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ABSTRACT 

This thesis investigates the deployment control of space tethers for nanosatellites. More 

specifically, the problem space is reduced to the deployment of a tether that is housed and 

autonomously operated on a nanosatellite, connected to a relatively massive satellite. Novel 

control schemes for this objective has been derived and analyzed in detail, along with the 

development of linear and nonlinear observers to reduce the resources required to support 

the deployment process. Furthermore, pulse width pulse frequency modulation technique 

is leveraged to simplify the actuator required for this mechanism. Finally, advanced 

simulations that include a multitude of disturbances in the low Earth space environment is 

introduced to analyze the performance of deployment controllers. The main contributions 

of this work are the development of controllers under state constraints, the application of a 

unique nonlinear observer to the TSS state measurement problem and, the application of 

advanced simulations to validate the performance of TSS deployment controllers under a 

variety of disturbances. Experimental validation, model uncertainties as well as attitude 

dynamics has been omitted from the scope of this thesis and is left for future work. 
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Chapter 1 INTRODUCTION AND JUSTIFICATION  

Summary: In this chapter, the problem is defined and justified. Then, the method of 

approach adopted in achieving the set objectives is outlined. Furthermore, a summary of 

the layout of the thesis is provided. 

 BACKGROUND 

Tethered Space System (TSS) have numerous applications in the space. These include, 

earth observation, generation of electricity, plasma physics, transfer of momentum, orbital 

transfer, radio-wave reflection, formation flying, debris capture, and the most popular, 

propellant-less propulsion such as de-orbiting spacecrafts at their end-of-life (EOL). The 

TSS consists of a long tether that connects two or more spacecrafts and generally, the tether 

comes in two variety’s, either rope or tape. In either case, the tether may also be conductive, 

depending on the application, and extend from ranges of a few meters to tens of kilometers. 

As such, it is not feasible to send the TSS in a deployed state. The tether needs to be stowed 

and a mechanism is needed to deploy the tether into a desired configuration. Therefore, 

successful deployment of the tether is mission critical for TSS. For many of the tether 

applications, and especially for the de-orbiting case, it is essential that the tether is deployed 

and stabilized around the local vertical (nadir/zenith). Furthermore, it is imperative that the 

desired orientation of the satellites is achieved as the tether may not be able to operate in 

other orientations.  

In 1960, NASA demonstrated the first tether mission with Gemini 11. Since then there 
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have been more than twenty TSS missions in suborbital and low earth orbit (LEO) altitudes. 

Table 1-1 outlines the history of tether missions to date [1-12]. For many of these missions, 

the tether was deployed passively and stabilized by the gravity-gradient. However, there 

were two missions, SEDS-II and YES2 that were able to achieve closed-loop tether 

deployment. The flight data retrieved from these missions indicate superior performance 

of closed-loop controllers. Furthermore, it is interesting to note that many of the missions 

relied on a spring to provide an initial impulse, and then a braking mechanism is used to 

reduce the tether velocity. This appears to be the simplest tether deployment mechanism.  

Table 1-1 History of Tethered Satellite Missions 

Mission Date Agency Orbit Length 
Deployment method & 

control law 

Gemini 11 1967 NASA LEO 30m Deployed. Thrusters on 

both spacecraft with one 

controlled by human. 

Gemini 12 1967 NASA LEO 30m Deployed. Control was 

the same as Gemini 11. 

H-9M-69 1980 NASA Sub-orbital 500m Partially deployed 

(38m). Spring ejection. 

S-520-2 1981 NASA/ISA

S 

Sub-orbital 500m Partially deployed 

(65m). Spring ejection. 

Charge-1 1983 NASA/ISA

S 

Sub-orbital 500m Deployed. Spring 

ejection with thruster on 

sub-satellite.  

Charge-2 1984 NASA/ISA

S 

Sub-orbital 500m Deployed. Control was 

the same as Charge-1.  

Oedipus-A 1989 CSA/ 

NASA 

Sub-orbital 958m Deployed. Spring 

ejection with thruster on 

two-satellites.  

Charge-2B 1992 NASA Sub-orbital 500m Deployed. 

