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Abstract

Technical analysis is widely adopted by investors in practice. Moving average

strategy is the simplest and most popular trading rule. This simple moving average

strategy suffers a well-known drawback since its allocation is always either 100% or

0%. This rule is independent of the investor’s risk tolerance level which is widely

considered as an important factor in any investment activity. We first introduce

an investor’s specific risk tolerance into the moving average strategy. We then pro-

pose a single-asset generalized moving average crossover (SGMA) strategy and a

multiple-asset generalized moving average crossover (MGMA) strategy. The SGMA

and MGMA strategies allocate wealth among risky-assets and risk-free asset with the

risk tolerance specified by investor. These trading strategies are evaluated on both

simulation data and high-frequency exchange-traded fund (ETF) data. It is evident

that both the SGMA and MGMA strategies can significantly increase the investor’s

expected utility of wealth and expected wealth.

Movements of stocks or equity indices are very important information for an in-
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vestment decision. Empirical studies illustrate that the movements switch among

different regimes or states. The Markov regime-switching model has important ap-

plications to this type analysis. However, parameters estimated under normality as-

sumption might not be stable and the corresponding change-point detection algorith-

m might face some challenges when either the empirical distribution is heavy-tailed

or observed data contain outliers. We relax the normality assumption and propose

a generalized regime-switching (generalized RS) model. We then improve the corre-

sponding change-point detection algorithm by using the generalized RS model. The

change-point detection algorithm using the generalized RS model is tested on both

simulation data and Hang Seng monthly index data from January 1988 to March

2015. Simulation studies show that the change-point detection algorithm using the

generalized RS model can improve accuracy of identifying change-points when either

the empirical distribution is heavy-tailed or observed data contain outliers. It is also

evident that the identified change-points on Hang Seng monthly index data match

the observed market behaviors.
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1 Introduction

1.1 Some Aspects of Single-Asset Portfolio Moving Average

Strategy

Technical analysis is widely adopted by investors in practice. They believe that

historical data contain important information that can be used to predict future

movements of the market. Many empirical evidence including predicted performance

of stock return demonstrates the usefulness of technical analysis (see Brock et al.,

1992; Lo and Mackinlay, 1999; Ang and Bekaert, 2006; Campbell and Thompson,

2008). Among many technical analysis techniques, moving average strategy is the

simplest and most popular trading rule. Brock et al. (1992) appear to be the first

to provide strong evidence of profitability by using moving average technique in

analyzing daily Dow Jones Industrial Average (DJIA) data. Lo et al. (2000) provide

future evidence based on different time series from financial market. These studies

generate further research interests on moving average strategies. However, most of
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studies have been focused on validating the strategy using different data sets. The

conclusions are mixed and inconclusive (see Ito, 1999; Gunaskarage and Power, 2001;

Chang et al., 2004; Tabak and Lima, 2009; Mohr et al., 2013). Recent studies are

focused on predictive power of moving average technique (see Burghandt and Walls,

2011; Cespa and Vives, 2012; Neely et al., 2014).

The moving average in technical analysis follows an all-or-nothing investment

strategy: When a buy signal is triggered by MA, the investor should allocate all of

his/her wealth to the stock of interest; when a sell signal is triggered by MA, the

investor should allocate nothing of wealth into the stock by selling all the current

holdings. This simple moving average strategy suffers a well-known drawback since

its allocation is always either 100% or 0%. This is independent of the investor’s risk

tolerance level which is widely considered as an important factor in any investment

activity. We believe that the allocation amount should be a function of the investor

specified risk tolerance and could lead to a much favorable investment outcome.

Zhu and Zhou (2009) provide the first theoretical analysis for the simplest moving

average strategy. However, their study focuses on how technical analysis such as

moving average strategy can add value to commonly used allocation rules that invest

fixed proportions of wealth in stock. To our best knowledge, there is no theoretical

study in literature about a trading strategy that involves the risk tolerance specified
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by investor. This motives us to propose a single-asset generalized moving average

crossover (SGMA) strategy in chapter 2.

1.2 Some Aspects of Multi-Asset Portfolio Moving Average

Strategy

In order to avert significant loss, many investors might be more interested in an

investment based on diversified investment portfolio, which contains more than one

risky asset. They might want to allocate the wealth not only between risk-free asset

and risky asset, but also among different risky assets. They might be interested in

optimal trading strategies when they have enough capital to invest more than two

assets. However, most of asset allocation studies focus on finding optimal portfolio

choice under different modeling processes (see Buraschi et al., 2010; Chiu and Wong,

2014; Lioui and Poncet, 2016; Legendre and Togola, 2016; Wu et al., 2017). They do

not study the optimal allocation in the context of using technical analysis strategies

for multiple assets allocation.

Therefore we take a different approach and focus on finding optimal trading

strategies based on technical analysis. The moving average is the simplest and most

popular technical analysis trading rule. However, it faces difficulty when there are

more than one investment signals because it is an all-or-nothing investment strategy.
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The common approach is to assign equal weights when allocating the wealth among

the risky assets, which is not optimal. This motives us to continue our study for

multi-asset portfolio and propose a multi-asset generalized moving average crossover

(MGMA) strategy in chapter 3.

1.3 Some Aspects of Markov Regime-Switching Model

In order to generate a much favorable investment outcome, many investors are

interested in movements of stocks or equity indices that are widely considered as

basic information in an investment activity. Many empirical studies illustrate that

the movements of stocks or equity indices switch among different regimes or states.

The Markov regime-switching model introduced by Hamilton (1989) and Hamilton

and Susmel (1994) has important applications. The Markov regime-switching model

is very useful because it allows model parameters to take different values to reflect

intrinsic nature of different regimes. There are numerous applications of the Markov

regime-switching model in economic or financial time series analysis (see Guérin and

Marcellino, 2013; Zou and Chen, 2013; Bauwens et al., 2014; Chen et al., 2014).

Many researchers believe that market behaviors can be captured through proba-

bilistic switching models for different regimes. Hardy (2001) compares different mod-

els and finds that a two-state Markov regime-switching log-normal (RSLN) model

4



is able to fit S&P 500 monthly index data relatively well. However, parameters es-

timated under normality assumption might not be stable when either the empirical

distribution is heavy-tailed or observed data contain outliers. Guo et al. (2011) find

that using a single regime-switching model to model entire time series might not

work well as financial market behavior changes at some points in time. They find

that to use a regime-switching model with different parameters for time series before

and after those time points can explain the financial market behavior relatively well.

Hence, they define change-points as the time points that segment a time series if

data in two neighboring segments are modeled by the same model with different pa-

rameters or different models. They also propose a change-point detection algorithm

to identify change-points. However, the change-point detection algorithm faces some

challenges when either the empirical distribution is heavy-tailed or observed data

contain outliers. This motives us to propose a generalized regime-switching (gen-

eralized RS) model and use the generalized RS model to improve the change-point

detection algorithm in chapter 4.
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2 Statistical Modeling and Single-Asset

Generalized Moving Average Crossover (SGMA)

Strategy

In this chapter, we study moving average strategy for single-asset portfolio. No-

tice that the moving average in technical analysis suffers a well-known drawback

since its allocation is always either 100% or 0%. We introduce the investor specified

risk tolerance into the moving average strategy and propose a single-asset generalized

moving average crossover (SGMA) strategy. The SGMA strategy is not an all-or-

nothing investment strategy and involves the risk tolerance specified by investor.

The SGMA strategy not only can increase the investor’s expected utility of wealth,

but also can increase the investor’s expected wealth.

Chapter 2 is organized as follows. Section 2.1 introduces the model with the

SGMA strategy. Section 2.2 provides all preliminary Lemmas for analytic results.

We present main analytic results in section 2.3. An investment algorithm for single-
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asset portfolio is given in section 2.4. Section 2.5 and 2.6 provide simulation studies

and real data analysis. The conclusion is presented in section 2.7.

2.1 The Model and The SGMA Strategy

Suppose that there are two assets in the market. First one is a risk-free asset. For

example, cash or money market account with a constant interest rate r. Second one

is a risky asset. For example, a stock or index representing the aggregated equity

market. A single-asset portfolio only contains one risky asset, and wealth can be

only allocated between one risk-free asset and one risky asset.

We follow Zhu and Zhou (2009) to define the model. The model follows funda-

mental model setting of financial research. Suppose that the price of risk-free asset

P f
t at any time t satisfies

dP f
t = rP f

t dt, (2.1)

and the price of risky asset (stock) Pt at any time t satisfies

dPt = (µ0 + µ1Xt)Ptdt+ σpPtdBt, (2.2)

where µ0, µ1, σp are parameters, Bt is one-dimensional standard Brownian motion,

and Xt is a predictive variable that could help to predict stock return. By Keim and

Stambaugh (1986) and Stambaugh (1999), Xt is assumed to be a stationary process

7



for t ≥ 0 and satisfies

dXt = (θ0 + θ1Xt) dt+ σxdZt, (2.3)

where θ0, θ1, σx are parameters, θ1 is negative to ensure that Xt is a mean-reverting

process, Zt is one-dimensional standard Brownian motion correlated with Bt. ρ ∈

[−1, 1] is a corresponding correlation coefficient between Bt and Zt.

Let us first recall the moving average crossover (MA) strategy for single-asset

portfolio. Suppose that Pt is the stock price and Yt is the log transformed stock

price, i.e., Yt = logPt. Let h > 0 be a lag or lookback period. By Zhu and Zhou

(2009), a continuous time version of the moving average of the log transformed stock

price at any time t is defined as

M
(h)
t =

1

h

∫ t

t−h
Yudu, (2.4)

i.e., the average log transformed stock price over time period [t− h, t]. They choose

to use this definition because (1) the distribution of the moving average on original

stock price is very complex and difficult to analyze, and (2) this definition is tractable

for explicit solutions. Therefore, we also use this moving average definition in our

research. Let M
(s,l)
t be difference between M

(s)
t and M

(l)
t , where s > 0 is a short term

lookback period and l > s is a long term lookback period, i.e.,

M
(s,l)
t = M

(s)
t −M

(l)
t . (2.5)
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Then the MA strategy τt = τ(M
(s,l)
t ) is defined as

τt =


0, if M

(s,l)
t ∈ Ω̃1,

1, if M
(s,l)
t ∈ Ω̃2.

(2.6)

where Ω̃i is defined as

Ω̃i =


(−∞, 0) , if i = 1,

[0,∞) , if i = 2.

Now let us introduce the investor specified risk tolerance ε > 0 into the moving

average strategy and define the SGMA strategy. Let δ1 and δ2 be asset allocation

parameters, which can be interpreted as long portion of stock (δi ≥ 0) and short

portion of stock (δi < 0). Define Ωi as

Ωi =



(−∞,−ε) , if i = 1,

[−ε, 0) , if i = 2,

[0, ε] , if i = 3,

(ε,∞) , if i = 4.

(2.7)

Then using M
(s,l)
t = M

(s)
t −M

(l)
t as defined in Equation (2.5), we define the SGMA
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strategy ηt = η(M
(s,l)
t , ε) as

ηt =



0, if M
(s,l)
t ∈ Ω1,

δ2, if M
(s,l)
t ∈ Ω2,

δ1, if M
(s,l)
t ∈ Ω3,

1, if M
(s,l)
t ∈ Ω4.

(2.8)

This is well defined when t ≥ l. For t < l, we define the SGMA strategy ηt as

a pre-chosen constant λ. The SGMA strategy ηt is a market timing strategy that

allocates wealth between cash and stock with the risk tolerance specified by the

investor. Notice that the MA strategy for single-asset portfolio τt is a special case

of the SGMA strategy ηt when δ1 = 1 and δ2 = 0. It is obvious that the SGMA

strategy provides more investment options when either δ1 6= 1 or δ2 6= 0.

The MA strategy suffers a well-known drawback given that it is an all-or-nothing

investment strategy. The SGMA strategy can overcome the drawback by finding

optimal ηt that maximizes the investor’s expected log-utility of wealth

max
ηt

E (logWT ) , (2.9)

subject to a budget constraint

dWt

Wt

= rdt+ ηt (µ0 + µ1Xt − r) dt+ ηtσpdBt, (2.10)
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given an initial wealth W0, a constant rate of interest r and an investment horizon

T .

2.2 Preliminaries

All preliminary Lemmas in this section are used to derive analytical results in

next section. Zhu and Zhou (2009) provide Lemmas 2.1− 2.7 and 2.11 with limited

proof. We verify these Lemmas by providing detailed proof. We also state new

Lemmas 2.8− 2.10 and 2.12− 2.15. The proofs are also given.

Lemma 2.1 Let Xt be the predictive variable in the market, then Xt is normally

distributed with mean E (Xt) and variance V ar (Xt), where

Xt = eθ1tX0 −
θ0

θ1

(
1− eθ1t

)
+ σx

∫ t

0

eθ1(t−u)dZu,

and

E (Xt) = −θ0

θ1

& V ar (Xt) = − σ2
x

2θ1

.

Proof.

d
(
e−θ1uXu

)
= −θ1e

−θ1uXudu+ e−θ1udXu

= −θ1e
−θ1uXudu+ e−θ1u [(θ0 + θ1Xu) du+ σxdZu]

= θ0e
−θ1udu+ e−θ1uσxdZu,
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then

e−θ1uXu |t0 = e−θ1tXt −X0 =

∫ t

0

d
(
e−θ1uXu

)
=

∫ t

0

[
θ0e
−θ1udu+ e−θ1uσxdZu

]
=

∫ t

0

θ0e
−θ1udu+

∫ t

0

e−θ1uσxdZu = −θ0

θ1

(
e−θ1t − 1

)
+

∫ t

0

e−θ1uσxdZu,

which implies

Xt = eθ1tX0 −
θ0

θ1

(
1− eθ1t

)
+ σx

∫ t

0

eθ1(t−u)dZu.

Given E (dZu) = 0 and V ar (dZu) = du, it follows that Xt is normally distributed

with mean

E (Xt) = E

[
eθ1tX0 −

θ0

θ1

(
1− eθ1t

)
+ σx

∫ t

0

eθ1(t−u)dZu

]
= eθ1tE (X0)− θ0

θ1

(
1− eθ1t

)
+ σx

∫ t

0

eθ1(t−u)E (dZu)

= eθ1tE (X0)− θ0

θ1

(
1− eθ1t

)
,

and variance

V ar (Xt) = V ar

[
eθ1tX0 −

θ0

θ1

(
1− eθ1t

)
+ σx

∫ t

0

eθ1(t−u)dZu

]
=
(
eθ1t
)2
V ar (X0) + V ar

(
−θ0

θ1

(
1− eθ1t

))
+ σ2

x

∫ t

0

(
eθ1(t−u)

)2
V ar (dZu)

= e2θ1tV ar (X0) + 0 + σ2
x

∫ t

0

e2θ1(t−u)du

= e2θ1tV ar (X0)− σ2
x

2θ1

(
1− e2θ1t

)
,

where E (X0) and V ar (X0) are mean and variance of X0. Under stationarity condi-

tion, i.e., E (X0) = E (Xt) and V ar (X0) = V ar (Xt), when θ1 < 0,

E (Xt) = −θ0

θ1

& V ar (Xt) = − σ2
x

2θ1

.

12



The Lemma is proved.

Lemma 2.2 Let Yt = logPt be the log transformed stock price, then Yt is normally

distributed with mean E (Yt), where

Yt = Y0 +

∫ t

0

(
µ0 + µ1Xu −

1

2
σ2
p

)
du+ σpBt,

and

E (Yt) = Y0 +

(
µ0 −

µ1θ0

θ1

− 1

2
σ2
p

)
t.

Proof.

dPu
Pu

= (µ0 + µ1Xu) du+ σpdBu,

and (du)2 = o(du), dudBu = o(du) and (dBu)
2 = du, then(

dPu
Pu

)2

= (µ0 + µ1Xu)
2 (du)2 + 2σpdBu (µ0 + µ1Xu) du+ σ2

p (dBu)
2 = σ2

pdu.

Therefore

d (Yu) = d (logPu) = [logPu]
′ dPu +

1

2
[logPu]

′′ (dPu)
2 =

dPu
Pu
− 1

2

(
dPu
Pu

)2

= (µ0 + µ1Xu) du+ σpdBu −
1

2
σ2
pdu =

(
µ0 + µ1Xu −

1

2
σ2
p

)
du+ σpdBu,

which implies

logPu |t0 = logPt − logP0 = Yt − Y0 =

∫ t

0

d (logPu)

=

∫ t

0

(
µ0 + µ1Xu −

1

2
σ2
p

)
du+

∫ t

0

σpdBu

=

∫ t

0

(
µ0 + µ1Xu −

1

2
σ2
p

)
du+ σpBt.
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Therefore

Yt = Y0 +

∫ t

0

(
µ0 + µ1Xu −

1

2
σ2
p

)
du+ σpBt.

Given that E (Bt) = 0, by Lemma 2.1, it follows that Yt with mean

E (Yt) = E

[
Y0 +

∫ t

0

(µ0 + µ1Xu −
1

2
σ2
p)du+ σpBt

]
= E (Y0) +

∫ t

0

(
µ0 + µ1E (Xu)−

1

2
σ2
p

)
du+ σpE (Bt)

= Y0 +

(
µ0 −

µ1θ0

θ1

− 1

2
σ2
p

)
t.

The Lemma is proved.

Lemma 2.3 Let M
(h)
t be the moving average based on lookback period h > 0, then

M
(h)
t is normally distributed with mean E

(
M

(h)
t

)
, where

E
(
M

(h)
t

)
= Y0 +

(
µ0 −

µ1θ0

θ1

− 1

2
σ2
p

)(
t− h

2

)
.

Proof.

By Lemma 2.2,

E
(
M

(h)
t

)
= E

[
1

h

∫ t

t−h
Yudu

]
=

1

h

∫ t

t−h
E (Yu) du =

1

h

∫ t

t−h

(
Y0 +

(
µ0 −

µ1θ0

θ1

− 1

2
σ2
p

)
u

)
du

=
1

h

∫ t

t−h
Y0du+

1

h

∫ t

t−h

(
µ0 −

µ1θ0

θ1

− 1

2
σ2
p

)
udu

= Y0 +

(
µ0 −

µ1θ0

θ1

− 1

2
σ2
p

)
1

2h

(
t2 − (t− h)2

)
= Y0 +

(
µ0 −

µ1θ0

θ1

− 1

2
σ2
p

)(
t− h

2

)
.
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The Lemma is proved.

Lemma 2.4 Let Zu and Bv be two-dimensional standard Brownian motion. Let ρ be

the correlation between Zt and Bt for any time t, then Cov (Zu, Bv) and Cov (dZu, Bv)

for any u, v are

Cov (Zu, Bv) = ρmin (u, v) ,

and

Cov (dZu, Bv) =


ρdu, if u < v,

0, otherwise.

Proof.

Given that (Zu, Bu) is two-dimensional standard Brownian motion with correla-

tion coefficient ρ, Zu can be represented as ρBu +
√

1− ρ2B′u, where Bu and B′u are

independent, then

Cov (Zu, Bv) = Cov
(
ρBu +

√
1− ρ2B′u, Bv

)
= ρCov (Bu, Bv) +

√
1− ρ2Cov (B′u, Bv)

= ρmin (u, v) ,
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and

Cov (dZu, Bv) = Cov (Zu+du − Zu, Bv) = Cov (Zu+du, Bv)− Cov (Zu, Bv)

= ρmin (u+ du, v)− ρmin (u, v)

=


ρdu, if u < v,

0, otherwise.

The Lemma is proved.

Lemma 2.5 Let Xt be the predictive variable in the market. Let Bv be one-dimensional

standard Brownian motion, then Cov (Bv, Xt) for any v, t is

Cov (Bv, Xt) =


−σxρ

θ1

(
eθ1(t−v) − eθ1t

)
, if v ≤ t,

−σxρ
θ1

(
1− eθ1t

)
, if v > t.

Proof.

Since Bv, X0 are independent, then Cov (Bv, X0) = 0, by Lemma 2.1 and Lemma

2.4,

Cov (Bv, Xt) = Cov

(
Bv, e

θ1tX0 −
θ0

θ1

(
1− eθ1t

)
+ σx

∫ t

0

eθ1(t−u)dZu

)
= σxCov

(
Bv,

∫ t

0

eθ1(t−u)dZu

)
= σx

∫ t

0

eθ1(t−u)Cov (Bv, dZu) .

For v ≤ t, then

Cov (Bv, Xt) = σx

∫ v

0

eθ1(t−u)Cov (Bv, dZu) + σx

∫ t

v

eθ1(t−u)Cov (Bv, dZu)

= σx

∫ v

0

eθ1(t−u)ρdu+ 0 = −σxρ
θ1

(
eθ1(t−v) − eθ1t

)
,
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and for v > t, then

Cov (Bv, Xt) = σx

∫ t

0

eθ1(t−u)ρdu = −σxρ
θ1

(
1− eθ1t

)
.

The Lemma is proved.

Lemma 2.6 Let Zt be one-dimensional standard Brownian motion, then for any

u, v, Cov (dZu, dZv) = 0.

Proof.

For u ≤ v, then

Cov (dZu, dZv) = Cov (Zu+du − Zu, Zv+dv − Zv)

= Cov (Zu+du, Zv+dv)− Cov (Zu+du, Zv)− Cov (Zu, Zv+dv) + Cov (Zu, Zv)

= (u+ du)− (u+ du)− u+ u = 0.

Similarly, for u > v, Cov (dZu, dZv) = (v + dv)− v − (v + dv) + v = 0. The Lemma

is proved.

Lemma 2.7 Let Xt be the predictive variable in the market, then Cov (Xa, Xb) for

any a, b is

Cov (Xa, Xb) = − σ2
x

2θ1

eθ1|a−b|.

Proof.
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By Lemma 2.1,

Cov (Xa, Xb)

= Cov
(
eθ1aX0, e

θ1bX0

)
+ Cov

(
σx

∫ a

0

eθ1(a−u)dZu, σx

∫ b

0

eθ1(b−v)dZv

)
= eθ1(a+b)V ar (X0) + σ2

xe
θ1aeθ1bCov

(∫ a

0

e−θ1udZu,

∫ b

0

e−θ1vdZv

)
= eθ1(a+b)V ar (X0) + σ2

xe
θ1(a+b)Cov

(∫ a

0

e−θ1udZu,

∫ b

0

e−θ1vdZv

)
.

For a ≤ b, by Lemma 2.6,

Cov

(∫ a

0

e−θ1udZu,

∫ b

0

e−θ1vdZv

)
= Cov

(∫ a

0

e−θ1udZu,

∫ a

0

e−θ1vdZv +

∫ b

a

e−θ1vdZv

)
= Cov

(∫ a

0

e−θ1udZu,

∫ a

0

e−θ1vdZv

)
+ Cov

(∫ a

0

e−θ1udZu,

∫ b

a

e−θ1vdZv

)
= V ar

(∫ a

0

e−θ1udZu

)
+

∫ a

0

e−θ1u
∫ b

a

e−θ1vCov (dZu, dZv)

=

∫ a

0

e−2θ1udu+ 0 = − 1

2θ1

(
e−2θ1a − 1

)
,

similarly, for a > b,

Cov

(∫ a

0

e−θ1udZu,

∫ b

0

e−θ1vdZv

)
=

∫ b

0

e−2θ1vdv = − 1

2θ1

(
e−2θ1b − 1

)
,

which implies

Cov

(∫ a

0

e−θ1udZu,

∫ b

0

e−θ1vdZv

)
= − 1

2θ1

(
e−2θ1 min(a,b) − 1

)
.

18



Therefore

Cov (Xa, Xb) = eθ1(a+b)V ar (X0) + σ2
xe
θ1(a+b)

[
− 1

2θ1

(
e−2θ1 min(a,b) − 1

)]
= eθ1(a+b)V ar (X0)− σ2

x

2θ1

[
e(θ1(a+b)−2θ1 min(a,b)) − eθ1(a+b)

]
= eθ1(a+b)V ar (X0)− σ2

x

2θ1

[
eθ1|a−b| − eθ1(a+b)

]
= eθ1(a+b)

(
− σ2

x

2θ1

)
− σ2

x

2θ1

[
eθ1|a−b| − eθ1(a+b)

]
= − σ2

x

2θ1

eθ1|a−b|.

The Lemma is proved.

Lemma 2.8 Let Xt be the predictive variable in the market. Let Yt = logPt be the

log transformed stock price, then Cov (Yv, Xt) for any v ≤ t is

Cov (Yv, Xt) =

(
µ1σ

2
x

2θ2
1

− σxσpρ

θ1

)(
eθ1(t−v) − eθ1t

)
.

Proof.

Given that Y0, µ0,−1
2
σ2
p are all constants, by Lemma 2.2,

Cov (Yv, Xt) = Cov

(
Y0 +

∫ v

0

(
µ0 + µ1Xu −

1

2
σ2
p

)
du+ σpBv, Xt

)
=

∫ v

0

µ1Cov (Xu, Xt) du+ σpCov (Bv, Xt) ,
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then for v ≤ t, by Lemma 2.5 and Lemma 2.7,

Cov (Yv, Xt) =

∫ v

0

µ1

(
− σ2

x

2θ1

eθ1(t−u)

)
du+ σp

(
−σxρ
θ1

(
eθ1(t−v) − eθ1t

))
= −µ1σ

2
x

2θ1

eθ1t
∫ v

0

e−θ1udu− σpσxρ

θ1

eθ1t
(
e−θ1v − 1

)
=
µ1σ

2
xe
θ1t

2θ2
1

(
e−θ1v − 1

)
− σpσxρ

θ1

eθ1t
(
e−θ1v − 1

)
=
σxe

θ1t

θ1

(
σpρ−

µ1σx
2θ1

)(
1− e−θ1v

)
=

(
µ1σ

2
x

2θ2
1

− σxσpρ

θ1

)(
eθ1(t−v) − eθ1t

)
.

The Lemma is proved.

Lemma 2.9 Let Yt = logPt be the log transformed stock price. Let Bv be one-

dimensional standard Brownian motion, then Cov (Yt, Bv) is independent of v for

any t ≤ v, i.e.,

Cov (Yt, Bv) = −µ1σxρ

θ1

(
t− 1

θ1

eθ1t +
1

θ1

)
+ σpt.

Proof.

For t ≤ v, by Lemma 2.2 and Lemma 2.5 with u ≤ t ≤ v,

Cov (Yt, Bv) = Cov

(
Y0 +

∫ t

0

(
µ0 + µ1Xu −

1

2
σ2
p

)
du+ σpBt, Bv

)
=

∫ t

0

µ1Cov (Xu, Bv) du+ σpCov (Bt, Bv)

=

∫ t

0

µ1

(
−σxρ
θ1

(
1− eθ1u

))
du+ σp min (t, v)

= −µ1σxρ

θ1

(
t− 1

θ1

eθ1t +
1

θ1

)
+ σpt.
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The Lemma is proved.

