
TOWARDS THE INTEROPERABILITY OF BIM AND GIS BY
BUILDING ONTOLOGIES USING SEMANTIC WEB TECHNOLOGY

AMAN ULLAH USMANI

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

GRADUATE PROGRAM IN DEPARTMENT OF EARTH AND SPACE SCIENCE
AND ENGINEERING
YORK UNIVERSITY

TORONTO, ONTARIO

MAY 2021

© Aman Ullah Usmani, 2021

Abstract

Over the past decade, domains of Building Information Modelling (BIM) and Geographic

Information Systems (GIS) have been investigated to establish interoperability for vital

geospatial information exchange. Increasing interest in this research area has driven a

multitude of integration techniques that tend to incorporate other technologies like the

Internet of Things (IoT). Among these methodologies, Semantic Web Technology has

shown promising results towards achieving BIM-GIS semantic interoperability. With its

natural ability to integrate heterogeneous information, the semantic web fabricates a

mesh of data that may include IoT sources. However, before integrating heterogeneous

information of BIM and GIS, presenting it in the semantic web is challenging. The

core of semantic web enables building vocabularies as ontology by using Web Ontology

Language (OWL) and store data in Resource Description Framework (RDF). Defining

semantically rich ontologies is a complicated, time-consuming and error-prone procedure.

In contrast, rich ontology models are essential for accurately mapping cross-domain fea-

tures to address the interoperability problem. While there are approaches available to

produce OWL models, they lack readily available tools or require excessive efforts in their

ii

implementations. Our study proposes a comprehensive conceptual framework to establish

interoperability between BIM and GIS data-formats, link-able with sensors information

using semantic web technology stack. From the three-module framework, study focuses

specifically on the first-module of formal and automatic ontology generation using XML

Schema Document (XSD) to OWL transformation patterns. It implements Janus and

PIXCO frameworks from the ontology generation state-of-the-art with improvements and

enhancements in their XSD to OWL transformations. To validate this study, a prototype

named as EPIXCO (Enhanced Pattern Identification for XSD Conversion to OWL) is im-

plemented to evaluate and analyze generated ontology models. The EPIXCO prototype

utilizes a defined ground truth matrix for results evaluation and comparative analysis

with standard ontologies, stating generated models have rich ontology axioms. These

generated ontology models can be sourced for aligning information to establish cross-

domain ontologies and integrated geospatial information. The future applications of this

mesh of data lead to knowledge-graph and smart geospatial data, available for urban

environment analysis and smart city applications.

iii

April 20th, 2021

To my lovely parents!

iv

Acknowledgements

I have so many people to acknowledge for not just being a part of this journey, but more

importantly, I am thankful for them being part of my life. I wouldn’t be able name each

and everyone of them here, but in my life scroll they are well written, with bold fonts.

First of all, I would praise ALLAH Almighty. Alhamdulillah, I wouldn’t have achieved

anything in my life without HIS will and blessings.

I would like to express deepest gratitude to my supervisor and mentor, Dr. Mojgan

Jadidi, for believing in me right from the first interview. Her supervision, support and a

constant source of inspiration has paved the path to achieve this goal. Its been a pleasure.

I would take this opportunity to acknowledge the sheer guidance and throughout

motivation of Dr. Gunho Sohn, my supervisory committee member, with his vital and

remarkable knowledge of my research. I am very humble and thankful to my exam

committee members, Dr. Magdalena Krol and Dr. Manos Papagelis, for their acceptance

to assess and adding value to my research.

Dr. Muhammad Usman, this journey wouldn’t even have started without mentioning

this person. A brother, dearest old friend, mentor, and a motivational catalyst.

v

Thank you to a friend, Maryam Jameela, for being a power house and a constant

support system. Afnan Ahmad, an old friend reunited, for being adventurous, supportive,

and bearing my personalities. A powerful couple, Zahra Arjmandi and Ali Akbar, thank

you for sharing wonderful life perspectives while preparing delicious Iranian food and tea.

Also, thank you to the York University for giving me the opportunity and my GeoVA

lab colleagues and friends; Sepideh Dibadin, Xuyang Han, Amirhossein Nourbakhshrezaei,

Hamid Kiavarz Moghaddam, and Sarah Kaykhosravi for sharing wonderful inspirations.

A huge shout-out to the amazing people; Ima Ituen, Myrto Tzamali, Mahya Rad,

Madiha Khalid, Saim Mehmood, Dr. Jungwon Kang, Dr. Ali Baligh, Kivanc Baba-

can, Sun Park, Jacob Yoo, Hyungju Lee, Muhammad Kamran, Azad Maghooli, Cosette

Gilmour and Agata Szeremeta.

The two brothers from another mother, Umair Khan and Uzair Khan, were home

away from home. A heartwarming thank you to my genius best friends, Hassan Ali

Anjum, Syed Muhammad Umair, and Imran Khalil, a.k.a. Chaar Yaar Charon Bekaar

(Four Friends All Four Useless) for moulding me as a better person and a programmer.

Last, but not the least, and humbly above everyone, my little big family. I can’t be

thankful enough of the parents I have been blessed with. My father, Mr. H. Usmani,

guiding me in every bright and dark moments of life. My mother, Mrs. Uzma Tayyaba,

her love, trust and strength made me what I am today. My six siblings; Nazia, Asma,

Sheharyar, Huma, Saba and Sana, for being thrusters of my life. I wouldn’t have made

it this far without my amazing family. Love you all!

vi

Table of Contents

Abstract ii

Dedication iv

Acknowledgements v

Table of Contents vii

List of Tables xii

List of Figures xv

List of Algorithms xx

List of XSD Listings xxii

1 Introduction 1

2 Background and Related Work 9

2.1 Fundamentals of BIM and GIS . 10

vii

2.1.1 Building Information Modelling (BIM) 10

2.1.2 Geographic Information Systems (GIS) 12

2.2 BIM and GIS as Correlated Technologies 13

2.3 Trends of BIM-GIS Integration Methodologies 16

2.4 Applications of BIM and GIS Integration 18

2.5 Role of Semantic Web Technology in BIM and GIS Integration 19

2.6 Summary . 21

3 XML Schema in Semantic Web for Ontology Generation and Alignment 23

3.1 What is an Ontology? . 24

3.2 Domain of Semantic Web . 25

3.2.1 Resource Description Framework (RDF) 26

3.2.2 Web Ontology Language (OWL) 28

3.2.3 SPARQL . 30

3.2.4 Synthesis . 31

3.3 XML Schema Documents, Components and Design Styles 32

3.4 XSD Specifications of ifcXML and CityGML 37

3.5 Using XML Schema for Ontology Generation and Alignment 41

3.5.1 Transforming XSD to OWL Models 42

3.5.2 Mapping of Ontology Models . 44

3.6 Potential Solution for Ontology Generation 46

3.7 Summary . 48

viii

4 GeoBIM Benchmark Project: Investigating Interoperability between

BIM and GIS 51

4.1 Overview . 51

4.2 Benchmark Materials . 53

4.2.1 Provided Data for Benchmark . 53

4.2.2 Results Template for Benchmark Tasks 57

4.3 GeoBIM Benchmark: Task 4 . 59

4.3.1 IFC to CityGML Conversion . 59

4.3.2 CityGML to IFC Conversion . 65

4.3.3 Summary . 68

4.4 Study Analysis and Conclusion . 70

5 Methodology: Ontology Generation of an XML Schema 72

5.1 Preparatory Conceptual Framework for Semantic Integration 74

5.1.1 Ontology Generation for Geospatial Data (OGGD) 75

5.1.2 Ontology Alignment for Geospatial Data (OAGD) 76

5.1.3 Semantic Graph Generation . 78

5.2 EPIXCO Framework . 79

5.2.1 Formalization of XSD and Transformation Patterns 81

5.2.2 Patterns Identification and Filtration 86

5.2.3 Ontology Generation . 93

5.3 Enhancements to Janus and PIXCO Frameworks 97

ix

5.3.1 Improving Janus Transformation Patterns 97

5.3.2 Refactoring PIXCO Algorithms . 99

5.3.3 Reconstructed Mapping Rules of XSD to OWL 102

5.3.4 General Considerations in Enhanced Framework 104

5.4 Summary . 105

6 EPIXCO Implementation: Building Ontologies Automatically 107

6.1 Implementation Features . 108

6.2 Experiments Preparations . 116

6.2.1 XSD Extraction from IFC EXPRESS File 116

6.2.2 Ground Truth Matrix . 117

6.3 Experimental Results . 118

6.3.1 Validation of OWL Models . 119

6.3.2 Quantitative Evaluation . 120

6.3.3 Comparative Analysis . 122

6.3.4 Performance Measures . 124

6.4 Discussion and Considerations . 126

6.5 Overall Analysis and Conclusion . 127

7 Conclusion and Perspectives 129

7.1 Conclusion and Main Contributions . 129

7.2 Research Challenges and Limitations . 132

x

7.3 Perspectives and Future Works . 134

Bibliography 135

xi

List of Tables

2.1 Amirebrahimi et al. (2016)’s three-level categorization of BIM-GIS inte-

gration solutions (Data , Process , Application levels) and ‘EEEF’ com-

parison criteria by Liu et al. (2017). 17

3.1 Classification of XML schema design styles listed by Brahmia et al. (2019). 33

3.2 XML schema specifications for different component of multiple sets of XML

schemas. 40

3.3 Comparison study of XML/XSD to OWL transformation approaches by

Hacherouf et al. (2015, 2019) sorted by year of their publications. 43

3.4 XSD to OWL mapping rules defined in OWLMAP (Ferdinand et al. 2004) 44

3.5 A subset of mappings presented correspondence rules of XSD to OWL

transformation patterns from Janus Bedini et al. (2011). 47

4.1 Noardo et al. (2019a) presented list of datasets for GeoBIM benchmark

activity. 54

xii

4.2 Conversion time for Task4 attempts, Experiment 1 and 2 for IFC to CityGML

denotes FME Quick Translator and FME Workbench conversions respec-

tively, for CityGML to IFC Experiment 1 is for FZKViewer conversions. . 69

5.1 A partial matrix to illustrate the formal context for patterns and XSD

elements. 84

5.2 Helper methods for Algorithm 1 and 2 implemented in EPIXCO framework

for the improved patterns identification (details in Section 5.3.2). 90

5.3 Helper methods implemented in EPIXCO for treatment of similar patterns

among Algorithm 3 and 4 (details in Section 5.3.2). 90

5.4 List of few major improvements identified among XML/OWL syntax of

transformation patterns in Janus (Bedini et al. 2011) that are enhanced

(as bold) in EPIXCO. 98

5.5 A summary of enhanced considerations and improvements as contribution

in EPIXCO methodology compared with PIXCO Hacherouf et al. (2019)

approach. 106

6.1 The FS(XS) model defined for the information extracted from XSD schema

in Listing 6.1. 110

6.2 The iterative states of variables over execution of Algorithm 1 and 2 on

the input FS(XS) model specified in Table 6.1. 112

xiii

6.3 The resulting matrix of (a) PI of Listing 6.1 by identification algorithm

(Algorithm 1) (b) PP of given PI Matrix by pertinent patterns (Algorithm 3).112

6.4 XSD constructions based different between similar patterns set 2 refer-

enced from Figure 5.4. 113

6.5 Ground Truth of input XML schema specifications (listed in Table 3.2)

with unique OWL axioms count calculated using rules in Figure 5.5. . . . 117

6.6 Filtered Ground Truth of input XSD schemas with unique OWL axioms

count of currently implemented 30 transformation patterns. 118

6.7 OWL axioms generated by proposed method for the OWL models of se-

lected XML schemas. 121

6.8 The accuracy of axioms (1 being highest) calculated using established

ground truth and axioms predicted by EPIXCO for all XSD elements. . . 121

6.9 The revised accuracy of axioms recalculated by removing XSD components

of unimplemented patterns from ground truth. 122

6.10 Comparison between Pauwels and Terkaj (2016) and EPIXCO ontolo-

gies with statistics of retrieved from Protégé (Musen 2015) tool. 123

xiv

List of Figures

2.1 BIM models example visualization in BIM Vision: (a) Scott Library (IFC2x3)

at York University Campus and (b) FZK Haus (IFC 4) by Applied Com-

puter Science (IAI) at the Karlsruhe Institute of Technology (KIT). . . . 11

2.2 Web of Science (https://apps.webofknowledge.com/) report of publications

and citations regarding BIM and GIS Integration. 14

3.1 Semantic Web stack of technologies - layout inspired by Lu and Asghar

(2020). 26

3.2 An example of RDF triple S-P-O format. 27

3.3 A Venn Diagram by Group (2009) of OWL2 profiles EL, QL and RL ex-

hibiting syntactic sub-subset, each profile trades off different aspects of

OWL’s expressive power (more information, less performance). 28

3.4 Percentage distribution of the declaration of Global and Local complexType

tags among input XML schemas. 41

xv

3.5 Percentage distribution of element tag across XML schemas either with

attributes type or ref, or anonymous declaration. 42

4.1 IFC data provided for benchmarking (Noardo et al. 2019a) to test software

tools and procedures on equal basis: (a) georeferenced Myran.ifc model (b)

entities inconsistency among stories in Myran.ifc (c) Savigliano.ifc model

(d) achitectural model of UpTown building, (e, f) show IFCGeometries

IFC2x3 and IFC4, respectively. 55

4.2 CityGML data provided for benchmarking (Noardo et al. 2019a) (a) Build-

ings LoD3 model (b) Amsterdam City LoD1 model (c) Rotterdam LoD1

& LoD2 Model (d) Separate Rotterdam LoD2 model (e) Rotterdam LoD1

model. 56

4.3 Section 4 of the Task 4 results template for GeoBIM Benchmark submission. 58

4.4 Procedural steps to perform an automatic IFC to CityGML conversion

using off-the-shelf FME Quick Translator tool. 60

4.5 Quick translation results of IFC data into LoD4 CityGML models where

not all geometries were transformed, and minimal semantics were kept with

CityGML GenericCityObject feature type. 61

xvi

4.6 FME Quick Translator tool conversion attempt for IFCGeometries (a)

IFC4 (d, e) IFC2x3, where geometry types IfcRevolvedAreaSolid, IfcEx-

trudedAreaSolid and IfcSweptDiskSolid highlighted are not converted; (b, c)

and (f, g) show FME Data Inspector and FZKViewer visualizations respec-

tively. 61

4.7 Partial visualization of a sourced example tutorial workspace for converting

IFC model to CityGML with LoD4 using FME workbench where each block

represents feature type with respective reader and writer, connected with

FME transformers. 63

4.8 Conversion results of IFC data into LoD4 CityGML models using FME

Workbench where limited features were transformed, and related semantics

(attributes, entity types and hierarchy) were kept with respective CityGML

feature types. 64

4.9 BIMvision visualization of converted IFC model from Buildings LoD3 CityGML

data using FZKViewer shows correct semantic and geometric transforma-

tion of features. 66

4.10 Feature details of converted Buildings LoD3 IFC model shows correct map-

ping of entities. 67

4.11 CityGML to IFC conversion results of Amsterdam LoD1 using FZKViewer

export functionality representing building footprints with correct attribute

information. 68

xvii

5.1 A comprehensive conceptual framework of primary methodology intro-

duced for the seamless integration of BIM and GIS data linked with IoT. 75

5.2 A formal methodology design of EPIXCO for automatic ontology genera-

tion of XML schema by using transformation patterns. 80

5.3 A full concept lattice of patterns in the FCA context with transformation

patterns and their respective XSD elements, inspired by Hacherouf et al.

(2019). Filled circle denotes intersecting node with patterns and XSD

elements, half gray nodes are only XSD elements, half blue are patterns

nodes, and empty nodes are simple connections. 85

5.4 Sets of similar patterns listed in PIXCO framework extracted from concept

lattice Figure 5.3. 85

5.5 Reconstructed and enhanced correspondence rules of mapping XSD to

OWL for an improved transformation design in EPIXCO. 103

6.1 Overall architecture of EPIXCO. 108

6.2 Principle mapping visualization of procedurally generated OWL blocks in

TTL format (right) corresponding to an XSD blocks (left) of Listing 6.1

by EXPICO prototype. 114

6.3 A WebVOWL visualization of ontology model generated for Listing 6.1

using EPIXCO architecture. 115

xviii

6.4 WebVOWL visualization of only Class axioms of ontology automatically

generated for the XSD schema ‘IFC4 ADD2 TC1’ using the EPIXCO

framework, right image shows top right cluster of classes of left image. . . 120

6.5 Time distribution among three phases of EPIXCO framework for generat-

ing ontology models of input XML schemas. 124

6.6 Graph comparison for the total processing time taken in ontology genera-

tion with respect to number of XSD constructions. 125

6.7 Distribution of XSD constructions processed by EPIXCO framework from

total constructs of input XML schema sets. 126

xix

List of Algorithms

1 PatternsIdentification - (Extended algorithm from Hacherouf et al. (2019)

introduces handling of PI sub-martix) . 87

2 getIdentifiedPatterns - (Improved algorithm from Hacherouf et al. (2019)

with enhanced identification and intersection sub-algorithm) 88

3 PertinentPatterns - (Extended algorithm from Hacherouf et al. (2019) with

improved PP matrix by handling duplicate records of identified patterns) . 91

4 getPertinentPatterns - (Improved algorithm from Hacherouf et al. (2019)

that explicitly handles similar sets Psim1 and Psim6) 92

5 OntologyGeneration - (Improved ontology generation algorithm) 94

6 writePatterns 1 . 95

7 writePatterns 3 . 95

8 writePatterns 6 8 9 . 96

9 writePatterns 17 18 27 28 . 96

xx

10 getIntersection - (Enhanced sub-algorithm to identify correct Block forming

pattern in EPIXCO framework) . 100

11 getTypeOfAttributeValue - (Enhanced sub-algorithm for retrieval of correct

type for a given attribute in EPIXCO framework) 101

xxi

List of XSD Listings

3.1 Russian Doll style XSD. 34

3.2 Salami Slice style XSD. 34

3.3 Venetian Blind style XSD. 35

3.4 Garden of Eden style XSD. 36

3.5 Bologna style XSD. 36

3.6 Sample snippet from IFC 4x1 XSD design. 38

3.7 Sample design snippet from cityGMLBase XSD. 39

6.1 An example XSD schema inspired by example in PIXCO (Hacherouf et al.

2019) reused for better relative illustration with EPIXCO framework. . . 109

xxii

Chapter 1

Introduction

Over the past decade, virtual city applications have been reshaping the future of the

metropolitan cities. They hold great potential in the formulation of sustainable, effective

strategies and policies by creating, modelling and visualizing 3D virtual environments

with substantial geospatial information. The information available from such diverse

sources is a collectively efficient and integral part of Smart Cities (Amini et al. 2019).

Smart City is an urban development vision that uses data and technology for managing

financial, environmental and social impacts of recent and future growth in the metropoli-

tan regions by visualizations, simulations and drawing knowledge from the information

systems (Carneiro et al. 2019). A substantial provision for such emergence is the data

collected from cutting-edge technologies to source information and lay the foundations

of a smart city. Such foundations necessitate the fusion of data from broad-spectrum

domains revealing Smart Data (Howell et al. 2017), which unravel not only as an idea of

the smart city but also machine-understandable, semantic information.

1

Motivation and Aim

The future of urban planning and development is unfolded as an important research area

to build smart cities (Jamei et al. 2017). The purpose of a smart city manifests virtual

representation of detailed geospatial and sensor information as a digital twin, which relies

on data collected from Architecture, Engineering, Construction and Facility Management

(AEC/FM), geospatial and Internet of Things (IoT) domains.

The open-standard data collection in these domains and conventional representations

using cutting-edge technologies, like Geographic Information Systems (GIS) and Building

Information Modelling (BIM), has accelerated the emergence of this research area (Fosu

et al. 2015, Ma and Ren 2017, Wang et al. 2019). Not to mention, information collected

from internet-connected devices – referred to as IoT – has equally engaged incorporat-

ing sensors data with BIM and GIS technologies. Interlinking information from smart

devices within building and geospatial context are favourable. Though, an extensively

integrated system of BIM, GIS and IoT requires preceding integrated knowledge of BIM

and GIS. Several studies have recently investigated the benefits of effective integration of

BIM and GIS (even with IoT) in the perspective of urban planning, development, and

analysis (Song et al. 2017). However, achieving integration among two distinct domains

of BIM and GIS itself is quite challenging (Liu et al. 2017). Traditional methods for in-

tegrating BIM and GIS have surfaced issues like data incompatibility, misinterpretation,

and absence of information.

Although the foundations of BIM and GIS systems have been developed to address

2

their respective AEC/FM and geospatial problem domains, they have progressed, indi-

vidually, stemming overlapping features with the technological advancements and user

specifications. Data in each of these systems represents vital information. Thus, to ad-

dress the redundant data and vitalize cross-domain features, bridging the gap between

their heterogeneous data-formats without an information loss becomes a critical chal-

lenge (Liu et al. 2017).

On the contrary, Semantic Web Technology methods have shown promising results due

to their natural ability towards heterogeneous data integration and eventually devising

Smart Data. However, existing semantic integration methods are mainly limited to the

manual or semi-automatic processes for a core feature of the semantic web, ontology.

Relatively, mostly automatic processes overlook ontology particularities, which is the

main building block in the semantic web. Devising a comprehensive automated method

of generating BIM and GIS ontologies to achieve interoperability between these domains

remains unanswered. This study aims to provide a novel framework using semantic web

technique to achieve interoperability among BIM and GIS, with a focal point of the

automatic ontology generation process.

Problem Domain

The process of ontology development is very complex, where expressing correct semantics

of data in an ontological representation itself requires base-knowledge. The literature

of ontology generation highlights semi or even fully-automated processes; however, their

3

frameworks are primarily manifested for corpus-based approaches and have a minimal ex-

tension of supporting existing ontologies. Also, the methods lack the related tools readily

available for ontology generation. Therefore, creating complicated geospatial ontology is

a laborious task.

Furthermore, for fusing information of heterogeneous datasets, diverse ontologies of

building and geospatial information systems require mapping techniques that fulfill inter-

linking of their entities to obtain cross-domain integrated ontology, which characterizes

cross-domain integrated data for information analysis and knowledge-graph applications.

Such ontology mapping approaches are generally limited to corpus-based studies, which

further requires investigating alignment knowledge for considerable information in the

building and geospatial domain. Most of these approaches adapted for the geospatial

ontology alignment are either manual or lacking in mapping across entities.

Hence, the ontology generation and ontology alignment of BIM and GIS data-formats

are essential courses of action to investigate BIM and GIS interoperability before being

integrated with the IoT information for smart city applications and smart data solutions.

Broad Research Goals

The semantic web approach establishes information exchange across independent and

fundamentally incompatible data formats in the multitude of BIM and GIS integration

methodologies. The general goal of this research project aims for a semantically inter-

operable and seamlessly integrated system of BIM and GIS data with IoT by emanating

4

semantic web technology approach that can be divided in three goals. However, in this

study the focus is narrowed down and explicit to the integration of BIM and GIS as the

first goal with its in-depth implementation and later provides a brief synopsis on two

following goals proposed for future work:

• Generating ontology of BIM and GIS data: To achieve semantic integration, ontolo-

gies of BIM and GIS need to be generated for schema structures of their standardized

XML-based data-formats, IFC-XML and CityGML, respectively. A formal method

with schema modelling, and defined patterns to transform elements from XML

schema format to corresponding ontological representation, will be determined to

induce enriched ontologies of BIM and GIS.

• Mapping of cross-domain ontologies: The generated ontology models of BIM and

GIS data will be further used to identify corresponding mappings between their

entities and properties. The machine learning techniques will investigate the linking

of cross-domain elements to obtain integrated geospatial ontology, serving as a

foundation for saturating information from cross-domain building and geospatial

datasets.

• Generation and optimization of semantic graph: Finally, to manifest integrated

information, data from IFC-XML and CityGML is adjoined with integrated cross-

domain ontology resulting graph in RDF format. Furthermore, IoT data will be

inter-linked with generated RDF graphs for semantically rich geospatial and sensor

5

information. RDF graphs are sizeable and require optimization. Thus, we propose

clustering and community optimization techniques for manipulating RDF graphs.

Research Objectives

This study focuses on first-goal of the broad research spectrum (mentioned earlier) for

semantic interoperability of BIM and GIS. The major research objectives of this study are

to establish a formal methodology to transform XML schemas into ontology models. The

formal method addresses the problem of automatic ontology generation for large XML

Schema Document (XSD), like ifcXML and CityGML of BIM and GIS, using defined

correspondence rules. The general framework extracts information from XSD schema

mapped with defined sets of patterns to build ontology models. Perspective of framework

objectives can be viewed as determination and implementation of three major steps:

define formal models of extracted information from XSD document and transformation

patterns, identifying pattern among given XSD schema and generating the respective

cohesive ontology model.

Research Contributions

This research outcome mainly contributes towards the investigation of interoperability

between BIM and GIS in the following collaborations and publications:

• The ISPRS-EuroSDR GeoBIM Benchmark 2019 – Participation to investigate in-

teroperability of BIM and GIS for GeoBIM Benchmark project (more details in

6

Chapter 4).

• Automatic Ontology Generation of BIM and GIS Data (Usmani et al. 2020) – XML

schema-based formal procedure for ontology generation (more in Chapter 5).

• Formal Transformation of XML Schema to Ontology Models – Publication in prepa-

ration for the developed EPIXCO framework to build ontology models automatically

(more in Chapter 6).

Thesis Outline

This Chapter provides an introduction to the research project with motivation to achieve

interoperability of BIM and GIS data and potentially provides a solution to the automatic

ontology generation problem. The outline of this thesis for the rest of the document is

organized as follows:

• Chapter 2 presents an introduction to BIM and GIS technologies. It highlights the

need and trends of the research studies conducted for the BIM and GIS integration

with a fundamental perspective of their integration gap and enlisting comprehensive

literature with the role of the semantic web in achieving integration.

• Chapter 3 delves with a brief overview of ontology, semantic web and its technol-

ogy stack as a promising technique for achieving interoperability among BIM and

GIS. It portrays the XML schema components to understand XSD designs and the

approaches proposed for XSD to OWL transformations.

7

• Chapter 4 features a study that investigates standard IFC and CityGML data-

formats with uncovering the role of existing preparatory software tools and proce-

dures on these data standards towards BIM and GIS interoperability.

• Chapter 5 features a novel framework design of BIM and GIS data integration using

semantic web technologies. It defines an ontology generation process, as the core

of this research study, an extensive framework to transform XML schema into an

OWL model.

• Chapter 6 provides the implementation of the proposed framework for ontology

generation and validates the methodology with experiments and results of selected

XML schema structures.

• Finally, Chapter 7 addresses the conclusion of this research study by featuring main

contributions in this dissertation, highlighting the limitations of the implemented

system, and possible recommendations to possible future extensions.

8

Chapter 2

Background and Related Work

This chapter presents the theoretical background of the focused technologies, BIM and

GIS, in this dissertation. It explicitly focusing on their integration area of interest with

modest involvement of sensors technology, the motive of their integration, and the applica-

tions of research conducted this study. The Chapter is organized as follows: introduction

to the fundamentals of BIM and GIS domains is provided in Section 2.1; Section 2.2

discusses dissimilarities and rudimentary factors of each domain and their supportive

data-formats; Section 2.3 delves in extensive literature review of BIM and GIS integra-

tion methods and ensues the potential of their integrated applications in Section 2.4;

Section 2.5 specifies the role of Semantic Web Technology adapted in approaches towards

achieving interoperability among BIM and GIS; and lastly, in the Section 2.6, the Chapter

is summarized by highlighting problems in literature integration methods, and recognizes

an integration approach with possible potential BIM-GIS interoperability solution.

9

2.1 Fundamentals of BIM and GIS

2.1.1 Building Information Modelling (BIM)

BIM is the process to create, store and manage information related to infrastructure,

particularly buildings, throughout their life cycle (Eastman et al. 2011). It comprises a

set of interacting policies and technologies highly used by the Architecture, Engineering,

Construction, and Facility Management (AEC/FM) industry for infrastructures with rich

3D geometric and semantic information (Azhar 2011, Zhu et al. 2018).

Besides efficient tools for modelling, analyzing and managing detailed 3D models,

based on its enhanced design and construction techniques, BIM offers additional dimen-

sions such as cost, schedule, accessibility, security, maintainability and energy simulation

(Taylor and Bernstein 2009). BIM methodologies are also characterized by their Level of

Development (LOD), different from Level of Details (LoD) in GIS, and defines LOD100-

LOD500 to monitor the design progress. Figure 2.1 presents basic BIM models with

LOD200 information. BIM moved to mainstream technologies over a while, disrupting

the traditional building and construction designing platforms.

The buildingSmart Industrial Foundation Class (IFC) is the most comprehensive and

popular open-standard data format for BIM models widely accepted and supported by

most BIM-related software in the AEC industry (Deng et al. 2016). IFC models are

presented in EXPRESS data specification language, where the IFC entities in these mod-

els are referred by line number, and the most commonly used IFC formats are IFC2x3

10

(a) (b)

Figure 2.1: BIM models example visualization in BIM Vision: (a) Scott Library (IFC2x3)
at York University Campus and (b) FZK Haus (IFC 4) by Applied Computer Science
(IAI) at the Karlsruhe Institute of Technology (KIT).

and IFC4 (Pauwels and Terkaj 2016). The information exchange format of IFC also

has an Extensible Markup Language (XML) version, ifcXML, more flexible for BIM

methodologies in XML-based environments. However, it is not widely used in industry

as EXPRESS-based IFC due to the verbosity of XML document format and performance

limitations (Pauwels et al. 2017a). The buildingSmart releases for the latest versions1 of

IFC4 specifications have also made steps towards interoperability with GIS by including

new elements like “IfcGeographicElement” and “IfcGeographicElementType” (Liu et al.

2017). However, BIM and its supporting modelling formats do not include surrounding

information and have limited spatial inquiry (Irizarry and Karan 2012a). Nevertheless,

IFC is a complete but complex standard, providing several entities for describing the

buildings and numerous solutions available to model BIMs.

1https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/

11

2.1.2 Geographic Information Systems (GIS)

GIS is an information system with a framework to collect, manage, analyze, and present

spatial data for performing spatial analysis and visualization for better and informed

decision-making practices (Hanchette 2003). The GIS decision-support system provides

powerful tools for storing and manipulating spatial information and has been long used

for modelling large environments, integrating and visualizing assets information with

geo-referencing (Breunig et al. 2020). The association of location information with data

provides GIS components to feature spatial and temporal analysis (Song et al. 2017).

In the geospatial domain, City Geographic Markup Language (CityGML) (Gröger

and Plümer 2012) is currently the most comprehensive standard of urban information

with semantic 3D modelling. It has emerged as a prominent exchange format towards

integrating BIM and GIS (Amirebrahimi et al. 2016, Malinverni et al. 2019). CityGML,

specified as XML-based Geographic Markup Language (GML) grammar, is an open-

data standard by Open Geospatial Consortium (OGC) that structures the information

about cities and contextual features. The detailed standard introduces the concept of

Level of Detail (LoD), including four levels LoD0-LoD4, that ranges objects and data

from landscape to interior architectural model. Compared with the first generation of

CityGML, the second generation offers richer 3D models not just of buildings but also

tunnels and bridges, hence closing the gap with the BIM infrastructural elements (Yao

et al. 2018).

With significantly growing computing power, tool and technologies, and advancements

12

in data acquisition methods, the geospatial context in GIS systems have developed from

2D information to complex macro-scale 3D models with automated workflows (Becker

et al. 2009, Biljecki et al. 2015).