TSS-1 1992 NASA/ISA LEO 260m Partially deployed and 

retrieved. Velocity 

Control & active reel 

out. Thruster on sub-
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satellite for initial push 

for deployment.  

SEDS-1 1993 NASA LEO 20km Downward deployed. 

Spring ejection and open 

loop brake control. 

Tether cut due to large 

swing. 

PMG 1993 NASA LEO 500m Upward deployed. 

SED-2 1994 NASA LEO 20km Deployed in local 

vertical by closed-loop 

robust control law. 

Spring ejection. 

Oedipus-C 1995 CSA/ 

NASA 

Sub-orbital 1170m Deployed. Spring 

ejection. Stable by 

spinning with spin axis 

aligned with magnetic 

field. 

TSS-1R 1996 NASA/ISA LEO 19.6km Deployed & severed by 

arcing. 

TiPS 1996 NRO/ NRL LEO 4km Deployed. Spring 

ejection. Survived 12 

years on-orbit.  

YES 1997 T. U. Delft GTO 35km Not deployed to avoid a 

collision with other 

spacecraft 

ATEx 1999 NRL LEO 6km Partially deployed 

(22m). Spring ejection. 

PicoSAT1.0 2000 Aerospace 

Corp. 

LEO 30m Deployed & operated 

for 3 days.  

ProSEDS 2003 NASA LEO 15km Hardware built, mission 

cancelled 

DTUsat-1 2003 TUD LEO 450m Satellite failed in space. 

MAST 2007 NASA LEO 1km Tether failed to deploy. 

YES-2 2007 ESA LEO 30km Deployed. Spring 

ejection & closed-loop 

brake control. 

Cute-1.7 

+APDII 

2008 Tokyo 

Tech 

LEO 10m Tether failed to deploy 

STARS 2009 Kagawa U LEO 10m Deployed 

T-Rex 2010 JAXA Suborbital 300m Deployed. Spring 

ejection & passive 

braking. 

STARS-C 2016  LEO 30m Partial Deployment 

KITE 2017  Suborbital 720m Tether failed to deploy. 
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It is also interesting to note that many of these missions have failed because of the 

deployment mechanism, for instance, the tether jams and the mission cannot achieve any 

tether deployment or only partial deployment. In addition to these missions, there have 

been numerous control strategies that have been explored for tether deployment control. In 

these controller developments, a simplified model of the tether system is used and can be 

classified as a single-input, multiple-output (SIMO) system where the input to the system 

is the tether tension. In fact, existing works have shown that the system could be stabilized 

through the tension alone. However, this simplified model makes many assumptions 

including a massless rigid tether and only considers in-plane (orbital plane) motion. 

Extensions of the model have been studied but controller development becomes intractable. 

However, in the SEDS-II and YES2 missions, the simplified planar model described above 

was used and a simple linear controller achieved impressive results [13] [14].  

 JUSTIFICATION FOR THE PROPOSED RESEARCH 

Clearly there is a need for a much simpler yet reliable deployment mechanism as this has 

been labelled the root cause of failures of many previous tethered missions. These 

numerous failures have restricted tether technology to purely research and development in 

academia world. In order to regain the confidence of the space community in space tethers, 

this technology would benefit from some form of nanosatellite demonstration. However, 

existing research and missions have focused on much larger scale satellites and it is 

important to acknowledge the limitations presented by the nanosatellite platform in 
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controller development. Furthermore, future tethered missions would benefit from a self-

sufficient, independently operated nanosatellite that can be attached to any spacecraft. This 

modular approach allows the tether to act as a payload and mission designers need only be 

concerned with the appropriate mechanical interfaces. Thus, this thesis will propose 

controllers for the deployment of space tethers of such independently operated 

nanosatellites, which can be attached to most large spacecraft. 