Lemma 2.10 Let Yt = logPt be the log transformed stock price, then Cov (Yu, Yv)

for any u, v is

Cov (Yu, Yv) =
(
σ2
p + 2θ1c1

)
min (u, v) + c1

(
1− eθ1v + eθ1|u−v| − eθ1u

)
,

where c1 is a constant and independent of u, v, i.e.,

c1 =
µ2

1σ
2
x

2θ3
1

− µ1σxσpρ

θ2
1

.

Proof.

Given that Y0, µ0,−1
2
σ2
p are all constants, by Lemma 2.2, for u ≥ v,

Cov (Yu, Yv)

= Cov
(
Y0 +

∫ u

0

(
µ0 + µ1Xa −

1

2
σ2
p

)
da+ σpBu,

Y0 +

∫ v

0

(
µ0 + µ1Xb −

1

2
σ2
p

)
db+ σpBv

)
= Cov

(
µ1

∫ u

0

Xada+ σpBu, µ1

∫ v

0

Xbdb+ σpBv

)
= µ2

1

∫ u

0

da

∫ v

0

dbCov (Xa, Xb) + µ1σp

∫ u

0

Cov (Xa, Bv) da

+ µ1σp

∫ v

0

Cov (Xb, Bu) db+ σ2
pCov (Bu, Bv) ,
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where by Lemma 2.5,∫ u

0

Cov (Xa, Bv) da

=

∫ v

0

Cov (Xa, Bv) da+

∫ u

v

Cov(Xa, Bv)da

=

∫ v

0

−σxρ
θ1

(
1− eθ1a

)
da+

∫ u

v

−σxρ
θ1

(
eθ1(a−v) − eθ1a

)
da

=
σxρ

θ1

[∫ v

0

eθ1ada−
∫ v

0

da+

∫ u

v

eθ1ada−
∫ u

v

eθ1(a−v)da

]
=
σxρ

θ1

[∫ u

0

eθ1ada− v −
∫ u

v

eθ1(a−v)da

]
=
σxρ

θ1

[
1

θ1

(
eθ1u − 1

)
− v − 1

θ1

e−θ1v
(
eθ1u − eθ1v

)]
=
σxρ

θ2
1

[
eθ1u − 1− θ1v − eθ1(u−v) + 1

]
=
σxρ

θ2
1

[
eθ1u − eθ1(u−v) − θ1v

]
,

and also by Lemma 2.5, ∫ v

0

Cov (Xb, Bu) db

=

∫ v

0

−σxρ
θ1

(
1− eθ1b

)
db

=
σxρ

θ1

[∫ v

0

eθ1bdb−
∫ v

0

db

]
=
σxρ

θ1

[
1

θ1

(
eθ1v − 1

)
− v
]

=
σxρ

θ2
1

[
eθ1v − 1− θ1v

]
,
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and Cov (Bu, Bv) = min (u, v) = v. In addition, by Lemma 2.7 and 0 ≤ b ≤ u,∫ u

0

da

∫ v

0

dbCov (Xa, Xb)

=

∫ u

0

da

∫ v

0

db

(
− σ2

x

2θ1

eθ1|a−b|
)

= − σ2
x

2θ1

∫ v

0

db

∫ u

0

eθ1|a−b|da = − σ2
x

2θ1

∫ v

0

db

[∫ b

0

eθ1|a−b|da+

∫ u

b

eθ1|a−b|da

]
= − σ2

x

2θ1

∫ v

0

db

[∫ b

0

eθ1(b−a)da+

∫ u

b

eθ1(a−b)da

]
= − σ2

x

2θ1

∫ v

0

[
1

θ1

(
eθ1b − 1

)
+

1

θ1

(
eθ1(u−b) − 1

)]
db

= − σ2
x

2θ2
1

∫ v

0

[
eθ1b + eθ1(u−b) − 2

]
db

= − σ2
x

2θ2
1

[
1

θ1

(
eθ1v − 1

)
− 1

θ1

(
eθ1(u−v) − eθ1u

)
− 2v

]
= − σ2

x

2θ3
1

[
eθ1v − eθ1(u−v) + eθ1u − 2vθ1 − 1

]
,

which implies, for u ≥ v,

Cov (Yu, Yv)

= µ2
1

(
− σ2

x

2θ3
1

[
eθ1v − eθ1(u−v) + eθ1u − 2vθ1 − 1

])
+ µ1σp

(
σxρ

θ2
1

[
eθ1u − eθ1(u−v) − θ1v

])
+ µ1σp

(
σxρ

θ2
1

[
eθ1v − 1− θ1v

])
+ σ2

pv

=

(
µ1σxσpρ

θ2
1

− µ2
1σ

2
x

2θ3
1

)(
eθ1u + eθ1v − eθ1(u−v) − 2vθ1 − 1

)
+ σ2

pv

=

(
σ2
p +

µ2
1σ

2
x

θ2
1

− 2µ1σxσpρ

θ1

)
v +

(
µ2

1σ
2
x

2θ3
1

− µ1σxσpρ

θ2
1

)(
1− eθ1v + eθ1(u−v) − eθ1u

)
=
(
σ2
p + 2θ1c1

)
v + c1

(
1− eθ1v + eθ1(u−v) − eθ1u

)
,
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where c1 is a constant and independent of u, v, i.e.,

c1 =
µ2

1σ
2
x

2θ3
1

− µ1σxσpρ

θ2
1

.

Similarly, for u < v,

Cov (Yu, Yv) =
(
σ2
p + 2θ1c1

)
u+ c1

(
1− eθ1u + eθ1(v−u) − eθ1v

)
.

Therefore, ∀u, v,

Cov (Yu, Yv) =
(
σ2
p + 2θ1c1

)
min (u, v) + c1

(
1− eθ1v + eθ1|u−v| − eθ1u

)
,

where c1 is a constant and independent of u, v,

c1 =
µ2

1σ
2
x

2θ3
1

− µ1σxσpρ

θ2
1

.

The Lemma is proved.

Lemma 2.11 Let Xt be the predictive variable in the market. Let M
(h)
t be the moving

average based on lookback period h > 0, then Cov
(
Xt,M

(h)
t

)
is

Cov
(
Xt,M

(h)
t

)
= − c1

hµ1

(
1− eθ1h

)
− c1θ1

µ1

eθ1t,

where c1 is a constant,

c1 =
µ2

1σ
2
x

2θ3
1

− µ1σxσpρ

θ2
1

.
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Proof.

By Lemma 2.8 and u ≤ t,

Cov
(
Xt,M

(h)
t

)
= Cov

(
Xt,

1

h

∫ t

t−h
Yudu

)
=

1

h

∫ t

t−h
Cov (Yu, Xt) du

=
1

h

∫ t

t−h

(
µ1σ

2
x

2θ2
1

− σxσpρ

θ1

)(
eθ1(t−u) − eθ1t

)
du =

1

h

c1θ1

µ1

∫ t

t−h

(
eθ1(t−u) − eθ1t

)
du

=
1

h

c1θ1

µ1

[∫ t

t−h
eθ1(t−u)du−

∫ t

t−h
eθ1tdu

]
=

1

h

c1θ1

µ1

[
− 1

θ1

(
1− eθ1h

)
− eθ1th

]
= − c1

hµ1

(
1− eθ1h

)
− c1θ1

µ1

eθ1t,

where c1 is a constant,

c1 =
µ2

1σ
2
x

2θ3
1

− µ1σxσpρ

θ2
1

.

The Lemma is proved.

Lemma 2.12 Let Xt be the predictive variable in the market. Let M
(s,l)
t be the

difference between moving average M
(s)
t and moving average M

(l)
t , where s < l is

lookback period, then Cov
(
Xt,M

(s,l)
t

)
is independent of time t, i.e.,

Cov
(
Xt,M

(s,l)
t

)
=

c1

lµ1

(
1− eθ1l

)
− c1

sµ1

(
1− eθ1s

)
,

where c1 is a constant,

c1 =
µ2

1σ
2
x

2θ3
1

− µ1σxσpρ

θ2
1

.

25



Proof.

By Lemma 2.11,

Cov
(
Xt,M

(s,l)
t

)
= Cov

(
Xt,M

(s)
t −M

(l)
t

)
= Cov

(
Xt,M

(s)
t

)
− Cov

(
Xt,M

(l)
t

)
=

(
− c1

sµ1

(
1− eθ1s

)
− c1θ1

µ1

eθ1t
)
−
(
− c1

lµ1

(
1− eθ1l

)
− c1θ1

µ1

eθ1t
)

=
c1

lµ1

(
1− eθ1l

)
− c1

sµ1

(
1− eθ1s

)
,

which shows it is independent of time t, and

c1 =
µ2

1σ
2
x

2θ3
1

− µ1σxσpρ

θ2
1

.

The Lemma is proved.

Lemma 2.13 Let M
(s,l)
t be the difference between moving average M

(s)
t and moving

average M
(l)
t , where s < l is lookback period, then M

(s,l)
t is normally distributed with

mean E
(
M

(s,l)
t

)
, which is independent of time t, i.e.,

E
(
M

(s,l)
t

)
=

1

2
(l − s)

(
µ0 −

µ1θ0

θ1

− 1

2
σ2
p

)
.

Proof.

Since M
(s,l)
t is a linear combination of M

(s)
t and M

(l)
t , by Lemma 2.3,

E
(
M

(s,l)
t

)
= E

(
M

(s)
t −M

(l)
t

)
= E

(
M

(s)
t

)
− E

(
M

(l)
t

)
=

[
Y0 +

(
µ0 −

µ1θ0

θ1

− 1

2
σ2
p

)(
t− s

2

)]
−
[
Y0 +

(
µ0 −

µ1θ0

θ1

− 1

2
σ2
p

)(
t− l

2

)]
=

1

2
(l − s)

(
µ0 −

µ1θ0

θ1

− 1

2
σ2
p

)
,
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and M
(s,l)
t is also normally distributed. The Lemma is proved.

Lemma 2.14 Let M
(s)
t and M

(l)
t be the moving averages based on lookback period s

and l, where s < l, then Cov
(
M

(s)
t ,M

(l)
t

)
is

Cov
(
M

(s)
t ,M

(l)
t

)
=

[(
σ2
p + 2θ1c1

)
t− c1

θ1s

(
eθ1t − eθ1(t−s))− c1

θ1l

(
eθ1t − eθ1(t−l))]

+ c2 (s, l) ,

where c1 is a constant,

c1 =
µ2

1σ
2
x

2θ3
1

− µ1σxσpρ

θ2
1

,

and c2 (s, l) is a constant, which depends on s and l, but does not depend on t, i.e.,

c2 (s, l) = c1 −
c1

slθ2
1

(
1− eθ1s − eθ1l + eθ1(l−s) + 2θ1s

)
−
(
σ2
p + 2θ1c1

)(s2

6l
+
l

2

)
.

The special cases,

Cov
(
M

(s)
t ,M

(s)
t

)
=

[(
σ2
p + 2θ1c1

)
t− 2c1

θ1s

(
eθ1t − eθ1(t−s))]+ c2 (s, s) ,

Cov
(
M

(l)
t ,M

(l)
t

)
=

[(
σ2
p + 2θ1c1

)
t− 2c1

θ1l

(
eθ1t − eθ1(t−l))]+ c2 (l, l) ,

where

c2 (s, s) = c1 −
2c1

s2θ2
1

(
1− eθ1s + θ1s

)
−
(
σ2
p + 2θ1c1

) 2s

3
,

c2 (l, l) = c1 −
2c1

l2θ2
1

(
1− eθ1l + θ1l

)
−
(
σ2
p + 2θ1c1

) 2l

3
.
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Proof.

Since s ≤ l, then t− s ≥ t− l, then by Lemma 2.10,

Cov
(
M

(s)
t ,M

(l)
t

)
= Cov

(
1

s

∫ t

t−s
Yudu,

1

l

∫ t

t−l
Yvdv

)
=

1

sl

∫ t

t−s
du

∫ t

t−l
Cov (Yu, Yv) dv

=
1

sl

∫ t

t−s
du

[∫ u

t−l
Cov (Yu, Yv) dv +

∫ t

u

Cov (Yu, Yv) dv

]
=

1

sl

∫ t

t−s
du

[ ∫ u

t−l

((
σ2
p + 2θ1c1

)
v + c1

(
1− eθ1v − eθ1u + eθ1(u−v)

))
dv

+

∫ t

u

((
σ2
p + 2θ1c1

)
u+ c1

(
1− eθ1v − eθ1u + eθ1(v−u)

))
dv

]
=

1

sl

∫ t

t−s

[
σ2
p + 2θ1c1

2

(
− (u− t)2 + 2tl − l2

)
+ c1

(
1− eθ1u

)
l − c1

θ1

(
eθ1t − eθ1(t−l))

+
c1

θ1

(
eθ1(t−u) + eθ1(u−t+l) − 2

) ]
du

=
1

sl

[
σ2
p + 2θ1c1

2

(
−s

3

3
+ 2tls− l2s

)
+ c1

(
ls− l

θ1

(
eθ1t − eθ1(t−s))

− s

θ1

(
eθ1t − eθ1(t−l)))+

c1

θ1

(
1

θ1

(
eθ1s − 1

)
+

1

θ1

(
eθ1l − eθ1(l−s))− 2s

)]

=
(
σ2
p + 2θ1c1

)(
t− s2

6l
− l

2

)
+ c1

(
1− 1

slθ2
1

(
1− eθ1s − eθ1l + eθ1(l−s) + 2θ1s

)
− 1

θ1s

(
eθ1t − eθ1(t−s))− 1

θ1l

(
eθ1t − eθ1(t−l)))

=

[(
σ2
p + 2θ1c1

)
t− c1

θ1s

(
eθ1t − eθ1(t−s))− c1

θ1l

(
eθ1t − eθ1(t−l))]

+

[
c1 −

c1

slθ2
1

(
1− eθ1s − eθ1l + eθ1(l−s) + 2θ1s

)
−
(
σ2
p + 2θ1c1

)(s2

6l
+
l

2

)]
=

[(
σ2
p + 2θ1c1

)
t− c1

θ1s

(
eθ1t − eθ1(t−s))− c1

θ1l

(
eθ1t − eθ1(t−l))]+ c2 (s, l) ,
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where c1 is a constant,

c1 =
µ2

1σ
2
x

2θ3
1

− µ1σxσpρ

θ2
1

,

and c2 (s, l) is a constant, which depends on s and l, but does not depend on t, i.e.,

c2 (s, l) = c1 −
c1

slθ2
1

(
1− eθ1s − eθ1l + eθ1(l−s) + 2θ1s

)
−
(
σ2
p + 2θ1c1

)(s2

6l
+
l

2

)
.

The Lemma is proved.

Lemma 2.15 Let M
(s,l)
t be the difference between moving average M

(s)
t and moving

average M
(l)
t , where s < l is lookback period, then V ar

(
M

(s,l)
t

)
is independent of

time t, i.e.,

V ar
(
M

(s,l)
t

)
= c2 (s, s) + c2 (l, l)− 2c2 (s, l) ,

where c2 (s, s), c2 (l, l) and c2 (s, l) are constants, which depend on s and l, i.e.,

c2 (s, l) = c1 −
c1

slθ2
1

(
1− eθ1s − eθ1l + eθ1(l−s) + 2θ1s

)
−
(
σ2
p + 2θ1c1

)(s2

6l
+
l

2

)
,

and

c2 (s, s) = c1 −
2c1

s2θ2
1

(
1− eθ1s + θ1s

)
−
(
σ2
p + 2θ1c1

) 2s

3
,

c2 (l, l) = c1 −
2c1

l2θ2
1

(
1− eθ1l + θ1l

)
−
(
σ2
p + 2θ1c1

) 2l

3
.

Proof.
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By Lemma 2.14,

V ar
(
M

(s,l)
t

)
= V ar

(
M

(s)
t −M

(l)
t

)
= Cov

(
M

(s)
t −M

(l)
t ,M

(s)
t −M

(l)
t

)
= Cov

(
M

(s)
t ,M

(s)
t

)
+ Cov

(
M

(l)
t ,M

(l)
t

)
− 2Cov

(
M

(s)
t ,M

(l)
t

)
=

[(
σ2
p + 2θ1c1

)
t− 2c1

θ1s

(
eθ1t − eθ1(t−s))]+ c2 (s, s)

+

[(
σ2
p + 2θ1c1

)
t− 2c1

θ1l

(
eθ1t − eθ1(t−l))]+ c2 (l, l)

−
[
2
(
σ2
p + 2θ1c1

)
t− 2c1

θ1s

(
eθ1t − eθ1(t−s))− 2c1

θ1l

(
eθ1t − eθ1(t−l))]− 2c2 (s, l)

= c2 (s, s) + c2 (l, l)− 2c2 (s, l) .

The Lemma is proved.

2.3 The Analytic Results

In order to find optimal ηt, we need derive the investor’s expected log-utility

of wealth E (logWT ). To derive E (logWT ), we need know joint distribution of(
Xt,M

(s,l)
t

)T
. Based on Lemmas 2.1, 2.12, 2.13 and 2.15, it is derived that

(
Xt,M

(s,l)
t

)T
are jointly normally distributed, i.e., Xt

M
(s,l)
t

 ∼ MN


b1

b2

,
σ2

1 σ12

σ21 σ2
2


 , (2.11)
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and

b1 = −θ0

θ1

,

b2 =
1

2
(l − s)(µ0 −

µ1θ0

θ1

− 1

2
σ2
p),

σ2
1 = − σ2

x

2θ1

,

σ12 = σ21 =
c1

lµ1

(1− eθ1l)− c1

sµ1

(1− eθ1s),

σ2
2 = c2 (s, s) + c2 (l, l)− 2c2 (s, l) , (2.12)

where c1 is a constant, i.e.,

c1 =
µ2

1σ
2
x

2θ3
1

− µ1σxσpρ

θ2
1

,

and c2 (s, l), c2 (s, s) and c2 (l, l) are constants, which depend on s and l, but do not

depend on t, i.e.,

c2 (s, l) = c1 −
c1

slθ2
1

(
1− eθ1s − eθ1l + eθ1(l−s) + 2θ1s

)
−
(
σ2
p + 2θ1c1

)(s2

6l
+
l

2

)
,

c2 (s, s) = c1 −
2c1

s2θ2
1

(
1− eθ1s + θ1s

)
−
(
σ2
p + 2θ1c1

) 2s

3
,

c2 (l, l) = c1 −
2c1

l2θ2
1

(
1− eθ1l + θ1l

)
−
(
σ2
p + 2θ1c1

) 2l

3
.

Notice that both marginal and joint density functions are independent of time t.

The marginal density functions of Xt and M
(s,l)
t can be defined as

fXt(ε) =
1

σ1

φ(
ε− b1

σ1

),

f
M

(s,l)
t

(ε) =
1

σ2

φ(
ε− b2

σ2

),

(2.13)
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where φ is standard normal density function, i.e.,

φ(u) =
1√
2π
e−

1
2
u2 ,

and cumulative distribution functions of Xt and M
(s,l)
t can be defined as

FXt(ε) = P (Xt ≤ ε) = Φ(
ε− b1

σ1

),

F
M

(s,l)
t

(ε) = P (M
(s,l)
t ≤ ε) = Φ(

ε− b2

σ2

),

(2.14)

where Φ is standard normal cumulative distribution function, i.e.,

Φ(u) =

∫ u

−∞
φ(v)dv =

1√
2π

∫ u

−∞
e−

1
2
v2dv.

We state following Propositions for the SGMA strategy.

Proposition 2.1 The expected value of ηt is independent of time t, i.e.,

E (ηt) = 1− Φ

(
ε− b2

σ2

)
+ δ1

[
Φ

(
ε− b2

σ2

)
− Φ

(
−b2

σ2

)]
+ δ2

[
Φ

(
−b2

σ2

)
− Φ

(
−ε− b2

σ2

)]
.

Proof.

By the definition of ηt in Equation (2.8) and by Equation (2.14),

E (ηt)

= 1× P
(
M

(s,l)
t > ε

)
+ δ1P

(
0 ≤M

(s,l)
t ≤ ε

)
+ δ2P

(
−ε ≤M

(s,l)
t < 0

)
=
(

1− F
M

(s,l)
t

(ε)
)

+ δ1

(
F
M

(s,l)
t

(ε)− F
M

(s,l)
t

(0)
)

+ δ2

(
F
M

(s,l)
t

(0)− F
M

(s,l)
t

(−ε)
)

= 1− Φ

(
ε− b2

σ2

)
+ δ1

[
Φ

(
ε− b2

σ2

)
− Φ

(
−b2

σ2

)]
+ δ2

[
Φ

(
−b2

σ2

)
− Φ

(
−ε− b2

σ2

)]
.

The Proposition is proved.
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Proposition 2.2 The expected value of η2
t is independent of time t, i.e.,

E
(
η2
t

)
= 1− Φ

(
ε− b2

σ2

)
+ δ2

1

[
Φ

(
ε− b2

σ2

)
− Φ

(
−b2

σ2

)]
+ δ2

2

[
Φ

(
−b2

σ2

)
− Φ

(
−ε− b2

σ2

)]
.

Proof.

By the definition of ηt in Equation (2.8) and by Equation (2.14),

E
(
η2
t

)
= 1× P

(
M

(s,l)
t > ε

)
+ δ2

1P
(

0 ≤M
(s,l)
t ≤ ε

)
+ δ2

2P
(
−ε ≤M

(s,l)
t < 0

)
=
(

1− F
M

(s,l)
t

(ε)
)

+ δ2
1

(
F
M

(s,l)
t

(ε)− F
M

(s,l)
t

(0)
)

+ δ2
2

(
F
M

(s,l)
t

(0)− F
M

(s,l)
t

(−ε)
)

= 1− Φ

(
ε− b2

σ2

)
+ δ2

1

[
Φ

(
ε− b2

σ2

)
− Φ

(
−b2

σ2

)]
+ δ2

2

[
Φ

(
−b2

σ2

)
− Φ

(
−ε− b2

σ2

)]
.

The Proposition is proved.

Proposition 2.3 Let Ψ (u) =
∫ u
−∞ vφ (v) dv, then the expected value of ηtM

(s,l)
t is

independent of time t, i.e.,

E
(
ηtM

(s,l)
t

)
= 1−

[
b2Φ

(
ε− b2

σ2

)
+ σ2Ψ

(
ε− b2

σ2

)]
+ δ1

[
b2Φ

(
ε− b2

σ2

)
+ σ2Ψ

(
ε− b2

σ2

)
− b2Φ

(
−b2

σ2

)
− σ2Ψ

(
−b2

σ2

)]
+ δ2

[
b2Φ

(
−b2

σ2

)
+ σ2Ψ

(
−b2

σ2

)
− b2Φ

(
−ε− b2

σ2

)
− σ2Ψ

(
−ε− b2

σ2

)]
.

Proof.

Let Ψ (u) =
∫ u
−∞ vφ (v) dv and let t = m−b2

σ2
, then m = b2 + σ2t and dm = σ2dt.
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We define H
M

(s,l)
t

(ε) as

H
M

(s,l)
t

(ε) =

∫
m<ε

mf
M

(s,l)
t

(m) dm =

∫ ε

−∞
m

1

σ2

φ

(
m− b2

σ2

)
dm

=

∫ ε−b2
σ2

−∞
(b2 + σ2t)φ (t) dt = b2Φ

(
ε− b2

σ2

)
+ σ2Ψ

(
ε− b2

σ2

)
,

then

E
(
ηtM

(s,l)
t

)
= 1−H

M
(s,l)
t

(ε) + δ1

(
H
M

(s,l)
t

(ε)−H
M

(s,l)
t

(0)
)

+ δ2

(
H
M

(s,l)
t

(0)−H
M

(s,l)
t

(−ε)
)

= 1−
[
b2Φ

(
ε− b2

σ2

)
+ σ2Ψ

(
ε− b2

σ2

)]
+ δ1

[
b2Φ

(
ε− b2

σ2

)
+ σ2Ψ

(
ε− b2

σ2

)
− b2Φ

(
−b2

σ2

)
− σ2Ψ

(
−b2

σ2

)]
+ δ2

[
b2Φ

(
−b2

σ2

)
+ σ2Ψ

(
−b2

σ2

)
− b2Φ

(
−ε− b2

σ2

)
− σ2Ψ

(
−ε− b2

σ2

)]
.

The Proposition is proved.

Proposition 2.4 The expected value of ηtXt is independent of time t, i.e.,

E (ηtXt) =

(
b1 −

σ12b2

σ2
2

)
E (ηt) +

σ12

σ2
2

E
(
ηtM

(s,l)
t

)
,

where E (ηt) satisfies Proposition 2.1 and E
(
ηtM

(s,l)
t

)
satisfies Proposition 2.3.

Proof.

Based on the joint distribution for
(
Xt,M

(s,l)
t

)T
, it is derived that

E
(
Xt |M (s,l)

t

)
= b1 + ρ∗

σ1

σ2

(m− b2) = b1 +
σ12

σ2
2

(m− b2) ,
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as ρ∗ =
Cov

(
Xt,M

(s,l)
t

)
SD(Xt)SD

(
M

(s,l)
t

) = σ12
σ1σ2

. By Law of total expectation E (X) = E (E (X | Y )),

E (ηtXt) = E
(
ηtE

(
Xt |M (s,l)

t

))
,

which implies

E (ηtXt) = E

(
ηt

(
b1 +

σ12

σ2
2

(m− b2)

))
=

(
b1 −

σ12b2

σ2
2

)
E (ηt) +

σ12

σ2
2

E
(
ηtM

(s,l)
t

)
.

The Proposition is proved.

Proposition 2.5 Let λ be fixed constant for the SGMA strategy ηt when t < l. Let

ε > 0 be the investor specified risk tolerance, then the investor’s expected log-utility

of wealth at the end of investment period T is

E (logWT ) = c3 + (T − l)
[
(µ0 − r)E (ηt)−

σ2
p

2
E
(
η2
t

)
+ µ1E (ηtXt)

]
, (2.15)

where c3 is a constant depending on l, i.e.,

c3 = logW0 + rT + l

[
λ (µ0 − r)−

1

2
λ2σ2

p −
λµ1θ0

θ1

]
.

