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Abstract

With the surging demand for Internet of Things (IoT) healthcare applications, a

myriad of data privacy concerns come to light. Cloud computing inherits the risks

of exposing data to re-identification vulnerabilities. A secure solution is storing

and processing data locally on edge, but it lacks the provision of powerful machine

learning (ML) needs. An improved computing framework is required to incorpo-

rate ML capabilities and user-data confidentiality. We perform a systematic study

of IoT healthcare systems and propose a three-tier architecture that protects and

enables data sharing. The edge anonymizes data using differential privacy (DP);

transmits it to the cloud to train ML classifier; sent back trained classifier to edge

to make inferences. Our findings show 1) XgBoost classifier performs relatively

well; classifiers’ accuracy trained using DP data is close to that of original data 2)

Round-trip execution performance of architecture shows high average mean and

variance with higher privacy budgets.
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Chapter 1

Introduction

As forecasted by the International Data Corporation (IDC), by 2025, there will be

41.6 billion connected IoT devices worldwide, collectively generating 79.4 zettabytes

(ZB) of user data. The growth and scale of these platforms opens up several

opportunities for both the technology industry and researchers to use this data

and information to create new knowledge aimed at improving the remote health-

care management systems. Today, IoT generated data is being used extensively

in smart healthcare [2] [3] [4] [5] [6] to solve problems like fall detection, seizures

prone behaviours, monitoring the elderly and personalized healthcare support that

might include receiving healthcare support from a practitioner or receiving real-

time alerts due to an emergency. When designing robust and socially responsible

IoT systems such as these, two important principles are at play; the system’s

overall architecture and data privacy. The architectural design phase is one of the

most critical activities in the development of IoT systems, and the decisions made

here have significant implications for both economic and quality assurance goals.

Examples of these IoT architectural decisions include distributing processing and

analytics capabilities over the edge or cloud tier of IoT systems. Due to the in-

creasing complexity of real-time healthcare services, full-fledged architecture must

utilize the full potential of technologies like the cloud and the machine learning

(ML) which is extensively being used in healthcare for different tasks such as clas-

sification, regression, and deep learning. The efficiency and the round-trip speed of

these algorithms depends on data volume and placement of data and computation
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tasks in the overall architecture of the application.

Figure 1: Existing Problem in Data

Large-scale data collection in the IoT poses significant privacy challenges and

may hamper the further development and adoption of these technologies by privacy-

conscious individuals and organizations [7]. Storing data in its raw form on the

Cloud poses a severe threat to an individual’s privacy as background knowledge

can be secured and utilized by third-party vendors [8]. Figure 1 explains one

problem that arises from sharing data, with a user subscribed to an application

with their health insurance provider [9]. Even when some private data (such as

"Name") is not present in the Patient profile table, sensitive information can be

inferred by linking the patient table with one that is available publicly, marked as

the External table in Figure 1. Concerns further build when the data involved is

micro-data, representing an individual’s entire information as a record in analyt-

ical databases. When this data is being used in data mining computations with

the purpose of analyzing patients’ health problems for example, the data’s privacy

can be compromised through these complex computing processes. Though the
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possibility of data breach is present in so many IoT systems, remote healthcare

management systems pose further controversial issues when sharing data as the

information is critical to someone’s identity and well-being. It is thus essential

to enable both sharing useful information over the cloud while protecting data

privacy [10].

Several studies have mentioned privacy-preserving techniques that deal with ethi-

cal concerns of data identification, or the linking of information stored in different

databases about the same individual. One such technique is k-anonymity, first

introduced by Latanya et al. [11] in 1998, which states that, a release of data

is said to have the k-anonymity property if each person’s information contained

in the data release cannot be distinguished from at least k - 1 individuals whose

information also appears in this same release. Despite having promising group-

based anonymity, k-anonymous data is susceptible to many attacks. It becomes

even worse if the adversary who is trying to unveil data already has some back-

ground knowledge at their disposal with what exists in the public domain. To

overcome this issue, another technique known as (ε, δ)-DP was developed in 2006

by Cynthia et al. [8] which ensures that the probability of a randomized function’s

output on the database is equal to its probability on a neighboring database that

differs by at most 1 record. (ε, δ)-DP is achieved by adding noise to the data,

through several methods such as the Laplacian distribution while preserving sta-

tistical usefulness [9]. DP can be added at any step of the workflow, including

data ingestion, data collection, data transmission, data storage, ML training and

output data, allowing performing statistical analysis without compromising data.

Hence any learning or analysis made from such databases is devoid of an individ-

ual’s contribution to the data because it protects it against table linkage attacks,

as illustrated in Figure 1.

With the recent success of ML applications, efforts are being directed to-

wards integrating ML computing with privacy-preserving mechanisms. Hittmeir et

al. [12] evaluated the performance of ML classifiers trained on synthetic data gen-

erated using different tools, and learned that the DataSynthesizer tool is suitable

for classification tasks because of the similar accuracy achieved by this data as that
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of original data . Vanichayavisalsakul et al. [13] also evaluated the performance of

several privacy models and ensembled classification algorithms to determine any

significant changes in the accuracy of ML classifiers. Though they found ensemble

algorithms performing better in comparison to single classification algorithms, the

privacy budget ε was not considered. Both of these works do not explore inte-

grating privacy-preserving computations within IoT architecture. Though Wang,

Tian, et al. [14] used edge-based DP computing by storing only partial data across

all the layers of architecture, sharing only part of data over the cloud makes the

ML capabilities limited. Hence, our architecture works on this gap by enabling

data sharing and balancing the trade-off between data quality and privacy.

To this end, this thesis aims to bridge the gaps in this research, by providing a

comparative study using a data anonymization framework integrated with sensor-

edge-cloud architecture and (ε,δ) ML computations on DP data. The proposed

privacy-preserving sensor-edge-cloud architecture ensures that any analysis from

the database and ML computations is devoid of any specific individual. We will

first outline the research objectives, including the research questions that this the-

sis answers. This is followed up by enumerating thesis contributions and then

explanation of the thesis’ structure.

1.1 Research Objectives

The concerns about developing IoT architecture that maintain data privacy and

accuracy of ML classifiers trained on anonymized data has led to the following

research questions:

RQ 1: Will the most optimal ML classifier for the original data, also be the most

optimal one for the DP data?

RQ 2: Does the proposed data anonymization process brings better ML classifier

accuracy as compared to previous studies?

RQ 3: Is it feasible to develop an edge-cloud architecture that preserves data pri-

vacy while maintaining ML accuracy?
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1.2 Thesis Contributions

The main contributions of this thesis are:

• A systematic review of existing remote healthcare IoT systems from different

aspects like architecture, processing, machine learning, and privacy.

1. With this research, we find that most existing systems use three-tier

architecture such as sensor-edge-cloud or sensor-fog-cloud. The choice

between edge and fog is based on the emergency of real time analytics

and how crucial the data’s privacy is.

2. From a privacy perspective, though traditional methods like verifier

based password-authentication and concealment processes protect data,

the data utility gets reduced and machine learning performs poorly on

data with less quality. Privacy methods that preserve the data’s util-

ity, such as privacy models like K-anonymity, L-diversity, Differential

Privacy, are required.

• Validated the usage of DP data by comparing performance of ML classifiers

on original and anonymized data.

1. The accuracy of the ML classifier trained on differentially private data

is close to the original data’s accuracy.

2. For three out of the five datasets, the results on anonymized data were

better than the previous studies as mentioned above.

3. The XgBoost algorithm works fairly well with most of the datasets for

both the original and private data.

• A novel three-tier privacy aware ML IoT framework using (ε, δ)-DP.

1. We propose sensor-edge-cloud based IoT architecture incorporating (ε,

δ)-DP at the edge (local device such as desktop or laptop) to ensure

privacy and classifier training at cloud (Amazon Web Services or any

cloud) for utilizing its computational power.
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2. The round trip performance evaluation of proposed architecture shows

the anonymization time and cloud model training time increases with

increase in privacy budget and shows high variance.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides background

details in and then related research work in Chapter 3. Chapter 4 presents the

systematic literature review of existing remote healthcare management systems

(RHMS), followed by privacy-aware edge-cloud architecture in Chapter 5. We

will explain the experimental validation in Chapter 6 and discuss the findings

of our experimentation with the architecture from there. We will conclude with

Chapter 7, that presents the future scope of our thesis.
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Chapter 2

Background

This chapter provides details on the background of the concept of data anonymiza-

tion by discussing privacy-preserving mechanisms that this thesis uses in Chapter

2.1. It is followed by explaining different data anonymization models in Chapter

2.2. Many studies also use the hybrid data privacy models to reap the benefits of

all the models used in the process described in Chapter 2.3. Chapter 2.4 briefly

explains the ARX data anonymization tool and the SafePub algorithm used by

this tool to anonymize data.

2.1 Privacy-Preserving Mechanisms

Though there are several ways user privacy can be ensured, we will discuss ensuring

privacy in databases that are being considered for the scope of this thesis. One of

the main data privacy strategies is making data un-linkable to individuals, that is,

to anonymize them. Anonymized data is no longer considered personal because

they are outside the scope of GDPR, lifting legal restrictions that apply to personal

data. This chapter describes state of the art data anonymization techniques and

models [15].

2.1.1 Statistical Disclosure Control

Statistical disclosure control (SDC), also known as statistical disclosure limita-

tion (SDL) or disclosure avoidance, is a technique used in data-driven research
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to ensure no person is identifiable from the results of an analysis of a survey,

administrative data or in the release of microdata where every record conveys

information on a particular respondent [16]. Usually, a microdata set contains

attributes that may be classified as identifiers, quasi-identifiers, sensitive and in-

sensitive attributes, which allow unequivocal identification of individuals such as

social security numbers or full names, which need to be removed before the pub-

lication of the microdata set onto the cloud. On the other hand, a group of

quasi-identifiers may allow linkage with public information. Examples include oc-

cupation, address, age, gender, height, and weight. The insensitive attributes are

the ones that do not carry any personal information and hence can be released

whereas, the microdata set which contains sensitive information such as salary, re-

ligion, political affiliation, or health condition can be far more damaging. Beyond

protecting against identity disclosure, SDC must prevent intruders from guessing

the confidential attribute values of specific respondents (attribute disclosure) [15],

because such attacks reveal new information about an individual without actually

revealing their identity.

2.1.2 Non-Perturbative Masking

In SDC, masking refers to the process of obtaining an anonymized data set X ′

by modifying the original X. Masking can be done using perturbative or non-

perturbative methods. With the first approach, the data values of X are perturbed

to obtain X ′ . In contrast, in non-perturbative masking, X ′ is obtained by remov-

ing some values and by making them more general. Yet the information in X ′ is

still accurate, although less detailed; as an example, a value might be replaced by

a range containing the original value [15]. Some of the standard non-perturbative

methods include:

Sampling: Instead of publishing the whole data set, only a sample of it is re-

leased.

Generalisation: The values of the different attributes are recorded in new, more

general categories such that the information remains the same, albeit less specific.

Top/bottom coding: In line with the previous method, values above (resp. be-
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low) a certain threshold is grouped into a single category.

Local suppression: Too few records sharing a combination of quasi-identifier

values may lead to re-identification. This method relies on replacing specific indi-

vidual attribute values with missing values so that the number of records sharing

a particular combination of quasi-identifier values becomes larger and thus miti-

gating de-identification of data as more data becomes indistinguishable.

2.1.3 Privacy Models

For an anonymized data setX ′ to be safe/private enough, it needs to be sufficiently

anonymized. The level of anonymization can be assessed after the generation of X ′

or before generating it. Though the former method of posterior assessment requires

several iterations before generating a suitable database for further analysis, the

latter method of anterior assessment is implemented using privacy models that

allow selecting the desired privacy level before producing X ′ [15]. Several privacy

or anonymization models are explained in the following subsection.

