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Abstract

Control and prevention of infectious disease prevalence have been a priority to reduce the bur-

den (mortality and morbidity) of the diseases. Mathematical modeling has been used to study

the direct and indirect effect of Infection Prevention and Control (IPC) measures on the disease

transmission dynamics and to estimate the cost effectiveness of immunization programs including

vaccine production and immunization program design and implementation. However, for more

efficient programs regarding IPC priority policies and in order to optimize the limited available re-

sources for the control of infectious diseases, more rigorous mathematical models and analyses are

required. This dissertation is dedicated to the development of a mathematical framework using

delay systems (delay/functional differential equations and Volterra integral equations of second

type) to examine the effectiveness of control and prevention interventions for infectious diseases.

The framework enables us to formulate and derive mathematical and epidemiological analyses of

a wide range of compartmental models that have been traditionally studied using ordinary, par-

tial and delay differential equations. We specifically use this framework to address heterogeneity

in the population and to better understand the disease dynamics and the burden of the disease

with and without interventions. We also use this framework to study vertical transmission and

vector-borne diseases.
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1 | Introduction

The control and prevention of the emerging and reemerging infectious diseases have always been

challenging to public health decision makers. There are many control and prevention strategies

that can be applied prior to and during an infectious disease outbreak. The effectiveness of control

strategies depends on many factors such as transmission probabilities and severity of the disease

outcomes (morbidity and mortality). Evaluation of the effectiveness of the control and prevention

strategies, for both the policies that have been implemented in the past for various diseases and

novel methods suggested for emerging diseases, is a crucial part in the process of establishing

effective control measures. Significant components of control and prevention strategies include

identifying risk groups, immunization methods and timeline (e.g., vaccine availability and their

efficacy), timely implementation of a combination of other effective control strategies (e.g., dif-

ferent forms of quarantine) and effective communication of prevention programs to the public and

health care personnel, prior to and during epidemics and pandemics. The reliability and quality of

surveillance systems are essential for better estimation of the disease burden, and therefore better

control of the disease.

Numerous statistical and mathematical models have been developed to study the dynamics of the

infectious diseases in the presence of control measures and to understand the impact of these mea-

sures on reducing the health and economic burden of the disease. The purpose of this dissertation

is to develop a mathematical framework using delay systems in which a group of compartmental

models for different types of diseases can be studied.

1.1 Review of the Mathematical Tools and their Applications

Delay equations (differential and integral) as described by Diekmann [39], are “rules for extending

a function of time towards the future on the basis of the assumed to be known past". Among

different types of delay equations Volterra integral equations of second kind1, also known as

renewal equations (RE), have arisen in many applications. Renewal equations (linear and non-
1For the Volterra integral equations of the first kind, the unknown function x(t) only appears as a part of integrand:

f(t) =
´ t
t0
g(x(t− τ))K(τ)dτ .

1



linear) of the form:

x(t) = f(t) +

ˆ t

t0

g(x(t− τ))K(τ)dτ, (1.1)

where g, f and K are known functions, have been used to describe dynamics of different phe-

nomena in various fields such as biology, epidemiology and economics. Here, g : Rn+ → Rn+
is a (linear or) non-linear function and the forcing function f and the kernel K are defined on

R+. As an example, the population growth (structured by age and in an environment where the

growth rate does not directly depend on the environmental conditions) can be described by the

linear renewal equation

b(t) =

ˆ ∞
0

b(t− a)β(a)F(a)da, (1.2)

where b(t) is the birth rate, F(a) is the age dependent survival probability and β(a) is the age

dependent fertility. Such equations have been used to study different phenomena in population

dynamics such as birth process, cannibalism and physiologically structured populations ([14, 33,

34, 47, 46, 72, 87, 121]).

The 1927 epidemic model of Kermack and McKendrick [71], was also formulated using renewal

equations. In a closed population, let S(t) denote the density of susceptible individuals, F (t) be

the force of infection (the probability per unit of time a susceptible becomes infected) and A(τ)

denote the expected contribution to the force of infection by an individual who was infected τ units

of time ago [18]. Then the force of infection can be described by the following integral equation

F (t) =

ˆ ∞
0

S(t− τ)F (t− τ)A(τ)dτ. (1.3)

This formulation was further studied by Diekmann [38] and Brauer [15], extended to a heteroge-

neous population, consisting of two sub-populations, in [16] and to endemic case and waning of

immunity in [18]. This approach has been recently used to study continuous vaccination strategies

[90] and to evaluate the effect of contact tracing on epidemic control [106].

Many epidemiological models using ordinary and delay differential equations are indeed simpli-

fications of the renewal equations by making a certain assumption about the kernel function. For

example, ODE model arises naturally if we take an exponential function, and DDE model arises

2



with delta kernel function. It is well known, for example, as pointed out in the book of Wu and

Zhang [129] (pp 53-54), that these simplifications lead to over- or under-estimation of the infec-

tion risk in comparison with the kernel. For instance, in the HIV/AIDS modelling, the infectivity

varies as the age since infection changes, and the kernel function can have double peak, with a

lower peak in the early stage, and a higher peak in the late stage leading to AIDS).

Specific forms of A(τ) may lead to different compartmental models [45], described by systems

of ordinary differential equations, and therefore the results from analyzing this equation can be

applied to various compartmental models. For some ODE models A(τ) is as follows

• SIR model: A(τ) = βe−ατ

• SEIR model: A(τ) = β γ
γ−α(e−ατ − e−γτ )

The cumulative force of infection, defined by y(t) =
´ t
−∞ F (σ)dσ, satisfies the following renewal

equation

y(t) =

ˆ ∞
0

S(−∞)(1− e−y(t−τ))A(τ)dτ. (1.4)

When t→∞, y(t)→ y(∞) with

y(∞) =

ˆ ∞
0

S(−∞)(1− e−y(∞))A(τ)dτ.

There exists a positive solution for y(∞) (total cumulative force of infection) if the basic repro-

duction number R0 =
´∞

0 S(−∞)A(τ)dτ > 1 and the final size of the epidemic is given by the

following relation

(1− S(∞)

S(−∞)
) = y(∞)/R0. (1.5)

The dynamics of the disease in the population is then given by the following:

If R0 > 1, then the introduction of an infective agent leads to an outbreak. The final size of the

outbreak is given by the above equation.

If R0 ≤ 1, then the introduction of an infective agent leads to an outbreak with the final size

close to zero.

3



In an age-structured population with a constant birth B and a general survival function F(a), the

dynamics of the susceptible population in the presence of an infectious disease can be described

by the following PDE

(
∂

∂t
+

∂

∂a
)S(t, a) = −(µ(a) + F (t))S(t, a)

S(t, 0) = B

(1.6)

where F(a) = e−
´ a
0 µ(s)ds. Equivalently we have

S(t, a) = BF(a)e−
´ a
0 F (t−a+σ)dσ.

The force of infection is described by the following equation

F (t) =

ˆ ∞
0

F (t− τ)

ˆ ∞
0

S(t− τ, a)
F(a+ τ)

F(a)
daA(τ)dτ (1.7)

A positive solution F̄ exists if R0 = B
´∞

0

´∞
0 F(a + τ)A(τ)dadτ > 1. In the special case of

exponential survival function the following result is given in [18]:

IfR0 ≤ 1, then the disease free equilibrium F̄ = 0 is locally asymptotically stable.

If R0 > 1, then F̄ = 0 is unstable, there exists a positive equilibrium and is locally asymptoti-

cally stable.

The basic reproduction number, defined as the number of secondary cases from an infected in-

dividual during his/her infectious period in an entirely susceptible population, is a fundamental

concept in epidemiology. A number of methods have been developed to calculate this quantity

for different types of models: the next generation matrix method, the next generation operator

method, the survival function method [64, 118]. The next generation matrix and next generation

operator methods are described in [48, 51]. The survival function method, describes R0 based

on the infection survival probability at the age of infection a, denoted by F(a), and the average

number of secondary infections by an infectious individual of age of infection a per unit of time,

4



denoted by b(a):

R0 =

ˆ ∞
0

F(a)b(a)da.

Comparing this definition to the definition of R0 in [18], we can see that the product F(a)b(a),

with age of infection a, is equivalent to A(τ), with age of infection τ . We note that based on [18]

the infectivity function A(τ) has two main components: the contact intensity and the probability

of transmission, given a contact with a susceptible.

The fundamental theory and long-term dynamics of equations of the form (1.1) have been exten-

sively studied in [31, 42, 40, 47, 41, 43, 44, 49, 61, 83, 116]. Numerical methods for bifurcation

and stability analysis of periodic solutions of delay systems have been developed via reduction of

the infinite dimensional problem to finite dimensional cases using the method of pseudospectral

discretization [3, 20, 21, 22, 19, 23, 24, 50, 58, 62].

1.2 Structure of the Dissertation

We aim to develop mathematical models using renewal equations to better understand the dynam-

ics of infectious diseases and the effect of control and prevention strategies. In the second chapter,

the framework developed in [18] is extended here to incorporate a variable level of immunity to

a certain disease in the population. A mathematical model is developed using renewal equations

with a general function describing the changes in the susceptibility of individuals as well as a

general function for the contribution of infected individuals with a certain level of immunity, be-

fore contracting the disease, to the force of infection. In this model, a continuous time-varying

variable is used to describe individuals’ level of immunity to an infectious disease, defined as the

probability of not contracting the disease if exposed, denoted by m with 0 ≤ m ≤ 1. Dynamics

of the susceptible population at time t with immunity m is given by a PDE. A generalization of

the Equation (1.4) is used to describe the force of infection received by individuals of immunity

m, where m is assumed to remain unchanged for every individual during the epidemic. A special

case of this model is studied in full detail in a population with a finite number of sub-populations

where individuals in each sub-population have a fixed value of immunity. The sub-populations are

5



assumed to be fully connected, i.e., the between-sub-population transmission matrix is supposed

to be positive. The results can be applied to study disease dynamics in a population stratified

based on different factors, such as age. Major parts of this chapter are published in a paper in the

journal of Canadian Mathematical Bulletin [2].

The third chapter is devoted to understanding of the disease dynamics in the presence of vertical

transmission (from infected mother to her newborns) in an age-structured population, with a con-

stant birth B and a general survival function F(a), where the probability of producing an infected

offspring depends on the time since infection. The force of infection (F (t)) and the birth rate of

infected newborn (b(t)) are formulated as the following coupled system of renewal equation

F (t) =

ˆ ∞
0

(
F (t− τ)

ˆ ∞
0

B(1− b(t− τ − a))e−
´ a
0 F (t−τ−a+σ)dσF(a+ τ)daA(τ)

)
dτ

+

ˆ ∞
0

Bb(t− τ)F(τ)Ã(τ)dτ

b(t) =

ˆ ∞
0

b(t− a)β(a)F(a)P (a)da

+

ˆ ∞
0

(1− b(t− a))β(a)F(a)

ˆ a

0
F (t− a+ σ)e−

´ t−a+σ
t−a F (u)duP (a− σ)dσda.

(1.8)

Here, β(a) is the age-dependent fertility of individuals and P (τ) is the probability of producing an

infected offspring by an infected mother. The existence and uniqueness of a positive equilibrium

is discussed and the local stability of the disease-free equilibrium is given. Numerical analysis is

performed to study the dependence of the positive equilibrium and the basic reproduction number

on the two major components, P (τ) and
´∞

0 e−µτA(τ)dτ (when F(a) = e−µa) . This chapter is

contained in a manuscript that is in preparation for submission.

The first section of chapter 4 is devoted to the dynamics of vector-borne diseases using renewal

equations. In the first part, both the vector and host populations have no demographics. The

models here are special cases of the model in chapter 2, where the sub-populations are not fully

connected, i.e., the transmission probability matrix is non-negative (some entries can be zero).

Several scenarios are considered here: one vector population and one host population with and
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without host-to-host transmission; one vector population and several host populations without

host-to-host transmission. In the second part of this section, both the vector and host populations

have demographics with constant birth and general survival functions. Existence and uniqueness

of a positive equilibrium and the local stability analysis are given. In the next section of this

chapter, a delay differential system is developed for the population dynamics of black legged ticks,

also known as deer ticks, which are responsible for transmission of Lyme pathogen in the tick-host

natural cycle, and for the Lyme disease in humans and other animal species, to study the impact

of host resistance that has been observed in different types of hosts. The results of this section are

published in a paper in the journal of Mathematics in Applied Sciences and Engineering [1].

The last chapter features the control measures of respiratory diseases, in particular influenza and

COVID-19 among specific age groups. The focus of this chapter is to evaluate the control mea-

sures to protect the senior population with a higher probability of experiencing severe adverse

events resulting from respiratory diseases. This chapter also presents some motivation for study-

ing the epidemiological models involving different age groups, and hence the need of further

research using the renewal equation framework. Major parts of this chapter are being submitted

for publication.

1.3 Author contribution for the published and submitted papers

Chapters of this thesis are based on the following publications and pre-prints:

• Alavinejad, M., & Wu, J. (2020). Coupled systems of renewal equations for forces of

infection through a contact network.Canadian Mathematical Bulletin,63(3), 624-632.

Author contribution: J.W. originated the research idea. The model formulation and math-

ematical analysis was carried out by M.A. and J.W. The writing of the manuscript was

completed by M.A.

• Alavinejad, M., Sadiku, J., & Wu, J. (2020). Modeling the impact of host resistance on

structured tick population dynamics. Mathematics in Applied Sciences and Engineering

,1(1), 65-84.
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Author contribution: The research idea was originated by J.S. The model formulation was

carried out by M.A and J.S. The mathematical and stability analyses were completed by

M.A. Numerical simulations were performed by M.A. and J.S. LHS-PRCC was performed

by J.S. The writing of the manuscript was completed by M.A. and J.S. The project was

supervised by J.W.

• Alavinejad, M., Tosato, M., Bragazzi, N. L., McCarthy, Z., Wu, J. & Bourouiba, L. Mark-

ers of community outbreak and facility type for mitigation of COVID-19 in long-term care

homes in Ontario, Canada: insights and implications from a time-series analysis. In Prepa-

ration.

Author contribution L.B. and J. W. originated the research idea presented. Z.M. provided

the data. M.A. performed both statistical analysis and data analysis and visualizations.

M.T. performed data clustering analysis. M.A. and M.T. carried out the numerical simula-

tions. N.B. performed literature review. All authors provided critical feedback and helped

shape the research, analysis and manuscript. M.A. took the lead in writing the manuscript,

together with M.T. and N.B. J.W. and L.B. supervised the project.
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2 | Dynamics of Infectious Diseases in a Population Struc-

tured by Immunity

It is well-known that the immunity to an infectious disease differs by individuals and there are

different factors that affect the level of immunity to a particular disease, such as: age, presence

of chronic diseases, temporary clinical conditions and vaccination status. The human immune

system and its response to a pathogen is in particular complicated depending on age and clinical

conditions. Also for some diseases where the vaccine does not give perfect immunity, the efficacy

of vaccine and the level of immunity induced by vaccine varies significantly with age. Mathe-

matical models have been used widely to study the dynamics of infectious diseases and to inform

policy makers regarding the control and prevention of the diseases. Modelers have tried to include

as many factors as possible to get the most comprehensive model that can describe the dynamics

of the disease spread and determine factors that contribute the most in order to better control the

diseases. Based on the characteristics of diseases, mathematical models have been developed to

study the impact of factors such as age, vaccine induced immunity, infection acquired immunity,

time since last infection, time since vaccination, time dependent contact rates, time dependent

infectivity.

Disease transmission dynamics models for a population structured by immunity have been stud-

ied in [134, 8, 7], focusing on the waning and boosting of the immunity after recovering from

infection. Here we develop a mathematical model in a population stratified based on the level of

immunity to a disease.

2.1 The general formulation

Consider a closed population. Suppose individuals’ level of immunity to an infectious disease is

a continuous time-varying variable, defined as the probability of not contracting the disease if ex-

posed, denoted by m (0 ≤ m ≤ 1) with m = 0 corresponding to fully susceptible individuals and

m = 1 corresponding to fully immune individuals (e.g., immunity with vaccination or infection-

acquired immunity). Here the immunity is referred to as the immunity against transmission. The
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immunity level can vary based on age, presence of chronic diseases, temporary clinical condi-

tions, vaccination status, time since vaccination and time since last infection. The density of the

susceptible (partially immune) population at time t and with immunity m is denoted by S(t,m).

Assume the force of infection from infected individuals depends on their immunity status before

being infected. Let F (t,m) denote the force of infection imposed on individuals with immunity

m. Dynamics of the susceptible population can be described by the following partial differential

equation:

(
∂

∂t
+

∂

∂m
.g(m))S(t,m) = −ε(m)F (t,m)S(t,m), S(0,m) = S0(m)

∂m

∂t
= g(m), g(0) = m0

(2.1)

subject to a certain boundary condition, where the function g determines how the immunity of

individuals changes with time and ε(m) is the corresponding susceptibility. Note that the incidence

for individuals with immunity m is given by

incidence = ε(m)F (t,m)S(t,m). (2.2)

LetA(τ, u,m) be the contribution to the force of infection by an infected individual with immunity

u imposed on individuals with immunity m. In a special case we can assume that the immunity

does not change during the epidemic, i.e., g = 0, except by infection and recovery. The force of

infection can be then described by the following renewal equation

F (t,m) =

ˆ ∞
0

ˆ 1

0
ε(u)F (t− τ, u)S(t− τ, u)A(τ, u,m)dudτ. (2.3)

Determining the immunity of individuals to the transmission of a disease can be a challenging task,

however, some information can be used to estimate these numbers. For instance, the protection

imposed by vaccination depends highly on the age of individuals in case of influenza and on the

time since vaccination in case of pertussis.

As a special case we assume the population is divided into n sub-populations S1, · · · , Sn with a
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fixed level of immunity. In each sub-population mi−1 ≤ mi ≤ mi, where 0 = m0 ≤ m1 ≤ · · · <

mn = 1. The number of sub-populations n and the values m1, · · · ,mn−1 can be determined

based on the characteristics of the susceptible individuals such as age, clinical conditions, and

vaccination status. In this formulation, we consider a wide class of compartmental models in a

multi-group susceptible population. A special case would be an n-sub-population SIR model with

transmission probabilities βij , when we allow various contact rates and infectivities for different

sub-populations.

2.2 Coupled systems of renewal equations for forces of infection through

a contact network

In this section, we formulate a coupled system of renewal equations for the forces of infection in a

population consisting of multiple sub-populations. Due to different between-sub-population con-

tact patterns and sub-populations’ infectiousness (resulted from such factors as age, immunization

practices and social distance), we allow the forces of infection from an infected subgroup imposed

on a susceptible subgroup to be non-symmetric for both the contact rate and the infectiousness.

We apply the theory of sub-homogeneous and order preserving discrete dynamical systems to

establish the existence and uniqueness of a positive total cumulative force of infection perceived

by each sub-population. We obtain the basic reproduction number and a final size relation of

the epidemic, and illustrate our general results by a SIR model for a population with multiple

sub-populations.

2.2.1 Epidemic in a closed Population Consisting of Sub-Populations

Consider a closed population, i.e., no birth, death and migration. Suppose the population is di-

vided into sub-populations (e.g., age groups). Let S1, · · · , Sn denote sub-populations of sus-

ceptible individuals and Si(−∞), i = 1, · · · , n, be the initial density of susceptibles. Suppose

Si(−∞) > 0, for all i = 1, · · · , n.

Recall that the force of infection in epidemiology is referred to the rate at which susceptible indi-

viduals become infected (or the probability that a susceptible individual gets infected).
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Let Fij(t) be the force of infection from the i-th infected group to the j-th susceptible group

(through direct interaction), and Aij(τ) be the “expected contribution to the force of infection Fij

by an infected individual in i-th group, who was infected τ units of time ago"[18].

We assume the functions Aij(τ) have the following properties

• Aij : [0,∞)→ [0,∞);

• Aij is integrable, i.e.,
´∞

0 Aij(τ)dτ <∞.

First we note that the incidence in i-th subgroup is given by

incidence = Si(t)
∑
k

Fki(t).

Also, we assume that recovered individuals have permanent immunity. Therefore,

S′i(t) = −Si(t)
∑
k

Fki(t). (2.4)

Solving this equation results in the following

Si(t) = Si(−∞)e−
´ t
−∞

∑
k Fki(σ)dσ. (2.5)

The forces of infection can be described by a nonlinear system of renewal equations

Fij(t) =

ˆ ∞
0

Si(t− τ)
∑
k

Fki(t− τ)Aij(τ)dτ.

Note that the properties of Aij ensure that Fij are well-defined and non-negative.

We introduce the notation F.i(t) =
∑

k Fki(t) so that

Fij(t) =

ˆ ∞
0

Si(t− τ)F.i(t− τ)Aij(τ)dτ.
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Therefore, the force of infection perceived by group j is as follows

F.j(t) =

ˆ ∞
0

∑
i

Si(t− τ)F.i(t− τ)Aij(τ)dτ

Next, we derive the cumulative force of infection defined by

y.j(t) =

ˆ t

−∞
F.j(σ)dσ. (2.6)

Therefore

y.j(t) =
∑
i

ˆ ∞
0

ˆ t

−∞
Si(σ − τ)F.i(σ − τ)dσAij(τ)dτ

=
∑
i

ˆ ∞
0

Si(−∞)(1− e−y.i(t−τ))Aij(τ)dτ.

We use (2.4) and (2.5) to get

ˆ t

−∞
Si(σ − τ)F.i(σ − τ)dσ =

ˆ t

−∞
−S′i(σ − τ)dσ

= Si(−∞)− Si(t− τ)

= Si(−∞)(1− e−
´ t−τ
−∞ F.i(σ)dσ)

= Si(−∞)(1− e−y.i(t−τ))

so that

y.j(t) =
∑
i

ˆ ∞
0

Si(−∞)(1− e−y.i(t−τ))Aij(τ)dτ, j = 1, · · · , n. (2.7)

System (2.7) is a system of renewal equations of convolution type for Y (t) = (y.1(t), · · · , y.n(t)).

The solution to this equation exists and is positive [61]. Also, since 0 ≤ 1 − e−y.j(t) ≤ 1, y.j(t)

are increasing and bounded on (0,∞), therefore Y (∞) = limt→∞Y (t) exists.

Let t→∞ in (2.7), then

y.j(∞) =
∑
i

ˆ ∞
0

Si(−∞)(1− e−y.i(∞))Aij(τ)dτ. (2.8)

Let Xj = y.j(∞), f(Xj) = 1− e−Xj , B = (bij), where bij = Si(−∞)
´∞

0 Aij(τ)dτ ≥ 0. Then

13



System (2.8) can be expressed as follows:

X = BTG(X), (2.9)

where BT is the transpose matrix, and

G(X) =


f(X1)

f(X2)
...

f(Xn)

 .

Remark. Let Âij =
´∞

0 Aij(τ)dτ , Â = (Âij)1≤i,j≤n and Ds = diag(Si(−∞)). Then B =

DsÂ.

In the following we let H(X) = BTG(X). We have the following result about the existence of a

positive solution of System (2.9).

Theorem 2.1. Suppose B is positive (bij > 0, i, j = 1, · · · , n). System (2.9) has a unique positive

solution if ρ(B), the spectral radius of B, is greater than one.

