
 

THERMOREFLECTANCE MEASUREMENTS OF 

NON-DIFFUSIVE TRANSPORT  

IN BULK AND NANOSCALE MATERIALS  

 

 

MOHAMMADREZA SHAHZADEH 

 

 

A DISSERTATION SUBMITTED TO  

THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

 

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING 

AND COMPUTER SCIENCE 

YORK UNIVERSITY 

TORONTO, ONTARIO 

 

March 2021 

 

© Mohammadreza Shahzadeh, 2021  



ii 

 

ABSTRACT 

Following the trend in miniaturization of devices to the sub-micron scale, thermal management 

has become increasingly important to device operation. Thermal management becomes even more 

concerning in nanoscale electronic devices, where there are several interfaces for heat to pass 

across before reaching a bulk-like heat sink. To mitigate these issues, existing devices are 

constantly being re-engineered and new materials are being sought to take advantage of their 

improved performance. Importantly, at small scales or during fast transients, heat transport 

deviates from the classic diffusive regime and its physics is still being understood. To examine the 

thermal performance of these structures and materials at different length scales and in different 

heating dynamics, suitable metrology techniques are needed. In this dissertation, heat transport 

within bulk and nanoscale materials as well as across interfaces is studied. To achieve this goal, a 

frequency domain thermoreflectance (FDTR) setup is established and three different extensions to 

this setup are presented that improve the metrology in nanoscale materials or non-diffusive 

transport. Having different variations of the FDTR setup enables us to selectively utilize these 

techniques depending on the sample structure and the questions one is investigating. By measuring 

different structures, we show that our setups are capable of examining thermophysical properties 

of different materials ranging from two dimensional to three dimensional materials, from 

dielectrics to metals, and from thermally isotropic to anisotropic.  

We, then, turn our attention to non-diffusive heat transport in two different structures: metallic 

Platinum-Cobalt multilayers, and Tungsten disulfide (WS2) crystal. In the case of metallic 

Platinum-Cobalt multilayers, we show that as the interface density increases and the layer 

thickness becomes comparable with the electron mean free path in these metals, a deviation from 

the diffusive theories governing heat transport in electron-mediated multilayers is observed for the 
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first time. Finally, we show that strong non-diffusive heat transport in WS2 can be observed at 

room temperature as a function of heat spot size. This not only highlights unique transport features 

in this material, but also points to the susceptibility to misinterpret experimental data if non-

diffusive transport is not considered. 
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No subject has more extensive relations with the progress of industry and the 

natural sciences; for the action of heat is always present, it penetrates all bodies 

and spaces, it influences the processes of the arts, and occurs in all the phenomena 

of the universe. – Joseph Fourier, 1822 [1]. 

 

Chapter 1: Introduction 

1.1 Motivation  

With the rise of nanotechnology and device sizes shrinking [2], studying heat transport in nano-

structures became a must. By the early 1970s, the size dependence of thermal conductivity was 

observed in different materials [3-7]. A size dependent thermal conductivity has both undesirable 

and favorable consequences. For instance, a low thermal conductivity is useful for thermo-electric 

materials where their performance expressed by the figure of merit 
2S

k
  (where S is the Seebeck 

coefficient,   is electrical conductivity and k  is thermal conductivity) is inversely proportional 

to thermal conductivity [8]. On the other hand, high thermal conductivity is useful when heat needs 

to be dissipated as effectively as possible. This is, for instance, the case for semiconductor lasers 

whose output is sensitive to their operating temperature [8]. Another example that illustrates the 

desire for high thermal conductivity materials is in integrated circuits (ICs), whose power densities 

and speed have been increasing [8]. Moore, co-founder of Intel, observed in the 1960s that the 

number of transistors per unit of area in an IC had been and will be doubling approximately every 

two years. This trend not only affected the number of transistors, but also the performance of the 

electronic chips as well. However, as the device size decreased and the number of transistors per 

unit area increased, heat management became more and more challenging [9]. At the moment, the 
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length scale of electronic devices is approaching 10 nm and below. Furthermore, as a consequence 

of dissipated powers reaching levels of ~ 100 W/cm2 [10], the increasing trend of CPU clock 

frequency has stopped [9] and designs have instead favored multiple parallel core architectures 

instead.  

Thermal conductivity, in the classical description of kinetic theory, arises from scattering events 

between heat carriers or with boundaries [11]. In this “diffusive” description of heat conduction, 

the size of the system is far greater than the average distance between the collision events of the 

energy carriers (i.e. the mean free path, MFP or  ) and thus, the heat carriers undergo many 

scattering events before reaching the physical boundary of the system. By reducing the size of the 

system until it becomes comparable with the MFP of the heat carriers, the heat transfer is not fully 

diffusive anymore and ballistic transport takes place.  

The physical size of a material, however, is not the only relevant length scale to affect the thermal 

conductivity. Different characteristic length scales can be compared with the MFP of the heat 

carriers to study the transition of diffusive to ballistic heat transport. Besides the physical 

dimensions of the system [12], the heater size [13] and the penetration depth of the thermal waves 

in the material [14] are other examples of these characteristic length scales. Studying the 

contribution of heat carriers with different MFP to the bulk thermal conductivity and constructing 

the so-called thermal conductivity accumulation function provides valuable information to 

optimally engineer materials for different applications.  

Besides the thermal conductivity of individual materials, another quantity often contributes to the 

effective thermal conduction in a system of materials. This is especially the case in layered 

materials where there are several interfaces between the heat source and heat sink. Here, the 

thermal resistance at the interfaces becomes important. In the simplest case, assume a system 
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consists of two materials, A and B, with an interface (Figure 1-1a). The total thermal resistance of 

the system can be expressed as 
total A B InterfaceR R R R   . However, as the number of interfaces 

increase (assuming AR  and BR  remain the same), the relative contribution from the resistance at 

the interfaces increase, Figure 1-1c. As will be discussed later in this dissertation, the contribution 

of the resistance at the interfaces (or its inverse, the thermal boundary conductance, TBC) depends 

on several factors such as materials forming the interface and interfacial properties [15]. It should 

be noted that adding resistances linearly (as depicted in Figure 1-1c) is only possible for diffusive 

transport. As the layer size becomes comparable to the MFP, the trend of increasing resistance 

with the number of interfaces may become nonlinear.  

 

 

Figure 1-1. The thermal resistance of a system consisting materials A and B with (a) one interface and (b) three interfaces. (c) 

The thermal resistance as a function of number of interfaces. As the number of interfaces increases, the contribution from 

interfacial resistance to the thermal resistance increases. 
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To gain insight into the physics of energy transport, appropriate metrology systems are needed. 

The performance of optical pump and probe metrology systems has improved significantly in the 

last two decades. These systems have provided the opportunity to study thermal properties of 

different bulk and nano-scale systems and enriched our fundamental understanding of heat 

transport mechanisms. The development of techniques such as frequency domain 

thermoreflectance (FDTR) and time domain thermoreflectance (TDTR) has helped formulate a 

more complete picture of heat transport. These techniques allow for measurements of thermal 

conductivity, MFP spectroscopy, and thermal boundary conductance for different materials. 

Improving the optical pump and probe metrology systems allows studying these structures as well 

as newly discovered materials such as two-dimensional graphene, to eventually improve and 

engineer their performance toward commercialization. Furthermore, by increasing the sensitivity 

of these characterization techniques to anisotropic heat transport, the thermal conductivity of 

highly anisotropic materials can be investigated.  

 

1.2 Outline of this dissertation and contribution to the literature 

The purpose of this dissertation is to develop and improve thermal characterization techniques 

based on the principle of thermoreflectance: the change in optical reflectivity as a function of 

temperature. These techniques are then used to investigate thermal properties of a variety of 

systems of materials to investigate non-diffusive transport phenomena. The outline of this 

dissertation is as follows: 

 A short motivation is provided in chapter 1. 

 In chapter 2, the basic principles of heat conduction in solids and across interfaces are 

reviewed. This lays the foundation of heat conduction physics used throughout this 
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dissertation, and outlines the effects that take place when non-ballistic transport ensues. 

This chapter also describes the basic principles of thermoreflectance methods, how 

quantitative data is obtained from these measurements and ancillary characterization 

techniques. 

 The specific implementations of FDTR, beam offset FDTR, frequency domain magneto-

optical Kerr effect (FD-MOKE), and differential broadband FDTR (DBB-FDTR) are 

presented in chapter 3. These are the experimental characterization techniques that have 

been implemented or developed for this work. These methods are then used to measure 

thermophysical properties of a different range of materials.  

In chapter 3, a typical implementation of FDTR setup is introduced and methods to extend 

the frequency range of the measurement will be discussed. By introducing beam offset 

FDTR and FD-MOKE, sensitivity to anisotropic thermal conductivity will be increased 

which allows for measuring a wide range of thermally anisotropic materials. The 

techniques are then used to measure thermal conductivity of different samples such as 

graphite and Graphene. Then, by introducing DBB-FDTR concept, we provide an 

alternative implementation of the broad-band FDTR setup introduced by Regner et al [16].  

 Anisotropic heat transport in Pt/Co multilayers is investigated in chapter 4. The 

fundamental question investigated in this chapter is the physics of electronic heat transport 

across metallic multilayers when the layer thickness is comparable with the electron MFP. 

It will be shown that by increasing the interface density of Pt/Co interfaces and decreasing 

the multilayer period thickness below the MFP of electrons in Pt and Co, a deviation from 

the predictions of the diffusive theories governing heat transport across metallic interfaces 

is observed. We attribute this deviation to the non-diffusive nature of heat transport when 
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thickness of the layers is well below MFP of electrons. The observation of non-diffusive 

transport across metallic multilayers and deviation of the thermal boundary conductance 

across metallic interfaces from non-diffusive theories has not been reported in the literature 

before, to the best of our knowledge. The results presented here are useful in describing 

heat transport in metallic high interface density structures such as in magnetic memory 

devices and in spintronic applications.  

 Chapter 5 will be dedicated to the observation of strong non-diffusive heat transport in 

Tungsten disulfide. The findings of this chapter provide an insight into non-diffusive heat 

transport at micrometer scale and at room temperature; a condition that is often neglected. 

Here, we experimentally demonstrate reductions ~60% and ~35% in in-plane and out-of-

plane components of thermal conductivity of bulk Tungsten disulfide, when heater size is 

reduced from ~14 to ~1.5 μm. This reduction of thermal conductivity is then attributed to 

non-diffusive transport in Tungsten disulfide. The results of this work show the importance 

of correctly interpreting thermal conductivity measurements when heater size is small.  

 The dissertation closes with a conclusion in chapter 6. 

 

1.3 Statement of author contributions 

The author implemented typical FDTR and DBB-FDTR concepts and contributed in implementing 

beam offset FDTR and FD-MOKE setups 1 . The author performed measurements and post-

measurement analysis on samples presented in chapter 3. FD-MOKE measurement performed on 

                                                 
1 Some parts of this dissertation was performed in collaboration with Mizanur Rahman, who was a master’s student 

in the HEATED lab. 
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Graphene in chapter 3 was performed by Mizanur Rahman. The metallic multilayers samples 

presented in chapter 4 were fabricated by Olga Andriyevska. Deposition of the WS2 substrate 

presented in chapter 5 was performed by Mizanur Rahman, and the measurements and post-

measurement analyses were performed by the author and Mizanur Rahman. 
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Chapter 2: Theory of Heat Transport and Characterization Techniques 

 

Chapter 2 has been partially adapted, with permission, from: 

M. Shahzadeh, M. Rahman, O. Hellwig, and S. Pisana, "High-frequency measurements of 

thermophysical properties of thin films using a modified broad-band frequency domain 

thermoreflectance approach," Review of Scientific Instruments, vol. 89, no. 8, p. 084905, 2018. 

Copyright 2018 American Institute of Physics. 

 

2.1 Heat Conduction in Solids 

When metals absorb photons (for instance from a laser source), the energy from the photons is 

transferred to its electrons. Considering the MFP for electrons in common metals (~ 50 to 100 nm), 

and traversing with velocities near Fermi velocity (~ 610 m s ), electrons can travel 100 nm in 100 

fs. Their energies reach an equilibrium Fermi-Dirac distribution due to electron-electron scattering 

in less than a picosecond [17]. The hot electrons then interact with the cold phonons of the crystal 

and exchange heat. The parameter which describes how effectively electrons and phonons 

exchange energy is called the electron-phonon coupling coefficient. The smallest electron-phonon 

coupling coefficient in metals belongs to Gold with 162.2 10Aug   W/m3K [18]. In comparison, 

the electron-phonon coupling coefficients of Aluminum and Tantalum are  172.45 10Alg    

W/m3K and 183.1 10Tag   W/m3K, respectively [18, 19]. The difference between electron-

phonon coupling coefficient of Al and Au indicates that the electrons and phonons in Al reach a 



9 

 

thermal equilibrium more quickly compared to Au [18]. It has been shown that, using simplified 

arguments, electrons and phonons in metals will thermalize within 100 ps [17]. 

In a layered structure, the heat carriers of the top layer can travel across an interface and (depending 

on the materials) interact with the electrons or phonons of the layer underneath. For instance, in a 

metal/nonmetal system, energy transfer from the hot electrons in the top layer to the heat carriers 

(phonons) of the bottom layer can take place through two main channels: 1) interactions between 

the electrons and the phonons of the metal mediated by the electron-phonon coupling and 

subsequent phonon transport across the interface, and 2) the direct interfacial interaction between 

the electrons of the metal and the phonons of the nonmetal [20]. 

 

2.1.1 Fourier’s Law of Heat Conduction 

Heat transport is usually expressed by the Fourier’s law of heat conduction. Based on Fourier’s 

law, the heat flux (q) is proportional to the local temperature gradient  T  with a proportionality 

constant of k , (in units of W/mK), where k  is the coefficient of thermal conductivity: 

 q k T     (2.1) 

In most solids, thermal conductivity  k  is comprised of two main portions: e Pk k k  , where 

ek  and Pk  are the contributions of electrons and phonons to the thermal conductivity, respectively 

[21]. Simple kinetic theory describes thermal conductivity as 
1

3
k Cv   in which C  is the 

volumetric heat capacity, v  is the group velocity and   is MFP of the heat carrier [22]. The 

volumetric heat capacity of electrons is smaller than phonons. However, the Fermi velocity of 
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electrons  6~ 10 m s is much larger than the group velocity of phonons  3~ 10 m s  [23]. 

Therefore, in metals the product of Cv  is much larger for electrons than phonons. As a result, 

electrons are the major heat conduction carriers in metals  e Pk k , while phonons have a more 

pronounced impact in non-metals  e Pk k  [20]. A typical method to measure the electronic 

portion of the thermal conductivity of materials  ek  is by using the four-point probe 

measurement. In the four-point probe technique (which will be described later), the electrical 

conductivity    of the material is measured and then it is converted into its electronic thermal 

conductivity  ek  using the Wiedemann-Franz law.  

 

2.1.2 Wiedemann-Franz Law 

As electrons are the major electrical and heat carriers in metals, one might expect to see a relation 

between electrical conductivity and thermal conductivity. The Wiedemann-Franz law relates the 

electrical conductivity of a metal to its thermal conductivity at a given temperature [24]: 

 
2 2

0 23

e B
k k

L
T e




    (2.2) 

Where 8 2

0 2.4453 10 WΩ/KL    is the Sommerfeld value of the Lorentz number (the Lorentz 

number changes among metals with non-spherical Fermi surfaces and is also affected by disorder), 

ek  is the electronic thermal conductivity, T  is the absolute temperature,   is the electrical 

conductivity, e   is the electron charge and Bk  is Boltzmann’s constant. According to Eq. (2.2) the 

ratio of electronic thermal conductivity to electrical conductivity at a given absolute temperature 
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is constant. The Sommerfeld value of the Lorentz number can be used reliably in the Wiedemann-

Franz law at low- and high- temperatures as long as the metal is not very pure and defect-free [24], 

since disorder tends to collapse the large variations of Lorentz numbers in pure elemental metals 

to a universal value. It also provides an opportunity to have a fairly acceptable estimate of the 

electronic thermal conductivity of metals from their electrical conductivity, which can readily be 

measured.  

As mentioned above, Wiedemann-Franz law combined with the four-point probe technique 

measures the electronic thermal conductivity. However, the classic bench-top tools used for 

measuring phonon thermal conductivity are not appropriate for thin-films and nanostructures, 

unlike Wiedemann-Franz law which typically can be used at different size scales [25]. An example 

of methods to measure phonon thermal conductivity of bulk materials is the so-called absolute 

technique, in which the sample of interest is placed between a heat source and a heat sink and the 

temperature drop in a given the length of the sample is recorded [26]. Another method to measure 

the phonon thermal conductivity of bulk materials is the laser flash method, in which an optical 

source heats the front of a sample while a detector measures the temperature transient on the back 

of the sample [26].  

 

2.1.3 From Diffusive to Ballistic Heat Conduction 

Here, let us consider a simple case where the thermal conductivity of a material is studied as a 

function of physical size of the sample. When studying heat carriers (e.g. electrons and phonons) 

propagating across a bulk material, it is assumed that the energy distribution in any part of the 

sample is very close to the thermal equilibrium condition in the whole sample (a local thermal 
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equilibrium condition) [27]. In this case, the physical size of the sample is an important 

characteristic length scale (
cL ) to compare with the MFP of the heat carriers and the relation 

cL   holds. The thermal equilibrium condition is satisfied in a bulk system, as there are enough 

scattering events for the heat carriers to equilibrate [21] within the typical size of macroscopic 

samples, i.e. Λ << 1 mm.  