2.2 Data Anonymization Models

Data anonymization models describe the criteria and process to set a privacy

guarantee for an anonymised database. These models specify conditions that the

data set must satisfy to keep disclosure risk under control. Privacy models usually

depend on one or several parameters that determine how much disclosure risk is

acceptable.

Table 1: Patient Table

Workclass Sex Age Dementia
Federal Government M 35 Y

Local Government M 38 Y

State Government M 38 Y

Self Employed F 30 N

Private F 30 N

Self Employed F 30 N

Private F 30 N

9



2.2.1 K-anonymity

It is one of the first privacy-preserving models introduced by Latanya Sweeney and

Pierangela Samarati in a paper published in 1998 for the purpose of preventing

record linkage attacks [11] [17]. For the given set of attributes in a database (D1)

containing sensitive information, the same set of attributes in another database

(D2) that does not contain sensitive information, can still be mapped to determine

an individual to which that sensitive information belongs. Hence, the set of quasi-

identifiers needs to be indistinguishable from at least k-1 records. So even if the

adversary attacker gets access to the data, there will be a k number for the same

query of records returning as an answer. This group of the same set of quasi-

identifiers is known as equivalence classes. This model assumes that the adversary

is aware of the set of attributes forming quasi-identifiers. As can be seen from Table

1, if "Workclass", "Sex", "Age" are set to be quasi-identifiers in the patient table,

then the adversary who has access to an external table not containing sensitive

information, can still link an individual to the possibility of having Dementia. For

example, based on the accessible information "State Government", "M", 38, by

an attacker, it can be deduced with 100% confidence from Table 2 that Mitch has

a Dementia because the quasi-identifier information “State Government”, “M” and

“38” from Table 2 is linkable with Table 1. Whereas after applying 3-anonymous

(Table 3) models to the patient table, the confidence of determining if Mitch has

Dementia is reduced to 50% as now there are 2 indistinguishable records that

satisfies the same group of quasi-identifiers.

2.2.2 L-diversity

Even if the k-anonymity is satisfied, there is still the possibility of determining

sensitive information if all the values in an equivalence group are similar. To

overcome this issue, Machanavajjhala et al. in 2007 [18] introduced an L-diversity

model to prevent this from attribute linkage. This model requires every quasi-

identifier group to contain at least l "well-represented ” sensitive values. For

example, in the in Table 1, the equivalence group "Self Employed", "F", 30 are

two anonymous quasi-identifiers. However, an adversary with access to external
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Table 2: External Table

Name Workclass Sex Age
Nicole Private F 30

Rylan Federal Government M 35

Ana Private F 30

Mitch State Government M 38

Andrea Self Employed F 30

Yosua Local Government M 38

Angelica Self Employed F 30

Amine Local Government M 39

Vini Self Employed F 32

Table 2 can still guess with 100% confidence that Angelica does not have Dementia.

In contrast, if we apply the 2-diversity model to Table 1, it will ensure that this

equivalence group contains at least two distinct values of the sensitive attribute

"Dementia" , reducing the confidence of estimation or matching the information

to 50%

Table 3: 3-Diversity Patient Table

Workclass Sex Age Dementia
Government M [35-40) Y

Government M [35-40) Y

Government M [35-40) N

Government F [30-35) N

Non-Government F [30-35) N

Non-Government F [30-35) N

Non-Government F [30-35) N

2.2.3 t-Closeness

Even if the L-diversity models ensure diverse sensitive attributes corresponding

to respective equivalence classes, it does not consider the global distribution of

the data, and the close distance placement of similar information results in easy

derivation of sensitive attributes. Hence, Li et al. in 2007 [19] proposed another

privacy model known as T-closeness, which ensures that the distribution of a
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Table 4: 4-Anonymous Patient Table

Postal Code Sex Age Response
123** M [35-40) Medium

123** M [35-40) High

123** M [35-40) Medium

123** M [35-40) High

123** F [30-35) Medium

123** F [30-35) Low

123** F [30-35) Medium

123** F [30-35) Low

sensitive attribute in any equivalence class is close to the distribution of the at-

tribute in the overall table (i.e., the distance between the two distributions should

be no more than a threshold of t). For example, in Table 4, even though there

are 4-anonymous and 2-diverse based categories with "Postal Code" and "Age",

an adversary who is assumed to know that Bob’s information is in the first four

records could still estimate that his response time is more than average. The pre-

vious privacy models group them without considering their overall distribution in

the table. However, after ensuring t-closeness in Table 5, the responses are uni-

formly transformed among all equivalence groups, reducing the confidence level in

estimating the overall response time.

Table 5: Illustration of t-Closeness

Postal Code Sex Age Response
1234* M [30-40) Medium

1234* F [30-40) High

1234* M [30-40) Medium

1234* F [30-40) Low

1235* M [30-40) Low

1235* F [30-40) Medium

1235* M [30-40) High

1235* F [30-40) Medium
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2.2.4 δ-presence

Both record linkage and attribute linkage assume that the attacker already knows

that the victim’s record is in the table, revealing the victim’s sensitive information

[20]. A table linkage occurs when someone is able to estimate the presence or

absence of the victim’s record in the released table. For example, in Table 6, if an

adversary has access to an external table and then patient Table 3, after joining

them together with "Workclass", "Sex", "Age", the probability of inferring the

presence of Mitch in the patient Table 3 is 3/4=0.75 as there are three matching

records for the given quasi-identifiers in Table 3 and 4 in Table 6 (Government,

M, [35-40)). To prevent this, Nergiz et al. in 2007 [21] proposed δ-presence model

to bound the probability of inferring the presence of any potential victim’s record

within a specified range δ = (δmin, δmax). However, this assumes that the data

publisher has access to the same External Table 2 as the attacker, which may not

be a reasonable assumption.

Table 6: External Anonymous Table

Name Workclass Sex Age
Nicole Non-Government F [30-35)

Rylan Government M [35-40)

Ana Non-Government F [30-35)

Mitch Government M [35-40)

Andrea Non-Government F [30-35)

Yosua Government M [35-40)

Angelica Non-Government F [30-35)

Amine Government M [35-40)

Vini Non-Government F [30-35)

2.2.5 Differential Privacy

This is one of the privacy models that does not focus on attacks like record linkage

and attribute linkage but rather focuses on how someone’s posterior belief in sen-

sitive information changes after accessing the published data. Dwork in 2006 [9]

proposed that the risk to the record owner’s privacy should not substantially in-
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crease due to participating in a statistical database. (ε, δ)-DP is thus coined on

the below notion:

A mechanism K satisfies (ε, δ)-DP if for every S ⊆ Range(K) and for every pair

of neighboring datasets D1 and D2 (differing on at most one record):

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] + δ (2.1)

where probability is taken over the randomness used by the mechanism K. It en-

sures that the outcome of analysis on a database would be no different irrespective

of the presence or absence of an individual’s data.

Hence any learning about such databases is devoid of an individual’s contribution

to the data. For instance, if the probability of determining the presence of particu-

lar individual is 0 in both the datasets and considering there is no privacy leakage

(δ=0) then taking log on both sides implies ε=0 (absolute privacy). The two key

parameters used for implying DP are Epsilon ε and Delta δ where epsilon is the

privacy budget, and delta is the maximum accidental leak of some information.

Instead of defining these private parameters for the data, the application of these

parameters is on the data processing method [22], that is, the process used to se-

lect data based on some randomized mechanism. Also, with increasing the privacy

budget , data privacy is reduced as they are inversely proportional. Hence, less

noise will be injected into the data due to decrease in data privacy. As mentioned

earlier, noise entails adding the randomization to the data. This is usually used

in two settings - interactive (noise is added with every answer to a query on a

database and the actual database is not released) [23] and non-interactive (noise

is added once for all first, and then the database is published). It is widely be-

ing adopted by some of the world’s largest companies including the U.S. Census

Bureau used it in 2008 for demonstrating commuting patterns [24], and in 2015,

Google used DP when sharing historical traffic statistics [25]. Apple employed it

to improve its intelligent personal assistant technology in 2016 [26], Microsoft for

telemetry in Windows [27] in 2017, as well as LinkedIn for advertiser queries [28]

in 2020.
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2.3 Hybrid Data Privacy Models

This combines syntactic models such as K-Anonymity, L-Diversity, and semantic

models like DP. Li et al. in [29] demonstrated that random sampling followed by

attribute generalization and the suppression of every record which appears less

than k times satisfies (ε, δ)-DP for every privacy budget ε ≥ −ln(1−β) which is

the probability of record randomization. This is extended by Bild et al. [30] to

implement their ARX tool. Because of these hybrid models, the advantages of

different privacy models can be merged into one database, and as such several

studies have explored different combinations of these models. These are also often

used for a non-interactive, general-purpose setting [22] [31] [23] which is why we

have adopted the combination of these for this thesis.

2.4 ARX Tool & SafePub Algorithm

ARX tool is comprehensive open-source software for anonymizing sensitive per-

sonal data [32]. As it supports a wide variety of privacy and risk models, meth-

ods for transforming data and analyzing the use of output data and has been

widely used and demonstrated in many research studies such as Prasser, Fabian,

et al. [33], used it for anonymizing biomedical data as it preserves the truthfulness

of data. They also extended this ARX tool to optimize de-identified health data

by enabling the usage of statistical classifiers and a method of assessing their per-

formance [34]. Eicher, Johanna, et al. [35] have also utilized the well-known ARX

anonymization tool for biomedical data with ML techniques to support the cre-

ation of privacy-preserving prediction models. It follows the SafePub mechanism

to generate the (ε, δ) differential private data for which the high-level algorithm

can be seen as below:

It first randomly samples records with probability β = 1- e−εanon using function

RandomSampling () followed by attribute generalization and then suppressing ev-

ery record that appears less than k times where k is derived from εanon and δ. Here

the the total privacy budget ε = εanon + εsearch. The transformations set in T are

full domain generalization schemes that generate all attribute values to a common
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Algorithm 1 SafePub Algorithm to Generate (ε, δ) DP Data [30]
1: Input: Database A, εanon, εsearch, δ, β, counts, evaluation metric e
2: Output: Anonymized database Aε,δ
3: As ←− RandomSampling(A,εanon, β )
4: T ←− InitializeTransformationsSet()
5:
6: for i←− 1 to counts do
7: T ←− Update()
8:
9: for (t ∈ T) do

10: Aa ←− Anonymize(As, t, εanon, δ )
11: score←− Evaluation(Aa, e)
12: end for
13: te ←− Probabilistically select t ∈ T based on score calculated from evalua-

tion metric and εsearch
14: end for
15: Aε,δ ←− Anonymize(As, te, εanon, δ )
16: return Aε,δ

level of a certain hierarchy [36]. For instance, if one node at level 2 is generalized

to a value at level 1, all the nodes at the same level 2 will also be generalized to a

value at level 1. Anonymize () perform the database’s anonymization based on the

optimal generalization scheme t chosen from set T. Each result from Anonymize ()

is evaluated based on a given evaluation metric that gives a generalization scheme

score. The metric used in this study was granularity [30] that penalizes values

that are generalized to a higher level in the generalization hierarchy. The score is

then used when a generalization scheme is randomly selected, where a better score

increases the chance of choosing that scheme. The final database is anonymized

based on the best generalization scheme found. From the parameters εanon and δ

in (εanon, δ)-DP, the k for the k-anonymization is computed, the resulting k thus

depends on the parameters set for the DP. This paper states that δ should be

chosen so that δ < 1/n, where n is the size of the database, and at least δ ≤10−4

holds. For ε the authors set εsearch = 0.1 since εanon had greater impact on the

performance. This value was also used in this study, but for ε ≤ 0.1,εsearch = ε/10.
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Chapter 3