There have also been extensive researches conducted on deployment control of space 

tethers. However, many of the control approaches fail to acknowledge key and fundamental 

aspects of the deployment mechanism. For example, many of the existing mechanisms 

employ some type of braking strategy together with the passive deployment mechanisms 

using springs. This places a constraint on the system such that given an initial impulse, the 

tether velocity can only be reduced (i.e., tether cannot be accelerate; monotonic 

deployment). Only a few researchers have examined this property but, they tackled this 

problem from purely a numerical approach [15]. It is advantageous to incorporate this 

property directly into the system model, or controller development in order to guarantee 

applicability and feasibility with the appropriate deployment mechanism. This thesis will 

develop analytic controllers that can be proved to satisfy this constraint and simulation 

results will be used to validate the approach.  

The TSS, in the most basic form, consists of four states, the length, length rate, libration 

angle, and libration angle rate in the tether deployment process. The libration angle 

represents the angle that the tether makes with respect to the local vertical. Many existing 

approaches and controller development assume that this state is readily available for 
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feedback via measurements. However, it is quite difficult and/or expensive to obtain these 

measurements especially on a nanosatellite. This thesis will examine approaches that will 

alleviate the need for libration angle measurements. 

 RESEARCH OBJECTIVES 

The main objective of this thesis is to develop controllers that stabilize the deployment 

dynamics of the tether system to satisfy the following requirements 

• Feasibility of the controllers for nanosatellites 

• Monotonic deployment velocity for brake mechanism 

• Minimize the number of feedback states 

 

First, feasibility of the controllers for nanosatellites will be discussed in the context of 

the following criteria,  

1. Simplicity (Computational Complexity)  

2. Control Effort  

Simplicity of the controller is essential because of the limited computational resources 

available on nanosatellites. Control laws in analytical forms are preferred because they can 

be computed in essentially constant time at each time step. Whereas numerical control 

requires iterative updates at each time step that can place unnecessary burden on the on-

board computer, especially since these controllers have strict timing requirements for real-

time response. Control effort also needs to be minimized because there are practical limits 

to the amount of control force that can be produced. Ultimately, there will be trade-offs 
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between performance and resource consumption but, the objective of this thesis is to 

produce controllers with reasonable control inputs. 

Second, the use of a braking mechanism imposes a constraint on the length rate of the 

tether system as it cannot be “reeled back in”. The following goals have been defined for 

the braking controller:  

1. Monotonic deployment  

2. Positive control input  

The monotonic deployment of the space tether will be incorporated directly into the 

controller development and will be proved analytically and validated through simulations. 

Positive control input is implied for braking mechanisms and although it will not be proved 

directly, it will be validated through simulations. In theory, saturation limits can be applied 

to ensure this property, however, this approach will be limited whenever possible.  

Third, extra goals for the controllers are:  

1. Restrict feedback states to length and length rate  

2. Analyze behavior of system under disturbances  

The length and length rate are relatively simple measurements compared to the other 

states of the tether system. As such, feedback will be restricted to these states while the 

remainder is estimated if needed. Atmospheric drag has been identified as the most 

significant disturbance on the system. The controller will not be designed to compensate 

for this disturbance but, the effects will be analyzed with simulations to characterize the 

performance and validate the objectives. It is important to note that to fully analyze the 

behavior of the system under atmospheric drag, a more advanced model than the one 
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presented in this thesis is required. Nonetheless, preliminary results with this disturbance 

will be discussed. 

1.3.1 Expected Outcomes of Research 

This research aims to produce closed-loop feedback controllers for computationally 

constrained platforms such as nanosatellites, state observers to estimate unknown states 

and, validation of control laws under advanced simulation. Linear and nonlinear analytical 

control laws that are mathematically proved to be stable for the TSS will be developed and, 

the nonlinear controllers will be shown to be applicable to a specific class of TSS 

deployment mechanisms in which the tether cannot be reeled back in. Full state observers 

that address a unique constraint imposed by a simple length measurement system will be 

applied to the TSS and finally, simulations which incorporate advanced dynamics models 

will be utilized to determine the effectiveness of the proposed controllers and dynamic 

models. 

 OUTLINE OF APPROACH METHODOLOGY 

The dynamics of the tether system will be derived from first principles to gain some insight 

into the system as well as understand the assumptions and limitations of the model. Linear 

controllers will then be developed to form a baseline and provide a benchmark for the more 

advanced controllers. The development of linear controllers will also yield greater insight 

into the system and highlight the effects/impacts of the nonlinear terms. 