Heat transfer in this case is called diffusive, which can be described by Fourier’s law of heat 

conduction and the heat diffusion equation. The Fourier’s law of heat transfer is based on a 

macroscopic average behavior of the heat carriers undergoing many scattering events. Thus, as the 

scattering events are studied in an appropriately large sample and over a long period of time, the 

MFPs of the heat carriers is correlated to the intrinsic properties of the materials [28]. 

However, as the size of the sample shrinks down, the MFPs of the heat carriers become comparable 

or larger than the sample size ( cL  ) and consequently the heat carriers can travel in the volume 

of the sample without reaching equilibrium or by scattering only at the boundaries of the sample 

[27, 28]. In this case, since there are few or no scattering events between the sample boundaries, 

no thermodynamic equilibrium exists within the volume of interest and the Fourier’s law of heat 

conduction (Eq.(2.1)) is not valid anymore. Note that here we have assumed for simplicity that 

boundary scattering is elastic and does not contribute to reaching a thermodynamic equilibrium. 

Heat condition in this condition is called ballistic (or more generally, non-diffusive). The thermal 

conductivity measured in this case might not be the same as the bulk value. 

In general, in order to determine if heat transfer is diffusive or not, the MFP of the heat carriers is 

compared with cL . In the example above, the MFP of heat carriers was compared to the sample’s 

physical size. However, there are other important dimensional parameters, beside sample’s size, 



13 

 

that can be compared with the MFP of heat carriers. Here, some of important characteristic length 

scales will be mentioned.  

An important example of the experimental characteristic length scale mentioned above  cL , is 

the distance that thermal waves such as those created by modulating the heat flux travel into the 

sample. For a semi-infinite isotropic medium, the thermal penetration depth  PL  is a measure of 

the depth at which the temperature amplitude is 1e  of the surface temperature [29]. The thermal 

penetration depth for a heat source with intensity modulation frequency of f  is  /PL D f  

, where D  is the thermal diffusivity, defined as the ratio of thermal conductivity to volumetric heat 

capacity, /D k C [30].  

Another example of the characteristic length scale is the heater size [13]. When the heater size is 

larger than the MFPs of phonons, the hot phonons undergo enough scattering events to thermalize 

and reach a local equilibrium (diffusive regime). However when the heater size is smaller than the 

MFPs of phonons, a smaller number of scattering opportunities are available to phonons to reach 

a local thermal equilibrium, and phonons can travel non-diffusively over distances comparable to 

the heater size [13]. This results in the departure from the assumption of a local thermal 

equilibrium, and the Fourier law does not apply. This concept has been depicted in Figure 2-1. 

It should be noted that heat transport can alternatively be described by the relationship between 

mean free time and the characteristic time scales, instead of comparing mean free path and 

characteristic length scales [31]. In the alternative picture, heating events much faster than the 

phonon relaxation times cannot be cooled diffusively.  
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Figure 2-1. From diffusive to ballistic heat transport with decreasing heater size (from left to right) [32]. The white arrows 

represent phonons travelling ballistically, with changes of directions indicating a scattering event. Reprinted with permission 

from J. Phys.: Condens. Matter, 27, 053202 (2015). Copyright 2015 Institute of Physics.  

2.1.4 Thermal Conductivity Accumulation Function  

Phonons of a material do not have all the same MFP. Instead, a MFP spectrum exist. As it was 

mentioned earlier, phonons with MFP larger than cL  are considered to travel non-diffusively 

through the volume of interest, while those with MFPs smaller than cL  travel diffusively [33]. 

Based on observing this non-diffusive behavior of phonons, Koh and Cahill hypothesized that 

phonons with MFPs greater than the thermal penetration depth (as cL ) do not contribute to the 

thermal conductivity, as they escape the volume that was samples by their measurement [33]. As 

a result, not all of the phonons contribute to the effective thermal conductivity. This idea has 

opened an avenue to probe the distribution of the phonon MFPs by varying cL  systematically.  

The cL -dependent behavior of thermal conductivity has been correlated with the so-called thermal 

conductivity accumulation function  accumk . The thermal conductivity accumulation function 

describes how different energy carriers with different MFPs contribute cumulatively to the thermal 
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conductivity [16]. The thermal conductivity accumulation function can be described as follows 

[14]: 

      
*

*

0

1

3
accum Polarization

k C v d


         (2.3) 

where C  is the volumetric heat capacity, v   is the phonon group velocity and   is the MFP of 

phonons. Each quantity in the integral may be phonon polarization dependent (i.e. transverse and 

longitudinal modes), and all contributions are summed together. The thermal conductivity 

expressed in Eq. (2.3) is due to phonons with MFPs less than *  [14]. By reducing * to nano-

scale, accumk  described by Eq. (2.3) tends to zero (depending on the material). On the other hand, 

by increasing * , the thermal conductivity accumulation function tends to the bulk thermal 

conductivity of the material. Studies on Si have shown that a wide phonon spectrum contribute to 

the thermal conductivity, with some phonon MFPs well above 10 um. This is very different from 

the estimated average (so-called grey approximation) MFP of 40nm   obtained from the 

kinetic theory (
1

3
k Cv   ) [13, 14].  

In order to study the thermal conductivity accumulation function experimentally, a systematic 

variation of cL  is performed 2 . As an example, the modulation frequency of the heat flux 

impinging on the sample can be varied. By changing the modulation frequency and consequently 

changing the thermal penetration depth   / ,PL D f the contribution of phonons with 

different MFPs to the thermal conductivity of the material can be revealed (Eq. (2.3)). The heater 

                                                 
2 It should be noted that a direct correlation between Lc and MFP-dependent thermal conductivity is not always 

straightforward. In order to relate Lc to a MFP-dependent thermal conductivity, a suppression function is used. 
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size is another example of 
cL  to study the thermal conductivity accumulation function. This can 

be done by systematically changing the laser spot size, or by pattering heater arrays of different 

size. Studying the thermal conductivity accumulation function reveals the contribution of different 

heat carriers to thermal conductivity and allows for engineer and control thermal conductivity of 

different systems. For instance, this is desirable in thermo-electric materials in which the efficiency 

is inversely proportional to the thermal conductivity [34].  

 

2.1.5 Thermal Conductivity of Different Materials 

As mentioned earlier, electrons and phonons are the major heat carriers in most solids 3. However, 

their relative contributions to thermal conductivity depends on the type of material. While free 

electrons are the major carriers in metals, phonons dominate heat conduction in dielectrics and 

light-to-moderately doped semiconductor crystals [25]. As an example, the contribution of 

phonons to thermal conductivity of pure copper is less than 5% [35, 36]. The thermal conductivity 

in semi-metals and heavily-doped semiconductors have considerable contributions from both 

electrons and phonons [25]. Contributions of electron and phonons to thermal conductivity of a 

several metals has been depicted in Figure 2-2. 

 

                                                 
3 An example where electron and phonons are not the only energy carriers is magnetic materials, where magnons 

(collective spin excitations) also play a role. 
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Figure 2-2. Electronic (ke) and phononic (kp) thermal conductivity for several metals from first-principles calculations. Data 

from Ref. [35]. 

Figure 2-3 compares thermal conductivity for a few solids, spanning metals, dielectrics, crystals 

and amorphous materials. In thermally isotropic solids, thermal conductivity typically ranges 

between ~1 W/mK (such as in amorphous materials) and ~2000 W/mK (such as in diamond) [21, 

30]. On the other hand, thermally anisotropic materials span an even wider range of thermal 

conductivity [37], such as graphite with in-plane thermal conductivities of ~2000 W/mK [38, 39].  

In general, materials with lower atomic mass, stronger interatomic bonds, simpler crystal structures 

and lower lattice anharmonicity exhibit higher thermal conductivity [40]. Other parameters that 

can affect the thermal conductivity include doping, impurities, defects, and finite size effects. For 
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instance, in-plane a thermal conductivity smaller than 25 W/mK was reported for 20 nm thick Si 

layers with bulk thermal conductivity of 148 W/mK [41]. 
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Figure 2-3. Thermal conductivity of different materials. Sup. SLG and Sus. SLG represent supported and suspended single layer 

graphene, respectively. The values for SLG and Graphite are the in-plane thermal conductivities. Data taken from Ref. [14, 39, 

42-44]. 

 

2.2 Thermal Boundary Conductance: Heat Conduction across Interfaces 

When heat carriers travel across two different materials, they experience a resistance at their 

interface. Depending on the materials being metallic or non-metallic, electrons, phonons or both 

can contribute to the thermal boundary resistance (its inverse is called thermal boundary 

conductance). The first observations of thermal resistance at an interface were made in 1941 by 
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Kapitza who found a temperature drop between superfluid helium and copper at their interface 

under constant heat flux [45]. Later, it was realized that this temperature drop exists at the interface 

of any two dissimilar materials [46]. The thermal boundary conductance is mainly determined by 

the materials forming the interface, but interfacial characteristics such as roughness, bonding and 

intermixing of the materials can significantly affect it [47]. This resistance forms a temperature 

discontinuity at the interface, as depicted in Figure 2-4. 

 

Figure 2-4. Illustration of the thermal boundary conductance. 

 

Thermal boundary conductance  G is described as the proportionality constant linking the net 

heat flux to the temperature drop across the interface, and describes how strongly an interface 

conducts heat [15]: 

 12 21

1 2

netq q q
G

T T T


 
 

  (2.4) 

where ijq  represents the heat flux from the side i  to the side .j  Analytically, ijq  can be described 

as [48]: 



20 

 

 
i,max2 /2
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sinij i i ij

p

q d d d
  

  
      

  
     (2.5) 

with   being the phonon frequency, p the phonon polarization,  ,   the directional angles of 

incident phonons (Figure 2-5), and   the Bose-Einstein (or Fermi-Dirac) statistical factor for 

phonons (or electrons) [48]. 
ij  is the transmittance probability and 

1
cos

4
i i iv DOS  


 , 

where  ,iv p  is the group velocity and  ,iDOS p  is the density of states [48]. Therefore, for 

isotropic materials: 

    
1,max2 /2

12 1 1 1 1 12
0 0 0

1
sin cos , ,

4p

q d d v DOS p T d
  

         


      (2.6) 

 

Figure 2-5. Definition of phonon direction when scattering at an interface. Adapted from Ref. [49]. 

 

Assuming the phonon reflectivity from one side equals the phonon transmissivity from the other 

side [49]: 

 12 211      (2.7) 
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With attention to the principle of detailed balance, which implies that in thermal equilibrium the 

number of phonons with frequency   travelling from the side i  to the side j  is equals the number 

of phonons with the same conditions travelling from the side j  to the side i  per unit area per unit 

time [50]: 

 

     
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2 /2
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
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 

  
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

  (2.8) 

Eventually, by introducing  
 ,

,
d T

C DOS p
dT

 
   as the mode-dependent specific heat 

and substituting cos  , for small temperature differences due to the principle of detailed 

balance, the thermal boundary conductance can be written as [49]: 

 
1,max1

1 1 12
0 0

1

2p

G v C d d


        (2.9) 

According to Eq. (2.9), the thermal boundary conductance depends on the dispersion, the 

temperature, and the transmission probability  12 . The transmission probability is the quantity 

that is most difficult to calculate. In this regard, models such as acoustic mismatch model (AMM) 

and diffuse mismatch model (DMM) have been presented. Although they both are described by 

Eq. (2.9), they differ in the assumptions used to calculate the transmission probability, and they 

are applicable in different situations.  
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2.2.1 Acoustic Mismatch Model (AMM) 

The first model developed to explain the temperature drop at interfaces was the acoustic mismatch 

model (AMM), proposed by Khalatnikov in 1952 [51]. Khalatnikov based his model on a 

continuum acoustic approach where phonons were represented by acoustic plane waves in a semi-

infinite medium [50]. Based on this approach, it was considered that the acoustic waves (i.e. 

phonons) reflect specularly and no (diffusive) scattering happens at the interface at low 

temperatures [49]. This is appropriate as at low temperatures the phonon population is comprised 

of low-energy and long wavelength excitations, and therefore the assumption of plane waves is 

valid even at relatively rough interfaces. As the reflection of these acoustic waves disrupt the heat 

flow across the interface, a resistance against heat flow is generated [52].  

In order to calculate the angle of reflection/transmission of these acoustic waves as well as their 

transmission coefficients, acoustic analogs of Snell’s law and Fresnel equations for 

electromagnetic waves are used [50]. In these analogs, the acoustic impedance defined as Z v

, with  as the mass density and v  as the phonon velocity, plays a similar role to the optical 

refractive index for electromagnetic waves [49, 52]. Therefore, for an incident phonon wave vector 

with the polarization of p and with incident angle 
,1p  and refracted angle 

,2p :  

 
,1 ,1

,2 ,2

sin

sin

p p

p p

v

v




   (2.10) 

In a similar way to optics, if the phonon incident angle is too large, the phonons can undergo total 

internal reflection. For a simple case of phonon waves normal to the interface, the transmission 

probability 12  is calculated as [46]: 
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  (2.11) 

By combining Eqs. (2.9) and (2.11), the thermal boundary conductance using AMM can be 

calculated. 

 

2.2.2 Diffuse Mismatch Model (DMM) 

Since AMM does not account for the discrete nature of the interface, it only works when the 

phonon wavelength is larger than interfacial roughness [50]. Moreover, AMM works best at very 

low temperatures where the wavelength of phonons is considerably larger than the lattice constant 

so that the phonons are not disturbed by the discrete nature of the lattice. However, as the 

temperature increases (T > 30 K), the phonon wavelengths become comparable to the length scale 

of atomic roughness [48, 53]. A quantitative estimate shows that the average phonon wavelength 

at room temperature is ~ 10-20 Angstrom in many materials [52], which is enough to be scattered 

diffusively by roughness of the interface [52]. For both of these examples (non-smooth interfaces, 

and at moderate temperatures), phonons can be scattered diffusively from the interface, and the 

scattering from the interface is not specular anymore (Figure 2-6).  

 

Figure 2-6. Diffusive scattering at an interface. 
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In order to describe the diffusive behavior of the scattering events at interfaces, Swartz and Pohl 

proposed the diffuse mismatch model (DMM) in 1987 [54, 55]. In contrast to AMM where the 

incident and the reflected waves were related, it is assumed in DMM that phonons can scatter in 

any direction 4 [20, 56], although they still retain their energy (i.e. the same frequency) 5 [20]. As 

a result, it is not possible to know if a phonon is being reflected or transmitted [50]. Instead, the 

transmission probability is proportional to the phonon density of states of the both sides of the 

interface, while the principle of detailed balance holds [20, 49]. In another words, while in the 

AMM the difference in the acoustic impedance of the materials forming the interface dominates 

the transmission probability, in the DMM the difference between the phonon density of states is 

the determining factor [57]. Therefore, as the mismatch between the acoustic impedances in AMM 

and the mismatch between the phonon densities of states of the two materials in DMM increases, 

the value of the thermal boundary conductance decreases.  

As mentioned before, in order to calculate the thermal boundary conductance, the transmission 

probability as well as materials properties such as density of states need to be known.  

In order to obtain the phonon density of states, the phonon dispersion needs to be known 

accurately. However, the Debye model can be used as an approximation to calculate the phonon 

dispersion in some cases [56]. Based on the Debye approximation, for sufficiently low frequencies, 

the relation between the frequency and wave vector of phonons is linear. At temperatures below 

the Debye temperature of both the materials forming the interface, the Debye approximation can 

                                                 
4 Each scattering event respects momentum conservation. However, on average there is no correlation between 

incident and reflected/transmitted waves. Therefore, the specular condition can be dropped. 
5 This is in the case of elastic scattering. Other DMM models have been introduced to account for inelastic scattering 

and multiple-phonon scattering events. 
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be used. Therefore under the Debye approximation, the transmission probability can be calculated 

as [48]: 
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However, as the temperature increases, the linear approximation of the Debye model breaks down 

and a more realistic phonon dispersion is required [49]. 

Many studies have shown that different parameters could affect the thermal boundary conductance 

of a system. Thus, often times there are discrepancies between the theoretical calculations and 

experimental measurements. This discrepancy can become even larger than an order of magnitude 

depending on the acoustic mismatch of the materials [58]. To resolve this issue, extensions to 

DMM have been proposed. While some of these extensions, such as using exact phonon 

dispersions and including electron-phonon coupling effects, help with explaining the results of 

acoustically matched interfaces [58], some other extensions such as, incorporating inelastic 

scattering, improve the analysis for acoustically mismatched interfaces [58]. As another example, 

the thermal boundary conductance obtained by Eq. (2.12) considering the Debye approximation 

for phonon density of states breaks down at higher temperatures. To resolve this issue, a correction 

that includes the effects of volumetric internal energy  0
( ) ( )

T

U T C T dT   was proposed [49]: 
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It is worth mentioning that while the DMM generally describes the phonon-mediated interfacial 

thermal transport, an electronic version of it successfully described the thermal boundary 
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conductance of metal/metal interfaces of Al/Cu [59] and Pd/Ir [60]. The thermal boundary 

conductance in this electronic version of DMM is described by [60]: 
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


  (2.14) 

where 
fermiZ v T  with   being the material’s Sommerfeld parameter, T  the temperature and 

fermiv  the Fermi velocity. 

 

2.2.3 Thermal Boundary Conductance of Different Structures 

Thermal boundary conductance of several systems under different conditions have been measured 

using different techniques. A plot summarizing some of these results is shown in Figure 2-7. 