By Propositions 2.1, 2.2 and 2.4, Equation 2.15 can be rewritten as

E (logWT ) = −α(ε)
1

(
δ1 −

β
(ε)
1

2α
(ε)
1

)2

− α(ε)
2

(
δ2 −

β
(ε)
2

2α
(ε)
2

)2

+

γ(ε) +

(
β

(ε)
1

)2

4α
(ε)
1

+

(
β

(ε)
2

)2

4α
(ε)
2

 ,

(2.16)
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where α
(ε)
1 > 0, β

(ε)
1 , α

(ε)
2 > 0, β

(ε)
2 and γ(ε) are constants depending on ε, i.e.,

α
(ε)
1 =

σ2
p (T − l)

2

(
Φ

(
ε− b2

σ2

)
− Φ

(
−b2

σ2

))
,

β
(ε)
1 = (T − l)

[
(µ0 − r + µ1b1)

(
Φ

(
ε− b2

σ2

)
− Φ

(
−b2

σ2

))
+
µ1σ12

σ2

(
Ψ

(
ε− b2

σ2

)
−Ψ

(
−b2

σ2

))]
,

α
(ε)
2 =

σ2
p (T − l)

2

(
Φ

(
−b2

σ2

)
− Φ

(
−ε− b2

σ2

))
,

β
(ε)
2 = (T − l)

[
(µ0 − r + µ1b1)

(
Φ

(
−b2

σ2

)
− Φ

(
−ε− b2

σ2

))
+
µ1σ12

σ2

(
Ψ

(
−b2

σ2

)
−Ψ

(
−ε− b2

σ2

))]
,

γ(ε) = logW0 + rT +

[
λ (µ0 − r)−

1

2
λ2σ2

p −
λµ1θ0

θ1

]
l + (T − l)[(

µ0 − r + µ1b1 −
σ2
p

2

)(
1− Φ

(
ε− b2

σ2

))
+
µ1σ12

σ2
2

(
1− b2 − σ2Ψ

(
ε− b2

σ2

))]
,

where Φ is standard normal cumulative distribution function, i.e., Φ (u) =
∫ u
−∞ φ (v) dv

and Ψ (u) =
∫ u
−∞ vφ (v) dv.

Proof.

Based on Equations (2.1) and (2.2), the budget constraint follows

dWt

Wt

= ηt
dPt
Pt

+ (1− ηt)
dP f

t

P f
t

= ηt [(µ0 + µ1Xt) dt+ σpdBt] + (1− ηt) rdt

= [r + ηt (µ0 + µ1Xt − r)] dt+ ηtσpdBt,
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Equation (2.10) is proved. Since (du)2 = o(du), dudBu = o(du) and (dBu)
2 = du,(

dWt

Wt

)2

= [r + ηt (µ0 + µ1Xt − r)]2 (dt)2 + 2ηtσpdBt [r + ηt (µ0 + µ1Xt − r)] dt

+ (ηtσpdBt)
2 = η2

t σ
2
pdt,

which implies

d (logWt) = [logWt]
′ dWt +

1

2
[logWt]

′′ (dWt)
2 =

dWt

Wt

+
1

2

(
− 1

W 2
t

)
(dWt)

2

=
dWt

Wt

− 1

2

(
dWt

Wt

)2

= [r + ηt (µ0 + µ1Xt − r)] dt+ ηtσpdBt −
1

2
η2
t σ

2
pdt

=

[
r + ηt (µ0 + µ1Xt − r)−

1

2
η2
t σ

2
p

]
dt+ ηtσpdBt.

Since logWt |T0 = logWT − logW0 =
∫ T

0
d (logWt) and by Equation (2.8) with T ≥ l,

logWT = logW0 +

∫ T

0

[(
r + ηt (µ0 + µ1Xt − r)−

1

2
η2
t σ

2
p

)
dt+ ηtσpdBt

]
= logW0 +

∫ T

0

rdt+

∫ T

0

ηt (µ0 − r) dt+

∫ T

0

ηtµ1Xtdt−
1

2

∫ T

0

η2
t σ

2
pdt+

∫ T

0

ηtσpdBt

= logW0 + rT +

∫ l

0

ηt (µ0 − r) dt+

∫ T

l

ηt (µ0 − r) dt+

∫ l

0

ηtµ1Xtdt+

∫ T

l

ηtµ1Xtdt

− 1

2

∫ l

0

η2
t σ

2
pdt−

1

2

∫ T

l

η2
t σ

2
pdt+

∫ T

0

ηtσpdBt

= logW0 + rT + λ (µ0 − r) l + (µ0 − r)
∫ T

l

ηtdt+ λµ1

∫ l

0

Xtdt+ µ1

∫ T

l

ηtXtdt

− 1

2
λ2σ2

pl −
σ2
p

2

∫ T

l

η2
t dt+

∫ T

0

ηtσpdBt,

which implies

E (logWT ) = logW0 + rT + λ (µ0 − r) l + (µ0 − r)
∫ T

l

E (ηt) dt+ λµ1

∫ l

0

E (Xt) dt

+ µ1

∫ T

l

E (ηtXt) dt−
1

2
λ2σ2

pl −
σ2
p

2

∫ T

l

E
(
η2
t

)
dt+

∫ T

0

E (ηt)σpE (dBt) .
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By Propositions 2.1, 2.2 and 2.4, we note that E (ηt), E (η2
t ) and E (ηtXt) are all

independent of time t. Since E (dBt) = 0, E (Xt) = − θ0
θ1

by Lemma 2.1, we derive

E (logWT ) = c3 + (T − l)
[
(µ0 − r)E (ηt)−

σ2
p

2
E
(
η2
t

)
+ µ1E (ηtXt)

]
,

where c3 is a constant, i.e.,

c3 = logW0 + rT + l

[
λ (µ0 − r)−

1

2
λ2σ2

p −
λµ1θ0

θ1

]
,

Equation (2.15) is proved. Let us define c4, c5, c6, c7, c8 and c9 as below

c4 = Φ

(
ε− b2

σ2

)
& c5 = Φ

(
−b2

σ2

)
& c6 = Φ

(
−ε− b2

σ2

)
c7 = Ψ

(
ε− b2

σ2

)
& c8 = Ψ

(
−b2

σ2

)
& c9 = Ψ

(
−ε− b2

σ2

)
then E (ηt), E (η2

t ) and E
(
ηtM

(s,l)
t

)
are

E (ηt) = 1− c4 + δ1 (c4 − c5) + δ2 (c5 − c6) ,

E
(
η2
t

)
= 1− c4 + δ2

1 (c4 − c5) + δ2
2 (c5 − c6) ,

E
(
ηtM

(s,l)
t

)
= 1− (b2c4 + σ2c7) + δ1 (b2c4 + σ2c7 − b2c5 − σ2c8) + δ2 (b2c5 + σ2c8 − b2c6 − σ2c9) .
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Equation (2.15) can be re-written as

E (logWT )− c3

T − L

= (µ0 − r)E (ηt)−
σ2
p

2
E
(
η2
t

)
+ µ1E (ηtXt)

= (µ0 − r)E (ηt)−
σ2
p

2
E
(
η2
t

)
+ µ1

(
b1 −

σ12b2

σ2
2

)
E (ηt) +

µ1σ12

σ2
2

E
(
ηtM

(s,l)
t

)
=

(
µ0 − r + µ1b1 −

µ1σ12b2

σ2
2

)
E (ηt)−

σ2
p

2
E
(
η2
t

)
+
µ1σ12

σ2
2

E
(
ηtM

(s,l)
t

)
=

(
µ0 − r + µ1b1 −

µ1σ12b2

σ2
2

)[
1− c4 + δ1 (c4 − c5) + δ2 (c5 − c6)

]
−
σ2
p

2

[
1− c4 + δ2

1 (c4 − c5) + δ2
2 (c5 − c6)

]
+
µ1σ12

σ2
2[

1− (b2c4 + σ2c7) + δ1 (b2c4 + σ2c7 − b2c5 − σ2c8) + δ2 (b2c5 + σ2c8 − b2c6 − σ2c9)

]
= −

σ2
p

2
(c4 − c5) δ2

1

+

[(
µ0 − r + µ1b1 −

µ1σ12b2

σ2
2

)
(c4 − c5) +

µ1σ12

σ2
2

(b2c4 + σ2c7 − b2c5 − σ2c8)

]
δ1

−
σ2
p

2
(c5 − c6) δ2

2

+

[(
µ0 − r + µ1b1 −

µ1σ12b2

σ2
2

)
(c5 − c6) +

µ1σ12

σ2
2

(b2c5 + σ2c8 − b2c6 − σ2c9)

]
δ2

+

[(
µ0 − r + µ1b1 −

µ1σ12b2

σ2
2

−
σ2
p

2

)
(1− c4) +

µ1σ12

σ2
2

(1− (b2c4 + σ2c7))

]
= −

σ2
p

2
(c4 − c5) δ2

1 +

[
(µ0 − r + µ1b1) (c4 − c5) +

µ1σ12

σ2

(c7 − c8)

]
δ1

−
σ2
p

2
(c5 − c6) δ2

2 +

[
(µ0 − r + µ1b1) (c5 − c6) +

µ1σ12

σ2

(c8 − c9)

]
δ2

+

[(
µ0 − r + µ1b1 −

σ2
p

2

)
(1− c4) +

µ1σ12

σ2
2

(1− b2 − σ2c7)

]
,
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which implies

E (logWT )

= −
σ2
p

2
(T − l) (c4 − c5) δ2

1 + (T − l)
[
(µ0 − r + µ1b1) (c4 − c5) +

µ1σ12

σ2

(c7 − c8)

]
δ1

−
σ2
p

2
(T − l) (c5 − c6) δ2

2 + (T − l)
[
(µ0 − r + µ1b1) (c5 − c6) +

µ1σ12

σ2

(c8 − c9)

]
δ2

+ (T − l)
[(
µ0 − r + µ1b1 −

σ2
p

2

)
(1− c4) +

µ1σ12

σ2
2

(1− b2 − σ2c7)

]
+ c3.

Therefore

E (logWT ) = −α(ε)
1 δ2

1 + β
(ε)
1 δ1 − α(ε)

2 δ2
2 + β

(ε)
2 δ2 + γ(ε)

= −α(ε)
1

(
δ1 −

β
(ε)
1

2α
(ε)
1

)2

− α(ε)
2

(
δ2 −

β
(ε)
2

2α
(ε)
2

)2

+

γ(ε) +

(
β

(ε)
1

)2

4α
(ε)
1

+

(
β

(ε)
2

)2

4α
(ε)
2

 ,

where α
(ε)
1 , β

(ε)
1 , α

(ε)
2 , β

(ε)
2 and γ(ε) are all constants depending on ε,

α
(ε)
1 =

σ2
p

2
(T − l) (c4 − c5) ,

β
(ε)
1 = (T − l)

[
(µ0 − r + µ1b1) (c4 − c5) +

µ1σ12

σ2

(c7 − c8)

]
,

α
(ε)
2 =

σ2
p

2
(T − l) (c5 − c6) ,

β
(ε)
2 = (T − l)

[
(µ0 − r + µ1b1) (c5 − c6) +

µ1σ12

σ2

(c8 − c9)

]
,

γ(ε) = (T − l)
[(
µ0 − r + µ1b1 −

σ2
p

2

)
(1− c4) +

µ1σ12

σ2
2

(1− b2 − σ2c7)

]
+ c3,

Equation (2.16) is proved.

Now that we have derived the equation for the expected log-utility of wealth

E (logWT ), we can calculate optimal estimates of the asset allocation parameters for
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the SGMA strategy. In order to achieve this goal, we need to maximize E (logWT )

with respect to both asset allocation parameters δ1 and δ2. By Garlappi and Sk-

oulakis (2009), we restrict δ1, δ2 ∈ [0, 1], which means there are no-borrowing and

no-short-sale constrains. By Equation (2.16), the optimal estimates of asset alloca-

tion parameters δ∗1 and δ∗2 are

δ∗1 = max

{
0,min

(
1,

β
(ε)
1

2α
(ε)
1

)}
& δ∗2 = max

{
0,min

(
1,

β
(ε)
2

2α
(ε)
2

)}
(2.17)

as α
(ε)
1 > 0 and α

(ε)
2 > 0 given ε > 0. The optimal estimates δ∗1 and δ∗2 are functions of

ε. These results illustrate that the SGMA is a better investment strategy compared

with the MA strategy because it has higher expected utility of wealth for the investor.

Theoretically speaking, the asset allocation parameters δ1 and δ2 can be any number.

δi ≥ 0 can be interpreted as long portion of stocks and δi < 0 can be interpreted

as short portion of stocks. Without no-borrowing and no-short-sale constraints, the

optimal estimates are δ∗1 =
β
(ε)
1

2α
(ε)
1

and δ∗2 =
β
(ε)
2

2α
(ε)
2

.

2.4 An Investment Algorithm for Single-Asset Portfolio

We propose an investment algorithm for single-asset portfolio. The algorithm

will be tested on simulation data and real data in sections 2.5 and 2.6 to evaluate

performance of the SGMA strategy. The algorithm contains following steps:

Step 1. Set investment parameters W0, r, T , ε, λ, s and l.

41



Step 2. Compute model parameters b1, b2, σ1, σ12 and σ2.

Step 3. Compute δ∗1, δ∗2 and E (logWT ).

Step 4. Calculate Yt, M
(s)
t , M

(l)
t and M

(s,l)
t .

Step 5. Allocate the wealth between risk-free asset and risky asset according

to δ∗1 and δ∗2 for each signal.

Step 6. The holding risky asset is sold at the end of the investment horizon T .

2.5 Simulation Studies

We present several numerical examples based on simulated single-asset portfo-

lio. The investment algorithm is tested and compared with the MA strategy as

benchmark.

2.5.1 Data Generating Process

We propose a data generating process for n stocks with q predictive variables

time series in section 3.5.1. To generate a single-asset portfolio (one stock) with one

predictive variable is a special case, i.e., n = 1 and q = 1.
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2.5.2 Simulation Results

The simulated time series data are generated using parameters in table 2.1. The

simulation runs 1,000 times. Each time series contains 97,500 observed points by our

settings.

Table 2.1: Model parameters for simulating the single-asset portfolio time series

θ0 Θ1 σx µ0 µ1 σp ρ λ T dt

0.01 -0.253 0.012 0.031 2.072 0.195 -0.073 0 1 0.00001026

The simulation studies are performed under two scenarios (s = 5 & l = 30 vs.

s = 5 & l = 10). We set initial wealth W0 = 1, 000, 000 and interest rate r = 0.

Under each scenario, we test the SGMA strategy based on ε = 0.005, 0.01 and 0.05

and compare with the MA strategy. The SGMA strategy performance results are

provided in tables 2.2 and 2.3. We first report the expected log-utility of wealth

E(logWT )∗ based on Equation (2.16) with percentage increase compared with the

MA strategy. We then report numerical summaries calculate from the simulation

results, including the expected log-utility of wealth E(logWT ), the expected of wealth

E(WT ) and the expected return on asset ratio E(ROA %) etc.

Notice that the SGMA strategy not only can increase the investor’s expected

log-utility of wealth, but also can increase the investor’s expected wealth and the
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Table 2.2: SGMA strategy performance summary for scenario 1 on simulated single-

asset portfolio (1000 run; s = 5; l = 30)

MA SGMA(ε = 0.005) SGMA(ε = 0.01) SGMA(ε = 0.05)

δ∗1 na 1 1 1

δ∗2 na 1 1 1

E(logWT )∗ 13.862017 13.866941 13.871634 13.871634

∆% E(logWT )∗ na 0.04% 0.07% 0.07%

E(logWT ) 13.841958 13.847561 13.850860 13.862915

logE(WT ) 13.851579 13.857920 13.861993 13.878943

E(WT ) 1,036,727 1,043,322 1,047,580 1,065,487

E(ROA %) 3.67% 4.33% 4.76% 6.55%

SD(WT ) 147,583 154,083 159,853 192,194

MAX(WT ) 2,026,565 2,009,329 1,976,602 1,983,509

MIN(WT ) 731,787 717,116 703,789 575,019

MEDIAN(WT ) 1,013,047 1,017,706 1,025,376 1,042,961

E(TRANS #) 14 35 34 21

expected return on asset ratio from the simulation results. Under scenario 1, the

expected log-utility of wealth increases in range 0.04% to 0.07%. The expected return

ratio increases from benchmark return 3.67% to 4.33%, 4.76% and 6.55% respectively.

Under scenario 2, the expected log-utility of wealth increases in range 0.11% to 0.30%.

The expected return ratio increases from benchmark return 4.33% to 5.40%, 6.20%
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Table 2.3: SGMA strategy performance summary for scenario 2 on simulated single-

asset portfolio (1000 run; s = 5; l = 10)

MA SGMA(ε = 0.005) SGMA(ε = 0.01) SGMA(ε = 0.05)

δ∗1 na 1 1 1

δ∗2 na 1 1 1

E(logWT )∗ 13.863862 13.878948 13.890889 13.90564

∆% E(logWT )∗ na 0.11% 0.19% 0.30%

E(logWT ) 13.848349 13.855505 13.860451 13.872205

logE(WT ) 13.857880 13.868073 13.875630 13.889640

E(WT ) 1,043,280 1,053,968 1,061,964 1,076,947

E(ROA %) 4.33% 5.40% 6.20% 7.69%

SD(WT ) 146,569 169,167 186,756 202,185

MAX(WT ) 1,689,367 1,796,767 1,949,026 1,995,635

MIN(WT ) 719,130 653,375 586,922 515,814

MEDIAN(WT ) 1,024,243 1,034,718 1,038,417 1,057,174

E(TRANS #) 29 77 65 29

and 7.69% respectively. We observe that the expected wealth has a increase as we

expected. At mean time, the median remains steady and could also have a moderate

increase. We believe that the observed phenomenon demonstrates the robustness of
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our strategy. The fluctuation of the maximum and minimal expected wealth reflects

the impact of the introduction of the risk tolerance. The exact reason might be

considered as future research.

2.6 Real Data Applications

We present several real data analysis based on high-frequency exchange traded

fund (ETF) data. The investment algorithm is tested and compared with the MA

strategy as benchmark.

We use PowerShares QQQ Trust Series 1 (QQQ), which is an exchange-traded

fund incorporated in the USA. This ETF tracks performance of the Nasdaq 100

Index. It holds large cap U.S. stocks and tends to focus on technology and consumer

sector. The holdings are weighted by market capitalization. As of October 6, 2017,

there are 107 holding companies. The top 3 holding companies are Apple Inc (AAPL,

11.57%), Microsoft Corp (MSFT, 8.44%) and Amazon.com Inc (AMZN, 6.86%).

2.6.1 Case 1: SGMA Strategy on High-Frequency Exchange Traded

Fund with Observed Predictive Variable

We collect both daily second-level QQQ ETF price time series and daily second-

level MSFT stock price time series for this study. The collection period is daily
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trading time from 9:30 am to 4:00 pm (Eastern Time) to ensure high liquid market.

There are numerous ways of dividing the data of training session into training

and test periods. We have indeed tried several combinations. The configurations

presented below represent the best scenarios we have discovered based on extensive

experience. We divide QQQ ETF time series into two data: ETF price Pt training

data (9:30 am to 3:00 pm, which contains 19,800 seconds) and ETF price Pt test data

(3:00 pm to 4:00 pm, which contains 3,601 seconds). We use the MSFT price time

series as predictive variable Xt training data (9:30 am to 3:00 pm, which contains

19,800 seconds). We set initial wealth W0 = 10, 000 and interest rate r = 0. Suppose

that the investor’s risk tolerance is 0.000005. We restrict δ1 and δ2 in [0, 1], s in 5, 10

and l in 30, 60, 90, 120, 180, 240. We use training data to choose model parameters

with the highest return. We report both the SGMA strategy performance summary

for QQQ ETF on training data and the SGMA strategy evaluation summary for

QQQ ETF on test data. Our study spans five days from 10/2/2017 to 10/6/2017.

We use 10/2/2017 as an example first, then we report all results for 5 days.

Second-level QQQ ETF price time series on day 1 (10/02/2017) is provided in figure

2.1. The SGMA strategy performance summary for QQQ ETF on day 1 (10/02/2017)

training data is provided in table 2.4. The SGMA strategy evaluation summary for

QQQ ETF on day 1 (10/02/2017) test data is provided in table 2.5.
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Figure 2.1: Case 1: Second-level QQQ ETF price time series on day 1

(10/02/2017)
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Table 2.4: Case 1: SGMA strategy performance summary for QQQ ETF on day 1

(10/02/2017) training data

training data day 10/2/2017

time 9 : 30 am− 3 : 00 pm

T 19, 800 seconds

dt 1 second

correlation 0.94

tuned parameters s 10

l 240

δ∗1 0.3808

δ∗2 0.9977

backward MA E(WT ) 10,014.57271

return ratio (%) 0.14573%

trans num 225

backward SGMA E(WT ) 10,022.21921

return ratio (%) 0.22219%

trans num 471

Notice that (1) The SGMA strategy can increase daily return ratio from 0.14573%

to 0.22219% on training data, which equals to increase annual return ratio by 21.2%;

(2) The SGMA strategy can increase daily return ratio from 0.04950% to 0.06757%
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Table 2.5: Case 1: SGMA strategy evaluation summary for QQQ ETF on day 1

(10/02/2017) test data

test data day 10/2/2017

time 3 : 00 pm− 4 : 00 pm

T 3, 601 seconds

dt 1 second

tuned parameters s 10

l 240

δ∗1 0.3808

δ∗2 0.9977

forward MA E(WT ) 10,004.95043

return ratio (%) 0.04950%

trans num 38

forward SGMA E(WT ) 10.006.75678

return ratio (%) 0.06757%

trans num 81

on test data, which equals to increase annual return ratio by 4.7%. Both results

illustrate that the SGMA strategy can outperform the MA strategy.

We repeat the study for four more days (10/03/2017 to 10/06/2017). The SG-

MA strategy performance summary for QQQ ETF on day 2 (10/03/2017) to day 5
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(10/06/2017) training data is provided in table 2.6. The SGMA strategy evaluation

summary for QQQ ETF on day 2 (10/03/2017) to day 5 (10/06/2017) test data is

provided in table 2.7.

Table 2.6: Case 1: SGMA strategy performance summary for QQQ ETF on day 2

(10/03/2017) to day 5 (10/06/2017) training data

training data day 10/03/2017 10/04/2017 10/05/2017 10/06/2017

time 9 : 30 am− 3 : 00 pm 9 : 30 am− 3 : 00 pm 9 : 30 am− 3 : 00 pm 9 : 30 am− 3 : 00 pm

T 19, 800 seconds 19, 800 seconds 19, 800 seconds 19, 800 seconds

dt 1 second 1 second 1 second 1 second

correlation −0.07 0.76 0.93 0.16

tuned parameters s 10 5 10 10

l 30 240 60 90

δ∗1 1 0.8097 0.7776 1

δ∗2 1 0.6858 0.8700 1

backward MA E(WT ) 9,991.60785 10,010.93778 10,024.71374 10,0002.62412

return ratio (%) -0.08392% 0.10938% 0.24714% 0.02624%

trans num 783 269 513 380

backward SGMA E(WT ) 9,999.72530 10,011.33440 10,030.39858 10,010.00331

return ratio (%) -0.00275% 0.11334% 0.30399% 0.10003%

trans num 1,941 512 1,190 890

The SGMA strategy performance summary for QQQ ETF on day 1 (10/02/2017)

to day 5 (10/06/2017) training data is provided in figure 2.2. The SGMA strategy

evaluation summary for QQQ ETF on day 1 (10/02/2017) to day 5 (10/06/2017)
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Table 2.7: Case 1: SGMA strategy evaluation summary for QQQ ETF on day 2

(10/03/2017) to day 5 (10/06/2017) test data

test data day 10/03/2017 10/04/2017 10/05/2017 10/06/2017

time 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm

T 3, 601 seconds 3, 601 seconds 3, 601 seconds 3, 601 seconds

dt 1 second 1 second 1 second 1 second

tuned parameters s 10 5 10 10

l 30 240 60 90

δ∗1 1 0.8097 0.7776 1

δ∗2 1 0.6858 0.8700 1

forward MA E(WT ) 9,992.41747 10,001.55533 10,006.94200 9,998.58244

return ratio (%) -0.07583% 0.01555% 0.06942% -0.01418%

trans num 148 44 93 69

forward SGMA E(WT ) 9,994.12194 10,001.22150 10,007.74697 10,000.54010

return ratio (%) -0.05878% 0.01222% 0.07747% 0.00540%

trans num 403 85 231 161

test data is provided in figure 2.3. Notice that the SGMA strategy in general can

outperform the MA strategy for both backward investment on training data and

forward investment on test data.
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Figure 2.2: Case 1: SGMA strategy performance summary plot for QQQ ETF

on day 1 (10/02/2017) to day 5 (10/06/2017) training data
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Figure 2.3: Case 1: SGMA strategy evaluation summary plot for QQQ ETF on

day 1 (10/02/2017) to day 5 (10/06/2017) test data
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2.6.2 Case 2: SGMA Strategy on High-Frequency Exchange Traded

Fund without Observed Predictive Variable

We collect daily second-level QQQ ETF price time series for this study. The

collection period is daily trading time from 9:30 am to 4:00 pm (Eastern Time) to

ensure high liquid market. We divide time series into three data: predictive variable

Xt training data (9:30 am to 12:15 pm, which contains 9,900 seconds), ETF price Pt

training data (12:15 pm to 3:00 pm, which contains 9,900 seconds) and ETF price

test data (3:00 pm to 4:00 pm, which contains 3,601 seconds). We set initial wealth

W0 = 10, 000 and interest rate r = 0. Suppose that the investor’s risk tolerance

is 0.000005. For easy illustration, we restrict δ1 and δ2 in [0, 1], s in 5, 10 and l in

30, 60, 90, 120, 180, 240. We use training data to choose model parameters with the

highest return. We first report the SGMA strategy performance summary for QQQ

ETF on training data, then we report the SGMA strategy evaluation summary for

QQQ ETF on test data. Our study spans five days from 10/2/2017 to 10/6/2017.

Let us use 10/2/2017 as an example, then we will report all investment results for

5 days. Second-level QQQ ETF price time series on day 1 (10/02/2017) is provided

in figure 2.4. The SGMA strategy performance summary for QQQ ETF on day 1

(10/02/2017) training data is provided in table 2.8. The SGMA strategy evaluation

summary for QQQ ETF on day 1 (10/02/2017) test data is provided in table 2.9.
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Figure 2.4: Case 2: Second-level QQQ ETF price time series on day 1

(10/02/2017)
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Table 2.8: Case 2: SGMA strategy performance summary for QQQ ETF on day 1

(10/02/2017) training data

training data day 10/2/2017

time 12 : 15 pm− 3 : 00 pm

T 9, 900 seconds

dt 1 second

correlation −0.35

tuned parameters s 5

l 120

δ∗1 0.7759

δ∗2 0.7531

backward MA E(WT ) 10,028.51099

return ratio (%) 0.28511%

trans num 202

backward SGMA E(WT ) 10,028.81834

return ratio (%) 0.28818%

trans num 402

Notice that (1) The SGMA strategy can increase daily return ratio from 0.28511%

to 0.28818% on training data; (2) The SGMA strategy can increase daily return ratio
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Table 2.9: Case 2: SGMA strategy evaluation summary for QQQ ETF on day 1

(10/02/2017) test data

test data day 10/2/2017

time 3 : 00 pm− 4 : 00 pm

T 3, 601 seconds

dt 1 second

tuned parameters s 5

l 120

δ∗1 0.7759

δ∗2 0.7531

forward MA E(WT ) 10,002.01877

return ratio (%) 0.02019%

trans num 70

forward SGMA E(WT ) 10.003.08036

return ratio (%) 0.03080%

trans num 123

from 0.02019% to 0.03080% on test data, which equals to increase annual return ratio

by 2.7%. Both results illustrate that the SGMA strategy can outperform the MA
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strategy.

