
EFFICIENT MINING OF ACTIVE COMPONENTS IN A NETWORK OF
TIME SERIES

MAHTA SHAFIEESABET

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTERS OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING & COMPUTER SCIENCE
YORK UNIVERSITY
TORONTO, ONTARIO

FEBRUARY 2022

© Mahta Shafieesabet, 2022

Abstract

Let a network of time series be a set of nodes assuming an underlying network structure,

where each node is associated with a discrete time series. The road network, the human

brain, online social media are a few examples of domain-specific applications that can be

modelled as networks of time series. Now assume that the sequence of time series data points

observed on a node determines whether the node is on (active) or off (inactive). Then, at

each time step, a set of induced subgraphs can be formed from the subset of active nodes; we

call these induced subgraphs active components. In this research, our goal is to efficiently

detect and maintain/report the active components over time.

This setting can also be formalized using the concept of a dynamic graph. A dynamic

graph G can be viewed as a discrete sequence of static graphs G1, G2, ..., Gt where Gt = (Vt, Et)

and t is the index of the time steps. Each Gi is a snapshot of G. In our setting of a network

of time series, the original network is represented as a graph G that has a fixed topology and

its nodes become active or inactive over time, depending on the time series values. At each

time step, the induced graph defined by the set of active nodes is a snapshot Gi of G. This

problem where the original graph is fixed and its nodes become on/off describes a specific

ii

dynamic graph problem, known in the literature as the subgraph model.

To detect the sequence of active components at each step, it is enough to find the spanning

forest induced by the active nodes, as each spanning tree in the spanning forest represents

each of the active components. The naive approach to address the problem is to rely on

a depth-first search computation on the original graph, at each time step. However, this

approach might be prohibitive for large graphs. The main contribution of this thesis is that we

propose and implement an efficient algorithm for detecting the spanning forest and therefore

the sequence of active components, while avoiding a full re-computation on the original graph.

We provide a theoretical analysis of the time complexity of the proposed algorithm and show

that it improves the time complexity of the known state of the art algorithm by a log factor.

We also empirically evaluate the running time performance of the proposed algorithm against

state-of-the-art algorithms and other sensible baselines.

The ability to efficiently detect active components in real-time can inform various critical

situations in domain-specific applications, such as monitoring specific traffic conditions in the

road network, monitoring critical human brain activity, or detecting persistent social network

discussions, to name a few.

iii

Acknowledgements

I would like to give my special thanks to my supervisor, Dr. Manos Papagelis; it would not

have been possible to do this research without his help and support.

I would like to extend my special thanks to my thesis oral exam committee members, Dr

Gene Cheung and Dr Mojgan Jadidi.

I would like to thank my auntie Nahid and her family for all of their love, help and support

and for being my second family when I was far from my family in Iran.

I would also want to thank my loving parents and siblings (Azadeh, Mahdyeh, Azin,

Mohammad) for keeping me in their hearts and their emotional support for me from a

long-distance away.

And at the end, I would like to thank my lovely friends Niloofar Radgoudarzi (rad),

Kenneth Tjhia, Neda Shokraneh, Farnoosh Javadi, Sheyda Zarandi, Alireza Naeiji, Fazel

Arasteh, Xeleb Nadri, Parsa Farshadfar, Ramin Shirali, and all of my other dear friends who

added fun to my journey and never let me be down.

iv

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents v

List of Figures 1

List of Tables 3

1 Introduction 4

1.1 Motivating Applications . 6

1.1.1 Transportation Networks . 7

1.1.2 Human Brain . 7

1.1.3 Sensor Networks . 8

1.1.4 Online Social Networks . 9

1.2 Contributions . 9

1.3 Thesis Organization . 10

v

2 Related Work 12

2.1 Streaming Graph Mining . 12

2.2 Time Series Mining . 13

2.3 Dynamic Graphs . 14

2.3.1 Fully Dynamic Connectivity . 14

2.3.2 Dynamic DFS . 15

2.3.3 Connectivity in the Subgraph Model 16

2.3.4 Emergency Planning . 17

3 Problem Definition 19

4 Methodology 23

4.1 Preliminaries . 25

4.1.1 DFS-tree . 25

4.1.2 Heavy-Light Decomposition & Shallow Tree Representation 26

4.1.3 DFS-tree Enumeration . 28

4.2 Simple DFS (Baseline Method) . 29

4.3 ActiveComp: A Faster DFS Algorithm . 31

4.3.1 Overview . 31

4.3.2 Computing Efficient Adjacency List 34

4.3.3 Querying the Data Structure . 36

4.4 Time Complexity Analysis . 39

vi

5 Experimental Evaluation 41

5.1 Synthetic Data Generation . 41

5.1.1 Graph Generation . 41

5.1.2 Time Series Data Generation . 44

5.2 Experimental Setup . 46

5.2.1 Input and Parameters . 46

5.2.2 Evaluation Metric . 47

5.2.3 Baselines . 47

5.3 Results and Discussion . 48

5.3.1 Small-World Network & Random Scenario 49

5.3.2 Small-World Network & Forest fire Scenario 60

5.3.3 Other input graphs & Random Scenario 62

6 Conclusions and Future Work 67

6.1 Conclusions . 67

6.2 Limitations . 69

6.2.1 Scalability to Very Large Graphs . 69

6.2.2 Underperforming in Specific Instances of the Problem 69

6.3 Future Work . 70

6.3.1 Employing Parallel Computations . 70

6.3.2 Fine-tuning to Accommodate Different Network Topologies 70

6.3.3 Extending the Comparative Empirical Analysis 70

vii

6.3.4 Employing Real Data and Scenarios 71

viii

List of Figures

1.1 Set of active components at timesteps t = {1, 2, 3} 5

4.1 Sample input file. Contains information about nodes turning active/inactive.

Looking at entry row = B and column = 2, we know that node B is active at

t = 2 . 24

4.2 An undirected graph and its DFS-tree rooted at node 1 26

4.3 A figure that contains three subfigures . 27

4.4 Example of the baseline on t = 1, 2, 3 . 31

5.1 Clustering Coefficient vs Probability of rewiring 44

5.2 Different graphs topologies . 44

5.3 Experiment on a Small Graph, Small-World network, k = 50, Random Scenario 50

5.4 Experiments on a Small Graph, Small-World network, Random Scenario . . 52

5.5 Experiments on a Medium Graph, Small-World network, Random Scenario . 53

5.6 Experiments on a Large Graph, Small-World network, Random Scenario . . 54

5.7 Experiments on a Small Graph, Small-World network, Random Scenario . . 57

1

5.8 Experiments on a Medium Graph, Small-World network, Random Scenario . 58

5.9 Experiments on a Large Graph, Small-World network, Random Scenario . . 59

5.10 Experiments on a Medium Graph, Small-World network, Forest fire Scenario 60

5.11 Experiments on a Medium Graph, Small-World network, Forest fire Scenario 61

5.12 Experiments on a Medium Graph, Regular network, Random Scenario 63

5.13 Experiments on a Medium Graph, Regular network, Random Scenario 64

5.14 Experiments on a Medium Graph, Random network, Random Scenario . . . 65

5.15 Experiments on a Medium Graph, Random network, Random Scenario . . . 66

2

List of Tables

3.1 Summary of Notations . 20

4.1 Data Structure Anc_Nbr . 37

5.1 Different graph names . 46

5.2 Different graph topologies . 47

5.3 Different scenarios . 47

3

Chapter 1

Introduction

Let a network of time series be a set of nodes assuming an underlying network structure,

where each node is associated with a discrete time series. The road network, the human

brain, online social media are a few examples of domain-specific applications that can be

modelled as networks of time series. Now assume that the sequence of data points observed

on a node determines whether the node is on (active) or off (inactive). Then, at each time

step, the active nodes form a set of induced subgraphs that we call active components. The

aforementioned setting can also be formalized using the concept of a dynamic graph.

A dynamic graph is a graph that is changing over time like G as G = (G1, G2, ..., Gt)

where Gt = (Vt, Et) and t is the number of time steps. Each Gi is also known as a snapshot

of G. In the setting that we described earlier, where the input graph is fixed, and nodes

become active or inactive through time, each snapshot is an induced subgraph of the input

graph to active nodes. This setting is one of the dynamic graphs problems known as subgraph

4

CHAPTER 1. INTRODUCTION

Figure 1.1: Set of active components at timesteps t = {1, 2, 3}

model. Fig. 1.1 provides an illustrative example of such active components for a small graph

and a short period of three-time steps. In the figure, the nodes of the graph {A,B, ..., G} are

observing time series with three time-steps that determine their state (active or inactive), and

at each time step, the set of active nodes (shown in red) forms active components (subgraphs

composed of red nodes and highlighted edges).

Previous works maintained a data structure that can answer a query about two vertices if

they are in the same connected component or not in a certain amount of time. They were

trying to reduce this time as well as making a smaller data structure [15, 18]. On the other

hand, we maintain the spanning forest and report each active components members. Some

previous works maintain the DFS-tree (forest), which is also a spanning tree (forest), but our

algorithm focuses on maintaining a spanning tree so is simpler and faster in terms of time

complexity [33, 4].

In this research, we present an efficient algorithm for detecting the spanning forest induced

to active nodes and, as a result, the sequence of active components while avoiding a full

5

1.1. MOTIVATING APPLICATIONS CHAPTER 1. INTRODUCTION

re-computation on the original graph. To approach the problem of interest, we use and

modify an existing data structure and algorithm for maintaining a DFS-tree in a dynamic

graph under vertex update. The work is done by Baswana et al. [7]. Since there is no

implementation of their proposed algorithm, we implemented both their exact algorithm and

the modified version, then compared them in terms of time complexity and running time. We

make their time complexity faster by a log factor. The main idea is that they are maintaining

a DFS-tree (DFS-forest), but we want a spanning tree (spanning forest) to get rid of the

computations that make sure the tree is a DFS-tree.

As we mentioned earlier, traditionally, in the fully dynamic problem setting, we care about

dynamic connectivity, where we seek quick answers to queries of the form “are nodes x and y

connected in the updated graph?”. On the other hand, our setting focuses on maintaining the

active components’ network structure, allowing for rich meta-analysis and modelling of related

domain-specific phenomena. For example, we can use the sequence of active components to

answer questions such as: what active components look like, how persistent they are over

time, how their network structure changes over time.