Nonlinear controllers will be developed using a variety of tools from control theory, and 

stability of these controllers will be analyzed from a Lyapunov view. Some of the 
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developments will rely on the choice of a manifold (i.e., desired trajectory of the system). 

The intuition gained from the dynamics analysis and physical properties of the system will 

aid in the choice of these manifolds and the results will be discussed from this vantage 

point as well.  

The constraint imposed by the braking mechanism, specifically the monotonicity of the 

tether deployment, is incorporated into the controller development through the invariance 

principle. Essentially, we chose a mathematical set to meet the constraint/requirements of 

the system, and then show that the closed-loop system is invariant to (bounded by), this 

desired set. This approach allows the controller development to be abstracted away from 

the constraint. Then, once the controller has been developed, this approach is applied to 

determine the control gains and conditions necessary to satisfy such constraint.   

After development of the continuous control laws, discretization will be performed via 

pulse-width, pulse-frequency (PWPF) modulation. This converts the continuous controller 

into a series of pulses that approximate the continuous signal. The controllers with 

augmented PWPF will be simulated under identical conditions to determine the effects and 

performance. 

Observers for the TSS will then be designed. Both linear and nonlinear observers will 

be derived and compared. Followed by case studies that integrate these observers with 

PWPF modulated linear and nonlinear controllers. 

Finally, more advanced simulations will be conducted in lieu of ground based 

experiments. The fidelity and advanced models of commercial software will be leveraged 

to study the controller performance and tether dynamics under a myriad of disturbances 
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found in the low-earth orbit space environment. 

 LAYOUT OF THESIS DOCUMENT 

This document contains seven chapters. Following the Introductory Chapter 1, Chapter 2 

provides a critical review of relevant work in three main areas: (1) existing dynamic models 

and their limitations, (2) controller development mainly in literature as well as a few in 

practice, (3) existing ground-based testing platforms. Chapter 3 gives a detailed description 

of the dynamics of TSS. Chapter 4 outlines the Controller development. In Chapter 5, 

observers are applied to the TSS. In Chapter 6, a Software-In-The-Loop Simulation is 

presented. Finally, in Chapter 7, the work is concluded by identifying the original 

contributions of the thesis and outlining the directions for future work. 

 PUBLICATIONS GENERATED FROM THESIS STUDY 

Apart from this thesis, significant contribution was made towards a nanosatellite 

demonstration of a tethered satellite mission named DESCENT. Many of the insights and 

limitations of the nanosatellite platform was gained from this project and incorporated into 

this thesis.  

The contributions of this thesis to the academic community can be found in these peer-

review journal publications and conference proceedings. 

 

1. Zhu, Z.H. and Murugathasan, L., “Dynamic Control of Space Tether 

Deployment”, International Journal of Space Science and Engineering, vol. 3, no. 2, pp. 
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2018 
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collaboration” ASTRO CASI, Quebec City, Canada, 2018 

6. Jain, V., Bindra, U., Murugathasan, L., Newland, F.T. and Zhu, Z.H., “Practical 

Implementation of test-as-you-fly for the DESCENT CubeSat Mission”, AIAA SpaceOps, 

Marseille, France, 2018 
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Chapter 2 LITERATURE REVIEW  

Summary: In this chapter, the common dynamics models, as well as existing controller 

development and ground-based test experiments of the TSS found in the literature is 

reviewed. To conclude, the limitations of the existing work is highlighted and the 

motivation for the work of this thesis is presented. 