2.2 BIM and GIS as Correlated Technologies

The principle system design of BIM and GIS are to exploit their domain-oriented in-

formation for enhanced designs, management and analysis (Song et al. 2017). Data

in 3D-space collected using laser point cloud technology provides virtual models of the

physical environment utilized in 3D GIS to create city models with explicit geometry and

semantics (Yao et al. 2018). Eventually providing adequate information and visualization

for simulations and analytical studies of buildings and surrounding infrastructures in an

as-built environment (Biljecki et al. 2016b).

Mutual Extrapolation: BIM is a digital representation of detailed infrastructure

elements in the AEC domain. On the contrary, GIS focuses on collecting, storing and

analyzing geospatial data at a large scale. Both of these domains were developed with fun-

damentally different purposes. However, over the last decade, increased computing power

and growing user requirements of linking cross-domain specific information have led tools

and technologies of both BIM and GIS domains to incorporate and process element fea-

tures at the outset across domain (El-Mekawy and Östman 2010). Multiple applications

in AEC domain require adjoining information for pre and post-construction phases, in-

volving GIS data. For example, BIM processes incorporate surrounding features alongside

13

Figure 2.2: Web of Science (https://apps.webofknowledge.com/) report of publications
and citations regarding BIM and GIS Integration.

detailed infrastructural elements to support analysis of infrastructure with environmen-

tal information, generally retrieved from other spatial or existing GIS tools (Irizarry and

Karan 2012b, Zhao et al. 2019). In contrast, GIS models are increasingly embodying de-

tailed structural and building information in city-level information (Amirebrahimi et al.

2016) to share semantics of individual elements — traditional domain of BIM.

Such requirements enabled increase in remodelling and mirroring of similar features

in either domain. Nonetheless, it leads towards extra efforts of duplicating information

for the overlapping features, as both BIM and GIS systems store and represent data in

different formats (Wang et al. 2019). Therefore, these necessary conditions have acceler-

ated the focus of bringing BIM and GIS domains together. During the last decade, many

studies (Figure 2.2) have been conducted to achieve integration of these heterogeneous

systems.

14

Divergent Features: Interoperability of BIM and GIS standard formats, IFC and

CityGML, is the mapping between their key schemas, as they have different elementary

development purposes, concepts and structures (Deng et al. 2016, El-Mekawy and Östman

2010, Gröger and Plümer 2012). The semantic mismatch among key schema elements

of these two systems is a critical barrier towards interoperability. Correspondingly, the

geometric representation types like Boundary Representation (B-Rep) are defined in IFC

and CityGML with their own geometric configurations supported by respective tools,

which further contributes to obstruction in geometrical information exchange (Zhu et al.

2020). Nevertheless, even with the data or domain-oriented differences elevating semantic

and geometrical complexities, integration of BIM and GIS is considered as great potential

to bring benefit in multiple application areas (Liu et al. 2017) like facility management

and energy management applications to fulfill demands of decision making (details in

Section 2.4). The section below highlights the perspectives of methodologies undergone

the integration for BIM and GIS.

Integration with IoT: Consequently, BIM integrated with the Internet of Things

(IoT) devices presents a powerful paradigm, but its integration still appears to be at

nascent stages (Tang et al. 2019). Furthermore, including GIS with BIM and IoT pro-

vides the capability of its applications towards smart management (Park et al. 2018)

including Augmented Reality (AR)/Virtual Reality (VR) technologies (Carneiro et al.

2019). However, even if BIM is integrated with IoT, question of integrating GIS infor-

mation with BIM still remains open.

15

2.3 Trends of BIM-GIS Integration Methodologies

A series of studies presents a critical and state-of-the-art review on the BIM and GIS

integration (Liu et al. 2017, Zhu et al. 2018) by complimenting their domain and data-

oriented strengths and weaknesses of most relevant integration techniques (Breunig et al.

2020, Song et al. 2017). With potentialities of integration, data interoperability efforts

focusing on BIM and GIS integration are made using prominent information exchange

formats of two domains, IFC and CityGML (Sani and Rahman 2018). Furthermore,

benchmarking studies have been conducted to investigate the BIM and GIS formats, and

existing methodologies for their integration (Noardo et al. 2020a,b).

IFC and CityGML are widely accepted open-standard formats from BIM and GIS

community and used in integration methods. Various efforts have been conducted to

classify BIM and GIS integration, such as; semantic or geometric level, unidirectional

or bidirectional conversions, and commercial or open-source software (Fosu et al. 2015).

Irizarry et al. (2013) categorized the integration methods into two interrelated levels:

fundamental level and application level, where the fundamental level focuses on data ex-

change standards and interoperability at the data level, while application-level focuses

on developing new methods with full potential to exploit BIM and GIS system together.

Kang and Hong (2015) presents BIM and GIS integration have undergone various perspec-

tives and classified these approaches into five groups based on similar subject keywords:

schema mapping (Deng et al. 2016, El-Mekawy and Östman 2010), integrated web ser-

vices (Cruz et al. 2004, Karan and Irizarry 2015), ontological modelling (Hor et al. 2016,

16

Integration Methods Effectiveness Extensibility Effort Flexibility
New standards and models case by case case by case case by case case by case
Conversion, translation and

extension (manual)
medium high high medium

Conversion, translation and
extension (semi-automatic)

medium medium medium medium

Semantic web technologies high high high medium
Services-based methods high low high low

Application focused methods case by case low low low

Table 2.1: Amirebrahimi et al. (2016)’s three-level categorization of BIM-GIS integration
solutions (Data , Process , Application levels) and ‘EEEF’ comparison criteria by Liu
et al. (2017).

Karan and Irizarry 2014, Peachavanish et al. 2006), data transformations and schema

extensions (El-Mekawy et al. 2012). Furthermore, a significant three-leveled framework

classified by Amirebrahimi et al. (2016) is presented in Table 2.1 which categorizes the

integration studies into application, process and data level.

Data Level Integration: At the data level, models and structures are modified

or extended to meet requirements. A wide range of studies conducted at the data level

achieves interoperability among BIM-GIS data formats with promising results. These

include linking, translation/conversion, extension and meta-models (mediation) and can

be further divided into geometric and semantic level integration.

Process Level Integration: Approaches following process-level integration involves

data standards from BIM and GIS to be simultaneously adopted in workflow and collab-

oration, providing flexibility, still underlying with the challenge of data interoperability

among systems. Semantic Web Technology has proven to be promising with its flexibil-

ity of integrating heterogeneous data formats among the modification and introduction of

new models at semantic level integrations. Thus, semantic web with its natural character-

17

istics shows more interest for research towards the integration of BIM and GIS domains.

Application Level Integration: These integration methods include reconfiguring

or rebuilding the new application with integrated BIM-GIS or extending the existing

application. This classification group involves extensions using plugins or built from

scratch to support BIM functionalities in GIS systems or GIS features in BIM-supported

software. This approach is generally costly and inflexible, and by far, no BIM software

can directly read GIS data or vice versa.

2.4 Applications of BIM and GIS Integration

As mentioned in earlier sections, the prime advantage of BIM and GIS technologies is

their ability to handle detailed spatial, semantic and geometric data for a multitude of

analysis, visualizations, and use case-specific or general applications. BIM was initially

used for the planning and design phases of a project and now in the construction and

maintenance phases for a wide range of applications. Considering these perspectives,

the feasible integrated systems of BIM and GIS can extend spatial analysis capability

extended in BIM implementation and detailed semantic and geometric information to

be visualized and analyzed in GIS environments. Enabling information exchange and

interoperability at semantic provide seamless information exchange and geometric level

integration process with extension solutions for specific use-case applications such as 3D

visualization of flood damage to a building (Amirebrahimi et al. 2016). The applications

of 3D city models provide numerous use cases like urban planning (Chen et al. 2020), asset

18

management (Farghaly et al. 2019), location-based solutions (Wang and Issa 2020), site

selection (Irizarry and Karan 2012a, Isikdag et al. 2008), heritage management (Saygi

and Remondino 2013), emergency response, facility management(Biljecki et al. 2015),

and sustainable environment analysis of smart cities (Jamei et al. 2017). The BIM-GIS

applications explored in different stages of construction phases include design (Isikdag

et al. 2008) and operation (Irizarry et al. 2013).

2.5 Role of Semantic Web Technology in BIM and GIS Integration

In order to achieve interoperability in diverse disciplines, Semantic Web and Linked Data

have been investigated by researchers as complementary for technologies in existing AEC

industry (Pauwels et al. 2017b). Interoperability to improve information exchange pro-

cesses, identify and link related information as well as exploit reasoning on information

obtained from these sources (Ozturk 2020), and a step forward towards building ontologies

in AEC (Pauwels and Terkaj 2016) and geospatial (Wang and Issa 2020) using semantic

web technologies.

Traditional methods for integrating BIM and GIS have highlighted information loss,

incompatibility of available software and data formats, and limitations in use-case-specific

frameworks. However, the integration methods conducted based on semantic web tech-

nology have shown a promising contribution for achieving the interoperability between

BIM and GIS (Liu et al. 2017). Integration methods proposed by Hor et al. (2016),

Karan et al. (2016) enable enhanced data exchange and integration between BIM and

19

GIS from syntactic to semantic level. The developed data exchange to ensure interop-

erability and accessibility for facility management data for building information (Kim

et al. 2018), mapping techniques of ontologies development for BIM and GIS as reference

ontologies Deng et al. (2016), El-Mekawy and Östman (2010) – pivotal for semantic inte-

gration – provides more feasible integration solutions with leading potential applications

of intelligent urban mobility(Hor et al. 2018), highway alignment planning (Zhao et al.

2019), and urban facility technical management (Mignard and Nicolle 2014). The applica-

tions include, but are not limited to, investigating Ontology-based integration for indoor

routing (Wang and Issa 2020) and geospatial analysis of preconstruction phases (Karan

and Irizarry 2015). However, these potential solutions have limitations primarily towards

fundamentals of semantic web technique – devising ontology (Karan and Irizarry 2015,

Pauwels et al. 2017b, Zhu et al. 2018).

Recently, studies have been conducted to develop and standardize the ontology models

of IFC (Pauwels and Terkaj 2016) and CityGML (Métral et al. 2013, Zalamea et al. 2013).

The Pauwels and Terkaj (2016) provides extensive framework for EXPRESS based IFC to

OWL and CityGML ontology generated by Métral et al. (2013) requires manual tunning.

Therefore, there is room for improvement with XML-based common format to be adapted

among BIM and GIS, i.e. ifcXML and CityGML, to provide solutions comparable within

the same context. More details about semantic web role in ontology generation and

ontology alignment (mapping) are provided in Chapter 3.

Although semantic integration of BIM and GIS has emerged as an important re-

20

search area, expressiveness in both domains is different for 3D modelling structures and

their semantics. To benefit from the built-in capabilities across file boundaries of BIM

and GIS and integrate different vocabularies like IoT to harness reasoning and perform

standardized queries, semantic web technologies have come into more focus of research

efforts.

2.6 Summary

It can be evident from the extensive literature of BIM and GIS technologies and their

integration approaches presented in previous sections of this Chapter that establishing

interoperability among these technologies provides a promising future of their information

exchange in smart cities applications. However, due to the data formats of cross-domain

elements are geometrically and semantically inconsistent, providing seamless exchange

still remains a question. Above that, incorporating IoT data becomes overhead for not

a fully integrated set of information. This Chapter sketches previous and undergoing

studies for the integration process of BIM and GIS, including IoT, their characteristics

and limitation, and provides a brief synopsis of semantics web as key for integration for

the broad goal of engineering Smart Data.

Similarly, another benchmark study, Noardo et al. (2020a) analyzes conversions tech-

niques, available procedures and state-of-the-art tools for building and geospatial domains

by utilizing open-standard exchange formats (IFC to CityGML and CityGML to IFC) to

evaluate and highlight limitations of procedures, software systems, their incompatibility

21

and discrepancy in data sets itself as well. The benchmark study provides supplementary

grounds for the semantic integration-based solution. More details of this benchmarking

activity are discussed in Chapter 4.

Much research is currently ongoing in this area of interest. However, the connection

with the world of practice and the availability of mainstream technical solutions is limited.

Liu et al. (2017) by EEEF selection criteria state semantic web as much more promising

solution than other methodologies for the integration of BIM and GIS. Henceforth, with

all literature and related work conclusions, the vision of semantic web-driven technology

and tools is selected for this research study. The remaining thesis further elaborates and

presents its framework designed for this study.

22

Chapter 3

XML Schema in Semantic Web

for Ontology Generation and

Alignment

In this chapter, semantic web technology details are described with their role to en-

able interoperability among information systems by building ontology and mapping their

entities across heterogeneous information systems. It also discusses the purpose and chal-

lenges in accomplishing these approaches. The Chapter presents ontology generation and

alignment association by bringing information from Extensible Markup Language (XML)

documents into the semantic web and explicitly discusses the XML schema components

of ifcXML and CityGML. This research exploits these data-oriented XML-based open-

standards of BIM and GIS, respectively.

This Chapter is divided into sections as follows: Section 3.1 starts with the vision of

23

ontology and its importance in representing information that is essential for integration of

information systems; Section 3.2 delves in details about the semantic web domain and the

importance of its technology stack for building mesh of data; Section 3.3 provides insights

on XML Schema Documents (XSD), their components and design styles; Section 3.4

highlights the schema components of data formats used in this study; Section 3.5 provides

in close association of semantic web with XML/XML schema documents in-depth details

for their consorting on ontology generation as well as ontology alignment, Section 3.6

identifies and discusses approaches promising for automatic ontology generation; and

lastly, Section 3.7 provides summary of this Chapter by capturing influence of semantic

web on XML schema and highlighting the possible approaches for ontology generation

and alignment, that can be adapted in this research study.

3.1 What is an Ontology?

An ontology defines a common vocabulary of a domain to have shared information with

machine-interpretable definitions of domain concepts and relations between them (Noy

and McGuinness 2001). The primary purpose of an ontology is to create formal models

of knowledge representation with some logical constraints. There have been multiple

attempts to define what an ontology is (Noy and McGuinness 2001), but the best-known

definition (in computer science) is due to Gruber (Gruber 1992):

“An ontology is a formal, explicit specification of a shared conceptualization.”

where, the conceptualization is an abstract model and simplified view of some real-

24

world aspects shared as consensual knowledge, and defined properties and constraints for

the concepts and their relationships is explicit specification. The formal, in this context,

means that model should be specified in some unambiguous language, making it amenable

to read and process by machines and humans.

An ontology constitutes Classes (or concepts), Individuals, Relations, Datatypes, At-

tributes, Restrictions, and Axioms. Ontologies define terms in annotations using a set

of pre-defined concepts and transform them into semantic annotations. Hence, an ontol-

ogy together with a set of individual instances of classes constitutes a knowledge base.

It can formally be represented in a tuple O = (C, R, I, D, binary relation) (Bedini

et al. 2010a) and underlines a strong foundation of Description Logic (Horrocks 2007)

for formal description of concepts and their roles (relations). It provides inference with

ontology to perform specific reasoning to provide maintenance, consistency and classifica-

tion to knowledge bases. The ontology and domain knowledge’s potential applications are

undoubtedly reliant on its designer, influencing the ontology design choices. Henceforth,

an ontology’s quality can be better assessed using it in the application it is designed for.

3.2 Domain of Semantic Web

Semantic Web (Jiehan et al. 2006), or Web 3.0, is an extension design of the World Wide

Web (WWW) to represent information in a well-defined common data format human-

readable and understandable by computer systems. The semantic web, known as the

mesh of data, enables creating data storages, building vocabularies, encoding the seman-

25

tics from vocabularies with data, and defining rules for handling it. The semantic web

technology stack is empowered by multiple layers of technologies such as OWL, RDF

and SPARQL (illustrated in Figure 3.1). The technology stack plays a substantial role

in achieving semantic interoperability and is published as Wide Web Consortium (W3C)

recommendations to be exploited by its applications. The key technologies of OWL, RDF

and SPARQL are briefly described in the following sections:

Syntax: XML

Character Set: Unicode Identifiers: URI

Data Interchange: RDF

Taxonomies: RDFS

Ontologies: OWL Rules: RFI/SWRL

Unifying Logic

Proof

Trust

User Interface & Applications

Querying:
SPARQL

Figure 3.1: Semantic Web stack of technologies - layout inspired by Lu and Asghar (2020).

3.2.1 Resource Description Framework (RDF)

RDF (Cyganiak et al. 2014) is a graph format at the core of the semantic web that holds a

flexible and generic language to enable the combination and representation of information

26

from diverse knowledge domains. A W3C standard (Schreiber and Raimond 2014) de-

scribe data as collection of three-part statement (called triple) as subject-predicate-object

(S-P-O) (presented in Figure 3.2) or as an (entity identified-attribute name-attribute

value). Here the subject and predicates are URIs (Uniform Resource Identifiers) to iden-

tify them uniquely. Objects can either be literals or other URIs; hence, objects of some

triples connect with subjects of other triples or literals to create a network of linked nodes

called a graph. RDF works like a framework to manage and represent ontologies.

Predicate
Subject Object

Figure 3.2: An example of RDF triple S-P-O format.

An RDF graph can be serialized using various syntax including RDF/XML (.rdf), N-

Triples (.nt), Turtle (.ttl) and Notation-3 (.n3) (Schreiber and Raimond 2014). Turtle

syntax format is simple to write and human-readable format in which RDF graphs can be

expressed in URIs that are abbreviated as a prefix to all RDF statements (see Figure 6.2).

Any data like relational databases, XML documents etc., can be expressed as a collection

of triples gives RDF a natural ability to express data from any format in the semantic

web. Also, it provides the ability to express all semantics and data to be captured in

triple format – producing minimal loss of information. Suppose some properties do not

exist in the given vocabulary. In that case, RDF has the flexibility to mix and match

different vocabularies or create a new vocabulary with the given domain name and add

associated properties to enable customization and standardization. It also allows multiple

27

properties of the same type to be associated with a single subject. For example, an object

A can be rdfs:subClassOf of multiple objects X and Y by associating rdfs:range X

and rdfs:range Y with object A, which is not easy to achieve in relational databases.

3.2.2 Web Ontology Language (OWL)

OWL provides the key to expressiveness in the semantic web. Recently OWL, along

with RDF on which it is based, has become popular standards for data representation

and exchange. The OWL language’s semantic expressiveness is specified in W3C, where

the first OWL version of W3C Recommendation is superseded by the OWL2 language

specification (Group 2012). The relevant references to the semantics specified to OWL

in this document refer to the OWL2 specifications.

OWL Profiles: Similar to preceding OWL version, OWL2 also has number of so-

called profiles; namely OWL 2-EL, OWL 2-QL and OWL 2-RL (Motik et al. 2012).

OWL2 (FULL)

DL

RL QL

EL

Figure 3.3: A Venn Diagram by Group (2009) of OWL2 profiles EL, QL and RL exhibiting
syntactic sub-subset, each profile trades off different aspects of OWL’s expressive power
(more information, less performance).

28

Figure 3.3 provides an overview and relationship between these key profiles. Motik et al.

(2012) indicates an OWL2 profile “is a trimmed down version of OWL2 that trades some

expressive power for the efficiency of reasoning”. In short, several statements that can be

used in OWL 2-DL are not allowed in each of the given OWL2 profiles. By not allowing

these statements and thus sacrificing some expressiveness, each profile achieves efficiency

differently and is useful in different application scenarios. While more of the information

can be found in (Motik et al. 2012) for the expressiveness of each profile, the following is

a summary for referenced profiles:

• OWL 2-EL: This profile is particularly useful in applications employing ontolo-

gies with very large numbers of properties and/or classes. The expressive power

captured by this profile is used by many such ontologies for which basic reasoning

problems can be performed in time (PTIME) that is polynomial with respect to the

size of the ontology. Although, OWL 2-EL places restrictions on types of classes

and supports set of axioms like class expressions (subClassOf, subPropertyOf),

important constructs such as universal restrictions (allValuesFrom), cardinality

restrictions (maxCardinality, minCardinality, exactCardinality), disjunction

(unionOf), enumerations (oneOf), and property related expressions (disjoint,

functionalProperty, symmetricProperty), are not supported.

• OWL 2-QL: This profile is aimed at applications that exploits very large volumes

of instance data, and where query answering performance is the most important

reasoning task. Based on size of the data and execution technique, query answer-

29

ing can be performed in LOGSPACE. The overall expressive power of this profile

is quite limited as it excludes constructs, among others, existential quantification

(someValuesFrom), cardinality restrictions (maxCardinality, minCardinality),

enumerations (oneOf) and property inclusions (subPropertyOf). Compared to

OWL 2-EL, some property-related expressions are allowed (inverseOf, disjoint).

• OWL 2-RL: This profile is recommended to be used for applications that require

scalable reasoning without sacrificing too much expressive power. Adopting ontolo-

gies in this profile is a good choice whenever reasoning is involved. The expressive

power of OWL 2-RL is quite close to OWL 2-DL and is designed to accommodate

OWL2 applications that can trade the full expressivity of the language for efficiency.

It supports all axioms of OWL2 (except for disjoint unions of classes and reflexive

object property axioms). However, few syntactic restrictions are required to be

taken into account for an ontology to be in OWL 2-RL profile (Motik et al. 2012).

From the profiles mentioned above, OWL 2-RL is being used in this research study

for the expressiveness of semantics of XML information. As mentioned earlier, less infor-

mation provides more performance, which is feasible at this stage of the study.

3.2.3 SPARQL

SPARQL Protocol And RDF Query Language - Query Language for RDF is a W3C

standard (Lopes et al. 2010) that helps retrieve data from RDF graphs. Similar to RDF

Turtle syntax, SPARQL also supports defining stand-in abbreviated prefixes with URIs

30

to shorten queries. The WHERE clause describes which triples are to be retrieved from

querying datasets and provides substitution of wildcard variable for one, two or all three

of triple query statement, also referred to as the triple pattern. Results of the SPARQL

query are according to the triple pattern in WHERE clause based on the subject (URI),

predicate(property) or object (URI or Literal). The SELECT clause indicates which

variable values are to be enlisted in results. A * represents all of the queried variables

to be displayed in the result. Results are returned based on triples statements from the

collection based on the triple pattern in WHERE clause. In a single query, multiple triple

patterns can be added for retrieving results with more information.

SPARQL has different keywords and multiple available query options, among which

CONSTRUCT can be essential to create triples in turtle format as a result of SPARQL

query for that is helpful in data integration. SPARQL provides data type and language

tags along with sorting and aggregating results and enables data modification (add, up-

date or delete functions).

3.2.4 Synthesis

The semantic web technology stack provides ontology as RDF/OWL for knowledge rep-

resentation and is one of the most potent formalization languages to be defined based on

Description Logic. There exist other languages for formalization, but OWL is the most

feasible and widely adapted. Hence, for this research study, RDF/OWL is adapted to

represent information. The aim is to exploit OWL syntax and express semantics in gen-

31

erated vocabulary as much as possible. The RDF graphs use these vocabularies in OWL

representation and provide query-able information through SPARQL. The process leads

to investigating the possible way of ontology development and information exchange by

leverage least human intervention as possible.

3.3 XML Schema Documents, Components and Design Styles

The Extensible Markup Language (XML) (Bray et al. 2012), along with XML Schema

Document (XSD) (Gao et al. 2012), is likely the description and specification formalism

mainly designed as a general-purpose data storage and exchange format. XML documents

are widely exploited to represent and manage (semi-structured) data in information sys-

tems, where XSD formally delegates XML with data modelling. XML provides a format

that is both human-readable and machine-interpretable at the same time. The format

also fits well in its simplicity and suppleness of usage with most application information

exchange requirements. Furthermore, XML introduces Document Type Definition (DTD)

and XSD formalism for a clean separation between meta-data and instances containing

the actual data to be exchanged. However, XML remains, in certain senses, too open and

let to the extent of dialects that tend to overload its primary usage and meanings.

The structure of the XSD document is composed of multiple XSD elements arranged

in a way to precisely describe the XML language. As stated early, it checks the validity

of the structure and vocabulary of an XML document against rules of appropriate XML

language. An XSD structure can be majorly categorized into 6 groups: (i) Elements: ap-

32

Design Style element and attribute Declaration type Definition
Russian Doll Local Local
Salami Slice Global Local

Venetian Blind Local Global
Garden of Eden Global Global

Table 3.1: Classification of XML schema design styles listed by Brahmia et al. (2019).

pears in an XML document; (ii) Attributes: can be used for Elements in XML document;

(iii) Simple and Complex Types: for defining element and/or attributes; (iv) Derived

Types: extensions of Simple and Complex Types; (v) Grouped XSD Components: group

of Elements or Attributes and (vi) Annotations: for the documentation and labelling.

The XSD syntax varies based on overall representation and changes involving schema

designs resulting from different XML data structures. The XML language’s flexibility

derives from different arrangements of XSD components, which determines the syntax

and complexity of an XSD design in their global or local scope for a given namespace

forming specific XSD patterns. A global XSD component is an immediate sub-element of

the root <xs:schema> element. It is also associated with targetnamespace of an XSD,

making it accessible to other XML schemas using a given namespace. However, a local

component is not defined as an immediate sub-element of <xs:schema>, instead of nested

to an XSD element. Thus, not accessible outside the given schema definition.

Brahmia et al. (2019) recommends that any XML schema definition can be organized

according to one of these five design styles (listed in Table 3.1): (i) Russian Doll, (ii)

Salami Slice, (iii) Venetian Blind, (iv) Garden of Eden and (v) Bologna. The design

styles are classified in the way for their definition and declaration, globally or locally,

33

of XML schema components; element, attribute, simpleType and complexType. An

example XSD is selected for better understanding of different design styles, stated below.

Elements in below descriptions refers to Elements as well as Attributes:

• Russian Doll: An XML schema design with only one global element declaration

that nests all other possible declarations of local components (that nest further local

components), and local definitions of simpleType and complexType. An example

of Russian Doll design is presented in Listing 3.1.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Thesis">

<xs:complexType>

<xs:sequence>

<xs:element name="Title" type="xs:string"/>

<xs:element name="Author" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Listing 3.1: Russian Doll style XSD.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Title" type="xs:string"/>

<xs:element name="Author" type="xs:string"/>

<xs:element name="Thesis">

<xs:complexType>

<xs:sequence>

<xs:element ref="Title"/>

<xs:element ref="Author"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Listing 3.2: Salami Slice style XSD.

34

• Salami Slice: An XSD design corresponds to having all of Elements declarations

in global namespace and then referencing the Element, while all simpleType and

complexType are locally defined, see example listed in Listing 3.2.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="Title">

<xs:restriction base="xs:string">

<xs:minLength value="1"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="Author">

<xs:restriction base="xs:string">

<xs:minLength value="1"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="Thesis">

<xs:complexType>

<xs:sequence>

<xs:element name="Title" type="Title"/>

<xs:element name="Author" type="Author"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Listing 3.3: Venetian Blind style XSD.

• Venetian Blind: Similar to Russian Doll, the Venetian Blind design corresponds

to having a single global element declaration that nests local XSD elements (that

further nests local elements). However, local Elements uses types (simpleType and

complexType), when needed, that are defined within global namespace. Listing 3.3

presents design of same example as Venetian Blind.

• Garden of Eden A normalized XML schema format, combination of Venetian

Blind and Salami, that incorporates all possible Elements declarations and types

definitions in the global namespace, with the Elements referenced as needed. List-

35

ing 3.4 presents Garden of Eden design of same example.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="Title">

<xs:restriction base="xs:string">

<xs:minLength value="1"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="Author">

<xs:restriction base="xs:string">

<xs:minLength value="1"/>

</xs:restriction>

</xs:simpleType>

<xs:element name="Title" type="Title"/>

<xs:element name="Author" type="Author"/>

<xs:element name="Thesis">

<xs:complexType>

<xs:sequence>

<xs:element ref="Title"/>

<xs:element ref="Author"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Listing 3.4: Garden of Eden style XSD.

• Bologna: A design pattern that is actually not a defined style and uses combination

of global and local Elements, by default. This style conform otherwise to prior

designs can be considered as Bologna design style as shown in Listing 3.5.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Title" type="xs:string"/>

<xs:element name="Thesis">

<xs:complexType>

<xs:sequence>

<xs:element ref="Title"/>

<xs:element name="Author" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Listing 3.5: Bologna style XSD.

36

Table 3.1 compares main XSD design styles proposed by XML schema community

(Darr et al. 2011, McBeath and Hinkelman 2004) are adapted accordingly to the reusabil-

ity of XSD components that are made available at different levels. StyleVolution (Brahmia

et al. 2019) proposed a suite of procedures, featuring conversions from an XSD design style

to another, that can facilitate the reuse and exchange of schema specifications encoded

using the XML schema language. However, style conversion operations are complicated,

error-prone, and impact XML schema specifications if not carefully performed.

3.4 XSD Specifications of ifcXML and CityGML

In this section, the XSD components of ifcXML and CityGML formats are inspected

to understand their structure, complexity and design style. Eventually, these factors

affect the process that considered XSD documents for formalization and mapping to

other formats like OWL, which will be discussed later in Section 3.6. To comprise rich

semantic and geometric BIM and GIS information, XML-based data formats like ifcXML

and CityGML models are devised with complex XSD structures, respectively. Based on

the previous section’s design styles, proceeding XSD designs for their schema structures

are scrutinized as a hybrid in design styles. Listing 3.6 shows a snippet XSD schema

from IFC 4X1 format that displays elements’ composition bisects designs of Russian Doll,

Garden of Eden, Venetian Blind and Salami Slice. Similarly, a snippet of cityGMLBase

XSD schema in Listing 3.7 shows schema style characterized more as Bologna design

style, which is not a recommended XSD design style (Brahmia et al. 2019).

37

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ifc="http://www.

buildingsmart-tech.org/ifc/IFC4x1/final" .. >

...

<xs:element name="IfcWindow" type="ifc:IfcWindow"

substitutionGroup="ifc:IfcBuildingElement" nillable="true"/>

<xs:complexType name="IfcWindow">

<xs:complexContent>

<xs:extension base="ifc:IfcBuildingElement">

<xs:attribute name="OverallHeight" type="ifc:IfcPositiveLengthMeasure" use="

optional"/>

<xs:attribute name="OverallWidth" type="ifc:IfcPositiveLengthMeasure" use="

optional"/>

<xs:attribute name="PredefinedType" type="ifc:IfcWindowTypeEnum" use="optional"/>

<xs:attribute name="PartitioningType" type="ifc:IfcWindowTypePartitioningEnum"

use="optional"/>

<xs:attribute name="UserDefinedPartitioningType" type="ifc:IfcLabel" use="

optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

...

<xs:group name="IfcUnit">

<xs:choice>

<xs:element ref="ifc:IfcDerivedUnit"/>

<xs:element ref="ifc:IfcMonetaryUnit"/>

<xs:element ref="ifc:IfcNamedUnit"/>

</xs:choice>

</xs:group>

</xs:schema>

Listing 3.6: Sample snippet from IFC 4x1 XSD design.

Table 3.2 provides the schema specifications of different XSD components for selected

IFC and CityGML formats, along with an example set that is considered further in this

research and schema of an IFC dataset from GeoBIM benchmark (Section 4.2.1). The

Tables 3.2 provides the usage of XSD components for a better understanding of informa-

tion that can be represented in other exchange formats. Since the IFC is a comprehensive

yet complex data format, and XML stores information in large format, the schemas are

considerably large in size and components (as shown in Table 3.2).

38

<xs:schema xmlns="http://www.opengis.net/citygml/2.0" xmlns:xs="http://www.w3.org/2001/

XMLSchema" .. >

...

<xs:complexType name="AbstractCityObjectType" abstract="true">

<xs:complexContent>

<xs:extension base="gml:AbstractFeatureType">

<xs:sequence>

<xs:element name="creationDate" type="xs:date" minOccurs="0"/>

<xs:element name="terminationDate" type="xs:date" minOccurs="0"/>

<xs:element name="externalReference" type="ExternalReferenceType" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="generalizesTo" type="GeneralizationRelationType" minOccurs="0

" maxOccurs="unbounded"/>

<xs:element name="relativeToTerrain" type="RelativeToTerrainType" minOccurs="0"

/>

<xs:element name="relativeToWater" type="RelativeToWaterType" minOccurs="0"/>

<xs:element ref="_GenericApplicationPropertyOfCityObject" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

...