1.1 Motivating Applications

The road network, the human brain, sensor networks, online social media are a few examples

of domain-specific applications that can be modelled as networks of time series. The ability

to efficiently detect active components in real-time can inform various critical situations in

domain-specific applications, such as specific road network conditions, critical human brain

6

1.1. MOTIVATING APPLICATIONS CHAPTER 1. INTRODUCTION

activity, or persistent social media discussions, to name a few. Below we elaborate more on

such examples and how they can be modelled as networks of time series.

1.1.1 Transportation Networks

Transportation networks consist of sets of connected road segments that intersect, creating

road intersections. Each intersection may generate time-series in a transportation network

by monitoring traffic conditions at that intersection over time. To formalize transportation

networks in our context, they must be modelled into a graph representation. The most well-

known methodology of modelling transportation networks is by representing road intersections

as nodes and road segments as edges. Each node is generating time series that turn that

node active or inactive. An active node represents a congested intersection, while an inactive

node represents an uncongested intersection. Therefore, finding active components over time

is equivalent to finding the set of congested roads across the network at each time step. We

can use the computed set of active paths in traffic prediction through real-time forecasting of

traffic information [31].

1.1.2 Human Brain

The human brain is divided into distinct but inter-connected regions. In an fMRI scan, each

brain region generates a time series that monitors brain activity over time. To model the

human brain as a graph, distinct brain regions can be represented as nodes. Each node turns

active or inactive based on the data extracted from the time-series at each time step. An

7

1.1. MOTIVATING APPLICATIONS CHAPTER 1. INTRODUCTION

active node represents an active brain region, while an inactive node represents an inactive

region. Active components represent a set of interconnected brain regions that are highly

active at each time step. Finding the set of active components outlines correlations between

different brain regions over time [23].

1.1.3 Sensor Networks

A sensor network is a collection of connected and spatially distributed sensors that collectively

sense physical and environmental properties. Each sensor is connected to a time series

that continuously generates sensor data. For instance, each sensor generates a time series of

temperature measurements in a smart building setting. A sensor network can be modelled into

a graph representation where each sensor is a node, and the link between two neighbouring

sensors is an edge. Nodes can turn active/inactive over time based on the time series values.

In one scenario, a node turns active whenever an anomaly is detected at a specific time step,

such as an unusually high or low temperature. In another scenario, a node turns active

whenever a sensor measurement passes a specific threshold, such as a previously defined

temperature value. When two or more connected nodes turn active, an active component

is constructed in the graph. Finding the set of active components finds the underlying

relationship between the sensors included in the path [8].

8

1.2. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

1.1.4 Online Social Networks

An online social network can be modelled into a graph representation of co-evolving time

series. In Twitter, hashtags can be represented by graph nodes and the relationship between

each hashtag is represented by edges linking them. Each hashtag generates a time series of

live tweets over time. Nodes turn active/inactive based on the trending score of each hashtag.

An active node represents a trending hashtag. When two or more connected hashtags are

trending, they form an active component. Finding the set of active components over time

defines how two hashtags are related to each other, which is critical in economic, social, and

political analysis using tweets as a data set. Or may be of interest to determine connected

groups of people all meeting some common criteria, for example a group of friends on a social

media platform all of whom attending some event.

1.2 Contributions

In summary, the major contributions of this work are the following:

• We introduce the novel problem of detecting active components in a network of time

series. An active component is defined as the induced subgraph of a set of active nodes.

• We propose ActiveComp, an efficient algorithm for addressing the problem of interest in

the subgraph model setting. In this setting, we are given a graph of fixed topology (fixed

nodes and edges), while the nodes in the graph become on (active) and off (inactive)

over time. At each time step, a set of active components is detected and reported.

9

1.3. THESIS ORGANIZATION CHAPTER 1. INTRODUCTION

• We provide a theoretical analysis of the time complexity of the proposed algorithm and

show that it improves the currently known state of the art by a log factor.

• We empirically compare the running time performance of the proposed algorithm and

demonstrate that it outperforms the state-of-the-art and other sensible baseline algo-

rithms, for a varying number of parameters.

• While there are many advances in theoretical analysis of dynamic graph algorithms,

there is a gap between theoretical and empirical studies [21]. The problem with theoretical

results is that while the worst-case or amortized time complexity performance of the

algorithm is known, one can barely say much about their expected performance in a

real-world application or setting. Our contribution is therefore to provide better insights

and understanding of the performance and utility of the proposed algorithms in specific

scenarios, through implementation and empirical evaluation of the proposed method

against sensible alternatives.

1.3 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 reviews the related work to

our research. The technical problem of interest in this research is presented in Chapter 3.

Chapter 4 introduces preliminaries of the problem and discusses the current state-of-the-

art solutions to our problem. Our proposed methods, the overall algorithmic analysis and

implementation details are also presented in Chapter 4. Chapter 5 presents an experimental

10

1.3. THESIS ORGANIZATION CHAPTER 1. INTRODUCTION

evaluation of our proposed methods against the state-of-the-art algorithm and other sensible

baselines. We conclude the work and provide directions of future work in Chapter 6.

11

Chapter 2

Related Work

We can categorize related works into three most important sections: streaming graph mining,

time series mining, and, dynamic graph connectivity.

2.1 Streaming Graph Mining

There are many studies on evolving graphs. To handle giving an evolving graph as an input

to an algorithm, we can feed it as a data input stream. The data can be a stream of tuples

like (e, s) where e is an edge and s ∈ {0, 1} and (e, 0) means we want to delete e from and

(e, 1) means we want to insert e to the evolving graph. Usually, in graph stream algorithms,

the input is a stream of edges, while in our problem, nodes are changing, and we feed the

change as a binary vector of size of the graph where each element shows the status of a node

in the input graph.

McGregor [32] presented a survey of graph stream algorithms. Anagnostopoulos et al.

12

2.2. TIME SERIES MINING CHAPTER 2. RELATED WORK

[3] presented an algorithm for estimating clusters in an evolving graph, assuming that the

graph is generated by evolving stochastic block model; an extension to the stochastic block

model [1] to the evolving setting. Rannou et al. [38] proposed an approximation method

for computing strongly connected components in stream graphs. They also implemented

and assessed existing algorithms with polynomial (based on the number of the nodes) time

complexity in this area. Yang et al. [48] proposed a model for capturing the most frequently

changing component (MFCC) in a streaming graph.

2.2 Time Series Mining

Time-series mining problems are problems where the input is dependent on time, and we have

a series of inputs through time. In work by Cai et al., [10], we observe that coevolving series

applications often have an (implicit or explicit) network structure that partially encodes the

dependencies (for example, traffic measurements at intersections (nodes) in a road (edge)

network). The authors refer to such a set of coevolving time series and an associated network

as a network of coevolving time series. As we mentioned in the introduction, we can also

formulate our problem as a time series network when Gt refers to the input graph induced to

active nodes at time step t.

Cai et al. [10] proposed an algorithm based on matrix factorization to infer the missing

values from the input time series called Dynamic Contextual Matrix Factorization (DCMF);

their algorithm is effective, especially when there are lots of missing values. Coevolving

time series are well studied and find a wide range of applications in any problem domain in

13

2.3. DYNAMIC GRAPHS CHAPTER 2. RELATED WORK

different sciences which can be modeled as a graph [30], including computer or social network

analysis [14], sensor (biological, environmental, etc.) network monitoring [49], and financial

data analysis [50]. These application references are found in [36].

2.3 Dynamic Graphs

Dynamic graph algorithms are the ones that have a data structure that supports edge/vertex

insertion or deletion. The most popular graph problems in dynamic graph studies are

connectivity, reachability, shortest path, and matching [21]. Our problem is more closely

related to the dynamic connectivity problem. We have an initial static graph, and we can

preprocess it and use the information in the preprocessing time when the vertices become

inactive/active to find the active components. In this setting that we have an initial static

graph, and nodes become on/off, the connectivity problem is called subgraph model. Based

on a recent paper by Hanauer et al.[21] a survey of recent papers and experimental results on

fully dynamic graph algorithms, we can categorize the related dynamic graph papers to our

work in the following four sections: Fully Dynamic Connectivity, Dynamic DFS, Connectivity

in the Subgraph Model, Emergency Planning.

2.3.1 Fully Dynamic Connectivity

In fully dynamic connectivity problems, we have an evolving graph that accepts a batch

of updates (a set of edge insertion and deletion). After each batch, we want to answer

connectivity queries - queries that inquire whether two nodes are connected. However, in

14

2.3. DYNAMIC GRAPHS CHAPTER 2. RELATED WORK

our research, we also get a set of updates, but instead of answering queries, we maintain the

spanning forest between the active nodes.

Henzinger and King [25] presented the first fully dynamic algorithm, which maintains

approximate spanning tree, connectivity and bipartiteness in polylogarithmic time per edge

insertion or deletion. Their algorithm was randomized. They also proposed a data structure,

called the Euler tour tree data structure, which has since been utilized in many subsequent

works. Two years later, Holm et al. [26] proposed the first deterministic fully dynamic

algorithm with polylogarithmic time per operation (edge insertion or deletion). The currently

fastest fully dynamic algorithm is by Huang et al. [27]. Alberts et al. [2] and Iyer et al.

both provided experimental studies on fully dynamic connectivity. Besides implementing

algorithms and comparing them on different datasets, they speed them up by some heuristics.

2.3.2 Dynamic DFS

Depth First Search (DFS) is a fundamental traversing graph search algorithm that is the

basis of many other graph algorithms like finding strongly connected components, checking

whether a graph is planar, and finding biconnected components in a graph. We can show the

DFS algorithm’s result by a DFS-tree [47]. Maintaining the DFS-tree in a dynamic graph is

a well-studied problem. There is an important relationship between these papers and our

paper, and that is, they all work with node updates; besides, a DFS-tree is also a spanning

tree. Following, we elaborate on the most important developments of this problem.

Baswana et al. [4] provided a framework and algorithms for fault-tolerant, fully dynamic,

15

2.3. DYNAMIC GRAPHS CHAPTER 2. RELATED WORK

and incremental DFS-tree problems. Their idea was to use disjoint tree partitioning of

the DFS-tree. Then Chen et al. [12] improved their result using their framework and

the celebrated fractional cascading technique. Then three years later, Baswana et al. and

Nakamura et al. [5, 33] presented algorithms for maintaining a fully dynamic DFS-tree

(insertion and deletion of vertices or edges) in undirected graphs, which has the best results

till now. Later on, Baswana et al. [7] simplified their algorithm for fault-tolerant problems

and made it more efficient as well. Our proposed method utilizes the results of Baswana et

al. [7] for the subgraph model. Note that in our setting, the original graph is fixed; therefore,

further optimizations are possible. We further elaborate on these in Section 4.3. Briefly, at

each time step, we want to find the spanning forest, so we can assume some vertices fail at

each step. Using the same data structure, we modified their algorithm and made it faster to

maintain a spanning tree instead of a DFS-tree.

