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ABSTRACT 

Positive breaking surge waves are caused by a sudden change in flow. Surge wave front is 

often associated with high aeration that is linked with a high turbulent behaviour. The 3-

dimensional (3D) turbulent structures across a breaking surge are induced by the velocity 

gradient across the surge and phase discontinuity at the front. Existing experimental studies 

on this transient phenomenon provide insight into the perturbation measurements, and 

velocity profiles, in the front and behind the surge wave. However, many experimental 

measurements only provide pointwise data for this flow of highly transient nature. 

Furthermore, existing numerical simulations are very limited, where many are mainly 2-

dimensional, and a few 3-dimensional (3D) studies have a narrow scope. 3D numerical 

simulation provides a holistic approach to simulate the turbulent behaviour behind a 

breaking surge wave. A combination of Volume of Fluid (VOF) method and Large Eddy 

Simulation (LES) is utilized to capture air entrainment and turbulent structures 

simultaneously for Froude numbers ranging from 1.71 to 2.49. Computational domain and 

numerical schemes are designed to model the fully developed surge and parameters 

precisely. Computational mesh is refined sufficiently to improve the LES quality by 

resolving at least 90% of the total Turbulent Kinetic Energy (TKE). Using a spanwise 

periodic boundary, this study ensured the eddies were not compressed by the domain. Air 

entrainment, TKE and surface perturbations obtained from the present numerical 

simulations are consistent with laboratory observations reported in the literature. At surge 
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toe, strong aeration and surface perturbation are observed caused by intense TKE in the 

area. Velocity perturbations show positive turbulent production in xy-plane rather than yz-

plane as the shear instability exists in xy-plane. Finally, the vortices result from shear 

instability concentrate near the toe in Q-criterion. The vortices start from a 1D structure at 

the toe and exhibit rod shape upstream in anisotropy maps. This study firstly demonstrated 

that the computational model is capable of reproducing the key turbulent mechanisms 

across the surge front and behind the surge. Furthermore, this study highlights the role of 

instability mechanisms in the formation of a breaking surge wave. Meanwhile, the 

simulation approaches in the present study contribute to the foundation of future 

investigation related to positive surge waves and potentially in the fields of aquatic 

environment and building structure.  
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Chapter 1  
Introduction 

1.1 Background  

Surge waves are transient open channel flows that form due to an abrupt change in flow 

depth or velocity. Surge waves appear in man-made hydraulic conveyance structures and 

natural systems. Tsunami waves, for instance, are generated by the displacement of water 

caused by landslides, volcanic activities, or earthquakes (Xie and Chu, 2019). Breach in 

dams can lead to the release of massive amount of reservoir water and lead to the formation 

of dam break waves which is another example of a surge wave. Both phenomena lead to 

destruction and adversely impact both built and natural environments. For example, the 

Tohoku Earthquake led to a Tsunami that removed 30.3% of buildings near the ocean. Also, 

another 17.3% of buildings fell, as mentioned by Xie and Chu (2019). For the dam break, 

Buffalo Creek Valley dam failure in the US, 1972, caused by poor dam construction, led 

to 125 deaths (ASDSO, 2020). Natural factors, including intense rainstorms accompanying 

spillway blockage, will lead to overtopping as the most common reason behind dam failure 

in the last ten years (ASDSO, 2020). Destruction of the dam by an earthquake can also 

cause dam failure. The tidal bore is also a well-known example of surge waves. It forms 

when the low depth river coincides with the ocean at the estuary and the river is forced 

back with a positive surge wave generated (NGS, 2012). Flooding is the main issue to the 

community adjacent to the river and fulfills the condition to generate tidal bore (Mubarak 

et al., 2017). Therefore, it is vital to understand the surge wave from different perspectives, 
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such as its dynamic properties, transport ability, and wave forces to reduce the damage 

caused by such extreme events to public health and property. In man-made canals, surge 

waves are often initiated by the gate closure downstream (Chanson, 2004). 

 

Figure 1. Photo of a tidal bore with a breaking front. Reprinted with permission from 

Chanson et al. (2011). Copyright 2011, Elsevier Science & Technology Journals. 

A highly turbulent wave front is one of the most important features of the positive 

surge waves, which contributes to air entrainment, sediment gathering, and induces 

contaminant and debris transport (Li and Chanson, 2018). In addition, turbulent structures 

under the front of the tidal bore may lead to bed erosion (Chanson and Tan, 2010). Bed 

erosion results in river channel expansion, adverse effects on water safety and habitat 

environment, and jeopardizes bridges over the river (Department of Environment and 

Resource Management of Queensland, 2009). Like tidal bores, the dam break waves cause 

sediment movement and channel bed erosion and can cause swift changes in the bed 

formation across the channel downstream. Consequently, the flow will be altered, and the 
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estimation of factors such as peak water depth and time to reach the residence area for alert 

purposes will become difficult (Zech et al., 2008). Therefore, understanding the turbulent 

characteristics of the surge wave will contribute to environmental and water resources 

management in aquatic systems.  

Figure 2 is a definition sketch of the positive surge wave, where the red dots indicate 

the locations of “surge toe” and “surge heel”, and the horizontal distance between two 

points is known as the “surge length”. 𝑈1 is the downstream flow velocity, 𝑈2 is the flow 

velocity behind the surge, 𝑑1 is the downstream water depth, 𝑑2 is the water elevation of 

surge from the channel bed and 𝑐 is the celerity or speed of the surge wave front. There are 

generally two types of surge waves: undular wave with a smooth surface and little aeration 

compared with the breaking wave with a significant amount of air entrainment. They can 

be categorized by the surge wave Froude number:  

 
𝐹𝑟𝑠 =

𝑐 − 𝑈1

√𝑔𝑑1
 Eq. 1 

As reported by literature such as Leng and Chanson (2017) and Zheng et al. (2018), 

breaking surge was observed in the range of 𝐹𝑟𝑠 > 1.5, whereas undular surge waves are 

observed at Froude numbers below this threshold. 
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Figure 2. Definition sketch of the breaking positive surge wave. 

The turbulence and air entrainment characteristics (shown in Figure 2) are caused 

by the discontinuity in water depth and velocity, which is pronounced across the wave front. 

A similar structure is also observed across hydraulic jumps. Hydraulic jumps and surge 

waves have been historically known to be analogous to shock waves in compressible flow 

(Gilmore et al., 1950) as both categories are compression waves of finite amplitude. 

Chaos and disorder are the nature of a turbulent flow and are also observed across 

breaking surge waves. The source of instability includes the breaking surge front and the 

area of shear layer as shown in Figure 2. Meanwhile, the air entrainment near the surge 

front varies rapidly, along with the surface profile and turbulent properties. In addition, 

there are concentrated small-scale perturbations to capture. Since then, all these properties 

have made studying the subject using numerical or experimental methods complex. Below 

are reviews of some existing works in surge waves and hydraulic jump conducted using 

experimental or computational methods outlined in the literature. The aim is to identify the 
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knowledge gap and signify the importance of the research conducted in the scope of this 

thesis. 

1.2 Literature Review 

1.2.1 Experimental Studies 

1.2.1.1 Surge Wave Aeration 

Chanson (2005) presented a surge wave experimental study focusing on air entrainment 

patterns. The results showed intense air entrainment near the surge front. Chanson (2005) 

used “single-tip conductivity probes” in the middle of the flume span.  

 

Figure 3. Air concentration, 𝛼𝑎 at different distance range upstream of the surge front 

were plotted against vertical distances, h normalized by initial reservoir water depth, 𝑑0. 

Reprinted with permission from Chanson (2005). Copyright 2005, Elsevier. 
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 The air concentration 𝛼𝑎 profile in Figure 3 shows that measurement within the 

different range of distance in streamwise direction relative to the surge front (0 mm), such 

as 4200-4620 mm has smaller air entrainment compared to the point near surge front at the 

same ℎ/𝑑0. A useful theoretical relation was developed by Chanson and Toombes (2002), 

shown in Figure 3, which is plotted from 
ℎ

𝑑0
= 0: 

Near surge front 

 
𝛼𝑎 = 0.9 ∗

ℎ

𝐻90
 Eq. 2 

 

Near surge behind 

 

𝛼𝑎 = 1 − tanh
2  

(

 𝐾′ −

ℎ
𝐻90
2𝐷0

+
(
ℎ
𝐻90

−
1
3
)
3

3𝐷0
)

  Eq. 3 

where 𝛼𝑎 is the air concentration, 𝐻90 is the height at air concentration of 0.9, 𝐾′ and 𝐷0 is 

solely based on average aeration. By comparing in Figure 3, the theoretical equations can 

predict the air concentration with reasonable accuracy. 

 Air entrainment was well studied in hydraulic jump, for instance, by Murzyn and 

Chanson (2015). With the conductivity sensor, air concentration was recorded, which was 

plotted with 𝑦-direction in Figure 4. From Figure 4, the shear layer and recirculation region 

can be identified. Although the paper experimented with hydraulic jumps, it is applicable 

to surge waves as they share the exact nature.  
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Figure 4. Plot of air entrainment, 𝛼𝑎; 𝑥1 is the distance from gate to jump toe. Reprinted 

with permission from Murzyn and Chanson (2009). Copyright 2009, Springer Nature BV. 

Blenkinsopp and Chaplin (2011) investigated aeration characteristics within 

different compositions of water. As a result, the density of small air bubbles was higher for 

seawater, but the overall air concentration and variation with respect to time and space 

were close among different fluids. 

1.2.1.2 Turbulent Characteristics 

Koch and Chanson (2009) reported the surge wave turbulence by obtaining velocity with 

Acoustic Doppler Velocimeter (ADV) and corresponding Reynolds stresses. As shown in 

Figure 5, the ADV started collecting velocity data as the surge wave passed. This pointwise 
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measurement was then used to calculate and plot velocity perturbation and Reynolds 

stresses. Align with the depth data from the fixed displacement probe, figures like Figure 

6 can be plotted with respect to time. Thus, a sudden rise in the water depth profile 

represented the arrival of the surge wave. 

 

Figure 5. Demonstration of velocity measurement with the fixed ADV. Reprinted with 

permission from Leng and Chanson (2018). Copyright 2018, Elsevier. 

For the breaking surge wave, Leng and Chanson (2017) point measurements 

showed a sharp drop of 𝑥 -direction velocity as surge moved by. Another significant 

observation in the work of Koch and Chanson (2009) was the shortly change of direction 

for velocity in 𝑥-direction for the area under the surge due to “flow separation”, which was 

also reported by Gualtieri & Chanson (2011) for a momentary period. For the Reynolds 

stresses, a sharp jump was observed with the surge arrival, which can be associated with 

the mixing cone; however, for the dominant area of the mixing cone which was the upper 

surge, its turbulent characteristics were not measured in this paper. 
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Figure 6. Change of averaged velocity and its perturbations in streamwise direction with 

time. Reprinted with permission from Leng and Chanson (2017). Copyright 2017, 

Elsevier.  

The surface profiles are usually analyzed together with the turbulent properties. The 

outward bending shape is typical to observe for the surge front free surface, as reported by 

both Koch and Chanson (2009) and Gualtieri and Chanson (2011). 

Leng and Chanson (2016) also investigated the turbulent structures of positive 

surge waves along with the water depth perturbation. In their study, both displacement 

meters and velocimeter were adapted to capture the velocity and water depth, respectively. 

The experiment was proceeded in a repeated manner and used ensemble average for result 

presentation. The water depth perturbation equalled to ℎ75 − ℎ25, which was the third 
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quartiles minus the first quartiles of water depth. Each experiment was performed 25 times. 

The corresponding third quartiles and first quartiles were determined and used to define 

the water depth perturbations.  

Here, Figure 7 shows the instantaneous water depth and corresponding 

perturbations, also from the breaking surge. From Figure 7, Leng and Chanson (2016) 

noticed a peak of water depth perturbation when the surge arrived. The paper also 

summarized other works with itself for the relation between Froude number and maximum 

water depth perturbations. The empirical equation derived based on the data points 

described maximum water depth perturbations increased with Froude number was a 

general trend for surge wave and hydraulic jump as shown in Figure 8. The paper also 

reported the Reynolds stresses changed with time and observed a time lag between the 

moment that surge reaches the probe and peak normal Reynold stresses. Similar patterns 

were also observed in Koch and Chanson (2009).  
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Figure 7. Water depth median (ℎ𝑚𝑒𝑑𝑖𝑎𝑛), perturbation (ℎ75 − ℎ25) from the breaking 

surge for multiple x measurement positions. Reprinted with permission from Leng and 

Chanson (2016). Copyright 2016, Springer Nature BV. 

1.2.1.3 Instability Mechanisms 

The air entrainment as a result of instability at the surge breaking front was modelled 

physically by Wang et al. (2017). They have observed and indicated the three most 

common mechanisms that were possible to induce instability (air entrainment) for 

hydraulic jump and breaking surge. The first mechanism was caused by the encounter of 

moving surge with downstream flow. The downstream flow can have a velocity at the 

opposite direction of the moving surge or have no velocity. Initially, there was a layer of 

air above the downstream free surface. Therefore, the air layer moved into propagating 

surge led to the formation of air cavity near the surge toe. 
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Figure 8. Maximum water depth perturbations ( (ℎ75 − ℎ25)𝑚𝑎𝑥 , 𝜂𝑚𝑎𝑥
′ ) vs. Froude 

numbers for several experimental works where surge wave studies are in blue and 

hydraulic jump studies are in black. Reprinted with permission from Leng and Chanson 

(2016). Copyright 2016, Springer Nature BV. 

 The air cavity will be broken into small air bubbles by shear stress and water nearby. 

The bubbles will breakup after float to the free surface. The second mechanism was caused 

by plunging wave and trapped air within the surge wave. The third mechanism was due to 

the breaking of wave in the air. It was related to strong turbulence with massive vortices 

caused by Kelvin-Helmholtz shear instability. It led to air entrainment near the air-water 

interface and surge toe as well. In sum, most of the instability in the surge wave is firstly 

caused by shear effect at the surge toe when the moving surge slides over the downstream 
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flow. It generates TKE and divides the large bubbles into small bubbles. Secondly, with 

two different phases, the splashing wave due to Kelvin-Helmholtz shear instability is 

another source of turbulence.  