<xs:complexType name="AddressType">

<xs:complexContent>

<xs:extension base="gml:AbstractFeatureType">

<xs:sequence>

<xs:element name="xalAddress" type="xalAddressPropertyType"/>

<xs:element name="multiPoint" type="gml:MultiPointPropertyType" minOccurs="0"/>

<xs:element ref="_GenericApplicationPropertyOfAddress" minOccurs="0" maxOccurs=

"unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="_GenericApplicationPropertyOfAddress" type="xs:anyType" abstract="

true"/>

...

<xs:complexType name="xalAddressPropertyType">

<xs:annotation>

<xs:documentation>Denotes the relation of an Address feature to the xAL address

element.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element ref="xAL:AddressDetails"/>

</xs:sequence>

</xs:complexType>

...

</xs:schema>

Listing 3.7: Sample design snippet from cityGMLBase XSD.

39

XSD Element E
x
a
m

p
le

c
it

y
G

M
L

B
a
se

b
u

il
d

in
g

b
ri

d
g
e

IF
C

G
e
o
m

e
tr

ie
s

IF
C

2
x
3

T
C

1

IF
C

4
A

D
D

1

IF
C

4
A

D
D

2
T

C
1

annotation - 19 18 20 - - - -
attribute 1 - - - 20 402 1467 1479
attributeGroup - 3 7 8 - 281 116 117
choice - 1 - - - 298 61 61
complexContent 1 5 20 21 - 659 774 782
complexType 2 11 27 29 21 1471 1126 1139
documentation - 19 18 20 - - - -
element 3 35 139 153 53 2936 2044 2067
enumeration 2 11 - - - 1310 1638 1643
extension 1 5 20 21 - 935 888 898
group - - - - - 222 181 181
import - 2 2 2 - 1 - -
length - 3 - - - - -
list - 1 - - - - 52 55
maxInclusive - 2 - - - - - -
maxLength - - - - - 1 15 15
minInclusive - 2 - - - - - -
minLength - - - - - 1 32 33
restriction 1 7 - - - 282 386 389
schema 1 1 1 1 1 1 1 1
sequence 1 10 27 29 11 607 399 408
simpleContent - - - - - 279 118 120
simpleType 1 8 - - - 279 434 440

Table 3.2: XML schema specifications for different component of multiple sets of XML
schemas.

Furthermore, the extracted information of these XSD components is filtered for only

complexType tag and presented in Figure 3.4 to specify more the global complexType,

easier it is to map as the local declaration is anonymous and requires custom naming.

Similarly, Figure 3.5 details for the element tag of the selected XML schemas. More

element declarations with type or ref results in better mappings considerations which

are considered in CityGML schemas, unlike IFC formats. Since the XSD design patterns

40

Figure 3.4: Percentage distribution of the declaration of Global and Local complexType
tags among input XML schemas.

of presented XSD schemas are defined in numerous ways, the solutions to implement a

generalized XML schema pattern recognition algorithm and consequently mapping it with

OWL representation becomes difficult. It may lead processes towards laborious efforts

requiring manual validation.

3.5 Using XML Schema for Ontology Generation and Alignment

The previous sections provided details on the semantic web and its technology stack’s

potential, followed by details on XML documents validated by their XSD structures.

Due to their close nature of XML environments, the XML and semantic web have been

investigated for interoperability. These technologies complement one another in terms

of interdisciplinary information exchange that is extensible and flexibility (Bikakis et al.

2013). Many efforts have been made for both perspectives of ontology development and

mapping (alignment) of the built ontologies. The sections below provide details on each

41

Figure 3.5: Percentage distribution of element tag across XML schemas either with
attributes type or ref, or anonymous declaration.

approach adapted for XML/XML schema:

3.5.1 Transforming XSD to OWL Models

The art of ontology development is complicated, mostly with manual approaches (Liu

et al. 2017). Expressing correct semantics of data in an ontological representation itself

requires domain knowledge. The literature highlights semi (Bedini et al. 2010a, Cruz and

Nicolle 2008, Yahia et al. 2012) or fully-automated processes (Minutolo et al. 2014) for

ontology generation. However, the frameworks are manifested mainly for B2B (Business

to Business) or text-based approaches and include minimal extension towards geospatial

domain ontologies (Bedini and Nguyen 2007, Hacherouf et al. 2015). Also, ontology en-

richment purely depends on defined rules for semantic representation of XSD components

and their relations for respective data.

As ontology generation is the key element of this document, Table 3.3 outlines what

42

Approach Transformation Consistency Formal XSD Elements
Count

OWLMAP (Ferdi-
nand et al. 2004)

Automatic No No 14

XML2OWL (Bohring
and Auer 2005)

Automatic No No 8

XS2OWL (Tsinaraki
and Christodoulakis
2007)

Automatic No No 7

XSD2OWL (Cruz
and Nicolle 2008)

Semi-Automatic No No -

X2OWL (Ghawi and
Cullot 2009)

Automatic No No 9

JANUS (Bedini et al.
2011)

Automatic No No 19

EXCO (Lacoste et al.
2011)

Automatic No No 10

Nora Y. Approach
(Yahia et al. 2012)

Automatic No No 9

XSD2OWL2 (EL Ha-
jjamy et al. 2017)

Automatic Yes Yes 17

PIXCO (Hacherouf
et al. 2019)

Automatic Yes Yes 24

Table 3.3: Comparison study of XML/XSD to OWL transformation approaches by Hach-
erouf et al. (2015, 2019) sorted by year of their publications.

options are available in terms of building an ontology. Listed studies in Table 3.3

have been conducted to define correspondences between XSD and OWL which converts

given XML files to OWL format using transformation tools. As an example, Table 3.4

shows the details of mapping rules defined between two formalisms. It demonstrates

that owl:DatatypeProperty relates to individuals with simpleType or literal data (e.g.

strings, numbers, data time etc.). In contrast, owl:ObjectProperty relates to individ-

uals with more complex relations (e.g. defined objects, external objects). While these

available approaches provide promising solutions, they lack ready tools for implementing

and handling complex XSD schemas with different design styles.

43

Apart from ontology development, mapping ontologies still requires improvements as

semantic web is still not mature. Therefore for BIM and GIS domain, automatic on-

tology generation and mapping methods are being investigated across the studies (An

and Park 2018). Although approaches are developed for improving individual ontologies

for CityGML ontology (Métral et al. 2010, Zalamea et al. 2013), however, they require

manual tuning (Métral et al. 2013). Only one ontology standard exists for BIM ontolo-

gies, namely ifcOWL (Pauwels and Terkaj 2016) that implements conversion patterns

to convert EXPRESS into OWL. Therefore, before ontology mapping, a comprehensive

methodology for ontology generation needs to be devised.

XSD OWL
xs:complexType/group/attributeGroup owl:Class
xs:simpleType/attribute owl:DataTypeProperty
xs:element (of complex Type) owl:ObjectProperty, rdfs:subClassOf
Element Type (or attribute) local owl:allValuesFrom
xs:sequence/all owl:intersectionOf
xs:choice Boolean Expression owl:intersectionOf,

owl:unionOf and owl:complementOf
minOccurs/maxOccurs owl:minCardinality/maxCardinality/

cardinality
substituitionGroup owl:subClassOf

Table 3.4: XSD to OWL mapping rules defined in OWLMAP (Ferdinand et al. 2004)

3.5.2 Mapping of Ontology Models

The ontology development is a step towards creating an extensive vocabulary to be

mapped with other existing or newly developed ontologies. Ontology alignment, also

called ontology mapping, is the key to reaching interoperability over cross-domain on-

tologies (Raad and Evermann 2015). It has been investigated for several years with

44

specialized studies to formally integrate ontologies or knowledge-bases formed in differ-

ent domains (Farah et al. 2016, Giunchiglia et al. 2012). Heterogeneous domain data

like BIM and GIS requires linking entities (concepts) before cross-domain information is

available for processing. The integration of these distributed ontologies establishes cross-

domain integrated ontology for information analysis and knowledge-graph applications.

However, these approaches are generally limited to corpus-based studies, which further

requires investigating alignment knowledge for entities and information specific to other

domains like geospatial. Some of these approaches adapted for geospatial ontology align-

ment are either manual or lacks in mapping across entities (Deng et al. 2016, El-Mekawy

and Östman 2010, Hbeich and Roxin 2020).

The literature highlights the significance of integrating semantic data from heteroge-

nous sources (Keeney et al. 2011), majorly investigating interoperability among XML

documents using semantic web (Bikakis et al. 2013). The semantic enrichment pro-

cess for urban analysis involves data heterogeneity towards multi-jurisdiction analysis

and comparison (Chen et al. 2020). For this study, we investigate an innovative ap-

proach towards mapping geospatial data, which mainly applies semantic-based Word2vec

algorithm (Mikolov et al. 2013) and structure-based Node2vec algorithm (Grover and

Leskovec 2016) for ontology alignment of BIM and GIS ontologies. Further details of

these approaches are presented in Section 5.1.2.

45

3.6 Potential Solution for Ontology Generation

In sections earlier, the Chapter presented detailed literature on ontology generation and

alignment techniques. However, before semantic alignment, a fully automated proce-

dure for generating ontology from XML schema remains in question. In this section,

Janus (Bedini et al. 2010b) and PIXCO (Hacherouf et al. 2019) methods of XSD to OWL

methodologies are presented from literature with the potential of solving the automatic

ontology generation problem. These methods are briefly presented in the below sections;

then, revised solutions of the considerable transformation patterns proposed by JANUS

and improvements on three-steps of PIXCO are identified – that are critical for different

XSD designs and overlooked during the transformation process.

Janus

Bedini et al. (2011) proposed a process to generate OWL2-RL ontology by transforming

XML schema using patterns and a developed prototype tool called Janus for its valida-

tion. A transformation pattern is a corresponding representation of an XSD sub-structure

to an equivalent OWL ontology model. The method presents 40 transformation patterns

while considering 19 XSD elements compared to similar approaches presented in Ta-

ble 3.3. Janus provides Table II-VII with six groups presenting 40 patterns. The first

columns present a particular XSD schema structure, and the corresponding OWL model

representation is shown in the second column. The correspondence rules are promising

and are adapted in the PIXCO study presented below.

46

XSD Constructs OWL construct (Turtle syntax)
1 〈simpleType name="st name"〉 ag:st name rdf:type rdfs:Datatype .

3 〈complexType name="ct name"〉 ag:ct name rdf:type owl:Class .

27 〈complexType name="ct name"〉
〈attribute name="attr name"

type="st name"/〉

ag:has attr name rdf:type

owl:DatatypeProperty ;

rdfs:domain ag:ct name ;

rdfs:range ag:st name .
34 〈attributeGroup

name="attr grp name"〉
〈attribute name="attr name"

type="attr type"/〉

ag:has attr name rdf:type

owl:ObjectProperty ;

rdfs:domain ag:attr grp name ;

rdfs:range ag:attr type .

Table 3.5: A subset of mappings presented correspondence rules of XSD to OWL trans-
formation patterns from Janus Bedini et al. (2011).

PIXCO

The PIXCO methodology formally implements Janus patterns and extends patterns for

XSD components like key, unique, keyref that are not considered in Janus. The

method increases the count to 43 for transformation patterns while processing 24 XSD

elements. PIXCO framework also proposes a formal method of XSD to OWL trans-

formation by representing patterns using Formal Concept Analysis (FCA) context and

a mathematical model FS(XS) to manipulate XSD constructs. These formal models

are the basis for algorithms outlined in PIXCO methodology for pattern identification

among XSD constructs and generating a corresponding OWL model of the identified pat-

tern. Table 3.5 presents the concept of how a transformation pattern represents XSD

construction to an OWL construction.

Janus and PIXCO approach majorly focuses on corpus-based and Business to Busi-

ness (B2B) domain information transformation and exercise more towards representing

key concepts and relations in ontology development from XML schemas. However, it be-

47

comes challenging to transform complex XML schema structures where XSD components

are tightly associated with their defined, derived, or anonymous types having discrete

relations such as in ifcXML and CityGML schemas (presented in Section 3.4).

XSD components can be mapped to different OWL expressions based on type of

components for certain transformation pattern. For example, the Table 3.5 shows the

owl:DatatypeProperty is corresponding to attribute construction for pattern #27

which incorporates type attribute value as XSD native datatype (xs:int, xs:string

etc.) or refer to simpleType. Similarly, attribute construct in #34 is represents as

owl:ObjectProperty that is formulated for complexType, leaving incorrect representa-

tion. Therefore, not all of the patterns provided in Janus handles similar edge cases and

as the XSD structure gets extensive the PIXCO algorithm omits its compliance with

transformation. Since, Janus considers maximum possible XML schema constructions,

therefore, these approaches are adapted in a manner to be implemented and extended to

provide richness in pattern identification for maximum and improved transformation.

3.7 Summary

The semantic web’s ultimate goal is to allow data to be processed automatically by tools

and shared effectively by wider communities. Therefore, the semantic web has a natural

ability to integrate information from different sources as it aims to provide machine-

accessible semantics to annotations using rich ontologies. The semantic web integration

at the process level does not change the data format and structure from both domains,

48

limiting the information loss.

Therefore, the semantic web technology stack is adapted for this research study, and

this Chapter presents a descriptive overview of its technology stack. The Chapter also

presented a brief overview of XML and XML schema documents to understand their com-

ponents and design styles. They are widely used for achieving semantic interoperability

by first transforming XML to OWL and further mapping information from generated

ontology models. The Chapter also presented XSD specifications of the selected set of

XML schema for better understanding as they are evaluated further in Chapter 6 for the

evaluation process. Finally, the Chapter concludes with selecting the most appropriate

and comprehensive frameworks, Janus and PIXCO, for the ontology development process

from literature to extend and further implement the enhanced framework.

Translating XML schema models to RDF/OWL ontologies through an automated

process offers a significant advantage. It can reduce the human work necessary when

designing an ontology and the effort required to transform the heterogeneous data-formats

like IFC and CityGML into a common-format of RDF in the semantic web.

Though, as literature in Chapter 2 shows that the integration of BIM-GIS is a chal-

lenging topic. However, obtaining interoperability between BIM and GIS is promising

using semantic web technology (Herle et al. 2020). The biggest challenges of these meth-

ods are the significant efforts required at the early stage and the isolated development of

ontologies as semantic web domains are still underdeveloped and lack maturity. Defining

semantic models are mainly manual and time-consuming development processes. It does

49

define ontology that can be available for future use.

Furthermore, as both systems have different contents and data structures, developing

a seamless integration system as part of the semantic web, common data format becomes

challenging to be mapped. For such, a reference ontology or cross-domain integrated

ontology must be designed to take a global view of both domains by extending and

specializing both BIM and GIS domain and other high-level ontologies (upper ontologies).

Although a comprehensive research framework is presented in Chapter 6, the reason for

such complex nature of research, the scope of this thesis is constrained to only the ontology

generation process, and remaining features are presented for future work.

50

Chapter 4

GeoBIM Benchmark Project:

Investigating Interoperability

between BIM and GIS

4.1 Overview

In Chapter 2, fundamental problems of information loss and geometric variance associ-

ated with the integration of BIM and GIS are substantiated. It underlined limitations

of adapted and undergoing integration solutions. Moreover, it showed limited correspon-

dence of the available mainstream technical solutions with the world of practice. To

address this linking challenge, several leading projects have been instigated to investigate

and fill the interoperability gap between GIS and BIM, such as OGC Future City Pilot2,

2https://www.ogc.org/projects/initiatives/fcp1/

51

GeoBIM at TUDelft3, and more recently, the GeoBIM Benchmark4. The benchmarking

initiative involves recruiting participants from a variety of backgrounds, with different

expertise, skills and interests (e.g. BIM, GIS and more), to test the available software

tools and procedures with adequate datasets. A project aims to provide insights into

the current state-of-the-art against the implementation of open-standards in the 3D Geo

and BIM domains and identify compatibility issues and points for improvement. The

benchmark investigates four topics:

• Task 1: What is the support for IFC within BIM (and other) software?

• Task 2: What options for geo-referencing BIM data are available?

• Task 3: What is the support for CityGML within GIS (and other) tools?

• Task 4: What options for conversion (IFC ←→ CityGML) are available?

This chapter features participation in the GeoBIM Benchmark project (Noardo et al.

2020a) to utilize existing software tools to assess the given 3D GIS and BIM open-

standards, IFC and CityGML, respectively. Moreover, their integration and formulate

recommendations in-order for further developing the standards and the tools that imple-

ment them. Although each task encompasses the analysis of standard functionalities like

reading, visualize, import, manage and analyze. This study mainly focuses on the contri-

bution in topic of Task 4 – “What options for conversion (software and procedural) (both

3https://3d.bk.tudelft.nl/projects/geobim/

4https://3d.bk.tudelft.nl/projects/geobim-benchmark/

52

IFC to CityGML and CityGML to IFC) are available?” discussing additional features of

export and convert. This section provides an overview of this chapter. The rest of the

chapter is outlined as follows: Section 4.2 focuses on benchmark materials, including IFC

and CityGML datasets and results template provided for a given task; Section 4.3 delves

with the series of experiments and results carried out using proprietary software tools

and benchmark datasets and lastly, Section 4.4 concludes this chapter.

4.2 Benchmark Materials

The GeoBIM Benchmark project permits adequate datasets and results templates as

online submission forms (Noardo et al. 2019b), to direct benchmarking activity without

biases and ensure consistency in benchmark results, standardizing the responses from

participants as far as possible. Thus, any anomalies in submitted results can be linked

back to specific software, procedure or tool handling the particular data—the subsections

below further elaborate on the materials distributed for the activity.

4.2.1 Provided Data for Benchmark

The project recognizes adequate provisioning data for consistent results across tasks as

one of the most critical challenges. Potentially, the datasets are identified and prepared

(pre-processed) for this activity to serve the benchmarking purpose effectively. Several

IFC and CityGML datasets (Noardo et al. 2019a) from real-world practice and within

the academic environment were provisioned for this activity as a critical component to

53

IFC Data
Name File Size Comments
Myran 27.78 MB Small georeferenced architectural building model in Sweden to

test main software functionalities.
Savigliano 22.07 MB Building model in Italy to test IFC4 support by procedures and

tools.
UpTown 246.82 MB Large complex building data in Rotterdam for hardware and

software related performance and support.

IFCGeometries
31 KB Set of modelled geometries in IFC2x3 to test interpretation and

support of specific geometric types.
27 KB IFC4 version of similar modelled geometries to test the geomet-

rical support behavior.
CityGML Data

Buildings 1.36 MB Procedurally modelled buildings in LoD3 to test tool and re-
lated classes support.

Rotterdam 34.72 MB Texturized district model in Rotterdam with LoD1 and LoD2
to test multi-LoD software support.

Amsterdam 5.02 GB Seamless 3D city model of Amsterdam with CityGML entities
(buildings, roads, water etc.) for hardware and software tests
related performance and support of city entities.

Table 4.1: Noardo et al. (2019a) presented list of datasets for GeoBIM benchmark activity.

consider all tested software, tools and procedures comparable on an equal basis. While

most of datasets5 are free to download, IFC files were accessible to participants only.

Table 4.1 enlists included datasets, and sections below present the summary for the

details of these models:

IFC Data

• Myran: A georeferenced IFC2x3 model of a 2-floor office building in Falun, Swe-

den representing the architectural model of BIM (Figure 4.1a). The semantics in

data are employed accurately, and many attributes are filled; however, as shown in

Figure 4.1b, the grouping of entities across the storeys is not consistent.

5https://3d.bk.tudelft.nl/projects/geobim-benchmark/data.html

54

(a) (b) (c)

(d) (e) (f)

Figure 4.1: IFC data provided for benchmarking (Noardo et al. 2019a) to test software
tools and procedures on equal basis: (a) georeferenced Myran.ifc model (b) entities
inconsistency among stories in Myran.ifc (c) Savigliano.ifc model (d) achitectural model
of UpTown building, (e, f) show IFCGeometries IFC2x3 and IFC4, respectively.

• Savigliano: It is the IFC2x3 model of a designed residential building with a series

of low–rise tower blocks in Savigliano, Italy (Figure 4.1c). The data represents an

architectural model of BIM and does not include georeferencing data.

• UpTown: An IFC4 model of a large residential tower in Rotterdam, Netherlands

representing the architectural BIM model (Figure 4.1d), to test significant dimen-

sions associated with software and hardware performances. Instead of an explicit

55

definition of IFC entities for distinct elements’ information, the model has many

generic IFC entities (IfcBuildingElementProxy) to cover the semantics of objects.

• IFCGeometries: A specific set of geometries modelled using a range of modelling

alternatives allowed in IFC, which are usually less supported or incorrectly inter-

preted by software. Two versions of geometries’ models are provided IFC2x3 and

IFC4 (Figure 4.1e and Figure 4.1f), specifically selected to test geometric definitions

and assess the diverging compliance within software tools supporting BIM.

(a) (b)

(c) (d) (e)

Figure 4.2: CityGML data provided for benchmarking (Noardo et al. 2019a) (a) Buildings
LoD3 model (b) Amsterdam City LoD1 model (c) Rotterdam LoD1 & LoD2 Model (d)
Separate Rotterdam LoD2 model (e) Rotterdam LoD1 model.

56

CityGML Data

• Buildings in LoD 3: A procedurally generated CityGML model by the open-

source tool Random3DCity (Biljecki et al. 2016a) with more details on the facades

(Figure 4.2a). The generated model encompasses georeferenced data and is free of

geometric errors.

• Rotterdam LoD 2 and LoD 1: A multi-Level of Detail (LoD) CityGML model

produced and provided by the City of Rotterdam (Figure 4.2c) representing the

surrounding area of the UpTown building (one of provided IFC models). It is

selected to test software handling for extruded building footprints alongside more

detailed structures. The dataset also includes some errors, kept to test software

behaviours against these errors.

• Amsterdam LoD 1: It is a 3D model of the entire city of Amsterdam with all

CityGML entities (buildings, roads, vegetation, etc.) in LoD 1, see Figure 4.2b. The

open-data included a reference system and was selected as a part of the benchmark

to test software tools dealing with large models, such as one entire (medium-size)

city.

4.2.2 Results Template for Benchmark Tasks

To facilitate the comparison of obtained results from a wide participating community

and range of software packages, tools and procedures, the results template was designed

57

and provided for each benchmark topic (mentioned in Section 4.1) as online forms. Tem-

plates detailing the instructions to guide through tests and collecting the answers and

results data systematically were divided into five sections: section 1 is for participants

information; section 2 asks details for tested software or tool; section 3 is for the com-

puter hardware to compare performances; section 4 is for the detailed description of the

performed conversion task and section 5 finalizing the result submission with further

information or comments. While sections 1-3, 5 are common in all benchmark topics,

section 4 is unique for each task. Since this study and subsequent chapter focuses only

on Task 46, a template of its section 4 is presented in Figure 4.3.

Section 4 - The Task

 Please, remember to turn off all the unnecessary processes, software and tools in the
computer during the test, and check the approximated required processing time.

Use the conversion software / tool / procedure to convert the file from IFC to
CityGML or from CityGML to IFC and answer the following questions

We advise you to have a look at the whole task (described in this results template and in the
corresponding one in word format) before beginning to answer. In this way you will be aware of what
is asked and will not miss anything, nor lose time in going back and forward.

1) Are you making a conversion:

☐ From IFC to CityGML

☐ From CityGML to IFC

2) Are you using the file:

☐ Myran (IFC)

☐ Up:Town Building (IFC)

☐ IFCgeometries.ifc (IFC)

☐ Myran context (CityGML)

☐ Rotterdam3D (CityGML)

☐ BuildiongsLOD3 (CityGML)

☐ AmsterdamLOD1 (CityGML)

2.1) What LOD will result from your conversion? (LOD has to be intended as Level of detail in the
case of conversions IFC to CityGML, or Level of Development in case of conversions CityGML to
IFC).

3) Tools and workflow

3.1) Are you using an off-the-shelf tool?

☐ Yes → 3.1.1) Is a completely automatic
procedure working?
(just pushing a button)

 ☐ Yes 3.1.1.1) Give a brief description about
where the tool can be found (e.g. on
which menu) and how it works (from
the installation to the end of the
conversion)?

3.1.1.2) Attach screenshots1

 ☐ No 3.1.1.3) Give an extensive description
about the tools, settings and
workflow necessary to make the
conversion;

⚠ your description should be detailed

enough to allow (non-expert) others to
follow the same steps and obtain the

1 Please, give them an understandable title, or put them in a word/pdf file with titles or captions [This
refers to all the cases where screenshots or documents are asked to be attached]

same results.*

3.1.1.4) Attach screenshots /
documentation related to the previous
question

☐ No, I am using a

bespoke piece of
software (i.e. one
developed by me or
my company but not
completely available
to the public). →

3.1.2) Give an extensive
description about the tools,
settings and workflow necessary
to make the conversion;

⚠ your description should be

detailed enough to allow (non-
expert) others to follow the same
steps and obtain the same
results.2*

3.1.3) Attach screenshots /
documentation related to the
previous question

3.2) short comments to the previous question (1) (optional).

4) How long does it take for the data to be converted (computer time)?

(approximately)

☐ it’s almost immediate

☐ less than a minute

☐ 1-5 minutes

☐ 5-20 minutes

☐ 20 minutes - 1 hour

☐ more than 1 hour

☐ it crashes without completing the operation

2* For answering this questions you can:

IN THE CASE USEFUL COMPLETE (AND SUFFICIENT) DOCUMENTATION IS ALREADY AVAILABLE:

- cite references here to any useful documentation (papers, reports, tutorials, web pages...) in citation format,
AND
- add the link to such documentation in this answer. Otherwise, you can attach the documentation in the next
step.

IF NO COMPLETE DOCUMENTATION IS AVAILABLE:

Give a detailed description as answer, possibly attaching screen shots or a compete tutorial in word/pdf format in
the next steps

Figure 4.3: Section 4 of the Task 4 results template for GeoBIM Benchmark submission.

6https://3d.bk.tudelft.nl/projects/geobim-benchmark/task4.html

58

4.3 GeoBIM Benchmark: Task 4

The specified task investigates options for conversions (software and procedural) of data

from IFC to CityGML and CityGML to IFC. Off-the-shelf proprietary software and tools,

such as Feature Manipulation Engine (FME) by Safe Software7 and FZKViewer8 were

selected for the study of the conversion procedures and respective software performances.

Alongside conversion results were analyzed with FME Data Inspector, BIMvision9 and

FZKViewer. Below are the experiments conducted for this benchmarking activity, and

they present their submitted results with an online template submission form.

4.3.1 IFC to CityGML Conversion

To perform IFC to CityGML conversion, two approaches were adapted based on separate

tools on FME platform: FME Quick Translator10 and FME Workbench11. Following

describes IFC to CityGML conversion techniques with selected tools.

4.3.1.1 FME Quick Translator

The Quick Translator tool is designed to perform fast and easy data conversions between

numerous formats. A defined number of steps are established to use the translator tool

7https://www.safe.com/fme/

8https://www.iai.kit.edu/english/1648.php

9https://bimvision.eu/en/

10https://docs.safe.com/fme/html/FME Desktop Documentation/FME QuickTranslator/Home qt.htm

11https://docs.safe.com/fme/html/FME Desktop Documentation/FME Workbench/Home.htm

59

(a) (b) (c)

Figure 4.4: Procedural steps to perform an automatic IFC to CityGML conversion using
off-the-shelf FME Quick Translator tool.

and applied across the IFC datasets to produce respective CityGML models. Below are

the steps performed for conversion using this tool:

1. Open FME Quick Translator → Getting Started → Translate (see Figure 4.4a).

2. In Translation parameters select IFC as format and IFC model in Reader’s dataset.

Select CityGML as Writer’s format and browse to select dataset output path and

choose filename. Click OK to start conversion, as shown in Figure 4.4c).

3. Converted CityGML file is created at output path.

The steps mentioned above are followed for all IFC data models (listed in Section 4.2.1)

when converting from IFC to CityGML, the procedure produces very generic models

(Figure 4.5). In fact, with most (or all) entities being the generic one in the resulting

standard data model, all entities from IFC are converted to CityGML GenericCityObject,

instigating loss of associated semantic details (attributes and entity types) and elements’

hierarchy. The procedure eliminates the reverse (bidirectional) conversion possibilities of

60

the model (converting it back to IFC), thus discouraging interoperability.

Specifically for IFCGeometries data, not all geometry types like IfcRevolvedAreaSolid,

IfcExtrudedAreaSolid and IfcSweptDiskSolid, were transformed by IFC reader of FME

Figure 4.5: Quick translation results of IFC data into LoD4 CityGML models where
not all geometries were transformed, and minimal semantics were kept with CityGML
GenericCityObject feature type.

(a) (b) (c)

(d) (e) (f) (g)

Figure 4.6: FME Quick Translator tool conversion attempt for IFCGeometries (a) IFC4
(d, e) IFC2x3, where geometry types IfcRevolvedAreaSolid, IfcExtrudedAreaSolid and
IfcSweptDiskSolid highlighted are not converted; (b, c) and (f, g) show FME Data In-
spector and FZKViewer visualizations respectively.

61

Quick Translator. Complex geometries in Figure 4.6 also highlight the converted geometry

of the same type that have different dimensions (height) compared with originals. Only

minimal semantics like Guid, ifc unique id, ifc parent id and Name attribute are kept

after conversion.

4.3.1.2 FME Workbench

FME is a potent Extract Transform Load (ETL) platform that allows users to define

a workspace fabricating translation or transformation procedures. Advanced users can

execute custom or detailed mapping with a specific workflow to process data through the

workbench interface. As a participant, the expertise level of using the FME platform

was very beginner, therefore for this task, an existing FME workspace12 (presented in

Figure 4.7) was sourced, modified based on errors and workflow for testing the conversion

of great detail IFC model to CityGML with LoD4. Below are the main steps performed

for transformation using the FME workbench:

1. Open FME Workbench → Open custom workspace .fmv file and click Run.

2. In User Parameters select benchmark IFC model as source IFC file and set the path

for destination CityGML document and output folder. Start the conversion process

by clicking OK.

3. If successful, converted CityGML file will be generated at output path.

12https://knowledge.safe.com/articles/1025/bim-to-gis-intermediate-ifc-lod-300-to-lod-4-cityg.html

62

Last step of above the procedure is unreliable as it might be interrupted during the

transformation, and only processed features are converted. The workspace comprises of

numerous transformers that are defined for specific purposes, and can also be customized.

Each transformer is an ETL component which takes input(s) and upon execution gener-

ates specific transformed output. Other transformers or writer components further uses

output as an input to required transformation. For example, transformer BinaryEncoder

Figure 4.7: Partial visualization of a sourced example tutorial workspace for converting
IFC model to CityGML with LoD4 using FME workbench where each block represents
feature type with respective reader and writer, connected with FME transformers.

63

can convert attributes containing any data by encoding binary data to text using Base64

or Hex encoding methods.

Although the workspace presented in Figure 4.7, it describes comprehensive enough

to handle most architectural IFC datasets, it gave only decent results for Myran.ifc

data, while other data IFC models have missing features and interrupted conversion pro-

cess by specific features. For example, IfcMember was not readable by the IFC reader,

which highlights if certain features read are not supported by software (tool version or

workspace), the translation will not be complete and/or suspended. The errors that

occurred during translation and transformation do not provide much detail about the

workspace process. Even transformation of processed features has different CityGML

tags, e.g. BridgeWallSurface instead of BuildingWallSurface.

Figure 4.8: Conversion results of IFC data into LoD4 CityGML models using FME
Workbench where limited features were transformed, and related semantics (attributes,
entity types and hierarchy) were kept with respective CityGML feature types.