In order to prove this theorem, we need to introduce some concepts relevant to discrete dynamical

systems. We follow the notations in [135] and let E be a Banach space and P ⊆ E be a positive

cone. A partial order onE induced by P is defined by the following relation: x ≥ y ⇔ x−y ∈ P ;

x > y ⇔ x − y ∈ P \ {0}; x � y ⇔ x − y ∈ int(P ). With the partial order defined

on E, for a < b the intervals in E are defined by [a, b]E = {x ∈ E : a ≤ x ≤ b} and

[[a, b]]E = {x ∈ E : a� x� b}.

Let U ⊂ P be a nonempty, closed and order convex subset, i.e., [u, v]E ⊂ U for all u, v ∈ U with

u < v.

Definition 2.2. A map f : U → U is said to be monotone if f(x) ≥ f(y) for all x ≥ y, strongly

monotone if f(x)� f(y) for all x > y.

Definition 2.3. A map f : U → U is said to be sub-homogeneous if f(tx) ≥ tf(x) for all x ∈ U
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and t ∈ [0, 1]; strictly sub-homogeneous if f(tx) > tf(x) for all x � 0 and t ∈ (0, 1); strongly

sub-homogeneous if f(tx)� tf(x) for all x� 0 and t ∈ (0, 1).

Definition 2.4. A linear map L on E is said to be positive if L(x) ∈ P for all x ∈ P and strongly

positive if L(x) ∈ int(P ) for all x ∈ P \ {0}.

Definition 2.5. A continuous mapping f : E → E is said to be asymptotically smooth if for any

nonempty closed bounded set U ⊂ E with f(U) ⊂ U , there is a compact set J ⊂ U such that J

attracts U .

Theorem 2.6. Let either V = [0, b]E with b� 0 or V = P . Assume that

(H1) f : V → V is monotone and strongly sub-homogeneous;

(H2) f : V → V is asymptotically smooth, and every positive orbit of f in V is bounded;

(H3) f(0) = 0 and Df(0) is compact and strongly positive.

Then there exists threshold dynamics described below:

(a) If ρ(Df(0)) ≤ 1, then every positive orbit in V converges to 0;

(b) If ρ(Df(0)) > 1, then there exists a unique fixed point u∗ � 0 in V such that every positive

orbit in V \ {0} converges to u∗.

In the following let E = Rn and P = Rn≥0. For X,Y ∈ P , we define X ≥ Y ⇔ Xi ≥

Yi, for all i = 1, · · · , n;X > Y ⇔ X ≥ Y, Xi 6= Yi, for some i = 1, · · · , n; X �

Y ⇔ Xi > Yi, for all i = 1, · · · , n. We note that a linear map on Rn is strongly positive if

and only if the corresponding matrix is positive.

We can now give a proof of Theorem 2.1 by showing that the mapH : P → P satisfies conditions

of Theorem 2.6.

(H1) H is monotone and strongly sub-homogeneous: Let X,Y ∈ P with X � Y , then Xk > Yk

for k = 1, · · · , n. Since f(Xk) > f(Yk) and B is positive, we have

Hj(X) =
∑
k

bkjf(Xk) >
∑
k

bkjf(yk) = Hj(Y ), j = 1, · · · , n.
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Therefore, H(X)� H(Y ). Let 0 < t < 1. We show that H(tX)� tH(X). First we note that

f(x) = 1− e−x is strongly sub-homogeneous. Let X ∈ P , X � 0. Then

Hj(tX) =
∑
k

bkjf(tXk) >
∑
k

bkjtf(Xk) = tHj(X), j = 1, · · · , n.

Thus H is strongly sub-homogeneous.

(H2) Since f(x) < 1 for all x ≥ 0, we have

Hj(X) =
∑
k

bkjf(Xk) <
∑
k

bkj = cj ,

So |H(X)| < |(cj)| = c. Thus every positive orbit is bounded. Also, every continuous transfor-

mation on a finite dimensional vector space is asymptotically smooth [63].

(H3) H(0) = 0 and DH(0) = BT which is a compact operator. Also BT is strongly positive

since it is positive. This completes the proof.

It is worth mentioning that the positivity assumption of B is equivalent to assuming that
´∞

0 Aij(τ)dτ >

0, for all i, j = 1 · · · , n.

2.2.2 Final size of the epidemic

From (2.5) and (2.6) we have

Si(t) = Si(−∞)e−y.i(t), (2.10)

and therefore

1− e−y.i(∞) = 1− Si(∞)

Si(−∞)
.

Substituting this in (2.8) we get

y.j(∞) =
∑
i

(
1− Si(∞)

Si(−∞)

)
Si(−∞)

ˆ ∞
0

Aij(τ)dτ. (2.11)

Let u∗ = (y.j(∞)) be the unique, strongly positive solution of (2.8). Then (2.11) can be expressed
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as

u∗ = BTS∗,

where

S∗ = (s∗i ), s∗i = 1− Si(∞)

Si(−∞)
.

Let R0 = ρ(BT ). Since BT is irreducible and nonnegative, by Perron-Frobenius Theorem [65],

there exists a left eigenvector V � 0 of BT corresponding toR0

V TBT = R0V
T .

The final size is related toR0 by equation

V Tu∗ = R0V
TS∗.

Remark. Note that u∗i = ln Si(−∞)
Si(∞) . Also, the basic reproduction number of each subgroup in

isolation from the rest of the population is given by

R0i = Si(−∞)

ˆ ∞
0

Aii(τ)dτ.

The matrix B can be expressed as B = diag(R0i)P , where P = (pij)1≤i,j≤n with pij =

Âij/Âii. Therefore the basic reproduction number for a fully connected network of sub-populations

is related to the basic reproduction numbers of sub-populations, when isolated from the rest of the

population, by the equation

R0 = ρ
(
diag(R0i)P

)
.

With the above expression for B, the final size relation (2.11) is as follows

ln
Si(−∞)

Si(∞)
=

n∑
j=1

R0jpji

(
1− Sj(∞)

Sj(−∞)

)
, (2.12)

which relates the final size of sub-populations to the basic reproduction numbers of sub-populations
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in isolation.

If we have information on the basic reproduction numbers within subgroups, for a particular

disease, Equation (2.12) can be used to calculate the basic reproduction number and final sizes of

the disease in the total population and also to estimate some parameters such as contact rates and

transmission probabilities between the subgroups.

Theorem 2.7. We have the following cases:

• If R0 > 1, then introduction of an infected individual will result in an outbreak and the

final size is given by the equation (2.11)

• IfR0 ≤ 1, then there is a minor outbreak and the final size is close to 0.

Proof. From Theorem 2.1, a strongly positive solution exists for the total cumulative force of

infection whenR0 > 1, which in turn results in the final size relation (2.12). This proves the first

part of the result.

In the second part of the result above, System (2.8) has only the zero solution when R0 < 1 and

the final size being close to 0 can be justified in a similar way for a single population as in [18].

Also, initially, a positive fraction of the population is assumed to be infected.

2.2.3 Special Case: The SIR Model

In this section, we illustrate our general results with an example of the SIR model in a population

of multiple sub-populations. Assume in each subgroup we have three compartments of suscepti-

ble, infected and recovered individuals with permanent immunity.

Exponentially distributed infectious period

Suppose the infectious period in the SIR model is exponentially distributed. Then the infectivity

rates are given by Aij(τ) = βije
−αiτ , i, j = 1, · · · , n, where βij denotes the transmission rate

between the i-th infected group and the j-th susceptible group, and αi is the recovery rate in the
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i-th subgroup. In this case, System (2.8) has the following form

y.j(∞) =
∑
i

Si(−∞)
βij
αi

(1− e−y.i(∞)). (2.13)

Let B1 be the matrix given in Section 2.2.1

B1 =


S1(−∞)β11

α1
· · · S1(−∞)β1n

α1

...

Sn(−∞)βn1

αn
· · · Sn(−∞)βnnαn

 .

The basic reproduction number isR0 = ρ(B1). Note that by Remark 2.2.1

Â =


β11

α1
· · · β1n

α1

...
β11

α1
· · · β1n

α1

 ,

and by Remark 2.2.2 matrix B1 can be expressed as

B1 =


R01

β11

β11
· · · R01

β1n

β11

...

R0n
βn1

βnn
· · · R0n

βnn
βnn

 ,

equivalently, B1 = diag(R0i)P , where R0i = Si(−∞)βiiαi , i = 1, · · · , n and pij =
βij
βii

, i, j =

1, · · · , n. The final size relation is given by


ln S1(−∞)

S1(∞) = S1(−∞)β11

α1

(
1− S1(∞)

S1(−∞)

)
+ · · ·+ Sn(−∞)βn1

αn

(
1− Sn(∞)

Sn(−∞)

)
,

...

ln Sn(−∞)
Sn(∞) = S1(−∞)β1n

α1

(
1− S1(∞)

S1(−∞)

)
+ · · ·+ Sn(−∞)βnnαn

(
1− Sn(∞)

Sn(−∞)

)
.
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which is equivalent to


ln S1(−∞)

S1(∞) = R01p11

(
1− S1(∞)

S1(−∞)

)
+ · · ·+R0npn1

(
1− Sn(∞)

Sn(−∞)

)
,

...

ln Sn(−∞)
Sn(∞) = R01p1n

(
1− S1(∞)

S1(−∞)

)
+ · · ·+R0npnn

(
1− Sn(∞)

Sn(−∞)

)
.

If additionally we assume that αi = α and βij = aibicij , where bi is the probability of becoming

infected for an individual in subgroup i, ai is the contact rate and cij is the proportion of contacts

between an individual in sub-group i with individuals in sub-group j with
∑

i cij = 1, then the

matrix B1 and the above final size relation are the same as the matrix K and the relation (14)

given in [32]. proportion of the ith sub-group’s contacts that is with members of the jth group

Non-exponentially distributed infectious period

Here we consider a SIR model where the infectious period has Gamma distribution with the rate

αi and shape κi for each sub-population. The probability density function and survival function

are given by:

gi(t;κi, αi) =
ακii

Γ(κi)
tκi−1e−αit,

Ki(t;κi, αi) = 1−
ακii

Γ(κi)

ˆ t

0
sκi−1e−αisds.

Let κi = 2, then gi(t;αi, 2) = α2
i te
−αit and the survival function is given by Ki(t;αi, 2) =

(αit+ 1)e−αit. First we note that the corresponding infectivity rates Aij(τ) can be defined as the

product of two components: transmission probability and probability of being infectious after τ

units of time. Therefore

Aij(τ) = βij(αiτ + 1)e−αiτ

Next we calculate
´∞

0 Aij(τ)dτ

ˆ ∞
0

Aij(τ)dτ = βij

ˆ ∞
0

(αiτ + 1)e−αiτdτ

=
2βij
αi

.
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Let B2 denote the matrix from section 2.2.1, then

B2 =


S1(−∞)2β11

α1
· · · S1(−∞)2β1n

α1

...

Sn(−∞)2βn1

αn
· · · Sn(−∞)2βnn

αn

 .

The basic reproduction number is R0 = ρ(B2). We note that, in the literature using a Gamma

distribution for the latent and infectious period with the shape parameter κi, the rate parameter

is normally taken as αi, since the entire latent/infectious period is distributed into κi stages [73,

77]. Therefore, the basic reproduction number in a SIR model with Gamma distribution for the

infectious period, with shape κi = 2 and rate 2αi, is the same the basic reproduction number

when the infectious period is exponentially distributed with rate αi.

2.3 Conclusions

In this chapter, a general model was formulated to describe the transmission dynamics of infec-

tious diseases in a closed population stratified based on individuals’ level of immunity using: 1)

a system of partial differential equations to describe the dynamics of the susceptible population

and the variation of immunity in the population; 2) renewal equations for the forces of infection.

In this general formulation, the time-varying immunity is described by an ODE. The key idea

is understanding the underlying factors contributing to the immunity of individuals, such as age,

clinical conditions and vaccination status, and therefore to identify risk groups in the population.

The general model has an advanced level of complexity and requires further studies in terms of

mathematical and numerical analyses.

A special case with a finite number of fixed values of immunity for individuals in the population

is studied in full detail in this chapter. The population is divided into n sub-populations and

a system of renewal equations for the forces of infection between sub-populations is used to

describe the disease dynamics. The threshold value for a disease outbreak in all sub-populations is

derived. Using the threshold theory for sub-homogeneous monotone discrete dynamical systems,

the criteria for the existence and uniqueness of a positive final size in all subgroups are given. The
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relation between basic reproduction number of the total population and the basic reproduction

numbers of sub-populations in isolation as well as a final size relation for the sub-populations is

given. The theory is then illustrated through a SIR model. A comparison of the results for SIR

model with exponentially distributed infectious period and a SIR model considering a Gamma

distribution for the infectious period is given.

2.4 A remark

Major components of this chapter have been published in the paper in the Canadian Mathemati-

cal Bulletin [2]. I am grateful to Professor Neal Madras for his valuable suggestions and helpful

comments on the presentation of this chapter and to two reviewers for their constructive com-

ments. The research of this Chapter has been partially supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC), the Canada Research Chair Program and

the NSERC-Sanofi Industrial Research Chair Program in Vaccine Mathematics, Modeling and

Manufacturing.
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3 | Dynamics of Vertically Transmitted Diseases Described

by Renewal Equations

Many diseases can be transmitted from an infected mother to a newborn, known as vertically trans-

mitted diseases. Pathogens transmitted during human pregnancy include: Zika virus, Toxoplasma

gondii, Listeria monocytogenes, Treponema pallidium, parvovirus, HIV, HCV, varicella zoster

virus, Rubella, and Herpesviruses [6]. Based on WHO’s report [124], the rates of mother-to-child

transmission of HIV, in the absence of any treatment, vary between 15%-45% (during pregnancy,

delivery and breastfeeding). However, the mother-to-child transmission can be reduced to 1% and

even be eliminated if both mother and baby receive antiretroviral (AVR) treatment. Some coun-

tries are validated for the elimination of mother-to-child transmission of HIV such as Anguilla,

Antigua and Barbuda, Armenia, Belarus, Bermuda, Cayman Islands, Cuba, Malaysia, Maldives,

Montserrat, Saint Kitts and Nevis, and Thailand.

Mathematical models, using partial, ordinary and functional differential equations, have been de-

veloped widely to study the dynamics of vertically transmitted diseases [28, 9, 113, 122]. Here,

we consider a single population with constant birth rate and a general survival function and study

the dynamics of vertically transmitted diseases, i.e., a fraction of the offspring of infected individ-

uals are infected, described by a coupled system of renewal equations for the force of infection

and the birth function for the fraction of infected newborn. Local stability of the disease-free

equilibrium and existence and uniqueness of the positive equilibrium point are given.

Consider an age-structured population with the population level birth rate B(t) and survival func-

tion F(a). Let N be the total population and assume it is constant. The birth rate is given by

B(t) =
´∞

0 B(t−a)β(a)F(a)da where β(a) is “the probability per unit of time, for a female, to

produce an offspring at age a”. We normalize β(a) so that
´∞

0 β(a)F(a)da = 1 (this is the basic

reproduction ratio and the equality means that the population is at equilibrium). We also assume

a constant birth rate B so we have N = B
´∞

0 F(a)da. Note that −
´∞

0 aF(da) is the average

lifetime of individuals. Here we assume β(a) is a piecewise continuous nonnegative bounded

function.
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First we consider the model formulated in [18], without vertical transmission. Let S(t, a) be the

density of susceptible population at time t and age a and S̃(t) :=
´∞

0 S(t, a)da denote the total

susceptible population. In the absence of an infectious disease the density of the (susceptible)

population is given by

S(t, a) = BF(a). (3.1)

Suppose there is a disease circulating in the population with the force of infection F (t), defined as

the probability per unit of time a susceptible individual becomes infected [18]. Then the density

of the susceptible population is given by

S(t, a) = BF(a)e−
´ a
0 F (t−a+σ)dσ (3.2)

and the dynamics of the disease can be described by the following renewal equation for the force

of infection:

F (t) =

ˆ ∞
0

F (t− τ)

ˆ ∞
0

S(t− τ, a)
F(a+ τ)

F(a)
da︸ ︷︷ ︸

incidence in total susceptible population

A(τ)dτ.

The force of infection imposed on the susceptible population is generated by infectious individ-

uals, of all ages, who were susceptible and came in contact with infected individuals at previous

times. The incidence, i.e., the number of new infections as a result of contact between susceptible

and infected individuals, at time t is as follows

incidence = F (t)S̃(t).

3.1 Model Formulation

We now formulate a general age of infection model in a population where there is also vertical

transmission. Let b(t) denote the proportion of the newborn that are, at time t, born infected, then

S(t, a) = B(1− b(t− a))F(a)e−
´ a
0 F (t−a+σ)dσ.
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In order to derive the equations for b(t) and F (t) we introduce the following. Let K(a, τ) be the

probability per unit of time that an infected individual of chronological age a, and infection age τ

produces an infected offspring.

The function K(a, τ) has two components: the age-dependent fertility of individuals, denoted

by β(a), and “the probability an offspring produced by an infected mother of age of infection τ

is infected”, which we assume does not depend on the age of mother and denote by P (τ). We

can assume P (τ) = A(τ)/(c + A(τ)) for some positive parameter c. Then, there is no vertical

transmission if c→∞, and for c→ 0, we have the following cases:


P (τ) = 1, A(τ) > 0,

P (τ) = 0, A(τ) = 0.

Here we consider a two-sex population with a 1-1 ratio, and the population being constant means

that a reproducing female has two offspring on average with one male and one female. When

we count for the individuals infected at birth, first we count the number of infected females at

previous times (only females can reproduce) and therefore divide by 2, and then we count number

of infected newborn of both sexes and multiply by 2.

With the above notation we have the following for b(t)

b(t) =

ˆ ∞
0

(
b(t− a)β(a)F(a)P (a) + (1− b(t− a))β(a)F(a)

ˆ a

0
F (t− a+ σ)e−

´ t−a+σ
t−a F (u)duP (a− σ)dσ

)
da.

(3.3)

One can derive this equation directly from the interpretation. We note that individuals infected at

birth come from two sources:

• from individuals who were born infected at time t− a, survive until time t and produce an

infected offspring at time t (at the age of a) with probability per unit of time K(a, a) =

β(a)P (a);

• from individuals who were born susceptible at time t − a, survive until time t, became
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infected at time t− a+ σ (at the age of σ, 0 ≤ σ ≤ a) and produce an infected offspring at

time t (at the age of a and infection age a−σ) with probability per unit of timeK(a, a−σ) =

β(a)P (a− σ).

The renewal equation for the force of infection has now the following form

F (t) =

ˆ ∞
0

(
F (t− τ)

ˆ ∞
0

B(1− b(t− τ − a))e−
´ a
0 F (t−τ−a+σ)dσF(a+ τ)daA(τ)

)
dτ

+

ˆ ∞
0

Bb(t− τ)F(τ)Ã(τ)dτ,

where the age of infection and the chronological age are identical in the second part. Here Ã(τ)

is the contribution to the force of infection at age of τ of an individual infected at birth. We may

assume that Ã(τ) = A(τ), however, this needs not be the case.

Finally, the coupled system is as follows


F (t) =

´∞
0

(
F (t− τ)

´∞
0 B(1− b(t− τ − a))e−

´ a
0 F (t−τ−a+σ)dσF(a+ τ)daA(τ)

)
dτ +

´∞
0 Bb(t− τ)F(τ)Ã(τ)dτ

b(t) =
´∞

0

(
b(t− a)β(a)F(a)P (a) + (1− b(t− a))β(a)F(a)

´ a
0 F (t− a+ σ)e−

´ t−a+σ
t−a F (u)duP (a− σ)dσ

)
da.

(3.4)

We make the following assumptions on A(τ), Ã(τ), P (a) and β(a).

(i) A(τ), Ã(τ), P (τ) and β(a) are all non-negative integrable functions;

(ii) none of these functions are equal to zero on their entire domain [0,∞).
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3.2 Steady states and their stability

In this section we study the local stability of the disease-free equilibrium (0, 0) and existence and

uniqueness of a positive steady state of the system (3.4). Let (F̄ , b̄) denote the steady state, then


F̄ =

´∞
0 F̄B(1− b̄)

´∞
0 e−F̄ aF(a+ τ)daA(τ)dτ +

´∞
0 Bb̄F(τ)Ã(τ)dτ

b̄ =
´∞

0 b̄β(a)F(a)P (a)da+
´∞

0 (1− b̄)β(a)F(a)F̄
´ a

0 e
−F̄ σP (a− σ)dσda.

(3.5)

Clearly (0, 0) is an equilibrium. We can also see that F̄ = 0 corresponds to the disease-free

equilibrium which results in b̄ = 0, i.e., if there are no infected individuals, then there are no

infection at birth. On the other hand, if F̄ 6= 0, then b̄ = 0 means b(t) = 0 for all t ≥ 0 and

therefore there is no vertical transmission.

First we study the existence and uniqueness of the positive equilibrium. Let X = (F̄ , b̄), and

f(X) be the right hand side of (3.5), then (3.5) can be written as X = f(X). Here the theory of

order-preserving and sub-homogeneous discrete dynamical systems is used to prove the existence

and uniqueness of the positive fixed point of f(X) [135].

It is straightforward to show that f satisfies the conditions of Theorem 2.6. The derivative Df(0)

is given by the following matrix:

Df(0) =


B
´∞

0

´∞
0 F(a+ τ)daA(τ)dτ B

´∞
0 F(τ)Ã(τ)dτ

´∞
0 β(a)F(a)

´ a
0 P (a− σ)dσda

´∞
0 β(a)F(a)P (a)da

 ,

By theorem 2.6, there exists a unique positive equilibrium (F̄ , b̄) ifR0 = ρ(Df(0)) > 1.

To study the stability of the equilibria, we linearize System (3.4) about a given equilibrium.
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

u(t) = B
´∞

0 v(t− τ)F(τ)Ã(τ)dτ −B
´∞

0 F̄
´∞

0 v(t− τ − a)e−F̄ aF(a+ τ)daA(τ)dτ

+B
´∞

0 u(t− τ)
´∞

0 B(1− b̄)e−F̄ aF(a+ τ)daA(τ)dτ

−B
´∞

0 F̄ (1− b̄)
´∞

0

´ a
0 u(t− τ − a+ σ)dσF(a+ τ)daA(τ)dτ

v(t) =
´∞

0 v(t− a)β(a)F(a)P (a)da−
´∞

0 v(t− a)β(a)F(a)
´ a

0 F̄ e
−F̄ σP (a− σ)dσda

+
´∞

0 (1− b̄)β(a)F(a)
´ a

0 u(t− a+ σ)e−F̄ σP (a− σ)dσda

−
´∞

0 (1− b̄)β(a)F(a)
´ a

0 F̄ e
−F̄ σ ´ t−a+σ

t−a u(s)dsP (a− σ)dσda.