Moreover, the equivalent thickness  d of SiO2 to achieve the same conductance  2SiOG k d at 

each interface is also presented in the same plot. Since metals are highly electrically and thermally 

conductive, metal/metal interfaces usually have high thermal boundary conductance. At room 

temperature, the largest thermal boundary conductance measured (14±3 GW/m2K) belongs to 

Pd/Ir [60], followed by ~ 4.7 GW/m2K for a Cu/Nb interface [61] and ~4 GW/m2K for an Al/Cu 

interface [59].  
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Figure 2-7. Thermal boundary conductance for different solid/solid systems [15] 6. The solid line represents the equivalent 

thickness of SiO2 to have the same conductance. Reduction of TBC is observed for Al/Si (roughness) curve by introducing 

interfacial roughness (filled and unfilled circles), and for GaSb/GaAs (dislocations) by introducing higher number of interfacial 

dislocations (filled and unfilled triangles). Whereas TBC was increased for Al/SLG (bonding) through strengthening the bonds 

between Al and SLG (filled and unfilled inverted triangles).    

 

On the other side of the spectrum for phonon dominated interfaces, thermal b1oundary 

conductance as low as 8.5 MW/m2K for Bi/diamond [62] and as high as ~700 MW/m2K for 

TiN/MgO [63] have been reported. The low thermal boundary conductance of Bi/diamond can be 

explained by the high dissimilarity between their Debye temperatures. As such, many phonons 

                                                 
6 This plot from Ref. [15] is under the Creative Commons Attribution License and properly cited re-use is permitted. 
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cannot traverse from the high-Debye-temperature material across the interface to the low-Debye-

temperature material because of the absence of suitable phononic states, though inelastic scattering 

can increase the transmission.  

 

2.2.4 What Extrinsic Factors Affect the Thermal Boundary Conductance?  

When structures are fabricated, the interfaces are usually not completely sharp and perfect. In 

general, interfacial disorder and roughness decrease the thermal boundary conductance across 

interfaces. Interfacial bonding strength affects the thermal boundary conductance as well [57]. 

Another practical method to change the thermal boundary conductance of an interface is to 

incorporate an interstitial layer between the materials forming the interface. It has been shown that 

using a Ti layer can increase the thermal boundary conductance by several times [53, 64, 65]. More 

than a factor of 2 or 4 enhancement of thermal boundary conductance was observed by using a 1 

nm layer of Cu or Cr as layers at the interface of Au/sapphire, respectively [66].  

 

2.3 Thin Film Thermal Measurement Techniques 

Over the years different techniques have been developed to study thermal properties of thin film 

materials. 3ω and optical pump-probe techniques are examples of these methods. Depending on 

the advantages and disadvantages of each technique, they can be used to study thermal properties 

of different structures.  
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2.3.1 3ω Method 

Firstly described and implemented by Cahill and coworkers [67, 68], the 3ω method uses a metallic 

layer (such as Au or Pt with adhesive layers such as Cr or Ti) as both heater and thermometer, 

which is patterned on the surface of a sample [69]. The heater/thermometer is then subjected to a 

modulated electric current which causes a temperature gradient through the film of interest due to 

joule heating [69]. 

Because of the modulation of the electrical current with the frequency of ω, the resultant joule 

heating causes the temperature of the sample to change with the frequency of 2ω (joule heating is 

the same regardless of the direction of current flow). The amplitude and phase of the temperature 

fluctuations depends on the thermal characteristics of the system [70]. These temperature 

fluctuations change the resistance of the metallic layer with the frequency of 2ω, and mixed with 

the electrical current at frequency of ω, a voltage signal at 3ω will be generated, which is affected 

by the thermal properties of the system [70]. The detection of the thermal oscillations at 3ω has 

advantages in terms of signal to noise ratio with respect to the signal at 2ω, which in principle is 

equally as meaningful to extract the thermal properties of the system. 

However, despite its simplicity, the 3ω method has some limitations. In order to study samples 

with 3ω method, the metallic layer needs to be patterned on the surface of the sample. As a result, 

micro-fabrication processes are necessary. Moreover, when investigating electrically conducting 

or semi-conducting materials, an electrically insulating layer (usually a thin layer of dielectric such 

as a-SiO2) needs to be placed between the metallic layer and the thin film of the interest [69]. 

Therefore, the accuracy and the sensitivity of the measurements can be affected by the additional 

thermal resistance induced by the insulating layer [69]. The most important limitation of the 3ω 
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method is that the modulation frequency is typically limited to 100 kHz [23]; this limits the thermal 

penetration depth of the heat waves and the ability to characterize heat transport at small length 

scales. The penetration depth is expressed as /PL k Cf , where k is the thermal conductivity, 

C is the volumetric heat capacity and f is the modulation frequency. Therefore a modulation 

frequency of 100 kHz leads to a thermal penetration depth of 17 μm in Si, limiting the access to 

transport over sub-micron length scales. To reach LP = 1 μm in Si, f  > 28 MHz is necesary. 

 

2.3.2 Time Domain Thermo-Reflectance (TDTR) 

Advances in optics and photonics have led to the development of optical metrology systems based 

on pump and probe techniques such as time domain thermoreflectance (TDTR) and frequency 

domain thermoreflectance (FDTR). Their popularity is driven in part by the simpler sample 

preparation, which unlike thermometry approaches do not require microfabrication or response 

calibration. FDTR and TDTR, along with their related techniques, allow in some cases 

simultaneous measurement of several thermal properties of bulk and thin film materials. In FDTR 

and TDTR, a thin metallic layer is deposited on the sample surface, which acts as a transducer, 

serving as both heater and thermometer. Changes in the transducer’s optical reflectivity as function 

of temperature (thermoreflectance) allows a probing laser to sense the temperature changes 

induced by a pump laser beam. 

TDTR employs ultrafast laser pulses to study thermal properties of thin structures. The output of 

a mode-locked laser is split into two branches of pump and probe beams. The modulated train of 

ultrafast pump laser pulses causes the surface temperature of the sample to change and the changes 

are monitored with probe beam through changes in reflectivity as a function of time [71, 72]. The 
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use of modulated pulses allow for lock-in detection and amplification and therefore increases 

signal to noise ratio. A variable optical delay stage is used to change the delay between pump and 

probe beams. By varying the delay between pump and probe pulses, pico-second to nano-second 

time evolution of the surface temperature of the sample is observed and therefore nano-second and 

pico-second carrier dynamics can be studied; an improvement over 3ω method. An example of a 

TDTR setup is shown in Figure 2-8. 

 

 

Figure 2-8. A TDTR setup [73]. EOM, PBS, and BS stand for electro-optic modulator, polarizing beam splitter, and non-

polarizing beam splitter. Reprinted with permission from Rev. Sci. Instrum. 87, 064901 (2016). Copyright 2016 American 

Institute of Physics.  

 

2.3.3 Frequency Domain Thermo-Reflectance (FDTR) 

Although TDTR is a robust and powerful technique for measuring thermal properties, it is 

expensive and requires a complicated setup. FDTR and its variations, which are the methods of 

interest in this dissertation 7, are another non-contact method to measure thermal properties of 

                                                 
7 FDTR will be discussed in more detail in section 3.1. 
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structures [74]. In contrast to TDTR, FDTR is less expensive and easier to build and maintain. The 

first implementation of the FDTR was presented by Schmidt and coworkers to obtain heat transport 

measurements with a modulation frequency of up to 20 MHz [75, 76]. Since then, FDTR has been 

improved over time. For instance, FDTR was used to simultaneously measure thermal conductivity 

and volumetric heat capacity of bulk and thin films [77], and was extended into an imaging 

technique to produce thermal maps of thermo-physical properties [78]. The same technique was 

used by Yang and co-workers to measure the in-plane thermal conductivity and the thermal 

boundary conductance (TBC) of a metal/graphene/SiO2 structure by increasing the pump 

modulation frequency up to 50 MHz [42]. While in TDTR the phase lag between pump and probe 

beams is monitored as a function of time delay between the beams at a fixed modulation frequency, 

in FDTR the phase lag between pump and probe beams is measured as a function of modulation 

frequency. In both cases the phase lag is then fitted to the solution of the heat diffusion equation 

to extract unknown thermal properties of the sample [16, 79]. The FDTR setup implemented in 

our lab is shown in Figure 2-9.  

We recently demonstrated how further combining a beam-offset approach with high frequency 

FDTR performed using small spot sizes can lead to lower uncertainties in the measurement of 

thermally anisotropic samples [80]. This will be covered in section 3.2. 
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Figure 2-9. A schematic of our typical FDTR setup.  

 

2.3.4 Broad-Band Frequency Domain Thermo-Reflectance (BB-FDTR) 

As discussed earlier, a systematic change of thermal penetration depth ( PL ) through heating 

frequency (as an example of cL ) allows for studying the contribution of heat carriers with different 

MFP to the thermal conductivity. Furthermore, as thermal penetration depth is inversely 

proportional to the heating frequency ( /PL D f ), by increasing the heating frequency and 

subsequently decreasing the thermal penetration depth, heat carriers with smaller MFP (in other 

words, thinner materials) can be studied.  

However, with the modulation frequency of the pump in FDTR going beyond 20 MHz, the signal 

to noise ratio drops down significantly. This is mainly due to increasing coherent pickup of the 
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modulation signal by the receiver electronics, as well as amplitude reduction of the surface 

temperature response. It can be shown that for an isotropic slab with thermal conductivity of k  

and volumetric heat capacity of C  under a one-dimensional heat flux 
0

iftq q e  with frequency of 

f , the surface temperature   0T z   is [16]: 

    00 exp / 4
q

T z i ft
kCf

       (2.15) 

Eq. (2.15) shows that the surface temperature amplitude is proportional to 1/ f . Therefore by 

increasing the modulation frequency of the heat flux, the surface temperature amplitude and 

consequently the thermal signal strength decreases.  

Accordingly, most FDTR measurements have been performed up to 20 MHz [14, 16]. In order to 

enhance the signal to noise ratio at increasing frequencies and be able to study thinner structures, 

a modification of FDTR also known as the Broad-Band FDTR (BB-FDTR) was introduced [14, 

16]. BB-FDTR employs a heterodyne approach to detect signals with modulation frequencies up 

to 200 MHz [14]. BB-FDTR has also been used to measure the phonon MFP spectra [14].  

In order to improve the SNR of FDTR, Regner and co-workers used a heterodyning approach to 

shift the detection of the high-frequency thermal signal to a lower frequency before optical 

detection, thereby limiting RF noise in the detection cabling and electronics [16]. More 

specifically, in their work, an external electro-optic modulator (EOM) modulates the output of the 

pump laser at 1f  while the CW probe laser measures the surface temperature of the sample 

(Figure 2-10). Then another EOM working at 2f  is placed before the detector and modulates the 

probe light reflected from the sample, generating heterodyne frequencies at 1 2f f . The 
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component of 
1 2f f is then detected. As the thermal response is measured at the heterodyne 

frequency of 
1 2f f , which can be freely selected, having a low heterodyne frequency results in 

lower noise [16]. This is because a great deal of the noise in the detection circuit at frequencies > 

10 MHz results from coherent RF pickup between the cables connecting signal generator and 

modulator to the cables connecting photodetector and lock-in amplifier. By detecting at 
1 2f f , 

the coherent noise at frequencies 
1f  and 

2f  is rejected. 

 

Figure 2-10. A schematic of BB-FDTR [16]. Two electro-optical modulators generate the two frequencies for heterodyne 

detection. Abbreviations are as follows: I-488/532: 488/532 nm isolator, BS: beam splitter, PBS: polarizing beam splitter, QWP: 

quarter wave plate, HWP: half wave plate, LN: focusing lens, BP-488/532: 488/532 nm bandpass filter, PDA: amplified 

photodiode, EOM1/EOM2: electro-optic modulator at 488/532 nm, OBJ: objective, LA: lock-in amplifier, SG1/SG2: signal 

generator, MX: electronic mixer, LPF: low pass filter. Reprinted with permission from Rev. Sci. Instrum. 84, 064901 (2013). 

Copyright 2013 American Institute of Physics. 
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In FDTR and its related techniques, the quantity of interest is the thermal phase lag of the 

temperature of the sample with respect to the heat flux generated by the pump beam. To isolate 

the thermal phase from other experimental sources of phase offset, a reference measurement is 

needed (described in more detail in section 3.1) [16].  

 

Figure 2-11. A comparison between strength of thermal signal and noise in a typical FDTR measurement and a BB-FDTR 

measurement.  

 

Figure 2-11 shows the SNR for a BB-FDTR measurement based on the heterodyning approach 

introduced by Regner and co-workers. Using a heterodyne frequency of 100 kHz, the SNR 

becomes smaller than 10 at around 170 MHz in comparison with typical FDTR where this happens 

at around 70 MHz (Figure 2-11). The test sample in this case is a multi-layered 

Al(59nm)/SiO2(150nm)/Si sample, under incident powers of 10 mW and 18 mW of 515 nm and 
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785 nm, respectively with rms spot size of ~ 1.4 μm. The BB-FDTR technique developed by 

Regner and co-workers requires the use of two EOMs, which add significantly to the cost of 

implementation. While the signal depicted in Figure 2-11 represents the amplitude of the thermal 

signal detected by probe laser through thermoreflectance, noise is extracted by detecting the probe 

laser while the pump laser is blocked. 

 

2.4 Sample Preparation and Ancillary Characterization  

As the presence of a transducer is vital for thermoreflectance studies, in this section the properties 

of the transducer will be reviewed. Then, the knife-edge profiling technique as a method to 

measure beam spot size will be discussed. Finally, the four-point probe technique to measure the 

electrical conductivity of the transducer will be introduced. The transducer characteristics and 

beam spot size are necessary to relate the optical measurements to the thermal properties of 

interest. 

 

2.4.1 Sample Preparation: Transducer 

In order to make a TDTR or FDTR measurement, the sample needs to have a thin metallic layer 

deposited on its surface, which is often referred to as the transducer. This transducer acts as both 

heater and thermometer; as it absorbs heat from the pump laser to generate the heat flux stimulus, 

and converts the surface temperature variations to intensity changes in the reflected probe beam 

[69]. The temperature-dependent behavior of the transducer is explained by its coefficient of 

thermo-reflectance at a given wavelength [16]:  
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  ,1/ /o d T dT            (2.16) 

where 
,o   and   are the room temperature nominal reflectivity and the temperature dependent 

reflectivity, respectively, at wavelength   [16]. It should be noted that Eq. (2.16) is based on the 

assumption of linear dependence of the reflectivity on temperature. That is not typically the case, 

therefore the temperature changes should be kept small.  

The thickness of the transducer is usually between 50 to 100 nm [78], thick enough to be 

considered as an optically opaque layer on top of the sample [81]. If the transducer is optically too 

thin, then part of the beam reaches the layers beneath the transducer and therefore the optical 

properties of all of the layers need to be considered in the model in the order to fit for thermal 

properties, and the thermal model needs to consider sub-surface heat sources [81]. If the transducer 

is too thick, on the other hand, the temperature drop across the transducer increases and the 

sensitivity to thermal properties of the underneath layers decreases [81]. Precise knowledge of the 

thickness of the transducer and its thermal properties is essentially important when analyzing 

FDTR/TDTR measurements. Choosing the appropriate material as the transducer not only 

increases the signal to noise ratio, but also reduces the optical penetration depth and prevents 

volumetric heating in the sample [16].  

In order to select a good material as the transducer, several points need to be accounted for. Since 

the signal in a FDTR measurement is proportional to the thermo-reflectance coefficient (Eq. (2.16)

) of the transducer and the temperature variations of the surface of the sample [16], the transducer 

needs to be chosen such that it features high thermo-reflectance coefficient at the wavelength of 

the probe laser [16]. While the characteristics of the transducer are essential in FDTR, the choice 

of material does not change the measured thermal conductivity of the sample beneath [69]. 
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Recently the analysis of the optical and thermal transport in thermoreflectance measurements has 

been further refined to allow FDTR characterization of semiconducting samples without the need 

for a transducer [82]. 

Al, Pt, Au, and Ag are considered as popular choices for transducer [17, 81], depending on their 

absorption coefficients at the pump wavelength and the thermo-reflectance coefficients at the 

probe wavelength. Aluminum (Al) is often used when the temperature of the measurement is not 

high, as Al has a relatively low melting point [69]. When the measurement temperature is high, 

Platinum (Pt) can be used instead [69].  

 

2.4.2 Four-Point Probe Measurement 

In the four-point probe measurements, an electrical current is supplied by two probes and sensed 

by two other probes (Figure 2-12). The use of 4 probes allows to remove the contribution of contact 

resistance and obtain directly the resistance of the sample. By measuring the sheet resistance using 

this method and utilizing the Wiedemann-Franz law, the in-plane thermal resistivity/conductivity 

of a thin film with known thickness can be calculated. This is done routinely to determine the 

transducer thermal conductivity in thermoreflectance measurements. 

 

Figure 2-12. Schematic of a four-point probe measurement. 
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2.4.3 Knife-Edge Technique 

In order to measure the laser beam spot size, a knife-edge profiling technique is used, in which a 

sharp edge such as that of a doctor blade is scanned across the focal plane of a focused light beam 

to determine its diameter. A photodetector or a power meter collects the laser beam that is reflected 

from (or transmitted through, depending on the relative position of the detector) the cleaved edge 

of a crystal such as a Silicon wafer. By precisely moving this edge and measuring the amount of 

light getting to the detector, the beam profile can be determined. Assuming a TEM00 beam with 

Gaussian intensity profile of [17]:  
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where 0A  is the beam power and 0  is the 21/ e  of beam radius. The laser beam can be assumed 

to be Gaussian (which is an appropriate approximation in most situations), and the resulting 

profiles in the x  and y  directions will be the same. Moving the edge of a sample in the x   

direction, and performing a Gaussian fit on the derivative of the total intensity of light collected 

by the detector [17]: 
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the spot size 0  can be measured. An example of this has been plotted in Figure 2-13. 

It is noteworthy to mention that the one-dimensional spot size measurement mentioned above 

relates to the beam size in the x direction. If the beam profile is not circular, the profile along the 

y direction will differ [17]. 
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Figure 2-13. Measured intensity profile and its Gaussian fit, yielding a spot size and its lateral displacement. 