64

IfcMember feature types in IFC data are usually composed of complex or unsupported

geometries. FME Workbench runs its IFC readers sequentially, but other transformers

in the workspace attached with a reader’s features run arbitrarily. Hence, the feature

transformation process after reader till writer is random, unless done by feature caching.

Therefore, if the transformation process of IfcMember or any other feature encounters

any fatal error, it terminates the process at a random time. Nevertheless, disabling that

feature transformer continues the translation process.

The conversion for Savigliano.ifc is not properly performed by extended workspace

because of geometrical conversion error where FME workbench is unable to convert

IFMEAggregate to IFMEMultiSurface, and terminated process results only Door fea-

tures. However, CityGML writer in FME indicates IFMEAggregate is convertible format

for lod4multisurface with IFMEMultiSurface as valid geometries. Similarly, IFMEMulti-

Curve geometric conversion error in addition to IFC reader limitation of supporting solids

like IfcAdvancedBrep and IfcSurfaceCurveSweptAreaSolid and feature types of IfcType-

Object (i.e. IfcDoorStyle and IfcWindowStyle) for UpTown.ifc data results in partial

building features (Figure 4.8).

4.3.2 CityGML to IFC Conversion

Initially, CityGML to IFC conversion experiments using FME Quick Translator resulted

in IFC models with only hierarchical information with no semantic or geometric details,

and error log of unable to write objects of CityGML type like WallSurface, RoofSurface

65

and GroundSurface. Hence, another proprietary software of FZKViewer was investigated

for the CityGML to IFC conversion task and below are the conversion steps performed

using this selected tool:

1. Lanuch FZKViewer → Open → Open GML File.

2. Browse CityGML dataset (file mentioned in Section 4.2.1). Click Open (here Spatial

Reference System is already set to EPSG-28992 - Amersfoort / RD New).

3. Click File → Export → IFC.

4. Select destination folder and add filename. Click Save. Before Save in Options you

can choose export version (i.e. IFC2x3 or IFC4) and even IFC specification (i.e.

.ifc, .ifcxml or .ifczip).

Figure 4.9: BIMvision visualization of converted IFC model from Buildings LoD3
CityGML data using FZKViewer shows correct semantic and geometric transformation
of features.

66

Figure 4.10: Feature details of converted Buildings LoD3 IFC model shows correct map-
ping of entities.

The results of automatic procedural steps mentioned above for FZKViewer produces

correct semantics (attributes and entity types) and present relatively correct changes in

geometry for CityGML to IFC conversion. The accurate mapping of converted Build-

ingsLoD3.gml data presented in Figure 4.9 shows the hierarchy of detailed features is

kept in the converted model, and correct mapping entities are assigned, as shown in the

Figure 4.10. Even generic attributes from GML file are converted to GML:PropertySet

in IFC attributes.

AmsterdamLoD1.gml is a huge CityGML dataset generally to check software and

system’s compatibility of handling large scale dataset. The chosen system’s hardware

was able to open the file and export the IFC model without crashing. The process took

a considerably short time (approx. 8 minutes) to complete and generate only building

footprints (no building geometry) in LOD100 IFC model models. Similarly, with semantic

details, as shown in Figure 4.11, while other elements from CityGML data like bridges,

roads were discarded automatically in export by FZKViewer.

Nevertheless, FZKViewer supports the CityGML to IFC conversion, but handling

67

Figure 4.11: CityGML to IFC conversion results of Amsterdam LoD1 using FZKViewer
export functionality representing building footprints with correct attribute information.

multiple LoDs export is not valid even if the process is complete. Since there is no

support in available software for IFC data with multiple LODs, the exported IFC file of

RotterdamLod2LoD1.gml is not validated and readable by BIM software.

4.3.3 Summary

Results in previous sections show that using FME workbench tool for translations or

transformations requires prior knowledge. Otherwise, with minimal expertise, either of

the two tools, i.e. FME workbench or FME Quick translator, leads to irregular geomet-

rical conversion and missing features.

Single workspace design for IFC to CityGML or CityGML to IFC data translation and

transformation in FME Workbench is impracticable against different datasets. Even the

execution of the same workspace across different Workbench software versions showing

compatibility issues were also observed. As mentioned earlier, the purpose of the bench-

mark Task4 activity was to investigate the off-the-shelf tools and procedures for the IFC

to CityGML and CityGML to IFC interoperability, creating functional workspaces with

workflow for discrete datasets is time-consuming research itself and out of scope for this

68

study.

FME Quick Translation provides limited geometrical conversion from IFC to CityGML

with loss in semantic and structural information. On the contrary, FZKViewer software

tool that is generally used to view and analyze GIS and BIM models, not directed as

an off-the-shelf conversion solution. However, it supports promising options of exporting

data into multiple formats like Collada, STL, including CityGML to IFC with different

IFC formats. Exporting multi–LOD IFC model against multi-LoDs CityGML data from

software like FZKViewer requires extra efforts, with a possible solution to separate export

model filtered on LoD.

Overall, the hardware used in this participation was adequate to run software tools for

conversion procedures with a minimal number of crashes during the conversion process.

Table 4.2 shows the time interval of each conversion task for IFC and CityGML model

across FME Workbench, FME Quick Translate and FZKViewer tools. For large datasets

like “UpTown.ifc” and “Amsterdam.gml”, the transformation takes longer to complete,

IFC to CityGML Conversion
Name File Size Experiment 1 Experiment 2
Myran 27.78 MB 42s ∼3m

Savigliano 22.07 MB 90s –
UpTown 246.82 MB 44m 59s 57m 55s

IFCGeometries
31 KB 2 –
27 KB 1.5 –

CityGML to IFC Conversion
Buildings 1.36 MB ∼2s –

Rotterdam 34.72 MB – –
Amsterdam 5.02 GB ∼8m –

Table 4.2: Conversion time for Task4 attempts, Experiment 1 and 2 for IFC to
CityGML denotes FME Quick Translator and FME Workbench conversions respectively,
for CityGML to IFC Experiment 1 is for FZKViewer conversions.

69

but the system was able to complete the process without crashing the software.

4.4 Study Analysis and Conclusion

Although, Noardo et al. (2019b) shows prominent interest for the Task4 participants’

registration, the moderate result attempts submitted in Noardo et al. (2020a) highlights

the challenges in IFC ←→ CityGML conversion procedures and room for improvements.

While there were successful attempts of IFC to CityGML conversion delivered for the

benchmark results, including a consistent conversion technique from a typical BIM struc-

ture (solids and detailed elements) to GIS (external, less detailed surfaces) by means of

specific workflow in FME and ArcGIS Pro-Data Interoperability extension, and another

attempt of using IFC2CityGML tool (Stouffs et al. 2018); other delivered conversions

also produced generic models with GenericCityObject elements. Even with successful

attempts, processes were very complex with outputting irregular geometries and involved

limitations of relying upon CityGML v.3. Therefore, prior knowledge and expertise of

tools like FME Workbench are required to achieve relatively successful results.

For the CityGML to IFC conversion results, geometric processing is minimal, but the

semantics associated with elements changed correctly according to the destination data

model. FZKViewer provides better semantic and geometric mapping and transformation

of CityGML to IFC data by keeping the model structure, enabling bidirectional conversion

compared to the off-the-shelf FME Quick Translation tool. Furthermore, exported models

from FZKViewer show consistency in file size if experiments are to be repeated, unlike

70

FME Quick Translator and Workbench.

In terms of software potential, IFC reader in FME Quick Translator does not support

all geometry types as well as transformers unable to interpret and translate complex

geometries. Even a few converted complex geometries have different dimensions compared

with the original. Visualization tools, on the other hand, provide a different rendering of

normal surfaces in geometry across the software of FZKViewer and FME Data Inspector

(Figure 4.6).

A conclusion drawn from this benchmarking activity is not easy, and existing software

tools and procedures offer systematic interoperability between BIM and GIS. It should

be also be noted from the study the standards bodies themselves and the community

are focusing on this interoperability problem. The reason is the high-level complexity

of standards and specific approaches to defining entities (including geometries), making

them very difficult to implement, understand, deploy, and use.

Therefore, following this GeoBIM benchmark activity and literature for the need of

interoperability of BIM and GIS, instead of data conversions leading to information loss

or designing application-oriented extensions, further study is conducted with the aim

towards achieving semantic interoperability among data models of BIM and GIS using

Semantic Web Technology, as the main goal of this research. A study focused on bringing

heterogeneous data in a common format of semantic web domain for seamless integration

– from where information can be extracted and facilitated for substantially generalized

future solutions.

71

Chapter 5

Methodology: Ontology

Generation of an XML Schema

In this chapter, the comprehensive framework of the tailored methodology – automatic

ontology generation of an XML schema – is presented as a step towards broad research

to achieve interoperability of BIM and GIS data with sensors information using seman-

tic web technology stack. The proposed transformation methodology is an extension of

PIXCO (Hacherouf et al. 2019) and Janus (Bedini et al. 2011) frameworks, which imple-

ments essential components and logical associations for the maximum transformation of

XSD elements into their appropriate OWL representations. The methodology focuses on

generating ontology from XML-based ifcXML and CityGML schemas of BIM and GIS

domain, respectively.

The methodology in this dissertation proposes the framework of ontology generation

as a first-module of the conceptual framework initially designed to commence this re-

72

search study for the broad research approach of semantic interoperability of BIM and

GIS data linked with IoT (Internet of Things) by exploiting semantic web techniques.

However, based on the complexity of BIM-GIS integration problems, limitations with

nascent research in the semantic web domain, and unavailability of working prototypes

for semantic integration (detailed in Chapter 2 and 3); the scope of the devised study

was focused to the only first-module (ontology generation) of broad research. It focuses

explicitly on establishing a formal method for the semantic representation of schema ele-

ments of ifcXML and CityGML formats. Henceforth, the first module of the preparatory

framework is developed and presented in this research to achieve the seamless information

exchange’s further integral goal among BIM, GIS, and IoT.

The organization of this Chapter is as follows: Section 5.1 features the preparatory

conceptual framework with three-modules of initial broad research approach of semantic

integration of BIM and GIS with IoT data (referred to as preparatory or primary research

methodology); Section 5.2 elaborates the proposed design and development first-module

of the preparatory framework for automatic ontology generation from XML schemas (on-

wards referred as a research methodology or contemporary research); Section 5.3 delves

with in-depth details of improvements made in initial framework and considerations in

the framework; and in the last Section 5.4, a summary of this Chapter for the established

methodology in the direction of implementation is addressed.

73

5.1 Preparatory Conceptual Framework for Semantic Integration

To accomplish primary research objectives, a conceptual framework for comprehensive

semantic level integration of BIM and GIS further incorporating IoT data is outlined

in Figure 5.1; addressed as preparatory (primary) methodology. The span of frame-

work design is a composite of multiple processes and algorithms. Accordingly, indicated

methodology is divided into three modules and presented in the following sub-sections:

(i) a formal method of ontology generation utilizing XML schema documents of BIM

and GIS data with former architecture named Ontology Generation for Geospatial Data

(OGGD) is introduced in Section 5.1.1; (ii) mapping of discretely generated BIM and GIS

ontologies as an innovative approach involving semantic and structural alignment tech-

niques are proposed in Section 5.1.2 as Ontology Alignment for Geospatial Data (OAGD),

that utilizes ontologies generated in the previous module for better mapping of entities

among both domains; and finally, generation of RDF graph by extracting information

from respective XML-based data-format of BIM, GIS, or IoT, and mapping it with cross-

domain ontology (obtained from the second module) to achieve integrated information as

the common data model is described in Section 5.1.3.

As mentioned earlier, the extensive preparatory framework primarily focuses on se-

mantic interoperability of data from three domains to essentially address seamless in-

formation exchange. From the three-modules of the manifested framework presented in

Figure 5.1, only the first-module is implemented in this research study; nonetheless, all

are discussed in the following sections:

74

OAGD

IFC
XSD

CityGML
XSD

Ontology Generation

Ontology Alignment

Feature Extraction

Semantic-based
alignment

Structure-based
alignment

Similarity
Mapping

OGIS

OBIM

Cross-domain
ontology alignment

OGIS OBIM
mapping

OGGD

XSD
Model

XSD
Formalization

Patterns
Model

Patterns
Formalization

Identified
Patterns

Patterns
Identification

Relevent
PatternsPertinent

Patterns

Ontology
Generation

XSD Model

XSD to OWL
Transformation

Patterns

RDF Graph Construction

ifcXML

CityGML

XSD
Extraction

RDF
Generation

Interlinked RDF graph

RDFGIS RDFBIM
mapping

Graph
DB

IoT
Documents

Processing Algorithm

Input/Output

Potential Input/Output
API

Sub Process

Figure 5.1: A comprehensive conceptual framework of primary methodology introduced
for the seamless integration of BIM and GIS data linked with IoT.

5.1.1 Ontology Generation for Geospatial Data (OGGD)

In the primary framework illustrated in Figure 5.1, OGGD, as the first-module, defines the

initial steps of automatically generating ontology for a given schema document. Ontology

models are generated in an OWL format by extracting information from XSD of ifcXML

and CityGML standards.

75

The design of OGGD itself is based on three steps (phases) (see Figure 5.1). The

first step utilizes XSD constructs of XML schemas to develop a formal model named

Formal Structure of XML Schema FS(XS). Alongside, it performs formalization of

defined sets of XSD to OWL Janus transformation patterns in a Formal Concept Analysis

(FCA) context. In the second step, patterns are identified across XSD constructs using

the FS(XS) model and transformation patterns, which further proceeds to pertinent

patterns for each specified XSD construct. Finally, in the last step, each XSD construct

associated with an appropriately identified transformation pattern is represented as an

ontology fragment, later adjoined into a consolidated OWL model. Henceforth, for a

given x XSD, respective ontology models of Ox is generated from aggregated ontology

fragments. In-depth details of this module are discussed in Section 5.2 as the major

contribution of this research study.

5.1.2 Ontology Alignment for Geospatial Data (OAGD)

The second module design of the primary conceptual framework includes the alignment of

cross-domain ontologies named OAGD; an automatic alignment (mapping) process that

determines the semantic-relations (correspondences) between concepts (entities) repre-

sented as classes and individuals, among generated OBIM and OGIS ontologies from the

previous module.

In this module, the features are extracted from OBIM and OGIS ontologies in a sets of

classes, properties and individuals along with annotations. Further, the sets are stacked

76

in a formal form of lists or dictionaries for initiating the efficient retrieval of specific

entities and their correspondences. Next, to procure the alignment and imply poten-

tial ontology mapping relations (e.g., one-to-many, many-to-one, or many-to-many), the

semantic-based Word2vec (Mikolov et al. 2013) and structure-based Node2vec (Grover

and Leskovec 2016) algorithms are implied. The integration of these machine learning

algorithms in OAGD will estimate the similarity between entities for better alignment

results. In particular, these algorithms utilize each entity from an ontology graph to be

learned and represented in vector formats for estimating the similarity between entities

composing a correspondence. Furthermore, from these vectors, an aggregated confidence

value representing similarity assessment between mapping entity nodes can be estimated,

which potentially identifies two entities aligned by their similarity level. Such process of

aggregating similarity measures is defined as similarity aggregation, and can be applied

using weighted average similarity proposed in Acampora et al. (2013) which illustrates

Equation 5.1 applies aggregated similarity value for c as:

simaggregate(c) =

h∑
i=1

wi × simi(c) subject to

h∑
i=1

wi = 1 (5.1)

where for ith similarity measure, wi is the associated weight of h similarity measures

and simi(c) is the similarity value computed against each correspondence c for an align-

ment A with the k correspondences; such that i = {1, 2, ..., k}, for correspondence ci.

Geng et al. (2020) is a leading study that implies alignment technique employs semantic-

based and structure-based similarities aggregated together according to the weighted av-

77

erage similarity between two entity nodes determine the similarity results between the

entities of two domains. Consequently, indicating confidence is estimated as equal-to re-

lation between every two entities of respective ontologies. Indicated study also evaluates

the semantics relation recognition by utilizing well-known information retrieval precision

and recall assessment. Nevertheless, the OAGD framework built on this procedure pre-

sented for ontology alignment is comprehensive and supported by an evident study to

correlate between two cross-domain entities of BIM and GIS. Due to the tangled and

supplementary scope of the ontology generation process, our research was limited to only

the first module of the primary framework. Furthermore, a correlation between entities in

complex ontologies demands to precede enriched ontology models to be reckoned in this

module. This alignment OAGD module was primed, indicating aligned entities would be

investigated and integrated with the future study scope of linking cross-domain ontology

of BIM and GIS systems.

5.1.3 Semantic Graph Generation

OWL representation of ontology assists reasoning and inference. In contrast, RDF is the

core of the semantic web and annotates to link data. In the last module of the preparatory

framework, RDF graphs will be produced for data from ifcXML and CityGML datasets

utilizing inference from respective generated ontology models, OBIM and OGIS in the

first-module, and linked cross-domain ontology from second-module.

The similarity correspondence of cross-domain ontology is to bridge the gap between

78

BIM and GIS. It shows the prospect of generating an interlinked RDF graph, a com-

mon data model in the semantic web. Moreover, sensor data (IoT) as linked data can

potentially be interlinked with this common data model in representing it in subject-

predicate-object format. Henceforth, these RDF graphs will potentially represent the

information exchange of sensors adjoined with geospatial entities in a cross-domain in-

tegrated graph structure. RDF graphs produced for such semantically rich geospatial

and IoT information are considerably sizable and likely requires optimizations; for query-

ing, storing and managing operations. To address these, cluster-based and community

optimization techniques can be applied for manipulating RDF graphs with exhaustive

information.

Nevertheless, the primary framework modules provide a comprehensive workflow to-

wards achieving the interoperability between BIM and GIS and using a semantic web

technology stack, a potential system with seamless information exchange of integrated

BIM and GIS with IoT data. However, the scope of this research study was made limited

to only the first-module due to limitations mentioned earlier. This dissertation focuses

only on the first module of the primary framework, delegating detailed second and third

modules of the preparatory research framework to be scrutinized in succeeding studies.

5.2 EPIXCO Framework

The contemporary framework of this research study focuses explicitly on OGGD (Section

5.1.1) by proposing a detailed extension in the design of its first module of the prepara-

79

1. Formalization

 JANUS + PIXCO
Patterns

Input
XSD

XSD
Formalization

Patterns
Formalization

Patterns
Identification

Pertinent
Patterns

Ontology
Generation

Processing Algorithm

Input/Output

API

FS(XS) ModelPatterns FCA
Model

PI sub matrix

getidentifiedpatterns

FALSE

All XSD
constructs

marked

getpertinentpatterns

PI Matrix

PP Matrix

TRUE

PI sub matrix

PP sub matrix

OWL Model

Processed Instructions

Data Models

Legend

3. Ontology Generation

2a. Patterns Identification 2b. Similar Patterns Filtration

Figure 5.2: A formal methodology design of EPIXCO for automatic ontology generation
of XML schema by using transformation patterns.

tory framework to address the automatic generation of ontologies from XML schemas,

explicitly focusing on XSD of ifcXML and CityGML formats.

Primarily, the tentative design of OGGD underlines the formal architecture from

PIXCO (Hacherouf et al. 2019) to utilize an extensive patterns-based transformation ap-

proach of ontology generation from XML schema documents. To complement this, a com-

80

prehensive framework EPIXCO (Enhanced Patterns Identification for XSD Conversion

to OWL) is introduced in Figure 5.2 as an improvement to the initially developed OGGD

design (Usmani et al. 2020) by enabling an extensive identification of transformation

patterns introduced in Janus and revamping the formalization and ontology generation

methods from PIXCO.

For better illustration, going forward few terminologies will be used interchangeably:

transformation patterns or simply patterns are collective of XSD to OWL correspondence

patterns from PIXCO and Janus approach. XSD components or tags are elements of

XML schema where each XSD construction (construct) comprises an XSD component

and attributes. The EPIXCO methodology implements multiple algorithms assisted by

sub-algorithms and is majorly categorized into three-phases which are elaborated in the

following sections:

5.2.1 Formalization of XSD and Transformation Patterns

The formal modelling process of data and related components encourage swift informa-

tion retrieval and exchange across the framework. In this phase, an input XSD schema is

formalized in a model along with adapted transformation patterns. An XSD is a collection

of XSD constructs in a hierarchical structure, where each construct represents an XSD

element accompanied by one or more attributes. Collectively, these XSD components

forming the XSD construct have several representation cases (check Section 3.3 for de-

tails). Subsequently, a transformation pattern defines a correspondence rule of transform-

81

ing elements from XSD constructs into OWL axioms. Therefore, for the essential process

of ontology generation by transforming XSD elements to OWL, two principle informa-

tion sources, input XSD schema and patterns, are formalized in extended mathematical

models of FS(XS) and context-based FCA model, respectively. They are presented as

follows:

5.2.1.1 XSD Formalization

To formalize an XSD schema comprising a set of XSD constructs, a formal model intro-

duced in PIXCO, Formal Structure of XML Schema (FS(XS)), is redefined in EPIXCO

as sets of 7-tuple S = (E,A, VA, C,HC , LT , Le) comprising:

1. Set E containing all elements of an XSD: E = {all, attribute, element, . . . }.

2. Set A containing all attributes of an XSD: A = {name, type, minOccurs, . . . }.

3. Set VA containing all attributes values of an XSD schema.

4. Collection of functions C for all constructs of an XSD, where each construction

function represents an XSD element accompanied by one or more attributes. The

collection C can be modelled as:

C = {C1, . . . , Cn} where n ∈ N and Ci : 〈E −→ A×VA〉

5. Collection of functions HC representing a hierarchy of constructs in an XSD:

HC : C −→ 2C

6. Set LT containing all XSD types of an XSD schema.

82

7. Set Le containing name attribute values of all element constructions in an XSD

schema, where element ∈ E.

The FS(XS) model is redefined for the effective modelling of XSD components with

further inclusion of LT and Le sets useful for transforming perplexing XSD schemas by

their utilization in the succeeding processes of pattern identification and later ontology

generation. LT is the collection containing all XSD types of an XSD schema, while Le

is to track element components for their construction. The created FS(XS) model

is exploited in succeeding phases of the contemporary framework and helps formally

manipulate the extracted information of XSD components.

5.2.1.2 Patterns Formalization

To formalize XSD to OWL transformation patterns, a Formal Concept Analysis (FCA)

(Bělohlávek 2008) context method is used in PIXCO to create a concept lattice. The

FCA model has a triple form context (G, M , I) whose elements contain a set of objects

(G) sharing a set of attributes (M) that represents a set of concepts (I), such that I is a

binary relation between G and M represented as I ⊆ G×M . In our context, the objects

(G) are patterns, attributes (M) are XSD elements and I relates with patterns against

elements or vice versa. Plainly, to formalize Janus and extended PIXCO patterns, the

formal FCA model of triple form context can be represented with following considerations:

1. G as set of all patterns i.e. G = {1, 2, 3, . . . , 43}.

2. M as set of XSD elements in G patterns e.g. M = {simpleType, complexType, . . . }.

83

simpleType union complexType restriction enumeration minInclusive maxInclusive

1 x

2 x x

3

4 x x x

5 x x x x

6 x

Table 5.1: A partial matrix to illustrate the formal context for patterns and XSD elements.

3. gIm or (g,m) ∈ I as interpretation function to recognize pattern g ∈ G has element

m ∈M , for example:

1I simpleType shows relation I with pattern 1 using XSD element simpleType.

4. Set B ⊆M induced with formal operator of concepts ↓ to identify pattern(s) sharing

all elements can be defined as:

↓ : 2M −→ 2G

B↓ = { g ∈ G | for eachm ∈ B : (g,m) ∈ I} and B↓ ⊆ G

For example, if B = {simpleType, restriciton, enumeration} then B↓ = 4.

The 43 transformation patterns of Janus (Bedini et al. 2011, Table I-VI) and PIXCO

(Hacherouf et al. 2019, Table 4-5) includes in total 27 XSD elements resulting in a very

large context matrix with 43 rows and 27 columns. A fully created formal context of

patterns (rows) and XSD elements (columns) occupies large space. Therefore, limited set

of patterns (objects) and elements (attributes) are considered, and their partial matrix is

presented in Table 5.1 for context matrix understanding. A pattern sharing an element

at matrix position (i, j) is marked (x), if and only if pattern i uses the XSD element j.

A complete concept lattice of transformation patterns is provided in Figure 5.3 for full

84

9

union

2

minInclusive maxInclusive

5

minExclusive maxExclusive

7

enumeration

4
10

11
12

6
8

14 19 20 13 31

choice
all

30

17
18

22
23 29 36

37
38

32 39

documentation

appinfo

40 42 43 41

unique

keyref

key

selector fieldannotation

attributeGroup

attribute

elementrestrictionsimpleType

1

3simpleContent

extension

complexContent 26

35 34
27 2833

sequence
15

16 24
25

complexType group

21

Figure 5.3: A full concept lattice of patterns in the FCA context with transformation
patterns and their respective XSD elements, inspired by Hacherouf et al. (2019). Filled
circle denotes intersecting node with patterns and XSD elements, half gray nodes are only
XSD elements, half blue are patterns nodes, and empty nodes are simple connections.

9

10
11

12

6
8

19 20

17
18

22
23 29 36

37
38

27 28

15
16 24

25

21

Set 1 Set 2 Set 3

Set 4 Set 5 Set 6

Figure 5.4: Sets of similar patterns listed in PIXCO framework extracted from concept
lattice Figure 5.3.

context matrix representation of the concept linking of patterns with elements where for

a given concept, a set of patterns are linked with XSD elements. For example, for concept

I with [Element:element], set of patterns it refers to is {15, 16, 21, 24, 25} (Bedini et al.

2011, Table IV). Moreover, if elements are shared in concept like [Element:element,

85

annotation] implying concept that is not closed, then there are two paths: (a) path

including XSD element appinfo results pattern set {40}; (b) path with documentation

maps to pattern set {39} (see lattice in Figure 5.3). Hence, it can be implied that

element node is directly linked with annotation, and indirectly linked with appinfo

and documentation, with other XSD elements like simpleType and complexType as

well. Henceforth, the formalization of patterns using a concept lattice is convenient to

retrieve a formal concept for a given context (G, M , I).

5.2.2 Patterns Identification and Filtration

Identifying patterns for an XSD block is a complicated process and further rectifying one

or two patterns precisely among 43 patterns becomes more challenging. The reason for

complexity originates from several design styles of single XSD block representation and

selecting a particular pattern from a high number of transformation patterns. Therefore,

to generate an ontology fragment of an XSD block of constructs, it has to match exactly

with a defined XSD structure rule of a pattern. Therefore, this phase is subdivided into

two steps:

5.2.2.1 Patterns Identification

In this phase, appropriate patterns are identified for each block of XSD constructs by

exploiting formal models from the first phase. Two algorithms (PatternsIdentification

and getIdentifiedPatterns) are implemented for appropriate identification process (see

86

phase 2a. of Figure 5.2). Both algorithms utilize helper functions (sub-algorithms listed

in (Hacherouf et al. 2019, Table 9, 11) and extended in Table 5.2 and 5.3), for their

exhaustive implementation.

The first algorithm PatternsIdentification (Algorithm 1) takes FS(XS) model of an

XSD schema as an input and returns a Patterns Identified matrix (PI), where each

row indicates a set of identified patterns corresponding to the set of XSD constructs

(block). In principle, the algorithm iterates over global XSD constructions in a sequence

while marking the iterated constructs. The first construct (i.e. schema) is explicitly

marked (since not being handled in any pattern), and for the rest, a loop iterates until no

construct in a schema is left unmarked. Within the loop, an unmarked global construct

Ci is retrieved and passed to getIdentifiedPatterns algorithm, which returns a sub-matrix

PI. At this point, constructions in the hierarchy of global construct Ci are marked. Lastly,

Algorithm 1: PatternsIdentification - (Extended algorithm from Hacherouf
et al. (2019) introduces handling of PI sub-martix)

Input: schemaFS(XS) /* FS(XS) model of an XSD schema */

Output: PI [m] [2] /* where m ≤ n and n is the total no of constructs */

1 Ci ∈ C; /* XSD construct Ci where 1 < i ≤ n */

2 Block ⊂ C; /* proper sub-set of constructions collection */

3 P ⊂ G; /* proper sub-set of correspondence patterns */

4 m = 0;
5 markConstruction (C1); /* mark xs:schema construct explicitly */

6 repeat
7 Ci = getConstructionNotMarked (); /* returns Ci as a global construct */

8 [{Block, P}] = getIdentifiedPatterns (Ci); /* returns PI sub-matrix */

9 foreach {Block, P} in [{Block, P}] do
10 PI [m] [0] = Block;
11 PI [m] [1] = P ;
12 m = m + 1;

13 end

14 until hasConstructionNotMarked = false;

87

the returned sub-matrix is aggregated in the PI matrix, and the loop is repeated for the

next unmarked Ci.

The second algorithm getIdentifiedPatterns (Algorithm 2) takes Ci as an input and

returns a sub-matrix PI. The global construct Ci is marked and added to a Blockk = {Ci}

where k is the possible number of blocks accumulated within a global construct. Further,

a loop iterates over every construct within a hierarchy of Ci, where the next unmarked

Algorithm 2: getIdentifiedPatterns - (Improved algorithm from Hacherouf et al.
(2019) with enhanced identification and intersection sub-algorithm)

Input: Ci ∈ C
Output: [{Block, P}] /* sub-matrix PI */

1 sG ⊂ G; /* proper sub-set of patterns */

2 sM ⊂M ; /* proper sub-set of elements in patterns */

3 P = {P0, . . . , Pk},wherePj ⊂ G;
4 Block = {Block0, . . . , Blockk},whereBlockj ⊂ C;
5 Cnext ∈ C;
6 k = 0; /* counts total blocks forming patterns in Ci hierarchy */

7 markConstruction (Ci); /* mark Ci global construction */

8 Blockk = {Ci}; /* initialize constructions block with marked construct */

9 while hasNextConstruction (Ci) do
10 Cnext = getNextConstruction (Ci); /* get next unmarked construct in HC for Ci */

11 markConstruction (Cnext);
12 Blockk = Blockk ∪ {Cnext}; /* add marked construct to current block */

13 sM = getElements (Blockk);

14 sG = sM↓; /* find pattern against sM set elements from lattice */

// Blockk forms no pattern or Cnext is not in same hierarchy of current block

15 if sG = ∅ or (size(Blockk) > 1 and !IsParentHierarchy (Blockk, Cnext)) then
16 Blockk = Blockk − {Cnext}; /* remove the construct from current block */

17 k = k + 1;
// Find intersection of Cnext with previous blocks resulting a new block

18 Blockk = getIntersection (Block, Cnext);

19 end

20 end
21 for j ← 0 to k do
22 sM = getElements (Blockj); /* Blockj is set of constructs */

23 Pj = getPatterns (sM); /* Pj set of identified patterns for sM elements */

// Add Pj of given Blockj in a sub-matrix (collection) for input Ci

24 [{Block, P}] = [{Block, P}] ∪ {Blockj , Pj};
25 end

88

construct Cnext is appended to existing Blockk to identify patterns against a set of con-

structs’ elements (sM) in Blockk. Cnext is the unmarked construct connected in hierarchy

HC with Ci, i.e. it can either be a child or child’s sibling construct. If no patterns are

found against sM set of elements, then Cnext is removed from Blockk and a possible

sequence convergence of constructs is identified that intersects with Cnext and added as

new Blockk+1. Otherwise, the loop continues for the next unmarked construct. In the

last progression of this algorithm, a collection (sub-matrix PI) is produced comprising k

records (PI Matrix rows), where each record contains relevant constructions block accom-

panied with their identified patterns. The details on demonstration of these presented

functional-style syntax algorithms are presented in next Chapter 6. Since, there is a pos-

sibility of more than one pattern identified in this phase, the next phase provides detail

on distinguishing to find pertinent patterns.