Related Work

In this chapter, we present key related work in using multi-tier architecture to

develop IoT solutions in Chapter 3.1. Several studies rely on three-tier architec-

ture because of the enormous amount of data generation and the need to avoid

loading all the computational tasks like data processing, data storage and data

analytics on cloud. As the sensor layer is not capable of performing heavy machine

learning tasks, lightweight devices like fog and edge (close to data origination and

low processing power) are being used consistently to divide the task load of the

cloud (farthest from data origination and high processing power). From there,

we’ll briefly outline privacy-aware IoT architectures in Chapter 3.2. Several pa-

pers have been published regarding data privacy, which relies on numerous privacy

law enforcement such as GDPR, HIPAA, HITECH, and its concrete implementa-

tion of these rules and laws still remain unclear at the present moment. Li, Chao,

and Balaji Palanisamy [37] reviewed the state-of-the-art principles of privacy laws,

the architectures for IoT, and the representative privacy-enhancing technologies

(PETs). They analyzed how legal principles can be supported with careful imple-

mentation of PETs to meet the privacy requirements of the individuals interacting

with IoT systems.
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3.1 Multi-Tier Architecture For IoT

With the increasing demand for healthcare services and regularly monitoring pa-

tients, sensor technologies and multi-tier IoT architectures make it possible to

develop more intelligent systems. Uddin et al. in [38] proposes a three-tier sensor-

edge-cloud architecture to reduce pressure on the clouds by conducting activity

prediction using Recurrent Neural Network (RNN) on an edge device (i.e., per-

sonal computer or laptop). Their experimental results show that the recommended

approach outperforms other traditional methods. Devarajan, Malathi, et al. in [6]

propose an energy-efficient fog-assisted healthcare system to maintain the blood

glucose level and illustrate the improved performance of this system in terms

of energy efficiency, prediction accuracy, computational complexity, and latency.

Akrivopoulos, Orestis, et al. in [39] also utilizes the patient’s smartphone as a

Fog gateway (device farthest from the cloud in terms of proximity to the data

origination) for securely sharing them to other authorized entities. Andriopoulou

et al. in [40] transfer the computing intelligence from the cloud to the edge net-

work as fog computing operates closer to the user, avoiding delay and network

failures in healthcare service delivery. Mahmud et al. in [41] introduce a fog-

based IoT-Healthcare solution structure and the integration of Cloud-Fog services

in inter-operable Healthcare solutions extended upon the traditional Cloud-based

structure. Their experimental results point towards improvements that include

instance cost, network delay, and energy usage.

3.2 Privacy-Aware IoT Architectures

Numerous privacy-preserving technologies have been explained by DomingoFer-

rer et al. [15] such as the usage of Statistical Disclosure Control, Perturbative

Masking, Non-Perturbative Masking, and Privacy Models such as K-anonymous,

and Differential Privacy. Though not all of them provide full protection of data

against attacks like table linkage and probabilistic linkage, DP is assumed to best

ensure data privacy by making data unlinkable to an individual. Ukil et al. [42]

demonstrated an automated health cardiac management system using simpler ar-
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chitecture at the edge by using less number of features to keep the ML computa-

tions lightweight and DP on sensitive healthcare data. In contrast, our privacy-

preserving edge-cloud architecture is not limited to choosing fewer features as we

are harnessing the power of cloud to train the ML classifiers and doing predictions

at the edge for ensuring data privacy. Naga Prasanthi Kundeti et al. [43] shows

that K-anonymization along with generalization and suppression performed better

than K-anonymization alone and evaluated its performance using two classifica-

tion algorithms, namely Naive Bayes J48. However, we are evaluating (ε,δ) -DP

as the privacy model and analyze its performance against several ML classifiers

such as Logistic Regression, SVM, KNN, Random Forest, Decision Tree, Xgboost,

Naive Bayes and demonstrate that XgBoost works well with most of the data.

Paranthaman et al. [44] studied the effect of anonymization due to k-anonymity

on the data mining classifiers using Naïve Bayes classifier and concluded that ac-

curacy decreases with an increase in anonymity. However, this thesis advocates

in-depth analysis into application of multiple classifiers on (ε,δ)-DP and validates

its performance with original data. Abay, Nazmiye Ceren, et al. also demonstrated

that deep learning models can be used to generate differentially private synthetic

datasets [45] and compared the performance of existing techniques against many

utility metrics. Xiao et al. used the DP framework [46] and applied it to wavelet

transforms on the data before adding noise. Wang et al. used DP with regres-

sion models [47] by perturbing coefficients of the polynomial objective function,

whereas here we are using DP by perturbing input data. Ji et al. [10] paper

surveyed the interplay between ML and DP by demonstrating how noise can be

added to the model at no cost to the utility, and cites considering generalization

of the ML model, whereas we add the noise to the data anonymization process

and apply Nested Cross-Validation to avoid any data bias. Many researchers have

even incorporated this privacy model in IoT architectures. Xu, Chugui et al. [48]

propose a local DP obfuscation framework (LPDO) and validate its performance

in terms of privacy preservation level and data utility. Wang, Tian, et al. [49] pro-

pose edge-based DP computing for sensor–cloud systems where they are splitting

the data differentially and storing it in three different layers. Piao, Chunhui et
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al. also proposed a fog-based DP approach. However, their study was not covered

in-depth, and only one database was used to evaluate the performance [50].

In summary , the importance of using data privacy models like (ε, δ)-DP in

tandem with three-tier IoT applications, is one of the most useful data privacy

algorithms that protects significant attacks like Record Linkage, Attribute Link-

age, Table Linkage & Probabilistic Attacks . Researchers and industries are using

it intensively, and we have used the combination of privacy-preserving techniques

such as SDC, non-perturbative masking and privacy models using the ARX tool,

and comprehensive open-source software for anonymizing sensitive personal data.

This tool has been used and demonstrated in many research studies [33] [34] [35].

This thesis has explored the research questions that have not been studied directly

to the best of our knowledge. It comprehensively brings out the performance eval-

uation of different ML classifiers on differentially private data by comparing it

with original data and also validates it over the IoT architecture.
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Chapter 4

Systematic Review of IoT

Healthcare Systems

This chapter sheds light on the existing Remote Health Management Systems

(RHMS) after a systematic and thorough review of nearly 80 papers. The analysis

is presented through a taxonomy, categorizing the IoT systems into architecture,

processing, machine learning, and privacy security. This classification was chosen

based on the thesis’s focus; nonetheless, all of them are based on IoT architecture.

This quantitative summary shows the relative count to differentiate the purpose of

survey and doesn’t include the excluding count as many had overlapping focuses

and themes. We first explain the research method being employed to filter papers

out from the entire search query in Chapter 4.1. A taxonomy classifying the

existing systems is then presented, which answers different questions that must

be addressed while discussing RHMS in Chapter 4.2. Finally, some of the biggest

challenges that arise while developing these IoT-based healthcare systems are listed

in Chapter 4.3.

4.1 Research Method

As shown in Figure 2, the search strategy starts with collecting papers from widely

accepted literature search engines including IEEE, Springer and ACM as well as

the Google Scholar database. Software Publish or Perish With a focus between

21



Literature Search
Publisher: IEEE, Springer, 

ACM, Elsevier, Researchgate, 
Google Scholar

Included 
(n=80)

Articles screened based on 
thorough reading

Search results (n=177)

Articles screened based on 
title, abstract and keyword

Included 
(n=100)

Excluded 
(n=77)

Excluded 
(n=20)

Figure 2: Survey Search Method

2011-2020, and using search words containing "Wearable health monitoring IoT

Cloud". All 177 results were downloaded to a Microsoft Excel sheet. From here,

the papers were skimmed through the abstract to narrow the research by catego-

rizing them into five group: "Architecture (52) ","ML (11)", " Privacy Security

(17)"," "Generic (20)", "Not Relevant (77)". Research papers categorized as "Not

Relevant" were discarded as some were not accessible, while others had a small

number of citations. The final usable research material contained 100 papers, all

with at least ten citations. A further iteration of these winners included combining

the abstracts and conclusions to get a handle on the subject matter. Choosing

80 papers as the scope of our review, we left the other 20 categorized as Generic,

as those papers focus solely on theoretical knowledge which has little relevance to

our thesis’s objective.

4.2 Taxonomy Classifying Existing RHMS

A literature review’s quality highly depends on the selected taxonomy scheme as

this influences the depth of knowledge recorded about each studied approach. This
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article has employed an iterative coding process to identify the taxonomy cate-

gories which answer the first research question (RQ1) of this thesis. The resulting

taxonomy hierarchy is depicted in Figure 3. The first level of our taxonomy hier-

archy structures the existing work according to four fundamental questions which

are: (1) What is the type of architecture being used in the current RHMS? (2)

Under what circumstances, particular type of data processing is preferred? (3)

What kinds of cognitive algorithms are applied to the current RHMS? (4) What

are the different privacy and security mechanisms applied to protect the data?

We will discuss each of these questions in detail and define the implied taxonomy

scheme as such. For each, we derived the sub-categories of the taxonomy related

to the assigned question.

Remote Healthcare 
Management Systems

Privacy & SecurityAlgorithmsArchitecture

MODWTTree Based 
Algorithms

Sensor-
Edge-
Cloud

Multi 
Layered

Sensor-
Fog-

Cloud

Sensor
-Cloud
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Cloud
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Cloud

Access 
Controlled 

Architecture
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Processing
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ANN, CNN, 
RNN

Deep 
Learning

Authentication & 
Authorization

Encryption Schemes

Access Control Methods

Embedded Security Rules

Device Based Certificates

Virtualization

Stacked Auto 
Encoders

Deepnets

Fuzzy Neural 
Nets

Clustering 
Algorithms

Bagging-
Boosting

Algorithms

Anonymity & 
Concealment

Processing

Real-time 
Alerts

Batch Streaming

Monitoring

Figure 3: Classification of RHMS

4.2.1 Architecture

The first category relates to the architecture which is the building block of any IoT

system. This classification aims to divide the papers based on the number of tiers

involved in the system’s architecture, the tiers represent the layers such as sensor,

edge, fog or cloud. These are simplified into three groups: two-tier, three-tier, and
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more than three-tier. Most of the available research focuses on three layers, where

the first aims to gather data in sensors, the second aims to get that data from

sensors to gateways, and the third layer analyzes, processes and stores.

1. Two-Tier architecture

Table 7 represent the classification of papers based on the number of tiers

involved. 2 tier architectures can be further divided into Sensor-Cloud and

Fog-Cloud. In Sensor-Cloud architectures, sensors do data collection, ana-

lytic, and processing; storage is done by cloud. Wan et el. [51] presented

wearable IoT-cloud based health monitoring system which embeds several

sensors including the heartbeat and blood pressure sensors to capture data to

be transmitted to cloud directly for analytical purpose. Sara at el. [52] pro-

pose an IoT-based service-oriented framework integrated with wireless body

area network (WBAN) that outperforms baseline WBANs based on sensor

life, existing cost and energy consumption. In Fog-Cloud architectures, fog

device has been used for data collection and processing data temporarily for

emergency alerts; the cloud is used for storing and monitoring data. Barik

et al. [53] developed and evaluated a Fog-based spatial data infrastructure

(SDI) framework and showed the efficacy of proposed system for enhanced

analysis of geo-health big data generated from a variety of sensing frame-

works. Dubey et al. [54] implemented fog computing on various types of

physiological data and shows that the proposed Fog architecture could be

used for signal enhancement, processing and analysis of various types of

bio-signals.