We repeat this study for four more days (10/03/2017 to 10/06/2017). The SG-

MA strategy performance summary for QQQ ETF on day 2 (10/03/2017) to day 5

10/06/2017 training data is provided in table 2.10. The SGMA strategy evaluation

summary for QQQ ETF on day 2 (10/03/2017) to day 5 (10/06/2017) test data is

provided in table 2.11.

Table 2.10: Case 2: SGMA strategy performance summary for QQQ ETF on day 2

(10/03/2017) to day 5 (10/06/2017) training data

training data day 10/03/2017 10/04/2017 10/05/2017 10/06/2017

time 12 : 15 pm− 3 : 00 pm 12 : 15 pm− 3 : 00 pm 12 : 15 pm− 3 : 00 pm 12 : 15 pm− 3 : 00 pm

T 9, 900 seconds 9, 900 seconds 9, 900 seconds 9, 900 seconds

dt 1 second 1 second 1 second 1 second

correlation 0.20 −0.32 0.20 0.46

tuned parameters s 10 5 10 10

l 30 240 180 90

δ∗1 1 0.8685 0.9818 0.9818

δ∗2 1 0.8662 0.3787 0.3787

backward MA E(WT ) 9,979.87244 9,998.65146 10,019.34142 9,997.49047

return ratio (%) -0.20128% -0.01349% 0.19341% -0.02510%

trans num 414 135 121 193

backward SGMA E(WT ) 9,984.55190 9,999.20742 10,019.42782 9,998.56184

return ratio (%) -0.15448% -0.00793% 0.19428% -0.01438%

trans num 1,103 264 290 493

The SGMA strategy performance summary for QQQ ETF on day 1 (10/02/2017)
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Table 2.11: Case 2: SGMA strategy evaluation summary for QQQ ETF on day 2

(10/03/2017) to day 5 (10/06/2017) test data

test data day 10/03/2017 10/04/2017 10/05/2017 10/06/2017

time 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm

T 3, 601 seconds 3, 601 seconds 3, 601 seconds 3, 601 seconds

dt 1 second 1 second 1 second 1 second

tuned parameters s 10 5 10 10

l 30 240 180 90

δ∗1 1 0.8685 0.9818 0.9818

δ∗2 1 0.8662 0.3787 0.3787

forward MA E(WT ) 9,992.41747 10,001.55533 10,006.93567 9,998.58244

return ratio (%) -0.07583% 0.01555% 0.06936% -0.01418%

trans num 148 44 46 69

forward SGMA E(WT ) 9,994.12194 10,001.35053 10,006.67620 9,999.33436

return ratio (%) -0.05878% 0.01351% 0.06676% -0.00666%

trans num 403 85 108 161

to day 5 (10/06/2017) training data is provided in figure 2.5. The SGMA strategy

evaluation summary for QQQ ETF on day 1 (10/02/2017) to day 5 (10/06/2017) test

data is provided in figure 2.6. Notice that the SGMA strategy still can outperform the

MA strategy for both backward investment on training data and forward investment

on test data. It is expected that case 2 study shows under performance as case 1

study involves additional information from Microsoft time series.
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Figure 2.5: Case 2: SGMA strategy performance summary plot for QQQ ETF

on day 1 (10/02/2017) to day 5 (10/06/2017) training data
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Figure 2.6: Case 2: SGMA strategy evaluation summary plot for QQQ ETF on

day 1 (10/02/2017) to day 5 (10/06/2017) test data
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2.7 Conclusion

Base on the simulation studies and real data analysis, we observe followings:

(1) The SGMA strategy can provide more investment options when either δ∗1 6= 1 or

δ∗2 6= 0, which can overcome the well-known drawback from the MA strategy; (2) The

SGMA strategy can increase the investor’s expected log-utility of wealth compared

with the MA strategy; (3) The SGMA strategy is also able to increase the investor’s

expected wealth compared with the MA strategy.

Remark for (1): The SGMA strategy can provide more investment options. When

the optimal estimate of δ∗1 is closed to 1, this indicates that both SGMA and MA

strategies tend to long stock with the lower price. When the optimal solution of

δ∗1 is closed to 0, this indicates that the SGMA strategy tends to short stock with

the higher price. The MA strategy does not have this option. When the optimal

estimate of δ∗2 is closed to 0, this indicates that both SGMA and MA strategies tend

to short stock with the higher price. When the optimal solution of δ∗2 is closed to 1,

this indicates that the SGMA strategy tends to long stock with the lower price. The

MA strategy does not have this option. This also explains why the SGMA strategy

is a better investment strategy.
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3 Statistical Modeling and Multi-Asset

Generalized Moving Average Crossover (MGMA)

Strategy

In this chapter, we study statistical modeling and moving average strategy for

multiple-asset portfolio. Notice that the moving average in technical analysis faces

difficulty when there are more than one investment signals because it is an all-or-

nothing investment strategy. We propose a multi-asset generalized moving average

crossover (MGMA) strategy. The MGMA strategy is able to allocate wealth not only

between risky asset and risk-free asset, but also among different risky assets with the

risk tolerance specified by investor. The MGMA strategy can also increase both the

investor’s expected utility of wealth and the investor’s expected wealth.

Chapter 3 is organized as follows. Section 3.1 introduces the general model with

the MGMA strategy. Section 3.2 provides all preliminary Lemmas for analytic re-

sults. we present main analytic results in section 3.3. An investment algorithm for
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multi-asset portfolio is given in section 3.4. Section 3.5 provides simulation study

results. Section 3.5.1 gives data generating process. Real data analysis is given in

section 3.6. An algorithm to estimate model parameters is proposed in section 3.6.1.

The conclusion is presented in section 3.7.

3.1 The Model and The MGMA Strategy

Suppose that there are n + 1 assets in the market. First one is a risk-free asset.

For example, cash or money market account with a constant interest rate r. Other n

assets are risky assets. For example, stocks or indices representing aggregate equity

market. A multi-asset portfolio contains n risky assets. Wealth can be allocated not

only between the risk-free asset and the risky asset, but also among risky assets.

We follow Huang and Liu (2007) to define the general model for multi-asset

portfolio with multiple predictive variables. Suppose that the price of risk-free asset

P f
t at any time t satisfies

dP f
t = rP f

t dt. (3.1)

Suppose that there are q predictive variables can be accurately observed at continu-

ously times, then the vector of n risky asset prices pt at any time t satisfies

dpt = diag (pt)
{

(α+Uxt) dt+Vpdbt
}
, (3.2)
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and the dynamics of the vector of q predictive variables xt satisfies

dxt = (β + Θxt) dt+Vxdzt, (3.3)

where

pt =


p1t

...

pnt

 , diag(pt) =



p1t 0 . . . 0

0 p2t . . . 0

...
...

. . .
...

0 0 . . . pnt


, xt =


x1t

...

xqt

 ,

and

α =


α1

...

αn

 , U =


u11 . . . u1q

...
. . .

...

un1 . . . unq

 , Vp =


vp11 . . . vp1n

...
. . .

...

vpn1 . . . vpnn

 , β =


β1

...

βq

 ,

and

Θ =


θ11 . . . θ1q

...
. . .

...

θq1 . . . θqq

 , Vx =


vx11 . . . vx1q

...
. . .

...

vxq1 . . . vxqq

 , bt =


b1t

...

bnt

 , zt =


z1t

...

zqt

 .

The vectors α, β and matrices U, Θ, Vp, Vx are all parameters. The vectors bt

and zt are multi-dimensional standard Brownian motion, such that

V ar (bt) = tIn, V ar (zt) = tIq, Corr (bt, zt) =


ρ11 . . . ρ1q

...
. . .

...

ρn1 . . . ρnq

 , Vbz,
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where In and Iq are identity matrices. Each predictive variable xit (i = 1, . . . , q) is

assumed to be stationary process for t ≥ 0. In order to ensure xit be mean-reverting

process, Θ has to be symmetric negative definite, i.e., Θ = ΘT and Θ < 0. We also

assume ΘVx = VxΘ in theoretical analysis.

Now let us define the MGMA strategy. We first define some notations for kth

stock (k = 1, . . . , n) in the market. Let pkt be the real stock price and ykt be the

log-transformed stock price, i.e., ykt = log pkt. Given that h > 0 is a lag or lookback

period, a continuous time version of the moving average of the log-transformed stock

price at any time t is defined as

m
(h)
kt =

1

h

∫ t

t−h
ykudu, (3.4)

i.e., the average log transformed stock price over time period [t− h, t]. Let m
(s,l)
kt be

difference between m
(s)
kt and m

(l)
kt , where s > 0 is a short term lookback period and l

is a long time lookback period (l > s), i.e.,

m
(s,l)
kt = m

(s)
kt −m

(l)
kt . (3.5)

Then the MA strategy for single-asset portfolio which contains only kth stock is

defined as

τkt =


0, if m

(s,l)
kt ∈ Ω̃1,

1, if m
(s,l)
kt ∈ Ω̃2.

(3.6)
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where Ω̃i is defined as

Ω̃i =


(−∞, 0) , if i = 1,

[0,∞) , if i = 2.

Define Ωi as

Ωi =



(−∞,−ε) , if i = 1,

[−ε, 0) , if i = 2,

[0, ε] , if i = 3,

(ε,∞) , if i = 4.

(3.7)

where ε > 0 is the investor specified risk tolerance, then the SGMA strategy for

single-asset portfolio which contains only kth stock is

η̃kt =



0, if m
(s,l)
kt ∈ Ω1,

δ2, if m
(s,l)
kt ∈ Ω2,

δ1, if m
(s,l)
kt ∈ Ω3,

1, if m
(s,l)
kt ∈ Ω4.

(3.8)

where δ1 and δ2 are corresponding asset allocation parameters. Let pt be the vector

of n stock prices, yt be the vector of n log transformed stock prices and m
(s,l)
t be the
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vector of n differences between the moving averages, i.e.,

pt =


p1t

...

pnt

 , yt =


y1t

...

ynt

 , m
(s,l)
t =


m

(s,l)
1t

...

m
(s,l)
nt

 .

Given ε > 0 and let d = {1, 2, 3, 4} and ik ∈ d, k = 1, . . . , n, we define Ω(i1,...,in) =

Ωi1× . . .×Ωin , where Ωi is defined in Equation (3.7). Let ηkt be the MGMA strategy

for kth risky asset in a multi-asset portfolio. Let δk,(i1,...,in) be asset allocation pa-

rameter for kth risky asset in the multi-asset portfolio. Suppose that ηt is the vector

based MGMA strategy and δ(i1,...,in) is the vector of n asset allocation parameters,

i.e.,

ηt =


η1t

...

ηnt

 , δ(i1,...,in) =


δ1,(i1,...,in)

...

δn,(i1,...,in)

 ,

then for t ≥ l, we define the MGMA strategy ηt as

ηt =
∑

i1∈d,...,in∈d

δ(i1,...,in) 1Ω(i1,...,in)

(
m

(s,l)
t

)
, (3.9)

where 1Ω(i1,...,in)

(
m

(s,l)
t

)
is an indicator function such that

1Ω(i1,...,in)

(
m

(s,l)
t

)
=


1, if m

(s,l)
t ∈ Ω(i1,...,in),

0, otherwise.

(3.10)
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To ensure ηt is well defined, for t < l, we define ηt as a constant vector λ, i.e.,

λT = (λ1, . . . , λn) where λk is a constant for k = 1, . . . , n and
∑n

k=1 λk ≤ 1.

The MGMA strategy ηt is a market timing strategy that allocates wealth not only

between one risk-free asset and one risky asset but also among risky assets with the

risk tolerance specified by investor. Notice that the SGMA strategy is a special case

of MGMA strategy when the portfolio contains only one risky asset. Theoretically

speaking, the asset allocation parameter δk,(i1,...,in) can be any number which can be

interpreted as long portion of stocks if δk,(i1,...,in) ≥ 0 and short portion of stocks if

δk,(i1,...,in) < 0. Therefore, there are n ∗ 4n parameters for the MGMA strategy on a

multi-asset portfolio which contains n risky-assets.

We give an example of the MGMA strategy for a two-asset portfolio (n = 2). The

MGMA strategy ηTt = (η1t, η2t) for the two-asset portfolio consists of 32 parameters

as shown in table 3.1 below. It is obvious that the MGMA strategy is very complex

even for a two-asset portfolio. For easy illustration purpose, we use no-borrowing

and no-short-sale constrains, i.e., δk,(i1,...,in) ∈ [0, 1] and
∑n

k=1 δk,(i1,...,in) ≤ 1. We use

these constrains to reduce parameters to 5, i.e., (a1, a2, a3, a4, a5 ∈ [0, 1]) in table 3.2

for implementation.

The MA strategy for a two-asset portfolio τ Tt = (τ1t, τ2t) is provided in table 3.3

as benchmark strategy. We follow the common approach to assign equal weights
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Table 3.1: MGMA strategy ηTt = (η1t, η2t) for a two-asset portfolio

(η1t, η2t) m
(s,l)
2t ∈ Ω1 m

(s,l)
2t ∈ Ω2 m

(s,l)
2t ∈ Ω3 m

(s,l)
2t ∈ Ω4

m
(s,l)
1t ∈ Ω1

(
δ1,(1,1), δ2,(1,1)

) (
δ1,(1,2), δ2,(1,2)

) (
δ1,(1,3), δ2,(1,3)

) (
δ1,(1,4), δ2,(1,4)

)
m

(s,l)
1t ∈ Ω2

(
δ1,(2,1), δ2,(2,1)

) (
δ1,(2,2), δ2,(2,2)

) (
δ1,(2,3), δ2,(2,3)

) (
δ1,(2,4), δ2,(2,4)

)
m

(s,l)
1t ∈ Ω3

(
δ1,(3,1), δ2,(3,1)

) (
δ1,(3,2), δ2,(3,2)

) (
δ1,(3,3), δ2,(3,3)

) (
δ1,(3,4), δ2,(3,4)

)
m

(s,l)
1t ∈ Ω4

(
δ1,(4,1), δ2,(4,1)

) (
δ1,(4,2), δ2,(4,2)

) (
δ1,(4,3), δ2,(4,3)

) (
δ1,(4,4), δ2,(4,4)

)

Table 3.2: Simplified MGMA strategy ηTt = (η1t, η2t) for a two-asset portfolio

(η1t, η2t) m
(s,l)
2t ∈ Ω1 m

(s,l)
2t ∈ Ω2 m

(s,l)
2t ∈ Ω3 m

(s,l)
2t ∈ Ω4

m
(s,l)
1t ∈ Ω1 (0, 0) (0, a1) (0, a2) (0, 1)

m
(s,l)
1t ∈ Ω2 (a3, 0) (a3[1− a1(1− a5)], a1[1− a3a5]) (a3[1− a2(1− a5)], a2[1− a3a5]) (a3a5, 1− a3a5)

m
(s,l)
1t ∈ Ω3 (a4, 0) (a4[1− a1(1− a5)], a1[1− a4a5]) (a4[1− a2(1− a5)], a2[1− a4a5]) (a4a5, 1− a4a5)

m
(s,l)
1t ∈ Ω4 (1, 0) (1− a1(1− a5), a1(1− a5)) (1− a2(1− a5), a2(1− a5)) (a5, 1− a5)

when there are more than one investment signals. We will use table 3.2 and table

3.3 for our simulation studies and real data analysis in section 3.5 and section 3.6.

Table 3.3: MA strategy τ Tt = (τ1t, τ2t) for a two-asset portfolio

(τ1t, τ2t) m
(s,l)
2t ∈ Ω̃1 m

(s,l)
2t ∈ Ω̃2

m
(s,l)
1t ∈ Ω̃1 (0, 0) (0, 1)

m
(s,l)
1t ∈ Ω̃2 (1, 0) (0.5, 0.5)

The MGMA strategy from an asset allocation perspective now becomes finding
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optimal ηt that maximizes the investor’s expected log-utility of wealth

max
ηt

E (logwT ) , (3.11)

subject to a budget constraint

dwt
wt

= rdt+ ηTt (α+Uxt − r1n) dt+ ηTt Vpdbt, (3.12)

given an initial wealth w0 for multi-asset portfolio, a constant rate of interest r, an

investment horizon T and 1Tn = (1, . . . , 1).

3.2 Preliminaries

All preliminary Lemmas in this section are used to derive analytical results in next

section. We use matrix exponential properties to prove all Lemmas. We also provide

detailed proofs. The matrix exponential definition and properties are presented in

Appendix A.

Lemma 3.1 Let Θ be symmetric negative definite. If Θ and Vx are exchangeable,

i.e., ΘVx = VxΘ, then Θ and etΘ, etΘ and Vx, VT
x and etΘ are also exchangeable.

Proof:

Since Θ is symmetric negative definite and by definition of matrix exponential,

ΘetΘ = Θ
∞∑
k=0

1

k!
(tΘ)k =

∞∑
k=0

1

k!
(tΘ)kΘ = etΘΘ.
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Since ΘVx = VxΘ and Θ is symmetric negative definite, then ΘkVx = VxΘ
k, which

implies

etΘVx =
∞∑
k=0

1

k!
(tΘ)kVx = Vx

∞∑
k=0

1

k!
(tΘ)k = Vxe

tΘ.

Therefore

VT
x e

tΘ = VT
x

(
etΘ
)T

=
(
etΘVx

)T
=
(
Vxe

tΘ
)T

=
(
etΘ
)T
VT
x = etΘ

T

VT
x = etΘVT

x .

The Lemma is proved.

Lemma 3.2 Let xt be the vector of predictive variables in the market. Let µx be

the vector of expectation of xt. Let Σx be the variance-covariance matrix of xt, then

xt follows multi-normal distribution where

xt = etΘx0 −
(
Iq − etΘ

)
Θ−1β +

∫ t

0

e(t−u)ΘVxdzu,

and

µx = −Θ−1β,

Σx = −1

2
VxΘ

−1VT
x ,

Cov (xt,xs) = −1

2
VxΘ

−1e|t−s|ΘVT
x .

Proof:

Suppose that Iq is identity matrix and 0Tn = (0, . . . , 0), then

d
(
e−uΘxu

)
= d

(
e−uΘ

)
xu + e−uΘdxu = −Θe−uΘxudu+ e−uΘdxu

= −Θe−uΘxudu+ e−uΘ ((β + Θxu) du+Vxdzu) = e−uΘβdu+ e−uΘVxdzu,

71



which implies

e−uΘxu |t0= e−tΘxt − x0 =

∫ t

0

d
(
e−uΘxu

)
=

∫ t

0

e−uΘβdu+

∫ t

0

e−uΘVxdzu

= −Θ−1e−uΘ |t0 β +

∫ t

0

e−uΘVxdzu =
(
−Θ−1e−tΘ + Θ−1

)
β +

∫ t

0

e−uΘVxdzu

= −
(
e−tΘ − Iq

)
Θ−1β +

∫ t

0

e−uΘVxdzu.

Therefore

e−tΘxt = x0 −
(
e−tΘ − Iq

)
Θ−1β +

∫ t

0

e−uΘVxdzu,

and

xt = etΘx0 −
(
Iq − etΘ

)
Θ−1β +

∫ t

0

e(t−u)ΘVxdzu.

As a result, xt follows multi-normal distribution.

Given E (dzu) = 0n,

µx = E (xt) = etΘE (x0)−
(
Iq − etΘ

)
Θ−1β +

∫ t

0

e(t−u)ΘVxE (dzu)

= etΘE (x0)−
(
Iq − etΘ

)
Θ−1β,

since xt is stationary process, i.e., E (xt) = E (x0), then it can easy to check µx =

−Θ−1β is a solution.

Given E
(
dzudz

T
u

)
= duIq, Vx and etΘ are exchangeable and Θ is symmetric,

then the variance-covariance matrix Σx is

Σx = V ar (xt) = V ar

(
etΘx0 −

(
Iq − etΘ

)
Θ−1β +

∫ t

0

e(t−u)ΘVxdzu

)
= etΘV ar (x0) etΘ

T

+ V ar

(∫ t

0

e(t−u)ΘVxdzu

)
,
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where

V ar

(∫ t

0

e(t−u)ΘVxdzu

)
= E

[∫ t

0

e(t−u)ΘVxdzu

∫ t

0

dzTuV
T
x e

(t−u)ΘT
]
− E

[∫ t

0

e(t−u)ΘVxdzu

]
E

[∫ t

0

dzTuV
T
x e

(t−u)ΘT
]

=

∫ t

0

e(t−u)ΘVxV
T
x e

(t−u)ΘT du =

∫ t

0

Vxe
(t−u)Θe(t−u)ΘT duVT

x = Vx

∫ t

0

e2(t−u)ΘduVT
x

= Vx

[
−1

2
Θ−1e2(t−u)Θ |t0

]
VT
x = −1

2
VxΘ

−1VT
x +

1

2
VxΘ

−1etΘetΘ
T

VT
x

= −1

2
VxΘ

−1VT
x +

1

2
etΘVxΘ

−1VT
x e

tΘT ,

which implies

Σx = V ar (xt) = etΘV ar (x0) etΘ
T − 1

2
VxΘ

−1VT
x +

1

2
etΘVxΘ

−1VT
x e

tΘT ,

since xt is stationary process, i.e., V ar (xt) = V ar (x0), then it can easy to check

Σx = −1
2
VxΘ

−1VT
x is a solution. Moreover,

Cov (xt,xs)

= Cov(etΘx0 −
(
Iq − etΘ

)
Θ−1β +

∫ t

0

e(t−u)ΘVxdzu,

esΘx0 −
(
Iq − esΘ

)
Θ−1β +

∫ s

0

e(s−u)ΘVxdzu)

= Cov
(
etΘx0, e

sΘx0

)
+ Cov

(∫ t

0

e(t−u)ΘVxdzu,

∫ s

0

e(s−u)ΘVxdzu

)
,

where

Cov
(
etΘx0, e

sΘx0

)
= etΘV ar (x0) esΘ = −1

2
etΘVxΘ

−1VT
x e

sΘ,
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and given E
(
dzadz

T
b

)
= 0 if a 6= b,

Cov

(∫ t

0

e(t−u)ΘVxdzu,

∫ s

0

e(s−u)ΘVxdzu

)
= E

[∫ min(t,s)

0

e(t−u)ΘVxdzu

∫ min(t,s)

0

dzTuV
T
x e

(s−u)ΘT

]

=

∫ min(t,s)

0

e(t−u)ΘVxV
T
x e

(s−u)ΘT du = Vx

∫ min(t,s)

0

e(t−u)Θe(s−u)ΘT duVT
x

= Vx

∫ min(t,s)

0

e(t+s−2u)ΘduVT
x

= Vx

[
−1

2
Θ−1

(
e(t+s−2min(t,s))Θ − e(t+s)Θ

)]
VT
x

= −1

2
VxΘ

−1e|t−s|ΘVT
x +

1

2
VxΘ

−1e(t+s)ΘVT
x .

Therefore

Cov (xt,xs) = −1

2
etΘVxΘ

−1VT
x e

sΘ − 1

2
VxΘ

−1e|t−s|ΘVT
x +

1

2
VxΘ

−1e(t+s)ΘVT
x

= −1

2
VxΘ

−1e(t+s)ΘVT
x −

1

2
VxΘ

−1e|t−s|ΘVT
x +

1

2
VxΘ

−1e(t+s)ΘVT
x

= −1

2
VxΘ

−1e|t−s|ΘVT
x .

The Lemma is proved.

Lemma 3.3 Let yt be the vector of log transformed stock prices. Let µy be the vector

of expectation of yt, then yt follows multi-normal distribution, i.e.,

yt = y0 +

∫ t

0

(
α+Uxu −

1

2
γ

)
du+Vpbt,
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where γ is a column vector of diagonal of matrix VpV
T
p , i.e.,

γ =


∑n

i=1 (vp1i)
2

...∑n
i=1 (vpni)

2

 ,

and

µy = y0 +

(
α−UΘ−1β − 1

2
γ

)
t.

Proof:

Since for kth stock,

dpkt
pkt

=

(
αk +

q∑
j=1

ukjxjt

)
dt+

n∑
i=1

vpkidbit,

and (dt)2 = o(dt), dtdbit = o(dt), dbitdbit = dt and dbitdbjt = 0 if i 6= j, then

(
dpkt
pkt

)2

=

(
n∑
i=1

vpkidbit

)2

=
n∑
i=1

(vpki)
2 dt.

Therefore

d(ykt) = d(log pkt) = (log pkt)
′ dpkt +

1

2
(log pkt)

′′
(dpkt)

2 =
dpkt
pkt
− 1

2

(
dpkt
pkt

)2

=

(
αk +

q∑
j=1

ukjxjt

)
dt+

n∑
i=1

vpkidbit −
1

2

n∑
i=1

(vpki)
2 dt

=

(
αk +

q∑
j=1

ukjxjt −
1

2

n∑
i=1

(vpki)
2

)
dt+

n∑
i=1

vpkidbit.
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As a result, we can derive

d(yt) =

(
α+Uxt −

1

2
γ

)
dt+Vpdbt, (3.13)

where

γ =


∑n

i=1 (vp1i)
2

...∑n
i=1 (vpni)

2

 .

Therefore

yt − y0 =

∫ t

0

d(yu) =

∫ t

0

(
α+Uxu −

1

2
γ

)
du+

∫ t

0

Vpdbu,

and

yt = y0 +

∫ t

0

(
α+Uxu −

1

2
γ

)
du+Vpbt.

Then

µy = E (yt) = E (y0) +

∫ t

0

(
α+UE (xu)−

1

2
γ

)
du+VpE (bt)

= y0 +

∫ t

0

(
α+U

(
−Θ−1β

)
− 1

2
γ

)
du+ 0

= y0 +

(
α−UΘ−1β − 1

2
γ

)
t.

The Lemma is proved.

Lemma 3.4 Let m
(h)
t be the vector of moving averages based on lookback period h.