5.2.2.2 Similar Patterns Filtration

The previous step of the patterns identification process for a certain XSD block may result

in a set of similar patterns based on the XSD elements of the constructs. However, they

differ based on the XSD attributes and their attribute values (for better understanding,

see Table 6.4). Similarly, among 43 transformation patterns, sets of similar patterns are

identified and listed in Figure 5.4 which are extracted from the concept lattice shown

in Figure 5.3. The PIXCO study highlights the concept lattice is favourable for clearly

recognizing these sets of similar patterns. Therefore, from the identified patterns, XSD

89

Methods Parameters Returns Description
IsParentHierarchy sC ⊂ C,

Cnext ∈ C
True/False Check using HC if

Cnext is within hierar-
chy of sC.

checkPatternElementsLinked A ⊂ G,
sE ⊂ E

True/False Checks if set of ele-
ments sE are subset of
elements contained in
set of patterns A. Du-
plicates in sE are con-
sidered single element.

checkConstructHierarchy sC ⊂ C,
Cnext ∈ C

True/False Checks in HC if Cnext

is the connected to any
construction in set sC.

getIntersection {sC0, . . . , sCk} ⊂ C,
Cnext ∈ C

sCj ⊂ sC Returns the sub-set of
constructs sCj whose
elements are linked to
Cnext in concept lattice
as well as connected in
HC using checkPatter-
nElementsLinked and
checkConstructHierar-
chy methods.

Table 5.2: Helper methods for Algorithm 1 and 2 implemented in EPIXCO framework
for the improved patterns identification (details in Section 5.3.2).

Methods Parameters Returns Description
getInlineElementType c ∈ C type Returns the anonymous or inline type

definition of construction c.
getTypeOfAttributeValue c ∈ C, a ∈ A type Returns type of the value of attribute

a in construct c by looking into LT or
Le collection.

Table 5.3: Helper methods implemented in EPIXCO for treatment of similar patterns
among Algorithm 3 and 4 (details in Section 5.3.2).

components of the set of constructions have to be scrutinized for pertinent patterns to

select the most suitable patterns. Accordingly, two algorithms implemented in PIXCO

are enhanced and extended as PertinentPatterns and getPertientPatterns.

The algorithm PertinentPatterns (Algorithm 3) iterates over all the records (rows)

of PI matrix and inspects if the identified patterns of any record is identical to any set

90

of constructs listed in Figure 5.4. If yes, then respective set of identified patterns and

associated constructions are processed further by getPertientPatterns. For example, the

different in set 4 = {10, 11, 12} the difference is with the attribute value of base attribute

of restriction construct. On contrary, for set 5 = {27, 28}, the difference is within the

Algorithm 3: PertinentPatterns - (Extended algorithm from Hacherouf et al.
(2019) with improved PP matrix by handling duplicate records of identified
patterns)

Input: PI [m] [2] /* identified patterns matrix */

Output: PP [m′] [2] /* pertinent patterns matrix */

// Sets of similar patterns

1 Psim = [{15, 16, 21, 24, 25}, {19, 20}, {6, 8, 9}, {10, 11, 12}, {27, 28}];
// Another set of similar patterns (to be processed differently)

2 Psim6 = {17, 18, 22, 23, 29, 36, 37, 38};
3 Block = {C1, . . . , Cn},whereCj ∈ C andBlock ⊂ C;
4 Block′ ⊂ C;
5 P ⊂ G; /* set of identified patterns */

6 Ppert ⊂ G; /* set of pertinent patterns */

7 m′ = 0; /* no of rows in PP matrix =⇒ m′ ≥ m */

8 for i← 0 to m− 1 do /* m rows of the matrix PI */

9 Block = PI [i] [0]; /* ith block of constructions in PI */

10 P = PI [i] [1]; /* ith set of identified patterns in PI */

11 if P ∈ Psim then
12 Ppert = getPertinentPatterns (Block, P);
13 PP [m′] [0] = Block;
14 PP [m′] [1] = Ppert; /* update pertinent patterns for Block in PP */

15 m′ = m′ + 1;

16 else if P = Psim6 then
// Split the Block starting from 3rd construction, for each Cj

17 for j ← 3 to size(Block) do
18 Block′ = {C1, C2, Cj}; /* C1, C2 are first two constructs of Block */

19 Ppert = getPertinentPatterns (Block′, P);
// Block′ possibly contains constructions already processed for PP

20 if {Block′, Ppert} /∈ PP then /* To avoid duplicate entry */

21 PP [m′] [0] = Block′;
22 PP [m′] [1] = Ppert; /* update pertinent patterns for Block′ in PP */

23 m′ = m′ + 1; /* additional rows in PP compared to PI */

24 end

25 end

26 end

27 end

91

Algorithm 4: getPertinentPatterns - (Improved algorithm from Hacherouf et al.
(2019) that explicitly handles similar sets Psim1 and Psim6)

Input: Block ⊂ C,P ⊂ G
Output: Ppert

// type is one of XML native Datatype, simpleType or complexType

1 Ppert = {Ppert1 , . . . , Ppertz}; Block = {C1, . . . , Cz} where z ≤ 3, type: string;
2 switch P do
3 case {15, 16, 21, 24, 25} do
4 type = getTypeOfAttributeValue (C1, “type”);

// If no type attribute is defined in C1, find inline type of construction

5 if type = ∅ then type = getInlineElementType (C1);
6 if type = Datatype then Ppert = Ppert ∪ 15;
7 else if type = simpleType then Ppert = Ppert ∪ 16;
8 else if type = complexType then Ppert = Ppert ∪ 21;
9 if hasAttribute (“substitutionGroup”, C1) then Ppert = Ppert ∪ 25;

10 case {19, 20} do /* similar to PIXCO approach */

11 . . .
12 case {6, 8, 9} do /* similar to PIXCO approach */

13 . . .
14 case {10, 11, 12} do /* similar to PIXCO approach */

15 . . .
16 case {27, 28} do /* similar to PIXCO approach */

17 . . .
18 case {17, 18, 22, 23, 29, 36, 37, 38} do
19 if hasAttribute (“name”, C3) then
20 type = getTypeOfAttributeValue (C3, “type”);

// Find inline type of construct C3 if no type attribute is defined

21 if type = ∅ then type = getInlineElementType (C3);
22 if type = Datatype or simpleType then Ppert = Ppert ∪ 17;
23 else if type = complexType then Ppert = Ppert ∪ 22;

24 else if hasAttribute (“ref”, C3) then
25 type = getTypeOfAttributeValue (C3, “ref”);
26 if type = Datatype or simpleType then Ppert = Ppert ∪ 18;
27 else if type = complexType then Ppert = Ppert ∪ 23;

28 end
29 if hasAttribute (“minOccurs”, C3) and hasAttribute (“maxOccurs”, C3) then
30 x = getValueOfAttribute (“minOccurs”, C3);
31 y = getValueOfAttribute (“maxOccurs”, C3);
32 if x = y then Ppert = Ppert ∪ 38 else Ppert = Ppert ∪ 36 ∪ 37;

33 else if hasAttribute (“minOccurs”, C3) then Ppert = Ppert ∪ 36;
34 else if hasAttribute (“maxOccurs”, C3) then Ppert = Ppert ∪ 37;

35 end

36 end

92

attribute construct whether it comprises name or ref XSD attribute. Among all 6 sets,

Set 6 is treated distinctively by PertinentPatterns and getPertientPatterns. In Pertinent-

Patterns the given block of constructions is sliced, starting from third element in the set,

for distinct procedure on each sub-block (subset of constructs) in getPertientPatterns.

The algorithm getPertientPatterns (Algorithm 4) selects pertinent patterns from the

similar set of patterns. Firstly, it distinguishes the set of identified patterns among six sim-

ilar patterns to find respective pertinent patterns. Secondly, after differentiating among

sets of similar patterns, distinct procedures exploiting helper methods mentioned in Ta-

ble 5.3 is discretely adapted as each set has a distinct difference. This phase concentrates

on details in components of XSD blocks to identify the most appropriate pattern for the

block. In this phase, identified patterns in PI matrix are processed to filter particular

patterns of XSD blocks resulting in PP matrix.

5.2.3 Ontology Generation

As the result of previous phase of the EPIXCO framework, the PP matrix incorporat-

ing two columns; XSD blocks column respective to their produced pertinent pattern(s)

column, that is readily available to generate an OWL model. The algorithm Ontology-

Generation (Algorithm 5) takes PP matrix as input. For every XSD block, an OWL

block is produced by processing an associated set of the pertinent pattern(s) by corre-

spondence/transformation patterns and further merged into a consolidated OWL model.

Each transformation pattern is associated with an appropriate method (sub-algorithm)

93

Algorithm 5: OntologyGeneration - (Improved ontology generation algorithm)

Input: PP [m′] [2] /* pertinent patterns matrix from algorithm 3 */

Output: owlGraph: RDF, owlFile: File /* graph in RDF/TTL or RDF/XML file format */

1 type: string;
2 Block ⊂ C;
3 Ppert ⊂ G; /* pertinent patterns against Block */

4 st name, base extension: string;
5 enum list, name list, type list: List;
6 for j ← 0 to m′ − 1 do /* m′ rows of the matrix PP */

7 Block = PP [j] [0]; /* jth block of constructions in PP */

8 Ppert = PP [j] [1]; /* jth set of pertinent pattern against Block */

9 foreach p in Ppert do /* Ppert may stack multiple patterns (e.g.{17, 37}) */

10 switch p do /* handle each pattern p:1 ≤ p ≤ 43 */

11 case 1 do
12 st name = getValueOfAttribute (C1, “name”);

// Algorithm 6

13 owlGraph = owlGraph ∪ writePatterns 1 (st name);

14 end
...

15 case 6 or 8 or 9 do
16 ct name = getValueOfAttribute (C1, “name”);
17 base extension = getValueOfAttribute (C3, “base”);

// Algorithm 8

18 owlGraph = owlGraph ∪ writePatterns 6 8 9 (ct name, base extension, p);

19 end
...

20 case 17 do
21 ct name = getValueOfAttribute (C1, “name”);
22 for j ← 3 to size(Block) do
23 name list = name list ∪ getValueOfAttribute (Cj , “name”);
24 type list = type list ∪ getValueOfAttribute (Cj , “type”);

25 end
// Algorithm 9

26 owlGraph = owlGraph ∪ writePatterns 17 18 27 28 (ct name, name list,
type list);

27 end
...

28 end

29 end

30 end
// create OWL file of consolidated owlGraph in specified file format

31 owlFile = serializeOWLGraph (owlGraph, format); /* format is RDF/TTL or RDF/XML */

94

Algorithm 6: writePatterns 1

Input: dTN: string /* datatype name */

Output: OWL Model
1 Declaration (Datatype (ag:dTN)); /* ag is placeholder prefix for current IRI */

Algorithm 7: writePatterns 3

Input: className: string /* class/element name */

Output: OWL Model
1 Declaration (Class (ag:className)); /* ag is placeholder prefix for current IRI */

that has either distinctive representation or can be aligned with other transformation

pattern(s) in terms of OWL generation implementation, but requires handling particular

edge-cases. The data of the XSD block extracted in FS(XS) model is passed as parame-

ter to the respective to the patterns’ method. For example, writePatterns 1 (Algorithm 6)

requires value of name attribute of simpleType construct to create rdfs:Datatype OWL

fragment, whereas writePatterns 3 (Algorithm 7) takes name of complexType construct

to create owl:Class OWL fragment.

Furthermore, writePatterns 17 18 27 28 (Algorithm 9) shows that multiple patterns

can adhere same valid implementation of generating OWL block for the data sent as

parameters. However, writePatterns 6 8 9 (Algorithm 8) collectively implements three

transformation patterns but also adds pattern-specific correspondence of parametric ele-

ments. Henceforth, for 43 transformation patterns, the framework does not create equal

number of writing pattern methods. These algorithms uses the values of targetNamespace

attribute of schema construct in FS(XS) model to be added and used as namespace for

targeted OWL model with its relevant prefix (i.e. ag:<http://example.org/autology#>).

A custom method multiconcat encompasses namespace concatenation with the respective

95

Algorithm 8: writePatterns 6 8 9

Input: className: string, dT : string, pattern: int /* dT is base attribute value */

Output: OWL Model
1 Declaration (Class (ag:className)); /* ag is placeholder prefix for current IRI */

2 Declaration (DataProperty (ag:has className));
/* Select XML namespace if dT is one of XML native datatype (e.g. xs:string) */

3 if dT = nativeDataType then ns = xmlNS else ns = ag ;
4 if pattern = 8 then /* extended semantics for pattern 8 */

5 Declaration (DataProperty (ag:has dT));
6 SubDataPropertyOf (ag:has className ag:has dT);

7 else if pattern = 9 then /* extended semantics for pattern 9 */

8 Declaration (DataProperty (ag:has dT));
9 SubDataPropertyOf (ag:has className ag:has dT);

10 SubClassOf (ag:className ns:dT);

11 end
12 DataPropertyDomain (ag:has className ag:className);
13 DataPropertyRange (ag:has className ns:dT);

Algorithm 9: writePatterns 17 18 27 28

Input: className: string, elemNameList: List, elemTypeList: List
Output: OWL Model

1 Declaration (Class (ag:className));
/* Iterates a tuple of eN and eT, where len(elemNameList) = len(elemTypeList) */

2 foreach eN, eT in elemNameList, elemTypeList do
3 if eT = nativeDataType then ns = xmlNS else ns = ag ;
4 Declaration (DataProperty (ag:has eN className));
5 DataPropertyDomain (ag:has eN className ag:className);
6 DataPropertyRange (ag:has eN className ns:eT);

7 end

attribute values (as they were in XSD schema) for accurate correspondence and different

them with other similar elements.

Since it requires much space, only a few writePatterns methods are presented for

consideration. Section 6.1 in Chapter 6 provides an example to illustrate the workflow of

EPIXCO methodology and implemented algorithms. EPIXCO framework incorporates

the RDFLib package that works with RDF to create OWL models. Every fragment

of OWL blocks generated from writePattern methods is added in an OWL graph for a

96

consolidated OWL model and by using serializers saved in RDF/XML and Turtle syntax.

Since formalized XSD components and FCA context patterns are considered sophisticated

algorithmic workflow, the framework requires no human-intervention to complete the

transformation process.

5.3 Enhancements to Janus and PIXCO Frameworks

The literature of ontology generation unveils the transformation of XML schema to OWL

model as a perplexing process (see Section 3.5 in Chapter 3). Nevertheless, following

Janus patterns, the PIXCO approach provides a good foundation for defining a formal

ontology generation method with defined correspondence rules. Hence, our methodology

is inspired by these approaches. However, these approaches are not readily available to

be implemented; instead, they provide frameworks and algorithms that further require

refinements in terms of correctness and scaling for complex XSD structures and a gen-

eralized solution, meaning reforming Janus patterns and refactoring the algorithms of

PIXCO. Therefore, in the sections below, the enhancements considered in this research

study of the extended framework are provided:

5.3.1 Improving Janus Transformation Patterns

The Janus prototype defines 40 patterns (Bedini et al. 2011, Table I-VI) in 6 groups

distribution for maximum XSD components to be transformed into OWL model. How-

ever, some highlighted improvements are established to improve their originally defined

97

Pattern Janus EPIXCO
17/18 ag:has elt name rdf:type

owl:ObjectDatatype ;

rdfs:domain ag:ct name ;

rdfs:range ag:st name .

ag:has elt name ct name rdf:type

owl:DatatypeProperty ;

rdfs:domain ag:ct name ;

rdfs:range ag:st name .
24 〈element name="elt name"

type="xs:nativeDataType"/〉
〈element name="elt name"

type="ext type"/〉
32 ag:has elt name1 rdf:type

owl:ObjectProperty ;

rdfs:domain ag:grp name ;

rdfs:range ag:elt type .
ag:has elt name2 rdf:type

owl:ObjectProperty ;

rdfs:domain ag:grp name ;

rdfs:range ag:elt type .

ag:has elt name1 grp name

rdf:type

owl:DatatypeProperty ;

rdfs:domain ag:grp name ;

rdfs:range ag:elt st type .
ag:has elt name2 grp name

rdf:type

owl:ObjectProperty ;

rdfs:domain ag:grp name ;

rdfs:range ag:elt ct type .
33 〈complexType name="ct name"〉

〈sequence〉
〈group ref="grp name"/〉
〈/sequence〉
〈/complexType〉

〈complexType name="ct name"〉
〈group ref="grp name"/〉
〈/complexType〉

34 ag:has attr name rdf:type

owl:ObjectProperty ;

rdfs:domain ag:attr grp name ;

rdfs:range ag:attr type .

ag:has attr name attr grp name

rdf:type owl:DatatypeProperty ;

rdfs:domain ag:attr grp name ;

rdfs:range ag:attr type .

Table 5.4: List of few major improvements identified among XML/OWL syntax of trans-
formation patterns in Janus (Bedini et al. 2011) that are enhanced (as bold) in EPIXCO.

correspondences that are presented in Table 5.4. First column of the table shows Janus

pattern number, second column lists XML/OWL syntax for defined transformation in

Janus, and third column are improved considerations in EPIXCO framework.

For example, Janus pattern #17 and #18 corresponds with owl:ObjectDatatype, an

incorrect OWL axiom. Considering it as typo of owl:ObjectProperty, it still mismatches

with element construct corresponding to type or ref attribute as nativeDataType

or simpleType. Reason because an owl:ObjectProperty denotes complexType, and

the owl:DatatypeProperty denotes simpleType representations (see pattern #22, #23,

98

#32). Hence, EPIXCO associates with owl:DatatypeProperty. Similarly, in pattern

#33, an XSD block includes <sequence> within hierarchy of <group> construct. While (Gao

et al. 2012) suggests these XSD blocks are defined without <sequence> tag.

Furthermore, in details to the improvements mentioned in Table 5.4, the patterns’ cor-

respondences are revised for all OWL Properties (ObjectProperty or DatatypeProperty).

EPIXCO presents Properties with compound names (e.g. ‘has elt name ct name’) by

concatenating prefix ‘has’ with name of associated element or attribute followed by

associated type. The reason for such compound name is to distinguish Properties if

multiple enclosing element or attribute in XSD schema shares the same name. If not

differentiated, owl graph would add related correspondences of XSD components to same

node. This section provided improvements adapted in EPIXCO with Janus transforma-

tion patters. Section below provides updates on adapted PIXCO framework.

5.3.2 Refactoring PIXCO Algorithms

PIXCO framework provided formal methodology of XSD to OWL transformation by

incorporating patterns specified in informal context model of Janus, and creating a formal

mathematical model of input XSD schema to be incorporated in algorithmic processes

for ontology generation. However, no prototype of formal transformation is available to

implement and verify. Only few methodology steps are presented that also comprises of

incorrectness in associations. Moreover, algorithms in PIXCO require enhancements to

support complex XML schemas, like ifcXML and CityGML. Therefore, few of the major

99

Algorithm 10: getIntersection - (Enhanced sub-algorithm to identify correct
Block forming pattern in EPIXCO framework)

Input: sC ⊂ C, Cnext ∈ C
Output: sCj ⊂ sC

1 sC = {sC0, . . . , sCk},where sCj ⊂ C and sCj = {C0, . . . , Ct};
// As parent construct to Cnext maybe present in constructs sub-sets added last.

2 k = size(sC);
3 for j ← k − 1 to 0 do /* Iterate sC in reverse order */

4 if checkConstructHierarchy (sCj, Cnext) then
5 break; /* identified sCj is sub-set of constructs with Cnext in HC */

6 end

7 end
8 Block = {Cnext};

// Split the sCj for each construction Ct ∈ C to identify possible pattern.

9 for t← 0 to size(sCj) do
10 Block = Ct ∪Block; /* add construct from set sCj to current block */

11 sM = getElements (Block);

12 sG = sM↓; /* find pattern against sM set elements from lattice */

// Check if sM elements from Block forms pattern or linked in lattice.

13 if sG = ∅ or !checkPatternElementsLinked (sG, sM) then
14 Block = Ct −Block;
15 break;

16 end

17 end
// Block of constructs in HC forming patterns and intersecting with Cnext.

18 sCj = Block;

algorithmic improvements are highlighted below:

1. In Algorithm 2, if no pattern(s) are found against Blockk constructions including

Cnext construct, identification of a potential pattern in getIntersection dynami-

cally with constructs of current block Blockk becomes challenging. As Cnext might

not be within same hierarchy as of defined patterns. Hence, EPIXCO implements

getIntersection (Algorithm 10) functionality to enhance and refine pattern iden-

tification process with supporting methods like checkPatternElementsLinked and

checkConstructHierarchy.

100

Algorithm 11: getTypeOfAttributeValue - (Enhanced sub-algorithm for re-
trieval of correct type for a given attribute in EPIXCO framework)

Input: c ∈ C, a ∈ A /* attribute a in construct c */

Output: type: Type /* native XML datatype, simpleType or complexType */

1 v = getValueOfAttribute (a, c); /* returns value of attribute a:v ∈ VA */

2 if v = nativeDataType then /* XML native type i.e. {xs:string, xs:int,...} */

3 type = Datatype;
4 else
5 if v ∈ LT then /* LT is type tuple of FS(XS) model */

6 t = LT [v]; /* type t against v in LT of FS(XS) model */

7 if t = simpleType then type = simpleType else type = complexType ;

8 else if v ∈ Le then /* Le is element tuple of FS(XS) model */

9 c = Le[v]; /* get new construct c against element v in Le */

// Recursively identify attribute a for referenced construct c in value v

10 type = getTypeOfAttributeValue (c, a);
// Check for inline construct if no type is found for attribute a

11 if type = ∅ then type = getInlineElementType (c);

12 else
13 type = ∅;
14 end

15 end

2. Since, design of XSD maybe complex, retrieving getTypeOfAttributeValue isn’t

straight forward as key value pair. In EPIXCO, functionality of getTypeOfAt-

tributeValue in Table 5.3 is revised as Algorithm 11, providing a recursive solution

to return type of referenced attribute a for given construction c. The method as-

sists with more generalized implementation for XSD design with complex (nested

or referenced) associations.

3. The writePatterns method in ontology generation phase of the framework provides

a fragment of OWL graph. The fragments are customized for patterns sharing

correspondence rules and namespaces. For example, in Algorithm 8 dT parameter is

checked to assign the correct namespace prefix accordingly which provides maximum

101

correctness in transformed models.

4. EPIXCO treats the pattern 25 in Algorithm 4 separately as an element construct

may contains attributes of type and substitutionGroup simultaneously.

5. EPIXCO includes identification of pattern 15 for nativeDatatypes in Algorithm 4,

first case of identified patterns set {15, 16, 21, 24, 25}, that is not considered in

PIXCO approach.

6. Similarly, EPIXCO implements getInlineElementType method referenced in Algo-

rithm 4 for similar patterns identification of Psim1 and Psim6. The enhanced method

is used for constructions with no type attribute to find appropriate type values.

Mentioned above are a few from the list of improvements, minor or logically complex,

for the enhancements of extended algorithms implemented in EPIXCO, based on PIXCO

suggested algorithms. Possibilities in which the XML schemas are incomplete or not fully

validated exists. Henceforth, the EPIXCO algorithms are designed to handle edge cases

like null or empty if attributes or attribute values are not available in extracted XSD

information model FS(XS).

5.3.3 Reconstructed Mapping Rules of XSD to OWL

The mapping rules are defined as what an XSD component will correspond to in an OWL

syntax (Table 3.4 highlights example mappings). However, improved correspondence rules

for XSD schema elements (element, attribute,. . .) are applied in EPIXCO, presented

102

in Figure 5.5, where a global construct of element is mapped to an OWL Class or

Datatype depending on attribute value of type and ref attributes. Otherwise, a local

element declaration is mapped as ObjectProperty or DatatypeProperty, based on same

attribute value rules. Whereas for element with anonymous (inline) type declaration,

local or global, mapping is with ObjectProperty or DatatypeProperty as well as Class

or Datatype. This is an example of complexity that is not very well established within

prior mapping approaches and needs to be addressed. A similar subset of the rule is

xs:element

xs:complexType owl:Class

owl:Datatype

owl:ObjectProperty

owl:DatatypeProperty

xs:group

xs:attributeGroup

xs:simpleType

xs:attribute

type

ref

Anonymous

Scope
Local Global

simpleType complexType

simpleType complexType

nativeDatatype
or simpleType

complexType

Legend

XSD Element OWL Axiom

Figure 5.5: Reconstructed and enhanced correspondence rules of mapping XSD to OWL
for an improved transformation design in EPIXCO.

103

applied with the attribute tag, and Figure 5.5 presents pictorial representation of all

correspondence rules for better understanding.

The mapping process is more complicated than defining simple correspondence rules.

Janus and PIXCO handles small segment of these mapping OWL representations, where

as, EPIXCO design establishes better mapping rules (as shown in Figure 5.5) to assist in

implementing algorithms and helper methods of Table 5.2 and 5.3. These methods also

apply recursive retrieval to the attribute values of type and ref attributes as referring to

complexType or simpleType constructions. Further, EPIXCO implements getInlineEle-

mentType function to explicitly identify anonymous (inline) type declarations of XSD

constructs where type and ref are not present. The enhanced mapping rules transforms

respective OWL models with substantial and improved ontology mappings. These map-

ping rules are further used in EPIXCO implementation (Chapter 6) to be defined as

ground truth of OWL axioms identified for a given XSD schema.

5.3.4 General Considerations in Enhanced Framework

For understanding correct XSD construct correspondence to an OWL syntax, EPIXCO

considers representation of classes (entities) and individuals linked with other ontology

axioms (properties, operators etc.) from standards like Ontology Visualization Bench-

mark (OntoViBe) (Haag et al. 2015) and ifcOWL (Pauwels and Terkaj 2016) as stan-

dardized representation of OWL axioms and implements them accordingly. For ex-

ample, in Janus patterns #36 − 38, the occurrence constraints is represented with an

104

owl:equivalentClass axiom in OWL namespace, while, OntoVibe and ifcOWL stan-

dard ontologies employ rdfs:subClassOf axiom in RDFS namespace.

The transformation of XSD to OWL is a complicated process. While patterns with

defined correspondences help to identify the correct representations, it is noted that dif-

ferent XSD designs like Russian Doll, Salami Slice etc. (see Section 3.3) provides different

arrangement styles of the same XSD components. Nonetheless, the implementation of

this methodology is an iterative process resulting in an evolving ontology model. Thus,

for a generic procedure and maximum transformation, some cases require special atten-

tion towards algorithmic considerations of XSD to OWL transformation for a generalized

behaviour. Correspondingly, most of these considerations are employed in EPIXCO for

more accurate ontology modelling by following addressed improvements in the transfor-

mation process motivated by Janus patterns and algorithmic implementation of PIXCO.

5.4 Summary

As mentioned at the beginning of this Chapter, a primary methodology is established for

the broad research to adapt semantic web technologies for integrating BIM and GIS with

sensors data. A focused framework to obtain seamless information exchange between

sensors, building and geospatial information. A comprehensive conceptual framework

(presented in Section 5.1) is developed to resolve integration problem. However, due to

the complexity of the very first module, the approach for this thesis is revised with only

focus on the fundamental of a preparatory seamless integration framework, i.e. towards

105

PIXCO EPIXCO
Formal Method X X
Extensible X X
Automatic Transformation X X
Enhanced Mapping Rules X
Generalized Framework for XSD Designs X
OWL Expressivity n/a ALN(D)
OWL Models Validation X
Results Performance Measures X X
Results Statistical Analysis X

Table 5.5: A summary of enhanced considerations and improvements as contribution in
EPIXCO methodology compared with PIXCO Hacherouf et al. (2019) approach.

automatic ontology generation. Therefore, this study defines the ontology generation

methodology for the launch version of broad research methodology.

An automatic ontology development method is defined in Section 5.2 of this Chapter

that is proposed as a evolving framework. The quality of ontology relies on the accurate

modelling of its constituents; concepts, properties, facets and individual instances. Any

mismatch or a unique understanding of an axiom for a mapping pattern can lead to a com-

pletely different ontological representation. Therefore, the proposed methodology adapts

an enhanced correspondence of rules defined in Section 5.3.3 for accurate modelling.

A formally enhanced EPIXCO transformation method is designed in Section 5.2 to

extend and integrate transformation patterns from Janus and PIXCO incrementally for

the automatic ontology generation process. Table 5.5 presents summary improvements

in comparison of established EXPICO methodology with PIXCO approach. EPIXCO

simultaneously considers different XSD structural design styles to produce OWL models

in OWL 2-RL profile. Henceforth, these enrich generated conceptual models are flexible to

be aligned with information from heterogeneous sources establishing integrated systems.

106

Chapter 6

EPIXCO Implementation:

Building Ontologies Automatically

This Chapter aims to introduce EPIXCO, a system developed to provide a solution with

the capability to automatically generate ontology to solve the fundamental problem to-

wards building integration systems. The EPIXCO prototype accepts XSD schema and

applies algorithms to generate an OWL file that can further facilitate the ontology align-

ments and integrated information systems.

The Chapter is outlined as follows: Section 6.1 introduces the prototype and provides

the overall implementation system of EPIXCO framework with an example; Section 6.2

provides details on the workflow of extracting XSD information from an XML document

and establishing the ground truth of given XSD schema; Section 6.3 presents the ex-

perimentation with different source XSD to evaluate this work, among them includes

system scalability, performance, accuracy and comparative analysis with standard bodies

107

to measure quality; Section 6.4 discusses the framework, in-depth difficulties of its imple-

mentation with considerations made to overcome them and its limitations; and the final

Section 6.5 provides overall analysis and concludes this Chapter.

6.1 Implementation Features

In trying to answer the research question of “automatic ontology generation process”

the prototype of proposed transformation methodology named EPIXCO (Enhanced

Patterns Identification for XSD Conversion to OWL) is implemented, as an extended

1. Formalization

 JANUS + PIXCO
Patterns

Input
XSD

XSD
Formalization

Patterns FCA
Model

Patterns
Formalization

XSD Global
Construct

Patterns
Identification

PP Matrix

Pertinent
Patterns

Ontology
Generation

Processing Algorithm

Input/Output

API Input

PI
sub-matrix

getidentifiedpatterns
getpertinentpatterns

PI Matrix
PI sub matrix

PP sub matrix

FS(XS) Model

OWL Files
.RDF/XML

.TTL

Ontology
Evaluation

OWL Model

Processed Instructions

Legend

2a. Patterns Identification 2b. Similar Patterns
 Filtration

3. Ontology Generation

lxml.etree

collections

Figure 6.1: Overall architecture of EPIXCO.

108

framework of PIXCO (Hacherouf et al. 2019). The prototype extracts detailed informa-

tion from XSD schema, and recognizing a defined set of patterns across input schema,

without intervention, results in an OWL model in an output RDF/OWL file. The

EPIXCO framework is developed by understanding the JANUS and PIXCO method-

ologies and their algorithms, as no source code was available for given methodologies.

The overall architecture of the system is presented in Figure 6.1 and consists of three

major phases with algorithms utilizing APIs in a Python-based environment elaborated

below in detail.

0 <?xml version="1.0" encoding="UTF-8"?>

1 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://example.

org/autology#">

2 <xs:simpleType name="DegreeEnum">

3 <xs:restriction base="xs:string">

4 <xs:enumeration value="Masters"/>

5 <xs:enumeration value="Doctoral"/>

6 </xs:restriction>

7 </xs:simpleType>

8 <xs:complexType name="Document">

9 <xs:sequence>

10 <xs:element name="Title" type="xs:string" maxOccurs="1"/>

11 <xs:element name="Author" type="xs:string"/>

12 </xs:sequence>

13 </xs:complexType>

14 <xs:complexType name="Thesis">

15 <xs:complexContent>

16 <xs:extension base="Document">

17 <xs:attribute name="Degree" type="DegreeEnum"/>

18 </xs:extension>

19 </xs:complexContent>

20 </xs:complexType>

21 <xs:element name="Thesis" type="Thesis"/>

22 </xs:schema>

Listing 6.1: An example XSD schema inspired by example in PIXCO (Hacherouf et al.
2019) reused for better relative illustration with EPIXCO framework.