 The existence of shear layer that starts from the instability at the surge toe is 

reported by several works of literature. Wang and Chanson (2015) conducted experimental 

works and maximum air entrainment (𝛼𝑎)  was identified within the shear layer of a 

hydraulic jump. Chanson (2007) identified that the toe was the entrance of air bubbles and 

reached the shear layer, exhibiting strong turbulent behaviour. Kucukali and Chanson 

(2008) also reported the shear layer based on the 𝛼𝑎  profile and measured intense 

turbulence within the shear region. 

1.2.1.4 Roughness of Channel 

The affect of channel friction on positive surge wave was also well investigated. Such as 

Chanson (2010), compared the undular and breaking surge with either smooth or rough 

channel. The velocity comparison in 𝑥-direction exhibited a frequent reversal of x velocity 

behind the surge front, also known as “transient recirculation”. The region of transient 

recirculation in the case with rough channel was extended compared to the smooth channel. 

It was shown that with an increase of channel friction, the transient recirculation also 

increases, as shown in Figure 9. 

Besides the whole application of a rough surface on the bed, the affect from an 

object with a rough surface on the channel was studied by Yeow et al. (2016). For the case 
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with the object, the transient recirculation also lasted longer. It means the region was farther 

extended compared with the case without the object.  

 

Figure 9. Velocity profiles for (a) smooth channel and (b) rough channel with breaking 

surge, 𝑢, 𝑣, 𝑤 are velocities in streamwise, transverse and spanwise directions, 

respectively. Reprinted with permission from Chanson (2010). Copyright 2010, ASCE. 

Similarly, the exhibition of transient recirculation was represented by the enhanced 

velocity perturbation. According to Yeow et al. (2016), it was 60% greater with the object. 



 

 15 

Therefore, by increasing the roughness of bed, either at a fixed location or through the 

whole bed, the velocity perturbation will be sharper and more obvious compared with a 

smooth bed. 

To summarize the experimental studies that have been reviewed in this chapter, and 

other similar experimental studies such as Murzyn and Chanson (2009), Toi and Chanson 

(2013) and Frazao and Zech (2002), these studies either focused on the aeration property 

or turbulent structure such as velocity measurements and Reynolds stresses. However, the 

interconnection between two characteristics of positive surge waves is overlooked. 

Therefore, part of the research will investigate the turbulent structure and air entrainment 

patterns together with the numerical method. Besides, the experimental studies introduced 

above performed measurements that were point based, which means a fixed location probe 

will collect data such as water depth, velocity as the wave passes by. Such time series 

results were plotted, for example, in Figure 6. Patterns can be found from this type of setup 

but the numerical simulation can provide a more direct view. The numerical results give 

access to not only the velocity field, air entrainment field but also other turbulent 

characteristics such as eddy viscosity, Q-criterion and so on. Meanwhile, it’s more 

convenient to obtain the domain averaged data compared to experimental method, 

especially with respect to the spanwise direction. The following section will discuss the 

numerical studies about the positive surge waves. 
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1.2.2 Numerical Studies 

1.2.2.1 Two Dimensional (2D) and Three Dimensional (3D) Numerical Simulations 

Leng et al. (2018) compared the 2D simulation results with available laboratory results for 

the water depth, velocity in streamwise and perpendicular directions. The difference is 

evident by comparing velocity and water depth profiles between laboratory results and 2D 

simulations. For example, the numerical 𝑢 behind surge was larger in terms of magnitude 

and fluctuation compared with experimental 𝑢 . Moreover, the information about flow 

characteristics in the third dimension remained unknown.  

Lubin et al. (2010) performed numerical simulation also on a 2D domain, as one of 

the earliest groups modelled the surge waves. Although the overall shape of the 2D water 

depth profile and position of the air entrainment exhibited similarity to the experimental 

phenomenon, the 2D numerical results did not reflect the physical free surface and air 

entrainment patterns accurately, especially near the turbulent surge front. The 3D nature of 

fully cascading turbulent flow has been overlooked in these studies.  

On the other hand, Lubin and Glockner (2015) were one of the few papers that 

incorporated 3D nature into the surge waves modelling. Watanabe et al. (2005) also 

conducted 3D simulations of plunging wave and presented the undular shape vortex in 

spanwise direction. Thus, the 3D modelling provides the opportunity for a comprehensive 

understanding of the turbulent structure of the surge wave, and it is closer to the realistic 

surge behaviour. However, these existing 3D numerical simulations mainly focus on one 

feature of the surge wave, for instance, on the plunging jet at the surge front. Furthermore, 
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as outlined by Lubin and Glockner (2015), the 3D turbulent process is quite critical to 

capture. This requires proper set-up of the spanwise domain, as outlined in the coming 

subsection. Therefore, to capture the behaviour of flow, in the vicinity of toe, at the surge 

front, and behind the surge, 3D simulations are necessary. Further discussion on the set-up 

of 3D simulations will be discussed in the coming sections of Chapter 1 and Chapter 2.   

1.2.2.2 Spanwise Simulation and Periodic Boundary Condition  

It is important to perform 3D simulation rather than 2D simulation which has been 

indicated by various literature in the past, especially for the study of turbulent structure in 

a breaking wave. As noted by Lubin and Glockner (2015), for breaking waves, the initial 

2D turbulent eddies transformed to 3D structure along flow direction, due to the shear 

effect, which led to fluctuation. Also, they have mentioned the existence of 3D “obliquely 

descending eddies” near upstream of a breaking surge. Therefore, to capture the full 

dimension of the 3D turbulent structure, it is vital to perform a 3D simulation for the 

breaking wave. In order to incorporate the simulation in the spanwise dimension, the 

boundary condition for the front and back faces are typically set to periodic boundary 

condition, which has the perturbations are fed back into the domain. It is adapted mainly 

to reduce the size of domain and save computational time. For the case of preparing fully-

developed inlet flow, spanwise periodic boundary conditions can recirculate the flow to 

reach the final state without involving a large domain size. The dimension between two 

periodic boundaries plays an important role when designing and applying the periodic 

boundary condition. The periodic boundaries should not generate any affect on the flow, 
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especially to the turbulent structure, that are physical. Therefore, the dimension between 

two periodic boundaries needs to accommodate the largest scale of eddies (Munters et al., 

2016). 

Periodic boundary condition also has a broad application across different fields of 

study in CFD. Including gas and solid phase modelling (Kuang et al., 2013), contaminant 

transportation (Labovský, 2011), heat exchange (Barletta et al., 2009), open-channel flow 

(Bradbrook et al., 2000). 

1.2.2.3 LES Quality and Grid Resolution 

Large Eddy Simulation (LES) is one of the three turbulent models available, the other two 

are Direct Numerical Simulation (DNS), and Reynolds Averaged Navier-Stokes equations 

(RANS). RANS will resolve only the averaged portion of the turbulent flow and model the 

perturbation portion in the flow. DNS will resolve every scale in the flow from integral to 

Kolmogorov’s scale. LES will resolve the scale greater than the filter size and model the 

smaller scale. Then the computational effort required and simulation accuracy follow as 

DNS > LES > RANS. Therefore, LES is a popular approach since it doesn’t require an 

extreme amount of computational resources as DNS but can resolve larger than scale 

turbulent motion. Since surge wave dynamics are tightly connected to turbulent flow at the 

surge front, LES is preferred over RANS to present sufficient turbulent characteristics. To 

achieve a high quality LES simulation, the grid size needs to be sufficiently small which is 

capable to resolve the majority of total TKE. A widely accepted standard is to resolve at 

least 80% of total TKE. The 80% threshold is determined based on analytical methods in 
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Pope (2001). Matheou and Chung (2014) have conducted convergence studies for the 

larger than filter turbulent scales and have concluded that a 90% resolved rate can satisfy 

a convergency threshold instead of the 80% originally proposed by Pope (2001). As further 

discussed by Matheou and Chung (2014), the variation of domain structure during the 

convergence test did not affect the 90% result significantly. Meanwhile, they have 

suggested the 90% can be applied to different models under LES to achieve convergence. 

 

Figure 10. Plot of TKE spectrum vs. wavenumber 𝑛. A good LES model should resolve 

at least 80% or into the shaded zone. 

1.3 Research Motivation and Objectives 

The research focuses on the numerical investigation of breaking positive surge waves on 

their turbulent structure and air entrainment patterns. The surge wave is produced by 

simulating a sudden lift of the gate, which is often used to generate surge waves 
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numerically and experimentally (see e.g., Liu et al., 2017). As indicated in the literature 

review, most of the studies either studied the turbulent property or the aeration patterns. 

The thesis aims to correlate two aspects of breaking surge waves of Froude numbers higher 

than 1.6. The turbulent structures across the mixing layer and breaking surge are initiated 

due to two instability mechanisms: velocity gradient in depth and pressure gradient in the 

streamwise direction. Although some of the structures are induced and initiated as two-

dimensional, in time they evolve into 3D structures (Watanabe et al., 2005; Lubin and 

Glockner, 2015). Several numerical studies have investigated the turbulent structures and 

Reynolds stresses across breaking and undular surge waves. Many of these studies, 

however, have overlooked the 3D nature of the fully cascading turbulent flow across a 

breaking wave (e.g., Leng et al., 2018). Despite their intricate nature, only a few numerical 

studies investigated the 3D nature of rolling, breaking, and energy cascade in surge waves 

(Kimmoun and Branger, 2007; Lubin and Glockner, 2015). Therefore, the thesis explicitly 

targets the 3D development of turbulent breaking surge waves using a robust and accurate 

LES model. Due to the 3D nature of fully cascading eddies at the surge front, it is critical 

to capture the turbulent spanwise perturbations. Capturing this dimension requires delicate 

consideration for the spanwise scale of eddies. The extent of the spanwise boundary 

condition has a significant effect on the suppression of large-scale eddies, and it has to be 

selected to accommodate the largest scales (Munters et al., 2016). Therefore, here great 

emphasis is focused on the spanwise extension of the periodic domain. Furthermore, most 

existing 3D numerical studies use Large Eddy Simulation (LES). The performance of LES, 
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however, significantly depends on grid resolution and filter size (Pope, 2001). 

Considerations for the impact of spanwise boundary and LES filter resolution are often 

overlooked in many existing 3D studies on breaking surge waves (Watanabe et al., 2005; 

Chanson et al., 2012). Thus, the thesis also aims to improve the quality of simulation by 

improving the implementation of the LES while incorporating spanwise periodic boundary, 

allowing the full development of 3D structures noted in the literature.  

 In sum, the objectives are: 

• Study the interconnection between turbulent characteristics and air entrainment 

patterns, such as perturbations, turbulent kinetic energy, and vortices in positive 

breaking surge waves, especially near the locations of instability mechanisms. 

• Comparing several analyses between different surge Froude numbers, 𝐹𝑟𝑠, in 

order to identify the trend associated with 𝐹𝑟𝑠. 

• Perform fully 3D numerical simulations of surge waves to conduct the 

comprehensive studies of the surge waves. 

• Delicate consideration about spanwise dimension between periodic boundary 

conditions, which will not limit the growth of turbulence in the dimension and 

highlights its role within the surge waves. 

• Improve the quality of Large Eddy Simulation (LES) by reaching a minimum 

turbulent kinetic energy resolving rate of 80% with proper mesh refinement, 

which will increase the resolution of simulation as well. 
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1.4 Thesis Structure 

• Chapter 1 introduces the breaking surge waves and relative approaches of studies, 

followed by the literature review related to the study of positive surge waves 

comprehensively. Two aspects of the studies are covered: Section 1.2.1 includes 

the example works of experimental studies, and Section 1.2.2 includes the example 

works of numerical studies, which is followed by the research objectives of the 

thesis. 

• Chapter 2 is the methodology chapter which describes the governing equation for 

the turbulent modelling and two-phase flow modelling, numerical solutions related 

to the surge wave simulation in OpenFOAM, surge wave Froude number definition, 

1D Method of Characteristics (MOC), and computation domain, boundary 

conditions. Lastly, the discussion about computational time, capacity, and 

resources. 

• Chapter 3 is the result and discussion chapter, which starts with the overview of a 

positive surge wave from the simulation, including phase and velocities. Then the 

Turbulent Kinetic Energy (TKE) analysis regards the critical mesh resolution, 

water depth perturbations, turbulent mixing relation with the air entrainment 

patterns, domain width determination in the 3D simulation with periodic boundary 

conditions, turbulence production and vortex properties and turbulence anisotropy. 

• Chapter 4 concludes this thesis and discusses possible gaps and future research. 
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Chapter 2  
Methodology 

2.1 Governing Equations 

2.1.1 Turbulent Modelling: Large Eddy Simulation 

As computer technology has developed rapidly in the past 20 years, Computational Fluid 

Dynamics (CFD) has become a fundamental approach in simulating and designing fluid 

mechanics challenges. It surpasses the original analytical fluid dynamics with a high level 

of complexity in terms of geometry and flows conditions (Vold, 2017). Compared with 

experimental fluid dynamics, CFD is more economical to save the financial and time 

expense of building the physical model. For specific large-scale models and flow 

parameters challenging to measure, CFD is an excellent choice as well (Karimpour, 2019). 

The CFD tool used is called “Open-source Field Operation and Manipulation” 

(OpenFOAM), which is an open-source CFD tool developed based on C++ language 

(Greenshields, 2019). Every OpenFOAM case has three necessary folders where users can 

set up numerical modelling inputs instead of using the graphical user interface (GUI). With 

numerous solvers designed for different study fields and flow conditions such as 

steady/unsteady, turbulent/laminar, compressible/incompressible, the user needs to choose 

the appropriate solver. 