Yang et al. [47] provided a framework and algorithms for maintaining DFS-tree undergoing

updates (edge insertion or deletion) in general directed graphs. Khan et al. [29] worked on

dynamic DFS in semi streaming model. Finally, Nakamura et al. [34] presented a space-

efficient algorithm. At the same time, it is slower than the other algorithms; thus, it is useful

for cases that space is essential or we cannot have significant data structures.

2.3.3 Connectivity in the Subgraph Model

As we also mentioned in the introduction, a dynamic graph model that nodes are switched

on and off is called Subgraph Model. Previous works mostly answer connectivity queries

16

2.3. DYNAMIC GRAPHS CHAPTER 2. RELATED WORK

in a subgraph model where a query asks whether two vertices are connected. However,

our research is also a subgraph model, except we try to maintain a spanning forest after

each time step where some nodes’ status is switched in that time step. Duan and Ran [15]

studied subgraph connectivity in subgraph model under vertex update for the first time.

They presented the first subgraph connectivity structure to answer connectivity queries. A

year after Chan et al. [11] greatly improved Duan’s paper’s result. Duan and Pettie [16]

presented a data structure that can answer connectivity queries if there is a path between

two nodes after deleting d vertices in time linear to d. Their connectivity structure update

time is polynomial in d. They presented a better data structure in [17], which is dramatically

better in every measure of efficiency except for construction time. They improved their result

again [18]. Borradaile et al. [19] and Frigioni et al. [9] provided connectivity oracles for

planar graphs. Baswana et al. [6] presented an algorithm that maintains strongly connected

components after the failure of a set of edges or vertices.

2.3.4 Emergency Planning

Emergency planning problems are similar to subgraph model problems (our setting), except

in these problems, they try to implement an algorithm that is optimized for the case an

emergency happens. So they have a single batch of updates and want to answer the queries

after that batch in case of an emergency instead of a sequence of updates (like our research)

and queries [24]. Thus their data structure is optimized only for one-time use, and they have

to reconstruct it after each emergency.

17

2.3. DYNAMIC GRAPHS CHAPTER 2. RELATED WORK

Henzinger and Neumann [24] showed how you could transform a connectivity oracle

subject to a d-vertex failure to a fully dynamic algorithm subject to d-vertex updates for

emergency planning, where vertices can fail and recover individually. Patrascu and Thorup

[37] proposed the Emergency Planning problem about answering the connectivity queries

quickly after a batch of updates. In this paper, given a set of d edges update, they provide

an algorithm that can obtain the number of connected components and size of them and a

structure for answering connectivity queries in time O(d polylog n).

18

Chapter 3

Problem Definition

Suppose we have an undirected graph where each node is associated with a time series. The

time series can be independent (or not); we do not make any assumption. The network

topology of the graph is fixed and given. If a node’s time series satisfies some prescribed

property at a time t, we say this node is active at time t (for example its value is above a

threshold θ), otherwise we say this node is inactive at time t. We say that an edge at time t

is active if the nodes at its endpoints are active at time t. We define an active component at

time t if it is an induced graph of a set of active nodes at time t. Our problem is determining

the set of active components at time t. We can determine the active components by running

a DFS algorithm on the graph at each time step. However, we do not want to traverse the

whole graph at each time step, especially when the number of nodes that switched their

status is not a lot or in another scenario when only a few nodes are active.

In this thesis, we focus specifically on a connected, undirected graph where each time

19

CHAPTER 3. PROBLEM DEFINITION

Table 3.1: Summary of Notations

Symbol Definitions and Descriptions

G undirected graph

T DFS-tree of G

V set of vertices

E set of edges

X i
t value of the ith node’s time series at time t

V t
on set of active nodes at time t

Gt
on subgraph of G induced by V t

on

V t
off set of inactive nodes at time t

Gt
off subgraph of G induced by V t

off

~Xt vector of all time series’ values at time t

T ime index set for the time series’

Γ range of the time series’ values of nodes

γ subset of Γ that defines an active node

Ct set of active components at time t

20

CHAPTER 3. PROBLEM DEFINITION

series is a binary data stream. In this setting, we call a node active at time t if its associated

time series has the value one at time t.

In the following, we introduce definitions for the terms we use, and at the end, we formulate

the problem statement.

Definition 1 (Network of Time Series). A graph G = (V,E), where each node i, i =

1, 2, . . . , n, is associated with a time series X i = {X i
t : t ∈ T,X i

t ∈ Γ}, where Time is an

index set and Γ the set of values which any node at any time index of the time series may

take.

Definition 2 (Active Node). A node i is active at time t if X i
t ∈ γ ⊂ Γ. When this property

is not satisfied we call the node inactive. Also the notations V t
on and V t

off are the set of active

nodes and inactive nodes respectively at time step t. In this thesis we focus on binary times

series, where X i
t ∈ 0, 1, and by convention we assume that X i

t = 0 represents an inactive

node at time t, and X i
t = 1 represents an active node at time t.

Definition 3 (Active component). A set of nodes C ⊆ V is an active component at time

t if they are all active at this time and also form a connected component. Otherwise, if we

assume that Gt
on is the subgraph of G induced by V t

on then an active component is a connected

component of Gt
on.

21

CHAPTER 3. PROBLEM DEFINITION

We are now in position to formally define the problem of interest in this work.

Problem 1 (Finding Active components). Given a network of time series G = (V,E),

Time = Z+, as well ~Xt−1 and ~Xt, where, ~Xt is a vector of time series values at time t where

the ith component is the time series value associated with node i; we want to determine Ct

which is the sets of active components at time t, or in other words we want to find all the

connected components of Gt
on for all t ∈ Time.

We solve a particular instance of Problem 1 where G = (V,E) is connected, Time =

{1, 2, . . . , Tc} where Tc is a constant, Γ = {0, 1}, and γ = {1}.

Table 3.1 provides a summary of notations that we use in this thesis.

22

Chapter 4

Methodology

In this chapter, we first go through the problem’s setting, input and output, in more detail.

Then, in the first section, we go through some preliminaries for our algorithm. Then in the

second section, we introduce our baseline method, a Simple DFS. In the third section, we

present our algorithm and compute the algorithm’s time complexity in the last section.

Algorithm 1 shows the big picture of one experiment simulation of the problem in our

research. The inputs of Algorithm1 are as follows:

- Set Time: This is index set for time series which in this thesis is {1, 2, . . . , Tc}.

- Graph G = (V,E): A static undirected graph G is given as an adjacency list and stored

in memory during run-time.

- MatrixX : A |V |×|Tc|matrix contains information about which nodes are active/inactive

at each time step. So Xt is the t’th column of this matrix. Figure 4.1 depicts a sample of

matrix X. As shown in Figure 4.1, rows represent nodes while columns represent time steps.

23

CHAPTER 4. METHODOLOGY

For example, the entry at row = 3 and column = 2 means that node A is active at time step

2. This matrix has been generated by a synthetic data generator, which will be discussed

more in depth in section 5.1.2.

Figure 4.1: Sample input file. Contains information about nodes turning active/inactive.

Looking at entry row = B and column = 2, we know that node B is active at t = 2

Algorithm 1 Active_Comp_Through_Time(Time,G,X)
Input: Static undirected graph G, Nodes’ status matrix X, Time series’ index set Time
Ensure: Computed C = {Ct|t ∈ Time}
for all t ∈ Time do
Active_Comp(G,Xt−1,Xt)

end for

The output of this algorithm is C = {Ct|t ∈ Time} while Ct is the set of active components

at time t as it is in the problem statement.

In Algorithm 1 we loop over time. At each time step, we call the function Active_Comp

which computes what we desire in the problem statement. This function is not defined with

this name in our research; in fact, it can be replaced by a proper method like the baseline

algorithm we introduce in section 4.2 or our algorithm in section 4.3.

24

4.1. PRELIMINARIES CHAPTER 4. METHODOLOGY

4.1 Preliminaries

4.1.1 DFS-tree

Let G be an undirected graph. If we run a Depth First Search on G, the edges that we

traverse in this search form a rooted tree, a spanning tree of G that we call a DFS-tree. In

other words, in Algorithm 2 which is a recursive function that computes the DFS-tree T

rooted at r, edges that are being added to T in line 4 form T and are called tree-edges. All

other non-tree edges are back-edges. A back edge is an edge that is between a node and one

of its ancestors. Here again we add a dummy node to G which is connected to all of the

nodes in G and is always active and we start the DFS traversal search on the dummy node.

Algorithm 2 Compute_DFS-tree(G,T,r)
Input: Static undirected graph G, tree T , starting node r
Ensure: Computed DFS-tree T of G rooted at the dummy node
T.adjList.push_back(r)
r.visited← true
for all ngbr ∈ r.neighbours do
if ngbr.visited = false then

add edge (r, ngbr) to T
remove ngbr from r.neighbours

end if
Compute_DFS-tree(G,T,ngbr)

end for

An important property of DFS-trees is that we can’t have a cross edge as a non-tree

edge of a DFS-tree. A cross edge is an edge that is neither tree-edge nor back-edge. This

property is cused by the nature of depth first traversal.

Proof. In depth-first traversal search, when we visit a node, we visit its neighbours and then
neighbours of the neighbours until we can’t go in-depth anymore. Using proof by contradiction,
assume there is a cross edge (a, b) as a non-tree edge in a DFS-tree and we visit a earlier than

25

4.1. PRELIMINARIES CHAPTER 4. METHODOLOGY

b. In a DFS procedure after visiting a, we visit b as a descendant of a; otherwise, it contradicts
the DFS procedure. We also say that a and b have ancestor-descendant relation.

For instance, in figure 4.2 we can see an undirected graph on the left and its DFS-tree

rooted at node 1 on the right. In Figure4.2b tree edges are solid, and non-tree edges are

dashed. As we can see, all the non-tree edges are back edges.

1

5

3

4

2

6

7

8

9

10

11

1

(a)

1

2

4

3

5

6

9

10

11

8

7

1

(b)

Figure 4.2: An undirected graph and its DFS-tree rooted at node 1

4.1.2 Heavy-Light Decomposition & Shallow Tree Representation

Heavy-Light Decomposition [41] is a technique for partitioning a rooted tree into a set of

paths. These paths themselves form a rooted tree (called shallow tree) with a maximum

height of log(n) while n is the number of nodes in the original tree . We will see how useful

these decomposition and representation are later in the algorithm. Still, intuitively, this

decomposition helps us answer queries like finding the lowest common ancestor of two nodes

in a tree more efficiently.