Formal modelling, in the first phase of EPIXCO framework, parsing and manipulate

109

the XSD documents and all defined transformation patterns are sourced into a formal

context model uses lxml.etree13 library. The modelling process iterates over the tree

structure of the XSD document from a root node to extract all attributes and attribute

values of each node to create a mathematical model FS(XS). As an example, Listing 6.1

is presented to illustrate the formal model where the line numbers of example schema

correspond to each XSD construction. The lines with closing tags are excluded from

modelling i.e. [6, 7, 12, 13, 18, 19, 20, 22], while the remaining lines [1, 2, 3, 4, 5, 8, 9, 10,

13https://docs.python.org/3/library/xml.etree.elementtree.html

Tuple Value

E = {xs:schema, xs:simpleType, xs:restriction, xs:enumeration, xs:complexType,
xs:sequence, xs:element, xs:complexContent, xs:extension, xs:attribute}

A = {xmlns:xs, targetNamespace, name, base, value, type, maxOccurs}
VA = {"http://www.w3.org/2001/XMLSchema", "http://example.org/autology#",

"DegreeEnum", "xs:string", "Masters", "Doctoral", "Document", "Title", "1", "Author",
"Thesis", "Degree"}

C = {C1, C2, C3, C4, C5, C8, C9, C10, C11, C14, C15, C16, C17, C21}
C1 = 〈xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://example.org/autology#"〉
C2 = 〈xs:simpleType name="DegreeEnum"〉
C3 = 〈xs:restriction base="xs:string"〉
C4 = 〈xs:enumeration value="Masters"〉
C5 = 〈xs:enumeration value="Doctoral"〉
C8 = 〈xs:complexType name="Document"〉
C9 = 〈xs:sequence〉
C10 = 〈xs:element name="Title" type="xs:string" maxOccurs="1"〉
C11 = 〈xs:element name="Author" type="xs:string"〉
C14 = 〈xs:complexType name="Thesis"〉
C15 = 〈xs:complexContent〉
C16 = 〈xs:extension base="Document"〉
C17 = 〈xs:attribute name="Degree" type="DegreeEnum"〉
C21 = 〈xs:element name="Thesis" type="Thesis"〉

HC = {(C1,C2), (C2,C3), (C3,C4), (C3,C5), (C1,C8), (C8,C9), (C9,C10), (C9,C11), (C1,C14),
(C14,C15), (C15,C16), (C16,C17), (C1,C21)}

LT = {{simpleType: {"DegreeEnum"}}, { complexType: {"Document", "Thesis"}}}
Le = {{"Title":C10}, {"Author":C11}, {"Thesis":C21}}

Table 6.1: The FS(XS) model defined for the information extracted from XSD schema
in Listing 6.1.

110

11, 14, 15, 16, 17, 21] are considered. The line numbers are treated as indexes of XSD

constructions, meaning each XSD construct can be referred to as Clinenumber; for example,

C1 refers to the construct of line number 1. Therefore, the formalization process of the

Listing 6.1 produces set of 7-tuples expressed in Table 6.1 as FS(XS) model. Unlike

PIXCO architecture, the FS(XS) model is not stored in any database and is part of the

complete workflow which eventually saves an OWL model upon completion.

The second phase with of patterns identification uses Formal Concept Analysis (FCA)

to create a concept lattice using collections14 library on 43 Janus and PIXCO transfor-

mation patterns. EPIXCO prototype implements PatternsIdentification (Algorithm 1)

and getIdentifiedPatterns (Algorithm 2) for the pattern identification processes which

exploits helper methods such as checkPatternElementsLinked, getIntersection (listed in

Table 5.2). To demonstrate the basic workflow of these two algorithms, Table 6.1 formal-

ized with FS(XS) model is used. The formal model is sent as parameter to Algorithm 1

and subsequently, the Table 6.2 displays the principle state of designated algorithmic

variables like Ci, XSD blocks and set of identified patterns P. The bold cells show de-

termined state by algorithm for the block and upon completion the resulting PI matrix

is shown in Table 6.3a, where first column presents XSD block with set of constructs

respective to its identified patterns.

Further, the framework implements PertinentPatterns (Algorithm 3) and getPertient-

Patterns (Algorithm 4) filtration for pertinent patterns by using helper methods listed in

14https://docs.python.org/3/library/collections.html

111

Ci Blockk Block XSD Elements States of P
C2 {2} – –

{2, 3} {simpleType, restriction} {4, 5, 7}
{2, 3, 4} {simpleType, restriction,

enumeration}
{4}

{2, 3, 4, 5} {4}
C8 {8} – –

{8, 9} {complexType, sequence} {17, 18, 22, 23, 29, 36, 37, 38}
{8, 9, 10} {complexType, sequence,

element}
{17, 18, 22, 23, 29, 36, 37, 38}

{8, 9, 10, 11} {17, 18, 22, 23, 29, 36, 37, 38}
C14 {14} – –

{14, 15} {complexType,
complexContent}

{13, 14}

{14, 15, 16} {complexType,
complexContent, extension}

{13}

{14, 15, 16, 17} {complexType,
complexContent, extension,

attribute}

{}

{14, 15, 16} {complexType,
complexContent, extension}

{13}

{14, 17} {complexType, attribute} {27, 28}
C21 {21} element {15, 16, 21, 24, 25}

Table 6.2: The iterative states of variables over execution of Algorithm 1 and 2 on the
input FS(XS) model specified in Table 6.1.

Block P
{2, 3, 4, 5} {4}
{8, 9, 10, 11} {17, 18, 22, 23, 29,

36, 37, 38}
{14, 15, 16} {13}
{14, 17} {27, 28}
{21} {15, 16, 21, 24, 25}

(a)

Block P
{2, 3, 4, 5} {4}
{8, 9, 10} {17, 37}
{8, 9, 11} {17}
{14, 15, 16} {13}
{14, 17} {27}
{21} {21}

(b)

Table 6.3: The resulting matrix of (a) PI of Listing 6.1 by identification algorithm (Al-
gorithm 1) (b) PP of given PI Matrix by pertinent patterns (Algorithm 3).

Table 5.3. It can be noted from Table 6.3a that for a given block, multiple patterns can

be identified, e.g. for block {8, 9, 10, 11} set of {17, 18, 22, 23, 29, 36, 37, 38} patterns

are identified. In such cases, XSD components of the block are further scrutinized to

112

Pattern XSD Constructions
27 〈xs:complexType name="ct name"〉

〈xs:attribute name="attr name" type="st name"〉
28 〈xs:complexType name="ct name"〉

〈xs:attribute ref="attr name"〉

Table 6.4: XSD constructions based different between similar patterns set 2 referenced
from Figure 5.4.

distinguish and identify pertinent pattern. While Section 5.2.2.2 provides detail on such

distinguishing process to find pertinent pattern, relative example of these similar patterns

is illustrated in Table 6.4 where the constructions of set of patterns {27, 28} comprises

same XSD elements {complexType, attribute}. The difference occurs in the construct

with attribute element, for which pattern 27 has attribute name in contrast to pattern

28 with the attribute ref.

In another example of identifying specific pattern, from the PI matrix in Table 6.3a,

the block {8, 9, 10, 11} identifies P6 or Set 6 = {17, 18, 22, 23, 29, 36, 37, 38} is

sliced based on the number of element constructs (see Algorithm 3). Afterwards, each

sub-block with element construction is distinguished for pattern 17, 18, 22 or 23 by

either comprising name or ref XSD attribute or explicitly with the type of their attribute

values (see Algorithm 4). After these pertinent patterns, the same element construct

is examined for minOccurs or maxOccurs attribute and appends respective patterns as

one of: 36, 37, (36 and 37) or only 38 (see last section in Algorithm 4). Henceforth,

the Table 6.3b shows the pertinent pattern filtration results of the identified patterns in

Table 6.3a.

In the last phase of prototype, EPIXCO implements Algorithm 5 exploiting APIs from

113

RDFLib15 package with OWL-API to create consolidated OWL graph for extracted XSD

information of a given XSD block to generate an OWL block by using pertinent patterns

PP matrix in Table 6.3b. Each record in PP is processed by OntologyGeneration algo-

rithm with tailored writePatterns methods where an XSD block against carefully identi-

fied patterns is mapped to an OWL syntax. Figure 6.2 illustrates the principle mapping of

XSD block with OWL by established correspondence rules in Figure 5.5. For elaboration,

segments of ontology model shows OWL fragment of respective XSD blocks. These OWL

fragments of XSD blocks passed to sub-functions are synthesized with sub-functions such

15https://rdflib.readthedocs.io

Figure 6.2: Principle mapping visualization of procedurally generated OWL blocks in
TTL format (right) corresponding to an XSD blocks (left) of Listing 6.1 by EXPICO
prototype.

114

*..1 Title

Degree

Subclass of

Author

Document

string

string

DegreeEnum
Thesis

Figure 6.3: A WebVOWL visualization of ontology model generated for Listing 6.1 using
EPIXCO architecture.

as Algorithm 6, 7, 8, 9, etc, and results an RDF/OWL file in RDF/XML and RDF/TTL

formats containing resulting ontology axioms (Class, ObjectProperty, . . .). RDFLib

also support more graph parsers and serializers16 like n3 and nquads. Figure 6.3 shows

the visualization of OWL model generated from the Listing 6.1 using EPIXCO prototype.

As seen from the example presented in Figure 6.2, the EPIXCO methodology provides

detailed semantic correspondence. It presents ontological vocabularies of existing schema

information in OWL axioms like classes and properties. The XSD components of patterns

are considered during the transformation process, and the framework requires no user-

intervention to complete the transformation.

16https://rdflib.readthedocs.io/en/stable/plugin serializers.html

115

6.2 Experiments Preparations

Before conducting experiments on the EPIXCO prototype framework, eight XSD schemas

were established to be used as testing datasets. For this purpose, the six XSD schema of

ifcXML and CityGML formats are used along with an example XSD Listing 6.1 and a

schema generated for a GeoBIM benchmark IFCGeometries data (see Section 4.2.1). The

following sections provide the process of establishing ground truth for these are schemas

and extracting XSD schema from an EXPRESS-based .ifc file.

6.2.1 XSD Extraction from IFC EXPRESS File

The IFC files created in academia and industry environment are mainly based on EX-

PRESS schema. However, a procedure can be defined to create ifcXML from an IFC

Step file and further using XML to XSD conversion tools to create the respective XSD

schema. For this, the IfcConvert tool from IfcOpenShell library17 is applied to convert the

IFC Step file into ifcXML. IfcConvert.exe command-line tool generates an XML file for a

given .ifc file. It is to note that IfcOpenShell only supports ‘IFC2x3’ schema. Following

this, online tools like XML to XSD converter18 and XSD/XML Schema Generator19 can

be used to generate XSD of XML document, which also provides options between XSD

designs (see Section 3.3 for XSD designs). The generated XSD file can be validated with

17http://ifcopenshell.org/

18https://www.liquid-technologies.com/online-xml-to-xsd-converter

19https://www.freeformatter.com/xsd-generator.html

116

respective XML Schema Validator20 tool.

6.2.2 Ground Truth Matrix

As mentioned earlier, one of the problems encountered in establishing the ontology gener-

ation process was the lack of tools available to evaluate the potential semantics generated

for a given XML schema. In this formal ontology generation process, a detailed correspon-

dence of defined rules is exercised over selected XSD files, and Table 6.5 presents their

generated respective OWL axioms as ground truth using correspondence rules defined in

Figure 5.5. These ground truth values presented are scrutinized versions of possible dupli-

cates of axioms that may share the same name among the same XSD components. Since

EPIXCO, at this stage, implements 30 of 43 transformation patterns, the constructs

not being considered in the generated ontology are filtered from ground truth to create

filtered ground truth, shown in Table 6.6. These calculated ground truth values using

Equation 6.1 are further used in Section 6.3 to calculate the accuracy of the EPIXCO

20https://extendsclass.com/xml-schema-validator.html

Schema Class Datatype DatatypeProperty ObjectProperty

Example 2 1 3 -
cityGMLBase 17 12 13 13
building 47 20 24 47
bridge 50 21 24 45
IFCGeometries 21 6 12 20
IFC2x3 TC1 1388 279 649 643
IFC4 ADD1 1147 341 527 663
IFC4 ADD2 TC1 1161 342 529 676

Table 6.5: Ground Truth of input XML schema specifications (listed in Table 3.2) with
unique OWL axioms count calculated using rules in Figure 5.5.

117

ontology generation process, which can be presented as:

Accuracy (a) =
Correct Samples (a)

All Samples (a)
(6.1)

where a is an axiom in OWL model (i.e. class, datatype or datatypeProperty),

Correct Samples are unique axioms of type a and All Samples provides ground truth

axioms of type a.

Schema Class Datatype DatatypeProperty ObjectProperty

Example 2 1 3 -
cityGMLBase 16 12 11 13
building 47 20 24 47
bridge 50 21 24 45
IFCGeometries 21 6 12 20
IFC2x3 TC1 1388 164 558 520
IFC4 ADD1 1087 211 527 482
IFC4 ADD2 TC1 1100 212 529 493

Table 6.6: Filtered Ground Truth of input XSD schemas with unique OWL axioms count
of currently implemented 30 transformation patterns.

6.3 Experimental Results

To validate this research, experiments are executed on eight XML schemas, that are

derived by IFC schema specifications21, CityGML 2.022, an IFC benchmark dataset (see

Section 4.2.1) and an example schema. Details on extracted XSD components of these

the documents and their schema specifications are presented in Section 3.4.

Since there are no readily tools available for XSD to OWL generation, there is a

21https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/

22https://www.citygmlwiki.org/index.php/CityGML XML Schema

118

lack of referent ontology for these schemas; motivation towards building ground truth

in this methodology to produce a correct expected result. The first schema Example in

Listing 6.1 is a simple illustration XSD schema with limited in terms of dimensions of

XSD components for a more humanly accessible execution of process and correspondence

with resultant model. The remaining schema documents of IFC and CityGML are for

better analysis and overall observation of the scalability process.

6.3.1 Validation of OWL Models

In this study, the ontology models generated from experiments performed on selected

schemas are validated using W3C RDF validator Service23 and OWL Validator24. The

models are also evaluated using OOPS! (OntOlogy Pitfall Scanner!) (Poveda-Villalón

et al. 2014) provides pitfalls in three levels: critical, important and minor, where only

minor and important issues are identified. Furthermore, Protégé (Musen 2015) tool is

also used for validation assessment and deriving ontology metrics of generated models as

well as another web-based WebVOWL25 tool for visualization of valid ontology graphs

with capability of handling large ontology graphs (see Figure 6.4). These OWL models

are further evaluated using quantitative and comparative analysis in our study, presented

following sections.

23https://www.w3.org/RDF/Validator/

24http://visualdataweb.de/validator/

25http://www.visualdataweb.de/webvowl/

119

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of
Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of
Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass ofSubclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Subclass of

Components

IfcStructuralP...

IfcDistributio...

IfcAppliedVal...

IfcAddress

PrimaryUnit

IfcTimeMeasu...

WeightsData

IfcElectricTim...

IfcCableSegm...

IfcRectangula...

IfcStructuralL...

IfcColour

IfcRamp

IfcLampType

LightDistribut...

FirstOperand

IfcWindowLini...

IfcCircle

IfcSimpleProp...

IfcGeometricS...

IfcProductRep...

IfcFeatureEle...

BaseCosts

IfcPostalAddress

IfcBoundaryF...

IfcBuildingEl...

StartOfNextHa...

IfcArcIndex

IfcTaskTime

IfcKinematicV...

LetterSpacing

IfcTimeStamp

IfcRelAssigns...

IfcGeometricSet

IfcTextLiteral

IfcCompositePr...

IfcFurnitureType

IfcCompoundP...

IfcCableCarrier...

IfcLightFixture...

IfcCrewResource

IfcWorkControl

IfcTextStyleFo...

IfcSolarDevic...

IfcSolidOrShell

IfcRevolvedAr...

IfcStructuralA...

IfcFireSuppre...

IfcPolygonal...

Faces

IfcExtrudedAr...

IfcStructural...

IfcNonNegati...

IfcSlippageCo...

IfcFurniture

VolumeOnRela...

IfcDoorStyle

IfcMaterialDefin...

IfcStructural...

IfcStructuralS...

IfcBoiler

Materials

IfcActuator

IfcExternalRef...

IfcSectionRein...

IfcTypeObject

IfcSurfaceOrF...

RelatedDefinit...

CurveColour

IfcCostItem

IfcLengthMeasure

IfcCoolingTow...

IfcCartesianTr...

DiffuseTransm...

IfcActor

IfcVector

IfcStructural...

IfcPropertyRe...

IfcSurfaceCurve

IfcPropertySet...

IfcTransportE...

RelatingElement

Locations

IfcClassificat...

IfcConstructi...

IfcMolecularW...

IfcLineIndex-w...

IfcShadingDevice

IfcSubContra...

IfcTaskType

IfcHeatExcha...

IfcSensor

Owner

IfcLengthMeas...

IfcFlowTreatm...

IfcAsset

IfcConstructi...

IfcElectricCur...

IfcFillAreaStyle...

IfcCurveFontO...

IfcAnnotationFi...

IfcBuildingEl...

IfcMember

IfcTypeResource

IfcProject

IfcHumidifierType

IfcSeamCurve

uos

IfcAirTerminal

IfcCurvatureM...

IfcWallType

IfcConstraint

IfcDiscreteAc...

IfcSpatialZon...

IfcDimensiona...

IfcReinforcem...

IfcUnitaryEqu...

IfcLightSourc...

IfcMaterialLayer

IfcBendingPa...

IfcAreaDensit...

IfcRationalBS...

IfcCurveOrEd...

IfcCartesianT...

IfcExternalRef...

IfcStructuralL...

IfcValveType

IfcPhysicalCo...

IfcCompoundP...

IfcPositivePl...

IfcGrid

IfcFeatureEle...

IfcSurfaceStyl...

RelatingPrope...

IfcNonNegati...

IfcProduct

IfcAdvancedFace

IfcRelCovers...

WorldCoordin...

IfcLinearForc...

IfcPropertyTe...

IfcPipeSegme...

IfcWasteTerminalIfcCableSegment

IfcFailureConn...

IfcCurvatureM...

IfcWindow

IfcResourceAp...

TranslationalSt...

TranslationalSt...

IfcMaterialDef...

TranslationalSt...

IfcEngine

IfcProtectiveD...

IfcBuildingEl...

IfcQuantityTime

IfcChimney

IfcBoolean

IfcSpaceHeat...

IfcDescriptiv...

FontFamily

IfcRelConnect...

IfcCivilElemen...

IfcPerson

IfcFlowSegment

VAxes

IfcMassMeasure

IfcGridPlacement

IfcSpaceBoun...

IfcStyledItem

IfcFilter

IfcSphericalSu...

IfcSpatialElement

IfcText

SbsmBoundary

IfcObjectRefe...

IfcSimpleProperty

IfcPresentatio...

IfcColourRgbList

IfcLuminousIn...

IfcFontWeight

IfcStructuralS...

IfcFillStyleSelect

IfcPresentati...

IfcBSplineSur...

IfcRoofType

IfcProfileProper...

IfcModulusOf...

DocumentOwner

SurfaceOnRel...

IfcQuantityArea

IfcConnection...

IfcCardinalPoi...

IfcEvaporativ...

IfcRelAssocia...

IfcSIUnit-temp

IfcSectionedS...

IfcProcessSelect

IfcLoop

IfcTypeProcess

IfcOrganization

IfcSurfaceStyl...

IfcRepresenta...

IfcSurfaceSty...

IfcCoveringType

IfcResourceOb...

IfcManifoldSol...

IfcPersonAnd...

IfcHumidifier

IfcModulusOfT...

IfcTimeOrRati...

ControlPointsList

IfcTranslationa...

IfcMappedItem

IfcElectricMotor

IfcFilterType

IfcSpatialEle...

IfcReinforcing...

IfcRelAssigns...

IfcControllerType

IfcGridAxis

IfcRelSpaceB...

IfcCableFitting

PointOnRelat...

IfcTelecomAdd...

IfcFlowMovin...

IfcPositiveLe...

IfcRelAssociat...

IfcMaterialCon...

RealizingElem...

IfcModulusOfR...

IfcChiller

IfcMetricValue...

IfcEvent

IfcMaterialUs...

IfcRoot

IfcRoof

IfcBoilerType

IfcArcIndex-w...

IfcExtrudedAr...

IfcCrewResou...

IfcRelDefines...

IfcDistributio...

IfcLaborReso...

IfcParameterV...

IfcElementType

IfcMaterialLa...

IfcNormalised...

Representati...

IfcRecurrence...

IfcPile

IfcRelConnect...

IfcMonetaryM...

IfcCylindricalS...

IfcStructuralA...

RelatingResource

IfcProtectiveD...

IfcLShapeProf...

IfcEllipseProfi...

IfcElementQuan...

IfcElementary...

IfcUnitAssign...

IfcBoundaryCurve

IfcSpace

IfcDocumentS...

IfcTime-wrapper

IfcInterceptorType

IfcFlowTermin...

IfcSlabStanda...

IfcPHMeasure...

IfcRepresentation

IfcCooledBeam

IfcPropertyTab...

Unit

Position

IfcSolidModel

MaterialConsti...

IfcComplexN...

IfcBSplineSurface

IfcIShapeProfi...

IfcConnectio...

IfcTorqueMeasure

IfcStructuralS...

IfcSanitaryTer...

IfcMaterialClas...

IfcBoundaryN...

IfcReinforcem...

IfcDuctFittingType

InnerCurves

IfcTimeStamp...

IfcHeatExchanger

IfcEvaporator...

IfcRelConnect...

IfcPlacement

IfcBinary

IfcProtectiveD...

IfcEngineType

TransmissionC...

IfcBooleanResult

IfcStairFlight

Items

IfcProcess

IfcSweptDiskSolid

IfcQuantityCount

IfcBoundaryN...

IfcMaterialList

IfcArbitraryPro...

IfcSphere

IfcPoint

IfcObjectDefini...

Columns

IfcRailing

DefiningUnit

IfcColourRgb

CostValues

IfcFacetedBre...

IfcBuildingStorey

IfcActuatorType

IfcLabel-wrapper

IfcPresentatio...

IfcElectricGene...

IfcPlanarForc...

IfcPropertyAbs...

RelatedOrgani...

IfcConnection...

EdgeList

IfcTorqueMeas...

IfcBeamType

IfcRelSpaceB...

IfcFurnishing...

IfcSlabEleme...

HasQuantities

BendingParam...

IfcPileType

IfcEdgeCurve

IfcMaterialCons...

TreeRootExpr...

GivingApproval

CrossSectionP...

IfcRatioMeasure

RelatedObjects

IfcResource

IfcRailingType

IfcClassification

IfcSurfaceOfLi...

RelatingMaterial

IfcStructuralP...

IfcDateTime-w...

IfcCurveBoun...

IfcThermalRes...

IfcFan

IfcGridPlacem...

IfcWorkSchedule

IfcRelConnect...

ReferencesEl...

IfcEnergyMea...

DefinedValues

PatternList

IfcWarpingM...

IfcQuantitySet

IfcWindowType

IfcRelAssocia...

IfcTextureMap

IfcPlanarBox

IfcUnitaryCon...

UpperBoundV...

IfcConnectio...

RotationalSti...

RotationalSti...

RotationalStif...

PlacementRef...

WordSpacing

IfcPropertyLis...

BackgroundCo...

IfcSpecularEx...

IfcModulusOfR...

IfcElementCo...

AddressLines

IfcStructuralAc...

IfcProcedure

IfcDefinitionSelect

IfcAngularVel...

IfcMassPerLe...

ListValues

IfcVirtualGridIn...

IfcStructuralL...

IfcTransportE...

IfcDoorStand...

FbsmFaces

IfcRoundedRe...

IfcOpeningSt...

DiffuseColour

IfcPlane

IfcCsgPrimitive3D

IfcTextureVertex

IfcStructuralL...

Addresses

IfcPresentable...

IfcCostSchedule

CrossSections

BenchmarkVa...

Rows

IfcJunctionBo...

IfcFanType

IfcOccupant

IfcVibrationIsol...

IfcEnergyConv...

IfcInterceptor

Seq-IfcPositive...

DistributionData

IfcSpatialZone

IfcCircleProfileDef

IfcComplexPro...

IfcLightSourc...

IfcElectricCa...

IfcColourSpeci...

IfcMomentOfIn...

IfcRelAssigns...

IfcRelDefines

IfcFillAreaStyle

hexBinary

IfcArbitraryClo...

IfcBooleanOp...

IfcGeographi...

IfcRelAssigns...

IfcOpenShell

IfcLagTime

IfcAdvancedBrep

IfcURIReference

IfcWarpingM...

IfcFlowSegme...

IfcIrregularTi...

TimePeriods

IfcSweptAreaS...

ifcXML

IfcClosedShell

IfcSanitaryTer...

IfcCableCarri...

IfcOrientedEd...

IfcFlowInstru...

RelatingDocu...

IfcCsgSolid

IfcDuctFitting

IfcBoolean-wr...

IfcDoorPanelP...

IfcDoorLiningP...

IfcTypeProduct

LayerStyles

IfcSurfaceStyl...

List-IfcComp...

IfcElectricFlo...

IfcLightSourc...

IfcCoolingTower

IfcTank

PointOnRelati...

IfcMetric

EnumerationV...

IfcThermodyn...

IfcElectricAppl...

RelatedCoverings

IfcIndexedTex...

IfcPresentatio...

IfcDistribution...

IfcShell

IfcQuantityWeight

IfcRelAssigns...

IfcDirection

RelatedProper...

IfcConstructi...

IfcLibraryInfor...

IfcMirroredProf...

AppliedValue

Voids

IfcToroidalSurface

IfcExternalSpa...

CurveFont

IfcPositiveRa...

IfcWarpingCo...

RelatingClassif...

Maps

IfcConstructi...

IfcSurfaceFeature

IfcComposite...

Textures

IfcElectricFl...

IfcPreDefined...

IfcFlowStorag...

IfcTimeMeasure

IfcStructural...

IfcSystemFurn...

IfcActionRequest

IfcTask

IfcCooledBea...

IfcLanguageId

IfcTimeSeries

IfcDoseEquiva...

IfcAmountOfS...

IfcFeatureEle...

IfcCurveStyleF...

IfcMagneticFl...

MaterialClassif...

TheActor

IfcStructural...

IfcClassificati...

ReferenceTokens

IfcPlaneAngl...

RelatingProcess

IfcDistributio...

IfcMaterialPro...

IfcIntersectio...

IfcPreDefinedItem

IfcWindowStyle

IfcSurface

IfcTransforme...

IfcPositivePl...

IfcAirTermina...

IfcModulusOf...

IfcElectricVol...

IfcCableCarrie...

IfcTubeBundl...

IfcPlate

IfcConstructi...

IfcGeometricR...

IfcGeometricR...

IfcWorkCalendar

IfcNumericMe...

IfcElectricCo...

IfcSectionProp...

IfcMaterial

IfcRadioActiv...

TranslationalS...

TranslationalS...

TranslationalS...

IfcIndexedPol...

ReflectionColour

IfcCircleHollo...

IfcSegmentIn...

IfcRelSequence

IfcAppliedValue

IfcRelAssigns

IfcDamperType

IfcLinearMom...

IfcCurrencyRel...

IfcGeometricR...

IfcCondenser

IfcBuilding

IfcSurfaceTexture

IfcElementAs...

Reinforcemen...

RowCells

IfcRotational...

IfcAxis1Place...

IfcSpecificHe...

IfcPropertySet...

IfcFlowTerminal

IfcCartesianT...

IfcSectionalA...

IfcCartesianT...

IfcBurnerType

IfcMaterialRela...

TextIndent
IfcPreDefined...

IfcGeometricR...

AssignedItems

IfcExternalSpa...

IfcMaterialProf...

IfcPressureM...

IfcAbsorbedD...

IfcSweptSurface

IfcWarpingStif...

NominalValue

IfcMemberType

HasReferences

IfcMapConver...

IfcShellBased...

IfcElectricMot...

HasShapeAsp...

IfcMassMeasu...

IfcWindowPan...

IfcDamper

IfcFillAreaStyl...

IfcIonConcent...

IfcTendonAnchor

IfcMaterialLay...

IfcReinforcingBar

IfcFlowStorag...

IfcPlaneAngl...

IfcSpecularHig...

IfcConnection...

IfcRelDeclares

IfcMaterialProf...

IfcCivilElement

IfcActorSelect

IfcSoundPow...

IfcReference

IfcBoundedSur...

IfcContextDe...

IfcSpaceType

IfcBoxedHalfS...

FillStyles

IfcIdentifier-wr...

IfcCondenser...

CfsFaces

IfcForceMeasure

IfcCommunicat...

RelatedMaterials

RelatedBuildings

IfcSpecularRo...

IfcBSplineCurve

RelatingSpace

IfcMedicalDev...

IfcThermalCo...

IfcIndexedPol...

IfcPolyLoop

IfcMaterialLa...

IfcStructuralC...

IfcEventType

TextFontStyle

IfcTShapeProf...

IfcThermalTr...

IfcPerformanc...

IfcPowerMeas...

IfcTopological...

IfcEllipse

SetPointValue

IfcElectricApp...

Representati...

IfcAlarmType

IfcNamedUnit

IfcFontStyle

IfcPressureM...

IfcEdge

IfcStackTermi...

IfcElectricRe...

IfcTopologyRe...

Seq-anyURI

IfcOpeningEl...

SpecularColour

IfcRelConnect...

IfcStructuralRe...

IfcBuildingEle...

IfcPump

IfcIntegerCou...

IfcComplexPro...

IfcRelSpaceB...

RequestingAp...

IfcRelDefines...

IfcFaceOuter...

IfcRelAssocia...

IfcCShapeProf...

IfcTextureCoor...

IfcMaterialSelect

IfcLogical-wra...

IfcShapeAspect

IfcTemperatur...

IfcRelDefines...

IfcCoil

IfcMemberSta...

IfcPropertyEn...

IfcCovering

IfcRotational...

MaterialLayers

InnerCoordInd...

IfcContext

IfcBoundedCurve

IfcAnnotation

IfcRelFillsElement

User

IfcOwnerHistory

IfcHeatingVal...

IfcLine

IfcStructural...

IfcRelAssigns...

Polygon

IfcBlock

Elements

IfcPermeable...

IfcDate

IfcFlowInstrument

IfcStructuralL...

IfcStair

IfcDimension...

SecondOperand

IfcCenterLineP...

IfcReinforcin...

IfcSlab

Declares

IfcRelServices...

IfcStructuralC...

ContainsElem...

IfcPlanarForc...

IfcMagneticFl...

IfcOuterBound...

IfcRelAssociates

IfcChillerType

IfcCurveStyleFont

IfcProxy

IfcEvaporativ...

IfcDerivedUni...

IfcPolygonalF...

IfcStructuralL...

IfcDistributio...

IfcCommunica...

IfcPhysicalSim...

IfcSubedge

IfcTextStyle

HasTextures

IfcPositiveLe...

IfcStyleAssig...

IfcRelInterfer...

IfcHalfSpaceSolid

IfcRelProjects...

IfcEventTime

IfcCurveStyleF...

IfcVoidingFeature

IfcLocalPlace...

CreatingActor

IfcModulusOf...

IfcReinforcin...

IfcDistributio...

RelatedElements

IfcInventory

IfcDistributi...

LowerBoundV...