Let m
(s,l)
t be the vector of differences between the moving averages based on lookback
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period s and l, then m
(h)
t follows multi-normal distribution with mean E

(
m

(h)
t

)
and

m
(s,l)
t follows multi-normal distribution with mean E

(
m

(s,l)
t

)
, i.e,

E
(
m

(h)
t

)
= y0 +

(
α−UΘ−1β − 1

2
γ

)(
t− h

2

)
,

and

E
(
m

(s,l)
t

)
=

1

2
(l − s)

(
α−UΘ−1β − 1

2
γ

)
,

where

γ =


∑n

i=1 (vp1i)
2

...∑n
i=1 (vpni)

2

 .

Proof:

Based on definition of m
(h)
t ,

E
(
m

(h)
t

)
= E

(
1

h

∫ t

t−h
yudu

)
=

1

h

∫ t

t−h
E (yu) du

=
1

h

∫ t

t−h
y0du+

1

h

∫ t

t−h

(
α−UΘ−1β − 1

2
γ

)
udu

= y0 +

(
α−UΘ−1β − 1

2
γ

)
1

2h

(
t2 − (t− h)2

)
= y0 +

(
α−UΘ−1β − 1

2
γ

)(
t− h

2

)
,
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and

E
(
m

(s,l)
t

)
= E

(
m

(s)
t −m

(l)
t

)
= E

(
m

(s)
t

)
− E

(
m

(l)
t

)
= y0 +

(
α−UΘ−1β − 1

2
γ

)(
t− s

2

)
− y0 −

(
α−UΘ−1β − 1

2
γ

)(
t− l

2

)
=

1

2
(l − s)

(
α−UΘ−1β − 1

2
γ

)
.

The Lemma is proved.

Lemma 3.5 Let zu and bv be multi-dimensional standard Brownian motion and

Corr(bv, zu) = Vbz, then

Cov (zu, bv) = min(u, v)VT
bz,

and

Cov (dzu, bv) =


VT
bzdu, if u < v,

0, if u ≥ v.

Proof:

Given that ziu and bjv are two-dimensional standard Brownian motion with cor-

relation coefficient ρji, then ziu can be represented by ρjibju+
√

1− ρ2
jib
′
ju, where bju

and b′ju are independent, then

Cov (ziu, bjv) = Cov
(
ρjibju +

√
1− ρ2

jib
′
ju, bjv

)
= ρjiCov (bju, bjv) +

√
1− ρ2

jiCov
(
b′ju, bjv

)
= ρjimin(u, v),
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which implies

Cov (zu, bv) = min(u, v)VT
bz,

and

Cov (dzu, bv) = Cov (zu+du − zu, bv) = Cov (zu+du, bv)− Cov (zu, bv)

= min(u+ du, v)VT
bz −min(u, v)VT

bz

=


VT
bzdu, if u < v,

0, if u ≥ v.

The Lemma is proved.

Lemma 3.6 Let xt be the vector of predictive variables in the market. Let bv be

multi-dimensional standard Brownian motion, then

Cov (xt, bv) =


−Θ−1

(
e(t−v)Θ − etΘ

)
VxV

T
bz, if t ≥ v,

−Θ−1
(
Iq − etΘ

)
VxV

T
bz, if t < v.

Proof:
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If t ≥ v, based on Lemmas 3.2 and 3.5,

Cov (xt, bv) = Cov

(
etΘx0 −

(
Iq − etΘ

)
Θ−1β +

∫ t

0

e(t−u)ΘVxdzu, bv

)
= Cov

(∫ t

0

e(t−u)ΘVxdzu, bv

)
=

∫ t

0

e(t−u)ΘVxCov (dzu, bv)

=

∫ v

0

e(t−u)ΘVxCov (dzu, bv) +

∫ t

v

e(t−u)ΘVxCov (dzu, bv)

=

∫ v

0

e(t−u)ΘVxV
T
bzdu+ 0

= −Θ−1
(
e(t−v)Θ − etΘ

)
VxV

T
bz.

If t < v, based on Lemmas 3.2 and 3.5,

Cov (xt, bv) = Cov

(
etΘx0 −

(
Iq − etΘ

)
Θ−1β +

∫ t

0

e(t−u)ΘVxdzu, bv

)
= Cov

(∫ t

0

e(t−u)ΘVxdzu, bv

)
=

∫ t

0

e(t−u)ΘVxCov (dzu, bv)

=

∫ t

0

e(t−u)ΘVxV
T
bzdu

= −Θ−1
(
Iq − etΘ

)
VxV

T
bz.

The Lemma is proved.

Lemma 3.7 Let xt be the vector of predictive variables in the market. Let yu be the

vector of log transformed stock prices, then for t ≥ u,

Cov (xt,yu) = Θ−1etΘ
(
e−uΘ − Iq

)
Vx

(
1

2
Θ−1VT

xU
T −VT

bzV
T
p

)
.

Proof:
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If t ≥ u, based on Lemmas 3.2, 3.3 and 3.6,

Cov (xt,yu) = Cov

(
xt,y0 +

∫ u

0

(
α+Uxv −

1

2
γ

)
dv +Vpbu

)
=

∫ u

0

Cov (xt,xv)U
Tdv + Cov (xt, bu)V

T
p

=

∫ u

0

−1

2
VxΘ

−1e|t−v|ΘVT
xU

Tdv −Θ−1
(
e(t−u)Θ − etΘ

)
VxV

T
bzV

T
p

=

∫ u

0

−1

2
VxΘ

−1e(t−v)ΘVT
xU

Tdv −Θ−1
(
e(t−u)Θ − etΘ

)
VxV

T
bzV

T
p

= −1

2
VxΘ

−1
(
−Θ−1

[
e(t−u)Θ − etΘ

])
VT
xU

T −Θ−1
(
e(t−u)Θ − etΘ

)
VxV

T
bzV

T
p

= Θ−1etΘ
(
e−uΘ − Iq

)
Vx

(
1

2
Θ−1VT

xU
T −VT

bzV
T
p

)
.

The Lemma is proved.

Lemma 3.8 Let xt be the vector of predictive variables in the market. Let m
(h)
t be

the vector of moving averages based on lookback period h, then

Cov
(
xt,m

(h)
t

)
=

(
ΘetΘ +

1

h

(
Iq − ehΘ

))
QT3 ,

where

Q3 = UQ1 +QT2 , Q2 = Θ−2VxV
T
bzV

T
p , Q1 = −1

2
VxV

T
xΘ−3.

Proof:
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Based on definition of m
(h)
t and Lemma 3.7,

Cov
(
xt,m

(h)
t

)
= Cov

(
xt,

1

h

∫ t

t−h
yudu

)
=

1

h

∫ t

t−h
Cov (xt,yu) du

=
1

h

∫ t

t−h
Θ−1etΘ

(
e−uΘ − Iq

)
Vx

(
1

2
Θ−1VT

xU
T −VT

bzV
T
p

)
du

=
1

h
Θ−1etΘ

(
−Θ−1

(
e−tΘ − e−(t−h)Θ

)
− hIq

)
Vx

(
1

2
Θ−1VT

xU
T −VT

bzV
T
p

)
=

(
−1

h
Θ−2

(
Iq − ehΘ

)
−Θ−1etΘ

)
Vx

(
1

2
Θ−1VT

xU
T −VT

bzV
T
p

)
=

(
ΘetΘ +

1

h

(
Iq − ehΘ

))(
Θ−2Vx

(
VT
bzV

T
p −

1

2
Θ−1VT

xU
T

))
=

(
ΘetΘ +

1

h

(
Iq − ehΘ

))
QT3 ,

where

Q3 = UQ1 +QT2 , Q2 = Θ−2VxV
T
bzV

T
p , Q1 = −1

2
VxV

T
xΘ−3.

The Lemma is proved.

Lemma 3.9 Let xt be the vector of predictive variables in the market. Let m
(s,l)
t be

the vector of moving averages differences based on lookback period s and l (l > s),

then

Cov
(
xt,m

(s,l)
t

)
=

(
1

s

(
Iq − esΘ

)
− 1

l

(
Iq − elΘ

))
QT3 ,

where

Q3 = UQ1 +QT2 , Q2 = Θ−2VxV
T
bzV

T
p , Q1 = −1

2
VxV

T
xΘ−3.
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Proof:

Based on definition of m
(s,l)
t and Lemma 3.8,

Cov
(
xt,m

(s,l)
t

)
= Cov

(
xt,m

(s)
t −m

(l)
t

)
= Cov

(
xt,m

(s)
t

)
− Cov

(
xt,m

(l)
t

)
=

(
ΘetΘ +

1

s

(
Iq − esΘ

))
QT3 −

(
ΘetΘ +

1

l

(
Iq − elΘ

))
QT3

=

(
1

s

(
Iq − esΘ

)
− 1

l

(
Iq − elΘ

))
QT3 ,

where

Q3 = UQ1 +QT2 , Q2 = Θ−2VxV
T
bzV

T
p , Q1 = −1

2
VxV

T
xΘ−3.

The Lemma is proved. Notice that Cov
(
xt,m

(s,l)
t

)
is independent of time t.

Lemma 3.10 Let yt be the vector of log transformed stock prices, then

Cov (yu,yv) =


UK1(u, v)QT3 +Q3K2(v)UT + vVpV

T
p , if u ≥ v,

Q3K1(v, u)UT +UK2(u)QT3 + uVpV
T
p , if u < v.

where

K1(u, v) = −e(u−v)Θ + euΘ − vΘ, K2(v) = evΘ − vΘ− Iq,

Q3 = UQ1 +QT2 , Q2 = Θ−2VxV
T
bzV

T
p , Q1 = −1

2
VxV

T
xΘ−3.

Proof:
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For u ≥ v, based on Lemmas 3.2, 3.3 and 3.6,

Cov (yu,yv)

= Cov

(
y0 +

∫ u

0

(
α+Uxa −

1

2
γ

)
da+Vpbu,y0 +

∫ v

0

(
α+Uxj −

1

2
γ

)
dj +Vpbv

)
= Cov

(
U

∫ u

0

xada+Vpbu,U

∫ v

0

xjdj +Vpbv

)
= U

∫ u

0

da

∫ v

0

Cov (xa,xj) djU
T +U

∫ u

0

Cov (xa, bv) daV
T
p

+Vp

∫ v

0

Cov (bu,xj) djU
T +VpCov (bu, bv)V

T
p ,

where ∫ u

0

da

∫ v

0

Cov (xa,xj) dj

=

∫ u

0

da

∫ v

0

−1

2
VxΘ

−1e|a−j|ΘVT
x dj

= −1

2
VxΘ

−1

[∫ v

0

dj

∫ u

0

e|a−j|Θda

]
VT
x

= −1

2
VxΘ

−1

[∫ v

0

dj

(∫ j

0

e|a−j|Θda+

∫ u

j

e|a−j|Θda

)]
VT
x

= −1

2
VxΘ

−1

{∫ v

0

[∫ j

0

e(j−a)Θda+

∫ u

j

e(a−j)Θda

]
dj

}
VT
x

= −1

2
VxΘ

−1

{∫ v

0

[
−Θ−1

(
Iq − ejΘ

)
+ Θ−1

(
e(u−j)Θ − Iq

)]
dj

}
VT
x

= −1

2
VxΘ

−1Θ−1

[∫ v

0

ejΘdj − 2

∫ v

0

Iqdj +

∫ v

0

e(u−j)Θdj

]
VT
x

= −1

2
VxΘ

−1Θ−1
[
Θ−1

(
evΘ − Iq

)
− 2vIq −Θ−1

(
e(u−v)Θ − euΘ

)]
VT
x

= −1

2
VxΘ

−3
(
euΘ + evΘ − e(u−v)Θ − 2vΘ− Iq

)
VT
x

= −1

2
VxV

T
xΘ−3

(
euΘ + evΘ − e(u−v)Θ − 2vΘ− Iq

)
,
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and∫ u

0

Cov (xa, bv) da

=

∫ v

0

Cov (xa, bv) da+

∫ u

v

Cov (xa, bv) da

=

∫ v

0

−Θ−1
(
Iq − eaΘ

)
VxV

T
bzda+

∫ u

v

−Θ−1
(
e(a−v)Θ − eaΘ

)
VxV

T
bzda

= −Θ−1

(∫ v

0

(
Iq − eaΘ

)
da

)
VxV

T
bz −Θ−1

(∫ u

v

(
e(a−v)Θ − eaΘ

)
da

)
VxV

T
bz

= −Θ−1
(
vIq −Θ−1

(
evΘ − Iq

))
VxV

T
bz −Θ−2

(
e(u−v)Θ − Iq − euΘ + evΘ

)
VxV

T
bz

=
(
−vΘ + evΘ − Iq − e(u−v)Θ + Iq + euΘ − evΘ

)
Θ−2VxV

T
bz

=
(
euΘ − e(u−v)Θ − vΘ

)
Θ−2VxV

T
bz,

and∫ v

0

Cov (bu,xj) dj =

∫ v

0

Cov (xj, bu)
T dj =

∫ v

0

−VbzVT
x

(
Iq − ejΘ

)
Θ−1dj

= −VbzVT
x

(∫ v

0

(
Iq − ejΘ

)
dj

)
Θ−1 = −VbzVT

x

(
vIq −Θ−1

(
evΘ − Iq

))
Θ−1

= VbzV
T
xΘ−2

(
evΘ − Iq − vΘ

)
=
(
Θ−2VxV

T
bz

)T (
evΘ − vΘ− Iq

)
,

and

Cov (bu, bv) = min(u, v)Iq.

Therefore, for u ≥ v,

Cov (yu,yv) = U

[
−1

2
VxV

T
xΘ−3

(
euΘ + evΘ − e(u−v)Θ − 2vΘ− Iq

)]
UT

+U
(
euΘ − e(u−v)Θ − vΘ

)
Θ−2VxV

T
bzV

T
p

+Vp

(
Θ−2VxV

T
bz

)T (
evΘ − vΘ− Iq

)
UT +Vpmin(u, v)VT

p .
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Let

K1(u, v) = −e(u−v)Θ + euΘ − vΘ, K2(v) = evΘ − vΘ− Iq,

Q3 = UQ1 +QT2 , Q2 = Θ−2VxV
T
bzV

T
p , Q1 = −1

2
VxV

T
xΘ−3,

then K1(u, v),K2(v) and Q1 are all symmetric, and Q1K1(u, v) = K1(u, v)Q1, and

Q1,Q2,Q3 are all independent of time t.

Therefore, for u ≥ v,

Cov (yu,yv) = UQ1 (K1(u, v) +K2(v))UT +UK1(u, v)Q2 +QT2K2(v)UT + vVpV
T
p

= UK1(u, v)Q1U
T +UQ1K2(v)UT +UK1(u, v)Q2 +QT2K2(v)UT + vVpV

T
p

= UK1(u, v)
(
Q1U

T +Q2

)
+
(
UQ1 +QT2

)
K2(v)UT + vVpV

T
p

= UK1(u, v)QT3 +Q3K2(v)UT + vVpV
T
p .

Similarly, for u < v,

Cov (yu,yv) = (Cov (yv,yu))
T =

(
UK1(v, u)QT3 +Q3K2(u)UT + uVpV

T
p

)T
= Q3K1(v, u)UT +UK2(u)QT3 + uVpV

T
p .

The Lemma is proved.

Lemma 3.11 Let m
(s)
t and m

(l)
t be the vector of moving averages based on lookback

period s and l (l > s), then

Cov
(
m

(s)
t ,m

(l)
t

)
= J (t; s, l) +Q4 (s, l) ,
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where

J (t; s, l) =
1

s
UΘ−1

(
etΘ − e(t−s)Θ)QT3 − tUΘQT3

+
1

l
Q3Θ−1

(
etΘ − e(t−l)Θ)UT − tQ3ΘUT + tVpV

T
p ,

and

Q4 (s, l) =
1

sl
U

{
Θ−1

[
sIq −Θ−1

(
elΘ − e(l−s)Θ)]+

1

6

(
3l2s+ s3

)
Θ− 1

2
s2Iq

}
QT3

+
1

sl
Q3

{
Θ−1

[
sIq + Θ−1

(
Iq − esΘ

)]
+

1

6

(
3l2s+ s3

)
Θ− 1

2

(
2ls− s2

)
Iq

}
UT

− 1

sl

[
1

6

(
3l2s+ s3

)]
VpV

T
p ,

and

Q3 = UQ1 +QT2 , Q2 = Θ−2VxV
T
bzV

T
p , Q1 = −1

2
VxV

T
xΘ−3.

Proof:

Based on definition of m
(s)
t and m

(l)
t , and based on Lemma 3.10,

Cov
(
m

(s)
t ,m

(l)
t

)
= Cov

(
1

s

∫ t

t−s
yudu,

1

l

∫ t

t−l
yvdv

)
=

1

sl

∫ t

t−s
du

∫ t

t−l
Cov (yu,yv) dv

=
1

sl

∫ t

t−s
du

(∫ u

t−l
Cov (yu,yv) dv +

∫ t

u

Cov (yu,yv) dv

)
=

1

sl

∫ t

t−s
du

{∫ u

t−l

[
UK1(u, v)QT3 +Q3K2(v)UT + vVpV

T
p

]
dv

+

∫ t

u

[
Q3K1(v, u)UT +UK2(u)QT3 + uVpV

T
p

]
dv

}
=

1

sl

∫ t

t−s
du

{∫ u

t−l
UK1(u, v)QT3 dv +

∫ u

t−l
Q3K2(v)UTdv +

∫ u

t−l
vVpV

T
p dv

+

∫ t

u

Q3K1(v, u)UTdv +

∫ t

u

UK2(u)QT3 dv +

∫ t

u

uVpV
T
p dv

}
,
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where

(1).

∫ u

t−l
UK1(u, v)QT3 dv =

∫ u

t−l
U
(
−e(u−v)Θ + euΘ − vΘ

)
QT3 dv

= U

{
Θ−1

(
Iq − e(u−t+l)Θ)+ euΘ (u− t+ l)− 1

2

(
u2 − (t− l)2

)
Θ

}
QT3 ,

(2).

∫ u

t−l
Q3K2(v)UTdv =

∫ u

t−l
Q3

(
evΘ − vΘ− Iq

)
UTdv

= Q3

{
Θ−1

(
euΘ − e(t−l)Θ)− 1

2

(
u2 − (t− l)2

)
Θ− (u− t+ l) Iq

}
UT ,

(3).

∫ u

t−l
vVpV

T
p dv =

1

2

(
u2 − (t− l)2

)
VpV

T
p ,

(4).

∫ t

u

Q3K1(v, u)UTdv = Q3

∫ t

u

(
−e(v−u)Θ + evΘ − uΘ

)
dvUT

= Q3

(
−Θ−1

(
e(t−u)Θ − Iq

)
+ Θ−1

(
etΘ − euΘ

)
− u(t− u)Θ

)
UT ,

(5).

∫ t

u

UK2(u)QT3 dv = U

∫ t

u

(
euΘ − uΘ− Iq

)
dvQT3 = U

[
(t− u)

(
euΘ − uΘ− Iq

)]
QT3 ,

(6).

∫ t

u

uVpV
T
p dv = u(t− u)VpV

T
p .

Therefore

(1) + (5) = U

{
Θ−1

(
Iq − e(u−t+l)Θ)+ euΘl +

(
1

2
(t− u− l)2 − ul

)
Θ− (t− u)Iq

}
QT3 ,

(2) + (4)

= Q3

{
Θ−1

(
etΘ + Iq − e(t−u)Θ − e(t−l)Θ)+

(
1

2
(t− u− l)2 − ul

)
Θ− (u− t+ l)Iq

}
UT ,
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(3) + (6) = −
(

1

2
(t− u− l)2 − ul

)
VpV

T
p ,

which implies∫ t

t−s
[(1) + (5)] du = U

{∫ t

t−s
Θ−1

(
Iq − e(u−t+l)Θ) du+

∫ t

t−s
euΘldu

+

∫ t

t−s

(
1

2
(t− u− l)2 − ul

)
Θdu−

∫ t

t−s
(t− u)Iqdu

}
QT3

= U

{
Θ−1

[
sIq −Θ−1

(
elΘ − e(l−s)Θ)]+ Θ−1

(
etΘ − e(t−s)Θ) l

+

(
1

6

(
l3 − (l − s)3

)
+

1

2
s2l − tsl

)
Θ− 1

2
s2Iq

}
QT3 ,

and∫ t

t−s
[(2) + (4)] du = Q3

{∫ t

t−s
Θ−1

(
etΘ + Iq − e(t−u)Θ − e(t−l)Θ) du

+

∫ t

t−s

(
1

2
(t− u− l)2 − ul

)
Θdu−

∫ t

t−s
(u− t+ l)Iqdu

}
UT

= Q3

{
Θ−1

(
setΘ + sIq + Θ−1

(
Iq − esΘ

)
− se(t−l)Θ)

+

(
1

6

(
l3 − (l − s)3

)
+

1

2
s2l − tsl

)
Θ− 1

2

(
l2 − (l − s)2

)
Iq

}
UT ,

and ∫ t

t−s
[(3) + (6)] du =

∫ t

t−s
−
(

1

2
(t− u− l)2 − ul

)
VpV

T
p du

= −
(

1

6

(
l3 − (l − s)3

)
+

1

2
s2l − tsl

)
VpV

T
p .
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Therefore

Cov
(
m

(s)
t ,m

(l)
t

)
=

1

sl
U

{
Θ−1

[
sIq −Θ−1

(
elΘ − e(l−s)Θ)]+ Θ−1

(
etΘ − e(t−s)Θ) l

+

(
1

6

(
l3 − (l − s)3

)
+

1

2
s2l − tsl

)
Θ− 1

2
s2Iq

}
QT3

+
1

sl
Q3

{
Θ−1

(
setΘ + sIq + Θ−1

(
Iq − esΘ

)
− se(t−l)Θ)

+

(
1

6

(
l3 − (l − s)3

)
+

1

2
s2l − tsl

)
Θ− 1

2

(
l2 − (l − s)2

)
Iq

}
UT

+
1

sl

(
−1

6

(
l3 − (l − s)3

)
− 1

2
s2l + tsl

)
VpV

T
p

=
1

s
UΘ−1

(
etΘ − e(t−s)Θ)QT3 − tUΘQT3 +

1

l
Q3Θ−1

(
etΘ − e(t−l)Θ)UT − tQ3ΘUT

+ tVpV
T
p +

1

sl
U

{
Θ−1

[
sIq −Θ−1

(
elΘ − e(l−s)Θ)]+

1

6

(
3l2s+ s3

)
Θ− 1

2
s2Iq

}
QT3

+
1

sl
Q3

{
Θ−1

[
sIq + Θ−1

(
Iq − esΘ

)]
+

1

6

(
3l2s+ s3

)
Θ− 1

2

(
2ls− s2

)
Iq

}
UT

− 1

sl

[
1

6

(
3l2s+ s3

)]
VpV

T
p

= J (t; s, l) +Q4 (s, l) ,

where

J (t; s, l) =
1

s
UΘ−1

(
etΘ − e(t−s)Θ)QT3 − tUΘQT3

+
1

l
Q3Θ−1

(
etΘ − e(t−l)Θ)UT − tQ3ΘUT + tVpV

T
p ,
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and

Q4 (s, l) =
1

sl
U

{
Θ−1

[
sIq −Θ−1

(
elΘ − e(l−s)Θ)]+

1

6

(
3l2s+ s3

)
Θ− 1

2
s2Iq

}
QT3

+
1

sl
Q3

{
Θ−1

[
sIq + Θ−1

(
Iq − esΘ

)]
+

1

6

(
3l2s+ s3

)
Θ− 1

2

(
2ls− s2

)
Iq

}
UT

− 1

sl

[
1

6

(
3l2s+ s3

)]
VpV

T
p ,

and

Q3 = UQ1 +QT2 , Q2 = Θ−2VxV
T
bzV

T
p , Q1 = −1

2
VxV

T
xΘ−3.

The Lemma is proved. Notice that Q1 is symmetric, Q1,Q2 and Q3 are independent

of s, l and t, Q4 is independent of t but is dependent of s and l, and J is dependent

of s, l and t.

Lemma 3.12 Let m
(s,l)
t be the vector of moving average differences based on lookback

period s and l (l > s), then V ar
(
m

(s,l)
t

)
is independent of time t, i.e.,

V ar
(
m

(s,l)
t

)
= Q4 (s, s)−Q4 (s, l)−QT4 (s, l) +Q4 (l, l) ,

where

Q4 (s, l) =
1

sl
U

{
Θ−1

[
sIq −Θ−1

(
elΘ − e(l−s)Θ)]+

1

6

(
3l2s+ s3

)
Θ− 1

2
s2Iq

}
QT3

+
1

sl
Q3

{
Θ−1

[
sIq + Θ−1

(
Iq − esΘ

)]
+

1

6

(
3l2s+ s3

)
Θ− 1

2

(
2ls− s2

)
Iq

}
UT

− 1

sl

[
1

6

(
3l2s+ s3

)]
VpV

T
p ,

and

Q3 = UQ1 +QT2 , Q2 = Θ−2VxV
T
bzV

T
p , Q1 = −1

2
VxV

T
xΘ−3.
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Proof:

Based on definition of m
(s,l)
t and Lemma 3.11,

V ar
(
m

(s,l)
t

)
= V ar

(
m

(s)
t −m

(l)
t

)
= Cov

(
m

(s)
t ,m

(s)
t

)
− Cov

(
m

(s)
t ,m

(l)
t

)
− Cov

(
m

(l)
t ,m

(s)
t

)
+ Cov

(
m

(l)
t ,m

(l)
t

)
=
[
J (t; s, s)− J (t; s, l)− JT (t; s, l) + J (t; l, l)

]
+
[
Q4 (s, s)−Q4 (s, l)−QT4 (s, l) +Q4 (l, l)

]
= Q4 (s, s)−Q4 (s, l)−QT4 (s, l) +Q4 (l, l) ,

as

J (t; s, s)− J (t; s, l)− JT (t; s, l) + J (t; l, l) = 0.

The Lemma is proved.