2. Three-Tier architecture

These architectures include three layers and are the most widely imple-

mented architecture as per the statistics shown in Table 7. Several possible

arrangements of different layers are Sensor-Edge-Cloud, Sensor-Fog-Cloud or

Edge-Fog-Cloud. In Sensor-Edge-Cloud architectures, Wu et al. [55] present

a hybrid wearable sensor network system with edge computing to improve the

safety of working environments and reduce health risks in the construction

industry. Greco et al. propose an edge-stream based computing infrastruc-
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ture for real-time analysis of wearable sensor data [56]. Uddin et al. in [38]

suggest a wearable sensor-based activity prediction system to facilitate edge

computing in an intelligent healthcare system. Here we see several studies

that rely on this three-tier architecture where the sensor layer is being used

to gather data, the edge layer is used for data transmission or analytics,

and the cloud is utilized for storage and computations. In Sensor-Fog-Cloud

architectures, Devarajan et al. [6] proposed an energy-efficient fog-assisted

healthcare system to maintain the blood glucose level and combat compu-

tational complexity, high latency, and mobility problems. Mahmud et al.

in [41] analyze Cloud-Fog Interoperability in IoT-enabled Healthcare So-

lutions and evaluate it with simulations using the iFogSim simulator, and

the results analyzed with distributed computing, reduction of latency, op-

timization of data communication, and power consumption. Yaseen et al.

in [57] introduce a model based on Fog Computing infrastructure to keep

track of IoT devices and detect collusion as mobility of IoT devices increases

the difficulty of detecting such types of attacks. Similarly, the same kind

of architecture has been adopted in [58] [59] [40] [60] [61] [62]. Akrivopou-

los et al. outline Fog-Edge-Cloud [63] where the first layer is responsible

for gathering data, the second layer for transmitting data from sensors to

gateways, and the third layer analyzes and stores the data, and the sec-

ond and third layer do interchange their operations based on the suggested

approaches. Deploying such an end-to-end healthcare application includes

IoT layers and cloud computing back-end services, which leverage the Fog

computing approach’s benefits, alleviating a series of security issues, scala-

bility, and scalability bandwidth consumption reduction, latency decrease,

and seamless operation.

3. More than Three-Tier architecture

This is the architecture group with more than three layers. One such multi

layered architecture [64] selects the communication medium based on data

vitality and summarizes the patient data smartly using medically accepted

severity levels resulting in reduction of data size. Bhatt et al. developed
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access-based controlled architecture [65] based on interactions between dif-

ferent layers and illustrated it on remote health and fitness monitoring use

cases. In contrast, Javdani et al. propose service-oriented architecture [66]

which supports modular design, interoperation and software reuse. However,

there have been open research problems that these multi layer architectures

need to address by adopting measures like User-Based Device Authentica-

tion, User-Centric Data Security and Privacy, Edge Computing in wireless

IoT, and Multi-Cloud Architecture [65] [67] [66].

Table 7: Quantitative Summary of Architecture Category

Architectures Number Of Papers
Two-Tier 7

Three-Tier 33

>Three-Tier 5

4.2.2 Processing

This category was chosen to classify the existing RHMS based on the required

type of processing related to the patient’s health outcomes or needs.

1. Streamline Processing

Firstly, streamline processing is required in the scenarios where the situa-

tion is life critical (for instance, getting a heart attack ), and an emergency

alert is required to be generated (calling for immediate help). For instance,

Yacchirema, Diana, et al. [4] employ a wearable device that measures the

acceleration of older people’s body movements and analyzes the received

data to rapidly detect falls. From there health care professionals would act

accordingly, being alerted with messages in real-time. Verma et al. predicts

a student’s potential disease with its severity level by temporally mining the

health measurements (frequent changes occuring numerously during a time

interval ) collected from IoT devices [68]. Wu et al. uses wearable sensors

to measure the environmental conditions around the subject, and monitors

vital signs and physiological data and triggers an alert if any emergency cir-

cumstance is detected [55]. Swaroop et al. present the design of a real-time
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health monitoring system that facilitates multiple modes of connectivity be-

tween patients and clinicians [69]. Bhatia et al. also proposed architecture

which is designed to monitor different activities (physical and ambient envi-

ronment) inside an office that are relevant to the health of a person directly

or indirectly for health severity assessment [62].

2. Batch Processing

Secondly, there is batch time processing where a patient doesn’t require con-

stant monitoring, as health conditions are not considered critical. For in-

stance, Uddin et al. used a database that consolidates vital signs and body

motion recordings for ten volunteers from diverse profiles while also per-

forming 12 physical activities to predict the underlying activity [38]. Hassan

et al. [70] used the cloud-based framework that facilitates storing and pro-

cessing the big data generated by ambient assisted living systems used to

monitor patients suffering from chronic diseases in their homes, particularly

the elderly. Batch or streamline processing can thus be used based on the

severity of the underlying problem. As reflected in the statistics from Table

8, most papers focus on processing real-time data rather than batch data

due to the need for the architecture to be responsive enough when dealing

with healthcare data.

Table 8: Quantitative Summary of Processing Category

Processing Number Of Papers
Streamline 38

Batch 11

4.2.3 Machine Learning

This category aims to classify the existing papers based on ML algorithms’ appli-

cations of different tasks to improve RHMS. We first group them into three sub-

categories. First, "Classification & Regression Tasks" aims to diagnose diseases

such as Seizure Detection, Chronic Diseases and Diabetes based on the present

conditions, using linear, tree based, clustering, and bagging boosting algorithms.
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Second, "Signal Processing Tasks" are used to analyze Electrocardiogram sig-

nals and detect a change in R waves’ peaks, and monitoring patient health using

morlet wavelets (MODWT), discrete wavelets (DWT) and haar wavelets (HWT).

Finally, "Reinforcement Learning Tasks" aim to develop self-learning systems in

the presence of an interactive environment using deep learning algorithms like

artificial neural network (ANN), convolutional neural network (CNN), stacked en-

coders and deepnets. Think of this as methods based on learning representations

from a wide variety of data types (numerical, categorical, text, images). Table 9

represents the quantitative summary of papers that focus on implementing these

varieties of ML algorithms. Most of these papers use classification algorithms in

different areas like efficient fog device placement for task offloading [71], or clas-

sifying imbalanced ECG beats while others used ML in fall detection systems for

ambient assisted living [4], an intelligent system for indoor environments. Ku-

mar et al. used fuzzy rule-based neural classifiers [72] whereas Verma et al. used

classification algorithms for the prediction of potential disease severity [68]. Like-

wise, Castro et al. employed these algorithms for Human activity recognition [73]

whereas Rajesh et al. used resampling techniques and ensemble classifiers for im-

balanced ECG beats [74]. Signal processing algorithms such as maximum overlap

discrete wavelet transform (MODWT) have been used [75] to identify R peaks in

ECG signals. Numerous deep learning algorithms have been implemented includ-

ing Deepnets to differentiate active daily living tasks effectively, and detect falls

for elderly people [4], neural classifiers in [72], the artificial neural network in [68]

with cloud centric IoT based disease diagnosis. Finally, CNN with the stacked

encoder in [3] with a cognitive cloud-based intelligent healthcare framework for

seizure detection and K means for discovering patterns in physiological data [76]

are used.

Table 9: Quantitative Summary of Algorithms Category

Algorithms Number Of Papers
Classification & Regression 6

Signal Processing 1

Deep Learning 5

28



4.2.4 Privacy & Security

This category classifies the existing papers based on security and privacy measures

being taken to ensure data protection. Table 10 depicts that most papers focus

on the security of RHMS and there is an obvious need to address the privacy

aspect of these technologies. From security aspect, Elmisery et al. in [77] used

a two-stage concealment process to preserve the privacy of users’ health profiles

using three mechanisms: trust-based concealment, a distributed paillier thresh-

old cryptosystem, and attribute-based encryption. The first stage includes a local

concealing process at the end-user’s gateways, used to disguise the recorded health

data before submission to external parties. The second stage is a global conceal-

ing process used to encrypt patient profiles before submitting them to the cloud

healthcare recommendation services, all taking place on the fog layer side. Jia et

al. in [78] also focused on authentication and key agreement using a verifier-based

password-authenticated key exchange protocol; meaning server only preserves a

verifier instead of an image of the password. Liu et al. [79] propose an EHR access

control scheme that allows access policies encoded in linear secret sharing schemes

by moving encryption computation offline. Sharma et al. [80] however, discusses

the impact of privacy and the potential tradeoff among privacy, efficiency, and

model quality. Their study suggests using privacy primitives such as homomor-

phic encryption schemes, data perturbation, differential privacy, and parallelizable

methods including ensemble learning, to generate reliable privacy models. Hence,

more studies are required that use privacy-preserving techniques such as private

communications, privacy in databases and privacy-preserving computations based

on the minimal research currently present [15].

Table 10: Quantitative Summary of Privacy & Security Category

Protection Number Of Papers
Privacy 4

Security 14
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4.2.5 Overall Analysis

Table 11 shows that most of the published papers were authored over the last

five years, whereas there were few papers which fall in the first five years of our

given range, likely due to the early evolution of 4G. The number of studies on

telehealth continues to increase, however, they have limitations including privacy

and security that remain unaddressed [81].

Table 11: Year-wise Quantitative Summary of Papers

Year Range Number Of Papers
2011-2015 8

2016-2020 92

Table 12 shows that most of the gathered papers for systematic review aim to

focus on the RHMS architecture. Many possible architectures are identified either

by the number of layers involved (two-tier, three-tier, and more than three), or

by the basis of architecture (contextual, distributed and hybrid). In contrast, few

papers worked upon introducing cognitive abilities to the system and incorporating

privacy security and based on this gap in knowledge, this thesis focuses on RHMS

equipped with ML intelligence and Data privacy.

Table 12: Quantitative Summary of All Papers

Category Number Of Papers
Architectures 52

Machine Learning 12

Privacy & Security 17

Generic 19

4.3 Challenges

When pertaining to IoT data, a majority of the time is spent cleaning and pro-

cessing data to a stage where it can be useful for data analytics. There is a need

to validate proposed systems with real data to see the practical implications of

rapid generation of IoT data. To deal with how fast-paced data has become, IoT

architectures, ML computation, and Data privacy all need to be acted upon sys-
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tematically with state-of-the-art technologies. We will briefly define some of the

challenges as below:

4.3.1 Using big data & semantic technologies for interoperability

As IoT is an interconnection of a range of devices over the Internet, each solution

provides its own IoT infrastructure, devices, APIs, and data formats leading to

interoperability issues. With the complexity of all this, dealing with a massive

amount of big data generated from healthcare wearable devices, open-source big

data technologies like Apache Flink, Kafka, and Cassandra and semantic technolo-

gies recommendations by W3C can be used to represent semantic data streams

and convert data [56]. Heterogeneous smart devices such as laptops and smart-

phones can be used for gathering multimedia data [3] to deal with the same issue

of integrating data from multiple sources. However, there are only a few papers

that implement the RHMS using the technologies mentioned above, to deal with

the issue of scalability and interoperability. Hence, future research should focus

on exploring the architecture of RHMS with the perspective of using big data

technologies to handle streaming IoT data.

4.3.2 Systematic implementation of proposed system

Based on the literature review, some papers have experimented their proposed

systems on synthetic databases and have improved results to a level of very high

accuracy. However, many papers leave the scope of validating their proposed sys-

tem by executing them in real life scenarios [82] [81] [83] [70]. Some studies also

focus on experimenting their system with an individual instead of a representa-

tive population [55] [56] [38] [6] [4] and as such there is a need for systematic

implementation of proposed systems in real case scenarios similar to this.