Given a rooted tree for each node, we mark the edge to the heaviest child as solid and the

26

4.1. PRELIMINARIES CHAPTER 4. METHODOLOGY

edges to the other children as dashed. The heaviest child is the one in which the number of

vertices in the subtree rooted at that child is the biggest among its siblings. If we only look

at solid edges, they form a set of vertex-disjoint paths connected hierarchically with dashed

edges. Figure 4.3a shows a rooted tree. Figure 4.3b shows the same tree after marking edges

solid or dashed and how paths are defined between the solid edges. If we capsule all the

nodes of a path in a super-node in Figure 4.3c we can observe that dashed edges of the tree

and these super-nodes form the shallow tree representation.

a

b i o

c

d

e

f

g

h

j

k

l

n

m p

q r

2

(a)

a

b i o

c

d

e

f

g

h

j

k

l

n

m p

q r

p1

p2

p3

p4

p5

p6

p7

2

(b)

p1

p2 p3 p4 p6

p7p5

2

(c)

Figure 4.3: A figure that contains three subfigures

In the implementation, a shallow tree is a set of paths which we call each of them a nodePath

and in each nodePath we save a pointer to its parent called par in the shaloow tree as well

as two pointers to the start node and end node of the path. In the next section we’ll see

why we only save start node and end node of a path. For each node in the graph we save a

pointer to the nodePath it belongs to.

Lemma 1. (Baswana et al.[7]) The height of a shallow tree ST of a dfs-tree T is less than
log(n). It means the hight of any node in a shallow tree is less than log(n).

Proof. Every node in ST is a dashed edge in T . Thus the maximum height of ST equals the
maximum number of dashed edges in root to leaves paths in T . Moreover, for every dashed

27

4.1. PRELIMINARIES CHAPTER 4. METHODOLOGY

edge (u, v), while u is v’s parent, the size of the subtree rooted at v is less than half of the
size of the subtree rooted at u. Thus, the maximum dashed edges on any root to leaf path in
T is log(n). Therefore, the height of any node in ST is less than log(n).

Lemma 2. (Baswana et al.[7]) There is a non-tree edge between two nodes from two different
nodePaths if and only if one of them is the ancestor of the other.

Proof. Assume (u, v) is a non-tree edge of T and pu, pv are their corresponding nodePaths in
ST . If (pu, pv) is a cross edge in ST because edges in ST are some edges in T , (u, v) is a cross
edge in T . Thus as we don’t have any cross edge in T , pu and pv have a ancestor-descendant
relastion.

4.1.3 DFS-tree Enumeration

Given a rooted DFS-tree T , we can perform a DFS starting at its root and index every node

as the time it was being visited by this search. We call a node’s index the node’s dfs_id. In

this way the first node we visit in the DFS is the root of T and has a dfs_id of 1, and the

last node has a dfs_id of n, which n is the number of nodes in the T . After visiting a node

in a DFS on T , we randomly visit one of its children who is not visited. However, here in this

work, after visiting a node, we visit its heaviest child that is not visited yet. For calculating

the heaviest child, we run a DFS recursively on T , and for each node, we calculate and save

the size of its subtree as a variable called sizeOfsubT.

As an example, let us index nodes of the tree in Figure 4.3a by performing a DFS on it.

The ordering we get at the end is shown in the list below. Each tuple includes a node label

and the node dfs_id, and the tuples are arranged from left to right in an increasing order

based on their dfs_ids. We call this list dfsOrderedList.

(a, 1), (b, 2), (c, 3), (d, 4), (e, 5), (f, 6), (g, 7), (h, 8), (i, 9), (j, 10), (k, 11), (l, 12),

(m, 13), (n, 14), (o, 15), (p, 16), (q, 17), (r, 18)

28

4.2. SIMPLE DFS (BASELINE METHOD) CHAPTER 4. METHODOLOGY

If we look at the paths generated by Heavy-Light Decomposition of a DFS-tree and its

dfs-ordered list, we can see each path is an interval in the dfs-ordered list. Again, if we look

at the dfs-ordered list of the tree in Figure 4.3a we can show it as a list of all of its paths as

follows:

p1, p2, p3, p4, p5, p6, p7

As a result, we can see nodes on a path have consecutive dfs_ids. This fact is useful for

implementation, so for extracting the paths of T we can use its dfs-ordered list and also for

saving each path, all we need to save is the a pointer to start node and to the end node of

the path. Start node in a nodePath is the node with smaller dfs_id between two end points

and is closer to the root of T . For example for nodePath p4 in Figure 4.3b we save a pointer

to node i as p4 start node and a pointer to node l as it’s end point.

4.2 Simple DFS (Baseline Method)

At each time step, given a static undirected graph G = (E, V) and information about which

nodes are active/inactive at each time step Xt,Xt−1, the baseline method provides a naive

solution to our problem. The baseline method is inefficient and not scalable to massive graphs

despite giving a solution. The input and the output of all algorithms are the same.

At each time step first, we update the status of every node based on Xt, Xt−1 where the

status of a node is a feature called active in class node. Then we run DFS traversal on active

nodes from ActiveNodes list to find all the active components at the current time step. The

process is repeated for each time step in Time. Once all nodes in ActiveNodes are visited,

29

4.2. SIMPLE DFS (BASELINE METHOD) CHAPTER 4. METHODOLOGY

we return. The pseudocode in Algorithm 3 provides a high-level description of how the naive

implementation works. For simplicity, we add a dummy node to G, which is connected to all

the nodes in G and is always active. Then we start the DFS traversal on the dummy node.

Thus, in the end, even if G is not a connected graph, we have only a DFS-tree.

Algorithm 3 Simple_DFS(G,T,r)
Input: Static undirected graph G, tree T , starting node r
Ensure: Computed DFS-tree T Between Active Nodes rooted at the dummy node and Ct

T.adjList.push_back(r)
r.visited← true
for all ngbr ∈ r.neighbours do
if ngbr.visited = false and ngbr.active = true then
add edge (r, ngbr) to T
remove ngbr from r.neighbours

end if
Simple_DFS(G,T,ngbr)

end for

Limitation:

The baseline method is inefficient because sometimes it recomputes active components over

multiple time steps. For illustration, in Figure 4.4 which shows an example of our problem

over three time steps, baseline recomputes the whole DFS at each time step. However, when

we look at changes from t = 1 to t = 2, we know that only node C became active, and other

nodes’ status did not change. So we only need to check node C neighbours, and if some of

them were active, merge those active components and add node C to it. Alternatively, if

they were all inactive, make a new active component with node C in it. This overhead of the

baseline algorithm is again repeated from t = 2 to t = 3.

30

4.3. ACTIVECOMP: A FASTER DFS ALGORITHM CHAPTER 4. METHODOLOGY

Figure 4.4: Example of the baseline on t = 1, 2, 3

4.3 ActiveComp: A Faster DFS Algorithm

4.3.1 Overview

The algorithm we use is a modified version of one introduced by Baswana et al. [7]. They

address the problem of maintaining a DFS-tree in the subgraph model. However, since we

only care about maintaining the active components, it suffices for us to maintain any rooted

spanning tree. In particular, we modify their algorithm to instead compute any rooted

spanning tree (not necessarily a DFS-tree) of the graph after each set of vertex updates,

improving on their algorithm’s time complexity by a factor of log n per time step.

First, we use the preprocessing step of Baswana et al. [7] at time step zero, which is the

31

4.3. ACTIVECOMP: A FASTER DFS ALGORITHM CHAPTER 4. METHODOLOGY

fundamental part that will help us build a rooted spanning tree of the active nodes faster

than computing it with a DFS algorithm on G at each time step.

In the preprocessing part, we make a DFS-tree T of G and the Shallow Tree ST of T

assuming that all vertices are active. We make the data structure (which we explain in 4.3.3)

in preprocessing time as well. Then, we add the dummy node to G, which is connected to all

the other nodes in G and is permanently active. In this way, at each time step, if we build

a spanning tree of active nodes rooted at the dummy node, our active components are the

subtrees rooted at each child of the dummy node.

Next, as in Baswana et al. [7], at each time step, using Xt, Xt−1, we update the ST and

delete inactive nodes from the ST . As an overview of updating the shallow tree; we do

the following three steps:

1. From each path in ST we delete inactive nodes in it and it will break the path into some

pieces. We add each piece as a new nodePath to ST and delete the original nodePath.

2. Set the nodePath for all active nodes.

3. Set the parent of each nodePath to the nodePath of the first active ancestor of the

nodePath start node. By first we mean the first one along the route from the start

node to the dummy node in other words it will be the nearest active ancestor of the

start node.

Time complexity of updating ST is O(n) time with doing all the above steps along a

DFS on T , we make sure that the DFS is visiting nodes in order of their dfs_ids.

32

4.3. ACTIVECOMP: A FASTER DFS ALGORITHM CHAPTER 4. METHODOLOGY

Then we start to build a rooted spanning tree T ∗ by running a DFS on the ST . Intuitively

by running a DFS on shallow tree ST we mean that we consider each path as a super-node,

and when we visit a path through one of its node members, we attach the whole path to the

partially grown T ∗. Then for each node on that path, we make a list called Efficient_AL

that is a subset of its adjacency list in the G (in section 4.3.2 we explain how we compute

this list) the idea is from [7]. Then we continue the DFS by calling the DFS recursively on

the Efficient_AL of each node’s of the currently added path to T ∗.

We call this DFS funtion on a shallow tree ActiveComp and the pseudocode of ActiveComp

is in Algorithm 4. We pass three more auxiliary inputs to this function which can be built

from G. Those are T which a DFS-tree of G, T ∗ which is a tree object (the spanning tree to

be) that we make it through the recursive calls, and node x which is the starting node of the

recursive DFS algorithm. We assume that matrix X is a global variable that every function

can access it and read the nodes’ status from it.