Lemma 3.13 Let b
(0)
t be n-dimensional standard Brownian motion and z

(0)
t be q-

dimensional standard Brownian motion. b
(0)
t and z

(0)
t are independent. If there is a

symmetric matrix Γ such that ΓΓT =

 In Vbz

VT
bz Iq

 , where In is n-dimensional iden-

tity matrix and Iq is q-dimensional identity matrix, then bt and zt, i.e., (bt zt)
T =

Γ
(
b

(0)
t z

(0)
t

)T
are multi-dimensional standard Brownian motion with correlation

matrix Vbz.
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Proof:

Since b
(0)
t and z

(0)
t are independent standard Brownian motion with dimensions

n and q respective, V ar

b
(0)
t

z
(0)
t

 = tI(n+q). Let

bt
zt

 = Γ

b
(0)
t

z
(0)
t

, then

V ar

bt
zt

 = ΓV ar

b
(0)
t

z
(0)
t

ΓT = ΓtI(n+q)Γ
T = tΓΓT = t

 In Vbz

VT
bz Iq,


which implies

V ar (bt) = tIn, V ar (zt) = tIq, Cov (bt, zt) = tVbz,

then the correlation matrix for bt and zt is Vbz. In addition,

V ar

bt+dt − bt
zt+dt − zt

 = V ar

Γ

b
(0)
t+dt − b

(0)
t

z
(0)
t+dt − z

(0)
t


 = ΓV ar


b

(0)
t+dt − b

(0)
t

z
(0)
t+dt − z

(0)
t


ΓT

= ΓdtI(n+q)Γ
T = dtΓΓT = dt

 In Vbz

VT
bz Iq,


which implies

V ar (bt+dt − bt) = dtIn, V ar (zt+dt − zt) = dtIq,

then bt is standard Brownian motion and zt is standard Brownian motion. The

Lemma is proved.
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3.3 The Analytic Results

In order to find optimal ηt, we need derive the investor’s expected log-utility

of wealth E (logwT ). To derive E (logwT ), we need know joint distribution of(
xt,m

(s,l)
t

)T
. Let γ be a column vector of diagonal of matrix VpV

T
p , i.e.,

γ =


∑n

i=1 (vp1i)
2

...∑n
i=1 (vpni)

2

 .

Let µx be the vector of expectation of xt, µm be the vector of expectation of m
(s,l)
t ,

Σx be the variance-covariance matrix of xt, Σm be the variance-covariance of m
(s,l)
t ,

and ∆xm be the covariance matrix between xt and m
(s,l)
t . Based on Lemmas 3.2,

3.4, 3.9 and 3.12, it is derived that
(
xt,m

(s,l)
t

)T
are multi-normal distribution, i.e., xt

m
(s,l)
t

 ∼ MN


µx
µm

,
 Σx ∆xm

∆T
xm Σm


 , (3.14)
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and

µx = −Θ−1β,

µm =
1

2
(l − s)

[
α−UΘ−1β − 1

2
γ

]
,

Σx = −1

2
VxΘ

−1VT
x ,

∆xm =

[
1

s

(
Iq − esΘ

)
− 1

l

(
Iq − elΘ

)]
QT3 ,

Σm = Q4 (s, s)−Q4 (s, l)−QT4 (s, l) +Q4 (l, l) , (3.15)

where

Q1 = −1

2
VxV

T
xΘ−3, Q2 = Θ−2VxV

T
bzV

T
p , Q3 = UQ1 +QT2 ,

and

Q4 (s, l) =
1

sl
U

{
Θ−1

[
sIq −Θ−1

(
elΘ − e(l−s)Θ)]+

1

6

(
3l2s+ s3

)
Θ− 1

2
s2Iq

}
QT3

+
1

sl
Q3

{
Θ−1

[
sIq + Θ−1

(
Iq − esΘ

)]
+

1

6

(
3l2s+ s3

)
Θ− 1

2

(
2ls− s2

)
Iq

}
UT

− 1

sl

[
1

6

(
3l2s+ s3

)]
VpV

T
p .

Notice that the multi-normal distribution of
(
xt,m

(s,l)
t

)T
is independent of time

t. From the multi-normal distribution of
(
xt,m

(s,l)
t

)T
, we have

E
(
xt |m(s,l)

t

)
= µx + ∆xmΣ−1

m

(
m

(s,l)
t − µm

)
. (3.16)
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We define Σm, µm and σm as

Σm =



σ2
1 σ12 . . . σ1n

σ12 σ2
2 . . . σ2n

...
...

. . .
...

σ1n σ2n . . . σ2
n


, µm =


µ1

...

µn

 , σm =


σ1

...

σn

 ,

then

ZRm =



σ−1
1 0 . . . 0

0 σ−1
2 . . . 0

...
...

. . .
...

0 0 . . . σ−1
n


(
m

(s,l)
t − µm

)
∼ MN (0n,Rm) , (3.17)

where 0Tn = (0, . . . , 0) and Rm is the correlation matrix for the vector m
(s,l)
t , i.e.,

Rm =



1 σ12
σ1σ2

. . . σ1n
σ1σn

σ12
σ1σ2

1 . . . σ2n
σ2σn

...
...

. . .
...

σ1n
σ1σn

σ2n
σ2σn

. . . 1


.

Suppose that φRm (m1, . . . ,mn) is a probability density function forZRm ∼ MN (0n,Rm).

For any hyper-rectangle H = [a1, b1] × . . . × [an, bn] (it doesn’t matter whether the

boundary is open or close for one-dimension of the hyper-rectangle), we define

ΦRm (H) = Pr (ZRm ∈ H) =

∫ b1

a1

dm1

∫ b2

a2

dm2 . . .

∫ bn

an

φRm (m1, . . . ,mn) dmn,

(3.18)
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and

ΨRm (H) =

∫ b1

a1

dm1

∫ b2

a2

dm2 . . .

∫ bn

an


m1

...

mn

φRm (m1, . . . ,mn) dmn. (3.19)

Based on Equation (3.7), we define Ωi (µ, σ) as

Ωi (µ, σ) =
Ωi − µ
σ

=



(
−∞,− ε+µ

σ

)
, if i = 1,[

− ε+µ
σ
,−µ

σ

)
, if i = 2,[

−µ
σ
, ε−µ

σ

]
, if i = 3,(

ε−µ
σ
,∞
)
, if i = 4.

(3.20)

Let d = {1, 2, 3, 4} and we define

Ω(i1,...,in) (µm,σm) = Ωi1 (µ1, σ1)× . . .× Ωin (µn, σn) , (3.21)

where ik ∈ d, k = 1, . . . , n.

Given an initial wealth w0, a constant rate of interest r and an investment horizon

T . Let ε > 0 be the investor specified risk tolerance. Let δ(i1,...,in) be the vector of

n asset allocation parameters. Let ηt be the vector based multi-asset generalized

moving average crossover (MGMA) strategy. We state the following Propositions for

the MGMA strategy.
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Proposition 3.1 The vector based expected values of ηTt are independent of time t,

i.e.,

E
(
ηTt
)

=
∑

i1∈d,...,in∈d

δT(i1,...,in)ΦRm

(
Ω(i1,...,in) (µm,σm)

)
.

Proof.

Base on Equations (3.9), (3.17), (3.20) and (3.21),

E
(
ηTt
)

=
∑

i1∈d,...,in∈d

δT(i1,...,in)P
(
m

(s,l)
t ∈ Ω(i1,...,in)

)
=

∑
i1∈d,...,in∈d

δT(i1,...,in)P
(
ZRm ∈ Ω(i1,...,in) (µm,σm)

)
=

∑
i1∈d,...,in∈d

δT(i1,...,in)ΦRm

(
Ω(i1,...,in) (µm,σm)

)
.

The Proposition is proved.

Proposition 3.2 The expected value of ηTt VpV
T
p ηt is independent of time t, i.e.,

E
(
ηTt VpV

T
p ηt
)

=
∑

i1∈d,...,in∈d

δT(i1,...,in)VpV
T
p δ(i1,...,in)ΦRm

(
Ω(i1,...,in) (µm,σm)

)
.

Proof:

Base on Equations (3.9), (3.17), (3.20) and (3.21),

E
(
ηTt VpV

T
p ηt
)

=
∑

i1∈d,...,in∈d

δT(i1,...,in)VpV
T
p δ(i1,...,in)P

(
m

(s,l)
t ∈ Ω(i1,...,in)

)
=

∑
i1∈d,...,in∈d

δT(i1,...,in)VpV
T
p δ(i1,...,in)P

(
ZRm ∈ Ω(i1,...,in) (µm,σm)

)
=

∑
i1∈d,...,in∈d

δT(i1,...,in)VpV
T
p δ(i1,...,in)ΦRm

(
Ω(i1,...,in) (µm,σm)

)
.
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The Proposition is proved.

Proposition 3.3 The expected value of ηTt Uxt is independent of time t, i.e.,

E
(
ηTt Uxt

)
=

∑
i1∈d,...,in∈d

δT(i1,...,in)UµxΦRm

(
Ω(i1,...,in) (µm,σm)

)

+
∑

i1∈d,...,in∈d

δT(i1,...,in)U∆xmΣ−1
m



σ1 0 . . . 0

0 σ2 . . . 0

...
...

. . .
...

0 0 . . . σn


ΨRm

(
Ω(i1,...,in) (µm,σm)

)
.

Proof:

Based on Equation (3.16) and Proposition 3.1,

E
(
ηTt Uxt

)
= E

{
E
(
ηTt Uxt |m

(s,l)
t

)}
= E

{
ηTt UE

(
xt |m(s,l)

t

)}
= E

{
ηTt U

[
µx + ∆xmΣ−1

m

(
m

(s,l)
t − µm

)]}
= E

(
ηTt
)
U
(
µx −∆xmΣ−1

mµm
)

+ E
(
ηTt U∆xmΣ−1

mm
(s,l)
t

)
,

where

E
(
ηTt
)
U
(
µx −∆xmΣ−1

mµm
)

=
∑

i1∈d,...,in∈d

δT(i1,...,in)U
(
µx −∆xmΣ−1

mµm
)

ΦRm

(
Ω(i1,...,in) (µm,σm)

)
=

∑
i1∈d,...,in∈d

δT(i1,...,in)UµxΦRm

(
Ω(i1,...,in) (µm,σm)

)
−

∑
i1∈d,...,in∈d

δT(i1,...,in)U∆xmΣ−1
mµmΦRm

(
Ω(i1,...,in) (µm,σm)

)
,
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and based on Equations (3.9) and (3.17),

E
(
ηTt U∆xmΣ−1

mm
(s,l)
t

)
=

∑
i1∈d,...,in∈d

δT(i1,...,in)U∆xmΣ−1
mE

(
1Ω(i1,...,in)

(
m

(s,l)
t

)
m

(s,l)
t

)
,

where

E
(
1Ω(i1,...,in)

(
m

(s,l)
t

)
m

(s,l)
t

)

= E


1Ω(i1,...,in)(µm,σm) (ZRm) (



σ1 0 . . . 0

0 σ2 . . . 0

...
...

. . .
...

0 0 . . . σn


ZRm + µm)



=



σ1 0 . . . 0

0 σ2 . . . 0

...
...

. . .
...

0 0 . . . σn


E
(
1Ω(i1,...,in)(µm,σm) (ZRm)ZRm

)

+ E
(
1Ω(i1,...,in)(µm,σm) (ZRm)µm

)

=



σ1 0 . . . 0

0 σ2 . . . 0

...
...

. . .
...

0 0 . . . σn


ΨRm

(
Ω(i1,...,in) (µm,σm)

)
+ µmΦRm

(
Ω(i1,...,in) (µm,σm)

)
,
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which implies

E
(
ηTt U∆xmΣ−1

mm
(s,l)
t

)

=
∑

i1∈d,...,in∈d

δT(i1,...,in)U∆xmΣ−1
m



σ1 0 . . . 0

0 σ2 . . . 0

...
...

. . .
...

0 0 . . . σn


ΨRm

(
Ω(i1,...,in) (µm,σm)

)

+
∑

i1∈d,...,in∈d

δT(i1,...,in)U∆xmΣ−1
mµmΦRm

(
Ω(i1,...,in) (µm,σm)

)
.

The Proposition is proved.

Proposition 3.4 Let λ be a constant vector for MGMA strategy ηt when t < l, i.e.,

λT = (λ1, . . . , λn) where λk is a constant for k = 1, . . . , n and
∑n

k=1 λk ≤ 1. Let

ε > 0 be the investor specified risk tolerance, then the investor’s expected log-utility

of wealth at the end of investment period T is

E (logwT ) = a6 + (T − l)
[
E
(
ηTt
)

(α− r1n)− 1

2
E
(
ηTt VpV

T
p ηt
)

+ E
(
ηTt Uxt

)]
,

(3.22)

where 1Tn = (1, . . . , 1) and a6 is a constant depending on l, i.e.,

a6 = logw0 + rT + l

[
λT (α− r1n)− 1

2

(
λTVpV

T
p λ
)
− λTUΘ−1β

]
.
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By Propositions 3.1, 3.2 and 3.3, Equation (3.22) can be rewritten as

E (logwT )

= a6 +
∑

i1∈d,...,in∈d

(T − l) δT(i1,...,in)ΦRm

(
Ω(i1,...,in) (µm,σm)

)
(α− r1n)

−
∑

i1∈d,...,in∈d

1

2
(T − l) δT(i1,...,in)VpV

T
p δ(i1,...,in)ΦRm

(
Ω(i1,...,in) (µm,σm)

)
+

∑
i1∈d,...,in∈d

(T − l) δT(i1,...,in)UµxΦRm

(
Ω(i1,...,in) (µm,σm)

)

+
∑

i1∈d,...,in∈d

(T − l) δT(i1,...,in)U∆xmΣ−1
m



σ1 0 . . . 0

0 σ2 . . . 0

...
...

. . .
...

0 0 . . . σn


ΨRm

(
Ω(i1,...,in) (µm,σm)

)
.

(3.23)

Proof:

Based on Equations (3.1) and (3.2), the budget constraint for the multi-asset

portfolio follows

dwt
wt

= ηTt (diag (pt))
−1 dpt +

(
1− ηTt 1n

)
rdt

= ηTt (diag (pt))
−1 diag (pt)

{
(α+Uxt) dt+Vpdbt

}
+
(
1− ηTt 1n

)
rdt

= rdt+ ηTt (α+Uxt − r1n) dt+ ηTt Vpdbt,

then Equation (3.12) is proved. Since (dt)2 = o(dt), dtdbt = o(dt) and dbtdb
T
t = dtIn,
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where 0Tn = (0, . . . , 0) and In is the identity matrix,

(
dwt
wt

)2

=
(
ηTt Vpdbt

)2
= ηTt Vpdbtdb

T
t V

T
p ηt = ηTt VpIndtV

T
p ηt = ηTt VpV

T
p ηtdt,

which implies

d (logwt)

= (logwt)
′ dwt +

1

2
(logwt)

′′
(dwt)

2 =
dwt
wt

+
1

2

(
− 1

w2
t

)
(dwt)

2 =
dwt
wt
− 1

2

(
dwt
wt

)2

= rdt+ ηTt (α+Uxt − r1n) dt+ ηTt Vpdbt −
1

2
ηTt VpV

T
p ηtdt

=

(
r + ηTt (α+Uxt − r1n)− 1

2
ηTt VpV

T
p ηt

)
dt+ ηTt Vpdbt,

since logwt |T0 = logwT − logw0 =
∫ T

0
d (logwt) and by Equation (3.9) with T ≥ l,

logwT

= logw0 +

∫ T

0

d (logwt)

= logw0 +

∫ T

0

rdt+

∫ T

0

ηTt (α− r1n) dt+

∫ T

0

ηTt Uxtdt−
1

2

∫ T

0

ηTt VpV
T
p ηtdt

+

∫ T

0

ηTt Vpdbt

= logw0 + rT +

∫ l

0

ηTt (α− r1n) dt+

∫ T

l

ηTt (α− r1n) dt+

∫ l

0

ηTt Uxtdt

+

∫ T

l

ηTt Uxtdt−
1

2

∫ l

0

ηTt VpV
T
p ηtdt−

1

2

∫ T

l

ηTt VpV
T
p ηtdt+

∫ T

0

ηTt Vpdbt

= logw0 + rT + λT (α− r1n) l +

∫ T

l

ηTt (α− r1n) dt+

∫ l

0

λTUxtdt

+

∫ T

l

ηTt Uxtdt−
1

2

(
λTVpV

T
p λ
)
l − 1

2

∫ T

l

ηTt VpV
T
p ηtdt+

∫ T

0

ηTt Vpdbt,
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which implies

E (logwT ) = logw0 + rT

+ λT (α− r1n) l − 1

2

(
λTVpV

T
p λ
)
l +

∫ l

0

λTUE (xt) dt+

∫ T

l

E
(
ηTt
)
dt (α− r1n)

− 1

2

∫ T

l

E
(
ηTt VpV

T
p ηt
)
dt+

∫ T

l

E
(
ηTt Uxt

)
dt+

∫ T

0

E
(
ηTt
)
VpE (dbt) .

By Propositions 3.1, 3.2 and 3.3, we note that E
(
ηTt
)
, E
(
ηTt VpV

T
p ηt
)

and E
(
ηTt Uxt

)
are all independent of time t. Since E (dbt) = 0n and E (xt) = −Θ−1β by Lemma

3.2, we derive

E (logwT ) = a6 + (T − l)
[
E
(
ηTt
)

(α− r1n)− 1

2
E
(
ηTt VpV

T
p ηt
)

+ E
(
ηTt Uxt

)]
,

where 1Tn = (1, . . . , 1) and a6 is a constant depending on l, i.e.,

a6 = logw0 + rT + l

[
λT (α− r1n)− 1

2

(
λTVpV

T
p λ
)
− λTUΘ−1β

]
,

then Equation (3.22) is proved. If one put Propositions 3.1, 3.2 and 3.3 into Equation

(3.22), then Equation (3.23) is proved.

Now that we have derived the equation for the expected log-utility of wealth

E (logwT ), we can calculate optimal estimates of the asset allocation parameters for

the MGMA strategy. In order to achieve this goal, we need to maximize E (logwT )

with respect to asset allocation parameters δ(i1,...,in). Suppose that the investor spe-

cific risk tolerance ε = ε0, then for kth stock, we solve following equation for optimal

104



estimates of δ∗k,(i1,...,in), i.e.,

∂E (logwT )

∂δk,(i1,...,in)

∣∣∣∣
ε=ε0,δk,(i1,...,in)=δ

∗
k,(i1,...,in)

= 0. (3.24)

We also restrict δk,(i1,...,in) ∈ [0, 1], which means there are no-borrowing and no-short-

sale constrains, then the optimal estimates of δ(i1,...,in) are

δ∗(i1,...,in) =


δ∗1,(i1,...,in)

...

δ∗n,(i1,...,in)

 . (3.25)

Notice that the optimal estimates of δ∗(i1,...,in) are functions of the investor specified

risk tolerance ε. The results illustrate that the MGMA is a better investment strat-

egy compared with the MA strategy for multi-asset portfolio because it has higher

expected utility of wealth for the investor.

3.4 An Investment Algorithm for Multi-Asset Portfolio

We propose an investment algorithm for multi-asset portfolio. The algorithm

will be tested on simulation data and real data in sections 3.5 and 3.6 to evaluate

performance of the MGMA strategy. The algorithm contains following steps:

Step 1. Set investment parameters w0, r and T , ε, λ, s and l.

Step 2. Compute model parameters µx, µm, Σx, ∆xm, Σm, σm and Rm.
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Step 3. Compute δ∗(i1,...,in) and E (logwT ).

Step 4. Calculate yt, m
(s)
t , m

(l)
t and m

(s,l)
t .

Step 5. Allocate the wealth among n risky assets and one risk-free asset ac-

cording to δ∗(i1,...,in).

Step 6. The holding risky assets are sold at the end of the investment horizon

T .

3.5 Simulation Studies

We present several numerical examples based on simulated two-asset portfolio and

simulated three-asset portfolio. The investment algorithm is tested and compared

with the MA strategy as benchmark. For two-asset portfolio, the simplified MGMA

strategy for a two-asset portfolio in table 3.2 will be used. The simulation results for

three-asset portfolio are also presented.

3.5.1 Data Generating Process

We propose a data generating process for pt and xt time series. In order to

ensure pt be always positive, we first generate log transformed price yt time series

from Equation (3.13). We then take exponential transformation of yt to calculate the
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price pt time series. In order to ensure correlation matrix between bt and zt be Vbz,

we use Lemma 3.13. We first generate two independent standard Brownian motions.

We then transform them with a symmetric matrix Γ, which is derived from Vbz.

This ensures the transformed time series be multi-dimensional standard Brownian

motion with correlation matrix Vbz. Recall Equation (3.3),

dxt = (β + Θxt) dt+Vxdzt,

then

xt − xt−dt = (β + Θxt) dt+Vxdzt,

which implies

(Iq − dtΘ)xt = xt−dt + dtβ +Vxdzt, (3.26)

we solve above equation for xt given initial x0, where Iq is identity matrix. Recall

Equation (3.13),

d(yt) =

(
α+Uxt −

1

2
γ

)
dt+Vpdbt,

where

γ =


∑n

i=1 (vp1i)
2

...∑n
i=1 (vpni)

2

 ,
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then

yt − yt−dt =

(
α+Uxt −

1

2
γ

)
dt+Vpdbt,

which implies

yt = yt−dt +

(
α+Uxt −

1

2
γ

)
dt+Vpdbt, (3.27)

we solve above equation for yt given initial y0 with calculated xt. The following

pseudo codes describe data generating process.

Step 1. Set parameters n, q, α, β, U, Θ, Vp, Vx, Vbz, x0, y0, T and dt.

Step 2. Calculate number of points, i.e., N = T/dt.

Step 3. Solve symmetric matrix Γ from Vbz. Solve γ from Vp.

Step 4. Simulate independent standard Brownian motions b
(0)
t and z

(0)
t . Each

standard Brownian motion time series contains N + 1 points.

Step 5. Compute standard Brownian motions bt and zt from Γ, b
(0)
t and z

(0)
t .

Step 6. Calculate dzt and dbt.

Step 7. For each time t (from 1 to N), recursively simulate the predictive

variables xt and n log prices yt.

Step 8. Take exponential transformation of yt to get the price pt time series.
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3.5.2 Simulation Results for Two-Asset Portfolio

The simulated two-asset portfolio data is generated using parameters below.

β =

0.0100

0.6542

 , Θ =

−0.253 0

0 0.1438

 , Vx =

0.012 0

0 0.3356

 ,

and

α =

 0.0310

−0.0742

 , λ =

0

0

 , U =

2.0720 0.0150

0.0235 0.0181

 ,

and

Vp =

0.195 0.100

0.100 0.495

 , Vbz =

−0.073 0.0050

0.001 −0.9083

 ,

The simulation runs 1,000 times. Each time series contains 97,500 observed points.

The simulation studies are performed under two scenarios (s = 5 & l = 30 vs.

s = 5 & l = 10). We set initial wealth w0 = 1, 000, 000 and interest rate r = 0.

Under each scenario, we test the MGMA strategy based on ε = 0.005, 0.01 and

0.05 and compare with the MA strategy. The MGMA strategy performance results

are provided in tables 3.4 and 3.5. We first report the theoretical expected log-

utility of wealth E(logWT )∗ based on Equation (3.23) with percentage increase of

the expected log-utility of wealth compared with the MA strategy. We then report

numerical summaries calculate form the simulation results, including the expected

log-utility of wealth E(logWT ), the expected of wealth E(WT ) and the expected
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return on asset ratio E(ROA %) etc.

Table 3.4: MGMA strategy performance summary for scenario 1 on simulated two-

asset portfolio (1000 run; s = 5; l = 30)

MA MGMA(ε = 0.005) MGMA(ε = 0.01) MGMA(ε = 0.05)

a∗1 na 0.03322929 0.03320624 0.033097262

a∗2 na 0.03281636 0.03236742 0.028855955

a∗3 na 1 1 1

a∗4 na 1 1 1

a∗5 na 1 1 1

E(logWT )∗ 13.847667 13.896920 13.905998 13.945960

∆% E(logWT )∗ na 0.36% 0.42% 0.71%

E(logWT ) 13.794745 13.837687 13.845006 13.866623

logE(WT ) 13.829619 13.861375 13.866273 13.886932

E(WT ) 1,014,208 1,046,932 1,052,073 1,074,033

E(ROA %) 1.42% 4.69% 5.21% 7.40%

SD(WT ) 283,524 233,340 223,184 221,949

MAX(WT ) 3,058,106 2,273,877 2,186,479 2,176,345

MIN(WT ) 541,872 510,691 539,512 629,311

MEDIAN(WT ) 959,840 1,010,483 1,017,564 1,050,674

E(TRANS #) 25 68 67 52
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Table 3.5: MGMA strategy performance summary for scenario 2 on simulated two-

asset portfolio (1000 run; s = 5; l = 10)

MA MGMA(ε = 0.005) MGMA(ε = 0.01) MGMA(ε = 0.05)

a∗1 na 0.034401876 0.034369298 0.072961411

a∗2 na 0.033698847 0.032947417 0.113863840

a∗3 na 1 1 1

a∗4 na 1 1 1

a∗5 na 1 1 1

E(logWT )∗ 13.843826 13.916324 13.938047 13.966346

∆% E(logWT )∗ na 0.52% 0.68% 0.89%

E(logWT ) 13.786813 13.847683 13.863594 13.876244

logE(WT ) 13.825506 13.870658 13.885702 13.901359

E(WT ) 1,010,045 1,056,696 1,072,714 1,089,641

E(ROA %) 1.00% 5.67% 7.27% 8.96%

SD(WT ) 298,598 231,436 231,640 250,256

MAX(WT ) 3,633,894 2,354,587 2,202,291 2,467,362

MIN(WT ) 387,856 535,477 543,935 513,012

MEDIAN(WT ) 965,330 1,029,843 1,043,520 1,058,534

E(TRANS #) 56 157 144 68
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Notice that the MGMA strategy for two-asset portfolio not only can increase the

investor’s expected log-utility of wealth, but also increase the investor’s expected

wealth and the expected return on asset ratio from the simulation results. Under

scenario 1, the expected log-utility of wealth increase in range 0.36% to 0.71%. The

expected return ratio increases from benchmark return 1.42% to 4.69%, 5.21% and

7.40% respectively. Under scenario 2, the expected log-utility of wealth increase in

range 0.52% to 0.89%. The expected return ratio increases from benchmark return

1.00% to 5.67%, 7.27% and 8.96% respectively.

3.5.3 Simulation Results for Three-Asset Portfolio

The simulated three-asset portfolio time series data is generated using parameters

below.

β =


0.010

0.065

0.185

 , Θ =


−0.253 0 0

0 −1.1438 0

0 0 −1.89

 , Vx =


0.012 0 0

0 0.3356 0

0 0 0.134

 ,

and

α =


0.0310

−0.0742

−0.0945

 , λ =


0

0

0

 , U =


1.2720 0.0150 1.500

1.0235 1.0181 0.512

0.5000 0.0200 0.145

 ,
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and

Vp =


0.195 0.100 0.200

0.100 0.495 0.345

0.200 0.345 0.271

 , Vbz =


−0.073 0.001 −0.10

0.001 −0.108 0.09

−0.050 0.040 0.10

 ,

The simulation runs 1,000 times. Each time series contains 97,500 observed points

by our settings.