 Moreover, OpenFOAM solvers range from fluid problems to areas including stress 

studies, electromagnetics, etc (OpenCFD, n.d.). As open-source software, any 

modifications in the source code are possible. Nevertheless, it is critical to select the 
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appropriate solver for the simulations. Simulation results are stored in a series of time 

folders in OpenFOAM. The software named “ParaView” is usually adapted jointly with 

OpenFOAM to view the simulation results and perform post-processing.  

 For a sudden release of millions of cubic meters of water in a reservoir, the wave 

generated is expected to be turbulent flow, and most of the fluid flow observed in life 

belongs to turbulent flow rather than laminar flow where the layers are parallel and smooth. 

Turbulent flow has the properties of irregular turbulence and chaotic flow. For instance, 

Reynolds number exceeds 4000 for pipe transportation (Menon, 2014). As a result, the 

turbulent model should reflect the complicated structure, especially the small-scale 

turbulent fluctuation in the flow. Based on a different scale of eddies, there are three 

approaches: Direct Numerical Simulation (DNS) approach from original Navier-Stokes 

equations, Large Eddy Simulation (LES), and Reynolds Averaged Navier-Stokes equations 

(RANS) modelling methods. DNS can resolve every scale in the turbulence, as well as the 

mesh size and time steps need to be decreased significantly to resolve the smallest time and 

length scales. These limitations make DNS the most computationally expensive method 

among the three due to the high computational frequency and amount of meshes in each 

calculation; LES with a spatial filter will solve the eddies greater than the grid scale with 

the LES governing equation. Meanwhile, the tolerance on mesh size and time steps is 

higher compared with DNS since the small-scale turbulent motion can be calculated based 

on sub-grid scale models. Here the turbulence with a greater size above the filter dominates 

the energy movement that is highly related to the hydraulic conditions. On the other hand, 
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the existence of eddies that are below the filter is widespread and controlled by viscosity 

(J. C. Bennetsen, 2000). The RANS models can only resolve the time-averaged part of the 

turbulent structure and modelled the perturbation part of the flow as there will always be 

more unknows in Reynold stress terms than equations available, so it has a closure problem 

which can be solved by additional terms in many RANS turbulence modelling methods 

(ANSYS, 2010). For this thesis, LES is selected as it can present more detailed eddies than 

RANS, and it is not as computation demanding as DNS. From a broader perspective, LES 

has the benefits of providing the modelling data of eddies specifically, in terms of its 

transient behaviour and 3-D spatial variation. These data of eddies will not be obvious to 

capture from the previous turbulent models, including RANS. In comparison with the 

statistical model, LES can exhibit the development of turbulence along with time (J. C. 

Bennetsen, 2000).  

2.1.2 LES Governing Equations 

LES governing equation is derived by filtering the Navier-Stokes equations: 

 𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0 Eq. 4 

 𝜕(𝜌𝑢𝑖)

𝜕𝑡
+
𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖
𝜕𝑥𝑗

2  Eq. 5 

where Equation 4 represents the conservation of mass and Equation 5 represents the 

conservation of momentum within the control volume. Here, u is the flow velocity, x 

indicates the locations and t indicates the time, 𝜌 is the constant density of the fluids, p is 
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the pressure and 𝜇 is the dynamic viscosity; Equations 4 and 5 are presented in the suffix 

notation and i or j = 1 in this notation corresponds to the 𝑥-direction, i or j = 2 corresponds 

to the 𝑦-direction, and i or j = 3 to the 𝑧-direction. 

 The different terms in the Navier-Stokes equations respectively represent: 
𝜕(𝜌𝑢𝑖)

𝜕𝑡
 for 

velocity’s rate of variation with respect to time,  
𝜕(𝜌𝑢𝑖𝑢𝑗)

𝑥𝑗
 represents the convection term 

when it is related to the fluids’ transportation or advection terms when it is related to the 

other variables such as the volume fraction, kinetic energy within the flow; 
𝜕𝑝

𝜕𝑥𝑖
 is the 

pressure gradient term; and 𝜇
𝜕2𝑢𝑖

𝜕𝑥𝑗
2  stands for the molecular diffusion in the flow. 

 In LES, to filter any parameter, 𝜙, it is decomposed into two parts, one is above the 

grid scale which will be solved with the LES governing equation: 𝜙; the second part is 

below the grid scale or as known as the sub-grid scale (SGS), which will be modelled with 

numerical models associated with the LES: 𝜙′.  The reason that filter size (Δ) is determined 

as the mesh size is based on the following equation: 

 
Δ = (𝑉𝑐𝑒𝑙𝑙)

1
3 

Eq. 6 

where 𝑉𝑐𝑒𝑙𝑙 is the cell volume. Since the meshes are cube, the filter size equals the grid 

length in any direction. As a result: 

 
𝜙 = 𝜙 + 𝜙′ Eq. 7 

Similarly, for the velocity, u and pressure, p: 



 

 27 

 
𝑢 =  𝑢 + 𝑢′ Eq. 8 

 
𝑝 =  𝑝 + 𝑝′ Eq. 9 

Starting with the continuity equation, the first assumption made is the filter being 

homogeneous which means the “filter and derivative commute”, therefore: 

 𝜕𝜌

𝜕𝑡
+ (
𝜕𝜌𝑢𝑖
𝜕𝑥𝑖

) =
𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢

𝑖
)

𝜕𝑥𝑖
= 0 Eq. 10 

Similarly for the momentum equation: 

 𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕𝜌𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖
𝜕𝑥𝑗

2  Eq. 11 

Same as: 

 𝜕(𝜌𝑢
𝑖
)

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖  

𝜕𝑥𝑗
2  Eq. 12 

To solve 
𝜕𝜌𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
, 𝑢𝑖 is an unknown. On the other hand, 𝑢𝑖 can be used as the substitution to 

solve the equation instead, therefore Equation 12 becomes: 

 𝜕(𝜌𝑢
𝑖
)

𝜕𝑡
+
𝜕(𝜌𝑢

𝑖
𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖 

𝜕𝑥𝑗
2 − (

𝜕𝜌𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
−
𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
) Eq. 13 

The last term in Equation 13 can also be written with the sub-grid scale turbulent shear 

stress, 𝜏𝑖𝑗
𝑆𝐺𝑆: 

 
𝜏𝑖𝑗
𝑆𝐺𝑆 = 𝜌(𝑢𝑖𝑢𝑗 − 𝑢𝑖𝑢𝑗) Eq. 14 
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And Equation 13 becomes: 

 𝜕(𝜌𝑢𝑖)

𝜕𝑡
+
𝜕(𝜌𝑢

𝑖
𝑢𝑗)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇

𝜕2𝑢𝑖 

𝜕𝑥𝑗
2 −

𝜕𝜏𝑖𝑗
𝑆𝐺𝑆

𝜕𝑥𝑗
 Eq. 15 

which is the final momentum equation for LES. 

2.1.3 Sub-grid Scale Models 

The SGS turbulent shear stress term in Equation 15 needs to be modelled, also known as 

the SGS models. The models will target the movement of eddies that are not resolved 

within the pre-defined mesh during the simulation process. Compared to the eddies with 

greater sizes, the SGS eddies are further homogeneous and sensitive to the physical 

fluctuation, which allows the potential of models to anticipate extra details of the flow in 

addition to the portion above the filter size. Generally, the SGS models mainly will 

represent eddy viscosity, 𝜇𝑡 differently and with the strain rate, 𝑆𝑖𝑗, as a function of greater 

than filter size eddies, 𝜏𝑖𝑗
𝑆𝐺𝑆 will be computed (J. C. Bennetsen, 2000).  

 The SGS model applied for the project is the k-equation model, initially proposed 

by Yoshizawa and Horiuti (1985). Firstly, the turbulent shear stress is defined by the SGS 

turbulence model: 

 
𝜏𝑖𝑗
𝑆𝐺𝑆 = −2𝜇𝑡𝑆𝑖𝑗 +

1

3
𝜏𝑖𝑖
𝑆𝐺𝑆𝛿𝑖𝑗 

Eq. 16 

where 𝛿𝑖𝑗 is the Kronecker delta and 𝑆𝑖𝑗 is the strain rate, defined as: 

 
𝑆𝑖𝑗 =

1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) Eq. 17 
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The eddy viscosity of the SGS motion is constructed based on the k-equation model 

(Yoshizawa and Horiuti, 1985): 

 
𝜇𝑡 = 𝜌𝐶𝑘Δ√𝑘𝑆𝐺𝑆 Eq. 18 

where 𝐶𝑘 = 0.094 in the model, 𝑘𝑆𝐺𝑆 is the turbulent kinetic energy in the sub-grid scale, 

and Δ is the filter size of the SGS model, represented as the size of the mesh. The 𝑘𝑆𝐺𝑆 is 

calculated with its transport equation: 

 
𝜕(𝜌𝑘𝑆𝐺𝑆)

𝜕𝑡
+
𝜕(𝜌𝑢𝑖𝑘𝑆𝐺𝑆)

𝜕𝑥𝑖
= 𝜕 [𝜌(𝜈 + 𝜈𝑡) (

𝜕𝑘𝑆𝐺𝑆
𝜕𝑥𝑖

)] − 𝜌𝜏𝑖𝑗
𝑆𝐺𝑆𝑆𝑖𝑗 − 𝐶𝜖

𝜌𝑘𝑆𝐺𝑆

3
2

Δ
 

Eq. 19 

where kinetic viscosity is represented by 𝜈, 𝜈𝑡 =
𝜇𝑡

𝜌
, and 𝐶𝜖 is a constant. 

2.1.4 Volume of Fluid Method (VOF) 

To determine the boundary between water and air, interFoam solver adapts the Volume of 

Fluid method (VOF)  proposed by Hirt and Nichols (1981). The assumption made is that 

the velocity for water (𝑢𝑤) and air (𝑢𝑎) are not separated and they are both represented in 

the same velocity field: 

 
𝑢 = 𝑢𝑎 = 𝑢𝑤 Eq. 20 

VOF introduces a key parameter for phase, 𝛼, to represent the phase volume fraction for 

every cell in the computational domain. 

The 𝛼 can be water volume fraction, 𝑎𝑤 or air volume fraction, 𝑎𝑎 and their relation is: 
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1 − 𝛼𝑤 = 𝛼𝑎 Eq. 21 

Therefore, 𝛼𝑤 = 1 indicates the cell has water only and 𝛼𝑤 = 0 indicates the cell has air 

only. For the interface, surge front, and in-depth where air entrainment is expected, the 

water volume fraction is 0 < αw < 1.  

 

Figure 11. Water volume fraction (𝛼𝑤) example during the interface capture where blue 

color is under the water and white color is in the air, using VOF. 

Fluid properties in this method are estimated using the fractional fluid volume in 

each cell. For the current simulation for 2-phase air and water, based on water and air 

volume fractions, 𝛼𝑤 and 𝛼𝑎, combined phase density and viscosity are: 

 
𝜌 = 𝜌𝑤𝛼𝑤 + 𝜌𝑎(1 − 𝛼𝑤); 𝜇 = 𝜇𝑤𝛼𝑤 + 𝜇𝑎(1 − 𝛼𝑤) Eq. 22 

where 𝜌  and 𝜇  are the overall density and dynamic viscosity, respectively. With the 

transport equation of 𝛼𝑤, the interface and air entrainment patterns can be determined: 

 𝜕𝛼𝑤
𝜕𝑡

+
𝜕(𝑢𝑖𝛼𝑤)

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑖
[𝑢𝑐𝑖𝛼𝑤(1 − 𝛼𝑤)] = 0 Eq. 23 
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The third term is an artificial compression term intended to sharpen the interface (Cifani et 

al., 2016). 𝑢𝑐𝑖 represents the relative velocity for water and air is calculated as: 

 
𝑢𝑐𝑖 = 𝐶𝛼

|𝑢|

|∇𝛼𝑤|

𝜕𝛼𝑤
𝜕𝑥𝑖

 Eq. 24 

where 𝐶𝛼 is a model constant for compression strength, and set to 1. 

2.2 Numerical Solutions 

2.2.1 Discretization Schemes 

The numerical schemes are assigned in the fvSchemes file for various derivatives in the 

relative governing equations. Numerical schemes are a series of algorithms for solving 

partial differential equations with respect to time and space. In the fvSchemes, the schemes 

are selected for the derivative terms and discretized depending on the numerical schemes. 

As a result, different schemes can obtain different accuracy and stability level. 

For the time derivative terms (𝜕/𝜕𝑡), Euler scheme is assigned. According to the 

OpenFOAM User Guide v2012, it is applicable for transient problems, including the 

simulated dam-break wave in this thesis. With the following discretization:  

 𝜕

𝜕𝑡
(𝜙) =

𝜙𝑛+1 − 𝜙𝑛

Δ𝑡
 Eq. 25 

where 𝜙 is a field variable, n+1 is the next time step, and n is the current time step. 

 It is a first-order implicit time-marching scheme. Other methods include explicit 

and semi-implicit methods. When the time derivative term is discretized, the explicit 
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method is used to calculate the next time step (n+1) variables with the current time step (n) 

values such that: 

 𝜕𝑢

𝜕𝑡
= 𝑓(𝑢, 𝑡) Eq. 26 

discretized and transferred to 

 
𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + Δ𝑡𝑓𝑖(𝑢
𝑛, 𝑡𝑛) Eq. 27 

And implicit method will calculate the variables in terms of the next time step as: 

 
𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + Δ𝑡𝑓𝑖(𝑢
𝑛+1, 𝑡𝑛+1) Eq. 28 

Semi-implicit is between these two methods which adapted both current and future time 

steps variables. Compared between explicit and implicit methods, a larger time step is 

preferred for steady simulation so that a steady state can be achieved faster. For implicit 

method, the limit on time step is little compared to that of explicit which could benefit the 

process to become steady.  Since the explicit method is conditionally stable, it’s necessary 

to maintain the stability condition, Levy-Courant number. The maximum Levy-Courant 

number is set to one in the simulation. Also, in the case when the simulation needs to be 

"time accurate" for unsteady case and "local refinement" is applied, it is common to observe 

the implicit method as the standard built-in for CFD software rather than explicit method; 

even with explicit method's time step becomes smaller which could fulfill the stability 

demand but that doesn’t necessarily provide higher accuracy (Ferziger et al., 2002). As for 

present simulations, the interest is placed on the fully developed surge wave which can be 
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further converted to a quasi-steady problem. With the implementation of implicit related 

schemes, it will allow for larger time steps and reach the quasi-steady state faster. The 

shorter process can reduce the computational time cost as well. Meanwhile, local 

refinement is applied along the surge front passage to increase the resolution and accuracy 

of the analysis. Therefore, implicit schemes are preferred for the performed simulations.  