4.3.3 Exploration of intelligence based systems

As per Table 12, there are fewer papers aimed at improving or bringing advanced

technologies like ML abilities of the RHMS. Self-learning by the different architec-

ture components is required to take proactive steps to provide necessary healthcare
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services on time or in real time. Existing few cognitive equipped systems are work-

ing well in diagnosing diseases with a precise accuracy and sensitivity of 99.2%,

and 93.5% respectively [3] Here, signals are classified as seizure or non-seizure with

a probability score along with many other comparisons between different classi-

fication algorithms. All of these have developed the best algorithms that have

mapped different types of diseases to date [68]. Hence, there is an utter need

to research more about these topics, and with it develop a cognitive healthcare

system.

4.3.4 Systematic guidelines for selecting the architecture

When integrating IoT & cloud with healthcare, systematic guidelines for selection

of processing at local or cloud levels are still lacking. This depends upon the emer-

gency of the information shared with the patient and on the network infrastructure

settings. In the case of sending emergency alerts, local processing can be used to

remove latency and delays and provide updates in real-time by storing essential

data near devices. If the system requires monitoring patients data over the time

and there are no critical conditions involved, then cloud can be used. Similarly,

real-time and batch time processing can be done considering the importance of

the information analyzed based on the underlying criteria.

4.3.5 Usefulness of container based virtualization technologies

Since an enormous amount of data is generated every second, more processing

is required to handle it, bringing with it the need for more computation and

resources. Hence, docker and virtualization technologies can be used, removing

the burden of waiting for resources to execute tasks and facilitate seamless access.

Some papers did mention the need to introduce Virtual Machines (VM) resources

to deal with the healthcare data [70] [84]. The proposed architecture is scalable,

cost-effective, and supports interoperability and lightweight access. However, there

is no significant evidence as they have not been implemented in real-time, thus

indicating the need to bring in more evidence.

In summary, this chapter categorizes the existing RHMS into the type of ar-
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chitectures employed, types of ML computations that are being used, and privacy

measures used with IoT applications. Most studies employed three-tier architec-

ture because of the increase in the amount of data being generated and the need

to divide the data storage, processing, and analytics over the layers. As healthcare

studies involve real time requirements, most studies deal with streaming data. IoT

is also used with ML in healthcare in different problems like classifying patients if

they have cancer or not, regression tasks, signal processing to analyze EEG brain

waves, and deep learning tasks. Likewise, privacy measures involving three-step-

concealment, threshold cryptosystem, and attribute-based encryption, and more

are applied based on a trade-off between privacy and data quality. Overall, most

papers are published in the last five years, probably because of the advancements

in 4G technologies. This chapter also identifies the most prominent challenges

while developing IoT solutions such as interoperability, systematic implementa-

tion of the proposed system, exploration of intelligence-based systems and the

usefulness of contained-based virtualization technologies. Additionally, this chap-

ter highlights the need to integrate privacy and cognitive abilities with RHMS as

only few studies focused on these aspects, considering most of the focus in category

"Privacy & Security" was based out on Security measures.
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Chapter 5

Privacy Aware Edge-Cloud IoT

Architecture

This chapter proposes a privacy-preserving edge-cloud architecture based on Dif-

ferential Privacy. We first explain the high level components and data flow using

swim lanes in Chapter 5.1. This is followed up by explaining the data anonymiza-

tion process in detail in Chapter 5.2, where we provide suitable examples to give

a clear description of how anonymization is applied during the training phase.

Then we explain the data transformation process in Chapter 5.3, which must be

performed on testing data (unseen data ) to bring it into the same feature space

as that of training data.

5.1 High Level Components and Data Flow

Data storage and processing capabilities provided by cloud service providers (CSPs)

might worry users about privacy leakage or data integrity on the cloud [79]. The

time taken to provide the inference from the cloud takes more time than doing

it over the edge. Since the edge layer is closer to the data’s owner and the local

devices, it provides low delay and better real-time operation [14]. Our proposed

privacy-preserving framework assumes the data curator on the edge to be trustwor-

thy, whereas the data recipient present at the cloud may or may not. Considering

the low risk of privacy leakage at the edge over cloud computing [8], we will adopt
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a data anonymization process at the edge before sending to the cloud, as shown

in Figure 4. The fundamental principle is that the personal data is anonymized

locally at the edge layer using DP before sending it to the cloud layer. This means

we are using the cloud layer to do machine learning computations only, and the

analytical data is DP anonymized. DP is immune to post-processing, meaning

that once applied, an adversary cannot increase the privacy loss [85] or cannot

learn anything new about it in the future.

As shown in the swim lane process map in Figure 4, the testing pipeline imitates

the production as we validated this framework using testing data in the develop-

ment phase. After gathering training data, data engineering is performed which

includes missing information imputation, feature engineering, encoding of categor-

ical or non-numeric features, splitting databases into training and testing sets. It

is followed by the data anonymization process, which includes applying general-

ization and suppression techniques, privacy models, and utility models. After the

anonymization is done, two outputs are provided: differentially private data and

the optimal transformation that is chosen by the algorithm to be applied on test-

ing data. The DP data is then transmitted to the core layer to train the classifier.

The edge layer gets back the trained classifier once it is ready on the cloud. The

testing phase which occurs at the edge layer takes the testing data, applies the

required transformation, and sends the data to the trained classifier for predictions

that would be evaluated based on achieved accuracy. If we achieve the required

accuracy, we send the classifier to be deployed in production, otherwise we retrain

the model. Following the same testing phase process during the production phase,

actual data is first transformed using the optimal transformation chosen in the

development phase and then fed to the deployed model to make predictions. As

seen in Figure 4, only model training happens on the cloud and the rest of the

process takes place on the edge (let say hospital computer systems), ensuring data

privacy in this IoT architecture.
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Figure 4: Swim Lane Process Map Representing Proposed Framework

5.2 Data Anonymization

We apply three different privacy-preserving techniques to the data: Statistical

Disclosure Control, Non-Perturbative Masking, and Privacy Models. Statistical

Disclosure Control [86] is a privacy technique that deals with the inherent trade-off

between protecting the respondents’ privacy and ensuring that the disseminated

information is still useful to researchers. To implement this, we first classify the

data into identifying attributes, sensitive attributes, insensitive attributes, and

quasi-identifying attributes. Secondly, several non perturbative methods such as

sampling, generalization, top/bottom encoding, and suppression are applied to

anonymize the chosen attributes as part of the previous step. It either removes

some values or makes them less specific. The output information is still accurate,

although less detailed, and as an example, it replaces a value by a range contain-
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ing the original value [15]. We apply generalization hierarchies that modify the

original values of linkable attributes to more generic values semantically, as shown

in Figure 5. However, we will maintain a depth of no more than five while creating

hierarchies to avoid making the data over-generic. However, this can be increased

depending upon the size of data and variance in values.

In Figure 5, we have created intervals at a difference of 5, 10, 20, all at respective

levels, which may vary based on how generic values are needed. For example, level

1 would generalize values lying between 1 and 4 to [1,5), so the reader would see it

as [1,5) and not the actual value, which might be 1, 2, 3, or 4. As shown in Figure

5, Level 0 contains original values followed by more general values as we level up

and end with ’*’, which denotes suppression (hiding values). Thirdly, we choose

privacy models that specify conditions that the data set must satisfy to keep dis-

closure risk under control. We will use (ε,δ)-DP and L-diversity models for this

analysis, ensuring the data is not linkable to other databases even if accessed by

a third-party and protects the sensitive attributes respectively. Lastly, we define

utility models to determine the quality of data. We choose Loss measure, which

summarizes the degree to which transformed attribute values cover an attribute’s

original domain. Based on the data quality of the best transformation chosen by

the specified utility model, the anonymization tool chooses a particular level of

data transformation. For any record that is not satisfying the specified criteria,

we apply a suppression technique to remove it. Anonymized data thus obtained,

and can be used to transmit over the cloud for further computations. Detailed

anonymization steps can be seen in Figure 6.

5.3 Data Transformation

As the training data is semantically modified after applying data anonymization

techniques, as shown in Table 13, we transform test data into the same feature

space before using them for predictions. By transforming testing data, we mean

applying the same generalizations that were being applied on training data ex-

cluding and re-applying all the privacy models again as the testing occurs at edge

nodes only. The anonymization process chooses the best transformation (inter-
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*

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

Figure 5: Generalization & Suppression Hierarchies for Age Column

val gap), which is applied to the testing data to bring it into the same feature

space. For instance, looking at Figure 5, let’s estimate that if the Level 2 hierar-

chy is chosen as a transformation after applying the data anonymization process

on training data, we will apply the same interval of difference 10 to testing data

as shown in Table 13. We can also see from the example in Table 1, attributes

"Workclass", "Sex", "Age" are quasi-identifiers. The k-anonymization process’s

output includes generalization, such as grouping the data based on intervals, sup-

pression (*), which happens if the underlying data is not distinguishable from at

least k-1 records formed by quasi-identifiers. Four groups are made based on the

three quasi identifiers and hence are not distinguishable. Since the SafePub al-

gorithm [30] uses (ε, δ)-DP that makes use of the k operator along with ε and δ,

Figure 5 and Table 13, which shows the "Age" attribute, represents the difference

in the data anonymization and data transformation process. Hence, in transfor-

mation, there is no suppression of records based on any privacy or utility model.

Since we are doing prediction at the edge, assuming it to be a trusted party, there

is no need to anonymize testing data again, effectively saving on cost and time of

the execution process. Thus, inferring on edge decreases the response times for

predictions as compared to the cloud.

In summary, this chapter explains the proposed privacy-preserving architecture

by first detailing the need for three-tier architecture for IoT systems and then the

challenges of sharing raw data over the cloud. To counter these issues, we explain
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Figure 6: Detailed Data Anonymization Process

Table 13: Example of Data Transformation

Age Before Generaliza-
tion

Age After Generaliza-
tion

45 [40,50]

66 [60-70]

37 [30-40]

80 [70-80]

23 [20-30]

49 [40-50]

how we will use DP to anonymize the data without compromising user data(RQ3).

We explain the data anonymization process and detailed steps of generalizing the

data to less specific value so that the semantics of data is still preserved. In a ML

context, we anonymize the training data and observe the anonymization impact

on ML performance. Then while using testing data for predictions, we do not

want to increase the cost overhead of doing data anonymization again. Also, since

we are making predictions at the edge, we only applied data transformation on

the testing data to bring it into the same feature space as that of training data.
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Chapter 6

Experimental Validation

This chapter presents the five main experiments and other related experimen-

tal setups as represented in Table 14. We first explain the five databases from

the UCI ML repository [87] in Chapter 6.1, which are being used to validate the

performance of ML classifiers on private data as compared to the original data.