The simulation studies are performed under two scenarios (s = 5 & l = 30 vs.

s = 5 & l = 10). We set initial wealth w0 = 1, 000, 000 and interest rate r = 0.

Under each scenario, we test the MGMA strategy based on ε = 0.001 and 0.0005

and compare with the MA strategy. The MGMA strategy performance results are

provided in tables 3.6 and 3.7. We first report the theoretical expected log-utility of

wealth E(logWT )∗ based on Equation (3.23) and percentage increase of the expected

log-utility of wealth compared with the MA strategy. We then report numerical

summaries calculate from the simulation results, including the expected log-utility

of wealth E(logWT ), the expected of wealth E(WT ) and the expected return on asset

ratio E(ROA %) etc. By using no-borrowing and no-short-sale constrains, we can

reduce the parameters of MGMA strategy for three-asset portfolio from 192 to 37 for

implementation. For easy illustration, we do not report the optimal asset allocation

parameters in simulation summary tables.

Notice that the MGMA strategy for three-asset portfolio not only can increase
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Table 3.6: MGMA strategy performance summary for scenario 1 on simulated three-

asset portfolio (1000 run; s = 5; l = 30)

MA MGMA(ε = 0.001) MGMA(ε = 0.005)

E(logWT )∗ 13.832331 13.911899 13.918328

∆% E(logWT )∗ na 0.58% 0.62%

E(logWT ) 13.785474 13.863884 13.868901

logE(WT ) 13.834971 13.900779 13.904022

E(WT ) 1,019,651 1,089,009 1,092,547

E(ROA %) 1.97% 8.90% 9.25%

SD(WT ) 339,954 308,718 303,463

MAX(WT ) 2,926,612 2,764,480 2,696,956

MIN(WT ) 366,703 421,502 458,013

MEDIAN(WT ) 946,339 1,038,858 1,043,233

E(TRANS #) 36 101 101

the investor’s expected log-utility of wealth, but also increase the investor’s expected

wealth and the expected return on asset ratio from the simulation results. Under

scenario 1, the expected log-utility of wealth increase in range 0.58% to 0.62%. The

expected return ratio increases from benchmark return 1.97% to 8.90% and 9.25%
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Table 3.7: MGMA strategy performance summary for scenario 2 on simulated three-

asset portfolio (1000 run; s = 5; l = 10)

MA MGMA(ε = 0.001) MGMA(ε = 0.005)

E(logWT )∗ 13.823737 13.914620 13.934576

∆% E(logWT )∗ na 0.66% 0.80%

E(logWT ) 13.771318 13.857019 13.875335

logE(WT ) 13.827102 13.894495 13.909474

E(WT ) 1,011,659 1,082,187 1,098,520

E(ROA %) 1.17% 8.22% 9.85%

SD(WT ) 356,262 307,575 297,192

MAX(WT ) 3,360,435 2,643,002 2,794,930

MIN(WT ) 419,986 479,525 504,198

MEDIAN(WT ) 937,137 1,025,448 1,053,388

E(TRANS #) 82 240 237

respectively. Under scenario 2, the expected log-utility of wealth increase in range

0.66% to 0.80%. The expected return ratio increases from benchmark return 1.17%

to 8.22% and 9.85% respectively.
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3.6 Real Data Applications

We present several real data analysis based on high-frequency exchange traded

fund (ETF) data. The investment algorithm is tested and compared with the bench-

mark. The simplified MGMA strategy for a two-asset portfolio in table 3.2 will be

used. The MA strategy for a two-asset portfolio in table 3.3 as benchmark strategy.

We use PowerShares QQQ Trust Series 1 (QQQ) and SPDR S&P 500 ETF Trust

(SPY). These are exchange-traded funds incorporated in the USA. QQQ ETF tracks

performance of the Nasdaq 100 Index. It holds large cap U.S. stocks and tends to

focus on technology and consumer sector. The holdings are weighted by market

capitalization. As of October 6, 2017, there are 107 holding companies. The top 3

holding companies are Apple Inc (AAPL, 11.57%), Microsoft Corp (MSFT, 8.44%)

and Amazon.com Inc (AMZN, 6.86%). SPY ETF tracks the S&P 500 Index. The

Trust consists of a portfolio representing all 500 stocks in the S&P 500 Index. It

holds predominantly large-cap U.S. stocks. It is structured as a Unit Investment

Trust and pays dividends on a quarterly basis. The holdings are weighted by market

capitalization. As of October 6, 2017, the top 3 holding companies are Apple Inc

(AAPL, 3.67%), Microsoft Corp (MSFT, 2.68%) and Facebook Inc. Class A (FB,

1.87%).
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3.6.1 An Algorithm to Estimate Model Parameters

In order to use the investment algorithm for multi-asset portfolio on real data, we

need to estimate model parameters α, β, U, Θ, Vp, Vx and Vbz. There is no such

algorithm in literature due to complex model settings. We propose an algorithm

to fill the gap. Without loss generality, we describe the algorithm by using general

model for two-asset portfolio. Based on Equation (3.2),

dp1t

p1t

= (α1 + u11x1t + u12x2t) dt+ ep1t,

dp2t

p2t

= (α2 + u21x1t + u22x2t) dt+ ep2t, (3.28)

and Equation (3.3),

dx1t = (β1 + θ11x1t + θ12x2t) dt+ ex1t,

dx2t = (β2 + θ21x1t + θ22x2t) dt+ ex2t, (3.29)

where

ept =

ep1t
ep2t

 =

vp11db1t + vp12db2t

vp21db1t + vp22db2t

 = Vpdbt ∼ MN


0

0

, dtVpV
T
p

 , (3.30)

and

ext =

ex1t
ex2t

 =

vx11dz1t + vx12dz2t

vx21dz1t + vx22dz2t

 = Vxdzt ∼ MN


0

0

, dtVxV
T
x

 . (3.31)
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Let dtVpV
T
p , Σep , then it is easy to check the log-likelihood function for ept is

l (Σep | ept ) = −T
2

log |Σep | −
1

2

T∑
t=1

{
(ept )

T Σ−1
ep e

p
t

}
− T log(2π), (3.32)

and let dtVxV
T
x , Σex =

v1 0

0 v2

, then the log-likelihood function for ext is

l (Σex | ext ) = −T
2

log |Σex| −
1

2

T∑
t=1

{
(ext )

T Σ−1
ex e

x
t

}
− T log(2π)

= −T
2

log (v1v2)− 1

2

T∑
t=1

{
(ex1t)

2

v1

+
(ex2t)

2

v2

}
− T log(2π).

(3.33)

Let Cov(dbt, dzt) , Σbz, it is also easy to verify that

Σbz = dtVbz. (3.34)

Then, the algorithm contains following steps:

Step 1. Given a dt, calculate dp1t, dp2t, dx1t and dx2t (for t > 1) based on the

historical time series.

Step 2. Use least square estimation method to estimate parameters α̂1, α̂2, û11,

û12, û21 and û22 by minimizing

2∑
i=1

T∑
t=2

[
dpit
pit
− (αi + ui1x1t + ui2x2t) dt

]2

.
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Step 3. Let Θ = diag (θ11, θ22), use least square estimation method to estimate

parameters β̂1, β̂2, θ̂11 and θ̂22 by minimizing

2∑
i=1

T∑
t=2

[dxit − (βi + θi1x1t + θi2x2t) dt]
2 .

Step 4. Calculate êpt and êxt from p1t, p2t, x1t and x2t, α̂1, α̂2, û11, û12, û21, û22,

β̂1, β̂2, θ̂11, θ̂12, θ̂21 and θ̂22.

Step 5. Use maximize likelihood estimation method and set

∂l (Σep | êpt )
∂Σep

= 0,

to estimate Σ̂ep from êpt . Since V̂p =
(

1
dt

Σ̂ep

) 1
2
, we can estimate parameters

v̂p11, v̂p12, v̂p21 and v̂p22.

Step 6. Use maximize likelihood estimation method and set

∂l (Σex | êxt )
∂Σex

= 0,

to estimate Σ̂ex , v̂
x
11, v̂x12, v̂x21 and v̂x22 from êxt .

Step 7. Calculate db̂t and dẑt from V̂p, V̂x, ê
p
t and êxt .

Step 8. Calculate Σ̂bz from db̂t and dẑt. Then the estimated parameter is

V̂bz = 1
dt

Σ̂bz.
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3.6.2 Case 1: MGMA Strategy on High-Frequency Exchange Traded

Fund with Observed Predictive Variables

We collect daily second-level QQQ ETF, SPY ETF, MSFT and AAPL price

time series for this study. The QQQ ETF price time series and SPY ETF price time

series are used as the vector based ETF price pt. The MSFT and AAPL stock price

time series are used as the vector predictive variable xt. The collection period is

daily trading time from 9:30 am to 4:00 pm (Eastern Time) to ensure high liquid

market. We divide QQQ ETF and SPY ETF time series into two data: vector based

ETF price pt training data (9:30 am to 3:00 pm, which contains 19,800 seconds)

and vector based ETF price pt test data (3:00 pm to 4:00 pm, which contains 3,601

seconds). We use the MSFT and AAPL price time series as vector based predictive

variable xt training data (9:30 am to 3:00 pm, which contains 19,800 seconds). We

set initial wealth w0 = 10, 000 and interest rate r = 0. Suppose that the investor’s

risk tolerance is 0.000001. We restrict a1, a2, a3, a4 and a5 in [0, 1], s in 5, 10 and l in

30, 60, 90, 120, 180, 240. We use training data to choose model parameters with the

highest return. We first report the MGMA strategy performance summary for QQQ

ETF and SPY ETF on training data, then we report the MGMA strategy evaluation

summary for QQQ ETF and SPY ETF on test data. Our study spans five days from

10/2/2017 to 10/6/2017.
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Let us use 10/2/2017 as an example first, then we will report all results for 5

days. Second-level QQQ ETF and SPY ETF price time series on day 1 (10/02/2017)

are provided in figure 3.1. The MGMA strategy performance summary for QQQ

ETF and SPY ETF on day 1 (10/02/2017) training data is provided in table 3.8.

The MGMA strategy evaluation summary for QQQ ETF and SPY ETF on day 1

(10/02/2017) test data is provided in table 3.9.

Notice that (1) The MGMA strategy can increase daily return ratio from 0.09498%

to 0.24542% on training data, which equals to increase annual return ratio by 46.1%;

(2) The MGMA strategy can increase daily return ratio from 0.06668% to 0.08534%

on test data, which equals to increase annual return ratio by 4.8%.

We repeat this study for four more days (10/03/2017 to 10/06/2017). The

MGMA strategy performance summary for QQQ ETF and SPY ETF on day 2

(10/03/2017) to day 5 (10/06/2017) training data is provided in table 3.10. The MG-

MA strategy evaluation summary for QQQ ETF and SPY ETF on day 2 (10/03/2017)

to day 5 (10/06/2017) test data is provided in table 3.11.

The MGMA strategy performance summary for QQQ ETF and SPY ETF on

day 1 (10/02/2017) to day 5 (10/06/2017) training data is provided in figure 3.2.

The MGMA strategy evaluation summary for QQQ ETF and SPY ETF on day 1

(10/02/2017) to day 5 (10/06/2017) test data is provided in figure 3.3.
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Figure 3.1: Case 1: Second-level QQQ ETF and SPY ETF prices time series on

day 1 (10/02/2017)
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Table 3.8: Case 1: MGMA strategy performance summary for QQQ ETF and SPY

ETF on day 1 (10/02/2017) training data

training data day 10/2/2017

time 9 : 30 am− 3 : 00 pm

T 19, 800 seconds

dt 1 second

tuned parameters s 10

l 180

a∗1 0.3287

a∗2 0.9611

a∗3 0.0352

a∗4 0.7160

a∗5 1

backward MA E(WT ) 10,009.49768

return ratio (%) 0.09498%

trans num 504

backward MGMA E(WT ) 10,024.54175

return ratio (%) 0.24542%

trans num 655
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Table 3.9: Case 1: MGMA strategy evaluation summary for QQQ ETF and SPY

ETF on day 1 (10/02/2017) test data

test data day 10/2/2017

time 3 : 00 pm− 4 : 00 pm

T 3, 601 seconds

dt 1 second

tuned parameters s 10

l 180

a∗1 0.3287

a∗2 0.9611

a∗3 0.0352

a∗4 0.7160

a∗5 1

forward MA E(WT ) 10,006.66819

return ratio (%) 0.06668%

trans num 67

forward MGMA E(WT ) 10,008.53428

return ratio (%) 0.08534%

trans num 82
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Table 3.10: Case 1: MGMA strategy performance summary for QQQ ETF and SPY

ETF on day 2 (10/03/2017) to day 5 (10/06/2017) training data

training data day 10/03/2017 10/04/2017 10/05/2017 10/06/2017

time 9 : 30 am− 3 : 00 pm 9 : 30 am− 3 : 00 pm 9 : 30 am− 3 : 00 pm 9 : 30 am− 3 : 00 pm

T 19, 800 seconds 19, 800 seconds 19, 800 seconds 19, 800 seconds

dt 1 second 1 second 1 second 1 second

tuned parameters s 10 10 10 10

l 60 240 180 120

a∗1 0.1250 0.0742 0.0737 0.8537

a∗2 0.2346 0.7111 0 0.2780

a∗3 0 0 1 0

a∗4 0 0 1 0

a∗5 1 1 1 1

backward MA E(WT ) 9,955.07379 10,001.35849 10,002.15772 9,997.54490

return ratio (%) -0.44926% 0.01358% 0.02158% -0.02455%

trans num 1,117 421 535 589

backward MGMA E(WT ) 9,974.19921 10,010.97889 10,015.65524 10,016.17125

return ratio (%) -0.25801% 0.10979% 0.15655% 0.16171%

trans num 1,557 534 708 794

Notice that the MGMA strategy in general can outperform the MA strategy for

both backward investment on training data and forward investment on test data.
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Table 3.11: Case 1: MGMA strategy evaluation summary for QQQ ETF and SPY

ETF on day 2 (10/03/2017) to day 5 (10/06/2017) test data

test data day 10/03/2017 10/04/2017 10/05/2017 10/06/2017

time 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm

T 3, 601 seconds 3, 601 seconds 3, 601 seconds 3, 601 seconds

dt 1 second 1 second 1 second 1 second

tuned parameters s 10 10 10 10

l 60 240 180 120

a∗1 0.1250 0.0742 0.0737 0.8537

a∗2 0.2346 0.7111 0 0.2780

a∗3 0 0 1 0

a∗4 0 0 1 0

a∗5 1 1 1 1

forward MA E(WT ) 9,990.21402 9,998.84086 10,003.58666 10,001.47801

return ratio (%) -0.09786% -0.01159% 0.03587% 0.01478%

trans num 210 85 92 111

forward MGMA E(WT ) 9,991.06108 10,000.43623 10,008.31762 9,999.77159

return ratio (%) -0.08939% 0.00436% 0.08318% -0.00228%

trans num 318 127 120 141

3.6.3 Case 2: MGMA Strategy on High-Frequency Exchange Traded

Fund without Observed Predictive Variables

We collect daily second-level QQQ ETF and SPY ETF price time series for this

study. The collection period is daily trading time from 9:30 am to 4:00 pm (Eastern

Time) to ensure high liquid market. We divide QQQ ETF and SPY ETF time
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Figure 3.2: Case 1: MGMA strategy performance summary plot for QQQ ETF

and SPY ETF on day 1 (10/02/2017) to day 5 (10/06/2017) training data
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Figure 3.3: Case 1: MGMA strategy evaluation summary plot for QQQ ETF

and SPY ETF on day 1 (10/02/2017) to day 5 (10/06/2017) test data
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series into three data: vector based predictive variable xt training data (9:30 am

to 12:15 pm, which contains 9,900 seconds), vector based ETF price pt training

data (12:15 pm to 3:00 pm, which contains 9,900 seconds) and vector based ETF

price pt test data (3:00 pm to 4:00 pm, which contains 3,601 seconds). We set

initial wealth w0 = 10, 000 and interest rate r = 0. Suppose that the investor’s risk

tolerance is 0.000001. We restrict a1, a2, a3, a4 and a5 in [0, 1], s in 5, 10 and l in

30, 60, 90, 120, 180, 240. We use training data to choose model parameters with the

highest return. We first report the MGMA strategy performance summary for QQQ

ETF and SPY ETF on training data, then we report the MGMA strategy evaluation

summary for QQQ ETF and SPY ETF on test data. Our study spans five days from

10/2/2017 to 10/6/2017.

Let us use 10/2/2017 as an example first, then we will report all results for 5

days. Second-level QQQ ETF and SPY ETF price time series on day 1 (10/02/2017)

is provided in figure 3.4. The MGMA strategy performance summary for QQQ

ETF and SPY ETF on day 1 (10/02/2017) training data is provided in table 3.12.

The MGMA strategy evaluation summary for QQQ ETF and SPY ETF on day 1

(10/02/2017) test data is provided in table 3.13.

Notice that (1) The MGMA strategy can increase daily return ratio from 0.12898%

to 0.34159% on training data, which equals to increase annual return ratio by 70.8%;
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Figure 3.4: Case 2: Second-level QQQ ETF and SPY ETF prices time series on

day 1 (10/02/2017)
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Table 3.12: Case 2: MGMA strategy performance summary for QQQ ETF and SPY

ETF on day 1 (10/02/2017) training data

training data day 10/2/2017

time 12 : 15 pm− 3 : 00 pm

T 9, 900 seconds

dt 1 second

tuned parameters s 10

l 180

a∗1 0.9550

a∗2 0.1178

a∗3 0.9603

a∗4 0.6566

a∗5 1

backward MA E(WT ) 10,012.89790

return ratio (%) 0.12898%

trans num 253

backward MGMA E(WT ) 10,034.15884

return ratio (%) 0.34159%

trans num 354

(2) The MGMA strategy can increase daily return ratio from 0.06668% to 0.07846%

on test data, which equals to increase annual return ratio by 3.0%.

We repeat this study for four more days (10/03/2017 to 10/06/2017). The
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Table 3.13: Case 2: MGMA strategy evaluation summary for QQQ ETF and SPY

ETF on day 1 (10/02/2017) test data

test data day 10/2/2017

time 3 : 00 pm− 4 : 00 pm

T 3, 601 seconds

dt 1 second

tuned parameters s 10

l 180

a∗1 0.9550

a∗2 0.1178

a∗3 0.9603

a∗4 0.6566

a∗5 1

forward MA E(WT ) 10,006.66819

return ratio (%) 0.06668%

trans num 67

forward MGMA E(WT ) 10,007.84608

return ratio (%) 0.07846%

trans num 82

MGMA strategy performance summary for QQQ ETF and SPY ETF on day 2

(10/03/2017) to day 5 (10/06/2017) training data is provided in table 3.14. The MG-

MA strategy evaluation summary for QQQ ETF and SPY ETF on day 2 (10/03/2017)
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to day 5 (10/06/2017) test data is provided in table 3.15.

Table 3.14: Case 2: MGMA strategy performance summary for QQQ ETF and SPY

ETF on day 2 (10/03/2017) to day 5 (10/06/2017) training data

training data day 10/03/2017 10/04/2017 10/05/2017 10/06/2017

time 12 : 15 pm− 3 : 00 pm 12 : 15 pm− 3 : 00 pm 12 : 15 pm− 3 : 00 pm 12 : 15 pm− 3 : 00 pm

T 9, 900 seconds 9, 900 seconds 9, 900 seconds 9, 900 seconds

dt 1 second 1 second 1 second 1 second

tuned parameters s 10 10 10 10

l 240 180 30 240

a∗1 0.8019 0.4776 0.4748 0.8657

a∗2 0.0606 0.2472 0.2444 0.1369

a∗3 0.1330 0.0768 0.3815 0

a∗4 0.2808 0.6948 1 0

a∗5 0 1 1 1

backward MA E(WT ) 9,973.93692 9,993.24879 9,967.95729 9,994.78793

return ratio (%) -0.26063% -0.06751% -0.32043% -0.05212%

trans num 291 224 842 225

backward MGMA E(WT ) 9,980.20191 9,998.79192 9,987.20274 10,000.99791

return ratio (%) -0.19798% -0.01208% -0.12797% 0.00998%

trans num 406 290 1,227 280

The MGMA strategy performance summary for QQQ ETF and SPY ETF on

day 1 (10/02/2017) to day 5 (10/06/2017) training data is provided in figure 3.5.

The MGMA strategy evaluation summary for QQQ ETF and SPY ETF on day 1

(10/02/2017) to day 5 (10/06/2017) test data is provided in figure 3.6. Notice that

the MGMA strategy in general can outperform the MA strategy for both backward
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Table 3.15: Case 2: MGMA strategy evaluation summary for QQQ ETF and SPY

ETF on day 2 (10/03/2017) to day 5 (10/06/2017) test data

test data day 10/03/2017 10/04/2017 10/05/2017 10/06/2017

time 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm 3 : 00 pm− 4 : 00 pm

T 3, 601 seconds 3, 601 seconds 3, 601 seconds 3, 601 seconds

dt 1 second 1 second 1 second 1 second

tuned parameters s 10 10 10 10

l 240 180 30 240

a∗1 0.8019 0.4776 0.4748 0.8657

a∗2 0.0606 0.2472 0.2444 0.1369

a∗3 0.1330 0.0768 0.3815 0

a∗4 0.2808 0.6948 1 0

a∗5 0 1 1 1

forward MA E(WT ) 10,004.41162 9,996.02456 9,998.02785 10,003.14985

return ratio (%) 0.04412% -0.03975% -0.01972% 0.03150%

trans num 62 94 308 86

forward MGMA E(WT ) 10,004.72732 9,998.96704 10,000.42527 10,002.81663

return ratio (%) 0.04727% -0.01033% 0.00425% 0.02817%

trans num 76 139 472 110

investment on training data and forward investment on test data. It is expected that

case 2 study shows under-performance compared with case 1 study because case 1

study involves additional information from Microsoft and Apple time series.
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Figure 3.5: Case 2: MGMA strategy performance summary plot for QQQ ETF

and SPY ETF on day 1 (10/02/2017) to day 5 (10/06/2017) training data
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Figure 3.6: Case 2: MGMA strategy evaluation summary plot for QQQ ETF

and SPY ETF on day 1 (10/02/2017) to day 5 (10/06/2017) test data
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3.7 Conclusion

Base on the simulation studies and real data analysis, we observe followings:

(1) The MGMA strategy can provide more investment options with the investor’s

risk tolerance, which can overcome the well-known drawback from the MA strategy;

(2) The MGMA strategy can increase the investor’s expected log-utility of wealth

compared with the MA strategy; (3) The MGMA strategy is also able to increase

the investor’s expected wealth compared with the MA strategy.
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4 Generalized Regime-Switching Model with its

Application

In this chapter, we study statistical modeling with its application to capture the

financial market behavior. The SGMA and MGMA strategies involve the risk tol-

erance specified by investor. Intuitively, an investor should take more risk in the

upward market than in the downward market. This motivates us to study the move-

ments of stocks or equity indices. The Markov regime-switching model is widely

used for this type analysis. Notice that model parameters estimated under normal-

ity assumption might not be stable and the corresponding change-point detection

algorithm introduced by Guo et al. (2011) might face some challenges when either

the empirical distribution is heavy-tailed or observed data contain outliers. We relax

the normality assumption and propose a generalized regime-switching (generalized

RS) model. We assume error terms follow a general class of density functions. The

generalized RS model can improve the stability of model parameter estimation and
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the corresponding change-point detection algorithm for financial time series. We

adopt four assumptions for the algorithm: (1) The stock market always moves from

a period of rising stock prices (bull phase) to a period of declining stock prices (bear

phase) or vise versa. (2) No matter what phase the market is in, stock or index price

always fluctuates and can be described by two regimes. For example, a lower-return

regime and higher-return regime. (3) The time series may be non-stationary but it is

locally stationary. (4) There is a relatively long grace period after the market moves

into a new phase.

Chapter 4 is organized as follows. Section 4.1 introduces the generalized RS model

and its likelihood function. Simulation studies in section 4.1.2 demonstrate that the

generalized RS model can improve the stability of model parameter estimation. In

section 4.2, a change-point detection algorithm using the generalized RS model is

provided. Simulation studies are conducted in section 4.3 to evaluate the performance

of the algorithm. In section 4.4, we apply the change-point detection algorithm to

Hang Seng monthly index data and test the performance. The conclusion is presented

in section 4.5.
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4.1 The generalized RS Model with its Likelihood Function

4.1.1 The Methodology

Let Pt be the price of a stock or an equity index at a particular month t. The

log-return of the (t + 1)th month is denoted by Yt = ω log(Pt+1/Pt), where ω is

a suitable constant. For example, ω = 100. Under a generalized Markov regime-

switching (generalized RS) model, the monthly log-return Yt is assumed to be in one

of K different regimes or states {rt} at any given time t, where rt = 1, 2, . . . , K.

Assume that {Yt} satisfies the following Markov state process, i.e.,

Yt = µrt + σrtet, (4.1)

where µr and σ2
r are mean and variance of Yt when it stays in regime rt, and et

are independent and identically distributed (I.I.D.) error terms with density g. We

will discuss a general class of density functions for g later. The model in Equation

(4.1) shows that {Yt} are serially uncorrelated series given the regime at time t. For

demonstration purposes, we consider a two-regime generalized RS model, i.e., rt = 1

or 2 as K = 2. Let {µ1, σ1} and {µ2, σ2} be expected log-returns and corresponding

volatilities of two different regimes, respectively. Let P be a transition matrix for

the two-regime generalized RS model as it follows a stationary Markov process. The
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element pij of P is a transition probability from regime i to regime j, i.e.,

pij = P [rt = j | rt−1 = i] , (4.2)

where i = 1, 2 and j = 1, 2. Define regime 1 as the low-return state and regime 2

as the high-return state, then µ1 < µ2. Thus, there are 6 parameters to determine

a two-regime generalized RS model, i.e., Θ = {µ1, µ2, σ1, σ2, p11, p22}. In addition, a

stationary distribution π =

(
π1, π2

)
of the two regimes can be defined as

π · P = π, (4.3)

which implies that

π1 = p21/(p21 + p12) & π2 = p12/(p21 + p12). (4.4)

It means that the process lies in regime i with probability πi, i = 1, 2, with π1+π2 = 1

at any time when no historical information is available.