 

 SPACE TETHER MODELS 

The dynamics of tether deployment is quite complicated due to its nonlinear behavior and 

coupling between states even in the most simplified model of the system. The “Dumbbell” 

model which considers two point masses (the main satellite and sub satellite/payload) and 

a massless tether is the most popular choice in literature because of its feasibility in 

controller design [12]. Assume the TSS is in a circular orbit of Earth. The “Dumbbell”  

model in non-dimensional form is shown below [16]: 
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Figure 2.1 Three-Dimensional Tether Dumbbell Model [17] 
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 (2.1) 

where 
max

l
l

 =  is the dimensionless tether length, 
maxl  is the desired tether length,   and 

  are the in-plane and out-of-plane angles respectively, ( )1 2 1 2em m m m m= +  with 
1m  

being the mass of the main satellite and 2m  the mass of the sub-satellite/payload,   is the 

orbital angular velocity, Q  and Q  are the generalized forces in the in-plane (pitch) and 

out-of-plane (roll) coordinates respectively, and T  is the tension force in the tether. It is 

clear that this model neglects the attitude dynamics of the two spacecraft at the ends of 
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tether and tether flexibility. Also this model is valid only for circular orbits, for eccentric 

orbits, the model is more complicated and includes other orbital parameters such as orbit 

eccentricity, semi-major axis, eccentricity, true anomaly [18]. 

This model can be extended however to include longitudinal flexibility of the tether by 

incorporating the strain into the length and the stiffness 𝐸𝐴 (Young’s Modulus and Area) 

into the Tension [16]. If a fully flexible model is desired, two common approaches are 

found in the literature. First, a continuum model and a modal approximation of tether 

displacements is incorporated where the modal functions are functions of time because of 

the deployment stage [19]. Second, a discrete model is used based on finite element method 

[20], or a series of beads connected by massless rigid rods [17], springs [21] [22], or 

combination of springs and dashpots [23] [24]. 

Furthermore, the basic “Dumbbell” model can also be extended to include flexible 

modes of the tether, attitude dynamics of the two satellites, effects of external forces, such 

as gravitational perturbation, aerodynamic drag, solar radiation pressure, and electro-

dynamic force as well [12]. Including these extensions would result in an extremely 

complicated model that is not feasible for analytical analysis but instead is used to simulate 

the dynamic behavior of the TSS and evaluate the tether deployment performance of the 

controller [25]. 

In addition to the dynamic modelling, the disturbance from space environment also 

affect the dynamic behavior of TSS. Yu and Jin studied the effects of J2 perturbation and 

heating effects from solar radiation, Earth’s infrared radiation and satellite’s infrared 

radiation [26]. Their study showed that J2 perturbation not only depends on the orbital 
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parameters but also on system parameters such as sliding friction force between tether and 

deployment device. Also, the heating effect causes differential motions of the sub satellite 

in the clockwise (backward; away from CM motion) and anti-clockwise (forward; towards 

CM motion) direction during retrieval and affects the tension of the tether.  

There have also been studies that analyze the effects of the tether on attitude dynamics 

through coupling of rotational and translational dynamics [27] [28]. Darabi and Assadian 

were able to leverage this model and develop novel attitude controllers that utilized not 

only reaction wheels onboard the spacecraft but also the tether tension [27]. The inclusion 

of the tether tension allowed the control effort required by the reaction wheels to be reduced 

significantly. 

 SPACE TETHER DEPLOYMENT/RETRIEVAL CONTROL 

STRATEGIES 

There have been numerous control strategies that have been explored for tether deployment 

[5] [12] [25] [29] [30]. Majority if not all of the systems that are studied are SIMO systems. 

The control variable is often the tension in the tether and analysis results show that it is 

more than sufficient to stabilize the system in the in-plane libration via due to the coupling 

between the tension and the in-plane libration. A few cases were studied in which the 

length/length rate or the number of brake actions was used as the control variable [13] [14] 

[25] [31]. There have also been studies which include thrusters on the sub-satellite that 

allow control of the out-of-plane libration [32] [33]. The addition of an extra control 

variable is necessary because the tension or length rate alone cannot control the out-of-
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plane libration due to the high-order, or weak, coupling between the tension and the out-

of-plane libration. Many control strategies only assume length and/or length rate available 

for feedback which is a reasonable assumption; however, there are cases which assume all 

states are available for feedback which is less realistic due to the difficulty in measuring 

the libration angle and angular rate. State observers can be introduced but they would 

complicate the controller and the performance and/or stability of the system may be 

affected. In many cases, constraints are imposed on the system and as a result, an optimal 

control strategy is the most popular solution found in the literature. Other strategies include 

basic state feedback methods, adaptive neural control and a few nonlinear approaches using 

Lyapunov functions. Another major concern is that the simulation results found in majority 

of the literature, did not include external disturbances such as atmospheric drag, J2 and 

others. 