In order to accurately measure the beam spot sizes as they are in the thermal measurement, it is 

vital for the beams to be on the same focal point that they were in the thermal measurement. In 

order to achieve the same focal point for both thermal and spot size measurements, several methods 

can be employed. For instance, a CCD camera can be used to inspect the focal position of the laser 

and ensure that the sample is in the same focal point [78]. Another method is to maximize the 

thermoreflectance signal while profiling and while performing thermal measurements [14].   

 

2.5 Determining thermal properties from thermoreflectance measurements 

The unknown thermal properties of interest can be extracted by fitting FDTR/TDTR measurement 

data to a solution of the heat equation. Cahill described the heat transport in a semi-infinite 

isotropic layered system illuminated by concentric Gaussian-shaped pump and probe beams in the 

frequency domain in a cylindrical coordinate system [83]. Schmidt et al. extended the solution to 
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account for anisotropic thermal conduction [39]. They also showed that by appropriately choosing 

the pump and probe spot sizes as well as the modulation frequency, they could measure both in-

plane and out-of-plane thermal conductivity of thermally anisotropic materials [39]. Feser and 

Cahill provided an alternative method to measure the in-plane thermal conductivity of anisotropic 

layered materials by using a lateral offset between axisymmetric pump and probe beams, under 

the condition that the lateral diffusion is comparable with the laser spot size [38]. They then 

extended their method for non-transversely isotropic systems with arbitrary thermal conductivity 

tensor and general laser intensity profiles, as long as the spot sizes are comparable or smaller than 

in-plane heat diffusion [71].  

Here, we review the frequency domain solution for the surface temperature presented by Feser and 

Cahill to account for beam offset as well as anisotropic transport in layered materials [38]. It should 

be noted that, in what follows, heat transport is treated diffusively and non-diffusive transport can 

be seen as a deviation that yields “unexpected” thermal properties. While deviations from the 

diffusive model can be used to investigate non-diffusive transport in materials with known thermal 

properties, it is harder to make this distinction for materials that are not as well known. In this case, 

tests for non-diffusive transport should be carried out. This issue is discussed in more detail in 

Chapter 5. 

One-dimensional (z direction) transient heat conduction can be expressed using heat diffusion 

equation: 
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The temperature fluctuations of a layered system imposed by a Gaussian pump beam and detected 

by a Gaussian probe beam that can be fit to the FDTR experimental data is described as: 



43 

 

        
0

2
,

s

T f G f h P h S h hdh
A

 

     (2.20) 

for which three main ingredients are needed: the Hankel transforms of the intensity profiles of the 

pump  P h  and probe  S h  beams, and the Green’s function solution  ,G f h  for the 

temperature response of the system under a periodic point heat source of unit power with the 

frequency of f [38].  

 ,G f h  can be calculated iteratively from: 
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with: 
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where the n  is the layer number ( n = 1 for the topmost layer), rk  and zk  are the in-plane and out-

of-plane components of the thermal conductivity, zD  is the out-of-plane thermal diffusivity, t is 

the thickness, and h  is the Hankel transform variable. The bottom-most layer can be assumed to 
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be semi-infinite if the thermal waves don’t penetrate through its thickness, and therefore for the 

last layer B+ and B- are set to 0 and 1, respectively. 

The intensity of a Gaussian distributed pump laser beam, with 0  being the 2
1

e
 radius and PA  

being the total absorbed intensity, can be described as:  
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The Hankel transform of  p r  is then written as: 
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The last ingredient is the Hankel transform of the intensity profile of the probe beam. In case of a 

probe beam coaxial with the pump beam,  S h  would be similar to Eq. (2.27). However, when 

there is a lateral offset between pump and probe beams [38]: 
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where 1  is the 2
1

e
 radius of the probe beam, SA  is the intensity of the probe beam, and the 

polynomial  nl x  is defined recursively as: 
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where l’n and l”n are the first- and second-order derivative of ln and l0=π. 

The fitting routine is performed through a least squares algorithm in which the error between the 

measured phase and the modeled phase (Eq.(2.20)) is minimized [75, 84]. 
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Chapter 3: FDTR Instrumentation 

Chapter 3 has been partially adapted, with permission, from: 

M. Shahzadeh, M. Rahman, O. Hellwig, and S. Pisana, "High-frequency measurements of 

thermophysical properties of thin films using a modified broad-band frequency domain 

thermoreflectance approach," Review of Scientific Instruments, vol. 89, no. 8, p. 084905, 2018. 

Copyright 2018 American Institute of Physics. 

M. Rahman, M. Shahzadeh, P. Braeuninger-Weimer, S. Hofmann, O. Hellwig, and S. Pisana, 

"Measuring the thermal properties of anisotropic materials using Beam-Offset Frequency Domain 

Thermoreflectance," Journal of Applied Physics, vol. 123, no. 24, p. 245110, 2018. Copyright 

2018 American Institute of Physics. 

M. Rahman, M. Shahzadeh, and S. Pisana, "Simultaneous measurement of anisotropic thermal 

conductivity and thermal boundary conductance of 2-dimensional materials," Journal of Applied 

Physics, vol. 126, no. 20, p. 205103, 2019. Copyright 2019 American Institute of Physics. 

 

3.1 FDTR 

In FDTR, two light beams (usually referred to as pump and probe) are focused on the surface of a 

sample. FDTR can be implemented with both pulsed and CW lasers. If a pulsed laser is used, the 

two light beam branches usually come from the same laser [76], and then are separated in time by 

an optical delay stage (similar to TDTR) so that the probe beam is time-delayed by an appropriate 

amount, as determined by the sensitivity of the measurement and the sample of interest. The pump 

is intensity-modulated at a frequency f and this frequency is scanned to obtain data at multiple 
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frequency values. Likewise, in the case of CW lasers, a pump laser beam is intensity-modulated at 

a frequency f  and scanned within a spectral range of interest [18]. A periodic heat flux is generated 

by the absorbed pump laser on a thin metallic layer on the surface of the sample, and therefore the 

surface temperature oscillates at the same frequency as the modulation frequency of the pump laser 

(f). The probe laser picks up the temperature response through the principle of thermoreflectance 

and becomes intensity-modulated at f. As both amplitude of the surface temperature and phase lag 

between the heat flux (generated by the pump laser) and the surface temperature (observed by the 

reflected probe laser) contain information about the thermal properties of the sample, these 

quantities will be used to extract the unknown thermal properties of the sample by fitting the 

measured temperature response to the solution of the heat diffusion equation (Eq.(2.20)) [16]. In 

the following we will focus on implementations of FDTR based on CW lasers. 

The signal recorded by the detector from a FDTR measurement involves phase responses from the 

electronic and optical components, as well as the thermal response of interest. This phase lag needs 

to be referenced to extract the thermal phase and cancel out the extra phases. In FDTR, this is 

usually achieved by measuring a branch of the pump beam which passes through the same optics 

and electronics to cancel all the unwanted phases from the measurement except the thermal phase. 

This reference measurement contains a negligible amount of thermal phase information for two 

reasons: (1) the pump wavelength may have a negligible thermoreflectance coefficient, and (2) the 

thermoreflectance signal is much smaller than the reflectance (typically a factor of 104 smaller). 

A schematic of a typical FDTR setup is presented in Figure 2-9. A lock-in amplifier (Zurich 

Instruments HF2LI) is used to modulate the intensity of the pump laser (Omicron A350 operating 

at 515 nm) while the probe (Omicron A350 operating at 785 nm) remains unmodulated. These two 

operating wavelengths were chosen in order to swap the role of the pump and probe lasers 
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according to the samples being study, so that the laser wavelength corresponding with the larger 

thermoreflectance coefficient of the sample is used as the probe. Typically, 515 nm and 785 nm 

are effective probe wavelengths when using Au and Al transducers, respectively. Optical isolators 

(Conoptics M711A and M712B) are used to minimize back-reflections that can destabilize the 

laser sources. We also avoid back-reflections of the probe from entering the pump, and vice versa, 

to prevent inadvertent intensity modulation through optical cavity modulation. Half-wave plates, 

a polarizing beam splitter and a quarter-wave plate are used to ensure maximum light throughput 

in a coaxial setup as light reaches the sample and is reflected back towards the detector. A 40X 

objective (Olympus RMS40X) is used to focus the beams on the surface of the sample. The small 

spot sizes obtained (~1.5 μm) improve the signal and improve sensitivity to in-plane thermal 

transport. This is in contrast with most TDTR and FDTR implementations that use beam sizes 

above 10 μm. The negative aspect of using smaller spot sizes is that a very careful spot size 

calibration is necessary to avoid errors in the data analysis. The surface temperature of the sample 

oscillates at the frequency of pump, as the pump light is absorbed on the transducer. The 

unmodulated probe laser samples the temperature response from the transducer by 

thermoreflectance, i.e. changes of reflectivity due to the surface temperature. The probe signal is 

then measured by a photodetector (Thorlabs PDA8A) and demodulated by the lock-in amplifier.  

In order to isolate the thermal phase lag of interest in FDTR, two measurements are performed. 

The phase of the first measurement, the thermal measurement, has contributions from the thermal, 

optical and electrical phases with respect to a reference phase from the lock-in amplifier, i.e 

1 Thermal Optical Electrical ref        . Then, a non-thermal measurement 2  is performed to recover 

the thermal phase of interest from other unwanted phases; i.e. 2 .Optical Electrical ref       
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Therefore 1 2 Thermal    . The non-thermal measurement is typically achieved by replacing a 

filter in front of the detector in order to measure the modulated pump, rather than the probe. 

In order to check the validity of our FDTR measurements, we start by measuring standard samples 

using our FDTR setup depicted in Figure 2-9 and Figure 3-1. 

 

 

Figure 3-1 . Our typical FDTR configuration. 

 

As an example, the result of a measurement performed up to 72.3 MHz on Al/SiO2/Si (Figure 3-2) 

is presented. The data was modeled as a five-layer system consisting of three finite-thickness 

material layers and two interfaces. All material parameters and sources are shown in Table 3-1, 

and an RMS spot size of 1.15 μm was measured by the knife-edge technique. Fitting for the thermal 

conductivity of SiO2 as a free parameter, the thermal conductivity of 1.28 ± 0.03 W/mK was 
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extracted. The results are in good agreement with the expected thermal conductivity of SiO2 (1.3-

1.4 W/mK). The thermal phase measured using our FDTR system and the fit from our model is 

also depicted in Figure 3-3.  

 

 

Figure 3-2. Image of the Al/SiO2/Si sample (a) under microscope, and (b) taped for measurement. 

 

Table 3-1. Material parameters used for fitting Al/SiO2/Si system. The TBC of Al/SiO2 and SiO2/Si was set to 100 MW/m2K and 

28 MW/m2K, respectively. 

 k (W/mK) C (MJ/m3K) t (nm) 

Al kz = 243, kr = 96.8 2.42 35 

SiO2 Determined by Fit 1.59 100 

Si 145 1.64 Semi-Infinite 
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Figure 3-3. The measured thermal phase (black squared symbols) and the calculated fit (red line) for the Al/SiO2/Si sample. 

As mentioned earlier, the fitting routine is performed by a least squares algorithm. The error 

analysis is performed by calculating the variance of the desired parameters using the elements of 

variance-covariance matrix and calculating the standard deviation of the fitted parameters as a 

representation of the quality of fit. In case of the above example for thermal conductivity of SiO2, 

the value of 1.28 ± 0.03 W/mK accounts for ~68% of the thermal conductivity uncertainty 

distribution.  

 

3.1.1 Extension of FDTR to High Frequency 

A useful method to increase the modulation frequency in FDTR while maintaining a sufficient 

SNR, is briefly described here which provides economical means to characterizing heat transport 
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at submicron length scales. This method doesn’t rely on heterodyning to perform measurements at 

a frequency where RF noise is minimized (such as BB-FDTR discussed in 2.3.4). Instead, reducing 

the spot sizes leads to increases in the signal amplitude, due to the increase in the magnitude of the 

surface temperature oscillations. In this case, care must be taken to ensure that the temperature 

oscillations do not yield a nonlinear thermoreflectance response, that the local temperature rise is 

not above the desired value or result in irreversible sample modification. This can be done by 

checking that the thermal phase obtained is power-independent. Reducing the spot size also 

increases potential sources of error in accurately determining the spot size, therefore local spot size 

measurements for each sample are important. A lock-in amplifier capable of demodulating the 

signal at the selected frequency range is needed. Here we use a Zurich Instruments HF2LI lock-in 

amplifier. Although the nominal bandwidth of the HF2LI is 50 MHz, and the signal strength is 

reduced beyond this, the instrument is capable of demodulating signals up to 100 MHz. The use 

of several ferrite cores on the signal cables reduces coherent noise. In spite of the bandwidth 

limitations of both the lock-in amplifier and photodetector, we can perform measurements to ~100 

MHz. 

In order to further cancel residual RF noise in the detected thermal signal, we used a mathematical 

approach, since the noise is coherent with the signal. By subtracting at each frequency the 

measured complex noise vector (obtained by blocking the modulated probe laser light from the 

detector) from the measured complex signal vector, we obtain the thermal signal of interest. In 

practice, for the noise measurement, since we want to keep any source of coherent noise coming 

from the modulation process without directly detecting the modulated probe light, the probe laser 

is negatively biased to below the lasing threshold, but its modulation input is left on. This 

procedure facilitates automating the process of measuring the complex noise vector, as it is simpler 
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to implement than steering or filtering the probe light. The noise measurement was averaged to 

obtain a value with sufficient accuracy. We note that using small spot sizes not only increases the 

thermal signal, but also reduces the sources of coherent noise since the amplitudes of the voltage 

signals used to modulate the lasers while maintaining a sufficiently strong signal thermal signal 

are lowered. 

Figure 3-4 shows the thermal phase measured using FDTR extended up to 90 MHz before and 

after the noise correction using the mathematical approach described above. 

 

Figure 3-4. Extension of FDTR to 90 MHz; comparing the thermal phase before and after mathematical noise correction for 

Al/SiO2/Si. The drop in SNR at higher frequencies is caused by the smaller FDTR signal and the nominal bandwidth of the lock-

in amplifier, as well as greater coherent RF noise picked up by the electrical cables.  
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3.2 Beam Offset FDTR 

3.2.1 Introduction 

Both FDTR and TDTR are able to measure thermo-physical properties of a wide variety of 

materials. However, as the anisotropy of heat transfer increases, these methods do not have enough 

sensitivity to measure the in-plane thermal conductivity. This situation often takes place in 2D 

materials, where there is a strong in-plane thermal conductivity compared to a weak out-of-plane 

thermal conductivity. In addition to 2D materials, anisotropic heat transport becomes important in 

multilayers where there are several interfaces between layers impeding heat conduction [85, 86].  

To show the effectiveness of using offset in FDTR measurements, an Al-coated substrate is 

considered. By fixing the spot size (1 μm), the Al/substrate TBC (150 MW/m2K), and reference 

thermo-physical parameters of Al, the sensitivity to isotropic thermal conductivity of the substrate 

is examined by changing the pump and probe offset (0 and 1.5 μm). As Figure 3-5a shows, using 

offset increases the sensitivity to thermal conductivity regardless of the value of substrate’s thermal 

conductivity.  

 Furthermore, Figure 3-5b depicts improvement of the sensitivity plot using offset when the 

substrate possesses anisotropic thermal conductivity (kr = 10 W/mK and kz = 1 W/mK). 
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Figure 3-5. Phase sensitivity to 10% change of thermal conductivity with pump and probe offset values of 0 and 1.5 μm, and spot 

size of 1 μm. (a) isotropic thermal conductivities of 100, 50, and 1 W/mK. (b) Anisotropic thermal conductivity values of 10 

W/mK and 1 W/mK for in-plane and out-of-plane components, respectively.    

 

The sensitivity of measurement can be affected by spot size as well. For instance, Figure 3-7 shows 

that the sensitivity to in-plane thermal conductivity can be significantly enhanced by using a 

smaller spot size. Since the temperature fluctuations of the sample surface are inversely 

proportional to the spot size [83], using smaller spot size increases the temperature changes and 

consequently yields a higher signal. This often allows for measurements with wider frequency 

range. However, care must be taken into account when small laser spots are used as they can induce 

large errors if not measured correctly. Furthermore, a smaller spot size can increase the local 

temperature rise, so the total power should be managed in order to avoid sample damage or make 
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measurements at undesired elevated temperatures. Temperature rises can be estimated beforehand 

or the results can be checked to ensure they are not dependent on laser power. 

Although in-plane thermal conductivity of some materials have been measured, the required 

increase in sensitivity to radial transport was achieved using different spot sizes [42]. This 

technique, despite being experimentally possible, requires the realignment of the optics every time 

the spot size is changed and might affect the accuracy of the measurements.  

In order to compare the sensitivity of FDTR measurements to different thermal model parameters 

with the phase noise of the measurements, the phase noise has been plotted in Figure 3-6 at three 

different lock-in time constants. It should be noted that sensitivity plots presented in this work are 

the sensitivity to 10% change of parameters. Therefore, once phase noise is larger than phase 

sensitivity of a particular parameter, the accuracy of the values extracted from fits drops down.  
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Figure 3-6. Phase noise of FDTR measurement at three different lock-in time constants. The measurement was performed on 

Al/SiO2/Si sample. The noise represents the RMS phase variations over 30 measurements at each frequency point with 

measurement interval of more than the respective time constant. 
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In order to increase sensitivity to in-plane thermal transport, Feser and Cahill presented a beam 

offset TDTR method which takes advantage of a lateral offset between pump and probe laser 

beams to increase the sensitivity to in-plane heat transport [38]. Although anisotropic heat 

transport is important in 2D materials, there are only a few reports that demonstrate the 

determination of anisotropic thermal conductivity using FDTR [42, 75, 78, 87].  
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Figure 3-7. Sensitivity to 10% change of thermal conductivity components for two cases of spot size (1 and 10 μm). The offset is 

set to be 1.5 times the spot size. The system of materials is similar to Figure 3-5b. 