33

4.3. ACTIVECOMP: A FASTER DFS ALGORITHM CHAPTER 4. METHODOLOGY

Algorithm 4 ActiveComp(G, T, T ∗, x)

Input: Static undirected graph G, DFS-tree T of G, Spanning-tree T ∗, starting node x
Ensure: Computed Spanning-tree of Active Nodes T ∗ rooted at the dummy node and Ct

Attach the nodePath(x) from x to T ∗
Compute_Efficient_AL(nodePath(x), T)
for all node ∈ nodePath(x) do
for all u ∈ node.Efficient_AL do
if u.visited = true then
continue

end if
T ∗.AdjacencyList.push_back(u)
T.dfsOrderedList[node.dfs_id].children.push_back(u)
u.par ← T.dfsOrderedList[node.dfs_id]
u.children.clear()
ActiveComp(G, T, T ∗, u)

end for
end for

4.3.2 Computing Efficient Adjacency List

Based on the earlier discussion about the Shallow Tree section, vertices in a nodePath can

only have edges to vertices of the nodePath’s ancestors or descendants in the shallow tree.

Assume we want to fill Efficient_AL of nodePath p, and we have a function query(x, p)

that for a vertex x and p returns a vertex on the p that is connected to x if there is any

otherwise returns nullptr. In this function x has to be one of the p.startNode’s descendant

that doesn’t lie on p. With this function we can make queries for any node on p and fill it’s

Efficient_AL in the two following steps:

1. For each ancestor anctr of p we start making queries on vertices of p and anctr until we

find an edge connecting p and anctr together. So as soon as we find an edge connecting

anctr to p we are done here and will make queries on the next ancestor because that

34

4.3. ACTIVECOMP: A FASTER DFS ALGORITHM CHAPTER 4. METHODOLOGY

edge is enough to help us build the spanning tree.

2. For each descendants dscnt of p we start making queries on vertices of dscnt and p until

we find an edge connecting dscnt and p together. This step is almost the same as the

first step except in the first step the input nodePath of function query is the ancestor

that we are processing but in this step the input nodePath is p. This is because of the

data structure that we’re using and tried to make it smaller in order to less memory

consumption. Algorithm 5 shows the details of this fuction.

35

4.3. ACTIVECOMP: A FASTER DFS ALGORITHM CHAPTER 4. METHODOLOGY

Algorithm 5 Compute_Efficient_AL(T, p)

Input: DFS-tree T of G, nodePath p
Ensure: Compute Compute_Efficient_AL for nodes in p
mu← T.dfsOrderedList[p.start.dfs_id].nodePath.par
while node ∈ nodePath(x) do
for all n ∈ p do
if mu.end.visited = true then
break

end if
w ← query(T.dfsOrderedList[n.dfs_id],mu)
if w ! = nullptr then
T.dfsOrderedList[n.dfs_id].Efficient_AL.insert(w)
break

end if
end for
mu← mu.par

end while
for all id ∈ [p.end.dfs_id + 1, p.start.dfs_id + p.start.sizeOfsubT) do
u← T.dfsOrderedList[id]
if u.visited = true then
id← u.nodePath.end.dfs_id

end if
if u.active = true and u.visited = false then
w ← query(u, p)
if w ! = nullptr then
w.Efficient_AL.insert(u)
id← u.nodePath.end.dfs_id

end if
end if

end for

4.3.3 Querying the Data Structure

Using the property of DFS-trees that we described in section 4.1.1 we build a data structure

introduced by Baswana et al. [7] of the original graph and use it for answering queries

faster. The idea of the data structure is that for each node u of the original graph and its

corresponding DFS-tree T we save u’s ancestors in T that u has an edge to. We also save

36

4.3. ACTIVECOMP: A FASTER DFS ALGORITHM CHAPTER 4. METHODOLOGY

them in increasing order in terms of their dfs_ids to help us answer queries faster by doing a

binary search. We call this data structure Anc_Nbr an array of size n if n is the number of

nodes in the original graph. Each cell with index i of this array is an ordered set that saves

i’th node’s ancestors with an edge to it. For instance, for the graph in Figure 4.2b first we

calculate its dfsOrderedList as follows; in each tuple the first element is the node id and

the second element is the node’s dfs_id:

(1, 1), (2, 2), (5, 3), (6, 4), (9, 5), (8, 6), (7, 7), (10, 8), (11, 9), (4, 10), (3, 11)

Then, we calculate the Anc_Nbr data structure for this graph, as shown in Table 4.1.

The first row shows node ids, and the second row shows the set of node ids of ancestors

that also have a direct edge to the corresponding node. The node ids in each ancestor set

are ordered by increasing order of their dfs_ids. For example, for node id 7 we save {8,

6}, because these are the ancestors of node 7 that have a direct edge to it, and the order is

determined by the fact that node 6’s dfs_id is 4 and node 8 dfs_id.

node id 1 2 3 4 5 6 7 8 9 10 11
ancestors {} {1} {2,4} {1,2} {2} {5} {6,8} {6,9} {6} {9} {9,10}

Table 4.1: Data Structure Anc_Nbr

The Algorithm 6 shows the detail of computing the Anc_Nbr data structure. If we look

at this algorithm there are two nested for loops the first one is over all the nodes in G

and the second one is over nodes’ neighbours. The time complexity of making this data

structure is m+ n while n is the number of nodes in G and m is the number of edges of G.

37

4.3. ACTIVECOMP: A FASTER DFS ALGORITHM CHAPTER 4. METHODOLOGY

Algorithm 6 Computing_Anc_Nbr(G, T)

Input: Static undirected graph G, tree T
Ensure: Computed data structure Anc_Nbr based on T
for all u ∈ G.AdjacencyList do
node_id = u.id
for all ngbr ∈ u.neighbours do
if ngbr.dfs_id < u.dfs_id then
Anc_Nbr[node_id].insert(ngbr)

end if
end for

end for

Now, for answering a query(node, path) all we need to do is to search for the dfs_ids

of all nodes sitting on the path in the set corresponding to the node in Anc_Nbr. As this

set is ordered, and nodes on the same path have consecutive integer ids, we can accomplish

this using a binary search. Algorithm 7 provides the details of the function query. Since the

maximum size of each set in Anc_Nbr is n and query performs a binary search on one of

these sets, the worst-case time complexity of query is O(log(n)).

38

4.4. TIME COMPLEXITY ANALYSIS CHAPTER 4. METHODOLOGY

Algorithm 7 query(node, path)

Input: node node of G, nodePath path
Ensure: Return a pointer to a node on path that is connected to node in G if there is not
any return nullptr
ancestors← Anc_Nbr[node.dfs_id]
pStart← path.start
pEnd← path.end
min← 0,max← ancestors.size()− 1
while max > min do
mean← (max+min)/2
if ancestors[mean].dfs_id ≥ pStart.dfs_id and
ancestors[mean].dfs_id ≤ pEnd.dfs_id then
return ancestors[mean]

else if ancestors[mean].dfs_id < pStart.dfs_id then
min← mean+ 1

else
max← mean− 1

end if
end while
if min = max then
if ancestors[mean].dfs_id ≥ pStart.dfs_id and
ancestors[mean].dfs_id ≤ pEnd.dfs_id then
return ancestors[mean]

end if
end if
return nullptr

4.4 Time Complexity Analysis

The input of the problem is G = (V,E) where |V | = n and |E| = m. In the preprocessing part

we make T in O(m+ n) time as it’s a Depth First Search. Then we build the data structure

Anc_Nbr based on T in again O(m + n) time as shown earlier. Updating ST based on

inactive nodes as shown earlier can be done in O(n) time. By looking at the Algorithm 4 we

see that the time complexity of ActiveComp procedure is bounded by the time complexity of

Compute_Efficient_AL procedure. Also the Compute_Efficient_AL procedure is bounded

39

4.4. TIME COMPLEXITY ANALYSIS CHAPTER 4. METHODOLOGY

by the number of calls to the function query. For counting the number of calls to function

query we calculate from each node u ∈ V how many calls we make. Under the two following

scenarios we make a query which the first input node is u.

• First one is when w is not visited and one of w.nodePath’s ancestors is being attached

to the partially grown T ∗.

• Second scenario is when w.nodePath is being attached to T ∗ so we make queries from

w to all of w.nodePath’s ancestors who are not attached yet.

So in total for w and each of w.nodePath’s ancestors we make exactly one query. The

maximum number of ancestors for a nodePath in ST is the height of ST . Assume the

height of ST is d so the maximum number of calls to query from all of n nodes is nd. Since

each query can be done in O(log(n)) time, the time complexity of Compute_Efficient_AL

procedure is O(nd log(n)). So the time complexity of ActiveComp is also O(nd log(n)).

40

Chapter 5

Experimental Evaluation

The first section of this chapter explains how we generate synthesis data. The second section

explains the experimental setup, and at the end, the third section shows the performance of

our algorithm compared to three baselines.

For experiments and evaluations we used Python [44] and more specifically NetworkX

[20], Matplotlib [28], Numpy [22], Pandas [35], Random [42], Math [43] libraries.

5.1 Synthetic Data Generation

First we explain how to generate different topologies for input graphs and then we explain

how we generate matrix X, which determines nodes’ status through time.

5.1.1 Graph Generation

We would like to evaluate the performance of the proposed algorithm on graphs of different

typologies. We generate different graphs as input of the problem from the Small-World

network model [46]. This model generates graphs with lots of triangles, and each node is

reachable from any other nodes by a small number of hops, while the number of neighbours

41

5.1. SYNTHETIC DATA GENERATIONCHAPTER 5. EXPERIMENTAL EVALUATION

for most of the nodes is very small compared to the size of the network. Specifically, it

generates graphs with a not-small clustering coefficient. At the same time, the average

distance L between two random nodes is small and grows proportionally to the logarithm of

n (L ∝ log(n)).

The clustering coefficient for a node v in graph G = (v, E) is noted as Cv and is defined as

follows. If Nv is the set of v’s neighbours at most, there are |Nv|(|Nv| − 1)/2 edges between

them and Cv is the proportion of existing ones, in a formal way it is:

Nv = {u ∈ G|(u, v) ∈ E}

ENv = {(i, j)|i, j ∈ Nv, (i, j) ∈ E}

Cv = |ENv |
(|Nv ||Nv−1|)/2

The Clustering Coefficient for a graph C is the average of the Clustering Coefficients

of all of its nodes. Cv is a measure that shows what proportion of v’s neighbours are also

neighbours of each other. Thus C shows how nodes in G tend to form clusters between

themselves. A graph with high C has more clusters and is more like social networks [46].

The parameters that we can change in a generated graph that is built with the Small-World

network model are as follows:

• n: number of nodes of the graph

• k: number of initial neighbors for each node

• p: edge rewiring probability

Intuitively the algorithm for generating these graphs for the three parameters above is

42

5.1. SYNTHETIC DATA GENERATIONCHAPTER 5. EXPERIMENTAL EVALUATION

like this:

1. First, we give all nodes a random ordering and then an id from 1 to n.

2. Then, for each node, we connect it to the next k nodes.

3. Then, for each neighbour of a node with the probability p we change the neighbour to

a random another node in the network. We call this step rewiring.