(3.6)

Looking for solutions of exponential form, u(t) = c1e
λt, v(t) = c2e

λt, yields the following

system



c1 =

(
B
´∞

0 e−λτ
´∞

0 (1− b̄)e−F̄ aF(a+ τ)daA(τ)dτ

−B
´∞

0 F̄ (1− b̄)
´∞

0

´ a
0 e
−λ(τ+a)eλσdσF(a+ τ)daA(τ)dτ

)
c1

+

(
B
´∞

0 e−λτF(τ)Ã(τ)dτ −B
´∞

0 F̄
´∞

0 e−λ(τ+a)e−F̄ aF(a+ τ)daA(τ)dτ

)
c2

c2 =

( ´∞
0 (1− b̄)β(a)F(a)

´ a
0 e
−λaeλσe−F̄ σP (a− σ)dσda

−
´∞

0 (1− b̄)β(a)F(a)
´ a

0
F̄
λ e
−F̄ σ

(
e−λ(a−σ) − e−λa

)
P (a− σ)dσda

)
c1

+

( ´∞
0 e−λaβ(a)F(a)P (a)da−

´∞
0 e−λaβ(a)F(a)

´ a
0 F̄ e

−F̄ σP (a− σ)dσ

)
c2

This system can be written as Φ(λ)C = C where C = (c1, c2)T and Φ(λ) is given by
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Φ(λ) =

φ11(λ) φ12(λ)

φ12(λ) φ22(λ)


with

φ11(λ) = B

ˆ ∞
0

e−λτ
ˆ ∞

0
(1− b̄)e−F̄ aF(a+ τ)daA(τ)dτ

−B
ˆ ∞

0
F̄ (1− b̄)

ˆ ∞
0

ˆ a

0
e−λ(τ+a)eλσdσF(a+ τ)daA(τ)dτ

φ12(λ) = B

ˆ ∞
0

e−λτF(τ)Ã(τ)dτ −B
ˆ ∞

0
F̄

ˆ ∞
0

e−λ(τ+a)e−F̄ aF(a+ τ)daA(τ)dτ

φ21(λ) =

ˆ ∞
0

(1− b̄)β(a)F(a)

ˆ a

0
e−λaeλσe−F̄ σP (a− σ)dσda

−
ˆ ∞

0
(1− b̄)β(a)F(a)

ˆ a

0

F̄

λ
e−F̄ σ

(
e−λ(a−σ) − e−λa

)
P (a− σ)dσda

φ22(λ) =

ˆ ∞
0

e−λaβ(a)F(a)P (a)da−
ˆ ∞

0
e−λaβ(a)F(a)

ˆ a

0
F̄ e−F̄ σP (a− σ)dσ

(3.7)

The characteristic equation is given by det(Φ(λ)− I) = 0, which in turn results in the following

equation
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(
B

ˆ ∞
0

e−λτ
ˆ ∞

0
(1− b̄)e−F̄ aF(a+ τ)daA(τ)dτ

−B
ˆ ∞

0
F̄ (1− b̄)

ˆ ∞
0

ˆ a

0
e−λ(τ+a)eλσdσF(a+ τ)daA(τ)dτ − 1

)
(ˆ ∞

0
e−λaβ(a)F(a)P (a)da−

ˆ ∞
0

e−λaβ(a)F(a)

ˆ a

0
F̄ e−F̄ σP (a− σ)dσ − 1

)

−

(
B

ˆ ∞
0

e−λτF(τ)Ã(τ)dτ −B
ˆ ∞

0
F̄

ˆ ∞
0

e−λ(τ+a)e−F̄ aF(a+ τ)daA(τ)dτ

)
(ˆ ∞

0
(1− b̄)β(a)F(a)

ˆ a

0
e−λaeλσe−F̄ σP (a− σ)dσda

−
ˆ ∞

0
(1− b̄)β(a)F(a)

ˆ a

0

F̄

λ
e−F̄ σ

(
e−λ(a−σ) − e−λa

)
P (a− σ)dσda

)
= 0

(3.8)

Equivalently
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(
B

ˆ ∞
0

e−λτ
ˆ ∞

0
(1− b̄)e−F̄ aF(a+ τ)daA(τ)dτ

−B
ˆ ∞

0
F̄ (1− b̄)

ˆ ∞
0

ˆ a

0
e−λ(τ+a)eλσdσF(a+ τ)daA(τ)dτ

)

+

(ˆ ∞
0

e−λaβ(a)F(a)P (a)da−
ˆ ∞

0
e−λaβ(a)F(a)

ˆ a

0
F̄ e−F̄ σP (a− σ)dσ

)

−

(
B

ˆ ∞
0

e−λτ
ˆ ∞

0
(1− b̄)e−F̄ aF(a+ τ)daA(τ)dτ

−B
ˆ ∞

0
F̄ (1− b̄)

ˆ ∞
0

ˆ a

0
e−λ(τ+a)eλσdσF(a+ τ)daA(τ)dτ

)
(ˆ ∞

0
e−λaβ(a)F(a)P (a)da−

ˆ ∞
0

e−λaβ(a)F(a)

ˆ a

0
F̄ e−F̄ σP (a− σ)dσ

)

+

(
B

ˆ ∞
0

e−λτF(τ)Ã(τ)dτ −B
ˆ ∞

0
F̄

ˆ ∞
0

e−λ(τ+a)e−F̄ aF(a+ τ)daA(τ)dτ

)
(ˆ ∞

0
(1− b̄)β(a)F(a)

ˆ a

0
e−λaeλσe−F̄ σP (a− σ)dσda

−
ˆ ∞

0
(1− b̄)β(a)F(a)

ˆ a

0

F̄

λ
e−F̄ σ

(
e−λ(a−σ) − e−λa

)
P (a− σ)dσda

)
= 1

(3.9)

Here we study the (local) stability of the disease-free equilibrium.

Theorem 3.1. Let X(t) = (x1(t), · · · , xn(t))T be a vector-function, X : R→ Rn, and K(s) =

(kij(s)), i, j = 1, · · · , n be a matrix-function, K : R≥0 → Rn (the kernel). Consider the system

of linear renewal equations

X(t) =

ˆ ∞
0

K(τ)X(t− τ)dτ.

Suppose, additionally, that K is positive and (piecewise) continuous, with compact support. Let

K̄(z) denote the Laplace transform of the matrix-function K. Then the equilibrium X∗ = 0 is

locally asymptotically stable if ρ(K̄(0)) < 1 and unstable if ρ(K̄(0)) > 1.

This theorem can be obtained from an equivalent form in [61].
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For the disease-free equilibrium (of the System (3.4)), the matrix K̄(0) of the above theorem

is given by Φ(λ) at λ = 0 which is also equal to the matrix Df(0) given in previous section.

Theorem 3.1 implies that the disease-free equilibrium is locally asymptotically stable forR0 < 1,

and unstable forR0 > 1.

3.3 Sensitivity Analysis

In this section, we study the dependence of the positive equilibrium (F̄ , b̄) on the probability of

producing an infected offspring P (τ). In order to numerically solve the System (3.5), we consider

a special case where the survival probability has an exponential distribution, i.e., F(a) = e−µa.

First we consider a constant value for both β(a) = β∗ and P (τ) = p∗. In this case, System (3.5)

is equivalent to


F̄ = B(1− b̄) F̄

F̄+µ

´∞
0 e−µτA(τ)dτ +Bb̄

´∞
0 e−µτ Ã(τ)dτ

b̄ = β∗p∗

µ b̄+ (1− b̄)β
∗p∗

µ
F̄

F̄+µ
.

(3.10)

Without specifying the functionsA(τ) and Ã(τ), we suppose the values forA1 =
´∞

0 e−µτA(τ)dτ

and A2 =
´∞

0 e−µτ Ã(τ)dτ are given. The parameter values are chosen in a reasonable range for

a vertically transmitted disease such as HIV.

Figure 3.1a shows how the value of b̄ increases as the probability p∗ increases, while the value of

F̄ remains almost unchanged. The change of the equilibrium value with changing B and β∗ is

similar to p∗. The value of the equilibrium changes from 0 to a positive value as A1 increases in

3.1b, showing that the basic reproduction number increases from below 1 to above 1 by increasing

the value of A1.

Figure 3.2 shows the sensitivity of the positive equilibrium b̄ and R0 to the values of p∗ and A1.

We observe in 3.2a that the values of b̄ increase significantly by changing both p∗ and A1. On

the other hand, 3.2b shows that the values of R0 are more sensitive to the variation of A1, which

means that the initial growth rate of the disease is not affected by the transmission probabilities

from infected mothers to the newborn.
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(a)

(b)

Figure 3.1: The numerical solution of the equilibrium point (F̄ , b̄) for different values of: (a) p∗

and (b) A1, while the other parameter values are fixed.
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(a)

(b)

Figure 3.2: (a) Dependence of the positive equilibrium for the birth rate of infected newborn on
the value of p∗ and the values of A1 =

´∞
0 e−µτA(τ)dτ , which reflects the contact rates and the

infectivity of individuals in the population. (b) Dependence of the basic reproduction number on
the value of p∗ and the values of A1.
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Table 3.1: Definition of parameters and their values

Symbol Description Value (unit) Reference

N Total population [16× 106, 29× 106]* [126]
B Birth rate [0.01,0.02] (year−1) [4]
µ Death rate [0.01,0.02] (year−1) [4]
β∗ constant fertility rate [0.01,0.02] (year−1) Assumed
p∗ probability of producing infected offspring [0,1] Assumed
A1 [0,2] Assumed
A2 [0,2] Assumed

*Population of Malaysia between 1986-2011 based on [4].

3.4 Conclusions

The formulation of the vertically transmitted diseases using renewal equations with the general

survival function, infectivity, and transmission probability from infected mothers to newborns,

allows us to study and examine the dynamical behaviour of such diseases both analytically and

numerically. A system of renewal equations for the force of infection and the fraction of infected

newborns was developed in this chapter. The criteria for the existence and uniqueness of an

endemic equilibrium was derived and the stability of the disease-free equilibrium was studied.

A sensitivity analysis was performed for the special case with exponential survival function and

constant values for the fertility function and the probability of producing of an infected newborn

by an infected individual.

Further mathematical and numerical analyses are required to explore and evaluate the prevention

and control approaches aiming at reducing the mother to child transmission, considering a more

realistic function for β(a) and P (τ) which can also include information on the effect of treatment

on this probability.

3.5 A remark

The model in this chapter was formulated and studied in consultation with Professor Odo Diek-

mann and revised by Professor Jianhong Wu and Professor Neal Madras. This work was also
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4 | Epidemic Dynamics of Vector-Transmitted Diseases and

Vector Population Dynamics

Arthropods such as mosquitoes, sand flies, lice, and ticks are agents for the transmission of

pathogens in many deadly diseases, known as vector-borne diseases. Malaria, for instance, causes

more than 219 million cases and 400, 000 deaths every year [125]. These diseases can be con-

trolled using different methods. Vector control has been used as a principle method using insec-

ticides or some novel methods such as gene drive, Wolbachia, Spatial repellents and Eave tubes

[128]. Understanding the long-term trends of vector-host interactions and vector population dy-

namics is crucial in the risk assessment of vector-borne diseases for humans and other hosts.

In this chapter, first we focus on the development of general models describing the dynamics of

vector-borne diseases. We study a class of models for vector-transmitted diseases by analyzing

the forces of infection formulated as a coupled system of renewal equations. We derive the basic

reproduction number and a final size relation for closed vector and host populations. We extend

the model to the case where both vector and host populations have demographic dynamics and

derive the positive equilibrium and its local stability. The second part of this chapter is devoted

to a stage-structured dynamical model of ticks responsible for a wide range of tick-borne diseases

including Lyme diseases and tick-borne encephalitis.

4.1 Dynamics of vector-transmitted diseases

Suppose both host and vector populations are closed and there is no vertical transmission. Con-

sider three cases: there is only one type of host with no host-to-host transmission; one host popu-

lation with host-to-host transmission; and there are multiple host populations.

4.1.1 Epidemics: One type of host without host-to-host transmission

Let SH and SV denote the susceptible host and vector population, respectively. Let FH be the

force of infection imposed by the infected vectors on the susceptible hosts and FV be the force
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of infection imposed by infected hosts on the susceptible vectors and AH(τ)/AV (τ) be the con-

tribution to the force of infection by an infected vector/host (FH = Fvh, FV = Fhv, AH = Avh,

AV = Ahv).

The incidence in the host and vector populations are as follows

S′H(t) = −FH(t)SH(t)

S′V (t) = −FV (t)SV (t),
(4.1)

and the forces of infection are given by the following coupled system of renewal equations:

FH(t) =

ˆ ∞
0

SV (t− τ)FV (t− τ)AH(τ)dτ

FV (t) =

ˆ ∞
0

SH(t− τ)FH(t− τ)AV (τ)dτ.

(4.2)

The above system is a system of non-linear renewal equations for F (t) = (FH , Fv)
T . Now we

define the cumulative force of infection for F by Y (t) = (yH(t), yV (t))T =
´ t
−∞ F (σ)dσ, and

we get

yH(t) =

ˆ t

−∞
FH(σ)dσ =

ˆ ∞
0

SV (−∞)(1− e−yV (t−τ))AH(τ)dτ

yV (t) =

ˆ t

−∞
FV (σ)dσ =

ˆ ∞
0

SH(−∞)(1− e−yH(t−τ))AV (τ)dτ.

Let t→∞, then

yH(∞) =

ˆ ∞
0

SV (−∞)(1− e−yV (∞))AH(τ)dτ

yV (∞) =

ˆ ∞
0

SH(−∞)(1− e−yH(∞))AV (τ)dτ.

(4.3)

This system can be reduced to the following equation for yH(∞)

yH(∞) = SV (−∞)

ˆ ∞
0

AH(τ)dτ
(

1− e−SH(−∞)
´∞
0 AV (τ)dτ(1−e−yH (∞))

)
equivalently yH(∞) = g(yH(∞)), where g is the right hand side of the above equation. The

function g is monotone-increasing, sub-homogeneous, bounded function with g(0) = 0. There-
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fore there exists a unique positive solution for x = g(x), if and only if g′(0) > 1, i.e., if

R0 := SV (−∞)

ˆ ∞
0

AH(τ)dτSH(−∞)

ˆ ∞
0

AV (τ)dτ > 1.

Note that solving System (4.4) gives the following equations

SH(t) = SH(−∞)e−yH(t)

SV (t) = SV (−∞)e−yV (t)

therefore, the existence of a unique positive steady state for Y (∞) = (yH(∞), yV (∞))T for

R0 > 1 means that there is an epidemic in the host and vector populations and the final sizes of

the epidemic are given by the following relations:


ln SH(−∞)

SH(∞) = SV (−∞)
´∞

0 AH(τ)dτ
(
1− SV (∞)

SV (−∞)

)

ln SV (−∞)
SV (∞) = SH(−∞)

´∞
0 AV (τ)dτ

(
1− SH(∞)

SH(−∞)

)
Note that in most vector-borne diseases, the infected vectors do not recover (e.g., SI/SEI model).

However, in a closed vector population, the function AH(τ) for models without recovery is not

integrable, i.e.,
´∞

0 AH(τ)dτ = ∞ and therefore R0 = ∞, which yields that the disease free

equilibrium is always unstable.

4.1.2 One type of host with host-to-host transmission

In this section FH denotes the force of infection imposed by both infected vectors and hosts on the

susceptible host population and FV is same as before. LetAvh(τ)/Ahv(τ)/Ahh be the contribution

to the force of infection by an infected vector/host (FH = Fvh + Fhh, FV = Fhv). We assume

there is no vector-to-vector transmission.
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The incidence in the host and vector populations are as follows

S′H(t) = −FH(t)SH(t)

S′V (t) = −FV (t)SV (t),
(4.4)

and the forces of infection are given by the following coupled system of renewal equations:

FH(t) =

ˆ ∞
0

SV (t− τ)FV (t− τ)Avh(τ)dτ +

ˆ ∞
0

SH(t− τ)FH(t− τ)Ahh(τ)dτ

FV (t) =

ˆ ∞
0

SH(t− τ)FH(t− τ)Ahv(τ)dτ.

(4.5)

The the cumulative force of infection for F is therefore given by

yH(t) =

ˆ ∞
0

SV (−∞)(1− e−yV (t−τ))Avh(τ)dτ +

ˆ ∞
0

SH(−∞)(1− e−yH(t−τ))Ahh(τ)dτ

yV (t) =

ˆ ∞
0

SH(−∞)(1− e−yH(t−τ))Ahv(τ)dτ.

When t→∞ we have

yH(∞) = SV (−∞)(1− e−yV (∞))

ˆ ∞
0

Avh(τ)dτ + SH(−∞)(1− e−yH(∞))

ˆ ∞
0

Ahh(τ)dτ

yV (∞) = SH(−∞)(1− e−yH(∞))

ˆ ∞
0

Ahv(τ)dτ.

which is equivalent to

yH(∞) = SV (−∞)

ˆ ∞
0

Avh(τ)dτ
(

1− e−SH(−∞)
´∞
0 Ahv(τ)dτ(1−e−yH (∞))

)
+ SH(−∞)

ˆ ∞
0

Ahh(τ)dτ
(

1− e−yH(∞)
)
.

Let G denote the right hand side function. It can be shown that G is also a monotone-increasing,

sub-homogeneous, bounded function with G(0) = 0. Therefore there exists a unique positive

solution for x = G(x), if and only if G′(0) > 1, which gives the basic reproduction number as

40



follows

R0 := SV (−∞)

ˆ ∞
0

Avh(τ)dτSH(−∞)

ˆ ∞
0

Ahv(τ)dτ + SH(−∞)

ˆ ∞
0

Ahh(τ)dτ.

Using the same method given in the previous section we get the following final size relations


ln SH(−∞)

SH(∞) = SV (−∞)
´∞

0 Avh(τ)dτ
(
1− SV (∞)

SV (−∞)

)
+ SH(−∞)

´∞
0 Ahh(τ)dτ

(
1− SH(∞)

SH(−∞)

)

ln SV (−∞)
SV (∞) = SH(−∞)

´∞
0 Ahv(τ)dτ

(
1− SH(∞)

SH(−∞)

)

4.1.3 Multiple hosts without host-to-host transmission

Let S1, · · · , Sn denote n types of host for a vector-borne disease (e.g., humans, mice and deer

for tick-borne diseases) with one type of vector. Then the following system of renewal equations

describe the forces of infection F1, · · · , Fn for hosts and FV for the vector

Fi(t) =

ˆ ∞
0

SV (t− τ)FV (t− τ)Avi(τ)dτ, i = 1, · · · , n

FV (t) =
n∑
i=1

ˆ ∞
0

Si(t− τ)Fi(t− τ)Aiv(τ)dτ,

and the cumulative forces of infection satisfy

yi(t) =

ˆ ∞
0

SV (−∞)(1− e−yV (t−τ))Avi(τ)dτ, i = 1, · · · , n

yV (t) =
n∑
i=1

ˆ ∞
0

Si(−∞)(1− e−yi(t−τ))Aiv(τ)dτ.

Let t→∞, then

yi(∞) = SV (−∞)(1− e−yV (∞))

ˆ ∞
0

Avi(τ)dτ, i = 1, · · · , n

yV (∞) =

n∑
i=1

Si(−∞)(1− e−yi(∞))

ˆ ∞
0

Aiv(τ)dτ.
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Equivalently

yV (∞) =
n∑
i=1

Si(−∞)
(

1− e−SV (−∞)(1−e−yV (∞))
´∞
0 Avi(τ)dτ

)ˆ ∞
0

Aiv(τ)dτ.

Let g(x) be the right hand side function in the above equation. It can be shown that g is a monotone

increasing, sub-homogeneous and bounded function with g(0) = 0 and therefore the equation has

a unique positive solution iff g′(0) > 1. Thus the basic reproduction number is as follows

R0 =
n∑
i=1

Si(−∞)

ˆ ∞
0

Aiv(τ)dτSV (−∞)

ˆ ∞
0

Avi(τ)dτ.

4.1.4 Endemic Vector-Transmitted Diseases

In this section, we assume that both host and vector populations have demographic dynamics

without migration and vertical transmission. Suppose constant birth ratesBH andBV and general

survival functionsFH(a) andFH(a) for the host and vector populations. Using the notations from

the previous section for forces of infection we have the following system of equations

FH(t) =

ˆ ∞
0

FV (t− τ)BV

ˆ ∞
0

e−
´ a
0 FV (t−τ−a+σ)dσFV (a+ τ)daAH(τ)dτ

FV (t) =

ˆ ∞
0

FH(t− τ)BH

ˆ ∞
0

e−
´ a
0 FH(t−τ−a+σ)dσFH(a+ τ)daAV (τ)dτ

(4.6)

It is clear that FH = 0 and FV = 0 is a solution to the above system. Let F̄H and F̄V be the

positive equilibrium for FH and FV , respectively. Then

F̄H = BV F̄V

ˆ ∞
0

ˆ ∞
0

e−F̄V aFV (a+ τ)daAH(τ)dτ

F̄V = BH F̄H

ˆ ∞
0

ˆ ∞
0

e−F̄HaFH(a+ τ)daAV (τ)dτ
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Substituting F̄H from the first equation in the second we get the following equation for F̄V :

1 =BHBV

ˆ ∞
0

ˆ ∞
0

e−F̄V sFV (s+ u)dsAH(u)du

ˆ ∞
0

ˆ ∞
0

e−
(
BV F̄V

´∞
0

´∞
0 e−F̄V sFV (s+u)dsAH(u)du

)
aFH(a+ τ)daAV (τ)dτ

(4.7)

Note that the the right hand side function is a monotonically decreasing function of F̄V , since all

integrands are positive. Therefore, there is a positive solution to the above equation if and only if

R0 := BHBV

ˆ ∞
0

ˆ ∞
0
FV (a+ τ)daAH(τ)dτ

ˆ ∞
0

ˆ ∞
0
FH(a+ τ)daAV (τ)dτ > 1. (4.8)

This expression ofR0 can be interpreted as the number of vectors that become infected by a an in-

fected host during the infectious period multiplied by the number of infected hosts by an infected

vector. Also, the transmission in vector-borne diseases can be considered as two generations, i.e.,

from host to vector to host, as well as one generation [17]. The above formula for the basic re-

production number considers the transmission as one generation. If we consider two generations,

i.e., consider the number of infected hosts as a result of host to vector and then vector to host

transmission, then the basic reproduction number would be the square root of the left hand side in

(4.8).

The basic reproduction of vector-borne diseases, as described in [64], can be given by
´∞

0 b(a)F(a)da,

where a denotes the age of infection and b and F are as defined in Chapter 1. In this case, b(a)

would be the average number of hosts infected by an infected vector of age of infection a, and

F(a) can be defined as follows

F(a) =

ˆ a

0
Probability (host infected at time 0 exists at time s)

× Probability (host infected for total time s infects vectors)

× Probability (infected vector lives to be age a-s)dt

(4.9)
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This will yield the basic reproduction number as the average number of newly infected hosts as

opposed to the basic reproduction umber defined by (4.8).

Stability of the positive equilibrium

In this part, we provide the stability analysis of the positive equilibrium (F̄H , F̄V ) using the lin-

earization principal for system of renewal equations. First we linearize the system (4.6) for the

general survival functions. Then we consider the special case of exponential survival function for

both host and vector populations with constant death rates µH and µV , respectively.