 

By taking advantage of small laser spot sizes, we established a beam-offset FDTR method to 

measure the in-plane and out-of-plane components of thermal conductivity of anisotropic materials 
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as well as TBC from a single data set measured at different beam offsets. This does not require 

any re-alignment of the experimental setup. 

 

3.2.2 Experimental Setup 

The schematic of the beam offset FDTR setup is depicted in Figure 3-8a. The setup is similar to 

our typical FDTR setup (Figure 2-9), with an added Newport TRA12CC actuator to steer an optical 

window in order to obtain offsets between pump and probe beams (depicted in Figure 3-8b).  

 

 

Figure 3-8. (a) Schematic of beam offset FDTR setup. (b) Mechanism of achieving offset by steering an optical window. 
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3.2.3 Results 

In order to show the effectiveness of beam offset FDTR in enhancing the sensitivity to anisotropic 

thermal transport, a sensitivity analysis is performed by taking the absolute difference in the 

modeled thermal phase when the parameter of interest is changed by 10%. The sample of interest 

in this case is Al(50 nm)/Graphite and the parameters investigated are Al/Graphite TBC as well as 

in-plane and out-of-plane components of thermal conductivity of Graphite. As an example of the 

literature values reported for graphite, TBC of 50 MW/m2K, out-of-plane thermal conductivity of 

6.1 W/mK, and in-plane thermal conductivity of 1983 W/mK have been reported [39]. 

Figure 3-9 shows the sensitivity of Al/Graphite TBC when the offset between pump and probe 

beams increases from 0 to 2 μm. The rms spot size in this case is considered to be 1.4 μm. As 

Figure 3-9 shows, the sensitivity to TBC decreases by increasing the offset. 
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Figure 3-9. Sensitivity of Al/Graphite TBC as a function of beam offset. The rms beam spot size is 1.4 μm. 
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The sensitivity of Graphite thermal conductivity is depicted in Figure 3-10. In contrary to the 

sensitivity of Al/Graphite TBC to offset (Figure 3-9), the sensitivity to both in-plane and out-of-

plane components of thermal conductivity increases with offset. This enhancement in sensitivity 

plays a major role in determining the anisotropic thermal conductivity components. 
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Figure 3-10. Sensitivity of Graphite thermal conductivity as a function of beam offset: (a) out-of-plane component and (b) in-

plane component. . 
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Since the parameters of interest in measurements on transducer-coated bulk crystals are typically 

the TBC and components of thermal conductivity, a simultaneous measurement of all three 

parameters can be obtained by performing beam offset FDTR with different offset values if the 

shape of the sensitivity curves as function of frequency are different enough. This approach was 

employed to extract the TBC and components of thermal conductivity of an Al/Graphite sample. 

The sample was measured at four different offset values of 0.8, 1.3, 1.95 and 2.25 μm offset 

between pump and probe beams. It should be noted that the rms spot size was increased from 1.35 

to 1.54 μm as a result of offsetting. The TBC, out-of-plane and in-plane conductivities of 48.6 ± 

9.1 MW/m2K, 5.25 ± 2.63 W/mK and 1175.2 ± 416 W/mK were extracted, respectively. The 

results are in good agreement with those reported in literature [38, 39]. The fit is plotted in 

Figure 3-11.  

Here, it is worth comparing the extracted kr = 1175.2 ± 416 W/mK with kr = 1983 W/mK reported 

in the literature [39]. Schmidt et al. measured kr of graphite with a pump and probe spot sizes of 

27 and 5 μm, respectively. By comparing the experimental values of kr with Boltzmann transport 

equation calculations through density functional perturbation theory for graphite performed by 

Fugallo et al. [88], we attribute the reduced thermal conductivity to non-diffusive transport in 

graphite. This phenomenon has been explored in more detail in Chapter 5 for Tungsten Disulfide. 
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Figure 3-11. Thermal phase measured from Al/Graphite at different offset values (squared symbols) and fit (solid line).  

 

3.3 Frequency Domain Magneto-Optical Kerr Effect (FD-MOKE) 

3.3.1 Introduction 

As mentioned earlier, rectifying a lack of sensitivity to in-plane thermal transport measurements 

for some materials (such as 2D materials) using FDTR and TDTR methods requires development 

of new techniques. Despite in-plane thermal conductivity measurement of some anisotropic 

materials through thermoreflectance techniques such as beam offsetting [38, 80, 87] and varying 

spot sizes [39], the experimental sensitivity needs to be further increased to measure the anisotropic 

thermal conductivity as well as TBC of 2D materials, especially for the case of single and few-

layer structures.  
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Magneto-Optical Kerr Effect has been used in a TDTR setup (TR-MOKE: Time-Resolved 

Magneto-Optical Kerr Effect) to enhance the sensitivity to in-plane heat transport [89]. In TR-

MOKE, a ferromagnetic metal film acts as the transducer to induce changes in the polarization of 

the reflected probe light as a result of temperature-dependent variations in magnetization (dM/dT) 

[89], compared to a nonmagnetic metal transducer in FDTR/TDTR which induces temperature-

dependent changes in the intensity of the reflected probe light. The temperature-dependent 

magnetization in TR-MOKE induces changes of polarization of reflected probe beam due to the 

magneto-optical Kerr effect [89].  

An important advantage of MOKE-based methods is that the transducer is much thinner than the 

transducer in other FDTR/TDTR methods. For instance, a 20 nm thick CoPt multilayer transducer 

can be used in TR-MOKE [89] compared to 50-100 nm thick nonmagnetic transducers in 

FDTR/TDTR [78, 79]. As a result of using a thinner transducer, the lateral heat transport in the 

transducer decreases and the sensitivity to the properties of the underlying layers will be increased 

due to a smaller thermal mass of the transducer [71]. Additionally, as the signal is based on the 

temperature changes of the magnetic transducer, using a thin non-opaque transducer is possible 

and the reflected beams from the layers underneath the transducer does not affect the measurement 

[89]. This is due to the fact that only the relative changes in the intensity of orthogonally polarized 

components of the reflected probe beam is detected and the background intensity from the layers 

underneath the transducer remains constant. 

In theory, MOKE can be incorporated in FDTR as well. FDTR is less expensive and easier to set-

up compared to TDTR, and the ability to modulate the frequencies over a wider range in FDTR 

compared to TDTR allows for control over the thermal penetration depth [16, 79, 80]. In what 

follows, I briefly describe our implementation of Frequency Domain Magneto-Optical Kerr effect 
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(FD-MOKE), a new approach to quantify the thermal properties of anisotropic materials based on 

the Kerr effect, yielding enhanced sensitivity to lateral heat transport.  

 

3.3.2 Experimental Setup 

A schematic of our FD-MOKE setup is depicted in Figure 3-12. The setup is similar to our beam 

offset FDTR setup (Figure 3-8), with the following modifications. Non-polarizing optics are used 

to route the beams in order to avoid affecting the strength of the Kerr signal. A Wollaston prism 

splits the beam into two orthogonal polarization states, and a half-wave plate balances their 

intensities before reaching a balanced photodetector. 

The optical system is set-up in the polar Kerr configuration for ease of implementation, and this 

implies that the detected signal is sensitive to changes of the magnetization state of the transducer 

in the direction perpendicular to the sample surface. In this case which has been adopted in TR-

MOKE in the literature [89], transducer materials with perpendicular magnetic anisotropy would 

be needed to use in the polar Kerr configuration, but this would also complicate sample 

preparation. For example, perpendicular magnetic anisotropy can be obtained with carefully tuned 

sub-nm thick M/N multilayers, where M can be Fe, Co or Ni, and N is typically Pd or Pt. We 

choose simple Nickel thin films as transducer for several reasons. First, Ni is readily available and 

a thin film with repeatable magnetic characteristics can be easily deposited irrespective of the 

choice of substrate or film thickness. Since the demagnetizing field of the thin film dominates any 

other source of magnetic anisotropy, the remanent magnetization will be in-plane. In order to 

achieve Kerr contrast in the polar geometry, the magnetization needs to be brought out of the plane 

of the sample, so using Ni, which is a ferromagnet with relatively low magnetization ~500 emu/cc, 
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requires a relatively weak field of ~6.3 kOe to sufficiently tilt the magnetization out of the plane. 

Lastly, Ni has a relatively low Curie temperature ~350 C, therefore its magnetization curve as 

function of temperature will have a comparatively large slope dM/dT near room temperature, 

aiding in the measurement of the temperature induced changes to the magnetization.  

To isolate the thermal phase lag of interest, we perform two measurements of the phase of the 

signal as function of modulation frequency. We first null the probe signal in the balanced detector 

by rotating the half-wave plate, then we perform the first measurement while applying a saturating 

perpendicular field to the sample using an external permanent magnet. This measurement is 

referred to as  1 f , and it contains the modulation frequency-dependent phase information from 

the temperature fluctuations in the magnetic layer, reference phase, optical phase, and electrical 

phase. Since the measurement was preceded by nulling the probe signal at zero applied magnetic 

field, only the response from the magnetic transducer contributes to the signal, whereas any other 

contribution such as thermoreflectance from underlying layers is rejected. Another measurement 

is required to determine the reference phase, and optical and electrical contributions. This 

measurement is referred to as  2 f , and is performed by detecting the pump beam. Subtracting 

the two frequency-dependent phases  1 2   yields the desired thermal phase, which is fit to a 

model based on the diffusive heat equation to extract the thermal properties of interest. Two optical 

bandpass filters are used to separate the pump and probe beams before the balanced photodetector. 

 

 



66 

 

 

Figure 3-12. Schematic of FD-MOKE setup. NPBS represents non-polarizing beam splitter. 

 

3.3.3 Results 

An example result of measurements with FD-MOKE is plotted in Figure 3-13. The sample consists 

of single layer graphene on SiO2(300 nm)/Si coated with 20 nm Ni and capped with 3 nm Al to 

prevent oxidation of the Ni layer. The in-plane thermal conductivity of 636 ± 140 W/mK was 

measured for graphene [90]. The result is in good agreement with those reported in the literature, 

for instance 617 W/mK [42]. Furthermore, a 17 ± 0.2 MW/m2K TBC was measured across 
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Ni/graphene/SiO2 [90]. The measured TBC is smaller than those reported in the literature [91, 92], 

however the reduced TBC can be related to several interface parameters such as the presence of 

impurities or oxygen. 
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Figure 3-13. Thermal phase measured from Ni/Graphene/SiO2/Si at different offset values (squared symbols) and fit (solid line) 
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3.4 High-frequency measurements of thermophysical properties of thin films using a 

modified broad-band frequency domain thermoreflectance approach 

3.4.1 Introduction 

As discussed in sections 2.3.3 and 2.3.4, most FDTR measurements are limited to around 20 MHz. 

At frequencies larger than 20 MHz, the SNR drops significantly due to the decrease of the signal 

(surface temperature oscillations vary as 1/2f  for the 1D case) and increase in noise (mostly 

coherent RF noise picked up by the electrical cables). Figure 2-11 shows the amplitude of the 

thermal signal and noise in a typical FDTR measurement, where the SNR rapidly drops above 10 

MHz. To overcome this limitation, BB-FDTR implemented by Regner and co-workers (discussed 

in section 2.3.4 and depicted in Figure 3-14a) was used to increase the pump modulation frequency 

up to 200 MHz [16] and to determine the contribution of phonons with different MFPs to the 

thermal conductivity in different metallic and non-metallic materials [14, 93, 94]. 

In the original implementation of BB-FDTR by Regner and co-workers, two EOMs was used: one 

after the pump laser and the other one before the detector to heterodyne the probe beam. They 

proposed an alternative placement for the heterodyning EOM: on the probe path before the sample, 

in a similar way as the pump beam EOM. However, in this case, they did not propose a method to 

recover the thermal phase of interest from the unwanted instrumental contributions to the measured 

phase. Herein, we resolve this issue by presenting two different techniques to perform BB-FDTR 

measurements beyond 100 MHz, the so-called differential broadband frequency domain 

thermoreflectance (DBB-FDTR). Since the laser beams are modulated before the sample, both 

methods eliminate the use of expensive EOMs altogether, by using analog modulated pump and 

probe lasers. We recover the thermal phase of interest through a differential approach. Measuring 
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a differential thermal phase by either varying the spot size or offsetting the pump and probe beams, 

the thermophysical properties of materials can be extracted. This approach enables the study of 

nanoscale heat transport where non-equilibrium phenomena are dominating. 

 

 

Figure 3-14. (a) Regner’s BB-FDTR configuration. (b) DBB-FDTR configuration described in this work based on changing the 

focal point, and (c) based on changing the offset between pump and probe. 

 

3.4.2 DBB-FDTR Implementation 

Schematics for two approaches of the differential BB-FDTR (DBB-FDTR) setup are shown in 

Figure 3-14b and Figure 3-14c. A two-channel function generator (Anritsu-MG3740A) is used to 

modulate the intensities of the pump and probe lasers (Omicron A350 operating at 515 nm and 

785 nm) at 1f  and 2f , respectively. The rest of the setup is similar to FDTR setup described in 

section 3.1. The surface temperature of the sample oscillates at the frequency of pump (i.e. 1f ), as 
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the pump light is absorbed on the transducer. The probe laser operating at frequency 
2f  samples 

the temperature response from the transducer by thermoreflectance, i.e. changes of reflectivity due 

to the surface temperature. The heterodyne frequencies of 
1 2f f  generated on the surface of the 

sample by mixing the pump and probe signals are then measured by a photodetector (Thorlabs 

PDA8A). We note that the photodetector’s 50 MHz bandwidth is not necessary for DBB-FDTR, 

as we typically measure the low-frequency heterodyne component where the noise is at a minimum 

and limited by the detector. A lock-in amplifier (Zurich Instruments HF2LI) locked at the 

frequency 1 2f f  is used to demodulate the signal. We note that a high-frequency lock-in 

amplifier is not necessary to implement DBB-FDTR. 

As discussed in section 3.1, the phase measured at the lock-in amplifier has contributions from the 

thermal, optical and electrical phases with respect to a reference phase from the signal generator, 

i.e. 
1 .Thermal Optical Electrical ref         Typically in FDTR and BB-FDTR, after performing the 

thermal measurement 1  (a measurement that includes the thermal phase lag of interest) a non-

thermal measurement 2  is used to recover the thermal phase of interest from other unwanted 

phases; i.e. 2 .Optical Electrical ref       Therefore 1 2 .Thermal     The non-thermal 

measurement is typically achieved by replacing a filter in front of the detector in order to measure 

the modulated pump, rather than the probe. This approach is not viable when the pump and probe 

are directly modulated (as we do here), as the pump is not heterodyned and there is no signal at 

1 2f f  for the measurement 2 . This was reviewed in section 3.4.1. 

In the DBB-FDTR presented here, after performing the first thermal measurement (

1 1, 1, 1, 1,Thermal Optical Electrical ref        ), another thermal measurements is performed either at a 
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different focal point (using a Thorlabs KPZNFL5 piezo translational stage, depicted in 

Figure 3-14b), or on the same focal point but with an offset between the pump and probe beams 

(using a Newport TRA12CC actuator, depicted in Figure 3-14c). In this case, 

2 2, 2, 2, 2, .Thermal Optical Electrical ref         Key to our approach is to perform two thermal 

measurements that yield a sufficiently different thermal response, but otherwise have identical 

instrumental phases. Subtracting these two thermal measurements gives a differential thermal 

phase (DTP) that can be analyzed to extract the thermal parameters of interest. 

As it will be shown later, accurate knowledge of the pump and probe spot sizes or the offset 

between the pump and probe spots is important to reduce errors. To this end, the spot sizes are 

measured locally every time a DBB-FDTR measurement is made. We measure the spot sizes by 

analyzing the convoluted response obtained by scanning the relative offset between the Gaussian 

pump and probe beams [38]. These measurements are performed at 43 MHz to minimize the effects 

of in-plane thermal transport on the measured profile, and further increasing the modulation 

frequency has no effect on the spot size obtained. The results obtained in this way have been 

checked with a razor profiler for consistency. 

In focal DBB-FDTR (Figure 3-14b), two thermal measurements are performed in the same 

frequency range at two different focal positions. Any frequency-dependent variation to the 

electrical phase is common between the measurements performed at the two focal points, since the 

frequency range is identical, and therefore
1, 2,Electrical Electrical  . Moreover, since the beams are 

modulated with the same source, 1, 2,ref ref  . The optical phase shift for each beam travelling in 

free space is kd  , where d is the distance travelled and k is the modulation wavenumber, so the 

optical phase shift difference between pump ( P Pk d  ) and probe ( S Sk d  ) is  
2

P Sf f d
c






72 

 

, where Pf  and 
Sf  are frequencies of modulation for pump and probe beams. By choosing a 

heterodyne frequency of 100 kHz and given that the sample is typically defocused by shifting it 

over a distance of 7 μm, the optical phase difference is ~ 810 deg . Therefore, 
1, 2, ~ 0Optical Optical 

, and the Differential Thermal Phase (DTP) then can be extracted by calculating 

1 2 1, 2,Thermal Thermal      . 

By fitting the difference in the solutions of the diffusive heat equation calculated at the two focal 

points to the measured DTP, the unknown thermophysical properties can be extracted. The method 

to determine the thermal properties from thermoreflectance measurements was reviewed in 

section 2.5.  