For the divergence schemes, they are applied over the advection and convection 

terms in the momentum equation, 𝑘𝑠𝑔𝑠  and 𝛼𝑤  transport equations. The spatial 

discretization of the convection terms is performed using different schemes based on the 

sensitivity of the term in the computation. The flux of sub-grid scale turbulent kinetic 

energy, 𝑘𝑆𝐺𝑆, appearing the convection term in Equation 19 is performed using a first-order 

upwind biased interpolation. Upwind scheme will estimate the face values as the upstream 

values depend on the flow direction. In the finite-volume method, with the face values, the 

values at next time step are determined. With fine enough mesh size, accuracy level can 

also be satisfied to compensate the numerical diffusion (Ferziger et al., 2002). However, 

the convection term in the momentum equation requires a higher-order approximation and, 

therefore, an upwind biased central differencing is selected. It is a combination of central 

differencing and upwind where the face value is estimated as the average of two points 

upwind (OpenFOAM User Guide v2012). As for the 𝛼𝑤 term associated with the relative 

velocity, the second-order linear interpolation (central differencing) is adapted. On the 

other hand, for the flux of phase, 𝛼𝑤 , in Equation 23, the van Leer Total Variation 

Diminishing (TVD) method is selected. TVD schemes have the advantages over upwind 
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which can provide a stable simulation but lower accuracy order and high order central 

differencing which tends to generate undesirable oscillations. TVD schemes limit the 

wiggling and maintain the monotonic behaviour of flow and provide a higher accuracy 

order meanwhile (Karimpour & Chu, 2015).  

 

Figure 12. Illustration of the finite volume method nodes for TVD schemes. 

For the flow identified in Figure 12, the schemes can be generalized to one equation 

to determine the face value, 𝜙𝑒: 

 
𝜙𝑒 = 𝜙𝑃 + 𝐷𝑊𝐹(𝜙𝐷 − 𝜙𝑃) = (1 − 𝐷𝑊𝐹)𝜙𝑃 + 𝐷𝑊𝐹𝜙𝐷 Eq. 29 

The DWF in the equation is known as Downward Weight Factor. Therefore, for the case 

of the upwind scheme, 𝐷𝑊𝐹 = 0  to achieve 𝜙𝑒 = 𝜙𝑃 ; for the case of the central 

differencing scheme, 𝐷𝑊𝐹 =
1

2
 to achieve  𝜙𝑒 =

1

2
(𝜙𝑃 + 𝜙𝐷). And for linear upwind 

differencing, DWF is defined as: 

 
𝐷𝑊𝐹 =

𝜙𝑃 − 𝜙𝑈
2(𝜙𝐷 − 𝜙𝑃)

 Eq. 30 

Then 

 
𝜙𝑒 = 𝜙𝑝 +

1

2
(𝜙𝑃 − 𝜙𝑈) 

Eq. 31 

DWF can be re-written as a function of r, where: 
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𝑟 =

𝜙𝑃 − 𝜙𝑈
𝜙𝐷 − 𝜙𝑃

 Eq. 32 

Since oscillatory free is equivalent to monotonic flow, and from the Equation 32, r needs 

to be greater than zero. In terms of Total Variation (TV), when TV does not increase with 

time, the oscillatory is managed as well (Karimpour & Chu, 2015). 

 The applied van Leer TVD scheme is second-order accurate and is bounded and its 

accuracy can drop to as low as first order in regions with discontinuity. As demonstrated 

in Figure 2, starting from its initial condition, the moving surge wave exhibits discontinuity 

in phase at the surge front and it requires a TVD (or an alternative) scheme to ensure 

numerical stability (Karimpour & Chu, 2015). Its DWF function is defined as: 

 

𝐷𝑊𝐹(𝑟) =

1
𝑟 +

|
1
𝑟
|

1 +
1
𝑟

 Eq. 33 

The van Leer TVD can ideally reduce sudden changes and provide a flat transition 

(Tryggvason, 2017). 

2.2.2 InterFoam Solver and PIMPLE 

Since I am interested in the two phases: air and water of the positive surge wave, a 

multiphase solver should be selected within OpenFOAM. InterFoam is one of the 

multiphase solvers specifically designed for two fluids that are immiscible. Meanwhile, it 

is suitable for incompressible, transient flow and it supports the turbulent modelling and 

finite volume method (Greenshields, 2015). It is using the PIMPLE algorithm to solve the 

Navier-Stokes equations for velocity pressure decoupling and is a combination of two 
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different algorithms: one is based on Semi-Implicit time integration, for Pressure-Linked 

Equations (SIMPLE) and the second is Pressure Implicit Splitting Operator (PISO). 

 SIMPLE, PISO and PIMPLE are commonly applied in OpenFOAM and they are 

working in the similar way called "predictor-corrector". The goal is to solve for the next 

time instance 𝑡𝑛+1 , which is the current time instance 𝑡𝑛  plus the time step, Δ𝑡 . For 

PIMPLE algorithm, start with the “predictor” which will have an initial guess of pressure, 

and according to the pressure, perform discretization on the momentum equation to 

determine the corresponding velocity. The next step will be the “corrector”, from the 

velocity, build and perform discretization on the pressure equation to determine the updated 

pressure. With the updated pressure, find the new velocity with the momentum equation. 

When the results are converged, the new fields are calculated for 𝑡𝑛+1. Otherwise, the loop 

will restart since the “predictor” step, until it is converged (Ye et al., 2020). 

2.3 Numerical Flow Framework 

2.3.1 Surge Wave Froude Number, 𝑭𝒓𝒔 

As shown in Figure 13, the wave will move with a speed, also known as the positive surge 

celerity, 𝑐; the water level downstream is 𝑑1; the water level behind the surge front is 

annotated as 𝑑2; downstream water velocity, 𝑈1; velocity behind the surge front, 𝑈2.  
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Figure 13. Analogy method of transferring the transient positive surge waves to quasi-

steady state hydraulic jump assuming the observer is moving together with the surge 

front at a celerity of 𝑐. Positive surge waves can be generated with (a) suddenly closure 

of the gate; (b) opening of the gate, also known as the dam-break wave. 

Therefore, for case (a) in Figure 13(a), surge wave Froude numbers can be defined 

as the following in the quasi-steady state: 

 
𝐹𝑟1 =

𝑈1 + 𝑐

√𝑔𝑑1
 Eq. 34 

 
𝐹𝑟2 =

𝑈2 + 𝑐

√𝑔𝑑2
 Eq. 35 

This definition is analogous with convective Froude number defined by Karimpour and 

Chu (2016, 2019) based on the velocity difference across the mixing layer. Similarly, for 

the dam break waves that are simulated: 
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𝐹𝑟1 =

𝑐 − 𝑈1

√𝑔𝑑1
 Eq. 36 

 
𝐹𝑟2 =

𝑐 − 𝑈2

√𝑔𝑑2
 Eq. 37 

As noted by Chanson (2004), the positive surge waves are typically characterized by the 

surge wave Froude number at the front, 𝐹𝑟1. Since 𝑈1 = 0 𝑚/𝑠, for the dam-break wave: 

 𝐹𝑟𝑠 = 𝐹𝑟1 =
𝑐

√𝑔𝑑1
 Eq. 38 

2.3.2 Method of Characteristics (MOC) 

The flow conditions of the positive surge waves can be predicted based on an analytical 

solution known as Method of Characteristics (MOC). Figure 14 shows how three points of 

interest are represented in the plot of time and x locations, which are the negative surge 

wave point, behind surge wave point and a surge front point. 𝑑0 is the reservoir depth and 

𝑐0 is the negative surge celerity. 

According to Chanson (2004), by solving the system of continuity, momentum 

and MOC equations the unknown variables: 𝑈2, 𝑐 and 𝑑2 can be solved by knowing 𝑑1 

and 𝑑0. 

Continuity equation: 

 
𝑑1(𝑐 − 𝑈1) = 𝑑2(𝑐 − 𝑈2) Eq. 39 

Momentum equation: 
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𝑑2(𝑐 − 𝑈2)

2 − 𝑑1(𝑐 − 𝑈1)
2 =

1

2
𝑔𝑑1

2 −
1

2
𝑔𝑑2

2 Eq. 40 

Forward characteristics: 

 
𝑈2 + 2√𝑔𝑑2 = 2√𝑔𝑑0 Eq. 41 

 

 

 

 

 

 

 

Figure 14. Illustration of the MOC for positive surge waves, m is the 

slope of the characteristics line. 

 

Also the following semi-analytical equations were proposed by Chanson (2004): 

 
𝑐0 = √𝑔𝑑0 Eq. 42 

 𝑑2
𝑑1
= 0.9319671 (

𝑑1
𝑑0
)
0.371396

 Eq. 43 
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2.3.3 Computational Domain and Flow Conditions 

 

Figure 15. Sketch of the computational domain. (a) 3D view of the initial reservoir; (b) 

front view of the surge wave. 

 

 

 

 

𝐹𝑟1 =
𝑐

√𝑔𝑑1
=
0.63545 + 0.3286 (

𝑑1
𝑑0
)
0.65167

0.00251 + (
𝑑1
𝑑0
)
0.65167  Eq. 44 
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 Figure 15 shows the 3D view of the computational domain and 2D front view of a 

positive surge wave. AR1 covers the passage of the surge wave so that the detail behind 

and at the surge front increases. With one level of refinement in AR1, the resolved 

percentage of Turbulent Kinetic Energy did not meet the 80% threshold near the toe for 

high quality simulation. The detail is provided in the later section. Therefore, an additional 

level of refinement is incorporated near the toe, labelled as AR2 to provide sufficient fine 

mesh and reach the 80% threshold.  𝐿𝑦 is the height of the domain, 𝐿𝑥𝑢 is the length before 

the gate, 𝐿𝑥𝑑 the length after the gate, and T is the thickness of the domain. 

Leng and Chanson (2017) and Zheng et al. (2018) have reported undular waves at 

surge wave Froude numbers up to Frs ≈ 1.5. This project, therefore, covers surge Froude 

numbers beyond this range as it aims to investigate the turbulent properties across the surge 

breaking front. For all the modelled cases, 𝑑0 = 1 m, 𝐿𝑦 = 1.2 m, 𝑐0 = √𝑔𝑑0 = 3.13 m/s. 

 

Table 1. Flow conditions of the modelled positive surge flows and mesh information.  
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The flow variables in Table 1 were selected based on the Method of Characteristics, 

described in the previous section. From Equation 44, pre-defined 
𝑑1

𝑑0
 will determine the 

expected 𝐹𝑟𝑠 of a surge wave to be in the range of breaking wave. Therefore, 𝑐 can be 

calculated and the 𝐿𝑥𝑢 = 𝑐0 ∗ 𝑡, 𝐿𝑥𝑑 = 𝑐 ∗ 𝑡, where t is the moving time of the surge. The 

computational domain length design will ensure that the wave will not be reflected at the 

end wall, and the depth of the upstream reservoir will not be reduced. 𝑑2 is calculated with 

Equation 43, and 𝑈2 is calculated with Equation 39. 

2.3.4 Boundary Conditions 

The computational domain is surrounded by three rigid walls where smooth boundary 

conditions are applied, for the left, right and bottom patches and with the top patch open to 

the atmosphere. Therefore, for the velocity, U, no-slip boundary conditions are assigned 

for the walls; for the subgrid scale TKE, 𝑘𝑆𝐺𝑆, and eddy viscosity, 𝜈𝑡, wall functions are 

assigned for the walls. 

The front and back patches are set to periodic boundary conditions. In order to 

achieve fully-developed turbulent flow across a breaking surge wave, this study has 

implemented periodic boundary condition in the spanwise z-direction. This technique is 

used in open-channel flow, such as the work of Kim et al. (1987) and in other flow types 

Munters et al. (2016) to produce a fully developed turbulent flow, where the perturbations 

are fed back into the domain. The size of the periodic domain width, 𝑇, however, should 

be selected so that it is several times larger than the largest scale in the domain (Munters 
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et al., 2016). The turbulent scale, however, is not studied for breaking waves. Therefore, in 

order to fully capture all turbulent scales, including large scales, this study has implemented 

multiple domain width sizes, 𝑇, and have assessed the role of domain width on the growth 

of spanwise turbulent fluctuations.  

2.3.5 Computational Resources 

The modelling of positive surge waves starts with the investigation of 2D cases. The 2D 

cases are different from the 3D cases by setting the number of grids in 𝑧-direction as 1 and 

the front and back patches are empty in the OpenFOAM, during the mesh generation. The 

2D study is conducted by connecting to the computers on campus. The desktop computer 

has better performance in terms of computational speed. Also, it has a NVIDIA Quadro 

p400 graphic card which allows for the visualization and post-processing of results without 

transferring the data from the saved location. The desktop is equipped with Intel Core i9-

10900K CPU @ 3.70GHz, 10 Cores, and 64GB physical memory and the corresponding 

computational time for a 2D case with local refinement is to be completed in about one 

month. Besides the hardware perspective, to further increase the computational speed, 

“parallel processing” technique is applied. The idea of parallel processing is to make use 

of multiple processors instead of only letting a single processor perform a serial processing 

(Afzal et al., 2017). In OpenFOAM, the parallel processing is achieved by “domain 

decomposition” and message passing interface (MPI) tool (OpenFOAM User Guide). So 

that the domain is decomposed into several subdomains with each of them is taken care of 

by a processor. For a particular time instance, instead of putting all the pressure on one 
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processor to solve the whole domain, each processor only solves a portion of the domain. 