With changes in n we get different sizes for the graph we generate. With changes in k we

get different densities for the graph we generate. With changes in p we get different types of

graphs. There are three following categories:

• When p is less than 0.005 then L and C are both big, and we get a regular network.

• When p is bigger than 0.2 the generated graph is like a random network.

• When p is between these two values, the generated graph has small L and not small

C, which is the definition of a Small-World network. Thus, in this case, we get a

Small-World network.

For better illustration, we can look at the plot in figure 5.1. In the figure below, we can

see how L (mean vertex-vertex distance) and C change with changes in p. We can also see

three intervals for p, resulting in the three categories in generated graphs. In figure 5.2 also

we can see different topologies visually for a graph with 20 nodes.

43

5.1. SYNTHETIC DATA GENERATIONCHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.1: Clustering Coefficient vs Probability of rewiring

Figure 5.2: Different graphs topologies

5.1.2 Time Series Data Generation

As we mentioned in section 4.2 another input of the problem beside a graph is a n by Tc

matrix where n is the number of the nodes of the graph and Tc is the number of time steps.

This matrix shows each node’s status through time. The status of node i at time step j is the

ith row and jth column, which is 1 if the node is active at time step j and is 0 if it’s inactive.

44

5.1. SYNTHETIC DATA GENERATIONCHAPTER 5. EXPERIMENTAL EVALUATION

We imitate two following different scenarios for generating matrix X. In the first scenario,

nodes become active or inactive just randomly, and there is no dependency between how

nodes become active, and it is a general case. In the second scenario, we wanted to add some

dependency between nodes close to each other, so they become active if at least one of their

neighbours is already active. Of course, we can use many other dependencies. However, this

one is a local dependency that also imitates how the traffic grows in a traffic network or how

news spreads in a social network starting from news sources. Thus we wanted to see how our

algorithm works when some regional areas of the graph become active.

In the following, we describe how we generate scenarios in more detail. An input parameter

called density for both scenarios determines the percentage of active nodes. So the number

of active nodes is density × n.

1. The first scenario is the random scenario. In this scenario, with the input parameter

density, we determine how many nodes are active and randomly select them, considering

a uniform distribution over them and flip their status to active in the output matrix.

2. The second scenario is the forest fire scenario. Fire starts from a node and propagates

to all of the neighbours of that node and all the neighbours of the node’s neighbours

and continues the same way. The nodes that are covered by fire are active.

So in this scenario, we choose the number of initial seed nodes numOfInitials which

are chosen uniformly at random from all of the nodes in the graph. Then we start fire

from each start point and let each fire grow for density×n
numOfInitials nodes.

45

5.2. EXPERIMENTAL SETUP CHAPTER 5. EXPERIMENTAL EVALUATION

5.2 Experimental Setup

In this section, we describe the experiment setups that we use to empirically evaluate the

algorithm described in section 4. This includes parameters used to generate different input

graphs G and matrices X, the different baselines that we use as comparisons against ours, and

the measurements we use to do these comparisons. All of the algorithms in our experiments

accept three inputs, a graph G, a matrix X, and a time series index set Time, where we

previously described how these are generated in Sections 5.1.1 and 5.1.2, respectively.

5.2.1 Input and Parameters

For generating a graph we have three parameters: n, k, p. So in our experiments, we cover

different graphs choosing different values for these parameters.

Values that we choose for n are from this set: {10000, 50000, 100000}. The other numbers

represent a minimum and median value. We refer to these as a small, medium, and large

graphs respectively. Table 5.1 presents the size of different input graphs.

Size Number of nodes
small 10000
medium 50000
large 100000

Table 5.1: Different graph names

Values that we choose for k are a percentage of n, so for each n we choose a k from

this set: {0.5%n, 1%n, 1.5%n, 2%n}. As most applications for graphs like social networks or

traffic network or internet hubs are sparse graphs [39, 45, 40], we also tried to make graphs

with small densities, so we set the maximum to 2% and have an arithmetic sequence with a

46

5.2. EXPERIMENTAL SETUP CHAPTER 5. EXPERIMENTAL EVALUATION

common difference of 0.5%.

We can also have 3 different values for p from this set {0.1, 0.01, 0.5} as it covers all three

categories that we described in section 5.1.1. Table 5.2 presents different topologies of input

graphs.

Topology Value of p
regular network p < 0.005

small-world network 0.005 < p < 0.2
random network p > 0.2

Table 5.2: Different graph topologies

To cover the different scenarios of activity for each node, we have two types of input

file generated by these scenarios: {random, forestfire} which we described in section 5.1.2.

Table 5.3 presents different scenarios for generating matrix X.

Scenario
1 random
2 forest fire

Table 5.3: Different scenarios

5.2.2 Evaluation Metric

The focus of our research is on time performance of the various algorithms, therefore we

report the runtime cost (in milliseconds) for each experiment. Typically, we report the

runtime for varying levels of active nodes in the graph, expressed as a percentage of all nodes.

5.2.3 Baselines

We compare the three following algorithms to our algorithm.

47

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

1. Simple DFS [13]: Simple DFS is the most straightforward known solution for finding

the connected components and maintaining the spanning tree in dynamic graphs. But

for the cases that we don’t have many changes; we don’t want to run the DFS algorithm

from scratch. So based on how many changes we have between time steps, we want to

see when dynamic algorithms perform better than the DFS algorithm.

2. Dynamic DFS [7]: This algorithm maintains a DFS-tree, which is also a spanning

tree, so we can obtain the list of active components using this algorithm as well. Our

algorithm is based on this Dynamic DFS algorithm with better time complexity by a

log(n) factor. But we maintain a spanning tree.

3. Edge Deletion [25]: This algorithm is implemented by Albert et al. [2]. We can use

edge deletion algorithms for node deletion by deleting all the incoming and outcoming

edges from the node we wish to delete. Unfortunately, we could not compare edge

deletion algorithms vs node deletion algorithms on real data, only knowing their time

complexity. However, because we had the implementation of this algorithm, we also

decided to compare it to our algorithm.

5.3 Results and Discussion

We present the results for graphs with varying topology, size, and percentage of nodes activity.

In our experiments, we fix two parameters out of the three (size, topology and scenario) then

will change the third parameter to see the effect of that parameter. In the first section, we

present the result for when the graph is a Small-World network, and the scenario is random

48

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

while changing the size of the graph. Then in the second section, we present the result for

when the graph is a medium small-world network while the scenario this time is a forest fire.

Then in the third section, we show the result for when the graph size is medium, and the

scenario is random while changing the topology (regular graph and random graph).

5.3.1 Small-World Network & Random Scenario

In this section, firstly, we talk about the edge deletion algorithm and how it is slower than the

other algorithms. Secondly, we show the results under two different groups of applications of

our work. The first group of applications is called High Percentage Active Nodes and

the second group is called Low Percentage Active Nodes. We will describe more detail

about these two groups of applications later.

To utilize an edge deletion algorithm for our problem setting when a node x becomes

inactive, we have to run the edge deletion algorithm for the number of edges with one endpoint

x, making the edge-based algorithms useless for node update settings. This section shows

that the edge deletion algorithm performs poorly against the other three algorithms as nodes

change in the dynamic graphs in our setting.

Figure 5.3 is a histogram of runtimes for different experiments. All of the experiments

are on a graph with n = 10000 nodes and k = 50. In each experiment, a specific percentage

of the nodes are active. Each experiment is 1000 time steps, and in each step, we accept a

set of updates that include the active nodes, then we calculate the active components for

1000 times, each of them after each time step. So, for instance, in the experiment where 98%

of the nodes are active, we calculate the active components for each of the 1000 time steps

49

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

based on a set of updates of size 98%n, which shows active nodes in that time step.

Figure 5.3 shows how the edge deletion algorithm is slower than the other algorithms.

That is why we eliminate this algorithm from future plots to be able to compare other

algorithms more clear.

Figure 5.3: Experiment on a Small Graph, Small-World network, k = 50, Random Scenario

50

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

High Percentage Active Nodes

High Percentage Active Nodes are applications where most nodes are active, and only a few

become inactive through time. Like networks of hubs or water pipes, when some nodes don’t

work, we want to see if the network is still connected and find the connected components. In

this section, we show how our algorithm performs, in this case, compared to other algorithms.

The following three plots in figures 5.4,5.5,5.6 show the results respectively for n = 10000,

n = 50000, n = 100000 and all of the 4 values for k from 0.5%n the top left one to 2%n

the bottom right one. We show runtime for a few experiments with different input file

densities (active nodes percentage) in each plot. For instance, in the figure 5.5a the first

experiment is when 99.5% of the nodes with random scenario are active at each time-step. In

total, in each experiment, we have 1000 time-steps. This means that we tried to calculate

active components 1000 times after each time-step after accepting a set of 0.5% (in this

case, 50 nodes) updates that show which nodes are inactive. For each value of k, we run the

experiment for different densities of active nodes, and as we can see, the higher the density is,

our algorithm performs better than DFS. It shows how we get rid of calculating everything

from scratch when only a few nodes aren’t active.

51

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

(a) k = 50 (b) k = 100

(c) k = 150 (d) k = 200

Figure 5.4: Experiments on a Small Graph, Small-World network, Random Scenario

In these plots 5.4 we can see how our algorithm performs better when we have bigger

values for k, which make the graph denser. For example, for k = 50, our algorithm performs

better than the DFS algorithm when at least 99.5% of the nodes are active, while for k = 200,

our algorithm performs better when at least 90% of the nodes are active. In other words, our

algorithm performs better in more cases for k = 200 than when k = 50. This is because the

denser the graph is, the slower the Simple DFS algorithm becomes. In contrast, ActiveComp

does not become slower because it utilizes a data structure that becomes bigger when we

have a denser graph. This is because time complexity of Simple DFS depends on number of

edges but ActiveComp time complexity doesn’t depend on the number of edges. In contrast

52

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

ActiveComp algorithm works better when the graph is denser as we have more information

saved.

Because most of the applications of finding active components are sparse graphs, we did

not go higher than 2%n for k.

(a) k = 250 (b) k = 500

(c) k = 750 (d) k = 1000

Figure 5.5: Experiments on a Medium Graph, Small-World network, Random Scenario

53

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.5 shows the same results for a Medium graph. The denser the graph becomes,

the slower Simple DFS performs while not affecting ActiveComp considerably. Runtimes

became around 40 times bigger while the size of the graph became five times bigger compared

to previous experiments, figure 5.4 when the size of the graph was small.