We have used the Python programming language and ARX data anonymization

tool [33]. For each task, we label the database containing categorical data using

Label Encoder. We explain the default configuration and the hierarchies that we

apply to generalize the data in Chapter 6.2. It is followed up by Chapter 6.3,

where we briefly explain all the classification algorithms, including the hyperpa-

rameters range used to tune the classifiers. We used a balanced database as, in

the healthcare domain, accurately detecting minority class observations is equally

important [88]. Farrand et al. in [89] note that when we move to high levels of data

imbalance, both the fairness metrics worsen across all levels of privacy. Since the

data is balanced, we use accuracy metric to evaluate classifiers. Thus, we applied

the SMOTE algorithm to get a fair accuracy and account for this. To measure the

performance of the classifier, data quality, execution time of the anonymization

process and classifier training on cloud, we used evaluation metrics as described

in Chapter 6.4. In Chapter 6.5 we evaluate the performance of the ML classifier

on differentially private data using proposed privacy-preserving edge-core archi-

tecture, with the core being the AWS cloud. Finally, we discuss the findings of

results from our experimentation in Chapter 6.6.
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6.1 Database

The databases from the UCI ML repository [87] are widely used by researchers for

statistical analysis. These databases differ from each other on various aspects such

as classification tasks (binary, multi-class), size of the data (699-48842), number

of attributes (6-14), number of quasi-identifier (1-7), and the type of database

(medical, non-medical). We used non-medical databases to show that the proposed

anonymization process over the IoT architecture is not limited to the healthcare

domain but is applicable to other domains as well who are looking to incorporate

data privacy in their IoT systems.

6.1.1 Adult Database

The Adult database [87] contains 48842 number of records and 14 attributes. It is

a binary classification task that predicts whether the individual’s income exceeds

fifty thousand US dollars.

6.1.2 Mammography Mass Cancer Database

The Mammography mass (Mammo) database [87] contains 961 number of records

and 6 attributes. It is a binary classification task that predicts whether the patient

has breast cancer based on mammographic mass.

6.1.3 Breast Cancer Database

The Breast cancer (Bcw) database [87] contains 699 number of records and 10

attributes. It is a binary classification task that predicts if the patient has breast

cancer or not.

6.1.4 Contraceptive Method Choice Database

The Contraceptive method choice (Cmc) database [87] contains 1473 number of

records and 10 attributes. It is a multi-class classification task that predicts the

current contraceptive method choice.
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6.1.5 Car Evaluation Database

The Car evaluation database [87] contains 1728 number of records and 7 attributes.

It is a multi-class classification task that predicts the acceptability of a car based

on different conditions.

Table 14: Summary of Datasets Properties and Privacy Parameters

Database Records Attributes QIs Classification δ ε

Adult 30162 9 8 Binary 10−6 1,2,3, ∞

Bcw 579 10 1 Binary 10−6 1,2,3, ∞

Cmc 1473 10 2 Multi-Class 10−6 1,2,3, ∞

Car 1728 7 1 Multi-Class 10−6 1,2,3, ∞

Mammo 830 5 1 Binary 10−6 1,2,3, ∞

6.2 Data Anonymization

ARX tool is a comprehensive open-source software used for anonymizing sensitive

personal data [32]. Below subsections represent the configuration chosen for the

experimentation and the anonymization hierarchies applied to different columns

to generalize the data.

6.2.1 Configuration

For anonymizing the data, we first specify the type of attributes as Insensitive

(no modification), Identifying (will be removed), Sensitive (no modification but

diversity check based on privacy model) and Quasi-Identifying (modified) on a

case by case basis. With larger databases that include many dimensions, it is okay

to take many attributes as quasi-identifiers because of the significant available

number of records that are revealed after suppression. However, with smaller

databases and fewer attributes, keeping more quasi-identifiers could reduce the

quality of data because of the removal of several records by suppression. For

our experimentation, we are using DP model for quasi-identifiers with privacy

leakage δ = 0.000001, privacy budget as ε = 1,2,3 and ∞ (no privacy), medium
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generalization, and distinct 2-diversity model for sensitive attributes. As explained

in Chapter 2.2.2, if earlier using the K-anonymity model, Angelica’s probability

of having income <90K was 100%, now after implementing the L-diversity model,

the same probability has been reduced to 50%. Hence, this model ensures there

is diversity in the sensitive attributes (generally target features) based on the

quasi-identifiers group. We choose Granularity/Loss to quantify information loss

as explained in Chapter 6.4.

6.2.2 Hierarchies

For the Adult database, we have applied generalization hierarchies as suggested

in [90]. We removed five columns as they were continuous and set all the attributes

as a quasi-identifier before applying anonymization. Columns "sex" and "race"

were applied to 2 level hierarchy with the second level as suppression since they can

not be generalized more. Attribute "age" is the linkable attribute, and as such, we

applied five levels of generalization and suppression, with level-0 being the specific

values and subsequent levels being created at an interval difference of 5, 10, and

20, as shown in Figure 5. Similarly, column "workclass" containing values Private,

Local-gov, Self-emp-not-inc, Federal-gov, State-gov, Self-empinc, Without-pay is

generalized to Government, Non-Government. Also, column "education" is link-

able with another database; we apply generalization and suppression at a depth

of 3. Likewise, the columns "marital-status", "native-country," and "occupation"

are the key attributes in the census database that must be generalized, maintain-

ing its data utility semantically. Hence, all of these columns are generalized at

a depth of 2. The sample original and anonymized database can be seen from

Appendix C.

We kept the target class variable as sensitive for the remaining databases depend-

ing upon the underlying problem. In the Mammography database, we assumed

the attribute "age" to be quasi-identifiers with three levels of generalization and

suppression techniques applied at an interval of 20. However, any number of lev-

els and intervals can be chosen, keeping in mind not to make it too generic. For

example, generalizing age 25 to [20,30] would be better than [20-60] as the latter

43



over generalize the value, and hence the results may become less accurate. With

the Breast Cancer database, column "clump thickness" is assumed to be linkable

and hence is generalized at a depth of 3, keeping the interval difference of 5. With

the Car evaluation database, for this experiment, we have set "number of doors"

as quasi-identifying but based on the use case, we can set more quasi-identifiers.

Lastly, in the Contraceptive method choice database, we assumed columns "wife

age" and "number of children born" to be the attributes are linked. We applied

the generalization followed by suppression at a depth of 3, which can be less or

more depending on the quality of data achieved at the end of the anonymization

process.

6.3 Classification Algorithms

We used seven different classification algorithms to comprehensively evaluate their

performance with the original and differentially private data. As different algo-

rithms work differently based on the underlying principle, we wanted to see how

these perform compared to each other. Below we elaborate on the classifiers that

we have used along with the chosen hyperparameters. We tuned the hyperparam-

eters using Nested cross-validation and Grid search methods. More details on the

chosen parameters can be seen in Table 15.

6.3.1 Gaussian Naive Bayes

It is a variant of Naive Bayes that follows Gaussian normal distribution and is a

supervised ML classification algorithm. It is a generative probability model based

on the Bayes theorem that assumes underlying features to be independent and

takes the joint probability. Since it has no hyperparameters to tune, we used the

default parameters.

6.3.2 Logistic Regression

It is a binary classification algorithm where either the event happens (1) or the

event does not happen (0). It is a deterministic probability model that does not

assume any independent relationship with underlying features. Penalty strength
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C was varied exponentially from 0.1 to 100, regularization penalty l1 and l2 were

used since not all of them work for different optimization solvers such as newton-cg,

lbfgs, liblinear, saga.

6.3.3 K nearest neighbors

It is a simple algorithm that stores all available cases and classifies new cases

based on a similarity measure [91]. It is a non-parametric technique and is a lazy

learning model with local approximation. The number of neighbors varied oddly

from 3 to 15. Different weights such as uniform and distance and varied distances

Manhattan and Euclidean were passed as hyperparameters to compute the nearest

neighbor using algorithmic parameters like auto , ball_tree, kd_tree, and brute

to tune the model.

6.3.4 Support Vector Machine

It is a supervised ML algorithm capable of performing classification and regression

problems. Penalty strength C varied exponentially from 0.1 to 100, and we chose

gamma parameters as auto and scale. We use kernels poly, rbf, and sigmoid

interchangeably depending upon the database and computation time.

Random Forest

It is a classification algorithm consisting of many decision trees. It uses bagging

and features randomness when building each tree. The number of depth, split,

and leaf parameters varied evenly from 2 to 6. We choose several estimators from

a range of 100 to 300. Both criterion Gini and Entropy were passed along with

max_features parameters log2 and sqrt to tune the model.

6.3.5 Decision Trees

It is a type of Supervised ML where data is continuously split according to a

specific parameter. The number of depth, split, and leaf parameters were varied

evenly from 2 to 6. Both criterion Gini and Entropy were passed along with

max_features parameters log2 and sqrt to tune the model.
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6.3.6 XGBoost

It is a widespread and efficient open-source implementation of the gradient boosted

trees algorithm. It uses a more regularized model formalization to control over-

fitting, giving it better performance. We chose the number of estimators from a

range of 100 to 300, learning_rate was varied exponentially from 0.001 to 0.1. The

number of sub-samples varied oddly from 0.5 to 1.0, whereas we choose max_depth

from 2 to 6 as hyperparameters.

Table 15: Chosen Algorithms and Hyperparameters

Algorithm Hyperparameters

Gaussian NB Parameters: default

Logistic Regres-
sion

C: 0.1, 10, 100; Regularization: l1, l2; Optimiza-
tion: newton-cg, lbfgs, liblinear, saga

KNN Neighbors: 3, 7, 9, 15; Weights uniform, dis-
tance; Distance: manhattan, euclidean; Algorithm:
ball_tree, kd_tree, brute, auto

SVM C: 0.1, 10, 100; Gamma: 0.001, auto, scale; Kernels:
poly, rbf, sigmoid;

Random Forest Estimators: 100, 200, 300; Max Depth: 2, 4, 6 ;
Max Split: 2, 4, 6; Max Depth: 2, 4, 6; Max Leaf:
2, 4, 6; Criterion: Gini, Entropy; Max Features:
log2, sqrt

Decision Trees Max Split: 2, 4, 6; Max Depth: 2, 4, 6; Max Leaf:
2, 4, 6; Criterion: Gini, Entropy; Max Features:
log2, sqrt

XgBoost Estimators: 100, 200, 300; Learning Rate: 0.001,
0.01, 0.1; Sub samples: 0.5, 0.7, 1; Max Depth: 2,
4, 6

6.4 Metrics for Evaluation

We used Nested cross-validation to avoid overfitting the training database and

choose the best classifier trained with the hyper parameterization technique. Many

metrics are used to evaluate ML Models like average accuracy, precision, recall,

but in this case, we used average accuracy score because this data is balanced

meaning it contains a fair percentage of target classes. We used the Scikit learn [92]

46



library of python to evaluate the classifiers. When evaluating the proposed privacy-

preserving architecture, we examined the time taken to anonymize the data, train

classifiers locally and train it on cloud. We will briefly define them in the below

subsections.

Algorithm 2 Nested K-Fold Cross Validation with Grid Search
1: Require: K folds, Database D, Parameters P, Models M, Accuracy List A
2: for i = 1 to Ko splits do
3: Split D into traino & valo data for ith split.
4: for j = 1 to Ki splits do
5: Split traino into traini & vali data for the jth split.
6: for each p in P and m in M do
7: Train m on traini with set of hyper parameters p
8: Test m on vali and save the best Mi

9: end for
10: Choose best model from list of Mi for training traino & test using
11: valo.
12: end for
13: end for
14: Choose the best model from the list of Mo and test it on testX ,testy

6.4.1 Accuracy Score

It is another metric that can be derived out of confusion metrics. It checks the

number of correct predictions made by the classifier against the total number

of predictions. However, it should not be used in the database is imbalanced.

Hence, we ensured that all the datasets were balanced before using this metric to

evaluate the performance. In this case, we averaged the accuracies from Nested

Cross Validations outer loop where the classifier has been trained using the best

parameters from the inner Grid Search CV.

accuracy(y_t, y_p) =
1

n

n−1∑
i=0

1(y_pi = y_ti) (6.1)

In the above equation, y_t is the true value, and y_p is the predicted value.