Processors amount is determined based on trial and error of a test case. The simulation is 

selected to be short and the number of processors that has the shortest time to complete is 

selected. After reconstructing the decomposed data, the data for the overall domain is 

obtained. MPI is common to use for parallel computing and computers with excellent 

performance. The information is transferred from a subdomain to the adjacent one (Afzal 

et al., 2017). With the parallel processing implemented, the computational time for the 2D 

cases is reduced to half. 

The computational domain is decomposed into 12 subdomains and the method 

selected will arrange subdomains horizontally. The array of subdomains is similar to the 

sketch shown in Figure 16, where each of them has the same amount of meshes. Therefore, 

each processor will finish the calculation for the time step with a similar time to avoid the 

waste of resources by waiting for other processors to complete. The reason that 12 

subdomains are distributed horizontally only but not divided in the y or z direction is to 

lower the communication load with fewer grids at subdomains’ interfaces, which will 

increase the efficiency of parallel processing. The communication is necessary to maintain 

coherence of the overall simulation (Keough, 2014). 

As moving on to the 3D simulations, the maximum number of grids in the domain 

quadrupled. Therefore, the computational time increased significantly as well. A solution 

that can provide a substantial improvement of computing capacity is needed. Compute 

Canada which includes different clusters across Canada provides high-performance 
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computing (HPC). As shown in Table 2, even with the top-tier HPC, and optimal number 

of processors and physical memory selected, the computational time will still be about a 

month for every 𝑇 = 40Δ𝑥 case. Besides the cases that are presented here, there have been 

many trial simulations and meanwhile the abandoned cases that were not properly 

simulated. Thus, with such exceedingly long computational time and numerous data points 

for post-processing, eventually the cases that can represent three breaking surge Froude 

numbers are exhibited in the thesis. 

 

Figure 16. Demonstration of subdomains in parallel processing. 

 

Table 2. Computational resources and duration for the simulated cases. 
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Chapter 3  
Results and Discussion 

After the completion of the simulation produced by OpenFOAM, results can be visualized 

and post-processed using ParaView. The simulations were used to calculate the values of 

variables such as velocity, phase, pressure, eddy viscosity, and the subgrid scale turbulent 

kinetic energy. The primary objective is to correlate the turbulent structure statistics and 

air entrainment patterns for the surge front at different surge Froude numbers along with 

the investigation of 3D spanwise size and grid resolution regards LES turbulent modelling. 

Beyond ParaView, “in-house” MATLAB codes were developed for air-water interface 

identification and ensemble averaging of this transient phenomenon. This chapter starts 

with the general behaviour of the computed surge waves, and then analysis of the turbulent 

kinetic energy (TKE), water depth perturbations, air entrainment profiles, velocity 

perturbations quadrant analysis and finally the turbulent vortices. 

3.1 Phase and Velocity Contours 

To demonstrate the appearance of a propagating surge wave, firstly, the water volume 

fraction, 𝛼𝑤, is plotted in time. The process of the water being released from the gate and 

becoming a fully developed state of wave can be observed as well. Moreover, the variation 

of the surface profiles and air entrainment properties with respect to time play an important 

role in the analysis. Based on the simulated results, the surge front and surrounding have 

the strongest and chaotic turbulent structure accompanied with abundant air entrainment. 
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Meanwhile, at 𝑡 <  2 s the wave front is not fully developed and therefore, developing 

stage of the surge waves can not represent the characteristics of the surge wave properly, 

as shown in Figure 17(d).  

Therefore, the results are plotted by focusing on the surge front area and after 𝑡 =

4 s corresponding to the stage of a developed surge wave as shown in Figures 17(a), (b) 

and (c) for 𝐹𝑟𝑠 of 1.71, 2.13 and 2.49, respectively. 

As demonstrated in Figure 17, three time instants are selected: 𝑡 = 4.0, 4.5, 5.0 s, 

of the positive surge waves move from upstream to downstream (left to right) and intruding 

into the downstream still water with a celerity, 𝑐. The surge wave height maintains nearly 

constant as the wave moving.  

Solid blue colour represents the pure water such as at the undisturbed downstream; 

whitish colour represents aeration zone. Firstly, as waves move forward, air bubbles are 

generated near the surge front, with numerous small air bubbles trailing behind the surge. 

Since the 𝐹𝑟𝑠  are in the range of breaking surge waves, it is expected to observe a 

significant amount of air entrainment.  

Secondly, discontinuity over depth is observed which starts from the surge toe. 

Typically, the free surface at the surge front is bending outward. These observations agree 

with the laboratory work by Gualtieri & Chanson (2012) for breaking waves by probing 

data collection approach. The red lines in Figures 17(a) (b) and (c) are developed based on 

the celerity calculated from the MOC for three Frs mentioned in section 2.3.2. The surge 

front’s position predicted by the MOC celerity is similar to the simulated results. 
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 Therefore, the impact of friction is negligible and MOC celerity can properly 

estimate the relative position of the surge front. Thus, the theoretical 𝑐 is utilized during 

finding the ensemble average which will be provided with more details in the next section. 

Streamwise velocity, 𝑢, dominates the movement of the wave and it has a greater 

magnitude relative to y-direction velocity, 𝑣  and z-direction velocity, 𝑤 . Therefore, 𝑢 

contours are plotted as shown in Figure 18. With the contour filter applied during post-

processing the velocity data in ParaView, isolines of 𝛼𝑤 = 0.5 are added above the 𝑢 field. 

They are shown as dark grey lines in Figure 18. Isolines of 𝛼𝑤 = 0.5 represents the surface 

profiles of the surge waves.  

The strongest 𝑢 is observed near the toe in common for different times and 𝐹𝑟𝑠 and 

diminishing as the surge front has passed. The range of 𝑢 at 𝐹𝑟𝑠 = 1.71 is between -0.7 

and 6.1 m/s, at 𝐹𝑟𝑠 = 2.13 is between -0.97 and 5.52 m/s and at 𝐹𝑟𝑠 = 2.49 is between -

3.01 and 5.94 m/s.  

Meanwhile, in the vertical direction, there is also a velocity discontinuity, 

especially behind the surge front. For example, in Figure 18(a) at 𝑡 = 5 s, near the surge 

front surface, the flow velocity can reach as high as 3.8 m/s but decrease sharply to about 

0.5 m/s next to the bed behind the surge. With the 𝑢 fields that are shared by the water and 

air, negative 𝑢 are observed mostly in the air zone. Some exceptions have negative 𝑢 under 

the surge wave. Such as the enlarged view in Figure 18(a) for 𝐹𝑟𝑠 = 1.71 at 𝑡 = 5 s, as 

well as in Figure 18(b) for 𝐹𝑟𝑠 = 2.13 at 𝑡 = 4 s also locates under the surge wave, which 

exhibits blue color as negative 𝑢. 
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Figure 17. Propagating surge wave where 𝛼𝑤 is water volume fraction, toward 

downstream with time, at 𝑡 = 4.0, 4.5 and 5.0 s, for 𝐹𝑟𝑠 of (a) 1.71, (b) 2.13, (c) 2.49. 

Red line outlines the free surface based on c from MOC. (d) shows initial stage at 𝐹𝑟𝑠 =

2.49. 

This phenomenon is also reported by Gualtieri & Chanson (2011) which is captured 

by the probe with a momentary period. Such rapid direction-changing behaviour can be 

explained as “flow separation” under the transient wave.  

The streamwise velocity relative to the theoretical velocity behind the surge, 𝑢/𝑈2, 

is plotted in Figure 19 for 𝐹𝑟𝑠 = 2.13. 𝑈2 is calculated based on the MOC mentioned in 

section 2.3.2. From the plots, theoretical velocity behind the surge, 𝑈2, has an obvious 

difference with the actual velocity behind the surge in the simulation. At the area closer to 

the surge front, the difference is greater. At a distance further upstream from the surge 

front, the difference between two velocities is smaller. Besides, the flow is not uniform so 

a constant velocity 𝑈2 can not represent the actual flow. Therefore, from this comparison, 

3D numerical modelling of the positive surge wave has a great advantage compared to the 

1D analytical methods, such as MOC. 
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Figure 18. Plot of the velocity field (u, m/s) variation with time, at 𝑡 = 4.0, 4.5 and 5.0 s, 

for 𝐹𝑟𝑠 of (a) 1.71, (b) 2.13 and (c) 2.49. 
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Figure 19. Plot of the velocity field relative to theoretical velocity behind the surge 

(𝑢/𝑈2), at 𝑡 = 4.0, 4.5, and 5.0 s, for 𝐹𝑟𝑠 = 2.13. 

3.2 Q-criterion Analysis and Relation to Production 

Due to the complexity of the flow, with multiple instability inducing mechanisms, the plot 

of vorticity alone does not shed light on the vortical circulations, also reported by Lubin 

and Glockner (2015). Instead, Q-criterion is used to visualize the formation, rolling, and 

merging of the coherent structures. 

This criterion was introduced by Hunt et al. (1988) and it is defined in terms of the 

instantaneous velocity gradients.  
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𝑄 =

1

2
(‖𝛀‖2 − ‖𝐒‖2) Eq. 45 

where 𝛀 represents the rotational vortices, S represents strain-related movement. 

 
𝛀 =

1

2
[∇𝑼− (∇𝑼)𝑇] Eq. 46 

 
𝐒 =

1

2
[∇𝑼 + (∇𝑼)𝑇] Eq. 47 

Positive value for Q-criterion identifies rotation-dominated regions of the flow, or vortices. 

Similarly, negative values are associated with straining regions of the flow. Figures 20, 21 

and 22 are the plots of Q-criterion and Q iso-surface (at Q=2000) in the 𝑥𝑦-plane for 𝐹𝑟𝑠 =

1.71 , 2.13  and 2.49  for 𝑇 = 40Δ𝑥 . The instantaneous plots of Q contours, show the 

accumulation of vortices adjacent to the toe and behind the breaking surge front. Vortices 

are generated by two instability mechanisms outlined earlier and are advected behind the 

surge. Therefore, concentrated vortices are observed near the toe where shear instability 

happens and right behind the breaking surge front where phase discontinuity exists. 

As seen in Figure 20, both from instantaneous contour plots and isosurfaces, the 

vorticity formation is constrained to the vicinity of the toe and surge front. As the Froude 

number increases, the Q-criterion contours, as should in Figures 21 and 22, progressively 

spreads further in depth. This is evident from 𝐹𝑟𝑠 = 1.71 to 2.13 and to 2.49. Furthermore, 

as explained in the literature review, Chapter 1, a shear layer is originated at the toe and 

forms and spreads behind the toe. The Q-criterion profiles in Figures 23 and 24 shows the 

spread of vorticity with moving the yz cross section further upstream. 
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Figure 20. Plots of the instantaneous Q-criterion contour and 𝑄 = 2000 isosurfaces on 

the xy-plane at 𝑧 = 0.2 m. The isosurfaces are colored with the resultant velocity. (a) (c) 

𝑡 = 4.25 s; (b) (d) 𝑡 = 4.50 s; (e) (g) 𝑡 = 4.75 s; (f) (h) 𝑡 = 5.00 s for 𝐹𝑟𝑠 = 1.71. 
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Figure 21. Plots of the instantaneous Q-criterion contour and 𝑄 = 2000 isosurfaces on 

the xy-plane at 𝑧 = 0.2 m. The isosurfaces are colored with the resultant velocity. (a) (c) 

𝑡 = 4.25 s; (b) (d) 𝑡 = 4.50 s; (e) (g) 𝑡 = 4.75 s; (f) (h) 𝑡 = 4.93 s for 𝐹𝑟𝑠 = 2.13. 
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Figure 22. Plots of the instantaneous Q-criterion contour and 𝑄 = 2000 isosurfaces on 

the xy-plane at 𝑧 = 0.2 m. The isosurfaces are colored with the resultant velocity. (a) (c) 

4.50 s; (b) (d) 𝑡 = 4.75 s; (e) (g) 𝑡 = 5.00 s; (f) (h) 𝑡 = 5.50 s for 𝐹𝑟𝑠 = 2.49. 