 

3.4.3 Samples Considered and Sensitivity Analysis 

Three different samples have been studied in this work to demonstrate DBB-FDTR. The samples 

were prepared by sputter deposition of Al thin films on various substrates. Sample 1 consists of 

Al(59nm)/SiO2(150nm)/Si, sample 2 is Al(59nm)/Si and sample 3 is Al(59nm)/MgO. The 

thickness of the layers was determined by X-Ray reflectivity and the in-plane thermal conductivity 

of the Al transducers were determined by 4-point probe electrical conductivity and applying the 

Wiedemann-Franz Law. The thermophysical parameters of the samples are listed in Table 3-2. 

The values for the out-of-plane thermal conductivity and volumetric heat capacity were taken from 

the literature.  
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Table 3-2. Thermophysical properties of the samples studied in this work. The values for the in-plane thermal conductivity of Al 

and film thickness are specific to our samples, all other values in the table are taken from the literature. 

 kz (W/mK) kr (W/mK) C (MJ/m3K) t (nm) 

Al 173 173 2.42 59 

SiO2 1.32 1.32 1.59 150 

Si 145 145 1.64 Semi-infinite 

MgO Determined by Fit Determined by Fit 3.37 Semi-infinite 

 

In order to investigate how sensitive the thermal phase is to different parameters, a sensitivity 

analysis is performed. The definition typically used for the sensitivity is the logarithmic derivative 

of the phase with respect to the changes of a given parameter [16]. Here we prefer to calculate the 

absolute difference in the thermal phase when the parameter of interest is changed by 10%. This 

definition leads to a direct insight into whether a quantity is measurable or not by comparing the 

phase sensitivity to the typical phase noise of the measurement. 

Figure 3-15a and Figure 3-15b show the sensitivity analysis and the modeled DTP for Al/SiO2/Si 

for focal DBB-FDTR. The modeled DTP is highly dependent on the spot sizes used in the focal 

DBB-FDTR configuration. The DTP increases by increasing the difference between the first and 

the second measurement’s rms spot sizes, however one should note that the thermal signal 

magnitude decreases at larger spot sizes due to the reduction in surface temperature oscillations.  
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Figure 3-15. Modeled response of DBB-FDTR signals. For all the curves above, the sample is Al(59)/SiO2(150)/Si. (a) Modeled 

DTP in focal DBB-FDTR for different pairs of rms spot sizes. The larger the amount of defocus, the larger is the resulting rms 

spot size, though the associated signal will be lower. (b) Sensitivity of DTP with respect to 10% changes in different parameters. 

r1 and r2 are the rms value of pump and probe spot sizes at two focal positions. kr,1 is the radial thermal conductivity in the Al 

layer, TBC is the thermal boundary conductance, and kz,2 is the perpendicular thermal conductivity of SiO2. (c) Modeled DTP in 

offset DBB-FDTR for different pump-probe beam offset values. (d) Sensitivity of DTP with respect to 10% changes in different 

parameters. r and Offset are the rms value of pump and probe spot sizes, and the offset between pump and probe beams, 

respectively. 

 

Figure 3-15c and Figure 3-15d show the sensitivity analysis and the modeled DTP for Al/SiO2/Si 

for offset DBB-FDTR. Similar to the case for focal DBB-FDTR, the DTP obtained by offset DBB-

FDTR increases with increasing the offset between the pump and the probe beams. However, the 

thermal signal magnitude decreases by increasing the offset. Figure 3-15 shows that both focal and 
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offset DBB-FDTR methods show phase sensitivity to important parameters of the particular 

sample of study (Al/SiO2/Si). However, offset DBB-FDTR is more favorable when anisotropic 

heat transport is important [38, 80]. 

 

3.4.4 Results 

Figure 3-16a shows the DTP for Al/SiO2/Si measured by focal DBB-FDTR. The in situ measured 

rms spot sizes are 1.45 μm and 2.3 μm for the first and for the second focal positions, respectively. 

The fit resulted in the Al/SiO2 thermal boundary conductance (TBC) of 87.6 ± 15 MW/m2K and 

SiO2/Si TBC of 28.2 ± 2.25 MW/m2K, which are consistent with values reported previously [95-

97]. Using focal DBB-FDTR, the TBC of the Al/Si sample has been measured to be 192.5 ± 10 

MW/m2K (Figure 3-16b), which is in agreement with the values reported in the literature [15, 98]. 

Focal DBB-FDTR was used to measure the TBC of Al/MgO as well as the thermal conductivity 

of MgO. Figure 3-16c shows the obtained fit and the measured DTP which resulted in Al/MgO 

TBC of 163.8 ± 9.95 MW/m2K and kMgO of 55.3 ± 11.2 W/mK. The results are consistent with the 

values reported in the literature [99].  
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Figure 3-16. Measured DTP (squares) and the obtained fit (lines) for (a) Al/SiO2/Si, (b) Al/Si, and (c) Al/MgO, obtained by focal 

DBB-FDTR. 

 

Moreover, the results for offset DBB-FDTR with 1.5 μm pump-probe offset for Al/SiO2/Si 

indicated TBCs of 63.2 ± 26 MW/m2K for Al/SiO2 and 33.3 ± 10.6 MW/m2K for SiO2/Si 

(Figure 3-17a) which are consistent with the results obtained from focal DBB-FDTR.  
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Figure 3-17. (a) Measured DTP (triangles) and the obtained fit (line) for Al/SiO2/Si by offset DBB-FDTR with 1.5 μm pump-

probe offset. (b) Measured DTPs (symbols) and the obtained fits (lines) in offset differential FDTR for the same sample, obtained 

at two different pump and probe offsets. 

 

By comparing the results of focal and offset DBB-FDTR on the Al/SiO2/Si sample (Figure 3-16a 

and Figure 3-17a), one can see that the results obtained from the focal DBB-FDTR measurement 

are considerably more accurate and less noisy than those obtained by the offset DBB-FDTR. We 

attribute the inaccuracy in the offset DBB-FDTR measurement to the limited repeatability of the 

actuator that determines the offset between pump and probe beams. Due to the randomness in the 
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reference phase obtained from the analog signal generator every time a new frequency is set, the 

thermal phase at each frequency is measured at two different offset points, then the frequency is 

changed (rather than making a full measurement as a function of frequency at the first offset point, 

then making the next full measurement as a function of frequency at the second offset point). 

Therefore, the actuator is activated twice at each frequency point to take two measurements at 

different offset values. Our calibration showed that to obtain a 1 μm offset between the pump and 

probe beams, the actuator needs to be moved by 6 μm, while the repeatability of the actuator is 

limited to ±0.5 μm. In order to show the effectiveness of the offset DBB-FDTR technique while 

minimizing the error introduced by the limited repeatability of the actuator, two thermal FDTR 

measurements (without heterodyning) at two different offset values were performed up to 50 MHz. 

Since these measurements used the lock-in amplifier as signal source, each FDTR curve as 

function of frequency was measured separately, and the actuator was used only once. By 

subtracting the two phases measured, the instrumental contributions to the recorded phase were 

canceled (as described in DBB-FDTR Implementation section). Figure 3-17b shows the DTP 

measured for Al/SiO2/Si and the obtained fits for two different offset values. This resulted in fitted 

SiO2/Si TBC values of 29.8 ± 4.5 MW/m2K and 30 ± 4.2 MW/m2K for 1 μm and 1.5 μm offsets, 

respectively; which are consistent with those obtained from DBB-FDTR. However, for the 

measurements of Figure 3-17b, the sensitivity to Al/SiO2 TBC is too small within the frequency 

range measured with FDTR, and a high-frequency approach such as DBB-FDTR is necessary (see 

Figure 3-15d). By comparing the results obtained from offset DBB-FDTR and offset differential 

FDTR (Figure 3-17a and Figure 3-17b, respectively), one can see that the repeatability issues of 

the actuator have been eliminated. 
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Both focal and offset DBB-FDTR approaches are capable of identifying thermophysical properties 

at sub-micron length scales. This is achieved by the reduction of spot size and by decreasing the 

thermal penetration depth of heat carriers through increasing the frequency range of 

thermoreflectance measurements. Any frequency dependence in the thermophysical parameters 

originating from non-diffusive heat transport can be studied using such high-frequency systems 

[97]. An example was presented by Regner and co-workers who showed frequency dependence 

(i.e. heat carrier mean free path spectra) of thermal conductivity of Si [14, 16]. The interpretation 

of these results however depends on knowledge of non-diffusive heat conduction mechanisms [94, 

100], and is a subject worthy of study, as it closely relates to how heat is transported in nanoscale 

systems. The samples studied in this work were not susceptible to the observation of frequency 

dependence in the thermal conductivity, as described below. 

Firstly, we used Al transducers, and given the high electron-phonon coupling in Al, it is safe to 

neglect electron and phonon non-equilibrium effects within the transducer [100, 101]. For the 

Al/SiO2/Si sample, the thick SiO2 layer prevents the heat from reaching the Si layer, and given the 

disordered amorphous structure of SiO2, only phonons of MFP ~1 nm are expected to contribute 

to its overall thermal conductivity [102]. Therefore, since the MFP in SiO2 are much smaller than 

the shortest thermal penetration depth and spot size used in this experiment (~40 nm and ~1 μm, 

respectively), only diffusive transport is expected, yielding bulk-like thermophysical properties. 

For the Al/Si sample, the presence of the native <10 nm oxide layer causes the phonon spectral 

heat flux injected in the Si layer to be filtered in such a way that the apparent thermal conductivity 

of Si matches that of the bulk [103]. This is opposite to the work of Wilson and Cahill, where the 

oxide layer was removed, allowing for the full phonon spectrum to penetrate the Si substrate and 

yielding a frequency and spot size dependence to the apparent thermal conductivity data [100]. 
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In the case of the MgO sample, the high modulation frequencies used in this work lead to thermal 

penetration depths as low as 200 nm. This, as well as the small spot sizes used, may lead to non-

diffusive transport that manifests itself through an apparent thermal conductivity that is lower than 

the expected value. Wilson and Cahill report a lower apparent thermal conductivity for the Al/MgO 

system with spot sizes of ~1 μm, and calculate a thermal conductivity accumulation function for 

MgO yielding ~75% of the bulk conductivity for phonon MFP up to ~300 nm [104]. We have 

calculated the thermal conductivity accumulation function of MgO from first principles (more on 

this in the next section) and find that, contrary to ref. [104], phonons with MFP of ~200 nm 

contribute >90% of the thermal conductivity (see section 3.4.5: Thermal Conductivity 

Accumulation Functions). This indicates that at our experimental modulation frequencies we may 

be at the cusp of detecting non-diffusive transport in this system. Given that a diffusive model does 

not fit our experimental data very closely, a non-diffusive model may be needed to assess non-

diffusive transport in this case, but this is out of the scope of this work. The data by Wilson and 

Cahill indicates that the non-diffusive effects in Al/MgO are much weaker than those in Al/Si 

[104]. 

 

3.4.5 Thermal Conductivity Accumulation Functions  

The thermal conductivity accumulation functions of Si and MgO were calculated through the 

Boltzmann transport equation using phonon dispersions and scattering rates obtained by ab initio 

density functional theory (DFT). 

The phonon interatomic force constants are calculated through Quantum Espresso [105] using the 

projector augmented-wave (PAW) method using Perdew-Burke-Ernzerhof pseudopotentials. The 
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crystals were modeled starting from the relaxed lattice constants [106] using a 10x10x10 

Monkhorst-Pack wavevector grid. The wavefunction kinetic energy cut-off value was checked by 

monitoring the convergence of the system’s total energy. Coulomb interactions were taken into 

account by computing Born effective charges. The second-order force constants were extracted 

using the package Phonopy [107]. Third-order force constants were extracted with a 3x3x3 

supercell using the package Thirdorder [108]. Finally, the thermal conductivity accumulation 

functions are calculated via the almaBTE package [109] using a 24x24x24 wavevector grid, which 

includes energy and wavevector specific scattering rates and isotopic scattering. 

 

 

Figure 3-18. Thermal conductivity accumulation as function of phonon mean free path calculated via DFT. 
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The results for Si and MgO are shown in Figure 3-18. The accumulation for Si follows closely the 

dependence previously reported [110]. The accumulation for MgO shows a faster saturation at 

lower phonon mean free paths as compared to the curve reported in ref. [104], but we note that 

one source for the difference is that the calculation reported here uses phonon scattering rates 

determined from first principles calculations, whereas in ref. [104] phonon scattering rates are 

modeled analytically through a frequency-dependent power law. 

 

3.5 Conclusion 

In this chapter, implementation of FDTR method along with a sample result was presented. An 

economical extension of FDTR to higher frequencies was then shown by a mathematical approach 

to increase SNR. To increase the sensitivity to anisotropic transport, two methods of beam offset 

FDTR and and FD-MOKE were described and their results were presented. Finally, two methods 

to extend FDTR were proposed to perform high frequency measurements of the thermophysical 

properties of submicron films using DBB-FDTR method. Both methods eliminate the need to use 

expensive electro-optic modulators.  
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Chapter 4: Non-diffusive transport and anisotropic thermal conductivity in high-density 

Pt/Co superlattices 

 

Despite the numerous reports over the last two decades dedicated to the study of interfacial thermal 

transport, the physics of thermal transport across nanoscale metallic multilayers is less explored. 

This is in part due to the relatively high conductance characteristic of these interfaces, which 

renders them difficult to characterize. Interfacial transport in these systems has so far appeared to 

be diffusive, a surprising behavior as the interface density increases and the layer thicknesses 

become comparable with mean free path of electrons. To address the limit of diffusive theories 

describing heat transport across high density metallic interfaces, we investigate heat transport in 

and across Pt/Co multilayers systematically via frequency domain thermoreflectance. Through a 

combination of laser beam offset and small laser spot size to gain sensitivity to radial heat 

transport, the anisotropic thermal conductivity of the multilayers is measured. By changing the 

number of interfaces while keeping the overall thickness of Pt and Co layers constant, the effect 

of interface density on the effective thermal conductivity of the multilayers is studied. The 

extracted thermal boundary conductance of Pt/Co interface is then compared with calculations 

from the electronic diffuse mismatch model and experimental data available in the literature. We 

show that as the period thickness of the multilayers becomes much smaller than the mean free path 

of the electrons, a marked deviation is observed from the diffusive transport theory. We attribute 

this deviation to the non-diffusive nature of heat transport in sub-nanometric scales at interface 

densities above 1/nm. 
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4.1 Introduction 

Metallic multilayers have attracted a substantial amount of attention due to their impact in fields 

such as magnetic memory [111, 112] and spintronics [112-115] as well as their high mechanical 

strength at the nanometric scale [116-118]. For instance, multilayers of Pt/Co are a way to create 

materials with perpendicular magnetic anisotropy used in current-controlled magnetization [119]. 

Thanks to the high electrical conductivity at metallic interfaces, the thermal transport in metallic 

multilayers is often more efficient compared to metal/dielectric multilayers, such as Mo/Si 

multilayers used in extreme ultraviolet and soft X-ray optics [86], in which phonon-mediated 

transport dominates. In spite of this, the thermal resistance across metallic multilayers is still an 

important barrier against heat transfer, particularly when a high interface density between the heat 

source and the heat sink limits heat dissipation. This heat transport hindrance can, for instance, 

compromise the thermal stability of spintronic devices [112]. So far, little work has been done on 

heat transport in nanometric and sub-nanometer metallic multilayers, where the electron mean free 

path   approaches or exceeds the layer thickness and heat transport deviates from the diffusive 

Fourier regime 8. 

Heat transport takes place anisotropically in multilayers and heat is carried in-plane more readily 

compared to out-of-plane [86]. This is mainly due to the increased resistance in the out-of-plane 

direction originating from the presence of the interfaces. Although recent advances in optical 

metrology techniques have enabled researchers to study heat transport across different interfaces 

[16, 83], most of the studies so far have focused on metal/non-metal or non-metal/non-metal 

structures. Gundrum et al. measured the room temperature thermal boundary conductance (G) of 

                                                 
8 It should be noted that when the mean free path is larger than the layer thickness, scattering mechanisms such as 

boundary scattering become more dominant. 
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the Al/Cu interface to be ~4 GW/m2K, which is an order of magnitude larger than interfaces with 

phonon-mediated transport [59]. Wilson and Cahill measured the effective thermal conductivity 

of Pd/Ir multilayers and extracted a value for G of 14 ± 3 GW/m2K, the highest value reported so 

far [60]. Cheaito et al. extracted GCu/Nb ~ 4.7 GW/m2K [61], and by comparing the results presented 

for Al/Cu [59] and Pd/Ir [60] interfaces to Cu/Nb interfaces, they demonstrated that G is dominated 

by the temperature derivative of the electron energy flux, and less influenced by the transmission 

probability given by the interfacial mismatch in electronic properties [61]. This is unlike phonon-

mediated interfaces in which G is more dependent on interfacial phonon mismatch. 

Measuring G in metallic and highly conductive interfaces requires high measurement sensitivity 

due to its low contribution to the overall thermal resistance of the system, therefore studies have 

generally concentrated on samples having hundreds of interfaces or have been able to provide only 

a lower bound value for G. In this regard, lower bounds of 8 GW/m2K and 5 GW/m2K have been 

reported for G in Pt/Co [120] and Pt/Au [121] interfaces, respectively. 

To quantify electron-mediated heat transport at metallic interfaces, an electronic extension to the 

commonly used diffuse mismatch model (DMM) used to describe phonon-mediated transport has 

been successfully employed [122]. The electronic DMM (EDMM), introduced by Gundrum et al. 

[59] considers diffuse interface scattering, a degenerate metal with an isotropic Fermi surface and 

temperature-independent density of states. The resulting relation to describe G is a function of the 

electronic heat capacity and Fermi velocities of the metals adjacent the interface and does not 

depend on layer thickness. 