Also, n refers to the number of samples, whereas i is used to iterating over the

samples.
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6.4.2 Data Anonymization Time

Here, we focus on the time taken by execution of the anonymization process at

the edge. We enter required privacy parameters such as ε and δ into the UI. It

is followed by choosing the type of attributes as quasi-identifying, sensitive, and

non-sensitive, assuming that identifying attributes are removed already from the

database. Then two files are input into the system, the first being the file to

anonymize and the second being the hierarchy listing to be applied. Currently,

the UI accepts one quasi-identifier and one sensitive attribute. It is sent to the

ARX through its API, which then applies the passed privacy parameters and the

default (ε, δ)-DP model for quasi-identifiers along with the l-severity model for

sensitive attributes. Once the process is done, it outputs the anonymized file.

6.4.3 Model Training Time

Here, we focus on the time taken by the cloud to train the classifier. The training

classifier on the cloud needs an anonymized file uploaded to the S3 bucket after

receiving an anonymized output from the first scenario. The classifier takes the

input from the S3 bucket, trains the classifier, and tests the unseen data uploaded

as a test file on the S3 bucket. Once the classifier is ready, the classifier is saved

as a tar file in the S3 bucket, which can then be downloaded to this application

to use the inference classifier back at the edge.

6.4.4 Granularity/Loss

This metric is used to determine data quality of the anonymized data. It summa-

rizes the degree to which transformed attribute values cover the original domain

of an attribute. For instance, in the below Table 16, generalizing value Doctors to

the interval {Doctors, Masters} will have an information loss given by the below

formula:

IL = ((Ui - Li) /(U - L))*100 = ((3− 1)/16− 1) ∗ 100 = (2/15) ∗ 100 = 13.33%
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Table 16: Mapping Values for Education Column [1]

1. Doctorate 9.12th

2. Professional school 10.11th

3. Masters 11.10th

4. Bachelors 12. 9th

5. Associate (vocational) 13. 7th-8th

6. Associate (academic) 14.5th-6th

7. Some college 15.1st-4th

8. High School grad 16. Preschool

Privacy 
Parameters

Training 
Data

Testing Data

Anonymization

DP Data

Transformation

Transformation

AWS S3 
Bucket

(File Storage)

AWS 
SageMaker

(Machine Learning)

Trained Model Prediction

AWS API & 
Lambda Calls

CLOUD

Figure 7: Implementation on Edge-Cloud Architecture

6.5 Implementation

In this chapter, we explain the implementation of the suggested framework as

shown in Figure 7. The user will first enter the training data and privacy pa-

rameters as per their budget. This involves entering privacy budget, maximum

offset leakage, quasi-identifying attributes, insensitive attributes, and sensitive at-

tributes. Following this, it will be sent for an anonymization process which will

output two items - differentially private data and the chosen optimal transforma-

tion. Once the anonymized data is ready, it will be sent to the Amazon S3 bucket

through API calls to AWS Lambda function, a serverless computing method. Then

AWS Sagemaker will take this data as an input to train a classifier. Once the clas-

sifier is ready, it is sent back to the edge layer. Now the trained classifier can be
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used for making an inference. During inference, testing data is inputted, which

will be first transformed as per the optimal transformation chosen before sending

it to the deployed model for generating a prediction. The UI for this implementa-

tion method can be referred to in Appendix B.

In the context of our experiments, we deployed this proposed anonymization-based

framework on Amazon Web Services (AWS), an on-demand cloud computing plat-

form. AWS perfectly fits our case studies with the availability of building an end-

to-end ML pipeline, given that it provides a huge stack of services to deal with

enormous data from disparate sources. AWS’s S3 buckets provide unlimited stor-

age service for data objects favorable to the high volume of IoT data. Our case

study’s main idea is to automate the creation of S3 buckets and classifier training

using AWS Sagemaker service. Our architecture was built using an Apple laptop

with a configuration of 128GB memory and 8GB ram and a 1.4 GHz Quad-Core In-

tel Core i5 processor, and acts as the edge where data anonymization is performed

using ARX API. For the cloud, we used AWS encompassed with AWS Sagemaker

and S3 services; the "ml.m5.4xlarge" general purpose EC2 instance type with

no GPUs for training AWS Sagemaker algorithms as recommended by Amazon.

However, bigger instances with optimized compute or accelerated computing can

be used as per the requirement. We apply the XgBoost classifier by downloading

the containerized image from the respective region name and kept the parame-

ters to default such as "train_instance_count as 1", "train_instance_type" as

’ml.m5.4xlarge’, "train_volume_size" as 2, "train_use_spot_instances” as True,

"train_max_run" as 300, "train_max_wait" as 600 where we are using man-

aged spot training to reduce overall costs. By simply changing values such as

instance_count and instance_type, we can change the size and number of in-

stances we want to run on, which scales and distributes the training. The entire

framework is illustrated using the python flask application.

6.6 Results & Discussion

This section will address our research questions and the corresponding analy-

sis based on different classification algorithms’ performance, accuracy comparison
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between original and differentially private data, and comparison of differentially

private accuracy with previous studies. We discuss the results of performance

evaluation of different classification algorithms in response to RQ1 in Subsection

6.6.1 and determine if the most optimal ML classifier for optimal data will also

be optimal for DP data. Subsection 6.6.2 compares ML accuracy achieved by our

study with the previous studies for the same datasets. Finally, Subsection 6.6.3

discusses cloud performance results for two of the use cases in response to our

research question RQ3 that analyzes the feasibility of edge-cloud architecture that

preserves privacy while maintaining ML accuracy.

6.6.1 Classification algorithms performance

Let’s inspect the research question, RQ1, by analyzing different classification algo-

rithm’s performance on multiple datasets against privacy budgets ε= 1,2,3 and∞.

The infinity privacy budget implies no privacy applied to the data. To our best

knowledge, we are the first to bring out this comprehensive comparison among

numerous classification tasks performed on data anonymized using (ε, δ)-DP and

the original data. We analyze this by comparing if particular classification al-

gorithms giving the best accuracy with original data also perform similarly with

differentially private data as shown in Table 17. We achieve the listed test accura-

cies using the best models found using Nested Cross-Validation and Grid Search

methods.

The listed accuracy for the original data is what we could achieve and may not

necessarily be more than the benchmark accuracy. Thus, the comparison of DP

data’s accuracy is relevant to our accuracy and not the benchmark accuracy. With

the Adult and Car evaluation database, we got less accuracy with differentially

private data than original data. For the Mammography database, we could achieve

similar accuracy with differential private data as that of original data and slightly

higher for the Breast Cancer and Contraceptive Method Choice database. The

difference between both accuracies is not more than 5%, but may vary based on

the chosen privacy parameters and hyper-parameters. Hence, in this experiment,

we could effectively train this classifier on differentially private data to reach an
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accuracy relatively closer to that of original data. Further results on both the

training and testing accuracy for all the use cases can be seen in Appendix A.

Database Original
Acc.

Original Alg. DP Acc. DP Alg.

Adult 82.15 XgBoost 77.66 XgBoost

Mammo 81.92 XgBoost 81.92 XgBoost

Bcw 98.53 XgBoost 99.62 KNN

Cmc 56.89 XgBoost 57.42 XgBoost

Car 99.44 Logistic Regres-
sion

98.58 XgBoost

Table 17: Best Testing Accuracy Comparison Respective Algorithms

As seen in Table 17, the Xgboost algorithm gives the best accuracy with orig-

inal and differentially private data with most of the scenarios. It uses the best

parameters found from nested grid search and hyper parameterization. Most of

the datasets performed well with 100-200 ensembling trees, 0.01-0.1 as the learning

rate and maximum depth of 2-6 across varied privacy budgets. However, as shown

in Figure 8, Decision trees out of all give the worst performance with original and

differentially private data in most cases. However, this might not apply to every

type of data as the data distribution may vary based on the chosen parameters.

Though, in 60% of the cases, the same algorithm performs best with both the

datasets, we cannot ignore the remaining 40%. The XgBoost classifier gives the

best accuracy 80% of the time with both the original and differentially private

data.

6.6.2 Comparison with previous studies

This section compares the best accuracy that we could achieve and the previous

studies. As shown in Figure 9, the green bars represent our study results, whereas

the blue bars show the previous study results. For three out of the five databases,

namely Breast Cancer, Car Evaluation, and Mammography Mass databases, our

accuracies are slightly better than the previous studies. Table 18 shows the same

comparison in tabular format for better understanding, where we highlight our

accuracy that was higher than previous studies. We could not achieve the best
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Figure 8: Classification Algorithms Comparison for Different Databases

accuracy in our study for the Adult database, with only 77.66% using the Xgboost

algorithm on DP data which is less than 81% achieved in [93] using Bayesian DP.

The CMC database gave an accuracy of 57.42% which is less than the previous

study [45] that achieved a maximum accuracy of 63.67% through DP synthetic

data generation using deep learning. However, with the Breast cancer database,

our experiment showed slightly better accuracy of 99.62% using KNN and ε= 2

in comparison to 97% achieved in [94] using ε= 1 through feature selection us-

ing correlated DP. The Mammography database achieved an accuracy of 81.92%

when compared to [45] which got maximum accuracy of 79.25% through synthetic

data generation using auto-encoders. Overall, we achieved a good accuracy of

98.58% with the Car Evaluation database using the Xgboost algorithm compared

to 94.04% achieved by previous study [95] using differentially private random for-

est. Collectively, this methodology works reasonably well compared with previous
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studies.

Table 18: Accuracy Comparison Between Previous And Our Study

Database Previous
Study

Our Study

Adult 81 77.66

Mammo 79.25 81.92

Bcw 97 99.62

Cmc 63.67 57.42

Car 94.04 98.58

Figure 9: Accuracy Comparison Between Previous & Our Study

6.6.3 Architecture performance

Here we present the results for the experiments described in Chapter 6.5. The

experiment was conducted ten times each for both the Mammography mass cancer

& Car evaluation database. We reported anonymization time (AnonM , AnonC)

and cloud model training time (CmtM , CmtC) in Table 19 for respective databases

to show architecture performance in terms of execution time. We observed the

execution time values against three different privacy budgets from ε= 1-3 and

noted mean of the observations along with standard deviations. On observing the

mean of anonymization execution times, we find that time taken to anonymize data

increases with an increase in ε, because of the increased number of transformations

built with the different combinations of hierarchies. With ε= 3, the mean of

execution time is relatively high compared to lower privacy budgets, suggesting
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not to prefer a high privacy budget. While training the classifier on the cloud,

execution time to train the classifier keeps increasing with ε , because of the

increasing size of the file as with increasing ε, less noise is introduced, and fewer

records are suppressed. Hence, there is a trade-off between the quality of data and

the privacy achieved. The time taken by cloud accounts for downloading the data

from S3 buckets, downloading the containerized XgBoost classifier’s image and

training a model. If we observe the standard deviation for anonymization time

and classifier training at cloud, the highest was using ε =3 compared to lower

privacy budgets, which means high variance with high privacy budgets. Lower

privacy budgets shows more stability in terms of their average performance across

all the experiment runs.