 

 



 

 59 

 

Figure 23. Plots of 𝑄-Criterion contour on the 𝑦𝑧-plane at (𝑥 − 𝑐𝑡)/𝑑1 = 1.5 for 𝐹𝑟𝑠 =

1.71 at (a) 𝑡 = 4.25 s; (b) 𝑡 = 4.50 s; (c) 𝑡 = 4.75 s; (d) 𝑡 = 5.00 s. 
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Figure 24. Plots of 𝑄-Criterion contour on the 𝑦𝑧-plane at (𝑥 − 𝑐𝑡)/𝑑1 = 1.5 for 𝐹𝑟𝑠 =

2.13 at (a) 𝑡 = 4.25 s; (b) 𝑡 = 4.50 s; (c) 𝑡 = 4.75 s; (d) 𝑡 = 4.93 s. 
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Figure 25. Plots of 𝑄-Criterion contour on the 𝑦𝑧-plane at (𝑥 − 𝑐𝑡)/𝑑1 = 1.5 for 𝐹𝑟𝑠 =

2.49 at (a) 𝑡 = 4.50 s; (b) 𝑡 = 4.75 s; (c) 𝑡 = 5.00 s; (d) 𝑡 = 5.50 s. 
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3.3 Shifting and Ensemble Average  

As surge waves are moving and varying with time towards downstream, it is a challenge 

to obtain the average results of the wave. Since it is important to determine the general 

behaviour of the moving surge, a shifting mechanism is applied in the data analysis. The 

surge front moves with a celerity that is approximated with the Method of Characteristics 

(MOC). The ensembles, therefore, have a space lag, 𝑥𝑙𝑎𝑔, moving with surge wave celerity, 

𝑐 . The results are obtained by using 100 ensembles between 𝑡 = 4  and 6 s when the 

turbulent at the wave front is fully developed. To capture this transient nature, a 4-meter 

rectangular domain spanning from 𝑥1 = 35 m to 𝑥2 = 39 m is selected at 𝑡 = 4 s. The 

domain boundaries in the x-direction move with the surge wave celerity of 𝑐, estimated 

from MOC. In cases where the shifted boundaries do not overlap with the grid alignment, 

a weighted algorithm is applied. The weight factors are determined based on the distance 

to the two adjacent grid points. This is demonstrated in Figure 26 for 𝑡 = 4.05 s and 𝐹𝑟𝑠 =

2.13, where the celerity is 𝑐 =  2.9835 m/s. Two factors in the example are calculated as: 

𝑊 for 𝑥1 = 35.145 m, 𝑥2 = 39.145 m: 

0.15 𝑚 − 0.149175 𝑚

0.15 𝑚 − 0.145 𝑚
= 0.165 

𝑊 for 𝑥1 = 35.15 m, 𝑥2 = 39.15 m: 

0.149175 𝑚 − 0.145 𝑚

0.15 𝑚 − 0.145 𝑚
= 0.835 
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Figure 26. Illustration of the weighted algorithm at t = 4.05 s for c = 2.9835 m/s and 

uniform grid of Δx = 0.005 m. The boundaries of the ensemble box are located at 𝑥1 =

 35 𝑚 and 𝑥2  =  39 m at t = 4.00 s. The weighted factors, W, are calculated based on the 

vicinity of the shifted domain to the nearest grid point. 
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3.4 Subgrid Scale Resolution 

Energy cascade happens during the LES modelling where turbulent kinetic energy (TKE) 

dissipates in the descending order of scales. At the tiny scales, where SGS viscosity 

controls, the dissipation stops and TKE becomes internal energy (Li et al., 2020). One of 

the primary functions of a LES model is to dissipate the energy from the resolved scales at 

an appropriate rate. In the Smagorinsky model, the SGS viscosity is directly proportional 

to the strain rate (Smagorinsky, 1963): 

 
𝜇𝑡 = 𝜌(𝐶𝑠Δ)

2(2𝑆𝑖𝑗𝑆𝑖𝑗)
1/2

 Eq. 48 

where 𝜇𝑡 is SGS viscosity, 𝐶𝑠 is Smagorinsky constant, and 𝑆𝑖𝑗 is strain rate. Therefore, 

the model performs poorly in shear-driven flows, where the strain rate, 𝑆𝑖𝑗 is large due to 

the initial condition. In near-wall on the other hand, the majority of the energy containing 

eddies are smaller than the filter size, which leads again to poor performance of the model.  

A similar limitation close to the boundary, where the subgrid scale viscosity, 𝜇𝑡, dominates. 

As a result, 𝑘-equation model is selected instead of the Smagorinsky model. 

In order to justify the mesh size that is applied in the simulation to be effective and 

lead to high-quality results, the percentage of TKE that is solved, 𝑘𝑝 , is defined and 

presented in the domain. The selection of filter size is a critical issue around LES, and it 

should be able to resolve the majority of large-scale energy-containing eddies. Pope (2001) 

provided a popular approach to evaluate the LES simulation quality, who suggested that 

the resolved TKE, denoted by 𝑘𝑟𝑒𝑠 was expected to be greater than 80% of total TKE in a 
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high quality simulation. Matheou and Chung (2014), on the other hand, suggested the ratio 

to be more than 90%. 

The equation to calculate the percentage of resolved turbulent kinetic energy, 𝑘𝑝, 

is: 

 
𝑘𝑝 =

𝑘𝑟𝑒𝑠
𝑘𝑟𝑒𝑠 + 𝑘𝑆𝐺𝑆

 Eq. 49 

Subgrid scale TKE, 𝑘𝑆𝐺𝑆, is modelled with Equation 19, which is a direct output from the 

simulation since 𝑘-equation SGS model is used. 𝑘𝑟𝑒𝑠 also known as the energy in larger 

than scale turbulence and is defined as: 

 
𝑘𝑟𝑒𝑠 =

1

2
(𝑢′𝑢′ + 𝑣′𝑣′ +𝑤′𝑤′) Eq. 50 

where 𝑢’, 𝑣’, and 𝑤’ are the resolved perturbation components in x, y, and z directions, 

respectively. Furthermore, 𝑢′𝑢′, 𝑣′𝑣′, and 𝑤′𝑤′ are the normal stresses in the Reynolds 

stress tensor: 

 

𝑅𝑖𝑗 = −𝜌 [
𝑢′𝑢′ 𝑢′𝑣′ 𝑢′𝑤′

𝑣′𝑢′ 𝑣′𝑣′ 𝑣′𝑤′

𝑤′𝑢′ 𝑤′𝑣′ 𝑤′𝑤′
] Eq. 51 

The free surface is also delineated at 𝛼𝑤 = 0.5 based on the VOF method. Splash and 

separation are not accounted for, in delineating the free surface shown in Figure 27 in black. 

Firstly, the simulation was performed with refinement over AR1 in Figure 15 for 𝐹𝑟𝑠 =

1.71 and 2.13. The time and z averaged 𝑘𝑝 fields are shown in Figure 27 with h normalized 

by surge wave height 𝑑2 and (𝑥 − 𝑐𝑡)/𝑑1 is the x coordinates shifted to 𝑡 = 0 s and with 

gate location as the origin normalized by downstream water depth, 𝑑1. 
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Figure 27. 𝑘𝑝 at 𝐹𝑟𝑠 of (a) 1.71, (b) 2.13 without toe refinement of AR2. 

As shown in Figure 27, for both Froude numbers, 𝐹𝑟𝑠 = 1.71 and 2.13, a large area 

of red presents near the toe. According to the scale, the 𝑘𝑝, 80% threshold is indicated as 

white colour, smaller than 80% is indicated as red colour and greater than 80% is indicated 

as blue colour. Therefore, the surge toe area is not resolved well compared to the rest of 

the domain. A second level refinement is applied near the toe, AR2 in Figure 15, which 

has the h covers 𝑑1 ± 0.05 m. The second level refinement results are presented in Figures 

28, 29 and 30. Figures 28(a), 29(a) and 30(a) show larger than scale TKE, 𝑘𝑟𝑒𝑠, for 𝐹𝑟𝑠 =

1.71, 2.13 and 2.49, respectively. Higher values in these plots are observed around the 

surge front in both air and water, but it also spreads in depth and extends between surge 

heel and toe. Furthermore, 𝑘𝑟𝑒𝑠  peaks in the vicinity of the surge toe for three Froude 



 

 67 

numbers. Existing laboratory experiments (Koch and Chanson, 2009; Leng and Chanson, 

2016) have also shown a sharp rise in the normal Reynolds stresses, 𝑢′𝑢′ and 𝑣′𝑣′  as 

components of TKE, near the toe. Figures 28(b), 29(b) and 30(b), on the other hand, those 

are the plots of instantaneous subgrid scale TKE, 𝑘𝑆𝐺𝑆, the darker colours are concentrated 

around the toe and around the surge front. Due to higher 𝑘𝑆𝐺𝑆 around the toe, the ratio of 

resolved to total TKE is at the lowest value of about 86% in this area. However, this ratio 

remains above the recommended value for LES (Pope, 2001).  

In the surge, the ratio of 𝑘𝑝 remains consistently above 90%. This indicates that the 

LES model resolves mostly 90% of the TKE. This is achieved by designing two areas of 

refinement, in the surge propagation area (AR1) and further refinement across the toe 

(AR2), where shear layer is formed. Although the overall TKE is small and mainly 

concentrates near the surge toe, velocity gradient at the surge toe is one of the primary 

reasons causes the instability.  

Therefore, it is important to refine the mesh around this particular area in order to 

fully understand the turbulent characteristics of the flow. The 𝑘𝑆𝐺𝑆 transport equation does 

not treat the near-wall nor the near-wall region is refined to resolve the very small scales. 

Therefore, this area has very low 𝑘𝑝. However, as shown in the later sections, the lower 

envelope of mixing in the breaking surge is not affected by the near-wall region, and 

therefore, this does not impact the development of turbulent structures in the vicinity of 

surge front. 
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Figure 28. Plots of (a) time and 𝑧-averaged 𝑘𝑟𝑒𝑠; (b) 𝑘𝑆𝐺𝑆  at 𝑡 = 4.2 s and 𝑧 = 0.02 m; 

(c) time and z-averaged 𝑘𝑝 with 80% as the threshold for case#1 with 𝐹𝑟𝑠 = 1.71. Water 

surface is shown as the black line. Yellow box outlines AR2. 
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Figure 29. Plots of (a) time and 𝑧-averaged 𝑘𝑟𝑒𝑠; (b) 𝑘𝑆𝐺𝑆 at 𝑡 = 4.2 s and 𝑧 = 0.02 m; 

(c) time and z-averaged 𝑘𝑝 with 80% as the threshold for case#2-3 with 𝐹𝑟𝑠 = 2.13. 

Water surface is shown as the black line. Yellow box outlines AR2. 
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Figure 30. Plots of (a) time and z-averaged 𝑘𝑟𝑒𝑠; (b) 𝑘𝑆𝐺𝑆 at 𝑡 = 4.2 s and 𝑧 = 0.02 m; 

(c) time and z-averaged 𝑘𝑝 with 80% as the threshold for case#3 with 𝐹𝑟𝑠 = 2.49. Water 

surface is shown as the black line. Yellow box outlines AR2. 
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3.5 Water Depth Perturbations 

Figures 32(a), 33(a) and 34(a) show the instantaneous water surface profiles, all shown in 

grey, and the averaged water surface profile in blue. Both are normalized with respect to 

surge wave height, 𝑑2, obtained from MOC. Since the averaged water depth changes in the 

x-direction, this spatially varied averaged water depth is used for normalization.  

 Water surface perturbation is defined as ℎ′ = ℎ − ℎ . The magnitude of the 

normalized ℎ′ has the expression of  ℎ′2/ℎ
2
. In terms of the root mean square (rms), which 

is defined as: 

 
𝑟𝑚𝑠 = √

1

𝑛
∑ℎ′2

𝑖

 Eq. 52 

where n is the amount of data points which will be 100 since there are 100 time instances 

included in the calculation; ℎ′2 for the magnitude of water surface perturbation. Thus, 

 ℎ′2

ℎ
2 =

ℎ𝑟𝑚𝑠
′ 2

ℎ
2  Eq. 53 

which is plotted in Figures 32(b), 33(b) and 34(b) for 𝐹𝑟𝑠 = 1.71, 2.13 and 2.49. The 

normalized water surface perturbation peaks at 
ℎ𝑟𝑚𝑠
′ 2

ℎ
2 = 0.008 for 𝐹𝑟𝑠 = 1.71, at 0.011 for 

higher Froude number of 𝐹𝑟𝑠 = 2.13, and can reach 0.022 for 𝐹𝑟𝑠 = 2.49.  

 Leng and Chanson (2016) summarized several experimental works of both surge 

wave and hydraulic jump studies about the relation between the Froude number, 𝐹𝑟𝑠, and 

the maximum water depth perturbations, ℎ𝑚𝑎𝑥
′ . In general, ℎ𝑚𝑎𝑥

′  increases with 𝐹𝑟𝑠, and  
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maximum water depth perturbation in present study followed the same trend from 𝐹𝑟𝑠 =

1.71 to 2.49.  In all three cases, this peak was observed immediately behind the toe. 

Higher moments of perturbation, skewness, 𝑆𝜙, and kurtosis, 𝐾 𝜙 provide deeper 

insight into the distribution of perturbation and ultimately the physics of the flow. The 

skewness is the third moment and kurtosis is the fourth moment of perturbation of 

parameter𝜙, where 𝜙 can be velocity components, pressure, and water depth, and are 

defined as: 

 
𝑆𝜙 = (𝜙

′3)/ (𝜙′2)

3
2
 

Eq. 54 

 
𝐾𝜙 = (𝜙′4)/ (𝜙′2)

2

 Eq. 55 

The skewness reveals information about the asymmetry of the perturbation, while kurtosis 

provides information on the flatness of perturbation distribution or their distribution around 

mean perturbation value. Skewness for a Gaussian distribution is around 0 and a positive 

skewness means that the perturbation is more likely to take on large positive values than 

large negative values. 

 On the other hand, kurtosis for a Gaussian distribution is around 3. Perturbation and 

measurements leading to kurtosis lower than this value, are mainly clustered around the 

mean, where perturbation measurements dominated by intermittent extreme events have 

higher kurtosis. 

Around the heel, the depth skewness remains around 0 for three Froude numbers as 

shown in Figures 32(c), 33(c) and 34(c). However, moving from heel towards the toe, the 
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skewness starts to rise and reaching as high as 2.0 for 𝐹𝑟𝑠 = 1.71 and 2.5 for 𝐹𝑟𝑠 = 2.13 

and 2.49 around the toe.  

This shows the tendency for water surface profile perturbation to experience 

extreme positive fluctuations. The water surface kurtosis profiles for three Froude numbers 

exhibit the same behaviour, as shown in Figures 32(d), 33(d), 34(d). In the vicinity of the 

heel, kurtosis remains at about 3, however, rises to above 3, close to the toe. This confirms 

that around the toe, flow mainly comprises intermittent extreme water depth perturbations. 