To the best of our knowledge, there is no evidence in the literature that G in metallic multilayers 

is affected by non-diffusive transport or deviates from the EDMM theory. Previous work has 

highlighted that diffuse scattering at metal interfaces seems to be an assumption that holds in light 
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of the experimental observations [59, 60], and that for layer thickness as low as ~ / 3 the transport 

is consistent with Fourier’s law [60, 123]. In other words, if transport at metal interfaces can be 

treated as diffusive even when the constituent layer thickness are so small, then the effective 

thermal resistance across the structure will simply be given by the sum of the layer thermal 

resistance and the interface resistance. This appears to be in contradiction of other instances where 

diffusive thermal transport break down, as it does for example when the apparent thermal 

conductivity of a thin semiconductor slab is reduced with respect to its bulk value when its 

thickness becomes comparable to the phonon mean free path [124]. As for metal multilayers, two 

reasons why transport would be characterized as diffusive even when interfaces are closer than   

are that (1) the interfaces may induce mostly elastic scattering, or that (2) interface scattering does 

not alter the electronic energy for its distribution to deviate significantly from equilibrium. This 

raises several questions: when does the assumption of diffusive interface scattering break down so 

that G is no longer constant as the interface density increases? Would one observe a minimum in 

the effective thermal conductivity in metallic multilayers? [125] In this work, the anisotropic 

thermal conductivity of Pt/Co multilayers is measured at room temperature with interface densities 

approaching 2/nm (about one order of magnitude below  of 7-10 nm for Pt [120] and 5-12 nm 

for Co [123, 126]). The value for G of Pt/Co is then extracted and compared with expectations 

from the EDMM [59]. We show that as the interface density increases a deviation from the model 

is observed, and attribute this deviation to non-diffusive transport at sub-nanometric scales. 

 

4.2 Experimental Setup, Sample Preparation and Sensitivity Analysis 

The anisotropic thermal properties of the multilayers are measured by frequency domain 

thermoreflectance (FDTR) [79]. To increase the sensitivity to the in-plane component of the 
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thermal conductivity, a beam-offset approach was utilized [80]. The schematic of the FDTR setup 

is shown in Figure 3-8a [79, 80]. Briefly, a continuous-wave laser (Omicron A350 operating at 

515 nm) is intensity modulated using a lock-in amplifier (Zurich Instruments HF2LI) over a range 

of frequencies up to ~20 MHz. This pump laser absorbs on the sample surface and introduces heat 

flux at the desired modulation frequency. Another continuous-wave laser (Omicron A350 

operating at 785 nm) then probes the resulting temperature fluctuations of the sample surface 

through changes in temperature-dependent reflectivity. The reflected light is then collected using 

a photodetector (Thorlabs PDA8A) and demodulated using the lock-in amplifier. By introducing 

a laser beam offset between pump and probe (1.25 μm at the sample surface) and small laser spot 

size (typically 1.4 μm 1/e2 diameter), the signal magnitude and the sensitivity to in-plane thermal 

transport is improved. The resulting thermal phase spectrum is then fitted to a solution of the 

diffusive heat equation where the unknown thermophysical properties can be extracted. It may be 

counterintuitive to use a diffusive model for data analysis in cases where non-diffusive transport 

could be taking place. However, non-diffusive transport would result in the apparent thermal 

parameters deviating from the expected values as well as the EDMM, and it can therefore be 

identified. 
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Figure 4-1. Measurement and fit to the thermal phase for the ML-3 structure with 1.25 μm offset. 

In FDTR samples are often coated with a thin metallic layer to act as both heater and thermometer. 

Although the presence of this transducer is often important to improve the signal in FDTR 

measurements [90], its presence can reduce sensitivity to transport in the layers beneath, 

particularly if they have high thermal conductivity. This is due to heat spreading in the transducer, 

which reduces the temperature gradient across the volume of interest. In this work, we do not coat 

the samples with transducers as the Pt/Co multilayers have shown to possess a substantial 

thermoreflectance coefficient. The lack of the transducer leads to increased sensitivity to the heat 

transport in the multilayers. 
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Table 4-1. Characteristics of the multilayers studied in this work. tML represents the total thickness of the 

Pt(2)/[Pt(tPt)/Co(tCo)]n/Pt(20)/Ta(1.5) layers, kr is the in-plane thermal conductivity measured by 4-point probe, and CML is the 

volumetric heat capacity of these layers calculated using a weighted average of the volumetric heat capacities of Pt and Co. 

 Sample Structure tML(nm) kr (W/mK) CML (MJ/m3K) 

ML-1 [Pt(0.7nm)/Co(0.4nm)]x128 164.3 15.0 3.34 

ML-2 [Pt(0.7nm)/ Co(0.4nm)]x64 93.9 17.2 3.28 

ML-3 [Pt(2.8nm)/ Co(1.6nm)]x32 164.3 22.2 3.34 

ML-4 [Pt(11.2nm)/ Co(6.4nm)]x8 164.3 33.0 3.34 

ML-5 [Pt(44.8nm)/Co(25.6nm)]x2 164.3 39.8 3.34 

 

The samples studied in this work are layered as 

Pt(2)/[Pt(tPt)/Co(tCo)]n/Pt(20)/Ta(1.5)/SiO2(100)/Si, where the numbers in parenthesis are the layer 

thickness in nm (Table 4-1). Note that we have prepared two samples at the highest interface 

density having different total thickness by varying the total number of Pt/Co repeats. Otherwise 

the total thickness of Co and Pt is kept constant. The multilayers were deposited at room 

temperature using an AJA magnetron sputtering system at a base pressure of 1.7×10-7 Torr and 

sputtering pressure of 3 mTorr. The deposition rates for Co and Pt were 0.653 Å/s and 1.002 Å/s, 

respectively. The thickness of all layers is measured by X-Ray reflectivity. Although not from the 

same sample, a cross-sectional TEM of such MLs fabricated by the same group who prepared the 

MLs discussed here [127] is shown in Figure 4-2.  
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Figure 4-2. (a) High resolution STEM image of 20 repeats of ([Co(0.5 nm)/Pt(0.7 nm)]3/Co(0.5 nm)/Ir(0.5 nm))19[Co(0.5 

nm)/Pt(0.7 nm)]4 structure on Pt seed layer [127]. The illustration shows the structure where blue, yellow, and red represent Pt, 

Ir and Co, respectively. (b) Blocks of [Co(0.5 nm)/Pt(0.7 nm)]3/Co(0.5 nm)/Ir(0.5 nm) labeled in high-resolution TEM image. (c) 

Fast Fourier transform of (a) with scale bar of 1/nm. Reprinted with permission from Phys. Rev. B 100, 140411(R) (2019). 

Copyright 2019 American Physical Society.  

 

For the thermal analysis of the FDTR data, the samples have been modeled by treating the 

multilayers along with the cap layer, the seed layer and Ta adhesive layer as a single effective 

medium as ML/GML/SiO2/SiO2(100)/GSiO2/Si/Si, where ML represents the thermal conductivity of 

the Pt(2)/[Pt(tPt)/Co(tCo)]n/Pt(20)/Ta(1.5) layers. The parameters of interest in this work are the 

out-of-plane (kz) and in-plane (kr) components of the anisotropic thermal conductivity of ML, as 

kz will later be used to extract G for the Pt/Co interfaces. 
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Figure 4-3. Thermal phase sensitivity to 10% change in the parameters labeled for sample ML-3 at 1.25 μm beam offset. 

 

Figure 4-3 shows the sensitivity analysis for the sample ML-3 at 1.25 μm beam offset, where the 

absolute difference in the modeled thermal phase for each parameter of interest is changed by 10%. 

The sensitivity analysis depicted in Figure 4-3 shows that by using a frequency range of 300 kHz 

to 8 MHz, the sensitivity to the parameter of interest is reasonably large compared to the phase 

noise, rendering measurements of anisotropic thermal conductivity possible. We note that the 

sensitivity to GSiO2/Si is comparable to kr. GSiO2/Si was extracted from measurements made on the 

same substrate coated with Al and kept constant for the analysis of the ML samples. We extracted 

GSiO2/Si = 27.02 ± 0.78 MW/m2K which is in agreement with our previous measurements [79]. 

Furthermore, we are using a constant value of 250 MW/m2K as the effective conductance across 

the ML/SiO2 layers (GML/SiO2), in agreement with reference [128]. Isotropic thermal conductivities 
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of kSiO2 = 1.32 W/mK and kSi = 145 W/mK, and volumetric heat capacities of CSiO2 = 1.59 MJ/m3K 

and CSi = 1.64 MJ/m3K have been used for the SiO2 and Si layers. Figure 4-1 shows the thermal 

phase measured for sample ML-3 and its corresponding fit. To estimate the uncertainties 

associated with the fitted thermal conductivity measured here (Figure 4-4), a Monte Carlo 

approach has been employed. Accordingly, errors of ± 0.1 μm for the rms spot size and offset, and 

± 1 MW/m2K for GSiO2/Si have been considered over 300 iterations. 

To further explore how well we can distinguish fitted values of kz and kr, we present contours of 

uncertainty arising from correlation between kr and kz. This is performed by calculating the mean 

square error between model and measured data for combinations of kr and kz values using the mean 

square error 

2

, ,

1 ,

1 n
m i d i

i d i

X X

n X




 
   

 
  where n  is the number of frequency points and

,m iX  and

,d iX represent phase values from the model and the measurement at the i-th frequency point, 

respectively [129]. Figure 4-5 shows the contours of combinations of kr and kz for ML-1 (with the 

largest correlation between kr and kz) and ML-5 (with the smallest correlation between kr and kz), 

which produce a standard deviation smaller than min2 , where nin  represents the best fit. The 

correlation for ML-1 is present, as evident by the contour’s diagonal. However, the correlations 

are restricted to narrow ranges in kr and kz for good fits, rendering the extracted values meaningful. 

The correlation for ML-5 is weak, indicating the fit to these two parameters is relatively 

independent. However, the contours are broad for kz, indicating a larger uncertainty for the 

extraction of this parameter. This is due to the low thermal resistance for this ML sample having 

the fewest number of interfaces. 
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Figure 4-4. (a) In-plane thermal conductivity of the Pt/Co multilayers as function of interface density extracted from FDTR fits 

(squares) and 4-point probe through Wiedemann-Franz law (circles). The dashed line is a guide to the eye that shows the 

average offset between the FDTR and electrical data. (b) Out-of-plane thermal conductivity of the Pt/Co multilayers as function 

of interface density from FDTR (square) and diffusive model (Eq. 1) with constant G of 2.5 GW/m2K (circle). At the highest 

interface density point, two different samples have been measured, and for these the model prediction for kz overlaps. 

 

4.3 Results and Discussions 

Figure 4-4a compares kr for the multilayers extracted from FDTR fits and from the 4-point probe 

measurements and applying the Wiedemann-Franz law, showing a reasonably similar trend in light 

of the difficulty in extracting kr of metallic layers via FDTR. The uncertainties in kr do not affect 

the analysis and interpretation of kz, and indicate that the multilayers have an anisotropy kr/kz 

increasing from ~1.2 to ~2 as the interface density increases from ~0.03/nm to ~2/nm. We note 
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that FDTR is measures the total thermal conductivity, due to both electron and phonon transport, 

whereas the 4-point probe measurement is representative of electron transport only. Therefore, the 

somewhat higher value extracted through FDTR can be attributed in part to the additional 

contribution of phonon transport. Overall kr reduces by about a factor of 2 in the range of interface 

densities studied here, an effect that can be attributed to increased scattering due to finite layer size 

[130, 131]. 

 

 

Figure 4-5. Contour plots of the correlation in the fitted values for kr and kz for (a) ML-1 and (b) ML-5.  

The effective out-of-plane thermal conductivity kz of the multilayers is depicted in Figure 4-4b as 

function of interface density. As expected, kz decreases as the number of interfaces increase due 
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to their increasing resistive contribution to the overall transport. For purely diffusive transport, one 

could relate G of the Pt/Co interfaces to kz using [60]: 

 0

/

ML

z Pt Co

t n
R

k G
    (4.1) 

where MLt   is the thickness of the multilayer, 0R  is the total thermal resistance per unit area of the 

Pt and Co layers excluding the interfaces, and n  is the number of interfaces.  We set the value of 

0R   as determined by the thermal conductivity for the in-plane direction, therefore 0

ML

r

t
R

k
 . By 

extracting 0R  from the kr values measured by FDTR in Figure 4-4a we are able to capture finite 

size and microstructural contributions to kz and make no assumptions for the conductivity of the 

Pt and Co layers. The values for G obtained this way are depicted in Figure 4-6 as a function of 

interface density. One can observe that G is not constant beyond the experimental uncertainty and 

increases from a value of ~2.5 GW/m2K at low interface densities to ~15 GW/m2K at high interface 

densities, an indication of non-diffusive transport. This deviation from a diffusive model is also 

shown in Figure 4-4b where the result of equation (4.1) is plotted for constant G = 2.5 GW/m2K. 

Next, we will present how this data compares with theory and other literature data. 
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Figure 4-6. Thermal boundary conductance of Pt/Co extracted from FDTR fits compared with literature data from Sharma 

[132], Jang [120], and the predictions from EDMM and MTL. 

We start the theoretical analysis by estimating the maximum theoretical value of GPt/Co. The 

maximum transmission limit (MTL) for electrons, which is a special case of the EDMM, sets an 

upper limit for G in metallic interfaces by allowing perfect transmission and is only limited by the 

first and the second laws of thermodynamics [23]. Accordingly, the upper limit can be calculated 

by 
4

f

MTL

v T
G


 , where 

fv  is the Fermi velocity,   is the Sommerfeld parameter and T  is 

temperature with the product T  being the electronic volumetric heat capacity. Considering the 

(111) fcc crystal structure of the multilayers confirmed by X-Ray diffraction, we take the 
fv value 

along this direction 
5 1

, 2.37 10f Ptv ms   [133] and 
5 1

, 3.3 10f Cov ms   [134], and 
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3 2400Pt Jm K    [120] and 3 2680Co Jm K    [120] for the Sommerfeld parameters, and obtain 

GMTL = 7.11 GW/m2K. Beyond this limiting case, according to the EDMM [59, 60], the thermal 

boundary conductance is 
 

1 2

1 24

Z Z
G

Z Z



, where 

fZ Tv  and the subscripts refer to materials 1 

and 2 on either side of the interface. Using the Fermi velocities and electronic heat capacities for 

Pt and Co, GPt/Co = 5.0 GW/m2K. The results of the MTL and EDMM are also shown in Figure 4-6. 

For the samples with sub-nanometric layers (ML-1 and ML-2) having an interface density ~2/nm, 

a large deviation is observed from the predictions of MTL and EDMM. Since both MTL and 

EDMM are based on diffusive transport, we attribute this deviation to the non-diffusive nature of 

transport in these two samples, as the mean free path of electrons is much larger than the period 

thickness in ML-1 and ML-2. 

Here, we claim that the trend observed in Figure 4-6 is not affected by structural defects and 

discontinuities, as defects reduce the TBC through increased scattering and the continuity of the 

layers is ensured through magnetization hysteresis loops.  

It is worth comparing GPt/Co obtained in this work with that of Jang et al. [120], who measured it 

to be ≥ 8 GW/m2K. Their experiment was performed on a Pt (42 nm)/Co (0.8 nm)/Pt (4 

nm)/sapphire sample consisting of two Pt/Co interfaces. The reason why they were only able to 

set a lower bound for the conductance was likely due to a small sensitivity of their measurement 

to the two highly conductive interfaces.  

Another method to infer the thermal conductance of the metallic interfaces is through Current-

Perpendicular-to-Plane (CPP) electrical resistivity measurements [135]. In CPP, the sample of 

interest is sandwiched between two contacts allowing a uniform current to pass through the sample. 

The specific resistance (AR, where A and R represent area through which current passes and sample 
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resistance, respectively) of the interface is then extracted from the total specific resistance of the 

sample measured as a function of number of interfaces for samples with different number of 

interfaces [135]. Wilson and Cahill showed that the AR measurements of Pd/Ir layers can be related 

to G through the interfacial form of the Wiedemann-Franz law [60], expressed as 
0

GAR
L

T
  , 

where L0 is the Sommerfeld value of the Lorenz number (2.45 × 10-8 ΩWK-2). Sharma et al. 

measured the specific resistance of Pt/Co interfaces as AR = 0.85 ± 0.125 fΩm2 [132], which 

translates to G ~ 8.65 GW/m2K using the interfacial form of the Wiedemann-Franz law. We note 

that the literature data by Jang and Sharma are similar, are close to GMTL but are obtained at 

interface densities below 0.2/nm. 

We have so far only considered electron transport in our discussion, under the assumption that it 

dominates the transport in the metallic multilayers. Thermoreflectance measurements yield the 

total thermal conductivity, consisting of both electron and phonon carriers. The work of Wilson 

and Cahill is indicative that the interfacial form of the Wiedemann-Franz law holds at room 

temperature at least to interface densities up to ~0.5/nm and that the EDMM is sufficient to 

accurately describe the system [60]. The agreement between thermoreflectance measurements and 

EDMM in their work indicates that even at such relatively low kz, the thermal transport in the 

multilayer system is dominated by electrons. In our measurements the higher value for kr obtained 

by FDTR with respect to electrical conductivity measurements would point to a non-negligible 

phonon contribution to the total conductivity. This is also supported by the value we derived for 

GPt/Co, which is lower than the EDMM prediction, consistent with phonon contribution to the 

overall kz being non-negligible. The onset of non-diffusive transport observed in Figure 4-6 

appears for layer thickness well below the mean free path for both electrons and phonons. This 

opens the question of whether the non-diffusive transport we are observing originate from the 
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electronic contribution, phononic contribution or both. While we cannot conclusively say which 

case applies here, there is indication that the electron transport dominates, since the difference in 

FDTR and 4-point probe data points to electrons being the greatest contributor to the conductivity 

in Figure 4-4a. Future thermal conductivity measurements coupled with CPP electrical 

conductivity measurements at interface densities above 1/nm may further clarify the relative role 

of electron and phonons and confirm whether the interfacial form of the Wiedemann-Franz law 

remains valid in this limit. 