(a) k = 500 (b) k = 1000

(c) k = 1500 (d) k = 2000

Figure 5.6: Experiments on a Large Graph, Small-World network, Random Scenario

54

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.6 shows the same results for a Large graph. Except runtimes became around

three times bigger than the previous experiment, 5.5 on a medium graph while the size of the

graph became five times bigger.

55

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

Low Percentage Active Nodes

Other applications of our problem are when only a few nodes of the graph are active, and

we want to find the active components without recomputing everything from scratch. Like

traffic networks, when intersections are nodes and roads are the edges of the graph, and when

an intersection has heavy traffic, we consider it as active, and we want to see what area of

the map has heavy traffic. In this section, we show how our algorithm performs, in this case,

compared to other algorithms.

The following three plots in figures 5.7,5.8,5.9 show the results respectively for n = 10000,

n = 50000, n = 100000 and all of the 4 values for k from 0.5%n the top left one to 2%n the

bottom right one. We show runtime for a few experiments with different inputfile densities

(active nodes percentage) in each plot. For instance, in the figure 5.7a the first experiment

from left is when 0.25% of the nodes (25 nodes) with random scenario are active at each

time-step. In total, in each experiment, we have 1000 time-steps. This means that we tried

to calculate active components 1000 times after each time-step after accepting a set of 0.25%

(25 nodes in this case) updates that shows which nodes are active. For each value of k, we

run the experiment for different densities of active nodes, and as we can see, the lower the

density is, the better our algorithm performs compared to DFS. It also is comparable with the

Dynamic DFS algorithm. In low percentage active nodes, the running time for all algorithms

is generally low. Our algorithm is also a few milliseconds slower than Dynamic DFS in some

experiments, which is not noticeable.

56

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

(a) k = 50 (b) k = 100

(c) k = 150 (d) k = 200

Figure 5.7: Experiments on a Small Graph, Small-World network, Random Scenario

57

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

(a) k = 250 (b) k = 500

(c) k = 750 (d) k = 1000

Figure 5.8: Experiments on a Medium Graph, Small-World network, Random Scenario

58

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

(a) k = 500 (b) k = 1000

(c) k = 1500 (d) k = 2000

Figure 5.9: Experiments on a Large Graph, Small-World network, Random Scenario

Considering the results of the High Percentage Active Nodes and Low Percentage Active

Nodes sections together demonstrates that our algorithm is superior to other algorithms,

since it is faster in High Percentage Active Nodes applications and comparable in Active

Nodes and Low Percentage Active Nodes.

59

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.2 Small-World Network & Forest fire Scenario

For this scenario, we fix other parameters as we want to see the effect of the forest fire Scenario.

We use a medium graph with n = 50000, p = 0.1 to make it a Small-World network, which

makes it a Small-World Network and the same set for k = {250, 500, 750, 1000}. The result

has not changed compared to the Random Scenario in either the High or Low Percentage

Active Nodes as we can see in the two following Figures 5.10, 5.11.

(a) k = 250 (b) k = 500

(c) k = 750 (d) k = 1000

Figure 5.10: Experiments on a Medium Graph, Small-World network, Forest fire Scenario

60

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

(a) k = 250 (b) k = 500

(c) k = 750 (d) k = 1000

Figure 5.11: Experiments on a Medium Graph, Small-World network, Forest fire Scenario

61

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.3 Other input graphs & Random Scenario

We also run the experiments on different types of graphs, which we introduced in section

5.1.1 as random graphs and regular graphs.

Regular Graphs

The following results are for regular graphs: the graph’s size is medium, and the scenario

is random. For low percentage active nodes experiments in Figure 5.12, for k = 750 and

k = 1000, for all values of p our algorithm performs better than simple DFS algorithm. But

for all values k and p, the dynamic DFS performs insignificantly faster than our proposed

algorithm. In contrast, our algorithm performs faster than the dynamic DFS for all values

of k and p in a High Percentage Active Nodes application in Figure 5.13. In Small Word

Graphs, our algorithm performs faster than the Simple DFS algorithm for densities higher

than 99.5%n. Still, in this case (Regular Graphs), our algorithm performs faster only for

densities higher than 99.75%.

62

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

(a) k = 250 (b) k = 500

(c) k = 750 (d) k = 1000

Figure 5.12: Experiments on a Medium Graph, Regular network, Random Scenario

63

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

(a) k = 250 (b) k = 500

(c) k = 750 (d) k = 1000

Figure 5.13: Experiments on a Medium Graph, Regular network, Random Scenario

64

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

Random Graphs

The following results are for random graphs: the graph’s size is medium, and the scenario is

random. Figure 5.14 is for low percentage active nodes, and the takeaway of the results is

the same as the other type of input graphs. But interestingly, in Figure 5.15 our algorithm

performs much faster than other algorithms.

(a) k = 250 (b) k = 500

(c) k = 750 (d) k = 1000

Figure 5.14: Experiments on a Medium Graph, Random network, Random Scenario

65

5.3. RESULTS AND DISCUSSION CHAPTER 5. EXPERIMENTAL EVALUATION

(a) k = 250 (b) k = 500

(c) k = 750 (d) k = 1000

Figure 5.15: Experiments on a Medium Graph, Random network, Random Scenario

66

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The need to efficiently mine networks of time series can arise in diverse domains and

applications. In this research, we focused on scenarios where the network topology is fixed.

However, the nodes can become active or inactive over time, while we seek to efficiently

compute the set of active components at each time step. This problem can be modelled as a

specific type of dynamic graph problem, known as subgraph model problems. Instances of the

problem can arise in a diverse types of networks, including the transportation network, the

internet network, the water distribution network, online social networks, and even the human

brain. Monitoring the active components of a network in real-time (while the network is

changing due to nodes becoming on/off) is essential for online decision-making. For example,

in the transportation network, active components would represent areas in cities where there

are groups of interconnected congested intersections (due to traffic). Such information is

important for informing alternate routing decisions, deployment of other measures or road

design decisions.

67

6.1. CONCLUSIONS CHAPTER 6. CONCLUSIONS AND FUTURE WORK

This thesis introduced an algorithm for a novel problem called finding active components

in a network of time series, where the active components are the connected components of

a graph induced to active nodes in a subgraph model setting. Our algorithm is a modified

version of a work by Baswana et al. [7]. They maintain a DFS-tree in a dynamic graph

under vertex update. We improved the time complexity of their algorithm by a log factor.

We use their data structure, which saves some of the original graph G edges that are not in

the DFS-tree of G. Then we construct a shallow tree based on the DFS-tree. The shallow

tree is the DFS-tree when its nodes are partitioned into super-nodes. Then we update the

shallow tree based on the nodes that became inactive. Finally, the new spanning tree is

maintained by applying a DFS on the super-nodes using a data structure that recovers the

lost connections caused by deleting inactive nodes from the DFS-tree.

Previous related work has focused on answering connectivity queries in the subgraph

model. However, we maintain and report the whole spanning tree in this research. Technically,

this means that we can answer the connectivity queries in O(1) time, while the other works

either take more time to answer the connectivity queries or take more time to reconstruct the

spanning tree. In addition, some of the parameters introduced in the time complexity analysis

of previous works make it challenging to compare their actual performance on real data and

under different conditions. We, therefore, perform a comprehensive empirical study including

implementations of our method (ActiveComp), Baswana’s [7] method, as well as two other

sensible baseline methods and compare their runtime performance for various settings.

68

6.2. LIMITATIONS CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2 Limitations

Our method inherits some of the limitations of similar approaches for dynamic graphs.

Specifically, it might not scale to very large graphs due to the need to maintain a specialized

data structure in memory, and it might be underperforming for specific instances of the

problem. We discuss these issues below in more detail.

6.2.1 Scalability to Very Large Graphs

Our method relies on storing an auxiliary data structure in memory during the preprocessing

phase. Since this data structure grows with the number of edges in the original graph, the

larger and the denser the graph is, the larger the memory requirement is. As such, our

method cannot scale to very large graphs. Some ideas on how to scale to larger graphs are

presented in Section 6.3.

6.2.2 Underperforming in Specific Instances of the Problem

By design of our method, and as demonstrated in the empirical evaluation, if the percentage

of active nodes at a specific time step ranges between 10% and 90% of all nodes in the graph,

then the simple DFS algorithm can outperform our algorithm. While these cases are not

typical, since most of the changes in the network occur gradually, they could render the

algorithm less useful for certain instances of the problem. However, our method would still

provide the correct set of active components despite the delay.

69

6.3. FUTURE WORK CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.3 Future Work

There are several directions for future work. Here we briefly discuss some of these ideas.

6.3.1 Employing Parallel Computations

It is possible to design a parallel algorithm (that leverages multiple CPUs) to track the

changes in a dynamic graph and find spanning trees over time. This might as well reduce

the size of the memory required to store the primary data structure constructed during the

preprocessing phase.

6.3.2 Fine-tuning to Accommodate Different Network Topologies

The method we presented would perform differently depending on the topology of the input

graph. One could consider employing slightly different data structures to accommodate the

special type of networks, such as tree-like graphs or dense graphs. One could therefore tune

the algorithm to the topology of the input graph with the objective of making it faster.

6.3.3 Extending the Comparative Empirical Analysis

As mentioned earlier, there is a gap between theoretical studies for dynamic graphs and

empirical studies. While the theoretical results of a method’s time complexity guarantee

its performance regarding the worst (or average) case, it is unclear how the method would

actually perform on real data. Future work could implement related algorithms from the

literature and compare their performance against our method for different network topologies

and varying parameter values.

70

6.3. FUTURE WORK CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.3.4 Employing Real Data and Scenarios

To obtain better insights into the different methods’ comparative performance, one can

employ real data and scenarios instead of synthetic data. Real scenarios can exhibit special

cases that are not easily captured by controlled parameters of the synthetic data, leading to

more bottlenecks or providing further opportunities and ideas for better method design.

71

Bibliography

[1] Abbe, E., Bandeira, A. S., and Hall, G. Exact recovery in the stochastic

block model. IEEE Transactions on Information Theory 62, 1 (2015), 471–487.

[2] Alberts, D., Cattaneo, G., and Italiano, G. F. An empirical study of

dynamic graph algorithms. Journal of Experimental Algorithmics (JEA) 2 (1997), 5–es.