 

Figure 31. Plot of 𝐿/𝑑1 against 𝐹𝑟𝑠, where L is the surge length. 
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The surge lengths 𝐿/𝑑1 are identified and measured for three Froude numbers in 

Figures 32(a), 33(a) and 34(a). Two analytical methods to calculate hydraulic jump length 

noted by Mundo-Molina and Pérez (2019) are plotted together with the current simulation 

in Figure 31. They are: 

Safranez (Safranez, 1929): 

 𝐿

𝑑1
= 5.9 ∗ 𝐹𝑟𝑠 Eq. 56 

Einwachter (Einwachter, 1933): 

 𝐿

𝑑1
= 8.3 ∗ (𝐹𝑟𝑠 − 1) Eq. 57 

As shown in Figure 31, the general 𝐹𝑟𝑠 vs. 𝐿/𝑑1 trend for present work agrees with the 

other two analytical methods, which is the normalized surge length increases as Froude 

number increases. Safranez’s surge lengths are all greater than the simulation surge lengths. 

For Einwachter, the data points are closer to the current simulation’s, especially at 𝐹𝑟𝑠 =

2.13, two data points meet at the same location.  
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Figure 32. Normalized water surface perturbation analysis: (a) time and 𝑧-averaged wave 

surface (blue line), ℎ and instantaneous profiles, ℎ; (b) Squared rms of ℎ′, ℎ′ = ℎ − ℎ; (c) 

skewness of ℎ, 𝑆ℎ; (d) Kurtosis of ℎ, 𝐾ℎ for case#1 with 𝐹𝑟𝑠 = 1.71. 
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Figure 33. Normalized water surface perturbation analysis: (a) time and z-averaged wave 

surface (blue line), ℎ and instantaneous profiles, ℎ; (b) Squared rms of ℎ′, ℎ′ = ℎ − ℎ; (c) 

skewness of ℎ, 𝑆ℎ; (d) Kurtosis of ℎ, 𝐾ℎ for case#2-3 with 𝐹𝑟𝑠 = 2.13. 
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Figure 34. Normalized water surface perturbation analysis: (a) time and z-averaged wave 

surface (blue line), ℎ and instantaneous profiles, ℎ; (b) Squared rms of ℎ′, ℎ′ = ℎ − ℎ; (c) 

skewness of ℎ, 𝑆ℎ; (d) Kurtosis of ℎ, 𝐾ℎ for case#3 with 𝐹𝑟𝑠 = 2.49. 
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3.6 Air Entrainment Profiles and Mixing Cones 

Two mechanisms are identified in the literature that contribute to the instability and 

development of highly turbulent front in a surge wave. These are the advective-diffusion 

region and the breaking front (Takahashi and Ohtsu, 2017). The first instability is induced 

by the velocity gradient at the surge toe (Karimpour and Chu, 2019), and the second by the 

phase discontinuity at the surge front. The formation of this breaking region is independent 

of the inflow conditions and is dependant on the surge height (Rajaratnam, 1967). 

Figures 35(a)(b), 36(a)(b), 37(a)(b) are plots of instantaneous air concentration 

distribution. The orange lines in these profiles delineate the marginal zero value for eddy 

viscosity, 𝜈𝑡 =
𝜇𝑡

𝜌
= 0.00001  m2/s. Along with the water surface profiles, these lines 

provide an envelope where the velocity perturbations are contained. In Figures 35(c), 36(c) 

and 37(c), the averaged air concentration and the upper and lower envelopes, 𝑦𝑠 and 𝑦𝑏, 

are plotted for 𝐹𝑟𝑠 = 1.71, 2.13 and 2.49. The averaged lower envelope of air entrainment, 

𝑦𝑏, is plotted using both eddy viscosity and 𝛼𝑎 = 0.5. Both methods yield similar lower 

envelopes for three Froude numbers. Furthermore, the instantaneous and averaged lower 

envelopes demonstrate the proximity of the shear layer to the rigid bed. In all cases, this 

lower envelope is developed at a depth, where the impact of the boundary layer is not 

present. This is evidently indicating that lower 𝑘𝑝 values for near the boundary region, 

shown in Figures 28, 29 and 30, have no effect on the development of the turbulent region 

across the surge front, between surge toe and the heel. 
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Figure 35. Normalized wave surface, 𝜈𝑡 mixing cone boundary, air mixing cone boundary 

plots of (a) at 𝑡 = 4.0 s, 𝑧 = 0.2 m; (b) at 𝑡 = 4.5 s, 𝑧 = 0.2 m; (c) time and 𝑧-averaged; 

(d) 𝛼ℎ for case#1 with 𝐹𝑟𝑠 = 1.71. 
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Figure 36. Normalized wave surface, 𝜈𝑡 mixing cone boundary, air mixing cone boundary 

plots of (a) at 𝑡 = 4.0 s, 𝑧 = 0.2 m; (b) at 𝑡 = 4.5 s, 𝑧 = 0.2 m; (c) time and 𝑧-averaged; 

(d) 𝛼ℎ for case#2-3 with 𝐹𝑟𝑠 = 2.13. 
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Figure 37. Normalized wave surface, 𝜈𝑡 mixing cone boundary, air mixing cone boundary 

plots of (a) at 𝑡 = 4.0 s, 𝑧 = 0.2 m; (b) at 𝑡 = 4.5 s, 𝑧 = 0.2 m; (c) time and 𝑧-averaged; 

(d) 𝛼ℎ for case#3 with 𝐹𝑟𝑠 = 2.49. 
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Instantaneous and averaged upper and lower bounds, as well as the air 

concentration contours, indicate the extent of air entrainment grows with Froude number, 

which has been previously reported by Wüthrich et al. (2020). To quantify the air 

entrainment across the surge wave, average air concentration, 𝛼ℎ, is defined between the 

free-surface profile at 𝑦𝑠 and the lower boundary of mixing cone in the advective-diffusion 

region denoted by 𝑦𝑏: 

 

𝛼ℎ =∑𝛼𝑎/∑𝛼𝑤

𝑦𝑠

𝑦𝑏

𝑦𝑠

𝑦𝑏

 Eq. 58 

The peak value for average air concentration, 𝛼ℎ shown in Figure 36(d), occurs at 𝑥 − 𝑐𝑡 =

3.4𝑑1 for 𝐹𝑟𝑠 = 2.13, which coincides with the peak of surface perturbation plotted in 

Figure 33(b). This is supported by the plot of 𝑘𝑟𝑒𝑠 for this Froude number in Figure 29(a). 

The area of high larger than scale perturbation in Figure 29(a), intersects with the free 

surface right behind the toe, leading to substantial level of air entrainment near the toe. 

However, the contour implies that the area with intense resolved TKE, 𝑘𝑟𝑒𝑠, deviates from 

the free-surface moving upstream away from the toe. This plot also demonstrates that the 

intensity of the resolved TKE reduces behind the toe. Both phenomena combined, lead to 

rapid induction of air entrainment close to the toe, and subsequently reduction in air 

entrainment, moving further upstream. A similar pattern is observed for 𝐹𝑟𝑠 = 1.71 and 

2.49. Three 𝛼ℎ plots for three 𝐹𝑟𝑠 exhibit similar maximum which can be attributed to the 

similar surge height of about 0.3 m for the 3 cases. As most of the air entrainment exist 

behind the surge front, therefore, coinciding area behind the surge lead to similar 𝛼ℎ plots. 
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Chanson (2003) has conducted laboratory experiments to study air entrainment in surge 

waves by generating dam-break wave. They have reported very high air concentration ratio 

near the toe which agrees with  observation in the present study for 𝛼ℎ. As shown in Figure 

3, for the region near the surge toe which was 0-70 mm, Chanson (2003) reported a peak 

depth averaged air entrainment of 0.77 in the experiment. As moving towards upstream, 

the depth averaged air entrainment decreased as well. This trend of reducing air 

entrainment from toe to upstream coincides with the trend of 𝛼ℎ  for the three Froude 

numbers in present simulations. Air concentration, 𝛼𝑎 , is also plotted against vertical 

coordinate at multiple locations between surge toe and heel in Figure 38. Here, three 

instantaneous profiles as well as the averaged profiles are plotted. The air concentration 

pattern in depth in shear layer and breaking region is reported in literature for hydraulic 

jumps (Takahashi and Ohtsu, 2017; Wang and Chanson, 2015). The air parcels at the toe 

are advected and diffused in the shear layer. The instantaneous profiles often peak at the 

depth of the shear layer, for instance for ℎ/𝑑2 = 0.42 at (𝑥 − 𝑐𝑡)/𝑑1 = 3.505, Figure 

38(c), and ℎ/𝑑2 = 0.48 at (𝑥 − 𝑐𝑡)/𝑑1 = 0.2505, Figure 38(b), for 𝑡 = 4.25 s. While this 

trend is not observed at all times, the averaged profiles also seem to peak where the shear 

layer forms. The position of this local maximum occurs at slightly higher depths as the 

profiles move away from the toe, which is consistent with data reported by Wang and 

Chanson (2015). Afterwards, 𝛼𝑎 grows with the depth and reaches one at the free surface. 

This demonstrates the importance of the TKE across the shear layer in air entrainment and 

air distribution, as observed in Figures 35(d), 36(d) and 37(d). 
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Figure 38. Plots of instantaneous 𝛼𝑎 against ℎ/𝑑2 for 𝑡 = 4.25 s, 4.50 s, 4.75 s, and 

averaged 𝛼𝑎 at (𝑥 − 𝑐𝑡)/𝑑1 is (a) 1.505; (b) 2.505 and (c) 3.505 for 𝐹𝑟𝑠 = 2.13. 

3.7 Velocity Perturbation and Quadrant Analysis 

To quantify the turbulent structures behind breaking surge waves, the instantaneous 

perturbations are extracted and plotted in Figures 39 and 40. These plots are produced at 

two depths: at 𝑦 =  𝑑1 for points located behind the surge toe and those located at the 

midpoint of surge height, 𝑦 = 𝑑1 + 0.5(𝑑2 − 𝑑1). Standard Deviational Ellipses (SDEs) 

are also plotted at 99% and 50%. SDEs delineate the spatial characteristics and distribution 

of perturbations. The orientation of the SDEs is such that its semi-axes align with the 

eigenvectors of the covariance matrix of the sample. The plotted SDEs approximate the 

regions containing 99% and 50% of the perturbations in each perturbation cloud. The 

quadrant analysis is one of the most conventional methods to identify the dominant 
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coherent structures in turbulent flow (Lu and Willmarth, 1973; Rajagopalan and Antonia, 

1982). In order for us to assess the proper periodic domain size in the z−direction, this 

study has conducted the simulation for 𝐹𝑟𝑠 = 2.13  for three domain sizes of 𝑇 =

10Δ𝑥, 20Δ𝑥, and 40Δ𝑥, in cases#2-1, 2-2, and 2-3, respectively. The plotted perturbations 

in Figure 39 in columns 1 to 3, represent the progression of perturbation as  expanding the 

domain in the 𝑧−direction. As seen in the plot of 𝑣′/𝑈2 against 𝑤′/𝑈2 in 𝑇 = 10Δ𝑥 at toe 

in Figures 39(b1), in this narrow domain the 𝑣′/𝑈2 is dominant over 𝑤′/𝑈2. However, 

progressively as the domain was expanded, the SDEs got closer in shape to concentric 

circles, suggesting a comparable magnitude for 𝑣′/𝑈2  and 𝑤′/𝑈2 . From 𝑇 = 20Δ𝑥  to 

40Δ𝑥 the impact of the domain width becomes negligible as shown in Figures 39(b2) and 

(b3). The structure of the perturbations becomes invariant to the domain width at 𝑇 =

40Δ𝑥. This width, therefore, is selected to demonstrate the structure of perturbations in this 

thesis. Figures 23, 24 and 25 contain instantaneous plots of Q-criterion in the 𝑦𝑧-plane. As 

evident there, the coherent structures are present in the 𝑦𝑧-plane. The width of the domain, 

𝑇 = 40Δ𝑥, as shown in all instances for three Froude numbers of 𝐹𝑟𝑠 = 1.71 in Figure 23, 

𝐹𝑟𝑠 = 2.13 in Figure 24 and 𝐹𝑟𝑠 = 2.49 in Figure 25 is significantly larger than the scale 

of eddies formed in the 𝑦𝑧-plane. This ensures that domain size does not suppress the 

perturbation growth in the 𝑧-direction and therefore, fully-developed 3D structures are not 

suppressed. 

The perturbations in the 𝑥𝑦−plane at 𝑦 = 𝑑1 and 𝑇 = 40Δ𝑥, 𝑢′/𝑈2 and  𝑣′/𝑈2, are 

plotted for 𝐹𝑟𝑠 = 1.71, 2.13 and 2.49 in Figures 40(a) and 40(c), respectively. The 99% 
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and 50% confidence SDEs in three Froude numbers are inclined towards the second and 

the fourth quadrant. In quadrants#2 and 4, the product of perturbations in x and y directions, 

𝑢′𝑣′ , is negative. This consequently leads to a positive production of TKE. The 𝑥𝑦 

perturbation cloud is dominated by sweeps (demonstrated by perturbation in quadrant#4) 

and ejections (quadrant#2) (Lu and Willmarth, 1973). Similar pattern emerges in different 

depth across the surge height, as plotted for 𝑦 = 𝑑1 + 0.5(𝑑2 − 𝑑1) in Figure 40(c).  

On the contrary, the 𝑦𝑧 perturbation cloud, illustrates a different pattern. Figures 

40(b), 40(d) show even distribution of perturbation in all 4 quadrants. All 4 mechanisms 

of outward interactions (quadrant#1), sweeps (quadrant#2), inward interactions 

(quadrant#3), and ejections (quadrant#4) become equally significant. This indicates that 

overall product of perturbations in the 𝑦𝑧-plane is zero, leading to no turbulent production. 