The linearized system is as follows

u(t) = BV

ˆ ∞
0

v(t− τ)

ˆ ∞
0

e−F̄V aFV (a+ τ)daAH(τ)dτ

−BV F̄V
ˆ ∞

0

ˆ ∞
0

e−F̄V aFV (a+ τ)

ˆ a

0
v(t− τ − a+ σ)dσdaAH(τ)dτ

v(t) = BH

ˆ ∞
0

u(t− τ)

ˆ ∞
0

e−F̄HaFH(a+ τ)daAV (τ)dτ

−BH F̄H
ˆ ∞

0

ˆ ∞
0

e−F̄HaFH(a+ τ)

ˆ a

0
u(t− τ − a+ σ)dσdaAV (τ)dτ

(4.10)

Suppose the solutions of the linear System (4.10) are of the exponential form u(t) = cue
λt and

v(t) = cve
λt, then (cu, cv) satisfy the following system of equations

cu =
(
BV

ˆ ∞
0

e−λτ
ˆ ∞

0
e−F̄V aFV (a+ τ)daAH(τ)dτ

−BV F̄V
ˆ ∞

0

ˆ ∞
0

e−F̄V aFV (a+ τ)

ˆ a

0
e−λτe−λaeλσdσdaAH(τ)dτ

)
cv

cv =
(
BH

ˆ ∞
0

e−λτ
ˆ ∞

0
e−F̄HaFH(a+ τ)daAH(τ)dτ

−BH F̄H
ˆ ∞

0

ˆ ∞
0

e−F̄HaFH(a+ τ)

ˆ a

0
e−λτe−λaeλσdσdaAV (τ)dτ

)
cu

This system has a unique, nontrivial solution for (cu, cv) iff λ satisfies the following characteristic
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equation

BHBV

( ˆ ∞
0

e−λτ
ˆ ∞

0
e−F̄V aFV (a+ τ)daAH(τ)dτ

− F̄V
ˆ ∞

0

ˆ ∞
0

e−F̄V aFV (a+ τ)e−λ(a+τ) (eλa − 1)

λ
daAH(τ)dτ

)
(ˆ ∞

0
e−λτ

ˆ ∞
0

e−F̄HaFH(a+ τ)daAH(τ)dτ

− F̄H
ˆ ∞

0

ˆ ∞
0

e−F̄HaFH(a+ τ)

ˆ a

0
e−λ(a+τ) (eλa − 1)

λ
daAV (τ)dτ

)
= 1.

(4.11)

Substituting FH(a) = e−µHa and FV (a) = e−µV a, and using the Laplace transform of a function

A, defined by Ā(z) =
´∞

0 e−zuA(u)du the above equation takes the following form:

BHBV

(
ĀH(λ+ µV )

F̄V + µV
− F̄V ĀH(λ+ µV )

λ

( 1

F̄V + µV
− 1

F̄V + µV + λ

))
(
ĀV (λ+ µH)

F̄H + µH
− F̄HĀV (λ+ µH)

λ

( 1

F̄H + µH
− 1

F̄H + µH + λ

))
= 1

(4.12)

Note that in this case the basic reproduction number is

R0 =
BHBV
µHµV

ĀH(µV )ĀV (µH)

and the equilibrium point (F̄H , F̄V ) is as follows

F̄H =
BV F̄V
F̄V + µV

ĀH(µV ), F̄V =
BHBV ĀH(µV )ĀV (µH)− µHµV

BV ĀH(µV ) + µH
. (4.13)

Theorem 4.1. Consider System (4.6). If R0 > 1, then the positive equilibrium given by (4.13) is

locally asymptotically stable.

Proof. SupposeR0 > 1. We show that all roots of the characteristic equation (4.12) have negative

real part. Let λ be a characteristic root with Re(λ) ≥ 0. Then
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|ĀH(λ+ µV )| ≤ ĀH(Re(λ) + µV ) ≤ ĀH(µV ),

|ĀV (λ+ µH)| ≤ ĀV (Re(λ) + µH) ≤ ĀV (µH).

We can rewrite (4.13) to get the following

F̄H =
(R0 − 1)µHµV
BHĀV (µH) + µV

, F̄V =
(R0 − 1)µHµV
BV ĀH(µV ) + µH

. (4.14)

Now we can show that absolute value of the left hand side of (4.12) is strictly less than 1. First

note that the left hand side of (4.12) can be written as follows

BHBV

(
ĀH(λ+ µV )(µV + λ)

(F̄V + µV )(F̄V + µV + λ)

)(
ĀV (λ+ µH)(µH + λ)

(F̄H + µH)(F̄H + µH + λ)

)
(4.15)

Substituting F̄H and F̄V from (4.14) we have

| µV + λ

F̄V + µV + λ
| =

√
(µV + Re(λ))2 + Im(λ)2√

(µV
R0µH+BV ĀH(µV )
µH+BV ĀH(µV )

+ Re(λ))2 + Im(λ)2
< 1,

| µH + λ

F̄H + µH + λ
| =

√
(µH + Re(λ))2 + Im(λ)2√

(µH
R0µV +BHĀV (µH)
µV +BHĀV (µH)

+ Re(λ))2 + Im(λ)2
< 1

sinceR0 > 1. We can also show that

|BH
ĀH(λ+ µV )

F̄V + µV
| < 1 and |BV

ĀV (λ+ µH)

F̄H + µH
| < 1.

This completes the proof.

4.1.5 Discussion

The results of this section can be applied to many vector-transmitted diseases: 1) the host popula-

tion has stabilized at an equilibrium and the disease dynamics is faster than the vector population
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dynamics; 2) both host and vector populations have a constant birth rate and a negative expo-

nential survival probability. In the second case, vertical transmission can be incorporated for the

host and vector. A stage-structured population model of the vector will be required for a more

rigorous study of the impact of vector-host interactions during different stages of vector life cycle,

on the disease dynamics. The next section focuses on some of these vector-host interactions, in

the absence of a disease, and their impact on the vector population dynamics.

4.2 Modeling the Impact of Host Resistance on Structured Tick Pop-

ulation Dynamics

Background and Motivation

Lyme Disease is the most reported athropod-borne illness and it was first recognized in 1976

in Lyme, Connecticut, USA [111]. Borrelia burgdorferi is a tick-borne spirochete responsible

for Lyme disease which is found in nymphal Ixodes dammini and has the highest chance to be

transmitted to the host if the infected tick feeds for a duration of 72 hours or more [99, 112, 69].

Once an infected tick bites the host, a skin lesion called erythema migrans (EM) starts emerging

and more than 95% of those patients diagnosed with Lyme disease have EM on the tick biting

site [52, 111]. Once the bacterium enters the body it starts spreading in many organs and tis-

sues through the lymph system and blood [52]. As time progresses the patient will experience

headache, neck pain, fever, fatigue, and migratory musculoskeletal pain [112, 69, 52]. The gov-

ernment of Canada has data representing an increase from 144 cases in 2009 to 2025 cases in 2017

[91]. The I.scopularis also known as a black-legged tick is the main carrier of B. burgdorferi and

has a life cycle of nearly two years [111]. The tick population undergoes three main stages: L-

larvae, N-nymph, A-adult and to move from one stage to the other ticks will quest (i.e., search for

hosts to attach to), feed and molt [82, 130, 101, 102]. Larvae and nymph feed on small rodents

such as mice while adult ticks are more selective when it comes to their host since their body is

larger compared to larvae and nymph and therefore the host must be a large mammal such as a

deer. For ticks to move from one stage to the next it requires three hosts per stage and often the
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tick may use the same host for all three blood meals [82, 130, 101, 102]. Female ticks lay eggs

in the spring and larvae hatch during late summer. The larvae that feeds during the late summer

starts molting to nymph during winter. The nymph then starts feeding in the spring of the follow-

ing year and molts into adult on the same year. Adult ticks die shortly right after they lay their

eggs in the early spring [130, 101].

When a tick bites a host the expression of immunity varies depending on different hosts and tick

species.The effects on ticks can vary from a simple rejection of the tick to interfering with the

duration of feeding, inhibition of egg laying, also decreasing their viability to death of the tick

while feeding. In addition, studies reveal that when female ticks feed on immune cattle their

body of fully engorged tick was reduced by 30% [80, 119, 13]. According to Brown [67] hosts

with resistance respond to tick bites with an intensified grooming behaviour and the attachment

site is marked by serous exudes which could engulf the tick. In an experiment conducted on

resistant guinea pigs bitten by Dermacentor andersoni, basophilia is present on the biting site.

The attachment of a tick on a tick-sensitized host is characterized by packs of basophils located

in the intraepidermal vesicles. When ticks’ extracts are injected into tick-sensitized host it causes

a skin reaction and the plasma of the host expresses anti-tick antibodies which suggests a present

mediated immune response. In case of unbitten animals, the reaction starts with neutrophils and

the feeding site is characterized by an hemorrhage as feeding progresses. Basophils start to also

accumulate to the feeding site, however little degranulation occurs. In an experiment to study the

effect of resistance of guinea pigs to ticks, basophil degranulation at tick feeding sites, resulted in

tick rejection after tick-attachment: 29% after 6 hours, 18% after 12 hours, 22% after 24 hours,

37% after 48 hours and 7.3% after 72 and 96 hours. This shows that ticks are most susceptible to

the resistance at 6, 12, 24 and 48 hours after attachment which are corresponding to the attachment

time and rapid feeding period [26].

There have been intensive studies modelling the dynamics of tick-host interaction and the trans-

mission of various pathogens. Different aspects have also been included such as: seasonality ,

environmental changes, geographical heterogeneity and so on. On the other hand, few models

incorporate delays in the development of tick from each life stage to the next [54, 120, 131].
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Jennings et al. [68] studied the effect of host resistance on tick population dynamics. They de-

veloped a mathematical model, described by a system of ordinary differential equations, focusing

on tick-host interaction where the tick’s life cycle was divided into two main stages, adult and

juvenile, and the host was subdivided into host with no immunity and host with immunity. Their

focus is to show how immunity affects the extinction or persistence of tick dynamics. However,

their model does not include all biological stages (and sub-stages) of ticks and the possibility of

different immunological response for each stage is ignored.

Here, we consider a stage-structured model that involves the full biological dynamics of tick and

the emphasis is on the grooming behaviour of the host, and its impact on tick population dynamics.

We analyze the grooming behaviour in the mathematical model as a reduction in the successful

attachment rates of ticks on the host i.e., the host-finding rates are reduced by a fraction for the

host that shows resistance to tick bites. The model includes three main stages of tick’s life cycle

in which the ticks interact with hosts during questing-feeding-molting process. There is one more

stage that we consider between Adult and Egg which is egg laying female. The host is divided

into two compartments: host with resistance (host has been bitten by ticks before) and host with

no resistance (host that has not been exposed to ticks). We observe that the basic reproduction

number does not change with the resistance factor, however, numerical simulations show that

the value of the positive equilibrium for different stages of tick population, and the dynamical

behaviour of the solutions change with varying the resistance factor. Also, the sensitivity analysis

demonstrates the dependence of the solutions on different parameters.

4.2.1 The Model Formulation

We start the model aiming to focus on the grooming behaviour. We model the three stages of

larvae, nymph, and adult. The larvae and nymph populations are subdivided into questing, feeding

and molting. On the other hand, for the adult population we consider adult egg laying female

Aelf , adult questing (Aq) and feeding (Af ). Since a single female tick lays several thousands

eggs the birth rate is the entry into population which is represented by Ricker function, γ(A) =

pAe−qA [104, 95]. Tick dynamics are regulated by insufficient resources for blood meal and this

is illustrated in parameter q.
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Table 4.1: Definition of Variables and their initial values

Symbol Meaning Initial value

Lq Number of questing larvae Lq0 = 1× 106

Lf Number of feeding larvae Lf0(θ) = 0, −τ(E,L) ≤ θ ≤ 0

Lm Number of molting larvae

Nq Number of questing nymph Nq0 = 0

Nf Number of feeding nymph Nf0(θ) = 0, −τ(L,N) ≤ θ ≤ 0

Nm Number of molting nymph

Aq Number of questing adult Aq0 = 0

Af Number of feeding adult Af0 = 0

Aelf Number of egg laying female adult Aelf0(θ) = 0, −τ(N,A) ≤ θ ≤ 0

E Number of eggs

H Number of hosts

Hr+ Number of hosts with resistance Hr+ = 0

Hr− Number of host with no resistance
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Table 4.2: Definition of parameters and their values

Symbol Meaning Value Reference

dLq Per capita mortality rate of Lq 0.6× 10−2 per day [95]
dLm Per capita mortality rate of Lm 0.3× 10−2 per day [95]
dNq Per capita mortality rate of Nq 0.6× 10−2 per day [95]
dNm Per capita mortality rate of Nm 0.2× 10−2 per day [95]
dAq Per capita mortality rate of Aq 0.6× 10−2 per day [95]
dAelf Per capita mortality rate of Aelf 1 per day [132]
dE Per capita mortality rate of E 0.2× 10−2 per day [95]
βL Successful attachment rate of 0.6× 10−3 per day per host [79]

questing larva to host
βN Successful attachment rate of 0.6× 10−3 per day per host [79]

questing nymph to host
βA Successful attachment rate of 0.2× 10−2 per day per host [79]

questing adult to host
β∗L Rate of developing resistance to larva κ× βL per day per tick Calculated
β∗N Rate of developing resistance to nymph κ× βN per day per tick Calculated
β∗A Rate of developing resistance to adult κ× βA per day per tick Calculated
δ Detachment rate 0.01 per day [103]
αL Host grooming effect for larva 0.4, [0, 1] unitless Assumed
αN Host grooming effect for nymph 0.6, [0, 1] unitless Assumed
αA Host grooming effect for adult 0.5, [0, 1] unitless Assumed
ε Female proportion 0.5 unitless [57]
τ(E,L) The delay of development 21 days [95]

form egg to larvae
τ(L,N) The delay of development 101.18× Temp−2.25, 200 days [95]

form larvae to nymph
τ(N,A) The delay of development 1596× Temp−1.21, 61 days [95]

form nymph to adult
b Birth rate of the host 0.66× 10−3 per day [120]
µ Death rate of the host 0.33× 10−3 per day [120]
c Crowding 3.5× 10−4 per day Calculated
K Carrying Capacity of deers 20 [95]
p Maximum number of eggs 3000 [95]

per female adult tick
q The strength of density dependence 0.001 unitless [104]
κ Constant factor for resistance development 0.0001 unitless Assumed
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Table 4.3: Modified parameter values to get different values forR0

Symbol Modified Value Comments

dE 1.2× 0.2× 10−2 p+20%p

dLq 1.2× 0.6× 10−2 p+20%p

dLm 1.2× 0.3× 10−2 p+20%p

dNq 1.2× 0.6× 10−2 p+20%p

dNm 1.2× 0.2× 10−2 p+20%p

dAq 1.2× 0.6× 10−2 p+20%p

βL 0.1× 0.6× 10−3, 0.2× 0.6× 10−3 10%p, 20%p

βN 0.3× 0.6× 10−3, 0.5× 0.6× 10−3 30%p, 50%p

βA 0.5× 0.2× 10−2 50%p fixed

β∗L κ× βL changed by changing βL

β∗N κ× βN changed by changing βN

β∗A κ× βA changed by changing βA

αL 0.4 varied in [0, 1]

αN 0.6 varied in [0, 1]

αA 0.5 varied in [0, 1]

c 1.2× 3.5× 10−4 p+ 20%p fixed

q 0.001 not changed
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The delay functions, demonstrating the time delays of ticks molting from one stage to another,

are constants. In the model, τ(E,L), τ(L,N), τ(N,A) represent the time it takes for ticks to molt

from egg to larvae, larvae to nymph and nymph to adult, respectively. The host population is

divided into two compartments: Hr+ represents the bitten host compartment that have developed

with immunity; Hr− represents the compartment of hosts that have never been bitten before and

therefore without immunity. H is the total host population with a birth rate b and a mortality rate

µ. The density-dependent regulations of the host population is described by K, c, and b − µ.

The variables and parameters and their meaning are given in Tables 4.1 and 4.2. We suppose

the successful attachment rates are reduced by a fraction αL for larvea, αN for nymph and αA for

adult ticks. Based on the results from [26] we can assume that α is in the range [0.6, 0.95], however

we will study the effect of α values in [0, 1]. We also assume the hosts with no resistance develop

resistance to ticks at a rate, denoted by κ, that depends on the tick densities, tick attachment rates

and the immune system response.

In order to make the model comprehensible we neglect few biological factors of tick dynamics.

There are multiple blood meals that take place during molting procedures however in our model

we consider only a homogeneous molting process, that is, ticks feed once, drop and molt with a

constant time delay. The death rate depends on the stage of the tick (egg, larvae, nymph, adult)

and also on whether the tick is questing or feeding. However, we consider a constant mortality

rate. Impact of climate change on development of ticks having a nonlinear relationship with

increasing ambient temperature has not also been modelled. In addition, the ticks’ attachment rate

is considered constant, even though it decreases as the temperatures and the day light decreases.
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The model is described by the following system of delay differential equations:

dLq
dt

= e−d
Eτ(E,L)γ(Aelf (t− τ(E,L)))− βLLq(t)(αLHr+(t) +Hr−(t))− dLqLq(t)

dLf
dt

= βLLq(t)(αLHr+(t) +Hr−(t))− δLf (t)

dLm
dt

= δLf (t)− dLmLm(t)− δψe−dLmτ(L,N)Lf (t− τ(L,N))

dNq

dt
= δψe−d

Lmτ(L,N)Lf (t− τ(L,N))− βNNq(t)(αNHr+(t) +Hr−(t))− dNqNq(t)

dNf

dt
= βNNq(t)(αNHr+(t) +Hr−(t))− δNf (t)

dNm

dt
= δNf (t)− dNmNm(t)− δψe−dNmτ(N,A)Nf (t− τ(N,A))

dAq
dt

= δψe−d
Nmτ(N,A)Nf (t− τ(N,A))− βAAq(t)(αAHr+(t) +Hr−(t))− dAqAq(t)

dAf
dt

= βAAq(t)(αAHr+(t) +Hr−(t))− δAf (t)

dAelf
dt

= εδAf (t)− dAelfAelf (t)

dE

dt
= γ(Aelf (t))− dEE(t)− e−dEτ(E,L)γ(Aelf (t− τ(E,L)))

dHr−
dt

= bH(t)− µHr−(t)− c

K
H(t)Hr−(t)− (β∗LLq(t) + β∗NNq(t) + β∗AAq(t))Hr−(t)

dHr+

dt
= −µHr+(t)− c

K
H(t)Hr+(t) + (β∗LLq(t) + β∗NNq(t) + β∗AAq(t))Hr−(t)

(4.16)

where γ(A) = pAe−qA is the birth function. Here, we use the following equation for the host

population dynamics
dH(t)

dt
= (b− µ)H(t)− c

K
(H(t))2 (4.17)

where H(t) = Hr−(t) + Hr+(t). Note that the positive equilibrium of this equation is given by

H̄ = (b−µ)
c K. Interpreting K as an environmental constraint, and in order to have H̄ ≤ K we

assume c ≥ (b− µ), with H̄ = K when the equality holds.
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From System (4.16) we can get the following integral equations for Lm(t), Nm(t) and E(t)

Lm(t) = Lm(0)−
ˆ 0

−τ(L,N)

e−d
Lm (−s)δLf (s)ds+

ˆ t

t−τ(L,N)

e−d
Lm (t−s)δLf (s)ds

Nm(t) = Nm(0)−
ˆ 0

−τ(N,A)

e−d
Nm (−s)δNf (s)ds+

ˆ t

t−τ(N,A)

e−d
Nm (t−s)δNf (s)ds

E(t) = E(0)−
ˆ 0

−τ(E,L)

e−d
E(−s)γ(Aelf (s))ds+

ˆ t

t−τ(E,L)

e−d
E(t−s)γ(Aelf (s))ds

(4.18)

Therefore System (4.16) is equivalent to the following

dLq
dt

= e−d
Eτ(E,L)γ(Aelf (t− τ(E,L)))− βLLq(t)(αLHr+(t) +Hr−(t))− dLqLq(t)

dLf
dt

= βLLq(t)(αLHr+(t) +Hr−(t))− δLf (t)

dNq

dt
= δψe−d

Lmτ(L,N)Lf (t− τ(L,N))− βNNq(t)(αNHr+(t) +Hr−(t))− dNqNq(t)

dNf

dt
= βNNq(t)(αNHr+(t) +Hr−(t))− δNf (t)

dAq
dt

= δψe−d
Nmτ(N,A)Nf (t− τ(N,A))− βAAq(t)(αAHr+(t) +Hr−(t))− dAqAq(t)

dAf
dt

= βAAq(t)(αAHr+(t) +Hr−(t))− δAf (t)

dAelf
dt

= εδAf (t)− dAelfAelf (t)

dHr−
dt

= bH(t)− µHr−(t)− c

K
H(t)Hr−(t)− (β∗LLq(t) + β∗NNq(t) + β∗AAq(t))Hr−(t)

dHr+

dt
= −µHr+(t)− c

K
H(t)Hr+(t) + (β∗LLq(t) + β∗NNq(t) + β∗AAq(t))Hr−(t)

(4.19)

together with (4.18).

For further analyses of this model we use the theory of monotone dynamical systems [109]. Let

τ = (τ1, · · · , τ12) where τi ≥ 0, τ2 = τ(L,N), τ5 = τ(N,A)), τ9 = τ(E,L) are non zero and τi = 0

for i 6= 2, 5, 9. Assume |τ | = max{τi}.

Let Cτ be the product of Banach spaces Cτi = C([−τi, 0],R), i.e.,

Cτ =
12∏
i=1

C([−τi, 0],R).
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Let Xt = (X1
t , · · · , X12

t ) ∈ Cτ be given by

Xi
t(θ) = Xi(t+ θ), i = 1, · · · , 12.

where

X(t) = (X1(t), · · · , X12(t)) = (Lq, Lf , Lm, Nq, Nf , Nm, Aq, Af , Aelf , E,Hr−, Hr+).

Then the right hand side of the Equation (4.16) is given by

X ′(t) = f(Xt). (4.20)

We assume the initial data is non-negative. So we will assume the initial data X0 is in the Banach

space C+
τ defined below

C+
τ = {φ ∈ Cτ : φi(θ) ≥ 0,−τi ≤ θ ≤ 0}.

Also, for the initial data to be continuous and positive we assume:

Lm(0) ≥
ˆ 0

−τ(L,N)

e−d
Lm (−s)δLf (s)ds

Nm(0) ≥
ˆ 0

−τ(N,A)

e−d
Nm (−s)δNf (s)ds

E(0) ≥
ˆ 0

−τ(E,L)

e−d
E(−s)γ(Aelf (s))ds.

(4.21)

The fundamental theory of functional differential equations implies that the solutions exist and

are unique for all t ≥ 0. We now show that the solutions will be positive and remain bounded.

Theorem 4.2. Let Xi(0) > 0 and Xi(θ) ≥ 0 for −τi ≤ θ < 0, for i = 1, · · · , 12. Then the

solutions to the System (4.19) are positive and bounded for all t ≥ 0.

Proof. Consider the first equation in (4.19). First we look at the solution on [0, τ ]: if there exists
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t1 ∈ (0, τ) such that Lq(t1) = 0, then the derivative dLq(t)/dt at t1 is

dLq(t)

dt

∣∣∣∣
t1

= e−d
Eτ(E,L)γ(Aelf (t1 − τ(E,L))). (4.22)

Since initial data for Aelf on [−τ, 0] is positive, the derivative of Lq at t1 is positive and therefore

Lq(t) is increasing, so it cannot be negative. The same argument can be applied for [τ, 2τ ]. This

proves that Lq(t) ≥ 0 for all t ≥ 0. If there exists t2 such that Lf (t2) = 0, then the derivative of

Lf at t2 is given by
dLf (t)

dt

∣∣∣∣
t2

= βLLq(t)(αLHr+(t) +Hr−(t)) (4.23)

which is positive since Lq(t2), Hr+(t2) and Hr−(t) are positive. Thus Lf is increasing at t2 so

it cannot be negative. The same argument applies for other equations. Therefore the solutions are

positive.

From Equation (4.17) it is clear that H(t) is positive and bounded by the carrying capacity K.