MappingOrigin

IfcDiscreteAcc...

IfcProcedureType

SurfaceOnRel...

IfcStyleModel

IfcRampType

IfcComplexN...

IfcThermalEx...

IfcDate-wrapper

IfcElement

IfcTransformer

IfcPipeFitting

IfcUShapeProf...

IfcBuildingSystem

IfcMechanical...

IfcStructuralR...

PropertyRefer...

IfcSystem

RelatedApprovals

IfcBoundaryCo...

IfcFixedRefer...

IfcTextAlignment

IfcImageTexture

IfcDistributio...

Trim1

IfcHatchLineD...

Trim2

IfcRegularTim...

IfcRelationship

IfcObjective

IfcRelConnects

IfcResourceCo...

IfcRectanglePr...

IfcStructuralPl...

IfcVolumeMea...

IfcAirToAirHe...

IfcReinforcin...

IfcFlowMovin...

IfcAirTerminalBox

ExceptionTimes

IfcPath

IfcLinearMom...

IfcUnitaryEqu...

IfcLuminousIn...

IfcLibraryRefe...

IfcPropertySet...

IfcProjectedCRS

IfcStairFlightType

HasResults

IfcCompressor

IfcPropertyEn...

IfcIrregularTi...

RelativePlac...

IfcShadingDev...

IfcLightSource

IfcOrientedEdge

IfcDraughting...

AssociatedG...

IfcRotationalSt...

IfcRevolvedAr...

IfcElectricDist...

IfcChimneyType

IfcRelNests

IfcFastenerType

IfcProjectLibrary

IfcProductSelect

IfcTextFontNa...

IfcDistributionC...

IfcLogical

IfcPositiveRat...

IfcFaceBound

IfcBooleanClip...

IfcStructuralC...

IfcTimePeriod

IfcSystemFurn...

IfcWallStanda...

InnerBoundaries

IfcBuildingEl...

IfcTendon

IfcCableFittin...

IfcPropertySet

IfcExternallyD...

IfcIdentifier

IfcMoistureDif...

CurveOnRela...

IfcScheduling...

IfcTextFontSelect

IfcCartesianPo...

IfcEnergyConv...

IfcLineIndex

IfcSoundPowe...

IfcConversion...

IfcRelReferenc...

IfcCartesianPo...

IfcDuctSegme...

IfcTextureVerte...

RelatingProduct

DefinedUnit

IfcAirToAirHe...

IfcPixelTexture

Properties

IfcStructuralPo...

IfcFlowFitting...

IfcVertex

IfcCartesianT...

SecondaryUnit

IfcPropertyBo...

IfcTessellated...

IfcRightCircul...

IfcSurfaceOfR...

IfcDocumentIn...

IfcTriangulate...

IfcReal-wrapper

IfcThermalAd...

IfcSurfaceRei...

IfcMeasureWi...

IfcMedicalDevice

IfcFlowTreatm...

TilingPattern

IfcMechanical...

RelatedDocum...

IfcNullStyle-w...

IfcOffsetCurve3D

IfcInteger

IfcColumnSta...

IfcLinearForc...

IfcOffsetCurve2D

IfcLinearStiff...

IfcSensorType

IfcSolidAngle...

WorkingTimes

IfcProductDefi...

IfcExternalInf...

IfcThermodyn...

IfcTextDecoration

IfcSubContrac...

IfcValve

IfcTendonAnc...

IfcValue

HasSubContexts

IfcPropertySin...

IfcWindowSta...

IfcColumn

IfcLaborResource

UnitComponent

IfcPlateStand...

IfcApproval

IfcTrimmingSelect

IfcObjectPlac...

IfcDuctSilence...

Segments

IfcEvaporator

IfcDerivedUnit

IfcPreDefined...

IfcMonetaryUnit

IfcCurveBoun...

IfcObject

HasPropertySets

Quantities

IfcCostValue

UAxes

IfcFontVariant

TranslationalS...

TranslationalS...

TranslationalS...

IfcElectricGen...

IfcJunctionBox

IfcAreaMeasure

Entity

IfcSwitchingDe...

IfcVibrationIso...

IfcShapeRepr...

Units

IfcVolumeMea...

IfcFrequency...

IfcDuctSilencer

DataValue

IfcTextureCoo...

IfcElectricDist...

IfcZone

IfcRelDefines...

IfcDoor

IfcLibrarySelect

IfcBlobTexture

IfcFlowFitting

IfcSoundPres...

WAxes

VolumeOnRel...

IfcPointOnCurve

IfcMotorConne...

IfcGroup

IfcFacetedBrep

IfcVertexPoint

IfcAreaMeasu...

IfcWorkTime

IfcSpatialStru...

IfcUnitaryCont...

Publisher

IntersectingAxes

IfcLightSource...

IfcSoundPres...

Editors

IfcSurfaceCur...

IfcForceMeasu...

IfcIsothermal...

IfcBinary-wrapper

IfcTextLiteralW...

IfcDuctSegment

CrossSectionR...

IfcAirTerminal...

IfcRepresentat...

IfcLuminousF...

IfcProfileDef

Colour

IfcConic

IfcCoordinate...

IfcPropertyDefi...

IfcPropertyTe...

IfcStackTerminal

Values

IfcWallEleme...

IfcColumnType

IfcCoilType

IfcPresentatio...

IfcConstructi...

IfcQuantityVo...

Styles

IfcDoorType

IfcTextTransfo...

IfcTemperatu...

IsDefinedBy

IfcLightFixture

IfcMaterialPro...

IfcPumpType

IfcTubeBundle

IfcRelAggregates

IfcQuantityLength

IfcBSplineCu...

IfcProjectOrder

IfcPermit

IfcCurtainWall

IfcSite

IfcRelDecomp...

IfcFlowControl...

CostQuantities

IfcStairType

IfcCompositeC...

IfcIndexedTri...

IfcVaporPerme...

instanceAttributes

CurveOnRelat...

IfcProtectiveD...

IfcVolumetric...

IfcPort

WarpingStiffness

IfcStructuralL...

IfcCurveStyle...

IfcPipeFittingType

IfcStructuralL...

IfcLuminousF...

IfcMirroredPro...

Tiles

IfcRatioMeasu...

RelatingLibrary

IfcControl

IfcRelConnect...

IfcStructuralItem

IfcAudioVisua...

IfcSizeSelect

IfcColourOrFactor

IfcCoordinate...

IfcRampFlight

IfcPreDefined...

ValueComponent

IfcDraughting...

IfcCompresso...

IfcInteger-wra...

IfcExternallyD...

IfcPcurve

IfcMassDensi...

IfcExtendedPr...

IsDecomposedBy

IfcAlarm

IfcTrapeziumPr...

IfcMaterialProp...

IfcAsymmetric...

IfcSlabType

IfcReal

IfcOrganizatio...

IfcUnit

IfcMassFlowR...

IfcActorRole

IfcGloballyUni...

IfcProperty

IfcStructuralAct...

IfcOutlet

IfcLightSourc...

IfcDuration-wr...

IfcRelAssocia...

IfcStructuralC...

DefiningValues

IfcWasteTermi...

IfcCurveStyle

IfcTankType

LagValue

Representations

ResponsibleP...

IfcConnection...

IfcConstructi...

IfcParameterV...

IfcPointOrVert...

IfcTextStyleFo...

IfcRationalBS...

IfcRelCoversB...

IfcParameteri...

IfcTextStyleTe...

IfcRelContaine...

IfcAxis2Place...

IfcLinearVelo...

IfcCurtainWall...

IfcController

IfcAxis2Place...

Placement

IfcPresentatio...

IfcFaceSurface

HasProperties

IfcPolyline

IfcCartesianPo...

IfcComposite...

RotationalStif...

RotationalStif...

RotationalStif...

IfcStyledRepr...

IfcArbitraryOp...

IfcConversion...

HasPropertyT...

IfcSurfaceSty...

IfcFootingType

IfcLightDistri...

IfcAxis2Place...

IfcFlowMeterType

IfcSurfaceStyle

RelatedResou...

IfcDynamicVis...

IfcLabel

IfcPlanarExtent

IfcRelAssocia...

IfcRelFlowCon...

IfcStructural...

IfcDistributi...

IfcCartesianPoint

IfcWorkPlan

Points

Bounds

IfcTaskTimeRe...

header

Jurisdiction

IfcRotationalS...

IfcFlowController

LineHeight

IfcPropertyDe...

Roles

IfcRectangula...

IfcModulusOfE...

IfcZShapeProf...

IfcCountMeas...

IfcRepresentat...

IfcApprovalRel...

IfcCsgSelect

IfcBoxAlignment

IfcSurfaceStyl...

IfcFaceBased...

FontSize

IfcFireSuppres...

IfcBoundaryE...

IfcReinforcing...

IfcSpatialStru...

IfcRelConnect...

IfcRampFlight...

IfcFace

IfcSectionMod...

IfcExternallyD...

IfcStructuralLi...

IfcSIUnit

IfcRectangleHo...

IfcStructuralL...

Creators

LoadedBy

IfcBeamStand...

IfcDistributionPort

IfcCableCarri...

RelatedContro...

IfcDocumentIn...

IfcTableRow

IfcShearModu...

IfcLightIntensit...

IfcGeographic...

IfcTimeSeries...

IfcPhysicalQua...

IfcIndexedCol...

Profiles

IfcTable

IfcConstructi...

IfcBoundingBox

IfcApplication

IfcDuration

IfcFlowMeter

IfcTrimmedCurve

IfcFastener

IfcLayeredItem

IfcReparamet...

IfcFurnishing...

IsNestedBy

IfcPropertySe...

IfcSolarDevice

IfcDerivedProf...

IfcMotorConne...

MaterialProfiles

IfcBuildingEle...

IfcDocumentR...

Vertices

IfcText-wrapper

IfcNormalised...

IfcMaterialProfile

IfcIndexedPol...

IfcTendonType

IfcVertexLoop

IfcElementCo...

IfcPlateType

IfcPropertySet...

ShapeRepres...

IfcFooting

IfcStructuralLoad

IfcPointOnSur...

IfcConnected...

IfcInductance...

CurveWidth

IfcElementAs...

IfcAdvancedB...

IfcResourceTime

IfcElectricCh...

IfcElectricTim...

IfcLamp

IfcResourceLe...

IfcHeatFluxDe...

IfcSpaceHeater

IfcWall

SpecularHighlight

IfcStructuralC...

IfcEdgeLoop

IfcPositiveInt...

IfcStructuralL...

IfcRelConnect...

IfcPreDefined...

IfcDateTime

IfcIlluminanc...

IfcRightCircul...

IfcGeometricC...

IfcPipeSegment

Boundaries

IfcTime

IfcShapeModel

IfcVirtualElement

IfcRelAssigns...

IfcTableColumn

IfcCurve

IfcAudioVisua...

IfcContextDep...

IfcBurner

IfcTessellatedItem

IfcRelVoidsEl...

IfcAccelerati...

IfcLightDistrib...

IfcResourceSe...

IfcProjectionE...

IfcOutletType

IfcBeam

IfcCountMeasure

IfcSweptDiskS...

IfcSwitchingD...

Figure 6.4: WebVOWL visualization of only Class axioms of ontology automatically
generated for the XSD schema ‘IFC4 ADD2 TC1’ using the EPIXCO framework, right
image shows top right cluster of classes of left image.

6.3.2 Quantitative Evaluation

To provide the statistical details of generated owl models of selected schemas, ground

truth presented in Table 6.5 for their OWL axioms is evaluated with resulting axioms of

generated OWL models by EPIXCO, presented in Table 6.7. It applies similar filtration

applied for the duplicate occurrence of axioms to establish correct axioms count. The

accuracy of selected axioms generated in OWL models by EPIXCO methodology is cal-

culated using Equation 6.1 and presented in Table 6.8. The accuracy of IFC schemas

(except IFCGeometries) at this point for Datatype and ObjectProperty are below 0.65

on average, with 1 being highest. The reason being not all XSD constructs participated

120

Schema Class Datatype DatatypeProperty ObjectProperty

Example 2 1 3 -
cityGMLBase 16 12 11 13
building 47 20 24 47
bridge 50 21 24 45
IFCGeometries 21 6 12 20
IFC2x3 TC1 1190 164 558 520
IFC4 ADD1 1087 211 526 482
IFC4 ADD2 TC1 1100 212 528 493

Table 6.7: OWL axioms generated by proposed method for the OWL models of selected
XML schemas.

in determining the ground truth are transformed. Since the current implementation of

the EPIXCO prototype implements 30 transformation patterns, and if the components

of input XSD constructs are not in respective 30 patterns, then filtered ground truth is

considered to reevaluate the accuracy of axioms, the accuracy results are highly improved.

They are presented in Table 6.9 illustrating the completeness factor of the framework that

the considered patterns provide enhanced transformation of axioms. Hence, the statisti-

cal results of accuracy show that OWL models generated from EPIXCO constitute the

maximum number of axioms for the XSD constructions with implemented transformation

patterns.

Schema Class Datatype DatatypeProperty ObjectProperty

Example 1 1 1 -
cityGMLBase 0.94 1 0.85 1
building 1 1 1 1
bridge 1 1 1 1
IFCGeometries 1 1 1 1
IFC2x3 TC1 0.86 0.59 0.85 0.76
IFC4 ADD1 0.95 0.62 0.99 0.68
IFC4 ADD2 TC1 0.95 0.62 0.99 0.69

Table 6.8: The accuracy of axioms (1 being highest) calculated using established ground
truth and axioms predicted by EPIXCO for all XSD elements.

121

Schema Class Datatype DatatypeProperty ObjectProperty

Example 1 1 1 -
cityGMLBase 1 1 1 1
building 1 1 1 1
bridge 1 1 1 1
IFCGeometries 1 1 1 1
IFC2x3 TC1 0.86 1 1 1
IFC4 ADD1 1 1 0.99 1
IFC4 ADD2 TC1 1 1 0.99 1

Table 6.9: The revised accuracy of axioms recalculated by removing XSD components of
unimplemented patterns from ground truth.

6.3.3 Comparative Analysis

This section conducts the comparison of available and currently standardized ontol-

ogy models of IFC formats with generated ontology models of respective formats using

EPIXCO approach. The ontologies are compared with ontology metrics in the Table 6.10

of statistics reported by Protégé (Musen 2015) tool for quantitative evaluation of the

buildingSmart standard ontology for IFC4 ADD1 and IFC2x3 formats by Pauwels and

Terkaj (2016), and procedure herein proposed. The table shows that the axioms count

may be moderate in comparison with standard ontology (due to unimplemented trans-

formation patterns), their are noticeable key features in terms of DL expressivity, Data

Properties and SubObjectPropertyOf axioms. Pauwels and Terkaj (2016) utilizes full DL

expressivity, however, the library used for ontology graph in current implementation only

supports OWL 2-RL profile26 (subset of OWL2 DL) which is more efficient for SPARQL

queries. On contrary, more axioms count of Data Properties and SubObjectProper-

tyOf are attained with transformation patterns implemented in EPIXCO, as compared

26https://github.com/RDFLib/OWL-RL

122

to ontology generated from EXPRESS based IFC schema. This is probably because

the standard ontology considers most properties as ObjectProperty while Janus patterns

specifies mapping of DatatypeProperty axioms for certain XSD constructions. Similarly,

CityGML ontology generated by Métral et al. (2013) provides incorrect mappings of

properties, e.g. creationDate is owl:DatatypeProperty as well as owl:ObjectProperty.

Nonetheless, the comparison provides promising results with motive of more transfor-

mation patterns implemented and better DL expressivity to attain exhaustive ontology

models with inference can be generated.

Metrics IFC4 ADD1 IFC2x3 IFC4 ADD1 IFC2x3
Axiom 20675 17782 10252 10336
Logical axiom count 13867 11790 5301 5449
Declaration axioms count 4062 3544 3443 3559
Class count 1313 1093 1192 1200
Object property count 1580 1422 1416 1985
Data property count 5 5 1373 1181
Individual count 1158 1018 0 0
Annotation Property count 13 13 4 3
DL expressivity SHIQ(D) SHIQ(D) ALN(D) ALN(D)
SubClassOf 5099 4344 1077 1360
EquivalentClasses 2 2 0 0
DisjointClasses 2429 1888 0 0
SubObjectPropertyOf 3 3 0 0
InverseObjectProperties 94 96 0 0
FunctionalObjectProperty 1442 1292 0 0
TransitiveObjectProperty 1 1 0 0
ObjectPropertyDomain 1576 1418 1416 1985
ObjectPropertyRange 1576 1418 1185 1500
FunctionalDataProperty 5 5 0 0
DataPropertyDomain 5 5 729 220
DataPropertyRange 5 5 686 220
ClassAssertion 1630 1313 0 0
AnnotationAssertion 2739 2441 1507 1328

Table 6.10: Comparison between Pauwels and Terkaj (2016) and EPIXCO ontologies

with statistics of retrieved from Protégé (Musen 2015) tool.

123

6.3.4 Performance Measures

EXPICO framework generates the ontology for a given XSD schema in a single workflow.

The process is divided into three major phases, and the execution time for each phase is

presented in Figure 6.5. It shows that schema with lesser XSD constructs utilized more

time in ontology generation compared to other phases. For cityGMLBase.xsd, it is due

to the excessive documentation XSD elements and the formalization process takes more

time. The graph given in Figure 6.6 provides the performance comparison for the XSD

constructs to the total execution time, which shows the time complexity exponentially

correlates with a number of XSD constructions. The graph also shows that the execution

time of ‘IFC2x3 TC1’ is lesser than other IFC schemas even though the number of XSD

constructs is larger than others. The reason is ‘IFC2X3 TC1’ contains a large number

of enumeration components which collectively increases the XSD constructions count

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Example cityGMLBase building bridge IFCGeometries IFC2x3 TC1 IFC4_ADD1 IFC4 ADD2
TC1

Ontology Generation 0.021 0.129 0.312 0.342 0.08 5.406 5.122 5.151
Pattern Identification 0.001 0.019 0.0789 0.091 0.01 59.325 68.714 70.342
Formalization 0.0011 0.097 0.0051 0.00574 0.005 0.536 0.613 0.64

P
ro

ce
ss

 T
im

e
D

iv
is

io
n

Seconds

Figure 6.5: Time distribution among three phases of EPIXCO framework for generating
ontology models of input XML schemas.

124

Example cityGMLBase building bridge IFCGeometries IFC2x3 TC1 IFC4_ADD1
IFC4 ADD2

TC1
Total Constructs 13 144 278 303 106 9964 9731 9826
Time (seconds) 0.0231 0.246 0.396 0.439 0.09 65.267 74.449 76.133

0

10

20

30

40

50

60

70

80

0

2000

4000

6000

8000

10000

12000
C

on
st

ru
ct

io
ns

 C
ou

nt

Figure 6.6: Graph comparison for the total processing time taken in ontology generation
with respect to number of XSD constructions.

but not the pattern identification process that which is 59 seconds as compared to 70

seconds for ‘IFC4 ADD2 TC1’. Therefore, the total execution time depends on a number

of XSD constructs and the structural complexity of these XSD constructions, potentially

affecting pattern identification time. The related works discussed do not have working

prototypes on which such experiments for evaluation can be done. Hence, this study is

unable to provide any comparative performance measures.

Regarding the complexity of the algorithms implemented in EPIXCO, it is always

exponential. They are invoked in a sequence with nested sub-algorithms and depend on

a number of XSD constructions. If n is the number of XSD constructs to be transformed,

then the complexity of algorithms can be done in the order of O(nk) where k is the

number of invoked sub-algorithm such that 1 ≤ k ≤ 5.

125

6.4 Discussion and Considerations

In this Chapter, the proposed research framework is implemented for automatic ontology

generation. However, defining an automatic process for such a dense task is a complex

task, let alone defining it for complete ontology development. Scrutinizing XSD con-

structions in a nested hierarchy of constructs to identify correct patterns is a challenging

task. Not all XSD constructions are transformed into OWL syntax as the current frame-

work of EPIXCO implements 30 patterns. Figure 6.7 shows the percentage of constructs

transformed that yields the ground truth accuracy provided in Table 6.8. In future, as

more patterns are implemented, more XSD constructs are transformed into enriched and

exhaustive ontology models.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Example cityGMLBase building bridge IFCGeometries IFC2x3 TC1 IFC4_ADD1 IFC4 ADD2
TC1

Unused Constructs 0 57 38 42 0 1959 1443 1464
Used Constructs 13 87 240 261 106 8005 8288 8362

X
SD

 C
on

st
ru

ct
io

ns
 %

 U
se

Figure 6.7: Distribution of XSD constructions processed by EPIXCO framework from
total constructs of input XML schema sets.

Janus and extended patterns in PIXCO define patterns on the well-established XSD

block of constructions. However, XSD schema exists in multiple styles that it becomes

almost impossible for every XSD constructs block to be defined, identified or imple-

126

mented. For example, transformation pattern similar to #19 and #20 is required to be

defined for inline complexType instead of only simpleType. Similarly, for pattern #37,

if construction with maxOccurs attribute contains "unbounded" as attribute value, then

occurrence needs to redefined for OWL model with possibly owl:minCardinality="1",

if no minOccurs attribute is present. On contrary, few patterns like #29 are never used,

which is a similar pattern to #17 and #22. External schema entities are associated using

pattern #24 and identified as ObjectProperty.

6.5 Overall Analysis and Conclusion

Throughout this Chapter, a detailed view of the most exciting parts of the implementa-

tion of this dissertation is presented. It includes the XSD components of eight schemas

introduced in Chapter 3 are tailored in mathematical model presentation described in

Chapter 5, along with transformation patterns formalization in FCA context that is used

overall in pattern identification algorithms, and further generating the ontology models.

It presents the experimental results to validate the thesis and to present the outcome by

the EPIXCO framework. This last section of this Chapter also highlights some funda-

mental level issues with defining the automatic ontology development process, detailing

our approach and solutions.

The implementation of this research work has been more complex than expected

initially as ontology development is an evolving process. Since there is no direct validation

available, manual efforts are required to validate the processing of XSD fragments to

127

OWL transformation, which later requires another pass for complete model generation.

Overall, to define a completely automated process, laborious work is required to match

the outcome as of the correspondence rules first and then proceed with the next step

to iterates and repeat the process for all outcomes. Furthermore, some transformation

patterns defined are not accurate and leave misconceptions as presented in Section 5.3 of

Chapter 5, which further complicates the process. Despite these numerous problems in

developing the procedure (with around 3000 lines of Python code), the framework could

prove its initial statement.

Transforming XSD schema structures with different design styles is a complex pro-

cess. Generating ontology with correct and complete semantics for large and strongly

coupled XSD components becomes challenging and easy to maintain. The framework

provided in-memory models of scalable, improvable information and evolved to output

a more rich ontology model. The output correctness is evaluated in Section 6.3 using

custom-defined ground truth, and although errors might be discovered, the results are

presented with details to be observed to help with verification. Since the automation

of ontology generation is an evolving process and requires great on-going effort, the last

section discusses strengths about the framework, considerations made during the imple-

mentation and limitations that can guide future work. Therefore, based on these reasons,

the system achieves the primary objective of this research to transform proper knowledge

from XML schema into an ontology.

128

Chapter 7

Conclusion and Perspectives

7.1 Conclusion and Main Contributions

Over the past decade, the Semantic Web has shown the vision of ontology for integration

systems with numerous potential applications. With the availability of various software

tools (like Protégé (Musen 2015)) and methodologies (Hacherouf et al. 2015) for building

ontologies, and different alignment techniques for mapping (merging) ontologies (like S-

Match (Giunchiglia et al. 2012), GMO (Hu et al. 2005), COMA (Do and Rahm 2002)),

researchers have carried out semantic web-based solutions for bringing together hetero-

geneous information of BIM and GIS technologies (Hor et al. 2018, Zhao et al. 2019).

Nevertheless, as shown in Chapter 2 and 3, these solutions, as well as their ontology

development techniques, mainly involves human intervention or are either assisted by

semi-automatic approaches.

Limitations of these integration techniques in their adaption to general applications,

among other reasons, mainly are: (i) the ontology building techniques are mostly laborious

129

task, that are not adaptive to evolve and integrate other ontologies (ii) the complexity

of automatically aligning ontologies, a complex task which is computationally expensive

for significant information sources; (iii) the unavailability of readily tools to evaluate and

validate based on background knowledge for built ontologies and their alignment.

This research contributes to the automatic transformation of XML schema into RD-

F/OWL with a system implemented that notably improves the complex transforma-

tions. The system follows the guidelines of Janus and PIXCO prototypes to implement

transformation patterns to the best of its ability to provide maximum transformation.

Furthermore, the system is extensive to augment more XSD components, enhanced cor-

respondence rules, and improve produced OWL representations. One of the fundamental

challenges addressed in this research is providing a solution that extracts information

from different sources and favourably attempts to generate ontology for the respective

source.

This research presented a preparatory framework in Section 5.1 which defines the

broad approach incorporating the integration of BIM and GIS data with IoT sensors

information by the transformation of XML-based IFC and CityGML data into an inte-

grated RDF graph further linked with IoT. The preparatory conceptual approach presents

a comprehensive framework divided into three-modules of ontology generation, ontology

alignment and semantic graph generation. The first module of ontology generation im-

plements a formal process that utilizes a patterns-based transformation approach for

ifcXML and CityGML schema documents to generate their respective ontology models.

130

As the second module, the ontology alignment introduces a sub-framework that exploits

semantic-based and structure-based alignment algorithms to find similarities among the

entities of ontology models from the previous module to produce cross-domain ontology.

Lastly, the cross-domain ontology is associated with data from IFC-XML and CityGML

documents to construct an integrated RDF graph in the third module of semantic graph

generation. Overall, the preparatory framework exploits semantic web technologies to

present heterogeneous data formats into a common data model (i.e. RDF graph) and

emphasizes that in order to construct a common data model, a thorough approach to

generate ontology models is required.

In this dissertation, the first module of the preparatory framework is focused on a con-

temporary objective. It distinctively manifests a formal approach for the transformation

of XML schema documents into OWL models. The research implements the EPIXCO

(Enhanced Patterns Identification for XSD Conversion to OWL) framework as an en-

hanced approach of PIXCO (Hacherouf et al. 2019) implementation utilizing Janus (Be-

dini et al. 2011) patterns generalized method for XSD schema to OWL transformation.

However, in this study, the focused XSD documents are ifcXML and CityGML schema

of BIM and CityGML domains, respectively. The detailed 43 transformation patterns

provide a foundation to correspondence rules of XSD to OWL transformation, and 30

of these patterns are implemented in this research. The EPIXCO framework is divided

into three major phases: formalization of XML schema and transformation patterns, pat-

terns identification and filtration, and ontology generation. The complete framework is

131

presented in Chapter 5, and implementation with its results are evaluated in Chapter 6,

which shows promising contribution in the domain of building ontologies.

The contemporary framework of this dissertation has also published a preliminary

study Usmani et al. (2020), and here in research implemented its enhanced version. The

contribution of this dissertation also investigates the interoperability of BIM and GIS by

participating in GeoBIM Benchmark (Noardo et al. 2020a) which depicts that off-the-

shelf tools and preparatory software still lacks full support towards complicated BIM and

GIS formats and their bidirectional conversions.

7.2 Research Challenges and Limitations

Using semantic web technology stack in ontology building techniques and using align-

ment techniques to achieve integrated solutions is one of the most exciting research areas.

However, since semantic web technologies are still developing and maturing, it is of-

ten time-consuming to find efficient ways of using these technologies. The implemented

framework has limitations in the evaluation and complete expression of semantics, as

the approaches discussed in the related works do not have prototypes with readily avail-

able tools on which such experiments for evaluation could be done. For the available

techniques, it is a time-consuming process to be deployed and further requires manual

adjustments according to use case or applications. Therefore, this study cannot give

any standard comparative analysis and performance measure between our approach and

others.

132

A number of open issues can be listed in the implementation of this framework. Gen-

erally, the expressive power of OWL is more compared to XML semantics. However, the

OWL has no direct representation for XSD components like xs:list, xs:minLength

and xs:maxLength, as for some constructs like list. Instead, a workaround for using

LIST ontologies is available for mapping. The ontology models generated for anonymous

declared XSD elements or attributes are not fully connected because of missing domain

or range restriction axioms for object and datatype properties. Currently, EPIXCO

implements a subset of total Janus and PIXCO patterns, whereas all 43 patterns imple-

mentation will create more semantic rich ontology models. Inverse associations of OWL

are also not dealt with in this version of EPIXCO, which provides more inference to the

data semantics. Nonetheless, the ontology design is a creative and evolving process, and

there is no single correct ontology for a domain Noy and McGuinness (2001). However,

the quality of designed ontology can be assessed using it in applications for which it is

designed.

Furthermore, GML is an XML grammar, and XML has become a de-facto standard

for information exchange and is incredibly inefficient for network, processor and storage

performance. Because RDF graphs contain more semantics of information represented

in the source, converting XML-based information to RDF produces enormous output,

making a single output file that is not best for query and data retrieval. Therefore,

the semantic-based system requires enhancements in dealing with significant informa-

tion sources. Lastly, there are very few globally agreed ontologies for construction do-

133

main Karan and Irizarry (2015); therefore, multi-disciplinary researchers develop their

ontologies, limiting the effective transfer of information.

7.3 Perspectives and Future Works

The integration of BIM and GIS has come a long way, where innovative methods have

been adapted to bridge the gap between two fundamentally distinct domains. The IoT

information integration with BIM and GIS data has gain leading interest for Smarty City

applications like Digital Twin and evolving towards Smart Data. Accordingly, the sec-

ond and third module of preparatory framework proposes semantic web technologies as

a promising approach on open-standard data-formats to achieve interoperability among

BIM, GIS and IoT. In this study, the extension of this research is also presented with

established framework modules highlight the comprehensive process that can utilize ex-

haustive ontology models generated from the EXPICO framework. The second module

of preparatory framework presents how to obtain cross-domain ontology models and the

third module reflects semantics graphs with integrated information. Henceforth, in the

future, with the complete implementation of the proposed primary framework, a densely

integrated data system as Smart Data can be provided that provides machine-readable

information.

Another time, it is to emphasize that this research work targeted as much automation

as possible, the reason why the focus of the most generic and relevant way to extract

knowledge from different XSD documents was designed to generate ontology models that

134

can be extended and integrated with future frameworks. The findings of this research are

shared, and essential optimization strategies on the proposed method can be applied for

efficient and effective systems. The notion to represent data from BIM, GIS and IoT in

a semantic web technology stack with minimal human intervention elevates information

integration and exchange. Generating ontology models of geospatial data and automat-

ically interlinking their cross-domain entities with defined specifications will create the

semantic process efficient, extensible, and flexible towards achieving interoperability. As

more research is devoted to this area, the future of BIM and GIS integration by semantic

web technologies is promising. Integrated information of BIM and GIS will nourish fur-

ther research in knowledge-discovery and smart city applications. Incorporating IoT with

integrated geospatial information will provide a digital environment, a space for extensive

analysis, planning and better decision making, leading the urban innovation in lifestyle,

environment and mobility with smart data.

135

Bibliography

Giovanni Acampora, Vincenzo Loia, and Autilia Vitiello. Enhancing ontology alignment
through a memetic aggregation of similarity measures. Information Sciences, 250:1–20,
2013. ISSN 00200255. doi: 10.1016/j.ins.2013.06.052.

M. Hadi Amini, Hamidreza Arasteh, and Pierluigi Siano. Sustainable smart cities through
the lens of complex interdependent infrastructures: Panorama and state-of-the-art.
Studies in Systems, Decision and Control, 186:45–68, 2019. ISSN 21984190. doi:
10.1007/978-3-319-98923-5\ 3.

Sam Amirebrahimi, Abbas Rajabifard, Priyan Mendis, and Tuan Ngo. A BIM-GIS in-
tegration method in support of the assessment and 3D visualisation of flood damage
to a building. Journal of Spatial Science, 61(2):317–350, 2016. ISSN 14498596. doi:
10.1080/14498596.2016.1189365.