A similar trend appears at 𝑦 = 𝑑1 + 0.5(𝑑2 − 𝑑1), where the perturbation cloud for 𝑢′/𝑈2 

versus 𝑣′/𝑈2 leans towards the second and fourth quadrants. Since the shear instability is 

in the 𝑥𝑦-plane (the gradient of x-component of the velocity in 𝑦−direction) the vortices in 

the vicinity of the toe are expected to have a 2D structure. Similarly, the instability caused 

by depth discontinuity also occurs in the 𝑥𝑦-plane (phase or depth gradient across the surge 

front in the 𝑥-component). Therefore, turbulence production is only observed in the 𝑥𝑦-

plane but not in the 𝑦𝑧-plane from the velocity perturbations. The velocity perturbations in 

the 𝑧-direction, 𝑤′ are critical for fully cascading turbulent flow and are comparable in size 

to the velocity perturbation component in the 𝑦-direction, 𝑣′, as demonstrated in Figures 

40(b) and 40(d).  
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Figure 39. Velocity perturbation plots normalized by 𝑈2. (a) and (c) are 𝑢′/𝑈2 vs. 𝑣′/𝑈2; 

(b) and (d) are 𝑣′/𝑈2 vs. 𝑤′/𝑈2 at 𝑦 = 𝑑1 and = 𝑑1 + 0.5(𝑑2 − 𝑑1), respectively. 

Column (1) is for case#2-1; column (2) for case#2-2 and column (3) for case#2-3. 
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Figure 40. Velocity perturbation plots normalized by 𝑈2. (a) and (c) are 𝑢′/𝑈2 vs. 𝑣′/𝑈2; 

(b) and (d) are 𝑣′/𝑈2 vs. 𝑤′/𝑈2 at 𝑦 = 𝑑1 and = 𝑑1 + 0.5(𝑑2 − 𝑑1), respectively. 

Column (1) is for case#1; column (2) for case#2-3 and column (3) for case#3. 
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3.8 Turbulence Anisotropy 

The perturbation clouds have demonstrated the dominance of 𝑢’  and 𝑣’  in turbulent 

production. Plot of Q-Criterion has helped us visualize and investigate the structure of the 

vortices. However, this is a qualitative measure and cannot quantify turbulent structures. 

Reynolds stress usually can be utilized to quantify the turbulent structures. The shear and 

normal Reynolds stresses however is dependent on the choice of the coordinate system. 

The isotropic stress is to be 
2

3
𝑘𝛿𝑖𝑗 . The anisotropic tensor is defined based on the Reynolds 

Stresses as: 

𝑎𝑖𝑗 =
𝑢𝑖
′𝑢𝑗
′

2𝑘
−
𝛿𝑖𝑗

3
 

Eq. 59 

𝑘 =
𝑢𝑛′ 𝑢𝑛′

2
 

Eq. 60 

where 𝛿𝑖𝑗 represents Kronecker delta, 𝑘 is TKE. To present the 3D structure of turbulence 

in the surge wave, Lumley triangle can be utilized for anisotropic visualization, which is 

also known as an Anisotropy Invariant Map (AIM) (Emory and Iaccarino, 2014).  

Therefore, the eigenvalues for the 𝑎𝑖𝑗 : 𝜆1 , 𝜆2 , 𝜆3  can be used to calculate 𝑎𝑖𝑗 

invariants. In order to discover the 3D characteristics of turbulence with Lumley triangle, 

the following invariant needs to be determined from the eigenvalues (Choi and Lumley, 

2001): 

 
𝐼𝐼 =

𝑎𝑖𝑗𝑎𝑗𝑖

2
= 𝜆1

2 + 𝜆1𝜆2 + 𝜆2
2 Eq. 61 
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𝐼𝐼𝐼 =

𝑎𝑖𝑗𝑎𝑗𝑛𝑎𝑛𝑖

3
= −𝜆1𝜆2(𝜆1 + 𝜆2) Eq. 62 

 
𝜉3 =

𝐼𝐼𝐼

2
 Eq. 63 

 
𝜂2 =

𝐼𝐼

3
 Eq. 64 

Three sides of the triangle demonstrate 1D (upper corner), 2D isotropic (left corner), 

and 3D isotropic flow. Sides demonstrate the range between these dimensional behaviours. 

For instance, moving from 1D towards the 3D corner, two components of the perturbation 

grow, until all perturbation components reach an equal magnitude. Between 2D isotropic 

and 3D isotropic, the 3rd perturbation grows. This is often demonstrated as a donut shape 

vortex, where the 3rd perturbation component is smaller than other two.  

The second anisotropy analysis presented here is barycentric map. It is also 

developed as a function of eigenvalues. 

 
𝑥𝐵 = 𝐶1𝑐 + 𝐶3𝑐

1

2
 Eq. 65 

 
𝑦𝐵 = 𝐶3𝑐

√3

2
 

Eq. 66 

where 

 
𝐶1𝑐 = 𝜆1 − 𝜆2 Eq. 67 

 
𝐶3𝑐 = 3𝜆3 + 1 Eq. 68 
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The advantage of a barycentric map, is that equal visual representation is given to all 

limiting states.  

This study has selected the data points across different heights of the surge front: 

ℎ = 𝑑1 , 𝑑1 +
1

4
(𝑑2 − 𝑑1), 𝑑1 +

1

2
(𝑑2 − 𝑑1) and 𝑑1 +

3

4
(𝑑2 − 𝑑1), for Froude numbers 

from 1.71 to 2.49. Figures below show the expecting turbulent structure when plotted with 

𝜉 vs. 𝜂  and 𝑥𝑏 vs. 𝑦𝑏 invariants. The points close to the surge front (within 0.2 m to the 

front) are light colored and at further behind the front the points are darker colored. 

 Figure 41, 42, and 43 show the distribution of the anisotropy points at 𝐹𝑟𝑠 = 1.71, 

2.13, and 2.49, respectively. At a low Froude number of 1.71 most of the points at ℎ/𝑑2 

=0.520 are concentrated to the right side of the Lumley triangle. This indicates that the 

perturbations at the toe start with a 1D structure. Moving away from the toe, other 

perturbation components grow and the overall turbulence are between the 1D turbulence 

and 3D isotropic turbulence, and with the cigar or also known as the rod shape. From the 

barycentric map, the points also tend to locate between 3D and 1D structure but not as close 

as in Lumley triangle. The observations of the turbulent structure at toe height are similar 

for the other two Froude numbers.  

At higher depths, such as at the middle of surge height (grey), the perturbation close 

to the surge front is initiated somewhere near 3D and moves towards rod shape behind the 

front at 𝐹𝑟𝑠 = 1.71. For all three Froude numbers, the grey points behind surge have rod 

shape in both maps. At a higher 𝐹𝑟𝑠 of 2.13, the turbulence at a higher elevation than the 
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toe move toward the left side of the Lumley triangle so the turbulence moves towards 

pancake shape structure between 2D isotropic and 3D isotropic points.  

Similarly, for the barycentric map, higher points are near the 2D and 3D boundary. 

The turbulence at 
ℎ

𝑑2
= 0.546 (orange points) are reaching toward the 3D isotropy or a 

spherical shape as shown in both methods. At 𝐹𝑟𝑠 = 2.49, both maps show that points at 

the higher elevation locate closer to the left side as pancake shape than the previous 𝐹𝑟𝑠.  
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Figure 41. Lumley triangle (upper) and barycentric map (lower) of surge front turbulence 

at 𝐹𝑟𝑠 = 1.71. Blue dots are given at ℎ/𝑑2 = 0.520 at the toe, orange points are given at 

ℎ/𝑑2 = 0.638 at a quarter of surge, grey points are given at ℎ/𝑑2 = 0.755 at half of 

surge and yellow points are given at ℎ/𝑑2 = 0.872 at three quarters of surge. 
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Figure 42. Lumley triangle (upper) and barycentric map (lower) of surge front turbulence 

at 𝐹𝑟𝑠 = 2.13. Blue dots are given at ℎ/𝑑2 = 0.410 at the toe, orange points are given at 

ℎ/𝑑2 = 0.546 at a quarter of surge, grey points are given at ℎ/𝑑2 = 0.682 at half of 

surge and yellow points are given at ℎ/𝑑2 = 0.819 at three quarters of surge. 
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Figure 43. Lumley triangle (upper) and barycentric map (lower) of surge front turbulence 

at 𝐹𝑟𝑠 = 2.49. Blue dots are given at ℎ/𝑑2 = 0.325 at the toe, orange points are given at 

ℎ/𝑑2 = 0.456 at a quarter of surge, grey points are given at ℎ/𝑑2 = 0.607 at half of 

surge and yellow points are given at ℎ/𝑑2 = 0.738 at three quarters of surge. 
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In this chapter flow characteritics have been reported, using different illustrations 

and figures, that indicate the existence of two mechanism causing turbulent behaviour of 

the surge waves. One is the shear instability near the surge toe, which leads to intense TKE 

in Figures 28(a), 29(a), and 30(a). The intense TKE contributes to peak of surface 

perturbations shown in the moments plot of water depth in Figure 32(b), 33(b), 34(b) and 

strong air entrainment at toe in Figures 35(d), 36(d), 37(d). Velocity perturbation also 

indicates the effect of shear instability in 𝑥𝑦 -plane, since Figure 40 shows positive 

turbulent production at toe in 𝑥𝑦-plane as well but no turbulent production in 𝑦𝑧-plane. 

Similar observation at surge middle due to the second mechanism phase discontinuity in 

𝑥𝑦-plane. Lastly, the shear instability also contributes to Q-criterion in Figures 20, 21, and 

22 show concentration of vortices near the surge toe which in the anisotropy maps (Figures 

41, 42 and 43) are identified as 1D structure near the toe and become rod shape as moving 

away from the toe for three Froude numbers. All evidence, from anisotropy analysis to air 

concentration profiles, highlight the role of toe and shear layer initiated from it on the 

formation of a breaking surge wave.  
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Chapter 4  
Summary and Recommendations 

4.1 Summary 

Existing computational studies of breaking waves lack the investigation between air 

entrainment and turbulent characteristics, while many did not account for the 3D structure 

at the front. Present study conducted a series of numerical simulations of breaking surge 

waves with Froude numbers of 𝐹𝑟𝑠 = 1.71, 2.13 and 2.49, using a Large Eddy Simulation 

with k-equation subgrid scale three-dimensional model. By implementing a Volume of 

Fluid (VOF) solver, it accounted for air entrainment and linkage to the coherent structures 

across the surge wave. To solve the partial differential governing equations for the 

variables, discretization schemes are different. The time derivatives are discretized with 

Euler scheme, convection terms of 𝑘𝑆𝐺𝑆 and velocity are discretized with upwind scheme 

and linear upwind scheme for higher accuracy, respectively. For the critical 𝛼𝑤 fields, van 

Leer TVD scheme is used to provide higher accuracy and maintain stability. The 

computational domain is designed with MOC to generate fully developed surge. Periodic 

boundary condition is applied with a size to accommodate the largest eddy in the spanwise. 

In a highly turbulent breaking surge, two mechanisms contribute to instability: formation 

of shear layer, due to the velocity gradient, at the toe, and wave breaking at the air-water 

interface due to phase discontinuity. Present analysis of the water surface perturbation 

patterns, including higher moments, indicate extreme water surface perturbations near the 

toe. This is attributed to the steep wave front and high level of Turbulent Kinetic Energy 
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(TKE) at the toe, which leads to strong aeration as well. The simulation also produced air 

concentration profiles, with the TKE contour and surface perturbations are consistent with 

the data obtained from existing laboratory observations. 

Furthermore, present analysis highlights the role of spanwise perturbations in the 

development of fully-developed turbulent structures behind the surge wave. Using a 

periodic boundary condition, this study ensured that domain size does not constrain the 

growth of spanwise perturbations. The Standard Deviational Ellipses (SDEs) in the 𝑥𝑦 

velocity perturbations cloud for three Froude numbers were oriented towards the second 

and fourth quadrants, leading to positive TKE production. Figures 40(a) and (c) exhibit the 

velocity perturbations in the 𝑥𝑦-plane for surge toe and middle. For example, at 𝐹𝑟𝑠 = 2.13 

at toe, 𝑢′ ranges from -1.37 m/s to 2.73 m/s; 𝑣′ ranges from -1.82 m/ to 0.91 m/s. The yz 

velocity perturbations demonstrate that the magnitude of the spanwise perturbations are 

comparable to other perturbation components. The SDEs, however, suggest that 𝑦𝑧 

perturbations do not contribute to TKE production. Figures 40(b) and (d) exhibit the 

velocity perturbations in the 𝑦𝑧-plane for surge toe and middle. For example, at 𝐹𝑟𝑠 =

2.13 at toe, 𝑣′ ranges from -1.638 m/s to 1.1 m/s; 𝑤′ ranges from -1.092 m/s to 1.456 m/s. 

This illustrates the role of spanwise perturbation in the distribution of TKE and the 

evolution of three-dimensional turbulent structure in a breaking surge wave. The Q-

criterion plots visualize the vortices concentrate near the toe due to shear instability. 

Furthermore, the anisotropy maps quantify the vortices’ structure. 1D behaviour is 

observed at toe and transform to rod shape behind the toe for three Froude numbers. This 
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along with the dominance of production in the 𝑥𝑦- plane, highlight the role of the mixing 

layer in a breaking surge wave. 

The numerical study presented in this thesis, signify the role of the shear layer at 

the toe on i) air entrainment; ii) surface profile perturbation; and iii) turbulent development 

at the toe and behind the wave. This study presented the capability of using Large Eddy 

Simulation model to produce a positive breaking surge wave numerically. High 

performance computer and parallel processing technique made the simulations of 3D 

structure and complex nature of surge waves possible. In addition, the selected 2-phases 

solver effectively exhibited the sharp interface between water and air, and generated a 

realistic and vivid view of breaking surge waves. 

4.2 Recommendations for Future Work 

The 2-phases VOF interFoam solver applied in the current case did not distinguish two 

phases in terms of their fluid properties and velocity field. Therefore, in the future, it is also 

my interest to study the results based on a multiphase solver that separates two phases. 

Secondly, further study is required to investigate the distribution of the anisotropy behind 

the toe and investigate further the interaction of the mixing layer with the surge front. The 

Lumley triangles can exhibit the anisotropy behaviour of the perturbation but do not 

indicate the specific directions for the 1D, 2D or 3D behaviour. Therefore, further work is 

required to investigate anisotropy direction and distribution behind a breaking surge.  
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