Also the above discussion shows that Hr− and Hr+ are positive for all t ≥ 0. We show the

boundedness of the tick population as follows. Let T > 0 and τ = max{τ(E,L), τ(L,N), τ(N,A)}.

We integrate the first equation in the original system (2.1)

Lq(t) = e−d
Lq t−βL

´ t
0 (αLHr+(u)+Hr−(u))du

ˆ t

0
ed
Lq s+βL

´ s
0 (αLHr+(u)+Hr−(u))du

(
e−d

Eτ(E,L)γ(Aelf (s− τ(E,L)))
)
ds+ e−d

Lq t−βL
´ t
0 (αLHr+(u)+Hr−(u))duLq(0)

therefore

sup
−τ≤t≤T

Lq(t) ≤ Lq(0) +
e−d

Eτ(E,L)

dLq
sup

−τ≤t≤T
γ(Aelf (t))

using

sup
−τ≤t≤T

e−βL
´ t
s (αLHr+(u)+Hr−(u))du = 1

and ˆ t

0
e−d

Lq (t−s)ds < 1/dLq .
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Using the fact that γ(Aelf (t)) ≤ p/qe for all t ≥ 0, we see that

sup
−τ≤t≤T

Lq(t) ≤ C

where C = Lq(0) + pe−d
Eτ(E,L)/qedLq is independent of T . Therefore Lq(t) ≤ C for all

−τ ≤ t <∞.

Integrating the remaining equations and taking the supremum we have:

sup
−τ≤t≤T

Lf (t) ≤ sup
−τ≤t≤0

Lf0(t) +
βLK

δ
sup

−τ≤t≤T
Lq(t)

sup
−τ≤t≤T

Nq(t) ≤ Nq(0) +
e−d

Lmτ(L,N)

dNq
sup

−τ≤t≤T
Lf (t)

sup
−τ≤t≤T

Nf (t) ≤ sup
−τ≤t≤0

Nf0(t) +
βNK

δ
sup

−τ≤t≤T
Nq(t)

sup
−τ≤t≤T

Aq(t) ≤ Aq(0) +
e−d

Nmτ(N,A)

dAq
sup

−τ≤t≤T
Nf (t)

sup
−τ≤t≤T

Af (t) ≤ Af (0) +
βAK

δ
sup

−τ≤t≤T
Aq(t)

sup
−τ≤t≤T

Aelf (t) ≤ sup
−τ≤t≤0

Aelf0(t) +
εδ

dAelf
sup

−τ≤t≤T
Af (t).

Combining the above inequalities and assuming that the initial data are bounded we can see that

these tick stages are bounded on −τ ≤ t < ∞. We can get similar inequalities from System

(4.18). This proves that all tick stages are bounded.
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Since the host population stabilizes quickly at H̄ = (b−µ)K/c, the limiting system is as follows

dLq
dt

= e−d
Eτ(E,L)γ(Aelf (t− τ(E,L))) + βL(1− αL)Lq(t)Hr+(t)− (βLH̄ + dLq)Lq(t)

dLf
dt

= −βL(1− αL)Lq(t)Hr+(t) + βLH̄Lq(t)− δLf (t)

dNq

dt
= δψe−d

Lmτ(L,N)Lf (t− τ(L,N)) + βN (1− αN )Nq(t)Hr+(t)− (βNH̄ + dNq)Nq(t)

dNf

dt
= −βN (1− αN )Nq(t)Hr+(t) + βNH̄Nq(t)− δNf (t)

dAq
dt

= δψe−d
Nmτ(N,A)Nf (t− τ(N,A)) + βA(1− αA)Aq(t)Hr+(t)− (βAH̄ + dAq)Aq(t)

dAf
dt

= −βAAq(t)(1− αA)Hr+(t) + βAH̄Aq(t)− δAf (t)

dAelf
dt

= εδAf (t)− dAelfAelf (t)

dHr+

dt
= −µHr+(t)− c

K
H̄Hr+(t) + (β∗LLq(t) + β∗NNq(t) + β∗AAq(t))(H̄ −Hr+(t))

(4.24)

From now on we refer to this system as the main system of our model unless otherwise stated.

4.2.2 Analyses

In this section we give a necessary condition for the existence and uniqueness of a positive equi-

librium and sufficient conditions for local stability of the tick free equilibrium.
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Equilibria

Let X∗ denote the vector (Lq, Lf , Nq, Nf , Aq, Af , Aelf , Hr+) in R8, and let f(X) be the right

hand side of (4.24). In order to find all equilibria we need to solve the system f(X) = 0:

0 = e−d
Eτ(E,L)γ(Aelf (t− τ(E,L))) + βL(1− αL)Lq(t)Hr+(t)− (βLH̄ + dLq)Lq(t)

0 = −βL(1− αL)Lq(t)Hr+(t) + βLH̄Lq(t)− δLf (t)

0 = δψe−d
Lmτ(L,N)Lf (t− τ(L,N)) + βN (1− αN )Nq(t)Hr+(t)− (βNH̄ + dNq)Nq(t)

0 = −βN (1− αN )Nq(t)Hr+(t) + βNH̄Nq(t)− δNf (t)

0 = δψe−d
Nmτ(N,A)Nf (t− τ(N,A)) + βA(1− αA)Aq(t)Hr+(t)− (βAH̄ + dAq)Aq(t)

0 = −βAAq(t)(1− αA)Hr+(t) + βAH̄Aq(t)− δAf (t)

0 = εδAf (t)− dAelfAelf (t)

0 = −µHr+(t)− c

K
H̄Hr+(t) + (β∗LLq(t) + β∗NNq(t) + β∗AAq(t))(H̄ −Hr+(t))

(4.25)

At the tick-free equilibrium, where all tick stages are equal to zero, we have Hr+ = 0. Let

Hr+ 6= H̄ so that (H̄ − (1 − αL)Hr+), (H̄ − (1 − αN )Hr+), (H̄ − (1 − αA)Hr+) > 0. We

want to derive conditions for existence and uniqueness of a (strongly) positive equilibrium point
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(Xi > 0 for all i = 1, · · · , n). From the equations in (4.25) we get the following

Lq =
dAelf (βN (H̄ − (1− αN )Hr+) + dNq)(βA(H̄ − (1− αA)Hr+) + dAq)

s2s3εβLβNβL(H̄ − (1− αL)Hr+)(H̄ − (1− αN )Hr+)(H̄ − (1− αA)Hr+)
Aelf

Lf =
dAelf (βN (H̄ − (1− αN )Hr+) + dNq)(βA(H̄ − (1− αA)Hr+) + dAq)

s2s3δεβNβA(H̄ − (1− αN )Hr+)(H̄ − (1− αA)Hr+)
Aelf

Nq =
dAelf (βA(H̄ − (1− αA)Hr+) + dAq)

s3εβNβA(H̄ − (1− αN )Hr+)(H̄ − (1− αA)Hr+)
Aelf

Nf =
dAelf (βA(H̄ − (1− αA)Hr+) + dAq)

s3δεβA(H̄ − (1− αA)Hr+)
Aelf

Aq =
dAelf

εβA(H̄ − (1− αA)Hr+)
Aelf

Af =
dAelf

εδ
Aelf

(4.26)

where s1 = e−d
Eτ(E,L) , s2 = ψe−d

Lmτ(L,N) and s3 = ψe−d
Nmτ(N,A) . From the first equation in

the system (4.25) we get

Lq =
s1γ(Aelf )

(βL(H̄ − (1− αL)Hr+) + dLq)
(4.27)

and therefore

γ(Aelf ) = d
Aelf (βL(H̄−(1−αL)Hr+)+dLq )(βN (H̄−(1−αN )Hr+)+dNq )(βA(H̄−(1−αA)Hr+)+dAq )

s1s2s3εβLβNβA(H̄−(1−αL)Hr+)(H̄−(1−αN )Hr+)(H̄−(1−αA)Hr+)
Aelf .

(4.28)
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Since γ(Aelf ) = pAelfe
−qAelf we have the following cases: Aelf = 0 or

pe−qAelf = d
Aelf (βL(H̄−(1−αL)Hr+)+dLq )(βN (H̄−(1−αN )Hr+)+dNq )(βA(H̄−(1−αA)Hr+)+dAq )

s1s2s3εβLβNβA(H̄−(1−αL)Hr+)(H̄−(1−αN )Hr+)(H̄−(1−αA)Hr+)

(4.29)

Finally, we reduce the system (4.25) to the following system

0 = Γ(Hr+)− pe−qAelf (4.30a)

0 = −bHr+ + Ω(Hr+)(H̄ −Hr+)Aelf (4.30b)

where

Γ(Hr+) =
dAelf (βL(H̄ − (1− αL)Hr+) + dLq)(βN (H̄ − (1− αN )Hr+) + dNq)(βA(H̄ − (1− αA)Hr+) + dAq)

s1s2s3εβLβNβA(H̄ − (1− αL)Hr+)(H̄ − (1− αN )Hr+)(H̄ − (1− αA)Hr+)

Ω(Hr+) = β∗L
dAelf (βN (H̄ − (1− αN )Hr+) + dNq)(βA(H̄ − (1− αA)Hr+) + dAq)

s2s3εβLβNβA(H̄ − (1− αL)Hr+)(H̄ − (1− αN )Hr+)(H̄ − (1− αA)Hr+)

+ β∗N
dAelf (βA(H̄ − (1− αL)Hr+) + dAq)

s3εβNβA(H̄ − (1− αN )Hr+)(H̄ − (1− αA)Hr+)
+ β∗A

dAelf

εβA(H̄ − (1− αA)Hr+)

From (4.30b) we have

Aelf =
bHr+

Ω(Hr+)(H̄ −Hr+)

given that Hr+ 6= H̄ and Ω(Hr+) 6= 0 (it can be proved that this holds). Substituting this in the

equation (4.30a) we get the following

Γ(Hr+) = pe
−q bHr+

Ω(Hr+)(H̄−Hr+). (4.31)

This is a nonlinear equation forHr+and we need to determine under what conditions this equation

has a unique positive solution. Let G(Hr+) be the right hand side of Equation (4.31). The

functions Γ and G have the following properties:

(i) Γ is a rational function and is strictly increasing for 0 < Hr+ < H̄;
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(ii) Γ(0) > 0 is given by

dAelf (βLH̄ + dLq)(βAH̄ + dAq)(βNH̄ + dNq)

s1s2s3εβLβNβAH̄3
;

(iii) G is a negative exponential function and it approaches zero (exponentially) as Hr+ ap-

proaches H̄;

(iv) G(0) = p.

From these properties we can see that the equation (4.31) has at least one solution 0 < Hr+ < H̄ ,

if and only if G(0) > Γ(0), i.e.,

p >
dAelf (βLH̄ + dLq)(βAH̄ + dAq)(βNH̄ + dNq)

s1s2s3εβLβNβAH̄3
.

This solution is unique if G(Hr+) is monotonically decreasing, and this holds if and only if

d

dHr+

( Hr+

Ω(Hr+)(H̄ −Hr+)

)
> 0

for all Hr+ ∈ (0, H̄).

Theorem 4.3. Let

Rv0 =
ps1s2s3εβLβNβAH̄

3

dAelf (βLH̄ + dLq)(βAH̄ + dAq)(βNH̄ + dNq)
.

IfRv0 > 1, then system (4.24) has a positive equilibrium point. If additionally

d

dHr+

( Hr+

Ω(Hr+)(H̄ −Hr+)

)
> 0

holds, then the positive equilibrium is unique.
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Stability of the tick-free Equilibrium

First we linearize System (4.24) about a given equilibrium point using the Fréchet derivative of

the function F (X), given by the right hand side of the System (4.24):

DF (X∗)X = lim
h→0

(F (X∗ + hX)− F (X∗)

h

)
The linearized system is given by

Df1(X∗)X = pe−d
Eτ(E,L)Aelf (t− τ(E,L))e

−qA∗elf (t−τ(E,L))

− pqe−dEτ(E,L)Aelf (t− τ(E,L))A
∗
elf (t− τ(E,L))e

−qA∗elf (t−τ(E,L))

+ (1− αL)βL(L∗q(t)Hr+(t) + Lq(t)H
∗
r+(t))− (βLH̄ + dLq)Lq(t)

Df2(X∗)X = −(1− αL)βL(L∗q(t)Hr+(t) + Lq(t)H
∗
r+(t)) + βLH̄Lq(t)− δLf (t)

Df4(X∗)X = δψe−d
Lmτ(L,N)Lf (t− τ(L,N))

+ (1− αN )βN (N∗q (t)Hr+(t) +Nq(t)H
∗
r+(t))− (βNH̄ + dNq)Nq(t)

Df5(X∗)X = −(1− αN )βN (N∗q (t)Hr+(t) +Nq(t)H
∗
r+(t)) + βNH̄Nq(t)− δNf (t)

Df7(X∗)X = δψe−d
Nmτ(N,A)Nf (t− τ(N,A))

+ (1− αA)βA(A∗q(t)Hr+(t) +Aq(t)H
∗
r+(t))− (βAH̄ + dAq)Aq(t)

Df8(X∗)X = −(1− αA)βA(A∗q(t)Hr+(t) +Aq(t)H
∗
r+(t)) + βAH̄Aq(t)− δAf (t)

Df9(X∗)X = εδAf (t)− dAelfAelf (t)

Df12(X∗)X = −(µ+
c

K
H̄)Hr+(t) + H̄(β∗LL

∗
q(t) + β∗NN

∗
q (t) + β∗AA

∗
q(t))

−
(

(β∗LLq(t) + β∗NNq(t) + β∗AAq(t))H
∗
r+(t) + (β∗LL

∗
q(t) + β∗NN

∗
q (t) + β∗AA

∗
q(t))Hr+(t)

)
(4.32)
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The linearized system about the tick-free equilibrium point is as follows:

Df1(X∗)X = ps1Aelf (t− τ(E,L))− (βLH̄ + dLq)Lq(t)

Df2(X∗)X = βLH̄Lq(t)− δLf (t)

Df4(X∗)X = δs2Lf (t− τ(L,N))− (βNH̄ + dNq)Nq(t)

Df5(X∗)X = βNH̄Nq(t)− δNf (t)

Df7(X∗)X = δs3Nf (t− τ(N,A))− (βAH̄ + dAq)Aq(t)

Df8(X∗)X = βAH̄Aq(t)− δAf (t)

Df9(X∗)X = εδAf (t)− dAelfAelf (t)

Df12(X∗)X = −(µ+
c

K
H̄)Hr+(t)

(4.33)

Using the theory of monotone dynamical systems we can see that system (4.24) is cooperative

([109] Corollary 3.2) and therefore stability of the zero equilibrium of system (4.33) is given by

the stability of the corresponding ODE system.

Theorem 4.4. If Rv0 < 1, then X = 0 is the only equilibrium point of the system (4.24) and is

locally asymptotically stable. When Rv0 > 1, there exists a positive equilibrium point and X = 0

is unstable.

Proof. We use the method of next generation matrix for the ODE system given byX ′(t) = JX(t)
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where the matrix J is obtained from system (4.33):

J =



−βLH̄ − dLq 0 0 0 0 0 ps1 0

βLH̄ −δ 0 0 0 0 0 0

0 δs2 −βNH̄ − dNq 0 0 0 0 0

0 0 βNH̄ −δ 0 0 0 0

0 0 0 δs3 −βAH̄ − dAq 0 0 0

0 0 0 0 βAH̄ −δ 0 0

0 0 0 0 0 εδ −dAelf 0

0 0 0 0 0 0 0 −b


The matrix J can be written as J = F − V . The zero equilibrium is locally asymptotically stable

if ρ(FV −1) < 1 (ρ is the spectral radius of FV −1) and it is unstable if ρ(FV −1) > 1. We can

see that

ρ(FV −1) = (
ps1s2s3εβLβNβAH̄

3

dAelf (βLH̄ + dLq)(βAH̄ + dAq)(βNH̄ + dNq)
)1/7.

Finally, we note that ρ(FV −1) < 1 is equivalent toRv0 < 1. This completes the proof.

4.2.3 Numerical Simulations

In this section we study the long-term dynamical behaviour of the system using numerical simu-

lations and perform a sensitivity analysis for different parameters.

Model parametrization and validation

The observation of the dynamical behaviour of each stage of the tick population is demonstrated

by applying DDE23 packages in Matlab to System (4.24). The model is parameterized using
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parameter values available in mathematical and ecological literature ([57, 79, 95, 103, 104, 132]).

Parameter values and initial conditions are given in Tables 4.2-4.1. We note that the grooming

behaviour does not impact the initial growth of the tick population, since parameters reflecting

the grooming factor do not change the value of the basic reproduction number. We consider three

cases to illustrate the dynamics of tick population in the presence of grooming factor. However,

in these cases we fix the values for parameters related to the grooming behaviour. In the first

case (Figure 4.1) the basic reproduction number is below the threshold value i.e., Rv0 < 1, the

tick-free equilibrium is locally asymptotically stable and therefore all stages of ticks go extinct.

In case 2 (Figure 4.2) the basic reproduction number is slightly greater than one, the tick-free

(a) (b)

(c) (d)

Figure 4.1: Case 1, Rv0 < 1 where βL = 0.6 × 10−4, βN = 1.8 × 10−4 and p = 200 yields
Rv0 = 0.89.

equilibrium point becomes unstable and the solutions approach the positive equilibrium without

any initial oscillatory behaviour. In case 3 (Figure 4.4) the solutions oscillate initially and then

approach the positive equilibrium. When the resistance related parameter values are fixed and

the rest of the parameters vary, the positive equilibrium becomes unstable and a periodic orbit
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appears. Therefore, the solutions oscillate about the equilibrium point. Figure 4.3 shows how a

periodic orbit appears as the value of αA increases from 0 to 1.

(a) (b)

(c) (d)

Figure 4.2: In Case 2 the values of p and κ have changed to p = 1500 and κ = 0.1×10−5 and the
reproduction number increased toRv0 = 6.71. The simulations run for a time span of 10000 days.
The equilibrium points for each stage of questing, feeding and adult egg laying female tick are as
follows: Lq = 6.5×107, Nq = 1.6×106, Aq = 1.6×105 Lf = 2.9×106, Nf = 2.9×105, Af =
1.4× 105, Aelf = 693. In addition, the equilibrium point of the host with resistance is 13.

To study the population behaviour without grooming factor we set αL = αN = αA = 1 and

κ = 0 and for intense grooming behaviour the αL = αN = αA = 0. In addition, we observe the

dynamics for a mild grooming behaviour where αL = 0.4, αN = 0.6, αA = 0.5 and κ = 0.1 ×

10−5. The equilibrium value for all stages are higher when there is no grooming behaviour. In

particular, the value of the adult egg laying females at the equilibrium is 693 for a mild resistance

behaviour and 1.9×103, when there is no resistance (Figure 4.2 and the left side of Figure 4.5). We

also see that by decreasing the resistance solutions with non-oscillatory behaviour show damped

oscillation. In a maximum intensified grooming behaviour the tick attachment rates to hosts with

resistance are reduced to 0, therefore high resistance of hosts affects the tick equilibrium values
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Figure 4.3: The solutions oscillate about the equilibrium point as we change the value of αA in
the interval [0, 1] for parameter values in case 3. The values for αL and αN are 0.6 and 0.8.
The orange and blue curves represent the highest and lowest value of the oscillatory solutions,
respectively.

significantly. For instance, in Figure 4.5 the equilibrium value for Aelf reduces from 1.9 × 103,

when there is no resistance, to 78 when the resistance is very high. Comparing the right side of

Figure 4.4 with 4.6, demonstrates the effect of resistance factors on the dynamical behaviour of

the solutions. Reducing the resistance from high to a mild resistance results in an increase in the

value of the equilibrium of Aelf from 78 to 1600. However, in the absence of host resistance,

the tick population at different stages oscillate about a positive equilibrium (Aelf ≈ 2.7 × 103).

In other words, by decreasing the grooming behaviour (increasing the value of αL, αN and αA

from 0 to 1), there is more available resources for ticks to feed on. Therefore, the dynamical

behaviour of tick population at different stages changes from solutions converging to the positive

equilibrium to oscillatory solutions. The dynamics of the feeding ticks are similar to those of

questing ticks and therefore we exclude the pictures on this paper. When we ignore the resistance

behaviour in cases 2 and 3, the host population with resistance Hr+ is equal to 0 and it reaches a

positive equilibrium point when αL = αN = αA = 0.

LHS and PRCC

We perform Latin Hypercube Sampling to further analyze the effects of each parameter on the

dynamics of each life stage of the ticks [10, 60]. Before we proceed to performing PRCC a
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(a) (b)

(c) (d)

Figure 4.4: In Case 3 the values of βL and βN have changed to βL = 1.2× 10−4, βN = 3× 10−4

producing a higher reproduction number, Rv0 = 16.9. The simulation are again running for a
time span 10000 days. The equilibrium points for each stage of questing, feeding and adult egg
laying female tick are as follows: Lq = 5.7 × 107, Nq = 2.3 × 106, Aq = 3.8 × 105, Lf =
4.8× 106, Nf = 6.9× 105, Af = 3.2× 105, Aelf = 1600. In addition, the equilibrium point of
the host with resistance is 14.
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(a) (b)

(c) (d)

Figure 4.5: The parameter values are the same as in Case 2 except the αL = αN = αA = 1 (on
the left). The equilibrium points are as follows: Lq = 5.0×107,Nq = 2.3×106,Aq = 2.4×105,
Aelf = 1.9 × 103. There is no resistance and hence Hr+ = 0. In case of αL = αN = αA = 0
(on the right) the equilibrium points are Lq = 1.3 × 107, Nq = 3.2 × 105, Aq = 2.4 × 104,
Aelf = 78. Since now we introduce resistance, Hr+ = 10.
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(a) (b)

(c) (d)

Figure 4.6: The parameter values are the same as in Case 3 except αL = αN = αA = 1 (the
left). The equilibrium points are as follows: Lq ≈ 2.8 × 107, Nq ≈ 2.1 × 106, Aq ≈ 3.5 × 105,
Aelf ≈ 2.7 × 103. Since resistance factor is not introduced the Hr+ = 0. On the right side the
αL = αN = αA = 0 and the equilibrium points are as follows: Lq = 1.4× 107, Nq = 4.0× 105,
Aq = 3.8 × 104, Aelf = 80. The resistance factor increase the population size from zero to
Hr+ = 11.
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verification of monotonicity is necessary to ensure the correct range of the parameters for PRCC

analysis. Next, we calculate the PRCC, which determines the contribution of each parameter to the

output variable such the population of larvae questing. A PRCC value significantly greater than

0 indicates a positive correlation and for PRCC significantly less than 0, a negative correlation

between the parameter and the output [84]. In Figure 4.7, the PRCC for the larvae questing

population demonstrates the negative correlation with the death rates dAelf , dNm, dLm, dNq, dAq,

dLq, dE and dLq having the highest effect on this stage. The detachment rate δ does not have

a an impact, however the parameters related to ticks’ biological characteristics, p, q, ε, have a

significant effect. We also observe that the host finding rates βA, βN ,βL, have positive correlation

with larvae questing dynamics. For the values of most parameters that are taken from the literature,

we would expect to see a reasonable correlation between the parameter and the output (in a range

where the output is monotonically increasing or decreasing with parameter). For instance the

output value of Lq (and therefore Lf ) at the equilibrium is supposed to decrease with an increase

of the larvae questing death rate (negative correlation).