We use maximum likelihood estimation (MLE) method to estimate model pa-

rameters. For a two-regime generalized RS model in Equation (4.1), we have the

set of parameters Θ = {µ1, µ2, σ1, σ2, p11, p22}. Let It = {y1, . . . , yt} represent the

information available through time t and I0 = ∅. The likelihood function based on

y = (y1, . . . , yT ) is then given as follows:

L (Θ | y1, . . . , yT ) =
T∏
t=1

f (yt | It−1,Θ) , (4.5)
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then the maximum likelihood estimate of Θ is the value Θ̂ that maximizes L (Θ | y1, . . . , yT ),

i.e.,

Θ̂ = arg max
Θ

L (Θ | y1, . . . , yT ) = arg max
Θ

T∏
t=1

f (yt | It−1,Θ) . (4.6)

For a given It−1, f (yt | It−1,Θ) is the sum of f (rt, yt | It−1,Θ) over all possible values

of rt given by:

f (yt | It−1,Θ) =
2∑

rt=1

f(rt, yt | It−1,Θ). (4.7)

We apply the Hamilton filter (Hamilton, 1989) to estimate model parameters and

compute filtered probabilities at each regime. To be more specific, for t > 1, the

filter can be recursively calculated as below:

f (rt, yt | It−1,Θ) = f (yt | rt,Θ)
2∑
i=1

P (rt | rt−1 = i,Θ)P (rt−1 = i | It−1,Θ) , (4.8)

where P (rt−1 | It−1,Θ) is the filtered probability recursively updated as below:

P (rt−1 | It−1,Θ) =
f (rt−1, yt−1 | It−2,Θ)

f (yt−1 | It−2,Θ)
, (4.9)

and for t ≤ 1,

P (rt = i | Θ) = πi, i = 1, 2. (4.10)

We now discuss the functional form of f (yt | rt,Θ) in Equation (4.8). Guo et al.

(2011) assume that f (yt | rt,Θ) is the density function for a Normal distribution

because et for any time t is assumed to follow a Normal distributionN(0, 1). However,
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parameters estimated under normality assumption might not be stable when either

the empirical distribution is heavy-tailed or observed data contain outliers. To rectify

this problem and improve the stability of model parameter estimation, we assume

error terms et follow a general class of density functions g. In sprit of M-estimation,

suppose

g(x) =
1

c
e−ρ(x), (4.11)

where ρ(x) is a M-estimation ρ-function and c is a normalizing constant satisfying

c =

∫
e−ρ(x) dx. (4.12)

Then f (yt | rt,Θ) is the density function given by

f (yt | rt,Θ) =
1

σrt
g

(
yt − µrt
σrt

)
=

1

c σrt
e
−ρ

(
yt−µrt
σrt

)
. (4.13)

If one put Equations (4.7)-(4.13) into Equation (4.6), the maximum likelihood esti-

mator Θ̂ of the two-regime generalized RS model can be re-written as

Θ̂ = arg max
Θ

T∏
t=1

{
2∑
j=1

1

c σj
e
−ρ

(
yt−µj
σj

)
2∑
i=1

PijP (rt−1 = i | It−1,Θ)

}
. (4.14)

Given that logarithm is an increasing function, we can take log transformation and

Equation (4.14) can be re-written as

Θ̂ = arg min
Θ

T∑
t=1

− log

{
2∑
j=1

1

c σj
e
−ρ

(
yt−µj
σj

)
2∑
i=1

PijP (rt−1 = i | It−1,Θ)

}
. (4.15)

141



We then use a numeric optimization method to compute the maximum likelihood

estimator Θ̂ of the two-regime generalized RS model by recursively computing the

filtered probability P (rt−1 | It−1,Θ). However, this is computational intensive. In-

stead, we derive an explicit form without using filtered probability. The justification

of the explicit form is presented as below:

Θ̂ = arg max
Θ

{
π

(
T∏
t=1

PGt (yt)

)
1

}
, (4.16)

where

π =

(
π1, π2

)
, P =

p11 p12

p21 p22

 , 1 =

1

1

 ,

and

Gt (yt) =

f (yt | rt = 1,Θ) 0

0 f (yt | rt = 2,Θ)

 =

 1
c σ1

e
−ρ

(
yt−µ1
σ1

)
0

0 1
c σ2

e
−ρ

(
yt−µ2
σ2

)
 .
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Let Ft,j = f (rt = j, yt | It−1,Θ) where j = 1, 2. Then

Ft,j = f (rt = j, yt | It−1,Θ) = f (yt | rt = j,Θ)P (rt = j | It−1,Θ)

= f (yt | rt = j,Θ)
2∑
i=1

P (rt = j | rt−1 = i,Θ)P (rt−1 = i | It−1,Θ)

= f (yt | rt = j,Θ)
2∑
i=1

pijP (rt−1 = i | It−1,Θ)

= f (yt | rt = j,Θ)
2∑
i=1

pij
f (rt−1 = i, yt−1 | It−2,Θ)

f (yt−1 | It−2,Θ)

= f (yt | rt = j,Θ)

∑2
i=1 pijf (rt−1 = i, yt−1 | It−2,Θ)∑2
k=1 f (rt−1 = k, yt−1 | It−2,Θ)

= f (yt | rt = j,Θ)

∑2
i=1 pijFt−1,i∑2
k=1 Ft−1,k

,

where

F1,j = f (r1 = j, y1 | Θ) = f (y1 | r1 = j,Θ)P (r1 = j | Θ) = f (y1 | ri = j) πj.

Let

Ft =

(
Ft,1, Ft,2

)
, 1 =

1

1

 ,

which implies

f (yt−1 | It−2,Θ) =
2∑

k=1

Ft−1,k = Ft−11.

We obtain

Ft,j = f (yt | rt = j,Θ)

∑2
i=1 pijFt−1,i

Ft−11
,
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then

Ft =

(
Ft,1, Ft,2

)
=

(
f (yt | rt = 1,Θ)

∑2
i=1 pi1Ft−1,i

Ft−11
, f (yt | rt = 2,Θ)

∑2
i=1 pi2Ft−1,i

Ft−11

)
=

1

Ft−11

( 2∑
i=1

pi1Ft−1,if (yt | rt = 1,Θ) ,
2∑
i=1

pi2Ft−1,if (yt | rt = 2,Θ)

)

=
1

Ft−11

( 2∑
i=1

pi1Ft−1,i,
2∑
i=1

pi2Ft−1,i

)f (yt | rt = 1,Θ) 0

0 f (yt | rt = 2,Θ)



=
1

Ft−11

(
Ft−1,1, Ft−1,2

)p11 p12

p21 p22


f (yt | rt = 1,Θ) 0

0 f (yt | rt = 2,Θ)


=
Ft−1PGt (yt)

Ft−11
,

where

P =

p11 p12

p21 p22

 , Gt (yt) =

f (yt | rt = 1,Θ) 0

0 f (yt | rt = 2,Θ)

 ,

and

F1 =

(
F1,1, F1,2

)
=

(
f (y1 | ri = 1)π1 f (y1 | ri = 2)π2

)
= πPG1 (y1) ,

with

π =

(
π1, π2

)
,

which implies

Ft =
π
(∏T

t=1PGt (yt)
)

∏T−1
t=1 (Ft1)

.
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Therefore

Θ̂ = arg max
Θ

T∏
t=1

f (yt | It−1,Θ) = arg max
Θ

T∏
t=1

(Ft1) = arg max
Θ

{
π

(
T∏
t=1

PGt (yt)

)
1

}
.

Recall that Guo et al. (2011) use maximum likelihood estimation (MLE) with Normal

distribution, it can be seen that the maximum likelihood estimator Θ̂ in Guo et al.

(2011) is a special case of Equation (4.14). In rest of this chapter, we use Huber’s

ρ-function (ρh), which is defined by

ρh(x) =


x2, if |x| ≤ k,

2k|x| − k2, if |x| > k.

(4.17)

where k = 1.345. This is equivalent to use Huber’s least favorable distribution for

f (yt | rt,Θ). In next subsection, we conduct simulation studies to investigate the

performance of maximum likelihood estimation (MLE) using Huber’s least favorable

distribution.

4.1.2 Simulation Study

We perform three different simulation studies. Each simulation runs 1,000 times.

The mean of estimated parameters is summarized. The simulated time series data

are generated using parameters µ1 = −1, µ2 = 0.5, σ1 = 3, σ2 = 1, p11 = 0.95 and

p22 = 0.95 for 20-year period. Data generating process (DGP) is described in section

(4.3.1). The details are given below:
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• Study 1: Maximum likelihood estimator Θ̂ for a regime-switching normal time

series without outliers. Table 4.1 displays that the maximum likelihood es-

timator Θ̂ in Guo et al. (2011) by using Normal distribution and maximum

likelihood estimator Θ̂ in our method by using Huber’s least favorable distri-

bution are similar and closed to true values of the parameters.

Table 4.1: Regime-switching normal time series without outliers

Θ Θ̂ MLE with Normal distribution

MLE with Huber’s least

favorable distribution

-1 µ̂1 -1.0131 -1.0538

0.5 µ̂2 0.5020 0.5098

3 σ̂1 2.9787 2.5838

1 σ̂2 0.9920 0.8920

0.95 p̂11 0.9269 0.9316

0.95 p̂22 0.9548 0.9581

0.50 π̂1 0.3863 0.3836

0.50 π̂2 0.6137 0.6164

• Study 2: Maximum likelihood estimators Θ̂ for a regime-switching normal time

series with one random outlier. Table 4.2 displays that the maximum likelihood

estimator Θ̂ in Guo et al. (2011) by using Normal distribution is impacted by

outliers, while the maximum likelihood estimator Θ̂ in our method by using
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Huber’s least favorable distribution is stable and closed to true values of the

parameters.

Table 4.2: Regime-switching normal time series with one random outlier

Θ Θ̂ MLE with Normal distribution

MLE with Huber’s least

favorable distribution

-1 µ̂1 -2.0452 -1.2233

0.5 µ̂2 0.8623 0.5002

3 σ̂1 9.8801 3.4536

1 σ̂2 4.4043 1.1053

0.95 p̂11 0.7331 0.9159

0.95 p̂22 0.9525 0.9529

0.50 π̂1 0.3049 0.3852

0.50 π̂2 0.6951 0.6148

• Study 3: Maximum likelihood estimator Θ̂ for a regime-switching heavy-tailed

(T-3) time series. Table 4.3 displays that the maximum likelihood estimator Θ̂

in our method by using Huber’s least favorable distribution is still stable and

closed to true values of the parameters.

The simulation studies demonstrate that maximum likelihood estimator Θ̂ in

our method by using Huber’s least favorable distribution is stable when either the

empirical distribution is heavy-tailed or observed data contain outliers.
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Table 4.3: Regime-switching heavy-tailed (T-3) time series

Θ Θ̂ MLE with Normal distribution

MLE with Huber’s least

favorable distribution

-1 µ̂1 -1.2807 -1.0595

0.5 µ̂2 0.4469 0.4789

3 σ̂1 5.6937 3.8169

1 σ̂2 2.1418 1.2104

0.95 p̂11 0.7352 0.8825

0.95 p̂22 0.8953 0.9326

0.50 π̂1 0.3415 0.3830

0.50 π̂2 0.6585 0.6170

4.2 Change-Point Detection Algorithm

Guo et al. (2011) define change-points as the time points that segment a time

series if data in two neighboring segments are modeled by the same model with d-

ifferent parameters or different models. They also propose a change-point detection

algorithm to identify the change-points. Let Θ̂T be the maximum likelihood estimate

of Θ based on a sample indexed from 1 to T . Θ̂T+1 is expected to be different with

Θ̂T if yT+1 is from a different market phase. Therefore, a significant change in state-

dependent parameters would indicate a change-point in the time series. Guo et al.
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(2011) use a two-regime Markov regime-switching log-normal (RSLN) model to fit

state-dependent parameters of the time series. However, their approach faces some

challenges when either the empirical distribution is heavy-trailed or observed data

contain outliers. To rectify this problem and improve the change-point detection

algorithm, we use a two-regime generalized RS model to fit state-dependent param-

eters of the time series. The main difference is that state-dependent parameters of

the index data are estimated by maximum likelihood estimation (MLE) with Huber’s

least favorable distribution not with Normal distribution. The parameter of regime

1, i.e., µ1π1, is still used to identify possible change-points as model parameter esti-

mation for regime 1 changes more dramatically than those for regime 2. We claim

there is a change-point if the changes in parameter estimates are significant.

We provide detailed description of the change-point detection algorithm using

the generalized RS model. Suppose we have a time series {y1, . . . , yn}, where n is

the length of the time series. Assume k-th (1 < k < n) change occurs at time tk,

which means ytk is the k-th change point of the entire series. We use MLE with

Huber’s least favorable distribution to estimate state-dependent parameters based

on {ytk , . . . , ymin{tk+c−1,n}}, where c is a pre-defined constant according to the nature

of data. By using the numerical values of estimated state-dependent parameters,

we simulate a regime-switching process {ỹk1 , . . . , ỹkc}. We combine {ỹk1 , . . . , ỹkc}
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with {ytk , . . . , yn} to generate a new series {ỹk1 , . . . , ỹkc , ytk , . . . , yn}, denoted as

{y∗tk−c, . . . , y
∗
n}. For each time j ≥ 1, we can calculate estimated µ̂

(j)
1 π̂

(j)
1 , denot-

ed as τ̂j, respectively, using MLE with Huber’s least favorable distribution on series

{y∗tk−c, . . . , y
∗
tk+j−1}. If τ̂j is the first estimation with significant change compared to

its previous ones τ̂1, . . . , τ̂j−1, then tk+1 is equal to tk + j− 1, and ytk+1
is the (k+ 1)-

th change-point. We implement following criteria to detect the significant change of

τ̂j. First, based on {τ̂(max{1,(j−m)}), . . . , τ̂(j−1)} to calculate average τ̄ and standard

deviation στ , where m is a memory duration determined from the feature of data.

If τ̂j falls outside a standard deviations of τ̄ and passes a pre-chosen constant grace

period ν, i.e.,

τ̂j /∈ [τ̄ − aστ , τ̄ + aστ ] & j > ν (4.18)

then tk+1 = tk + j − 1 is a change-point. The change-point detection algorithm is

given as follows:

Step 1. Set j = 1, k = 0, t0 = 0.

Step 2. Set i = tk + 1.

Step 3. Use MLE with Huber’s least favorable distribution to estimate state-

dependent parameters from {yi, . . . , ymin{i+c−1,n}}.

Step 4. Simulate a regime-switching process {ỹk1 , . . . , ỹkc} using the estimated
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state-dependent parameters in step 3.

Step 5. Use MLE with Huber’s least favorable distribution to estimate param-

eters from {ỹk1 , . . . , ỹkc , yi, . . . , yi+j−1}, and calculate τ̂j, τ̄ and στ .

Step 6. If τ̂j /∈ [τ̄ − aστ , τ̄ + aστ ] & j > ν, then k = k + 1, tk = i + j − 1, go

back to step 2; otherwise, set j = j + 1, go back to step 5.

Step 7. If j > n− i+ 1, stop.

4.3 Simulation Studies

We conduct simulation studies to investigate the performance of the change-

point detection algorithm using the generalized RS model. We first introduce a data

generating process, and then we present simulation study results.

4.3.1 Data Generating Process

The following pseudo codes describe a two-state regime-switching normal time

series {ỹ1, . . . , ỹT} data generating process (DGP). Similar procedure can be imple-

mented for a two-state regime-switching heavy-tailed (T-3) time series. Let {u1, . . . , uT}

represent a random uniform series, and use series {r1, . . . , rT} to record the regime

status at each time t. Then

151



(i). At time t = 1,

If u1 ≤ π1, then r1 = 1 and generate a random normal ỹ1 ∼ N(µ1, σ1);

Otherwise, then r1 = 2 and generate a random normal ỹ1 ∼ N(µ2, σ2).

(ii). At time t = 2, . . . , T ,

If rt−1 = 1, then

If ut ≤ p11, then rt = 1 and generate a random normal ỹt ∼ N(µ1, σ1),

Otherwise, then rt = 2 and generate a random normal ỹt ∼ N(µ2, σ2);

Otherwise, then

If ut ≤ p21, then rt = 1 and generate a random normal ỹt ∼ N(µ1, σ1),

Otherwise, then rt = 2 and generate a random normal ỹt ∼ N(µ2, σ2).

4.3.2 Simulation Study Results

We perform two simulation studies. Each simulation runs 1,000 times. In sim-

ulation study 1, we generate two regime-switching normal time series {ỹ1, . . . , ỹ60}

using parameters µ1 = −2, µ2 = 4, σ1 = 6, σ2 = 5, p11 = 0.75 and p22 = 0.95 and

{ỹ61, . . . , ỹ120} using parameters µ1 = −8, µ2 = 4, σ1 = 6, σ2 = 5, p11 = 0.85 and

p22 = 0.85. Then we combine the two time series to obtain Y1 = {ỹ1, . . . , ỹ120}. In

this setting, no outlier in data and data contain a change-point at 61th. We apply
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the algorithm to time series Y1. In simulation study 2, we randomly enlarge a value

ỹi as an outlier in time series Y1, so that we obtain a new time series Y2. There

is a random outlier in data and data contain a change-point at 61th. We also ap-

ply the algorithm to time series Y2. We define following three cases of performance

evaluation by a given detective tolerant constant α:

• Accurate-Detection (AD): Detect only one change-point, and the detected

change-point is in range of [61 − α, 61 + α]. This means that the algorith-

m can accurately detect change-point.

• Over-Detection (OD): Detect more than one change-point, but at least one

change-point is in range of [61−α, 61 +α]. This means that the algorithm can

accurately detect change-point but also with some false detections.

• No-Detection (ND): Otherwise. This means that the algorithm can not accu-

rately detect change-point.

The performance summary of change-point detection algorithm of simulation studies

(1,000 runs with α = 5) is provided in table 4.4 below.

From the simulation results, we observe: (1) When time series does not contain

outliers, both algorithms have reasonable detective ability because accurate-detection

results are over 70% and no-detection results are less than 5%. The algorithm using
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Table 4.4: Performance summary of change-point detection algorithm of simulation

studies (1,000 runs with α = 5)

Methods MLE with Normal distribution MLE with Huber’s least favorable distribution

Detection % Accurate-Detection Over-Detection No-Detection Accurate-Detection Over-Detection No-Detection

Simulation 1 72% 24% 4% 79% 19% 2%

Simulation 2 44% 34% 22% 69% 23% 8%

MLE with Huber’s least favorable distribution performs slightly better (+7% for

accurate-detection); (2) When time series contains outliers, the algorithm using MLE

with Huber’s least favorable distribution has better performance. The accurate-

detection results are closed to 70% and no-detection results are still less than 10%.

The algorithm using MLE with Normal distribution is largely impacted by outliers.

Notice that the performance slightly decrease compared with simulation 1 results. A

more robust ρ-function might solve this observation. This topic might be considered

as future research.

4.4 Real Market Time Series Application

Let {Pt} be the monthly price time series and let Yt = 100× log(Pt/Pt−1) be the

monthly log-return time series. We apply the change-point detection algorithm to

Hang Seng monthly index data from January 1988 to March 2015.
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The time series sample must contain a sufficient number of observations in order

to ensure a good estimation of model parameters. Therefore, we set c = 120 and

m = 12. m = 12 indicates the memory period is one year and c = 120 indicates the

sample for parameter estimation is 10-year period. We set a grace period ν = 12 to

reflect that the market needs long time to move between different phase, i.e., bear

market and bull market. We also set a = 3 for Equation (4.18) due to control chart

method.

The change-points identified by the algorithm using MLE with Huber’s least

favorable distribution compared with the change-points identified by the algorithm

using MLE with Normal distribution are shown in table 4.5.

Table 4.5: Summary of detected change-points on Hang Seng monthly index data

Estimation Method Detected change-points

MLE with Normal distribution 18, 33, 85, 116, 238, 285

MLE with Huber’s least favorable distribution 31, 60, 118, 188, 238, 285

We visualize the detected change-points on Hang Seng monthly index price and

log-return time series in figure 4.1. We also visualize the estimated expected returns

of state 1, i.e., τ̂j, with boundary in figure 4.2.

We note that for Hang Seng monthly index price time series, both algorithms
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Figure 4.1: Detected change-points on Hang Seng price and log-return time series

Figure 4.2: Estimated expected returns of state 1 for detected change-points

156



can identify four change-points at 31(33), 116(118), 238 and 285. The change-point

detection algorithm using MLE with Huber’s least favorable distribution detects two

change-points at 60 and 188 while the algorithm using MLE with Normal distribution

detects two change-points at 18 and 85. Visually, there is small trend change around

time 18 but relatively large trend changes around 188. The change-points detected

by the algorithm using MLE with Huber’s least favorable distribution are described

as follows:

• τ̂1 = 31, which corresponds to June 1990. After ”Black Monday” on October

19, 1987, many countries including Hong Kong experienced economic growth.

The Hang Seng index entered a slow bull market. This phase lasted 6 years,

and in total increased 565% with average annual increased 37%.

• τ̂2 = 60, which corresponds to December 1992. The Hang Seng index started to

rapidly increase as economic continued growth. Citic Pacific became the first

red chip to join the Hang Seng Index constituent stocks on August 1992. The

Hang Seng index reached a new historical highest (12, 599) after 12 months,

which was the end of this bull market.

• τ̂3 = 118, which corresponds to October 1997. The largest one-day histor-

ical increase (in percentage terms) was on October 29, 1997. This mainly

attributable to hedge fund activities and the rally after the plunge on the
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previous day. The day before yesterday, the Thai baht was attacked and the

hedge funds speculated Hong Kong stocks. The Hang Seng index consecutively

reached historical highest on May, June and July and reached a new historical

highest with 16, 820 on August, then rapidly decreased to less than 10, 000,

which ended this bull market. In the same time, Asian Financial Crisis began

and the Asian economic “miracle” crashed.

• τ̂4 = 188, which corresponds to August 2003. Three month ago, the Hang

Seng index decreased to the lowest with 8, 331, indicating the end of last bear

market. The market entered a new bull market. In general, it is believed that

before 2006 Hong Kong Hang Seng has a very strong synergy effect with the

US stocks except in the crisis of Southeast Asia in 1997. The reason is that the

United States is the largest export market in Hong Kong. The period between

2000 and 2002 was considered a major downturn period for US stock market

and also for Hong Kong market. The Federal Reserve lowered interest rates

six times in a row from January to June 2001 and five times again in the next

three years, which stimulate economic recovery from 2003.

• τ̂5 = 238, which corresponds to October 2007. The Hang Seng index climbed

to the most historical highest with 31, 352, indicating an ending bull market.

January 2008 started a new worldwide financial crisis caused mainly by the US
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subprime mortgage crisis.

• τ̂6 = 285, which corresponds to September 2011. After a relative long up and

down period, the market entered a stable increase period for next bull market.

4.5 Conclusion

In this chapter, we propose a generalized Markov regime-switching (generalized

RS) model. Our study demonstrates that the generalized RS model can improve

the stability of model parameter estimation when either the empirical distribution is

heavy-tailed or observed data contain outliers. Financial market behavior changes at

some points in time. It is not suitable to use a single regime-switching model to model

entire time series. Guo et al. (2011) propose a change-point detection algorithm

to identify change-points in the time series. We use the generalized RS model to

improve the change-point detection algorithm. Simulation studies demonstrate that

the change-point detection algorithm using the generalized RS model can improve

accuracy of identifying the change-points when either the empirical distribution is

heavy-tailed or observed data contain outliers. The real data analysis identified six

change-points on Hang Seng index. Corresponding segments match the bear-bull

phases observed in market well.
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5 Conclusion and Future Work

5.1 Conclusion

In this dissertation, we study statistical models and their applications on financial

time series data.

In chapter 2, we study statistical modeling and moving average strategy for single-

asset portfolio. We propose a single-asset generalized moving average crossover (S-

GMA) strategy. Our study demonstrates that the SGMA strategy can provide more

investment options which can solve the well-known problem from the MA strategy.

Simulation studies demonstrate that the SGMA strategy can increase both the in-

vestor’s expected log-utility of wealth and the investor’s expected wealth compared

with the MA strategy. Two high-frequency ETF real data analysis demonstrate that

the SGMA strategy can outperform the MA strategy for both backward investment

on training data and forward investment on test data.

In chapter 3, we extend our research to multi-asset portfolio. We propose a multi-

160



asset generalized moving average crossover (MGMA) strategy. Our study demon-

strates that the MGMA strategy can provide more investment options with the

investor’s risk tolerance. Simulation studies demonstrate that the MGMA strategy

can increase both the investor’s expected log-utility of wealth and the investor’s ex-

pected wealth. Two high-frequency ETF real time examples demonstrate that the

MGMA strategy can outperform the MA strategy for both backward investment on

training data and forward investment on test data.

In chapter 4, we study the regime-switching model with its application to capture

the financial market behaviors. We propose a generalized Markov regime-switching

(generalized RS) model. Our study demonstrates that the generalized RS model can

improve the stability of the model parameter estimations when either the empirical

distribution is heavy-tailed or observed data contain outliers. We then use the gen-

eralized RS model to improve the corresponding change-point detection algorithm.

Simulation studies demonstrate that the change-point detection algorithm using the

generalized RS model can improve accuracy of identifying the change-points when ei-

ther the empirical distribution is heavy-tailed or observed data contain outliers. The

real data analysis identified six change-points on Hang Seng index. Corresponding

segments match the bear-bull phases observed in market well.
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5.2 Future Work

In the area of moving average trading strategy, there are three possible future

research directions. First one is to improve the stability and accuracy of model

parameter estimation, especially for multi-asset portfolio. Second one is to develop

a more robust criteria to estimate model parameters from training data. Lastly,

different utility function can be considered and approximately solutions might be

adopted.

In the area of regime-switching model with its application to detect change-points,

one possible future research direction is to explore different choice of the ρ functions

other than Huber ρh function. This might further improve the performance of the

corresponding algorithm.
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A Appendix

A.1 Matrix Exponential

We present the matrix exponential definition and properties in this section.

Let A is an n× n real or complex matrix. The exponential of matrix A denoted

by eA is also the n× n matrix given by the power series

eA =
∞∑
k=0

1

k!
Ak = In +A+

1

2!
A2 + . . . ,

where A0 is defined to be the identity matrix In with the same dimension as matrix

A. The above series always converges, so the exponential of matrix A is well-defined.

If A is a 1 × 1 matrix, the matrix exponential of A is a 1 × 1 matrix whose single

element is the ordinary exponential of the single element of A.

The following properties are used in the derivation of the Lemmas and Proposi-

tions:

• e0 = I
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• eaAebA = e(a+b)A

• eAe−A = I

• If AB = BA, then eAeB = eBeA = e(A+B)

• If B is invertible, then eBAB
−1

= BeAB−1

• e(AT ) =
(
eA
)T

, where AT denotes the transpose of A. It follows that if A is

symmetric, then eA is also symmetric

• d
(
etA
)

= AetAdt where A is a constant matrix.
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