[3] Anagnostopoulos, A., Łącki, J. , Lattanzi, S. , Leonardi, S. , and

Mahdian, M. Community detection on evolving graphs. In Advances in Neural

Information Processing Systems (2016), pp. 3522–3530.

[4] Baswana, S., Chaudhury, S. R., Choudhary, K., and Khan, S.

Dynamic dfs in undirected graphs: breaking the o (m) barrier. In Proceedings of the

twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms (2016), SIAM,

pp. 730–739.

[5] Baswana, S., Chaudhury, S. R., Choudhary, K., and Khan, S.

Dynamic dfs in undirected graphs: Breaking the o(m) barrier. SIAM Journal on

Computing 48, 4 (2019), 1335–1363.

72

BIBLIOGRAPHY BIBLIOGRAPHY

[6] Baswana, S., Choudhary, K., and Roditty, L. An efficient strongly

connected components algorithm in the fault tolerant model. Algorithmica 81, 3 (2019),

967–985.

[7] Baswana, S., Gupta, S. K., and Tulsyan, A. Fault tolerant and fully

dynamic dfs in undirected graphs: simple yet efficient. arXiv preprint arXiv:1810.01726

(2018).

[8] Bhandari, S. , Bergmann, N., Jurdak, R., and Kusy, B. Time series

data analysis of wireless sensor network measurements of temperature. Sensors 17, 6

(2017), 1221.

[9] Borradaile, G., Pettie, S. , and Wulff-Nilsen, C. Connectivity

oracles for planar graphs. In Scandinavian Workshop on Algorithm Theory (2012),

Springer, pp. 316–327.

[10] Cai, Y., Tong, H., Fan, W., and Ji, P. Fast Mining of a Network of

Coevolving Time Series. In Proceedings of the 2015 SIAM International Conference on

Data Mining (June 2015), Society for Industrial and Applied Mathematics, pp. 298–306.

[11] Chan, T. M., P a ˇ traşcu, M., and Roditty, L. Dynamic connectivity:

Connecting to networks and geometry. SIAM Journal on Computing 40, 2 (2011),

333–349.

[12] Chen, L., Duan, R., Wang, R., and Zhang, H. Improved algorithms for

maintaining dfs tree in undirected graphs. CoRR, abs/1607.04913 (2016).

73

BIBLIOGRAPHY BIBLIOGRAPHY

[13] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

Introduction to Algorithms, 2nd ed. The MIT Press, 2001.

[14] Cranor, C., Johnson, T., Spataschek, O., and Shkapenyuk, V.

Gigascope: a stream database for network applications. In Proceedings of the 2003 ACM

SIGMOD international conference on Management of data (2003), pp. 647–651.

[15] Duan, R. New data structures for subgraph connectivity. In International Colloquium

on Automata, Languages, and Programming (2010), Springer, pp. 201–212.

[16] Duan, R., and Pettie, S. Connectivity oracles for failure prone graphs. In

Proceedings of the forty-second ACM symposium on Theory of computing (2010), pp. 465–

474.

[17] Duan, R., and Pettie, S. Connectivity oracles for graphs subject to vertex

failures. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete

Algorithms (2017), SIAM, pp. 490–509.

[18] Duan, R., and Pettie, S. Connectivity oracles for graphs subject to vertex

failures. SIAM Journal on Computing 49, 6 (2020), 1363–1396.

[19] Frigioni, D., and Italiano, G. F. Dynamically switching vertices in planar

graphs. Algorithmica 28, 1 (2000), 76–103.

74

BIBLIOGRAPHY BIBLIOGRAPHY

[20] Hagberg, A., Swart, P., and S Chult, D. Exploring network structure,

dynamics, and function using networkx. Tech. rep., Los Alamos National Lab.(LANL),

Los Alamos, NM (United States), 2008.

[21] Hanauer, K., Henzinger, M., and Schulz, C. Recent advances in fully

dynamic graph algorithms. arXiv preprint arXiv:2102.11169 (2021).

[22] Harris, C. R., Millman, K. J., van der Walt, S. J. , Gommers, R.,

Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J. , Berg, S.,

Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H.,

Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson,

P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser,

W., Abbasi, H., Gohlke, C., and Oliphant, T. E. Array programming

with NumPy. Nature 585, 7825 (Sept. 2020), 357–362.

[23] Hart, M. G., Ypma, R. J., Romero-Garcia, R., Price, S. J. , and

Suckling, J. Graph theory analysis of complex brain networks: new concepts in brain

mapping applied to neurosurgery. Journal of neurosurgery 124, 6 (2016), 1665–1678.

[24] Henzinger, M., and Neumann, S. Incremental and fully dynamic subgraph

connectivity for emergency planning. arXiv preprint arXiv:1611.05248 (2016).

[25] Henzinger, M. R., and King, V. Randomized fully dynamic graph algorithms

with polylogarithmic time per operation. Journal of the ACM (JACM) 46, 4 (1999),

502–516.

75

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Holm, J., De Lichtenberg, K., and Thorup, M. Poly-logarithmic

deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,

and biconnectivity. Journal of the ACM (JACM) 48, 4 (2001), 723–760.

[27] Huang, S.-E., Huang, D., Kopelowitz, T., and Pettie, S. Fully

dynamic connectivity in o (log n (log log n) 2) amortized expected time. In Proceedings

of the twenty-eighth Annual ACM-SIAM Symposium on Discrete Algorithms (2017),

SIAM, pp. 510–520.

[28] Hunter, J. D. Matplotlib: A 2d graphics environment. Computing in Science &

Engineering 9, 3 (2007), 90–95.

[29] Khan, S., and Mehta, S. K. Depth first search in the semi-streaming model.

arXiv preprint arXiv:1901.03689 (2019).

[30] Li, L. Fast algorithms for mining co-evolving time series.

[31] Marshall, S., Gil, J. , Kropf, K., Tomko, M., and Figueiredo, L.

Street network studies: from networks to models and their representations. Networks

and Spatial Economics 18, 3 (2018), 735–749.

[32] McGregor, A. Graph stream algorithms: a survey. ACM SIGMOD Record 43, 1

(2014), 9–20.

76

BIBLIOGRAPHY BIBLIOGRAPHY

[33] Nakamura, K. Fully dynamic connectivity oracles under general vertex updates. In

28th International Symposium on Algorithms and Computation (ISAAC 2017) (2017),

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[34] Nakamura, K., and Sadakane, K. A space-efficient algorithm for the

dynamic dfs problem in undirected graphs. In International Workshop on Algorithms

and Computation (2017), Springer, pp. 295–307.

[35] pandas development team, T. pandas-dev/pandas: Pandas, Feb. 2020.

[36] Papadimitriou, S., Sun, J., and Faloutsos, C. Streaming pattern

discovery in multiple time-series.

[37] Patrascu, M., and Thorup, M. Planning for fast connectivity updates. In

48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07) (2007),

IEEE, pp. 263–271.

[38] Rannou, L., Magnien, C., and Latapy, M. Strongly connected components

in stream graphs: Computation and experimentations. In International Conference on

Complex Networks and Their Applications (2020), Springer, pp. 568–580.

[39] Ravazzi, C., Tempo, R., and Dabbene, F. Learning influence structure in

sparse social networks. IEEE Transactions on Control of Network Systems 5, 4 (2018),

1976–1986.

77

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Sampaio Filho, C. I. , Moreira, A. A., Andrade, R. F., Herrmann,

H. J. , and Andrade, J. S. Mandala networks: ultra-small-world and highly

sparse graphs. Scientific reports 5, 1 (2015), 1–6.

[41] Sleator, D. D., and Tarjan, R. E. A data structure for dynamic trees.

Journal of computer and system sciences 26, 3 (1983), 362–391.

[42] Van Rossum, G. The Python Library Reference, release 3.8.2. Python Software

Foundation, 2020.

[43] Van Rossum, G. The Python Library Reference, release 3.8.2. Python Software

Foundation, 2020.

[44] Van Rossum, G., and Drake Jr, F. L. Python reference manual. Centrum

voor Wiskunde en Informatica Amsterdam, 1995.

[45] Wagner, D., and Willhalm, T. Geometric speed-up techniques for finding

shortest paths in large sparse graphs. In European Symposium on Algorithms (2003),

Springer, pp. 776–787.

[46] Watts, D. J. , and Strogatz, S. H. Collective dynamics of ‘small-

world’networks. nature 393, 6684 (1998), 440–442.

[47] Yang, B., Wen, D., Qin, L., Zhang, Y., Wang, X., and Lin, X. Fully

dynamic depth-first search in directed graphs. Proceedings of the VLDB Endowment 13,

2 (2019), 142–154.

78

BIBLIOGRAPHY BIBLIOGRAPHY

[48] Yang, Y., Yu, J. X., Gao, H., Pei, J. , and Li, J. Mining most frequently

changing component in evolving graphs. World Wide Web 17, 3 (2014), 351–376.

[49] Yao, Y., Gehrke, J., et al. Query processing in sensor networks. In Cidr

(2003), pp. 233–244.

[50] Zhu, Y., and Shasha, D. Statstream: Statistical monitoring of thousands of

data streams in real time. In VLDB’02: Proceedings of the 28th International Conference

on Very Large Databases (2002), Elsevier, pp. 358–369.

79

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivating Applications
	Transportation Networks
	Human Brain
	Sensor Networks
	Online Social Networks

	Contributions
	Thesis Organization

	Related Work
	Streaming Graph Mining
	Time Series Mining
	Dynamic Graphs
	Fully Dynamic Connectivity
	Dynamic DFS
	Connectivity in the Subgraph Model
	Emergency Planning

	Problem Definition
	Methodology
	Preliminaries
	DFS-tree
	Heavy-Light Decomposition & Shallow Tree Representation
	DFS-tree Enumeration

	Simple DFS (Baseline Method)
	ActiveComp: A Faster DFS Algorithm
	Overview
	Computing Efficient Adjacency List
	Querying the Data Structure

	Time Complexity Analysis

	Experimental Evaluation
	Synthetic Data Generation
	Graph Generation
	Time Series Data Generation

	Experimental Setup
	Input and Parameters
	Evaluation Metric
	Baselines

	Results and Discussion
	Small-World Network & Random Scenario
	Small-World Network & Forest fire Scenario
	Other input graphs & Random Scenario

	Conclusions and Future Work
	Conclusions
	Limitations
	Scalability to Very Large Graphs
	Underperforming in Specific Instances of the Problem

	Future Work
	Employing Parallel Computations
	Fine-tuning to Accommodate Different Network Topologies
	Extending the Comparative Empirical Analysis
	Employing Real Data and Scenarios