Figure 4.7: PRCC for most of the parameters used in the model at the equilibrium point of Lq.
The value of each parameter is taken from 4.2and Case 2 for a range of (+/−)20%

4.2.4 Discussion

In this study, we formulated a delay differential model for black leg ticks, stratified based on

stage and activity, with a particular focus on the host grooming behaviour. The basic reproduction
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number was calculated and the condition for local stability of tick-free equilibrium, for which the

tick populations go extinct, and also for the existence and uniqueness of a positive equilibrium

was given. Model parameterization and numerical simulations were carried out to demonstrate

the dynamics of tick and host population with and without the grooming behaviour and the effect

of the resistance factor on the value of equilibrium points are studied. Parameters related to the

grooming and resistance factors, αL, αN , αA, and κ have no effect on the initial growth rate

of ticks since these parameters do not change the value of Rv0. However, with an increase of

the intensity of the grooming behaviour from no resistance to a high level of resistance, where

either the hosts show intensified grooming behaviour or ticks are withdrawn from feeding or

dead, the values of equilibrium points of all tick stages decrease. From the numerical simulations

we observed structural changes of the dynamical behaviour of the tick population by changing the

parameter values reflecting the effect of the host resistance. Also, the intensified resistance results

in higher equilibrium values for Hr+.

A sensitivity analysis of the positive equilibrium value to the parameters was carried out by per-

forming LHS and PRCC. From PRCC we observed high positive correlation between the max-

imum number of eggs per female adult tick (p) and larvae questing; as more eggs are produced

the higher the number of larvae questing. The female proportion parameter (ε) is also positively

correlated to larvae questing. As the female rate proportion increases the higher number of egg

production and therefore increasing the value of larvae questing. In contrast, the value of the

strength of density dependence (q) and death rate of larvae questing (dLq) are negatively corre-

lated with the population of larvae questing. As the death rate increases there will be a lower

population size of larvae questing. Lastly, as the number of larvae questing increases there will be

harder to find resources to survive, hence as q increases the number the Lq decreases.

This study has some limitations. The death rates are assumed to be constants for each stage of

the tick and we have ignored the possibility of death during the feeding process resulting from

serous exudes which could engulf the tick. Also, interpreting the host resistance as a kind of

immunity to ticks we can consider the situation where host resistance decreases in time the hosts

lose immunity to ticks. The molting process is demonstrated by constant delay functions. Future
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work could incorporate the temperature and humidity on molting process and explore further the

effects on tick dynamics.

4.3 Conclusions

Vector-borne diseases have been among the leading causes of deaths, worldwide. According

to the 2017 update of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD)

2016 study [92], malaria was ranked as the 10th, 7th and 10th level 31 cause of deaths in 1980,

2007 and 2017, respectively, and one of the communicable diseases largely contributing to global

mortality. Reducing the burden of vector-borne diseases such as malaria, Zika, Lyme diseases and

so forth requires a thorough understanding of the nature of vector-host interactions as well as the

dynamical behaviour of vector population considering seasonal fluctuations due to environmental

changes, requiring adaptive control strategies.

In this chapter, we formulated a general model describing the epidemiological dynamics of vector-

borne diseases, with and without demographics, using the renewal equation framework. We ob-

tained the threshold condition for an outbreak and the final size of the epidemic. We also estab-

lished the conditions for the existence and uniqueness of a positive equilibrium in the endemic

case and the local stability of this positive equilibrium. We formulated a stage-structured model

for the dynamical behaviour of deer tick population in the presence of host resistance. Existence

and uniqueness of a positive equilibrium and stability criteria of the tick-free equilibrium were

provided. The dynamical behaviour of tick population were illustrated through numerical simula-

tions.

4.4 A remark

The research in this chapter was supported by Natural Sciences and Engineering Research Council

of Canada and the Canada Research Chairs Program. The work of Section 4.1 being submitted

for publication. The work of Section 4.2 has already been published in [1].

1GDB distinguishes causes of deaths at 4 levels. Each level refines the previous level into more specific causes.
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5 | Seniors and Long-term Residency Facilities: Disease Pre-

vention and Control in the Most Vulnerable Settings

Estimating and reducing the health and economic burden of infectious diseases are the primary

task of the Infection Prevention and Control (IPC) programs. Reliable assessment of the burden of

a disease must be based on the outcomes of the disease among individuals which requires a com-

plete understanding of the population susceptible to the disease. Seasonal and pandemic influenza

and the COVID-19 pandemic have shown that the probability as well as the outcomes of con-

tracting the disease highly depend on the age and health conditions of individuals. Identifying the

risk groups and estimating the burden of the disease in these groups are essential to the effective

control of the diseases’ health and economic burden. Here we review the disease characteristics,

complications, the burden of influenza and COVID-19.

Influenza is a disease caused by the influenza virus. Mutation of the influenza virus to new strains

can result in large epidemics and pandemics. Types A and B virus can cause seasonal epidemic,

type A can cause global pandemics, while type C can only cause a mild disease. Type A is di-

vided into subtypes based on the two proteins on the surface of the virus, Haemagglutinin (HA)

and Neuraminidase (NA), with 16 known HA (H1-H16) and 9 known NA (N1-N9). Systemic

symptoms of influenza include fever, chills, headache, myalgia, malaise and anorexia [98]. The

virus is specifically more harmful to young children and seniors and it can lead to other respiratory

diseases such as pneumonia (among patients hospitalized for influenza, 16%-55% are confirmed

with pneumonia). A recent study on the burden of influenza estimated the influenza-related ill-

nesses during influenza seasons in the US to be 9.2-35.9 million, from which 140,000-710,000

are influenza-related hospitalizations [76]. In Canada, Schanzer and colleagues [74] estimated the

average annual influenza-related hospitalizations, over eleven influenza seasons (2003-2014), to

be 11,000. Many studies have tried to estimate the true burden of influenza from surveillance data

using different methods in the US and Canada ([85] and references therein).

The outcomes of contracting influenza vary based on the age groups and clinical conditions. Com-

plication of influenza is beyond respiratory infection in elderly adults, in particular, among those
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with chronic diseases. Influenza infection can cause several severe adverse events (SAEs) includ-

ing cardiac disorder, respiratory, thoracic and mediastinal disorders, nervous system disorders;

coronary artery event and pneumonia [108]. The following outcomes are possible: 1) A set of

mild disease symptoms possibly resulting in a visit to a physician and use of antiviral drugs; 2)

A set of more severe disease symptoms resulting in hospitalization for a few days without further

complications; 3) Severe disease experience resulting in hospitalization and followed by more

complications (e.g. pneumonia); 4) Severe disease experience resulting in a serious event such as

a heart attack or death.

Despite availability of influenza vaccines for 80 years, the control and prevention of influenza is a

global challenge. Three classes of vaccines are available today: inactivated virus, live attenuated

virus and recombinant haemagglutinin. Effectiveness of the available vaccines for the influenza

seasons from 2004-2019 (estimated by CDC [56] in the United States) varies between 10%-60%.

The vaccine effectiveness against influenza A virus was highest among children aged 9 months to

8 years (64% with (50,75) 95% confidence interval) and lowest among seniors aged 65 and older

(11% with (-28,38) 95% confidence interval), for the 2017-2018 influenza season.

The immunization programs have been implemented to control the incidence of influenza and

its consequent SAEs. Since the number of cases, hospitalizations and deaths are particularly high

among individuals aged 65 and older, the high dose (HD) trivalent vaccine (60µg of hemagglutinin

per strain) is recommended for this age group and is suggested to have a better efficacy, compared

to standard dose (SD) vaccine (15µg of hemagglutinin per strain) with relative efficacy of 24.2%.

Clinical and cluster-randomized trials have shown that benefits of the high dose vaccine are not

limited to the lower incident of influenza illness. They show that the number of SAEs and all-cause

hospitalizations are also lower among individuals vaccinated by HD than those vaccinated by SD

vaccine [35, 36, 37, 75]. It is worth mentioning that Influenza vaccines can results in modified

infectivity (higher viral shedding) [133] and modified infectious period (quicker recovery) [114].

The effect of these results on disease dynamics have been rigorously studied in [89].

In case of COVID-19, seniors have been most affected during the first wave of the pandemic,

in Ontario, Canada. Due to the absence of a vaccine, other control measures have been imple-

77



mented to reduce the burden of the disease. Major closures (schools, universities, restaurants,

entertainment centers and non-essential services), social distancing through working from home

and avoiding non-essential activities and mandatory use of PPE for public health settings as well

as mandatory use of masks indoors for public are some of the most important control measures

implemented in Canada and worldwide during the pandemic. In Canada, during the first wave of

the COVID-19 pandemic, seniors aged 65 and older were severely affected. Although the previ-

ously mentioned practices had a significant effect on reducing the number of cases (by reducing

contact between individuals and reducing the transmission probability) below the health care ca-

pacity of the country, these practices did not provide effective protection to the more vulnerable

population. A comparison between the rates of COVID-19 among different age groups and the

corresponding case fatality rates (CFR) in Ontario shows that both infection rate and CFR are

highest among seniors aged 60 and older (see Figure 5.1).

The public health policies need to be revised in order to protect individuals against the disease

while recovering the economic losses. Identifying risk groups based on the age, clinical conditions

and other conditions will lead to better and efficient IPC policies prioritized to reduce the burden

of the disease among these risk groups. Investing on targeted IPC programs will save the countries

from both the health and economic losses of the pandemic.

In the next section, we present a study developed to understand the burden of the disease among

residents of Long-Term Care Homes in Ontario and to evaluate the effectiveness of the policies

implemented. This study is related to the general setting that this thesis has been developing, by

considering the sub-population with least immunity against the disease.
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Figure 5.1: Based on the Public Health Ontario’s data tool, over the period of Jan 23-Nov 03, case
fatality rates and infection rates are higher among seniors aged 60 and above. Individuals aged
20-29 have the highest infection rates per 1000 population among the age group 0-59, with a CFR
of 0.025%.
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5.1 Markers of community outbreak and facility type for mitigation

of COVID-19 in long-term care homes in Ontario, Canada: in-

sights and implications from a time-series analysis

Background and Motivation

In late December 2019, a cluster of pneumonia cases of unknown aetiology was reported in the

city of Wuhan, Hubei province, mainland China. The infectious agent responsible for the outbreak

was later identified as an emerging coronavirus, termed as “Severe Acute Respiratory Coronavirus

Type 2” (SARS-CoV-2). Since then, the virus has quickly spread out into other countries. The

World Health Organization (WHO) designated the outbreak initially as a “Public Health Emer-

gency of International Concern” (PHEIC) and then as a global pandemic.

Older adults have been particularly hard hit by the pandemic, dying disproportionately with re-

spect to other age-groups [88, 100]. According to the 2019 United Nations Report [93], there are

approximately 703 million people aged 65 years and over globally (about 9 percent of the entire

population), with this figure expected to double by 2050 (reaching 16 percent of the population).

Nursing homes are residential-oriented healthcare facilities providing long-term care to geriatric

populations [107]. During the pandemic, they have become hot-spots, with a high death toll. Ac-

cording to a recent systematic review [105] (up to 26 June 2020), incidence rates of COVID-19

outbreaks in long-term care structures vary between 0 and 72% among residents and between 1.5

and 64% among staff members. Mortality rates among residents range from 0 to 9.5%, whereas

case fatality rates vary between 0 and about 34%. While no death of staff has been reported in

this survey, the death of residents of long-term care homes represents up to 85% percent of all

COVID-19 related deaths

Researchers, worldwide, have studied the burden of COVID-19 among long-term care residents

and the association between the severity of the outbreaks and a range of underlying factors ([5,

27, 53, 55, 78, 86, 115, 117, 123]). White and colleagues [123] found that, in the USA, the

probability of an outbreak was higher for larger facilities and was also associated with the risk
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of COVID-19 in the region surrounding the facility. In the UK, Dutey-Magni and coauthors [53]

showed that gender, increasing age, total number of beds, the staff to bed ratio and the resident

to bedroom ratio are predictors of an outbreak. In Canada, Fisman and coworkers [55] examined

the ratio of death rates in two groups: residents of the LTCH and seniors aged 69 and older

outside the LTCH. They found that the disease specific mortality incidence rate ratio among long-

term care home residents compared with individuals of age 69 and older living in the community

increased from 13.1 to 87.3 over time. They also examined the relative increase in risk of death

per staff member with confirmed infection and found that the death of residents lagged by 6 days

behind confirmed COVID-19 infection of staff. On the other hand, according to the analysis of

Stall and collaborators [110], the total number of COVID-19 confirmed resident cases among

homes with outbreaks were associated with the for-profit management status of homes whereas

the likelihood of outbreaks were associated with the risk of presence of positive COVID-19 cases

in the region surrounding the facilities. Older design standards and management type of networks

of establishments were the determinants of COVID-19 associated deaths in for-profit long-term

care homes. Brown el al. [1] studied the association between severity of COVID-19 and the

crowding index, defined as the mean number of residents per bedroom and bathroom (ranging

from 0 to 4), and found that homes with crowding index > 2 have larger outbreaks, i.e., higher

cases and deaths per 100 residents. None of the above studies, however, have attempted to detect

all significant determinants of the high excess COVID-19 mortality among long-term care home

residents. In search for the associated determinants, here, we study quantitatively the temporal

evolution of COVID-19 outbreaks with fatal outcomes in long-term care homes in Ontario. We

aim to answer the following questions:

• How does the size of the LTCH facility (e.g., number of beds), average hours of care per

patient-day and type of management (for profit, nonprofit, etc.) affect its COVID-19 patient

death outcome?

• Is the evolution of COVID-19 in LTCH linked or affected by COVID-19 epidemic-induced

factors such as staff and personal protective equipment (PPE)?

• Did community infection prevention and control (IPC) policies affect measurably the evo-
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lution of the outcome of COVID-19 outbreaks in LTCH?

• How does the epidemic evolution in the community in which the LTCH is located affect the

evolution of the outcome of COVID-19 outbreak in that facility?

Material and methods: Data source and study design

To address the above questions, we examined several data sources specific to Ontario, Canada.

In particular, we obtained data made available to us through the Ontario COVID-19 Modeling

Consensus Table, curated by the Ontario Ministry of Long-Term Care. Within this dataset, we

utilized time series for number of confirmed COVID-19 positive cases among residents and staff,

COVID-19 related deaths, reports of Personal Protective Equipment (PPE) shortage, and reports

of staff shortage for all 627 long-term care homes in the province of Ontario. Data from March

29 to June 3 was included and used in our analysis. We also utilized the data on daily number of

cases and deaths from Public Health Ontario’s data tool stratified by public health unit [97]. In

addition, we considered Ontario’s census information data divided into Public Health Units from

Statistics Canada [29].

We conducted four types of analysis: 1) multivariable linear regression analysis for two models:

one examining outbreaks in all homes, and one examining outbreaks summed over health regions;

2) cross-correlation analysis of the daily number of deaths in long term care home residents and

in the community; 3) data clustering and feature selection; 4) spatio-temporal analyses using

ArcGIS.

5.1.1 Results

We conducted this analysis using the COVID-19 database for 627 long term care homes across

Ontario, from March 29 to June 3, 2020. During this period, 194 homes had an outbreak and 106

homes had at least one resident death. A total of 1701 deaths were reported during this period,

in 22 health regions. Total number of cases leading to death in Ontario, between March 29 and

June 3, 2020 were 2,548, from which 67% were among long term care residents. The focus of

this study is on the homes reporting deaths.
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Table 5.1: Overview of the characteristics of the 627 homes considered in this study.

Homes in outbreak Homes with resident deaths All homes
Number of homes 194 106 627

Number of confirmed residents 3228 (5202)* 3228 (5202)

Number of resident deaths 1718 1718

Number of confirmed staff 1262 (1865)*

Information based on the home size
homes with 1-96 beds 50(20%) 21(8.5%) 248

homes with 97-160 beds 70(30%) 37(16%) 234

homes with +160 beds 74(51%) 48(33%) 145

Information based on the home ownership
Number of
for-profit homes 112(31%) 59(16%) 361

Number of
not-for-profit homes
(non-profit, CHFA, MHFA)** 82(30%) 47(18%) 266

Information based on staff and PPE shortage reports
Number of homes
with staff shortage 65(84%) 59(77%) 77

Number of homes
with PPE shortage 49(56%) 38(43%) 88

Characteristics of the homes with respect to their outbreak status, size, ownership and the COVID-
19 related staff and PPE shortage reports. Percentages are based on the total numbers within each
row. *Cumulative number of cases obtained from the data. These are subject to error due to
the lack of information on how the recovered cases are subtracted from the cumulative number
of cases. The numbers in brackets are taken from [96]. ** The total number of charitable and
Municipal homes are 48 and 93, respectively.
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The total number of resident deaths, summed over all homes in the health region, are as low as

1 death in two health regions, Peterborough County-City Health Unit and Sudbury and District

Health Unit, and as high as 728 in the Toronto Health Unit. The number of deaths in Toronto

accounts for 54.4% of the total deaths in Ontario’s LTCHs, while the number of homes in this

health unit is only 13.6% of all homes with 19.5% of the total beds in the province.

The most significant policy implemented during this period was the emergency order requiring

staff to work in only one long-term care facility, effective on April 22. Figure 5.2a shows that

the total number of deaths in the community, including the deaths in LTCH, is the highest during

the week of April 19-26 (bottom panel), while the number of deaths in LTCH peaks during the

following week (top panel). It is clear that the weekly number of deaths among LTCH residents

has slightly increased, before decreasing, and the total number of deaths in Ontario has decreased

after the policy was implemented. Therefore this policy could be said to appear to have been

effective in slowing the rate of increase of the number of deaths in the community and in a delayed

manner in LTCH.

Figure 5.2b shows how the percentage of deaths in long-term care homes evolved with respect to

the total number of deaths in Ontario. In this plot we see that the percentage of deaths in long-term

care homes continued to grow after the non-staff-sharing policy was implemented and reached its

highest value (about 90%). This can be explained by the delay observed between the number of

deaths among individuals outside LTCH and the number of deaths in LTCH. We also see in Figure

5.2c that the number of homes reporting a staff shortage is increasing after the date of the policy.

According to the Long-Term Care Staffing Study provided by the Ministry of Long-Term Care

[94] staff absenteeism has led to a high volume of staff shortages in long-term care facilities. The

following were listed among several reasons provided by employers facing staff shortages: fear

of contracting COVID-19 in the LTCH, concerns about PPE availability, and the requirement to

work in one home.

Although we do not see clear evidence for the effectiveness of the policy on reducing the number

of deaths among LTCH residents in these plots, from Figures 5.2a and 5.2c we can infer that a

portion of the number of deaths could have been prevented, had the aforementioned policy been

84



Table 5.2: Characteristics of the homes with respect to the design standard, room occupancy and
the quality of care.

Design standard and occupancy* for-profit (%) non-profit (%) municipal (%)

Older design standard 193 (53.6) 30 (18.5) 12 (11.9)

% single occupancy, mean 31.6 49.2 52.8

% double occupancy, mean 38.5 39.9 39.7

% quadruple occupancy, mean 28.3 8.7 6.6

Crowding index** Crowding Index < 2 (%) Crowding Index > 2 (%)

for-profit 127 (41) 231 (75)

non-profit 101 (32.6) 58 (18.8)

municipal 82 (26.5) 19 (6.2)

< 100 residents 69 (22.3) 175 (56.8)

> 100 residents 241 (77.7) 133 (43.2)

Quality of care by Qindex (mean) SD
management-type and home size***
private homes (for-profit) 0.02 0.32

not-for-profit homes 0.04 0.39

municipal homes −0.13 0.32

1-96 beds −0.09 0.34

97-160 beds 0.05 0.33

>160 beds 0.05 0.34

*The design standards and room occupancy are from [110].** The crowding indices are from [25].
***The quality of care, as measured by Qindex, by management category and size of the home
are from [127]. Percentages in the first row of the design standard and in the first three rows of the
crowding index are with respect to all homes in that type of ownership. In the last two rows of the
crowding index, the percentages are with respect to the total number of homes with less than or
more than 100 residents. 1) The Qindex is a metric for the quality of care in long-term care homes.
It is calculated by averaging the z-scores of nine quality indicators, such as number of falls and
improved or worsened physical functioning, over a period of 5 years. In this reference, the Qindex
values vary between -0.3 and 0.4. 2) From [110], the average number of beds in for-profit, non-
profit and municipal homes are 113, 119, and 155, respectively, while the percentage of homes
with quadruple occupancy in each sector are 28.3, 8.7 and 6.6, respectively. Note that these inputs
do not directly confirm that smaller homes have higher percentage of quadruple occupancy and
this requires further confirmation.
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(c) Number of homes reporting a staff shortage in
Ontario.

Figure 5.2: (a) Weekly number of total number of deaths among long-term care residents (top
panel) and in the community where the LTCH is located (bottom panel), in Ontario, Canada. In
red we highlight the three weeks that include the highest number of deaths among long-term care
residents (top panel) and in the community (bottom panel) during the period analyzed. (b) Weekly
percentage of deaths among residents of LTCH to the total number of deaths in Ontario. In red,
here we highlight the week with the highest percentage of COVID-19-induced death in LTCH
with respect to COVID-19-induced death in the whole community. (c) Daily number of homes
reporting staff shortages. In all these subplots, we have included the first day in which the policy
was in effect (April 22) to show its impact on the number of deaths and staff shortage reports.
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implemented on an earlier date, prior to the local community epidemic peak, while the number of

cases and deaths were lower, while the number of staff available was also higher.

5.1.2 Multi-variable Linear Regression

We used the death-to-bed ratios, defined by

100× total number of resident deaths
number of beds

as a measure of the overall extent of COVID-19 severity in long-term care facilities. We ex-

amined the association between the death-to-bed ratio and the following factors in our models:

facility size (number of beds), facility management (for-profit, non-profit, municipal and charita-

ble), proportion of staff infected, risk of COVID-19 in the community in the surrounding health

region, reports of staff shortage and reports of PPE shortage. The first model (Model I) included

all homes with an outbreak with a positive death to bed ratio with the death to bed ratio as the

primary outcome and type of management (for-profit, non-profit, charitable and municipal), num-

ber of beds, staff cases and staff and PPE shortages as the predictive variables (the outcome and

predictive vectors have 106 components). In the second model (Model II) , the primary outcome

was selected to be the death-to-bed ratios calculated for 34 health regions in Ontario, and for

two categories of homes based on the type of management (for-profit homes in one category and

non-profit, charitable and municipal homes in another category) and the type of management, risk

of the disease in the health region and staff cases as the predictive variables (the outcome and

predictive vectors have 68 components)1. The results are summarized in Table 5.3.

For-profit homes have been affected the most. The death-to-bed ratio of for-profit and other man-

agement types are 2.81% and 1.31%, respectively, in Ontario. Death-to-bed ratios are highest

among the following health regions: City of Toronto Health Unit (6.04% and 3.74%), City of

Ottawa Health Unit (7.23% and 1.75%), Durham Regional Health Unit (5.97% and 1.53% ), Peel

Regional Health Unit (4.89% and 2.30%), York Regional Health Unit (4.52% and 3.12%). The

ratios are greater than 3% in these regions with a significant difference between for-profit and
1More details are given in the supplementary material.
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Table 5.3: Correlation coefficients between the death-to-bed ratio and other predictive variables

Model I Variable CC 95% CI
Sector −0.26 [−0.43,−0.07]

Number of beds −0.37 [−0.52,−0.19]

Cases per staff 0.42* [0.25, 0.56]

Number of staff-shortages 0.33 [0.15, 0.49]

Number of PPE-shortages 0.11 [−0.08, 0.3]

Model II
Sector −0.37 [−0.64,−0.026]

Risk in the community 0.7 [0.55, 0.83]

Cases per staff 0.89* [0.8, 0.95]

Note: Model I includes all individual homes with a positive deaths to bed ratio (106 homes).
In Model II, death-to-bed ratios are averaged over all homes within each health region in two
categories. One category includes all for-profit homes and the other category includes all non-
profit, municipal and charitable homes.* The value of correlation coefficient can be higher than
these values, since the cumulative number of infected staff are lower than the actual number of
infected staff.
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other types of management.