2.2.1 Tension Control Law 

The most basic strategy is a simple tension control law that was derived by the linearized 

“Dumbbell” model and neglect of the out-of-plane dynamics [34]. Stability regions for the 

feedback gains were derived from the linearized model and simulated with the nonlinear 

model. The controller was able to achieve stability with the nonlinear dumbbell model. 

However, it is uncertain how it would respond to external disturbances and uncertainties 

within the model. 

Wen et al. extended the simple tension control law to incorporate a tension constraint 

[35]. The constraint was introduced via a saturation function. The controller was proved 

stable by Lyapunov method and able to achieve very fast deployment. 
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2.2.2 Optimal Control Law 

Williams et al. determined open-loop optimal trajectories by comparing various cost 

functions on the deployment dynamics and developed a closed-loop linear state feedback 

control law by linearizing about the optimal trajectories and numerically solving a receding 

horizon control problem [6]. The open-loop optimal trajectory also included atmospheric 

drag and orbit eccentricity in the computation and had also used the number of brake turns 

as the control input as opposed to the more common tension control. The controllers were 

tested with large disturbances to the hardware model and environmental variables and were 

shown to be effective. However, low ejection velocities coupled with higher than normal 

tension parameters in the deployment hardware were the most problematic for control and 

provided little tolerance for correcting errors. Williams then extended the work in [6] to 

include a flexible tethered model and perform the same optimizations and used a tension 

control law to stabilize the system [17].  

Netzer and Kane generated the open-loop optimal path for deployment with a simple 

model and then verified the solution with the “full” nonlinear model and then used a 

regulator to ensure it follows the trajectory [36]. However, they had only shown the results 

for retrieval and did not mention if the regulator was used for the deployment process as 

well. They also had additional control variables by including thrusters on the sub satellite.  

William and Trivailo made a comparison of various cost functions for the open-loop 

optimal control of a tethered satellite system in the planar case (neglecting out of plane 

dynamics) which they later extended to include control for librations in elliptic orbits [37] 

[38]. Williams then further examined the open-loop optimal control problem and 
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concluded that minimum tension and minimum libration angles are not the most important 

in the determination of open-loop deployment and retrieval trajectories [39]. Instead he 

claims the best control objectives should incorporate the minimization of system 

accelerations. In his analysis he considers inelastic and elastic tethers and proves that the 

deployment and retrieval reference trajectories are symmetrical under certain conditions. 

Steindl and Troger present an open-loop time optimal control strategy using the 

Maximum Principle that minimizes the deviation from the radial position [40]. The control 

law was developed with a simple massless model of the tether but they applied their 

controller to a flexible massive tether system based on finite element discretization and 

showed that the results were in agreement with the simple model.  

Steindl also proposed an optimal deployment controller that is applicable to tethers in 

elliptic orbits [41]. However, the goal of his controller was to steer the tether that was 

initially close to the local vertical to a periodic motion farther away in the shortest time. 

He also extended the model to consider the mass and lateral oscillations of the tether itself 

[42]. 

2.2.3 Lyapunov Based Control law 

Hironori and Shintaro developed a control law by minimizing a mission control function 

[43]. The mission control function was generated using a Lyapunov approach to stabilize 

the final mission state (equilibrium state). They had used the planar dumbbell model in 

their simulation and it is uncertain how the controller will respond to a more realistic model 

or uncertainties in the plant. Kokubun and Fujii then extended the work of Hironori and 

Shintaro by including an elastic tether in the dynamics model (continuum model) and 
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applied the mission function control algorithm [44].  