Junghyen An and Young B. Park. Methodology for Automatic Ontology Generation
Using Database Schema Information. Mobile Information Systems, 2018, 2018. ISSN
1875905X. doi: 10.1155/2018/1359174.

Salman Azhar. Building Information Modeling (BIM): Trends, Benefits, Risks, and Chal-
lenges for the AEC Industry. Leadership and Management in Engineering, 11(3):241–
252, 2011. doi: 10.1061/(ASCE)LM.1943-5630.0000127.

Thomas Becker, Claus Nagel, and Thomas H. Kolbe. A Multilayered Space-Event Model
for Navigation in Indoor Spaces, pages 61–77. Springer Berlin Heidelberg, 2009. ISBN
978-3-540-87395-2. doi: 10.1007/978-3-540-87395-2\ 5.

Ivan Bedini and Benjamin Nguyen. Automatic Ontology Generation : State of the Art.
Evaluation, pages 1–15, 2007.

Ivan Bedini, Georges Gardarin, and Benjamin Nguyen. Deriving Ontologies from XML
Schema. 2010a.

Ivan Bedini, Benjamin Nguyen, and Georges Gardarin. Janus: Automatic Ontology
Builder from XSD Files. (May 2014):1–3, 2010b.

136

Ivan Bedini, Christopher Matheus, Peter F. Patel-Schneider, Aidan Boran, and Benjamin
Nguyen. Transforming XML Schema to OWL using patterns. Proceedings - 5th IEEE
International Conference on Semantic Computing, ICSC 2011, pages 102–109, 2011.
doi: 10.1109/ICSC.2011.77.

Radim Bělohlávek. Introduction to Formal Concept Analysis. Department of Computer
Science, Faculty of Science, Palacký University, 2008.

Nikos Bikakis, Chrisa Tsinaraki, Nektarios Gioldasis, Ioannis Stavrakantonakis, and
Stavros Christodoulakis. The XML and semantic web worlds: Technologies, interoper-
ability and integration: A survey of the state of the art. Studies in Computational In-
telligence, 418(c):319–360, 2013. ISSN 1860949X. doi: 10.1007/978-3-642-28977-4\ 12.

Filip Biljecki, Jantien Stoter, Hugo Ledoux, Sisi Zlatanova, and Arzu Çöltekin. Appli-
cations of 3D city models: State of the art review. ISPRS International Journal of
Geo-Information, 4(4):2842–2889, 2015. ISSN 22209964. doi: 10.3390/ijgi4042842.

Filip Biljecki, H. Ledoux, and Jantien Stoter. Generation of multi-LOD 3D city models
in CityGML with the procedural modelling engine Random3Dcity. volume IV-4/W1,
pages 51–59, 09 2016a. doi: 10.5194/isprs-annals-IV-4-W1-51-2016.

Filip Biljecki, Hugo Ledoux, and Jantien Stoter. An improved LOD specification for 3D
building models. Computers, Environment and Urban Systems, 59:25–37, 2016b. ISSN
01989715. doi: 10.1016/j.compenvurbsys.2016.04.005.

Hannes Bohring and Sören Auer. Mapping XML to OWL ontologies. In Klaus P. Jantke,
Klaus-Peter Fähnrich, and Wolfgang S. Wittig, editors, Marktplatz Internet: Von e-
Learning bis e-Payment, 13. Leipziger Informatik-Tage (LIT 2005), pages 147–156,
Bonn, 2005. Gesellschaft für Informatik e. V.

Zouhaier Brahmia, Fabio Grandi, and Rafik Bouaziz. Conversion of XML schema design
styles with StyleVolution. International Journal of Web Information Systems, 16(1):
23–64, 2019. ISSN 17440092. doi: 10.1108/IJWIS-05-2019-0022.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau. Ex-
tensible Markup Language (XML) 1.0 (Fifth Edition) – W3C Recommendation 26
November 2008. https://www.w3.org/TR/2008/REC-xml-20081126/, 2012. (Last Ac-
cessed 1 February 2021).

Martin Breunig, Patrick Erik Bradley, Markus Jahn, Paul Kuper, Nima Mazroob, Norbert
Rösch, Mulhim Al-Doori, Emmanuel Stefanakis, and Mojgan Jadidi. Geospatial data
management research: Progress and future directions. ISPRS International Journal of
Geo-Information, 9(2), 2020. ISSN 22209964. doi: 10.3390/ijgi9020095.

Joel Carneiro, Rosaldo J.F. Rossetti, Daniel C. Silva, and Eugenio C. Oliveira. BIM,
GIS, IoT, and AR/VR Integration for Smart Maintenance and Management of Road

137

Networks: A Review. 2018 IEEE International Smart Cities Conference, ISC2 2018,
2019. doi: 10.1109/ISC2.2018.8656978.

Yiqun Chen, Soheil Sabri, Abbas Rajabifard, Muyiwa Elijah Agunbiade, Mohsen Kalan-
tari, and Sam Amirebrahimi. The design and practice of a semantic-enabled urban
analytics data infrastructure. Computers, Environment and Urban Systems, 81(June
2019):101484, 2020. ISSN 01989715. doi: 10.1016/j.compenvurbsys.2020.101484.

Christophe Cruz and Christophe Nicolle. Ontology Enrichment and Automatic Popula-
tion From XML Data. Odbis, pages 17–20, 2008.

Isabel F. Cruz, William Sunna, and Anjli Chaudhry. Semi-automatic Ontology Alignment
for Geospatial Data Integration. In Geographic Information Science, pages 51–66,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-30231-5.

Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Con-
cepts and Abstract Syntax – W3C Recommendation 25 February 2014.
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/, 2014. (Last Accessed
1 February 2021).

Tim Darr, John Hamilton, and Ronald Fernandes. Design considerations for xml-based
te standards. http://hdl.handle.net/10150/595666, 2011. ISSN 0884-5123.

Yichuan Deng, Jack C.P. Cheng, and Chimay Anumba. Mapping between BIM and
3D GIS in different levels of detail using schema mediation and instance comparison.
Automation in Construction, 67:1–21, 2016. ISSN 09265805. doi: 10.1016/j.autcon.
2016.03.006.

Hong-Hai Do and Erhard Rahm. COMA — A system for flexible combination of schema
matching approaches. In VLDB ’02: Proceedings of the 28th International Conference
on Very Large Databases, pages 610–621. Morgan Kaufmann, San Francisco, 2002.
ISBN 978-1-55860-869-6. doi: https://doi.org/10.1016/B978-155860869-6/50060-3.

Charles M Eastman, Chuck Eastman, Paul Teicholz, Rafael Sacks, and Kathleen Lis-
ton. BIM handbook: A guide to building information modeling for owners, managers,
designers, engineers and contractors. John Wiley & Sons, 2011.

O. EL Hajjamy, L. Alaoui, and Mohamed Bahaj. XSD2OWL2: Automatic mapping from
XML schema into OWL2 ontology. Journal of Theoretical and Applied Information
Technology, 95:1781–1796, 2017. ISSN 1992-8645.

M El-Mekawy and Anders Östman. Semantic Mapping: an Ontology Engineering
Method for Integrating Building Models in IFC and CITYGML. Proceedings of
the 3rd ISDE Digital Earth Summit, (January):1–11, 2010. ISSN 0041-1337. doi:
10.1021/bm049735c.

138

Mohamed El-Mekawy, Anders Östman b, and Ihab Hijazi c. An Evaluation of IFC-
CityGML Unidirectional Conversion. International Journal of Advanced Computer
Science and Applications, 3(5), 2012. doi: 10.14569/IJACSA.2012.030525.

Mohamed Farah, Hafedh Nefzi, and Imed Riadh Farah. A similarity-based framework
for the alignment of an ontology for remote sensing. Computers and Geosciences, 96:
202–207, 2016. ISSN 00983004. doi: 10.1016/j.cageo.2016.08.018.

Karim Farghaly, Henry Fonbeyin Abanda, Christos Vidalakis, and Graham Wood. Se-
mantic and syntactic interoperability of BIM and asset management data. Proceedings
of the 2019 European Conference on Computing in Construction, 1(2017):406–413,
2019. doi: 10.35490/ec3.2019.154.

Matthias Ferdinand, Christian Zirpins, and David Trastour. Lifting XML Schema to
OWL. In Nora Koch, Piero Fraternali, and Martin Wirsing, editors, Web Engineering,
pages 354–358, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-
27834-4.

Richelle Fosu, Kamal Suprabhas, Zenith Rathore, and Clark Cory. Integration of Building
Information Modeling (BIM) and Geographic Information Systems (GIS) – a literature
review and future needs. Proc. of the 32nd CIB W78 Conference 2015, 27th-29th
October 2015, Eindhoven, The Netherlands, pages 196–204, 2015.

Shudi (Sandy) Gao, C. M. Sperberg-McQueen, and Henry S. Thompson. W3C XML
Schema Definition Language (XSD) 1.1 Part 1: Structures – W3C Recommendation
5 April 2012. https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/, 2012.
(Last Accessed 1 February 2021).

Qian Geng, Siyu Deng, Danping Jia, and Jian Jin. Cross-domain ontology construction
and alignment from online customer product reviews. Information Sciences, 531:47–67,
2020. ISSN 00200255. doi: 10.1016/j.ins.2020.03.058.

Raji Ghawi and Nadine Cullot. Building Ontologies from XML Data Sources. pages
480–484, 01 2009. doi: 10.1109/DEXA.2009.68.

Fausto Giunchiglia, Aliaksandr Autayeu, and Juan Pane. S-Match: An open source
framework for matching lightweight ontologies. Semantic Web, 3(3):307–317, 2012.
ISSN 15700844. doi: 10.3233/SW-2011-0036.

Gerhard Gröger and Lutz Plümer. CityGML - Interoperable semantic 3D city models. IS-
PRS Journal of Photogrammetry and Remote Sensing, 71:12–33, 2012. ISSN 09242716.
doi: 10.1016/j.isprsjprs.2012.04.004.

W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview – W3C
Working Draft 27 March 2009. https://www.w3.org/TR/2009/WD-owl2-overview-
20090327/, 2009. (Last Accessed 1 February 2021).

139

W3C OWL Working Group. OWL 2 Web Ontology Language Document
Overview (Second Edition) – W3C Recommendation 11 December 2012.
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/, 2012. (Last Accessed
1 February 2021).

Aditya Grover and Jure Leskovec. Node2vec: Scalable Feature Learning for Networks.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 855––864. Association for Computing
Machinery, 2016. ISBN 9781450342322. doi: 10.1145/2939672.2939754.

Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199–220, 1992. ISSN 1042-8143. doi: https://doi.org/10.1006/
knac.1993.1008.

Florian Haag, Steffen Lohmann, Stefan Negru, and Thomas Ertl. OntoViBe 2: Advancing
the Ontology Visualization Benchmark. In Proceedings of EKAW 2014 Satellite Events,
volume 8982 of LNAI, pages 83–98. Springer, 2015.

Mokhtaria Hacherouf, Safia Nait Bahloul, and Christophe Cruz. Transforming XML
documents to OWL ontologies: A survey. Journal of Information Science, 41(2):242–
259, 2015. ISSN 17416485. doi: 10.1177/0165551514565972.

Mokhtaria Hacherouf, Safia Nait-Bahloul, and Christophe Cruz. Transforming XML
schemas into OWL ontologies using formal concept analysis. Software and Systems
Modeling, 18(3):2093–2110, 2019. ISSN 16191374. doi: 10.1007/s10270-017-0651-4.

Carol L. Hanchette. Geographic Information Systems, pages 431–466. Springer New York,
2003. ISBN 978-0-387-22745-0. doi: 10.1007/0-387-22745-8\ 21.

Elio Hbeich and Ana Roxin. Linking BIM and GIS Standard Ontologies with Linked
Data. Researchgate-online, (July):146–159, 2020.

Stefan Herle, Ralf Becker, Raymond Wollenberg, and Jörg Blankenbach. GIM and BIM:
How to Obtain Interoperability Between Geospatial and Building Information Mod-
elling? PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Sci-
ence, 88(1):33–42, 2020. ISSN 25122819. doi: 10.1007/s41064-020-00090-4.

A. E.Hadi Hor, G. Sohn, P. Claudio, M. Jadidi, and A. Afnan. A semantic graph database
for BIM-GIS integrated information model for an intelligent urban mobility web appli-
cation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 4(4):89–96, 2018. ISSN 21949050. doi: 10.5194/isprs-annals-IV-4-89-2018.

A. H. Hor, A. Jadidi, and G. Sohn. BIM-GIS INTEGRATED GEOSPATIAL INFOR-
MATION MODEL USING SEMANTIC WEB and RDF GRAPHS. ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3(July):73–79,
2016. ISSN 21949050. doi: 10.5194/isprs-annals-III-4-73-2016.

140

Ian Horrocks. Description Logic : A Formal Foundation for Ontology Languages and
Tools. Methods In Cell Biology, 78(0091-679X (Print) LA - eng PT - Journal Article
RN - 0 (Intermediate Filament Proteins) RN - 0 (Nerve Tissue Proteins) RN - 0 (Sulfur
Radioisotopes) RN - 63-68-3 (Methionine) SB - IM):765–775, 2007.

Shaun Howell, Yacine Rezgui, and Thomas Beach. Integrating building and urban
semantics to empower smart water solutions. Automation in Construction, 81:434–
448, 2017. ISSN 0926-5805. doi: https://doi.org/10.1016/j.autcon.2017.02.004. URL
https://www.sciencedirect.com/science/article/pii/S0926580517301759.

Wei Hu, Ningsheng Jian, Yuzhong Qu, and Yanbing Wang. GMO: A Graph Matching
for Ontologies. volume 156, pages 43–50, 2005.

Javier Irizarry and Ebrahim Karan. Optimizing location of tower cranes on construction
sites through GIS and BIM integration. Electronic Journal of Information Technology
in Construction, 17:351–366, 09 2012a.

Javier Irizarry and Ebrahim P Karan. Optimizing location of tower cranes on construc-
tion sites through GIS and BIM integration. Journal of information technology in
construction (ITcon), 17(23):351–366, 2012b.

Javier Irizarry, Ebrahim P. Karan, and Farzad Jalaei. Integrating bim and gis to improve
the visual monitoring of construction supply chain management. Automation in Con-
struction, 31:241–254, 2013. ISSN 0926-5805. doi: https://doi.org/10.1016/j.autcon.
2012.12.005.

Umit Isikdag, Jason Underwood, and Ghassan Aouad. An investigation into the appli-
cability of building information models in geospatial environment in support of site
selection and fire response management processes. Advanced Engineering Informatics,
22(4):504–519, 2008. ISSN 14740346. doi: 10.1016/j.aei.2008.06.001.

Elmira Jamei, Michael Mortimer, Mehdi Seyedmahmoudian, Ben Horan, and Alex Sto-
jcevski. Investigating the role of virtual reality in planning for sustainable smart cities,
2017. ISSN 20711050.

Zhou Jiehan, Juha Pekka Koivisto, and Eila Niemelä. A survey on semantic web services
and a case study. Proceedings - 2006 10th International Conference on Computer
Supported Cooperative Work in Design, CSCWD 2006, pages 763–769, 2006. doi: 10.
1109/CSCWD.2006.253254.

Tae Wook Kang and Chang Hee Hong. A study on software architecture for effective
BIM/GIS-based facility management data integration. Automation in Construction,
54:25–38, 2015. ISSN 09265805. doi: 10.1016/j.autcon.2015.03.019.

Ebrahim Karan and Javier Irizarry. Developing a Spatial Data Framework for Facility
Management Supply Chains. pages 2355–2364, 05 2014. ISBN 978-0-7844-1351-7. doi:
10.1061/9780784413517.239.

141

https://www.sciencedirect.com/science/article/pii/S0926580517301759

Ebrahim P. Karan and Javier Irizarry. Extending BIM interoperability to preconstruc-
tion operations using geospatial analyses and semantic web services. Automation in
Construction, 53:1–12, 2015. ISSN 09265805. doi: 10.1016/j.autcon.2015.02.012.

Ebrahim P. Karan, Javier Irizarry, and John Haymaker. BIM and GIS Integration and
Interoperability Based on Semantic Web Technology. Journal of Computing in Civil
Engineering, 30(3):4015043, 2016. ISSN 08873801. doi: 10.1061/(ASCE)CP.1943-5487.
0000519.

John Keeney, Aidan Boran, Ivan Bedini, Christopher J. Matheus, and Peter F. Patel-
Schneider. Approaches to relating and integrating semantic data from heterogeneous
sources. Proceedings - 2011 IEEE/WIC/ACM International Conference on Web Intel-
ligence, WI 2011, 1(August):170–177, 2011. doi: 10.1109/WI-IAT.2011.129.

Karam Kim, Hyunjoo Kim, Wooyoung Kim, Changduk Kim, Jaeyo Kim, and Jungho Yu.
Integration of ifc objects and facility management work information using Semantic
Web. Automation in Construction, 87(January):173–187, 2018. ISSN 09265805. doi:
10.1016/j.autcon.2017.12.019.

Damien Lacoste, Kiran Prakash Sawant, and Suman Roy. An efficient XML to OWL con-
verter. Proceedings of the 4th India Software Engineering Conference 2011, ISEC’11,
pages 145–154, 2011. doi: 10.1145/1953355.1953376.

Xin Liu, Rui Liu, Graeme Wright, Jack Cheng, Xiangyu Wang, and Xiao Li. A State-of-
the-Art Review on the Integration of Building Information Modeling (BIM) and Geo-
graphic Information System (GIS). ISPRS International Journal of Geo-Information,
6(2):53, 2017. ISSN 2220-9964. doi: 10.3390/ijgi6020053.

Nuno Lopes, Stefan Bischof, Orri Erling, Axel Polleres, Alexandre Passant, Diego
Berrueta, Antonio Campos, Jérôme Euzenat, Kingsley Idehen, Stefan Decker, Stéphane
Corlosquet, Jacek Kopecký, Janne Saarela, Thomas Krennwallner, Davide Palmisano,
and Michal Zaremba. RDF and XML: Towards a Unified Query Layer. W3C Workshop
— RDF Next Steps, pages 1–5, 2010.

Yuqian Lu and Muhammad Rizwan Asghar. Semantic communications between dis-
tributed cyber-physical systems towards collaborative automation for smart manufac-
turing. Journal of Manufacturing Systems, 55:348–359, 2020. ISSN 0278-6125. doi:
https://doi.org/10.1016/j.jmsy.2020.05.001.

Zhiliang Ma and Yuan Ren. Integrated Application of BIM and GIS: An Overview.
Procedia Engineering, 196(June):1072–1079, 2017. ISSN 18777058. doi: 10.1016/j.
proeng.2017.08.064.

Eva Savina Malinverni, Berardo Naticchia, Francesco Di Stefano, and Joaquin Lopez
Uriarte. Interoperability between GIS and BIM : From 3D GIS data to CityGML and
graph database. pages 1–16, 2019.

142

J. McBeath, D. Farrell and S. Hinkelman. XML schema design guidelines – version 1.3.
https://medbiq.org/std specs/ techguidelines/xmldesignguidelines.pdf, 2004.

Claudine Métral, Roland Billen, Af Cutting-Decelle, and Muriel Ruymbeke. Ontology-
based approaches for improving the interoperability between 3d urban models. Elec-
tronic Journal of Information Technology in Construction, 15:169–184, 02 2010.

Claudine Métral, Nizar Ghoula, Vitor Silva, and Gilles Falquet. A Repository of Infor-
mation Visualization Techniques to Support the Design of 3D Virtual City Models.
volume II-2/W1, 11 2013. doi: 10.5194/isprsannals-II-2-W1-247-2013.

Clement Mignard and Christophe Nicolle. Merging BIM and GIS using ontologies ap-
plication to Urban facility management in ACTIVe3D. Computers in Industry, 65(9):
1276–1290, 2014. ISSN 01663615. doi: 10.1016/j.compind.2014.07.008.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
Representations of Words and Phrases and Their Compositionality. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, NIPS’13, pages 3111–3119. Curran Asso-
ciates Inc., 2013.

A. Minutolo, A. Esposito, M. Ciampi, M. Esposito, and G. Cassetti. An Automatic
Method for Deriving OWL Ontologies from XML Documents. In 2014 Ninth Inter-
national Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pages
426–431, 2014. doi: 10.1109/3PGCIC.2014.88.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten
Lutz. OWL 2 Web Ontology Language Profiles (Second Edition) – W3C Recommenda-
tion 11 December 2012. https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/,
2012. (Last Accessed 1 February 2021).

Mark A. Musen. The Protégé project: a look back and a look forward. AI Matters, 1(4):
4–12, 2015. doi: 10.1145/2757001.2757003.

F. Noardo, K. Arroyo Ohori, F. Biljecki, T. Krijnen, C. Ellul, L. Harrie, and
J. Stoter. Geobim benchmark 2019: Design and initial results. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
- ISPRS Archives, 42(2/W13):1339–1346, 2019a. ISSN 16821750. doi: 10.5194/
isprs-archives-XLII-2-W13-1339-2019.

F. Noardo, F. Biljecki, G. Agugiaro, K. Arroyo Ohori, C. Ellul, L. Harrie,
and J. Stoter. GeoBIM Benchmark 2019: Intermediate results. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
- ISPRS Archives, 42(4/W15):47–52, 2019b. ISSN 16821750. doi: 10.5194/
isprs-archives-XLII-4-W15-47-2019.

143

F. Noardo, K. Arroyo Ohori, F. Biljecki, C. Ellul, L. Harrie, T. Krijnen, M. Kokla,
and J. Stoter. The ISPRS-EuroSDR GeoBIM Benchmark 2019. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences - ISPRS Archives, 43(B5):227–233, 2020a. ISSN 16821750. doi: 10.5194/
isprs-archives-XLIII-B5-2020-227-2020.

Francesca Noardo, Lars Harrie, Ken Arroyo Ohori, Filip Biljecki, Claire Ellul, Helen Eriks-
son, Dogus Guler, Dean Hintz, Mojgan A Jadidi, and Maria Pla. Tools for BIM-GIS
integration (IFC georeferencing and conversions): results from the GeoBIM benchmark
2019. Preprints, (July):1–35, 2020b. doi: 10.20944/preprints202007.0243.v1.

Natalya F. Noy and Deborah L. McGuinness. Ontology Development 101: A Guide to
Creating Your First Ontology. Stanford Knowledge Systems Laboratory, page 25, 2001.
ISSN 09333657. doi: 10.1016/j.artmed.2004.01.014.

Gozde Basak Ozturk. Interoperability in building information modeling for AECO/FM
industry. Automation in Construction, 113(December 2019):103122, 2020. ISSN
09265805. doi: 10.1016/j.autcon.2020.103122.

Sangmin Park, Soung Hoan Park, Lee Won Park, Sanguk Park, Sanghoon Lee, Tacklim
Lee, Sang Hyeon Lee, Hyeonwoo Jang, Seung Min Kim, Hangbae Chang, and Sehyun
Park. Design and implementation of a Smart IoT based building and town disaster
management system in Smart City Infrastructure. Applied Sciences (Switzerland), 8
(11):1–28, 2018. ISSN 20763417. doi: 10.3390/app8112239.

Pieter Pauwels and Walter Terkaj. EXPRESS to OWL for construction industry: Towards
a recommendable and usable ifcOWL ontology. Automation in Construction, 63:100–
133, 2016. ISSN 09265805. doi: 10.1016/j.autcon.2015.12.003.

Pieter Pauwels, Thomas Krijnen, Walter Terkaj, and Jakob Beetz. Enhancing the if-
cOWL ontology with an alternative representation for geometric data. Automation in
Construction, 80:77–94, 2017a. ISSN 09265805. doi: 10.1016/j.autcon.2017.03.001.

Pieter Pauwels, Sijie Zhang, and Yong Cheol Lee. Semantic web technologies in AEC
industry: A literature overview. Automation in Construction, 73:145–165, 2017b. ISSN
09265805. doi: 10.1016/j.autcon.2016.10.003.

Ratchata Peachavanish, Hassan A. Karimi, Burcu Akinci, and Frank Boukamp. An onto-
logical engineering approach for integrating CAD and GIS in support of infrastructure
management. Advanced Engineering Informatics, 20(1):71–88, 2006. ISSN 1474-0346.
doi: https://doi.org/10.1016/j.aei.2005.06.001.

Maŕıa Poveda-Villalón, Asunción Gómez-Pérez, and Mari Carmen Suárez-Figueroa.
OOPS! (OntOlogy Pitfall Scanner!): An On-line Tool for Ontology Evaluation. In-
ternational Journal on Semantic Web and Information Systems (IJSWIS), 10(2):7–34,
2014.

144

Elie Raad and Joerg Evermann. The role of analogy in ontology alignment: A study
on LISA. Cognitive Systems Research, 33:1–16, 2015. ISSN 13890417. doi: 10.1016/j.
cogsys.2014.09.001.

Mohammed Jawaluddeen Sani and Alias Abdul Rahman. GIS and BIM integration at
data level: A review. International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences - ISPRS Archives, 42(4/W9):299–306, 2018. ISSN
16821750. doi: 10.5194/isprs-archives-XLII-4-W9-299-2018.

G. Saygi and F. Remondino. Management of Architectural Heritage Information in BIM
and GIS: State-of-the-Art and Future Perspectives. International Journal of Heritage in
the Digital Era, 2(4):695–713, 2013. ISSN 2047-4970. doi: 10.1260/2047-4970.2.4.695.

Guus Schreiber and Yves Raimond. RDF 1.1 Primer – W3C Working Group Note 24
June 2014. https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/, 2014. (Last
Accessed 1 February 2021).

Yongze Song, Xiangyu Wang, Yi Tan, Peng Wu, Monty Sutrisna, Jack C.P. Cheng, and
Keith Hampson. Trends and opportunities of BIM-GIS integration in the architecture,
engineering and construction industry: A review from a spatio-temporal statistical
perspective, 2017. ISSN 22209964.

Rudi Stouffs, Helga Tauscher, and Filip Biljecki. Achieving complete and near-lossless
conversion from IFC to CityGML. ISPRS International Journal of Geo-Information,
7(9), 2018. ISSN 22209964. doi: 10.3390/ijgi7090355.

Shu Tang, Dennis R. Shelden, Charles M. Eastman, Pardis Pishdad-Bozorgi, and Xinghua
Gao. A review of building information modeling (BIM) and the internet of things (IoT)
devices integration: Present status and future trends. Automation in Construction, 101
(January):127–139, 2019. ISSN 09265805. doi: 10.1016/j.autcon.2019.01.020.

John E. Taylor and Phillip G. Bernstein. Paradigm Trajectories of Building Information
Modeling Practice in Project Networks. Journal of Management in Engineering, 25(2):
69–76, 2009. doi: https://10.1061/(ASCE)0742-597X(2009)25:2(69).

Chrisa Tsinaraki and Stavros Christodoulakis. Interoperability of XML Schema Appli-
cations with OWL Domain Knowledge and Semantic Web Tools. In Robert Meersman
and Zahir Tari, editors, On the Move to Meaningful Internet Systems 2007: CoopIS,
DOA, ODBASE, GADA, and IS, pages 850–869, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg. ISBN 978-3-540-76848-7.

A U Usmani, M Jadidi, G Sohn, Semantic Web, and Transformation Patterns. Automatic
Ontology Generation of BIM and GIS Data. XLIII:77–80, 2020.

Hao Wang, Yisha Pan, and Xiaochun Luo. Integration of BIM and GIS in sustainable
built environment: A review and bibliometric analysis. Automation in Construction,
103(March):41–52, 2019. ISSN 09265805. doi: 10.1016/j.autcon.2019.03.005.

145

Ning Wang and Raja R. A. Issa. Ontology-based integration of bim and gis for indoor
routing. pages 1010–1019, 2020. doi: 10.1061/9780784482865.107.

Nora Yahia, Sahar A Mokhtar, and Abdelwahab Ahmed. Automatic Generation of OWL
Ontology from XML Data Source. International Journal of Computer Science Issues,
9(2):77–83, 2012. ISSN 1694-0784.

Zhihang Yao, Claus Nagel, Felix Kunde, György Hudra, Philipp Willkomm, Andreas
Donaubauer, Thomas Adolphi, and Thomas H Kolbe. 3DCityDB - a 3D geodatabase
solution for the management , analysis , and visualization of semantic 3D city models
based on CityGML. 2018.

Olga Zalamea, Jos Orshoven, and Steenberghen Thérèse. From a citygml to an ontology-
based approach to support preventive conservation of built cultural heritage. 2013.
ISBN 9783319337821.

Linlin Zhao, Zhansheng Liu, and Jasper Mbachu. Highway alignment optimization: An
integrated BIM and GIS approach. ISPRS International Journal of Geo-Information,
8(4), 2019. ISSN 22209964. doi: 10.3390/ijgi8040172.

Junxiang Zhu, Graeme Wright, Jun Wang, and Xiangyu Wang. A critical review of the
integration of geographic information system and building information modelling at the
data level. ISPRS International Journal of Geo-Information, 7(2):1–16, 2018. ISSN
22209964. doi: 10.3390/ijgi7020066.

Junxiang Zhu, Yi Tan, Xiangyu Wang, and Peng Wu. BIM/GIS integration for web
GIS-based bridge management. Annals of GIS, 00(00):1–11, 2020. ISSN 19475691.
doi: 10.1080/19475683.2020.1743355.

146

	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	List of XSD Listings
	Introduction
	Background and Related Work
	Fundamentals of BIM and GIS
	Building Information Modelling (BIM)
	Geographic Information Systems (GIS)

	BIM and GIS as Correlated Technologies
	Trends of BIM-GIS Integration Methodologies
	Applications of BIM and GIS Integration
	Role of Semantic Web Technology in BIM and GIS Integration
	Summary

	XML Schema in Semantic Web for Ontology Generation and Alignment
	What is an Ontology?
	Domain of Semantic Web
	Resource Description Framework (RDF)
	Web Ontology Language (OWL)
	SPARQL
	Synthesis

	XML Schema Documents, Components and Design Styles
	XSD Specifications of ifcXML and CityGML
	Using XML Schema for Ontology Generation and Alignment
	Transforming XSD to OWL Models
	Mapping of Ontology Models

	Potential Solution for Ontology Generation
	Summary

	GeoBIM Benchmark Project: Investigating Interoperability between BIM and GIS
	Overview
	Benchmark Materials
	Provided Data for Benchmark
	Results Template for Benchmark Tasks

	GeoBIM Benchmark: Task 4
	IFC to CityGML Conversion
	CityGML to IFC Conversion
	Summary

	Study Analysis and Conclusion

	Methodology: Ontology Generation of an XML Schema
	Preparatory Conceptual Framework for Semantic Integration
	Ontology Generation for Geospatial Data (OGGD)
	Ontology Alignment for Geospatial Data (OAGD)
	Semantic Graph Generation

	EPIXCO Framework
	Formalization of XSD and Transformation Patterns
	Patterns Identification and Filtration
	Ontology Generation

	Enhancements to Janus and PIXCO Frameworks
	Improving Janus Transformation Patterns
	Refactoring PIXCO Algorithms
	Reconstructed Mapping Rules of XSD to OWL
	General Considerations in Enhanced Framework

	Summary

	EPIXCO Implementation: Building Ontologies Automatically
	Implementation Features
	Experiments Preparations
	XSD Extraction from IFC EXPRESS File
	Ground Truth Matrix

	Experimental Results
	Validation of OWL Models
	Quantitative Evaluation
	Comparative Analysis
	Performance Measures

	Discussion and Considerations
	Overall Analysis and Conclusion

	Conclusion and Perspectives
	Conclusion and Main Contributions
	Research Challenges and Limitations
	Perspectives and Future Works

	Bibliography