The increase in GPt/Co has been interpreted here as evidence for non-diffusive transport, but the 

mechanism should be explored further. In the particle picture of transport, this would be an 

indication that carriers are not in equilibrium as they traverse the structure and quasi-ballistic 

transport is present, but in the wave picture a diverging conductance is a sign of coherence [125]. 

The former, for instance, can be explained by electron not being scattered enough or being 

scattered elastically at the interfaces and therefore travelling a longer distance before getting 

thermalized. The latter however seems unlikely for electron-mediated transport at room 

temperature, given the very small electron coherence lengths. While we do not observe a minimum 

in kz for the interface density range explored in this work, one might speculate that kz would 

increase in the limit where the Pt/Co layering is extended to monoatomic thickness as is the case 

for the thermal conductivity of L10 ordered crystal phases as compared to equiatomic disordered 

alloys [99]. 

 

4.4 Conclusion 

In conclusion, the anisotropic thermal conductivities of different Pt/Co multilayers were measured 

as a function of interface density. The thermal boundary conductance of Pt/Co interface was 
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extracted and compared with calculations from the electronic diffuse mismatch model. We showed 

an increase in the boundary conductance at high interface densities which might be arising from 

the non-diffusive heat transport at sub-nanometric scales.  
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Chapter 5: Room-temperature micrometer-scale phonon ballistic transport in WS2 

 

Thermal transport in 2D crystals is tied to their performance in a variety of applications, but the 

transport physics can significantly deviate from the bulk when carrier mean free path becomes 

comparable with the size of the heat source or device length. Here, we report a strong heater size 

dependence of the apparent in-plane and out-of-plane components of the thermal conductivity of 

bulk WS2 when measured with variable laser spot sizes via frequency domain thermoreflectance. 

Changing the pump laser spot size from ~14 μm to ~1.5 μm, the measured in-plane thermal 

conductivity reduces by ~60%, while a ~35% reduction is observed for the out-of-plane component 

of the thermal conductivity. We interpret this reduction of thermal conductivity by comparing the 

laser spot size to the phonon mean free path spectra determined by first-principle calculations. The 

results presented here show a dramatic behavior for WS2, as its in-plane thermal conductivity is 

dominated by contributions from phonons with mean free paths above 1 micrometer. These results 

also highlight that care must be taken when interpreting thermal conductivity data in 2D crystals 

when the heater spot size is small, a situation that can often take place using thermoreflectance or 

Raman thermometry measurements. 

 

5.1 Introduction 

Advances in synthesis and characterization of 2D materials have attracted a lot of interest for 

electronics and optoelectronics applications. However, their thermal characterization often lags 

optoelectronic characterization, even though for applications both aspects need to be well 
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understood. As thermal characterization might be performed using varied techniques and different 

2D crystals vary in their thermal characteristics, often displaying anisotropic properties, care must 

be taken when comparing and interpreting the results. 

When material characteristic length scales (LC) become comparable to the mean free path (MFP) 

of the energy carriers (e.g. phonons in semiconductors and dielectrics), thermal transport becomes 

non-diffusive and the apparent thermal properties diverge from their bulk values. Examples of 

these material characteristic length scales are the heater size [13, 89, 103, 136], thermal penetration 

depth (a depth at which the temperature amplitude is 1
e

 of the surface temperature amplitude) 

[14, 16], and physical dimensions (such as sample size or discontinuities such as grain boundaries) 

[12, 29, 137]. A comparison between LC and the MFP of phonons determines whether the heat 

transfer is diffusive (LC >> MFP) or non-diffusive (LC ~ MFP or LC << MFP). Signs of non-

diffusive transport could be a reduced apparent thermal conductivity, LC dependence of the thermal 

conductivity, or generally a lack of proportionality between heat flux and thermal profiles. In these 

different regimes interpreting the thermal behavior is not trivial and subject of research. 

The thermal conductivity accumulation function, kaccum(Λ*), can be used to study the contributions 

of phonons with different MFPs to the overall thermal conductivity: 

    
1*

0

1
*

3
accum

dk Cv d
d


      (5.1) 

where C, v, and Λ represent mode dependent specific heat, group velocities and MFP, respectively 

[136]. kaccum(Λ*) describes the contribution of phonons whose MFPs are smaller than Λ* to the 

thermal conductivity, so kaccum(Λ*)  kbulk as Λ*  ∞. 
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The contribution of phonons up to a specific MFP can be experimentally obtained by changing the 

LC such that the contribution of larger MFP phonons is suppressed [136]. Through a systematic 

variation of LC, the MFP distribution of thermal conductivity can be constructed [98, 124]. This, 

however, assumes that the suppression function that relates thermal conductivity to MFPs is 

known. Nonetheless, seeing size scale (or time scale) dependence for the experimentally 

determined thermal conductivity is an indicative sign that non-diffusive transport is taking place 

and that LC is approaching MFP. 

Finite-size effects can arise in several thermal characterization techniques used to investigate 2D 

materials. For instance, Raman thermometry has been used to measure thermal conductivity of 

mono- and bilayer WS2 [138], MoS2 [139, 140], MoSe2 [140], h-BN [141], and single layer 

Graphene [142]. However, since the spot size in these experiments is often of the order of 1 μm or 

smaller [138-143], non-diffusive effects can ensue when the MFPs of heat carriers become 

comparable with the heating laser spot size. For instance, Liu and coworkers measured the thermal 

conductivity of MoS2 crystal using a beam offset time-resolved magneto-optical Kerr effect (TR-

MOKE) and showed a reduction of in-plane thermal conductivity (kr) from 110 ± 20 W/mK to 85 

± 6 W/mK when the spot size decreased from ~6 μm to ~1.2 μm [89]. A kr of ~105 W/mK was 

also reported for bulk MoS2 using a beam-offset time domain thermoreflectance (TDTR) spot size 

of ~2.7 μm [144]. This would roughly indicate that at a size scale of ~1 μm some phonons travel 

non-diffusively. Non-diffusive phonon transport has also been recently observed in MoS2 thin 

films through thickness dependent out-of-plane thermal conductivity (kz) measurements [12]. 

WS2 is a transition metal dichalcogenide (TMD) crystal whose layered structure can yield 2D 

crystals [145]. The bandgap of different TMDs range from visible to infrared [146], and 

interestingly, the bandgap can change from indirect to direct when the thickness is reduced from 
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bulk to monolayer [147]. A bulk WS2 crystal behaves as a semiconductor with an indirect band 

gap of 1.3-1.4 eV [148], while monolayer WS2 exhibits a direct bandgap of 1.8-2.1 eV [148]. This 

tunable bandgap of TMDs is desirable for many applications where other well-known 2D 

materials, such as zero-bandgap graphene, are not suitable [147].  

In this work, we reveal non-diffusive phonon transport in WS2 and show that this takes place at 

relatively large values of LC just below 10 μm. Pisoni and coworkers employed a steady state 

method to measure the thermal conductivity of single crystal WS2 and reported room temperature 

values of kr = 124 W/mK and kz = 1.7 W/mK [149]. In this type of measurements, any deviation 

from a perfect crystal would arise due to sample imperfections such as grain boundaries. Lindroth 

and Erhart used first-principles calculations to study the anisotropic thermal conductivity of 

different TMDs [150]. They revealed that phonons with MFP smaller than 1 μm are responsible 

for only ~10% of kr and ~60% of kz of bulk WS2 and consequently, a large portion of heat transport 

in WS2 takes place by phonons having MFP above 1 μm at room temperature [150]. Further 

measurements [151] and calculations [152] showed agreement with the results presented by Pisoni 

and coworkers [149] and Lindroth and Erhart [150]. We note that the thermoreflectance 

measurements by Jiang et al. [151] have indicated some non-diffusive effects in kz. A summary of 

thermal conductivity measurements on WS2 is listed in Table 5-1. 

The laser spot size dependence of the kr and kz of WS2 will be presented here, as determined by 

frequency domain thermoreflectance (FDTR). Our results present, to the best of our knowledge, 

the first experimental evidence that transport in WS2 at room temperature is strongly non-diffusive 

even at length scales of several μm. The results are corroborated using first principle calculations. 

The contribution of phonons with such a long MFP to kr is not common, and comparable to 

graphite [88]. 
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Table 5-1. A summary of theoretical and experimental kr and kz values of bulk WS2 at room temperature reported in the 

literature. 

 kr (W/mK) kz (W/mK) 

Theory (Ref. [152]) 153 3.9 

Theory (Ref. [150]) 126 4.7 

Exp. (Ref. [151]) 120 2.8 

Exp. (Ref. [149]) 124 1.7 

 

 

5.2 Experimental Setup, Sample Preparation and Sensitivity Analysis 

The thermal properties of interest were measured through FDTR as described elsewhere [79, 80]. 

Briefly, the temperature fluctuations caused by an intensity modulated pump laser are measured 

by a probe beam at the sample surface through changes in temperature-dependent reflectivity 

variations, i.e., thermoreflectance. The reflected light then is collected using a photodetector and 

demodulated using the lock-in amplifier. The measured parameter, i.e. the phase lag between the 

heat flux and the surface temperature, which contains the temperature response of the sample is 

then fitted to the solution of the heat diffusion equation to determine kr and kz. The measurements 

are repeated as function of laser spot size. In the case of diffusive heat transport the resulting values 

would be independent of laser spot size. 
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Figure 5-1. Image of the Al/WS2 sample (a) under microscope, and (b) taped for measurement. Each line represents one 

millimeter. 

 

The samples were coated with a 52 nm Al layer to perform FDTR measurements (Figure 5-1). 

Two WS2 crystals sourced differently were used to validate the results. Four-point probe 

measurements were used to determine the in-plane thermal conductivity of the Al layer as 85 

W/mK through the Wiedemann-Franz law. To vary the optical spot size, we used Olympus 4X 

(pump spot size of 13.9 μm), 10X (pump spot size of 5.42 μm) and 40X (pump spot size of 1.45 

μm) objectives. When changing spot size, laser powers were changed accordingly to keep the 

temperature rise relatively the same between measurements with different spot sizes.  

In order to gain insight into the sensitivity of measurement to different thermophysical parameters 

of a given system, we perform a sensitivity analysis to examine how sensitive the thermal phase is 
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to different parameters. This is achieved by taking the absolute difference in the modeled thermal 

phase when the parameter of interest is changed by 10%. The sensitivity of the thermal phase to 

changes of kr and kz of WS2 using difference spot sizes is depicted in Figure 5-2. 
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Figure 5-2. Phase Sensitivity to 10% change of thermal conductivity components at different spot sizes with 4x, 10x and 40x 

objectives. In each case we use the thermal conductivity values that were determined through the measurements: (a) for kz values 

of 1.71, 1.53 and 1.13 W/mK and (b) for kr values of 145, 74.3 and 56.8 W/mK. 

 

5.3 Results and Discussions 

The samples were measured for three different heater spot sizes. Using the largest spot size, the 

Thermal Boundary Conductance (TBC) of the Al/WS2 interface was extracted as well as kr and kz. 
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The Al/WS2 TBC was measured to be 13.29 ± 0.47 MW/m2K and then kept constant for 

measurements using smaller spot sizes. In-plane thermal conductivities of 145 ± 4.25, 74.3 ± 1.75 

and 56.8 ± 3.25 W/mK, and out-of-plane thermal conductivities of 1.71 ± 0.03, 1.53 ± 0.03 and 

1.13 ± 0.06 W/mK were obtained for 4x, 10x and 40x objectives.  

The kz measured with the 4x objective (1.71 ± 0.03 W/mK) is close to the measurement reported 

by Pisoni and coworkers [149]. Furthermore, the trend of thermal conductivity reduction with 

decreasing spot size observed in this work (Figure 5-3) is in good qualitative agreement with the 

thermal conductivity accumulation function calculated by Lindroth and Erhart [150]. By 

comparing the laser spot size to phonon MFP reported by first-principle calculations [150], the 

reduction of thermal conductivity can be interpreted under the assumption that MFP and heater 

size can be directly compared. Here, we make a simplified assumption that the heater size is 

directly compared with the MFP of phonons. Lindroth and Erhart calculated that phonons with 

MFP of ~ 1 μm, 5 μm and 10 μm are responsible for ~10%, ~95% and ~100% of kr of bulk WS2 

at room temperature, while phonons with MFP of ~ 1 μm and 10 μm carry ~60% and ~90% of the 

bulk kz [150]. Therefore by decreasing the heater size, phonons will travel ballistically outside of 

the measurement volume and will not contribute to the thermal conductivity and a reduced thermal 

conductivity is observed. 
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Figure 5-3. Accumulated thermal conductivity of WS2 crystal (solid lines) as a function of MFP adapted from Ref. [150], and 

thermal conductivity measured in this work as a function of pump spot size (squares) in (a) out-of-plane direction, and (b) in-

plane direction. 

 

5.4 Conclusion 

In conclusion, the effects of heater spot size on in-plane and out-of-plane components of thermal 

conductivity of bulk WS2 was investigated. A strong spot size dependent non-diffusive transport 

was observed at room temperature at the micrometer scale, which highlights that care must be 
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taken in interpreting thermal conductivity data obtained with small heater sizes as is often the case 

for thermoreflectance and Raman thermometry techniques. 
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Chapter 6: Summary and Conclusion 

 

6.1 Summary 

In this dissertation, heat transport within bulk and nanoscale materials as well as across interfaces 

was investigated. By establishing a FDTR setup, we were able to validate the functionality of our 

system to obtain typical thermal properties (section 3.1). We showed that by utilizing a small spot 

size (~ 1 μm), reliable high frequency thermoreflectance measurements can be performed. The 

sensitivity of the measurements to anisotropic heat transfer was increased by introducing an offset 

between pump and probe beams. We showed that beam-offset FDTR is capable of measuring in-

plane and out-of-plane components of thermal conductivity as well as TBC of different structures, 

such as Al-coated graphite (section 3.2). Furthermore, by employing Kerr effect, the sensitivity 

was further increased (section 3.3). Since frequency of the heating source is an important parameter 

in controlling and studying the mean free path spectrum of thermal conductivity, we implemented 

two different variations of BB-FDTR presented by Regner and co-workers [16] without the need 

to use expensive electro-optic modulators to achieve high frequency measurements (section 3.4).   

The techniques implemented were then used to measure non-diffusive heat transport in metallic 

Pt/Co multilayers (chapter 4). In the case of the metallic Pt/Co multilayers, we showed a deviation 

from the electronic diffusive heat transport theories for the first time, to the best of our knowledge. 

However, more work needs to be done to address the origin of this deviation. Finally, a strong non-

diffusive heat transport in WS2 crystal was revealed at room temperature as a function of heater 
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spot size (chapter 5). The data measured in this work can further be used to study MFP-dependent 

thermal conductivity of WS2 crystal.  

In both non-diffusive studies mentioned in this work, thermal transport across interfaces was 

assumed to be diffusive. However, it should be noted that interfaces can be selective to some 

carriers. When the materials near an interface are thin and carriers are not equilibrated, the TBC 

can be affected too, as the impinging flux is not representative of that of the bulk material. 

Therefore, non-diffusive treatment of these interfaces can be investigated as well. 

 

6.2 Future Work 

In chapter 3, several variations of FDTR were presented. These methods can potentially be 

extended to measure thermal conductivity maps of different structures [78]. In addition, the 

effectiveness of these methods can be explored for fast measurements of different materials, to be 

used as a quality check in an industrial environment [153]. 

In chapter 4, traces of non-diffusive transport across metallic Pt/Co multilayers were observed. 

However, more work needs to be done in order to confirm whether the non-diffusive transport 

exists in these metallic multilayers when the interface density increases. Furthermore, the 

mechanism of the non-diffusive transport can be explored to understand how much electrons and 

phonons are responsible in the observed non-diffusive transport. In addition, investigation of other 

metallic multilayer systems could be beneficial to better understanding the mechanism of heat 

transport in metallic multilayers when the period thickness is much smaller than the electronic 

mean free path. While a particle-picture can sufficiently describe heat transport in low interface 

density superlattices (incoherent regime), the wave nature of heat carriers might affect heat 
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transport high interface densities (coherent regime) depending on the coherence length of the 

carriers and period thickness. For instance, a minimum in thermal conductivity of superlattices 

observed at the crossover of coherent and incoherent regimes as a function of interface density has 

been attributed to wave nature and coherence of phonons [154]. While we did not observe such a 

crossover in thermal conductivity of the Pt/Co multilayers investigated in this work, this topic can 

be investigated specially at cryogenic temperatures.  

Improving the efficiency and lifetime of different devices in fields such as nano-electronics and 

energy conversion is directly related to engineering the existing systems of materials and exploring 

properties of newly discovered materials. For instance, van der Waals (vdW) heterostructures 

(HTs), which are made of layers of different materials vertically stacked together by van der Waals 

forces, have attracted a lot of attention in the recent years as they show different properties 

compared to the materials forming them [152, 155]. Due to the large number of currently available 

2D crystals, a large number of different variations of vdW HTs with different properties can 

potentially be made [156]. These systems can be studied to find and engineer thermal properties 

which do not exist naturally in other materials [152] using suitable metrology techniques (such as 

the techniques presented in chapter 3). 
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