may not necessarily extend to other data conditions.
With this cautionary note in mind, we nonetheless offer the following general
guidelines for researchers performing pairwise multiple comparison tests
with nonnormal data: (a) When variances are unequal, researchers are
advised to use the REGWQ procedure with the Welch test statistic(s). For
data that appear to be moderately nonnormal, the Welch statistic can be
applied with the usual least squares estimators, although for substantial
degrees of nonnormality the Welch statistic should be applied with robust
estimators. (b) When variances are equal, researchers are advised to use the
REGWQ procedure with the Kruskal-Wallist (and Kruskal-Wallis omnibus
statistic) for superior Type I error control and power. However, it is important
to acknowledge that although the Kruskal-Wallis MCP is recommended
when variances are equal, recent research has reported that variances are
often not equal (e.g., Keselman, Huberty, et al., 1998). Furthermore, given
the highly inflated Type I error rates for the Kruskal-Wallis MCP with
unequal variances, researchers must have explicit knowledge that variances
are equal (i.e., variance equality should not be assumed) before adopting the
Kruskal-Wallis procedure. (c) Finally, when motivation is present for elimi-
nating intransitive decisions or comparing possible models, the Protected
Dayton procedure can be adopted and provides a good balance between Type
I error control and power.
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