The negative correlation between death-to-bed ratio and size of the homes surprisingly suggests

that smaller homes tend to have higher death-to-bed ratios: The average number of beds among

homes with resident deaths was 169, while it was 104 in homes with a death-to-bed ratio greater

than 30%. This could be linked to differences in quality of care between the two types of homes.

Indeed, this was suggested in Wilkinson et al. (2019) [127] who have shown that the Qindex of

the small homes (1-96 beds) have been significantly lower than medium and large sized homes.

Qindex is a composite Quality Index (QI) used in Ontario for evaluation of quality of perfor-

mance, these can include for example, hospitalization and mortality rates as indicators of quality

performance. Wilkinson et al. (2019) [127] also discussed that when these small homes start with

a low value of Qindex, they show less improvement compared to larger homes, over a period of 5

years [127]. A summary of their findings is given in Table 5.2.

Given the high number of staff involved in direct care to residents (56,000 full time equivalent

(FTE) positions in 2018 [94]), we included the proportion of confirmed COVID-19 staff in our

models. However, the information on the total number of staff working in each home and the

accurate number of staff cases were not available. In the data for the outbreaks in long-term care

facilities, the number of recovered staff were subtracted from the cumulative number of staff in

the time-series data, and therefore the number of confirmed staff used in this study are lower than

the actual number of infected staff, for each home. The total number of infected staff and the

number of staff death, summarized in [96], were 1865 and 5, respectively. In order to estimate

the number of staff providing direct care to residents, we used the number of hours of care per

patient per day, available for for-profit, non-profit and municipal homes [66], assuming that all

staff worked 8 hours a day, and using the following formula

1

8
(average hours of care per resident day× number of beds).

Then we used the cumulative number of the infected staff to get a proportion of COVID-19 in-

fected staff to all staff, for each home. Based on these estimates, with the assumptions above,
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homes with higher fraction of staff infected have higher death-to-bed ratio (See Table 5.3).

We calculated the risk in the community for each health region, defined by total number of

COVID-19 cases over the period from March 29 to June 3, per 1000 population. The lowest

calculated risk was 0.185 in the District of Algoma Health Unit, and the highest risk was 4.09 in

the City of Toronto Health Unit. We identified 10 health regions with more than 2 case per 1000

population as high-risk regions. All health regions with higher death-to-bed ratio also had higher

risk in the community. This is illustrated in Figure 5.10a.

The association between the number of staff and PPE shortage reports and death-to-bed ratios was

not significant from the correlation analyses, however the odds of resident deaths among homes

with at least one staff shortage report were 35 times higher than homes without staff shortage

reports. Moreover, the odds of resident deaths among homes with at least one PPE shortage report

were 5 times higher than homes without PPE shortage reports. According to the recent 2020 Long-

Term Care Staffing Study [94], provided by the Ministry of Long-Term Care, a large portion of

the staff shortages was associated with personal support workers (PSW). PWS provide personal

support, such as feeding, dressing, bathing, transferring, meal preparation and light housekeeping.

They account for 58% of the long-term care employees. Others include 25% registered nurses and

6% activity and health care assistants. Fear of contracting COVID-19 and the requirement to work

in one home were among the reasons for work absenteeism.

5.1.3 Temporal and Spatio-Temporal Analyses: cross-correlation and indoor con-

ditions

We studied the temporal behavior of the spread of COVID-19 among LTCH residents, using the

time-series of cumulative number of deaths and the death-to-bed ratio. Among the health regions

with average death-to-bed ratio greater than 3%, for-profit homes in Durham Regional Health

Unit and the City of Ottawa Health Unit have significantly higher ratios, compared to non-profit

homes. The average daily increase of the death-to-bed ratio, calculated for the first three weeks

from the day of first resident death, were higher in for-profit homes in most regions (in 14 out of

22 regions with LTCH resident deaths- and in 7 out of 10 high-risk regions). In the Peel Regional,
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Figure 5.3: Death-to-bed ratio in the long-term care homes compared to the risk in the corre-
sponding community. Health regions with high risk in the community (larger colored circles) also
have higher death-to-bed ratios (darker colors).
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Figure 5.4: Death-to-bed ratios by sector and health region. The four panels include regions
with overall death-to-bed ratios of <0.5% (top left), 0.5-1% (top right), 1-3% (bottom left), >3%
(bottom right). The solid lines represent the death-to-bed ratio in for-profit homes and the dashed
lines represent the ratios in other types of homes. The two sector type in each health region are
represented with the same colour. A list of Ontario health regions and the corresponding public
health unit code is available in the Appendix.

92



Durham Regional and the City of Ottawa Health Units the rate of increase in for-profit homes

were 2.8, 2.4 and 1.7 times higher than not-for-profit homes, respectively. For-profit homes in

Toronto had higher death-to-bed ratio compared to other types of management, but the average

daily rate of increase were slightly lower. The differences between for-profit and non-profit homes

were significant. In most health regions non-profit homes not only had a lower death-to-bed ratio,

but also had a better control in keeping the numbers low over time (Figure 5.4).

The rationale for the significant differences between death-to-bed ratio in for-profit and non-profit

LTCH can include the actual physical indoor environment, which includes indoor air quality han-

dling, in addition to occupancy levels in these homes. Indeed, [110] (summarized in Table 2)

reported that for-profit homes are more likely to be of older design standard and with quadru-

ple occupancy compared to non-profit and municipal homes. More precisely, 53% of for-profit

homes have older building design standard compare to 18.5% in non-profit and 11.9% in munic-

ipal homes. Also, [25] reported that for-profit homes account for 75% of homes with a crowding

index> 2. On the other hand, for-profit homes have smaller number of beds on average and based

on [127] smaller homes (i.e., homes with less than 97 beds) have lower Qindex than larger homes.

Combining these facts, the inadequate management of COVID-19 in for-profit homes can be as-

sociated with the fact that for-profit homes have lower home standards overall, with more poor

indoor environmental conditions combined with higher levels of crowding. These factors are now

recognized to enhance risk of transmission indoors [11, 12, 70] and require further investigation

for the specifics of the LTCH in question.

Among 22 health regions reporting LTCH residents’ deaths, the date corresponding to the first

reported deaths in the region ranged between March 29 to May 15 (a window of 48 days). Durham,

Haliburton, Hamilton and Toronto were the first regions, followed by York Region, Haldimand,

Leeds, Windsor and Peel. It is worth noting that 5 of these regions share geographical borders

and have high death-to-bed ratio, as shown in Figures 5.5a and 5.5b. These health regions also

have higher density of homes (number of homes per square meter). Maps illustrating the density

of homes and the progress of the number of deaths are available in the Appendix. Also, regions

with the first death reported prior to April 10 have higher death-to-bed ratio than those reporting
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(a)

(b)

Figure 5.5: (a) The date of first reported resident death, ordered from bottom to top between March
29, 2020 to May 15, 2020, and the corresponding death-to-bed ratio (x-axis). (b) Geographical
location of the Ontario health regions with the colours representing the corresponding death-to-
bed ratio. Colours are identical to those in (a).
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deaths after April 10. This could be associated with the higher risks in those health regions.

A cross-correlation analysis2 was performed to determine whether a delay is observable between

outbreaks in the community and the deaths among LTCH residents. These analyses show that

the outbreaks in the community with fatal cases lead to the outbreak in LTCHs with a delay of

up to 11 days, depending on the health region. For instance, there is a delay of 8 days between

the outbreak in the community and in the long-term care facilities in the Niagara Regional Area

Health Unit depicted in Figure 5.6a. The cross-correlations were performed for the daily number

of deaths in the community minus the number of deaths in LTCHs and the daily number of deaths

among LTCH residents. For the accuracy of the results regions with less than 10 data points were

excluded. The lags with highest significance were collected for the death data in 14 regions and

for the aggregated death data in Ontario. Figure 5.6c shows the histogram of the lags, showing

the large spread up to 11 days, with a mode however around 2 days.

Data clustering

We performed a clustering analysis on all LTCH in Ontario and singled out the homes that were

most relevant regarding the burden of the disease. We studied the burden of Covid-19 in Ontario

long term care homes by comparing the homes according to the number of beds, total number

of resident deaths, number of staff and PPE shortage reports, number of confirmed residents and

number of confirmed staff, between March 29 and June 3, 2020. As explained in the previous

sections, the accurate number of confirmed resident and staff were not available from the data and

therefore an estimate of the number of cases was used in our analyses. In the clustering analysis,

the maximum number of confirmed residents and confirmed staff were selected as an estimate.

The clustering algorithm PART-A was used. This algorithm is the combination of two different

clustering techniques: PART and k-means. The former is a neural-network architecture, devel-

oped in Cao and Wu [30], to find projective clusters in a high-dimensional space (there are six
2The analysis uses the crosscorr package in Matlab to examine the correlation between two time series at a number

of lags (e.g., 0 to 40 lags). The positive correlation values show the correlation between time series A and B assuming
that A leads to B, i.e., A is highly correlated to B at a given lag when the correlation coefficient is greater that 0.2.
Values less than 0.2 (or 0.1) indicate no significant correlation. The same interpretation can be obtained by considering
either left or right side of the x-axis.
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Figure 5.6: The cross-correlation analysis shows that there is a lag of 8 days between the outbreak in the community
resulting in fatal cases and the LTCH resident in the Niagara Regional Area Health Unit, as depicted in (a) and (b).
(a) Cumulative number of all deaths in the community vs cumulative number of deaths in LTCH. (b) Correlation
coefficients calculated for each lag for a total of 60 lags. (c) Histogram of the delay between pairs of time-series of
deaths inside and outside of the LTCH in each health region. The delay varies between 0 to 11 days, with a mode
around 2 days.
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Figure 5.7: The list of the 11 long-term care homes singled out through clustering analysis. For
privacy, we anonymized the relevant homes and denoted by T1-T6 for homes in Toronto, O1 and
O2 for homes in Ottawa and D, P, and W for homes in Durham, Peel and Waterloo health regions,
respectively.

dimensions in our data). The latter is a well-known center-based algorithm ideated by MacQueen

in 1967 [81]. The combination of these two techniques provides an efficient algorithm that merges

the benefit of using both a projective and a center-based algorithm. The former allows to work

in a reasonable subspace and avoid the so-called curse of dimensionality for which, in a high-

dimensional space, all points tend to be far apart and a notion of “distance" loses its relevance.

The latter instead is able to associate a point to each cluster which is the “average" and is key in

making the algorithm order-independent. There are two main parameters involved in the process:

σ which determines whether each dimension of data points is close enough with respect to the

cluster average; and ρ which determines the minimum number of similar dimensions needed for

points to be in the same cluster. We applied the algorithm by varying the two parameters and

chose the values that minimized the distance within a single cluster and maximized the distance

between different clusters.

Amongst the different clusters obtained, we chose to analyze the ones that had a relevant amount

of cases by checking the average point of each cluster. We then singled out the homes that were

affected enough and in a similar way by the epidemic. We ended up with eleven LTCH all around

Ontario which are listed in Table 5.7. Analysing all these long-term care facilities, we see that
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they all have a high number of resident deaths, staff shortage reports and number of confirmed

residents and staff (see Table 5.7). We also note that all but one of these homes are for-profit and

this strengthens our previous finding on the association between the extent of outbreaks and the

type of home management. All these homes are located in the health regions known to have a

high risk of COVID-19. It is also worth noting that 6 out of 11 homes are located in Toronto.

Apr 01 Apr 15 Apr 29 May 13 May 27 Jun 10

2020   

0

10

20

30

40

50

60

70

N
u

m
b

e
r 

o
f 

d
e

a
th

s

Deaths in singled-out Toronto LTCH

T1

T2

T3

T4

T5

(a)

Apr 01 Apr 15 Apr 29 May 13 May 27 Jun 10

2020   

0

10

20

30

40

50

60

70

N
u

m
b

e
r 

o
f 

d
e

a
th

s

Deaths in singled-out LTCH in the rest of Ontario

O1

O2

P

W

D

(b)

Apr 01 Apr 15 Apr 29 May 13 May 27 Jun 10

2020   

0

50

100

150

200

250

300
Deaths in Toronto vs Rest of Ontario

Toronto

Rest of Ontario

(c)

Figure 5.8: (a) Time-series of cumulative number of resident deaths in the singled-out LTCH in
Toronto. (b) Time-series of cumulative number of resident deaths in the singled-out LTCH in
Ontario excluding Toronto. The Toronto deaths continuously increase in the time analyzed while
in the rest of Ontario deaths start occurring in the last 20 days of April as the plot (c) shows.

A time-series analysis of the cumulative number of deaths among the homes in Toronto and out-

side Toronto, shows that the first outbreak time is different throughout the former (see Figure
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5.8a), while it has similar behavior in the latter (see Figure 5.8b), showing that those in Toronto

had more of a staggered onset (or at least reporting of detection) compared to those outside of

Toronto, which interestingly appear to have a common time of onset. There was no relation

between the location of the singled-out LTCH inside versus those outside of Toronto. No geo-

graphical proximity was found between these homes. It is also clear from Figure 5.8c that the

outbreaks start among the homes located in the Toronto health region and then move to the homes

located in the other three health regions. There is a clear difference in the behavior of the two

time series shown in Figure 5.8c: the Toronto deaths continuously increase in the time-window

analyzed while in the rest of Ontario deaths start occurring in last 20 days of April (Figure 5.8c).

5.1.4 Nuances and limitations

Confirmed COVID-19 positive case counts are subject to several forms of error, including un-

derestimation (combined effects of underreporting and under-ascertainment) [59] and testing pro-

tocols in each LTCH. Hence, throughout our analysis, we primarily utilized the time series for

number of deaths as a metric for disease severity in each LTCH. Deaths may be subject to a lower

degree of uncertainty and may be a more reliable source than confirmed COVID-19 cases; hence,

the higher confidence in the analyses presented. Various sources of data were available for the

number of cases and deaths in Ontario, stratified by health region, age and gender. These data

sources are different in the date of reports and the number of cases and deaths. The raw data, pub-

licly accessible through the Government of Ontario COVID-19 data, has particularly a line list of

data with additional information on case acquisition and dates of episode, specimen collection,

test report and case report. Results provided by the Government of Ontario based on this data and

results provided by Public Health Ontario differ in both date and number of deaths and cases.

5.1.5 Discussion

Several COVID-19 outbreaks have occurred in long-term care homes worldwide, with clusters

being reported in the USA [5, 86, 105], UK [27, 123], Italy [53, 78] and other European countries

[117], as well as in Canada [55, 115]. In the USA, White and colleagues [123] have found that

COVID-19 outbreaks in long-term care homes were associated with the dimension of the struc-
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ture (the larger the facility the higher the probability of an outbreak) and its region (characterized

by high SARS-CoV-2 prevalence rates). In the UK, Dutey-Magni and coauthors [53] have iden-

tified gender (being male) and increasing age, total number of beds, the bed/staff ratio and the

occupants/bedrooms ratio as independent predictors of outbreaks.

In this analysis, we found an association between the normalized number of COVID-19 induced

death in a given LTCH and the type of management associated with such LTCH (for profit, non-

profit, etc). We found that for-profit homes have higher death-to-bed ratio. This is consistent

with findings from the study of Stall et. al. [110], where they link this to the considerably higher

percentage of for-profit homes with older design standard and rooms with quadruple occupancy.

For-profit homes also account for 75% of homes with a crowding index> 2, defined as the average

number of residents per bedroom and bathroom in [25] (65% of for-profit, 36% of non-profit and

18% of municipal homes have a crowding index> 2). In addition, we showed that the average rate

of increase of the death-to-bed ratio is higher for for-profit homes than other types of management

models in most regions in Ontario. This is particularly true in regions where the overall death-to-

bed ratios are higher than 1%. This can also be partially explained by the higher percentage of

quadruple occupancy and crowding index of for-profit homes [25, 110] resulting in the accelerated

increase of the number of deaths in these homes. What remains unknown to decipher this result,

is the link between the management type of the facility and the specific age of the building, its

building code, in particular ventilation standard and quality, and very importantly, the number of

individuals occupying each room as well the staff-to-resident ratio, or time allocated by staff to

each resident. These factors will be critical to analyze in more details for the months to come to

explain these important differences between LTCH.

Moreover, we identified through cross-correlation analysis a lag of up to 11 day between deaths

in the community and deaths in LTCHs, depending on the health region (e.g., Figure 5.6). This

finding suggests that circulation of disease in the community disperses into LTCHs and leads

to eventual deaths after a period of time. In light of this, deaths in the surrounding community

may serve as an early warning for transmission to have already occurred in LTCHs and inform

immediate action and proactive measures, such as systematic testing among residents and staff, to
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mitigate the burden of disease.

Our analyses showed that the extent of the outbreaks in long-term care facilities are strongly

correlated with the proportion of confirmed staff. However, the analyses performed here are

subject to high uncertainties due to the lack of information on both number of staff present at

work and number of confirmed staff. Both numbers used in the correlation analysis are lower than

the actual numbers. It is important to have more accurate information on the number of staff in

LTCH, particularly those giving direct care to residents, since there is an association between the

total number of staff, the staff shortages and the burden of disease in the LTCH.

We also found that the odds of resident death are 35 times higher in homes with at least one

staff shortage report. Note that the number of staff shortage reports provided in the data does not

include the number of vacant shifts and it only provides the date on which a staff shortage was re-

ported. Homes experiencing critical staff shortages in Ontario reported as high as 60 vacant shifts

related to personal support workers every day [94], during the pandemic. Our results emphasize

the importance of staff availability to maintain the quality of care, increase the staff safety and

therefore reduce the burden of the disease among LTCH residents and staff.

In sum, older subjects are particularly vulnerable to the COVID-19 pandemic. It is urgent that

public health organisations and institutions protect their health and implement measures such

as timely and universal testing strategies and enhanced access to personal protective equipment.

Foreseeing future epidemics and pandemics and preparedness for such events is essential. Here,

we have identified key markers that can guide policy: The LTCH’s size, the building design

standard, room occupancy. This suggest that a combined strategy of indoor air, occupancy, and

decontamination management coupled with overall quality of care and high staff-to-bed ratio are

among the key factors that should be revised and improved as a part of the Infection Prevention

and Control Plans. Finally, we have shown that policy makers can use the information about

the community’s cases and death rates, which is a precursor – by up to 11 days – of worsening

conditions in LTCH to act in advance on restricting access to LTCH or implement changes in care

protocols, so as to minimize catastrophic effects among the LTCH vulnerable population.
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5.2 Conclusions

Two respiratory diseases were discussed in this chapter: Influenza and COVID-19. Both diseases

have a large mortality and morbidity rates among specific age groups with underlying clinical

conditions. The main goal of this chapter was to emphasize the key role of timely identification

of the risk groups (prior to or during the early stages of an epidemic) in successful control of the

epidemic and protecting these risk groups. A review of the influenza complications among seniors

and the available immunization programs in the US and Canada was given. A rigorous analysis

of the burden of COVID-19 was provided for the residents of long-term care homes in Ontario,

Canada.

5.3 A remark

A major part of this chapter was partially supported by the Canadian Institute of Health Research

(CIHR) 2019 Novel Coronavirus (COVID-19) rapid research program; Esri Canada through the

partnership with the York University ESRI License managed and funded by the York Univer-

sity ESRI License Partners: Faculty of Environmental Studies, Lassonde School of Engineering,

Faculty of Arts and Professional Studies, and York Universities Libraries.

5.4 Supplementary Material

A: Multi Variable Linear Regression

For both Model I and Model II the correlation coefficients were calculated using the corrcoef

package in Matlab testing the hypothesis that there is no correlation between the primary outcome

and the explanatory variables.

In Model I, the primary outcome is a vector of death to bed ratios for 106 LTCH (Y = (yi),

i = 1, · · · 106 and yi ∈ (0, 1)). Each explanatory variable is also a vector of 106 values (X = (xi),

i = 1, · · · 106). For example for the number of staff shortages 0 ≤ xi ≤ 40. For the sector corre-

sponding to each home we have a categorical variable and this variable was converted to a numer-
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ical variable by assigning the following numbers: 1 =for-profit, 2 =non-profit, 3 =municipal and

4 =charitable and therefore xi = 1, · · · , 4. The negative correlation means that for-profit homes

have higher death to bed ratios. A linear relationship Y = cX is considered between Y and each

explanatory variable X .

In Model II, the primary outcome is a vector of 68 entries (death to bed ratios for two types of

ownership, for-profit and not-for-profit, for each public health unit). The explanatory variables

are also vectors of the same size calculated for each public health unit in two types of ownership.

B: Maps

In this section, the spatial data of the LTCH death to bed ratios and the density of the home, for

two types of ownership, and the number of deaths evolving in time are visualized.
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Figure 5.9: Density of long-term care facilities by the type of ownership: one dot represents one
home. Note that the dots do not represent the precise location of the homes on the map.
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(a)

(b)

Figure 5.10: (a) Death to bed ratios in for-profit homes. (b) Death to bed ratios in not-for-profit
homes.
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(a) (b)

(c)

(d)

Figure 5.11: The evolution of the number of deaths among long-term care home residents between
March 29 and June 3. (a) April 1st. (b) April 22nd (c) May 13th. (d) June 3rd
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Table 5.4: Name and code of Ontario public health units.

Public Health Unit (PHU) PHU Code
The District of Algoma Health Unit 3526

Brant County Health Unit 3527

Durham Regional Health Unit 3530

Grey Bruce Health Unit 3533

Haldimand-Norfolk Health Unit 3534

Haliburton, Kawartha, Pine Ridge District Health Unit 3535

Halton Regional Health Unit 3536

City of Hamilton Health Unit 3537

Hastings and Prince Edward Counties 3538

Huron county Health Unit 3539

Chatham-Kent Health Unit 3540

Kingston, Frontenac and Lennox and Addington Health Unit 3541

Lambton Health Unit 3542

Leeds, Grenvile and Lanark District Health Unit 3543

Middlesex-London Health Unit 3544

Niagara Regional Area Health Unit 3546

North Bay Parry Sound District Health Unit 3547

Northwestern Health Unit 3549

City of Ottawa Health Unit 3551

Peel Regional Health Unit 3553

Peterborough County-City Health Unit 3555

Porcupine Health Unit 3556

Renfrew County and District Health Unit 3557

The Eastern Ontario Health Unit 3558

Simcoe Muskoka District Health Unit 3560

Sudbury and District Health Unit 3561

Thunder Bay District Health Unit 3562

Thimiskaming Health Unit 3563

Waterloo Health Unit 3565

Wellington-Dufferin-Guelph Health Unit 3566

Windsor-Essex County Health Unit 3568

York Regional Health Unit 3570

Oxford Elgin St. Thomas Health Unit 3575

City of Toronto Health Unit 3595
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6 | Conclusions

Mathematical models have been long used to describe biological, ecological and epidemiological

phenomena underpinning the transmission dynamics of infectious diseases. The benefits of using

mathematical models in understanding these phenomena, foreseeing future risks and advising

preventive measures are evident. The highly disruptive COVID-19 pandemic has in particular

highlighted the significant contribution of these models to the establishment of effective infection

prevention and control measures.