Epsilon Measure AnonM CmtM AnonC CmtC
ε =1 Mean 2.33 40.6 2.70 40.6

ε =2 Mean 4.77 41.2 4.53 47.3

ε =3 Mean 30.04 50.8 29.45 70.9

ε =1 SD 0.35 5.36 0.87 6.60

ε =2 SD 0.46 8.11 0.36 7.88

ε =3 SD 2.00 14.54 2.34 29.47

Table 19: Execution Performance For Mammo & Car Database (Seconds)

In summary, this chapter first explains the databases that we used to validate

our framework. Then we explain the data anonymization process by listing out

the default configurations to be used and the required hierarchies. It is followed

by different classification algorithms that we used to determine the best classifier

and the metrics used to evaluate classifier performance, cloud performance and

data quality. Subsequently, we explain the implementation of edge-cloud architec-

ture that facilitates privacy-preserving machine learning computation. Finally, we

answer all the stated research questions through the results obtained after experi-

mentation. With nested cross-validation grid search and hyper parameterization,

we could take the ML classifier’s accuracy to slightly better than original data for

few cases and otherwise achieved accuracy with a difference of no more than 5%

between both the data. Though different algorithms work differently with data,
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however, XgBoost algorithm gave better results in many use cases on both original

and differentially private data(RQ1). Also, the proposed data anonymization pro-

cess involving statistical disclosure control, non-perturbative masking and privacy

models did work well with 3 out of the 5 databases as compared to previous studies

(RQ2) which were not that extensive in their scope. Finally, we implemented the

experiments over the proposed edge-cloud architecture and achieved similar ML

accuracies over the cloud and the end-to-end execution of the architecture shows

the feasibility of the proposed privacy-preserving architecture (RQ3).
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Chapter 7

Conclusion

The Internet of Things brought revolution to the technology industry with its

ability to intelligently leverage the devices being used heavily around us. It is

widely adopted in various domains like intelligent healthcare, smart cities and

intelligent buildings and such adoption requires choosing suitable architecture for

data storage, data processing, and data analytics. Every entity involved in the IoT

process is vulnerable to different attacks and privacy threats and before building

any IoT systems, one must understand the need to ensure data privacy and make

it available for researchers to use and produce tools to combat this. Although

several past studies focus on the use of three-tier architecture, there is no concrete

analysis of how privacy is or can be ensured and at which tier of the architecture.

We first present the summary of this thesis in Chapter 7.1 by answering key

research questions. Finally, we list the future work that can be done to extend

our work in Chapter 7.2.

7.1 Summary

In this subsection, we explain the contribution of this thesis and the final results

of the experiments.

For our first contribution, we first presented a systematic literature review on

existing RHMS from different aspects like architectures, ML tasks, and privacy

measures. We found that three-tier architecture is used mainly with sensor-edge
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cloud layers or sensor-fog-cloud layers. Based on the critical level of analytics,

data processing is either done in batches or streamlined into real-time data. For

instance, if the purpose is to monitor patients, then real-time analytics is employed.

However, if the purpose is to analyze the patient history, then batch processing

should suffice. IoT architectures are used in conjunction with ML intelligence

because big data helps derive insights. Though traditional methods conceal the

data from the privacy aspect, the quality of data is reduced, which does not fa-

cilitate using this data for ML or analytics purposes. Thus, semantic models like

DP or hybrid models that take advantage of all the combining models are being

encouraged for us, based on the data quality that is achieved for use for further

processing.

For our second contribution, we validated our proposed framework that uses (ε,

δ)-DP by implementing experiments on multiple case studies to compare the per-

formance of ML classifiers trained on data with no privacy and anonymized data

using varied privacy budgets in DP. After comparing their performance, we found

that the accuracy of classifiers trained on differentially private data can achieve

the accuracy as that of original data and may surpass some scenarios based on

the underlying data. We have compared our results with the previous studies and

observed that our methodology works reasonably well with most of the databases.

Hence, we can effectively use (ε, δ)-DP and other privacy techniques such as statis-

tical disclosure control and non-perturbative masking to make the data unlinkable

to an individual without affecting its data quality. Therefore, differentially pri-

vate data can be transmitted securely over the cloud without compromising an

individual’s privacy. As the accuracy of ML classifiers with differentially private

data is similar to that of original data, this privacy model could be adopted in

integration with the edge-cloud framework.

For our final contribution, we designed the three-tier edge-based data anonymiza-

tion framework using (ε, δ)-DP for RHMS. Since the edge is closer in location to

the data owner, there is less chance of adversary attacks on the private data. As

cloud computing provides superior and advanced processing technological capabil-

ities, we are doing data anonymization at the edge and ML training on the cloud.
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The data is anonymized before sending it to cloud after applying (ε, δ)-DP which

can then be shared over the cloud without worrying about re-identification risks.

We evaluated the performance of the architecture by deploying it on edge-core

architecture, with the core being the AWS cloud and edge being the local machine

(computer). The anonymization process took longer due to the increase in the

value of the privacy budget, and number of transformations to choose an optimal

solution. Similarly, cloud model training increases with increase in the privacy

budget because more records are chosen and hence the size of the file gets larger.

7.2 Future Work

For future work, as the current analysis includes classification tasks, it can be ex-

tended to apply the proposed architecture incorporating (ε, δ)-DP for regression

tasks. With problems like regression tasks, the data would be mostly numerical,

applying hierarchies would involve modifying these values using some distance

calculations or replacing them with the mean or median of the numerical values

being studied. Inan et al. [96] in their studies show how numerical attributes can

be categorized into ranges or respective lower and upper bounds. The proposed

anonymization process can be extended to accommodate the other uncertainties

like how anonymization modifies the data by increasing quasi-identifiers and how

the selection of privacy budgets is automated based on the data. Currently, the

data is taken from the UCI ML repository and is processed batch-wise. The

proposed architecture can thus be validated using real-time data to observe the

performance of edge-cloud architecture in terms of other essential aspects such as

overhead costs, change in execution times of anonymization and classifier training

with increase in the size of databases, data engineering pipeline to combat stream-

ing data. As the model’s performance changes over time as part of the model

drift, it can be automated to retrain the model when the drift crosses a certain

threshold, allowing it to become self-adaptive. Also, deep learning models could

be utilized with differential private data as well to determine further improvement

on the achieved machine learning accuracies.
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Appendices

A Training & Testing Accuracy for Datasets

Below tables can be referred for detailed accuracy comparison of different datasets

against privacy budgets.

Adult Database

Table 20: Comparison of Training Accuracies for Adult Database
Algorithms ε=1 ε=2 ε=3 ε= ∞
Naive Bayes Gaus-
sian

84.52 83.94 98.37 74.89

Logistic Regression 83.15 85.55 98.37 68.79

K Nearest 72.18 83.94 90.94 82.87

Support Vector 86.71 88.6 98.37 77.06

RandomForest 87.72 85.45 98.37 78.89

Decision Tree 77.05 74.14 94.8 75.01

XgBoost 84.86 89.85 98.37 82.64
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Table 21: Comparison of Testing Accuracies for Adult Database
Algorithms ε=1 ε=2 ε=3 ε= ∞
Naive Bayes Gaus-
sian

77 77.29 75.48 75.43

Logistic Regression 77.5 77.03 74.71 77.45

K Nearest 74.45 72.69 75.7 74.29

Support Vector 72.96 70.05 75.46 77.45

Random Forest 77.27 75.92 76.82 79.83

Decision Tree 77 63.45 72.13 79.12

XgBoost 77.66 74.77 75.48 82.15
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Breast Cancer Database

Table 22: Comparison of Training Accuracies for Breast Cancer Database
Algorithms ε=1 ε=2 ε=3 ε= ∞
Naive Bayes Gaus-
sian

95.38 94.87 95.43 96.61

Logistic Regression 95.56 95.14 96.4 96.72

K Nearest 97.68 96.9 97.95 97.29

Support Vector 95.73 96.76 96.75 96.72

Random Forest 96.97 96.48 96.99 97.4

Decision Tree 93.6 94.6 96.15 95.93
XgBoost

95.91 96.35 97 95.82

Table 23: Comparison of Testing Accuracies for Breast Cancer Database
Algorithms ε=1 ε=2 ε=3 ε= ∞
Naive Bayes Gaus-
sian

96.58 96.58 96.58 96.58

Logistic Regression 97.07 98.04 98.53 98.04

K Nearest 98.53 99.62 99.51 98.04

Support Vector 97.56 98.04 97.56 97.56

Random Forest 98.04 98.04 98.04 98.04

Decision Tree 95.6 97.07 97.07 97.07

XgBoost 98.53 98.53 99.02 98.53
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Contraceptive Method Database

Table 24: Comparison of Training Accuracies for Contraceptive Method Database
Algorithms ε=1 ε=2 ε=3 ε= ∞
Naive Bayes Gaus-
sian

46.62 47.3 43.82 50.53

Logistic Regression 50.58 48.04 46.05 54.25

K Nearest 47.55 49.16 45.97 54.4

Support Vector 51.68 50.28 45.89 57.58

Random Forest 50.92 49.16 45.49 56.76

Decision Tree 44.35 45.49 44.62 49.84

XgBoost 51.26 49.41 45.49 58.87

Table 25: Comparison of Testing Accuracies for Contraceptive Method Database
Algorithms ε=1 ε=2 ε=3 ε= ∞
Naive Bayes Gaus-
sian

47.52 49.29 45.58 48.58

Logistic Regression 45.4 45.75 42.22 53.88

K Nearest 51.94 56 45.22 56.36

Support Vector 48.76 55.83 42.75 55.12

Random Forest 48.76 49.64 40.63 51.76

Decision Tree 44.34 43.99 39.39 46.64

XgBoost 48.4 57.42 42.57 56.89
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Mammography Mass Cancer Database

Table 26: Comparison of Training Accuracies for Mammography Database
Algorithms ε=1 ε=2 ε=3 ε= ∞
Naive Bayes Gaus-
sian

79.58 79.31 79.14 79.97

Logistic Regression 80.14 79.6 79.77 80.7

K Nearest 77.36 77.31 79.52 78.88

Support Vector 80.14 80.88 81.54 79.85

Random Forest 80.89 81.02 79.39 79.37

Decision Tree 78.48 76.6 79.27 77.8

XgBoost 79.96 81.03 80.78 79.49

Table 27: Comparison of Testing Accuracies for Mammography Database
Algorithms ε=1 ε=2 ε=3 ε= ∞
Naive Bayes Gaus-
sian

80.32 79.91 77.51 81.12

Logistic Regression 81.12 80.32 80.32 81.92

K Nearest 76.3 80.72 79.91 81.52

Support Vector 77.91 81.92 81.52 81.52

Random Forest 78.71 79.91 79.51 78.31

Decision Tree 77.1 78.71 76.7 79.11

XgBoost 81.92 81.92 80.72 79.91
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Car Evaluation Database

Table 28: Comparison of Training Accuracies for Car Evaluation Database

Algorithms ε=1 ε=2 ε=3 ε= ∞

Naive Bayes Gaus-

sian

69.59 67.11 68.77 69.03

Logistic Regression 83.66 84.3 84.34 86.05

K Nearest 89.91 93.77 93.68 96.86

Support Vector 96.19 98.2 98.49 98.84

Random Forest 87.15 87.35 88.57 87.41

Decision Tree 73.06 72.25 73.79 61.65

XgBoost 95.32 98.29 98.19 98.87

Table 29: Comparison of Testing Accuracies for Car Evaluation Database

Algorithms ε=1 ε=2 ε=3 ε= ∞

Naive Bayes Gaus-

sian

70.57 70.77 71.26 70.84

Logistic Regression 85.73 85.38 84.76 86.21

K Nearest 91.24 97.72 98.07 98.13

Support Vector 96.07 98.2 98.34 99.24

Random Forest 88.69 88.69 89.45 90.48

Decision Tree 64.71 70.02 75.6 69.33

XgBoost 96.2 98 98.58 99.44
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B UI Implementation of Suggested Framework

Figure 10: Dev Initial Phase

Figure 11: Dev Phase

75



Figure 12: Prod Phase

Figure 13: Prod Inference
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C Sample Original and Anonymized Database

Figure 14: Adult Original Database
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Figure 15: Adult Anonymized Database with ε =1
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