Mathematical models are strong tools which help governments and the public health professionals

and authorities to develop evidence based prevention and control strategies. The contribution

of mathematical models to the disease prevention and control is multifold: understanding the

dynamics; forecasting the disease spread; understanding the impact of public health interventions;

optimizing the allocation of available resources; evaluating the effectiveness of the implemented

interventions; identifying the critical outcomes and the key causes; and adjusting the interventions

for better results.

This thesis was primarily devoted to the development of a framework using renewal equations,

developed and furthered in earlier studies [71, 38, 15, 16, 18], in an extended setting where we

allow a general function to describe the contribution of infected individuals to the force of infec-

tion which depends on the time since infection as well as the immunity status of the individual

before acquiring the infection. This was done in Chapter 2 with a detailed analysis of a special

case where we consider n constant values for the immunity status of individuals in the population.

In Chapter 3, we developed an age-structured model for the dynamics of vertically transmitted

diseases using renewal equations in a single population with a constant birth function and a general

survival function where the probability of producing an infected new borne by an infected mother

depends on time since infection. Existence and uniqueness of a positive steady state and the

local stability of the disease free equilibrium was given in the general form. Sensitivity of the

positive equilibrium and the basic reproduction number on some of the key model parameters

were illustrated through numerical simulations.
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Dynamical models of vector-borne diseases and a stage-structured model for tick population were

developed and analyzed in Chapter 4. We developed models using renewal equations to study

vector-borne epidemics with one type of host population (with and without host-to-host transmis-

sions), epidemics with multiple types of host population (without host-to-host transmission) and

the endemic disease dynamics. The second part of this chapter was dedicated to a system of delay

differential equations to study the impact of host resistance on tick population dynamics.

Finally, we examined the infection prevention and control interventions for two respiratory dis-

eases, influenza and COVID-19, among individuals aged 65 and older, with a detailed investiga-

tion of COVID-19 deaths among long-term care home residents in Ontario, Canada. The results

are given in Chapter 5, and these studies set the age why a renewal equation with immunity as

a state-variable of the individuals is essential to describe the transmission patterns and disease

burdens.

Limitations and Future Work

The models developed in Chapters 2 and 3 have not been analyzed in full details. The disease

dynamics and the final size of the epidemic in the general form with varying level of immunity,

developed in Section 2.1, can be explored to optimize targeted immunization programs.

In Chapter 3, the stability analysis of the positive equilibrium and bifurcation analysis of the

system are not provided. Various and more realistic forms of the fertility function and the prob-

ability of producing an infected newborn can help us evaluate the interventions aiming to re-

duce/eliminate vertical transmission.

None of the theories provided in Chapters 2, 3 and the first part of 4 have been implemented to a

specific disease. Diseases of interest, where these theories can be utilized as a case study, include

respiratory diseases such as influenza and COVID-19, HIV/AIDS and malaria.
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[8] M. V. Barbarossa and G. Röst. Immuno-epidemiology of a population structured by im-

mune status: a mathematical study of waning immunity and immune system boosting.

Journal of Mathematical Biology, 71(6-7):1737–1770, 2015.

[9] S. Bhattacharyya and S. Ghosh. Optimal control of vertically transmitted disease: an inte-

grated approach. Computational and Mathematical Methods in Medicine, 11(4):369–387,

2010.

[10] S. M Blower and H. Dowlatabadi. Sensitivity and uncertainty analysis of complex mod-

els of disease transmission: an hiv model, as an example. International Statistical Re-

view/Revue Internationale de Statistique, 62(2):229–243, 1994.

[11] L. Bourouiba. Turbulent gas clouds and respiratory pathogen emissions: Potential implica-

tions for reducing transmission of COVID-19. JAMA, 323(18):1837–1838, 2020.

[12] L. Bourouiba. The fluid dynamics of disease transmission. Annual Review of Fluid Me-

chanics, 53:473–508, 2021.

[13] J. Bowessidjaou. Effects and duration of resistance acquired by rabbits on feeding and egg

laying in ixodes ricinius. L. Experientia, 33(4):528–530, 1977.

[14] F. Brauer. On a nonlinear integral equation for population growth problems. SIAM Journal

on Mathematical Analysis, 6(2):312–317, 1975.

[15] F. Brauer. Age-of-infection and the final size relation. Mathematical Biosciences and

Engineering, 5(4):681–690, 2008.

[16] F. Brauer. Heterogeneous mixing in epidemic models. Canadian Applied Mathematics

Quarterly, 20(1), 2012.

[17] F. Brauer. A singular perturbation approach to epidemics of vector-transmitted diseases.

Infectious Disease Modelling, 4:115–123, 2019.

[18] D. Breda, O. Diekmann, W. F. de Graaf, A Pugliese, and R. Vermiglio. On the formula-

tion of epidemic models (an appraisal of kermack and mckendrick). Journal of Biological

Dynamics, 6(supp2):103–117, 2012.

111



[19] D. Breda, O. Diekmann, M. Gyllenberg, F. Scarabel, and R. Vermiglio. Pseudospectral dis-

cretization of nonlinear delay equations: New prospects for numerical bifurcation analysis.

SIAM Journal on Applied Dynamical Systems, 15(1):1–23, 2016.

[20] D. Breda, O. Diekmann, D. Liessi, and F. Scarabel. Numerical bifurcation analysis of a

class of nonlinear renewal equations. Electronic Journal of Qualitative Theory of Differen-

tial Equations, (65):1–24, 2016.

[21] D. Breda, O. Diekmann, Maset S., and R. Vermiglio. A numerical approach for investi-

gating the stability of equilibria for structured population models. Journal of Biological

Dynamics, 7 Suppl 1(Suppl 1):4–20, 2013.

[22] D. Breda, P. Getto, J. Sánchez Sanz, and R. Vermiglio. Computing the eigenvalues of real-

istic daphnia models by pseudospectral methods. SIAM Journal on Scientific Computing,

37(6):A2607–A2629, 2015.

[23] D. Breda and D. Liessi. Approximation of eigenvalues of evolution operators for linear

renewal equations. SIAM Journal on Numerical Analysis, 56(3):1456–1481.

[24] D. Breda and D. Liessi. Floquet theory and stability of periodic solutions of renewal equa-

tions. Journal of Dynamics and Differential Equations, 2020.

[25] K. A. Brown, A. Jones, N. Daneman, K. A. Chan, K. L. Schwartz, G. E. Garber, A. P. Costa,

and N. M. Stall. Association Between Nursing Home Crowding and COVID-19 Infection

and Mortality in Ontario, Canada. JAMA Internal Medicine, Nov 2020.

[26] S. J. Brown and P. W. Askenase. Rejection of ticks from guinea pigs by anti-hapten-

antibody-mediated degranulation of basophils at cutaneous basophil hypersensitivity sites:

role of mediators other than histamine. The Journal of Immunology, 134(2):1160–1165,

1985.

[27] T. Burki. England and wales see 20000 excess deaths in care homes. The Lancet,

395(10237):1602, May 2020.

[28] S. Busenberg and K. Cooke. Vertically Transmitted Diseases. Springer-Verlag, 1993.

112



[29] Statistics Canada. Census profile, 2016 canada.

[30] Y. Cao and J. Wu. Projective art for clustering data sets in high dimensional spaces. Neural

Networks, 15(1):105–120, 2002.

[31] P. Clement, O. Diekmann, M. Gyllenberg, H. J. A. M. Heijmans, and H. R. Thieme. Per-

turbation theory for dual semigroups. i. the sun-reflexive case. Mathematische Annalen,

277(4):709–725, 1987.

[32] J. Cui, Y. Zhang, and Z. Feng. Influence of non-homogeneous mixing on final epidemic

size in a meta-population model. Journal of Biological Dynamics, 13(sup1):31–46, 2019.

[33] A. M. de Roos, O. Diekmann, P. Getto, and M. A. Kirkilionis. Numerical equilibrium

analysis for structured consumer resource models. Bulletin of Mathematical Biology,

72(2):259–297, 2010.

[34] A. M. de Roos, O. Diekmann, P. Getto, and M. A. Kirkilionis. Erratum to: Numerical

equilibrium analysis for structured consumer resource models. Bulletin of Mathematical

Biology, 78(2):350–351, 2016.

[35] C. A. DiazGranados, A. J. Dunning, E. Jordanov, V. Landolfi, M. Denis, and H. K. Tal-

bot. High-dose trivalent influenza vaccine compared to standard dose vaccine in elderly

adults: Safety, immunogenicity and relative efficacy during the 2009-2010 season. Vac-

cine, 31(6):861–866, 2013.

[36] C. A. DiazGranados, A. J. Dunning, M. Kimmel, D. Kirby, J. Treanor, A. Collins, R. Pollak,

J. Christoff, J. Earl, V. Landolfi, E. Martin, S. Gurunathan, R. Nathan, D. P. Greenberg,

N. G. Tornieporth, M. D. Decker, and H. K. Talbot. Efficacy of high-dose versus standard-

dose influenza vaccine in older adults. The new England Journal of Medicine, 371(7):635–

45, 2014.

[37] C. A. DiazGranados, C. A. Robertson, H. K. Talbot, V. Landolfi, A. J. Dunning, and D. P.

Greenberg. Prevention of serious events in adults 65 years of age or older:a comparison be-

113



tween high-dose and standard-dose inactivated influenza vaccines. Vaccine, 33(38):4988–

4993, 2015.

[38] O. Diekmann. Limiting behaviour in an epidemic model. Nonlinear Anallysis, 1(5):459–

470, 1977.

[39] O. Diekmann. Renewal Equations in Population Biology. Lecture Notes.IRC, LIAM and

Fields-CQAM MfPH Distinguished Lecture Series. 2019.

[40] O. Diekmann, P. Getto, and G. Mats. Stability and bifurcation analysis of volterra func-

tional equations in the light of suns and stars. SIAM Journal on Mathematical Analysis,

39(4):1023–1069, 2007.

[41] O. Diekmann, P. Getto, and Y. Nakata. On the characteristic equation the context of a cell

population model. Journal of Mathematical Biology, 72:877–908, 2016.

[42] O. Diekmann, S.A. van Gils, S.M.V. Lunel, and H.-O. Walther. Delay Equations

Functional-, Complex-, and nonlinear Analysis. Springer-Verlag, 1995.

[43] O. Diekmann and M. Gyllenberg. The second half|with a quarter of a century delay. Math-

ematical Modelling of Natural Phenomena, 3(7):36–48, 2008.

[44] O. Diekmann and M. Gyllenberg. Equations with infinite delay: Blending the abstract and

the concrete. Journal of Differential Equations, 252(2):819–851, 2012.

[45] O. Diekmann, M. Gyllenberg, and J. Metz. Finite dimensional state representation of

linear and nonlinear delay systems. Journal of Dynamics and Differential Equatations,

30:1439–1467, 2018.

[46] O. Diekmann, M. Gyllenberg, and J. A. J. Metz. Steady-state analysis of structured popu-

lation models. Theoretical Population Biology, 63(4):309–338, 2003.

[47] O. Diekmann, M. Gyllenberg, J. A. J. Metz, S. Nakaoka, and A. M. de Roos. Daphnia

revisited: local stability and bifurcation theory for physiologically structured population

models explained by way of an example. Journal of Mathematical Biology, 61(2):227–

318, 2010.

114



[48] O. Diekmann, J. A. Heesterbeek, and J. A. Metz. On the definition and the computation of

the basic reproduction ratio r0 in models for infectious diseases in heterogeneous popula-

tions. Journal of Mathematical Biology, 28(4):365–82, 1990.

[49] O. Diekmann and S. A. Van Gils. Invariant manifolds for volterra integral equations of

convolution type. Journal of differential equations, 54:139–180, 1984.

[50] O. Diekmann, R. Vermiglio, and F. Scarabel. Pseudospectral discretization of delay equa-

tions: Results and conjectures. Discrete & Continuous Dynamical Systems -S, 13, 2018.

[51] P. van den Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic

equilibria for compartmental models of disease transmission. Mathematical Biosciences,

180(1):29 – 48, 2002.

[52] S. J. Dumler. Molecular diagnosis of lyme disease: review and meta-analysis. Molecular

Diagnosis, 6(1):1–11, 2001.

[53] P. F. Dutey-Magni, H. Williams, A. Jhass, G. Rait, H. Hemingway, A. C. Hayward, and

L. Shallcross. Covid-19 infection and attributable mortality in uk long term care facilities:

Cohort study using active surveillance and electronic records (march-june 2020). medRxiv,

2020.

[54] G. Fan, H. R Thieme, and H. Zhu. Delay differential systems for tick population dynamics.

Journal of Mathematical Biology, 71(5):1017–1048, 2015.

[55] D. Fisman, I. Bogoch, L. Lapointe-Shaw, J. McCready, and A. Tuite. Risk factors as-

sociated with mortality among residents with coronavirus disease 2019 (COVID-19) in

long-term care facilities in ontario, canada. JAMA Network Open, 3(7), 2020.

[56] Centers for Disease Control and Prevention. Past seasons vaccine effectiveness estimates,

2020.

[57] H. D. Gaff and L. J. Gross. Modeling tick-borne disease: A metapopulation model. Bulletin

of Mathematical Biology, 69(1):265–288, 2007.

115



[58] P. Getto, M. Gyllenberg, Y. Nakata, and F. Scarabel. Stability analysis of a state-dependent

delay differential equation for cell maturation: analytical and numerical methods. Journal

of Mathematical Biology, 79(1):281–328, 2019.

[59] C. L. Gibbons, M. J. Mangen, D. Plass, A. H. Havelaar, R. J. Brooke, P. Kramarz, K. L.

Peterson, A. L. Stuurman, A. Cassini, E. M. Fèvre, and M. E. E. Kretzschmar. Measuring

underreporting and under-ascertainment in infectious disease datasets: a comparison of

methods. BMC Public Health, 14(1):147, 2014.

[60] B. Gomero. Latin hypercube sampling and partial rank correlation coefficient analysis

applied to an optimal control problem. University of Tennessee, Knoxville. Masters Thesis,

2012.

[61] G. Gripenberg, S. O. Londen, and O. Staffans. Volterra Integral and Functional Equations.

Cambridge University Press, 1990.

[62] M. Gyllenberg, F. Scarabel, and R. Vermiglio. Equations with infinite delay: Numerical

bifurcation analysis via pseudospectral discretization. Applied Mathematics and Computa-

tion, 333:490–505, 2018.

[63] J. K. Hale. Asymptotic behavior of dissipative systems. Mathematical Surveys and Mono-

graphs 25, American Mathematical Society, 1988.

[64] J. M. Heffernan, R. J. Smith, and L. M. Wahl. Perspectives on the basic reproductive ratio.

Journal of The Royal Society Interface, 2:281–293, 2005.

[65] R. A. Horn and C. R. Johnson. Matrix Analysis, Second Edition. Cambridge University

Press, 2013.

[66] A. T. Hsu, W. Berta, P. C. Coyte, and A. Laporte. Staffing in ontario’s long-term care

homes: Differences by profit status and chain ownership. Canadian Journal on Aging,

35(2):175–189, 2016.

[67] S. J. Brown. Highlights of contemporary research on host immune response to ticks. Vet-

erinary Parasitology, 28:321–334, 1988.

116



[68] R. Jennings, Y. Kuang, H. R. Thieme, J. Wu, and X. Wu. How ticks keep ticking in the

adversity of host immune reactions. Journal of Mathematical Biology, 78(5):1331–1364,

2019.

[69] R. C. Johnson, G. P. Schmid, F. W. Hyde, A. G. Steigerwalt, and D. J. Brenner. Borrelia

burgdorferi sp. nov.: etiologic agent of lyme disease. International Journal of Systematic

and Evolutionary Microbiology, 34(4):496–497, 1984.

[70] N. R. Jones, Z.U. Qureshi, R. J. Temple, J. P. J. Larwood, T. Greenhalgh, and L. Bourouiba.

Two metres or one: what is the evidence for physical distancing in COVID-19? BMJ, 370,

2020.

[71] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of

epidemics. Proceedings of the Royal Society, 105A(700), 1927.

[72] M. A. Kirkilionis, O. Diekmann, B. Lisser, M. Nool, B. Sommeijer, and A. M. de Roos.

Numerical continuation of equilibria of physiologically structured population models. i.

theory. Mathematical Models and Methods in Applied Sciences., 6(S. 11):1101–1127.,

2011.

[73] O. Krylova and D. J. Earn. Effects of the infectious period distribution on predicted tran-

sitions in childhood disease dynamics. Journal of The Royal Society Interface, 10(84),

2013.

[74] D. L. Schanzer, M. Saboui, L. Lee, A. Nwosu, and C. Bancej. Burden of influenza, res-

piratory syncytial virus, and other respiratory viruses and the completeness of respiratory

viral identification among respiratory inpatients, canada, 2003-2014. Influenza and Other

Respiratory Viruses, 12(1):113–121, 2018.

[75] J. K. H. Lee, G. K. L. Lam, T. Shin, J. Kim, A. Krishnan, D. P. Greenberg, and A. Chit.

Efficacy and effectiveness of high-dose versus standard-dose influenza vaccination for older

adults: a systematic review and meta-analysis. Expert Review of Vaccines, 17(5):435–443,

2018.

117



[76] V. J. Lee, Z. J. M. Ho, E. H. Goh, H. Campbell, C. Cohen, V. Cozza, J. Fitzner, J. Jara,

A. Krishnan, J. Bresee, and WHO Working Group on Influenza Burden of Disease. Ad-

vances in measuring influenza burden of disease. Influenza and Other Respiratory Viruses,

12(1):3–9, 2018.

[77] A. L Lloyd. Realistic distributions of infectious periods in epidemic models: Changing

patterns of persistence and dynamics. Theoretical Population Biology, 60(1):59–71, 2001.

[78] S. Logar. Care home facilities as new covid-19 hotspots: Lombardy region (italy) case

study. Archives of Gerontology and Geriatrics, 89:104087, 2020.

[79] Y. Lou and J. Wu. Tick seeking assumptions and their implications for lyme disease pre-

dictions. Ecological Complexity, 17:99–106, 2014.

[80] W. H. R. Lumsden. Advances in Parasitology, Volume 18. Academic Press, 1980.

[81] J. MacQueen. Some methods for classification and analysis of multivariate observations.

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,

Volume 1: Statistics, 1:281–297, 1967.

[82] N. K. Madhav, J. S. Brownstein, J. I. Tsao, and D. Fish. A dispersal model for the range ex-

pansion of blacklegged tick (acari: Ixodidae). Journal of Medical Entomology, 41(5):842–

852, 2004.

[83] P. Magal and S. Ruan. Theory and Applications of Abstract Semilinear Cauchy Problems.

Cham, Switzerland: Springer, 2018.

[84] S. Marino, I. B. Hogue, C. J. Ray, and D. E. Kirschner. A methodology for performing

global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biol-

ogy, 254(1):178–196, 2008.

[85] Z. McCarthy, S. Athar, M. Alavinejad, C. Chow, I. Moyles, K. Nah, J. D. Kong, N. Agrawal,

A. Jaber, L. Keane, S. Liu, M. Nahirniak, R. Jean, D. S. Romanescu, J. Stockdale, L. Seet,

B. T. Coudeville, E. Thommes, A. F. Taurel, J. Lee, T. Shin, J. Arino, J. Heffernan, A. Chit,

118



and J. Wu. Quantifying the annual incidence and underestimation of seasonal influenza: A

modelling approach. Theoretical Biology and Medical Modeling, 17(1):11, 2020.

[86] T. M. McMichael, D. W. Currie, S. Clark, S. Pogosjans, M. Kay, N. G. Schwartz, J. Lewis,

A. Baer, V. Kawakami, M. D. Lukoff, J. Ferro, C. Brostrom-Smith, T. D. Rea, M. R. Sayre,

F. X. Riedo, D. Russell, B. Hiatt, P. Montgomery, A. K. Rao, E. J. Chow, F. Tobolowsky,

M. J. Hughes, A. C. Bardossy, L. P. Oakley, J. R. Jacobs, N. D. Stone, S. C. Reddy, J. A

Jernigan, M. A. Honein, T. A. Clark, J. S. Duchin, Public Health–Seattle, King County,

EvergreenHealth, and CDC COVID-19 Investigation Team. Epidemiology of covid-19 in a

long-term care facility in king county, washington. The New England Journal of Medicine,

21(382):2005–2011, 2020.

[87] J. A. J. Metz and O. Diekmann. Lecture Notes in Biomathematics: The Dynamics of Phys-

iologically Structured Populations a Systematic Exposition, volume 68. Springer-Verlag

Berlin Heidelberg GmbH, 1986.

[88] E. A. Miller. Protecting and improving the lives of older adults in the covid-19 era. Journal

of Aging & Social Policy., 4-5(32):297–309, 2020.

[89] K. Nah, M. Alavinejad, A. Rahman, J. M. Heffernan, and J. Wu. Impact of influenza

vaccine-modified infectivity on attack rate, case fatality ratio and mortality. J Theor Biol,

492:110190, 2020.

[90] A. Nzokem and N. Madras. Epidemic dynamics and adaptive vaccination strategy: Re-

newal equation approach. Bulletin of Mathematical Biology, 82(122), 2020.

[91] Government of Canada. Surveillance of lyme disease, 2020.

[92] GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific

mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic

analysis for the global burden of disease study 2017. The Lancet, 392(10159):1736–88,

2018.

119



[93] United Nations, Department of Economic and Social Affairs, Population Division. World

population ageing 2019: Highlights, 2019.

[94] Long-Term Care Staffing Study Advisory Group, Ministry of Long-Term Care. Long-term

care staffing study, 2020.

[95] N. H. Ogden, M. Bigras-Poulin, C. J. O’callaghan, I. K. Barker, L. R. Lindsay, A. Maarouf,

K. E. Smoyer-Tomic, D. Waltner-Toews, and D. Charron. A dynamic population model

to investigate effects of climate on geographic range and seasonality of the tick ixodes

scapularis. International Journal for Parasitology, 35(4):375–389, 2005.

[96] Public Health Ontario. Covid-19 in ontario: January 15, 2020 to june 3, 2020.

[97] Public Health Ontario. Ontario covid-19 data tool, 2020.

[98] C. Paules and K. Subbarao. Influenz. The Lancet, 390(10095):697–708, 2017.

[99] J. Piesman, T. N Mather, R. Sinsky, and A. Spielman. Duration of tick attachment and

borrelia burgdorferi transmission. Journal of Clinical Microbiology, 25(3):557–558, 1987.

[100] T. Powell, E. Bellin, and A. R. Ehrlich. Older adults and covid-19: The most vulnerable,

the hardest hit. Hastings Center Report, 3(50):61–63, 2020.

[101] S. Randolph. Tick ecology: processes and patterns behind the epidemiological risk posed

by ixodid ticks as vectors. Parasitology, 129(S1):S37–S65, 2004.

[102] R. Rosà and A. Pugliese. Effects of tick population dynamics and host densities on the

persistence of tick-borne infections. Mathematical Biosciences, 208(1):216–240, 2007.

[103] R. Rosà, A. Pugliese, R. Norman, and P. J Hudson. Thresholds for disease persistence

in models for tick-borne infections including non-viraemic transmission, extended feeding

and tick aggregation. Journal of Theoretical Biology, 224(3):359–376, 2003.
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