Vadali developed a tension control law using Lyapunov stability and only considered 

the planar dumbbell model [45]. His work was then later extended with Kim and they 

presented a feedback control law using Lyapunov stability theory with tension and out-of-

plane thrusting as the control variables and used the three dimensional dumbbell models 

[46]. They had used the thrusters for the retrieval process because the convergence of the 

states was unacceptably slow without the thrusters. They present two methods to stabilize 

the system about the equilibrium. In the first method they perform a nonlinear coordinate 

transformation to partially decouple the in-plane and out-of-plane dynamics and they 

second method is based on an integral of motion of the coupled system. They also use the 

integral of motion method to develop a tether rate control law as well. Kim and Vadali also 

studied the system with the tether mass and aerodynamic drag and showed that the drag 

has a considerable effect on the dynamics of the system [33]. 

Luo et al. were able to show that an optimal control law is able to stabilize the system 

with consideration of a flexible tether and satellite attitude dynamics and control [47]. The 

controller was developed using the standard dumbbell model, but the simulations were 

conducted with a flexible bead tether. 

2.2.4 Fractional Order and Sliding Mode Control law 

Sun and Zhu first applied the concept of fractional order control laws to the tether 

deployment and retrieval problem [48] [49]. Mohsenipour then extended the concept using 

the controller of the form, 
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2 1 1 1 2 2 3 3 4 4 3T D x D x k x k x k x k x = − + + + + +  (2.2) 

where D  and 
ik  are control gains and   is a fractional exponent. The fractional exponent 

aids in the robustness of the controller to take into account uncertainties and assumptions 

in the model such as circular orbit [50]. Xu et al. extended the idea of fractional order 

system by developing a fractional order sliding mode control [51]. In their work, they 

defined two sliding surfaces and coupled them together via an adaptive fuzzy law. The 

system response looks promising however, their control input appears to have significant 

oscillatory behavior which may not be practical. Kang et al. improved upon this work by 

removing the oscillations found in the control input and improving the robustness of the 

system under sinusoidal disturbances [52]. 

Zhong et al. also developed a fractional order adaptive sliding mode controller [53]. 

Their control input included in-plane and out-of-plane thrusters but were able to achieve 

extremely fast deployment, with negligible chattering. 

Wang et al. developed a second order sliding mode controller based on the dumbbell 

model and was able to achieve reasonably fast deployment (within an orbit) and showed 

robustness to varying amounts of disturbances [54] . However, there exists a significant 

amount of chattering for some control gains which needs to be addressed. Ma and Sun 

improved upon their work and developed a full-order sliding mode control for deployment 

and retrieval [55]. They were able to address the chattering issue however, the deployment 

times increased significantly. 

Ma and Sun also proposed an adaptive sliding mode controller for tether deployment 

[56]. The controller was able to achieve successful deployment, but the control input has 
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excessive oscillations which may be a result of chattering common to sliding mode 

controllers. Ma et al. improved on their previous work by introducing the boundary layer 

technique to avoid the chattering problem [57]. Chen et al. also developed an adaptive 

sliding mode controller that combines the typical tension control with EDT current control 

[58]. This additional control authority allows the system to become fully actuated. 

Furthermore, the adaptive component as well as fully actuated control allows robust 

performance under parameter variations such as mass uncertainties, initial perturbation and 

external disturbances. 

2.2.5 Other Control laws 

Misra and Modi investigated the deployment and retrieval dynamics and control by linearly 

varying the difference between the undeformed length of the tether and a commanded 

length with the state vector [59]. Their control input was the length rate which they claim 

to be easier to implement as opposed to the traditional tension input. The commanded 

length rate was a piecewise function with exponential and uniform components because it 

was simple and efficient. They neglect the out of plane motion because the derivation of 

their control law is based on the linearization of the system and the out of plane angle 

cannot be controlled by the length rate.  

Glabel et al. proposed the adaptive neural control for the deployment process of a tether 

assisted re-entry mission [60]. They combine two neural networks, a controller network 

and plant model network with the controller network being initialized by multiple linear 

quadratic regulators and the plant model is trained to predict deviations from an optimized 

reference path which is generated from an open-loop optimal control which minimizes the 
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braking force. 

Bainum and Kumar developed control laws based on the linear regulator problem with 

the tension of the tether as the control variable and included the aerodynamic force into the 

three dimensional dumbbell model but they assume all states are available for feedback 

[61]. 

Lorenzini and Bortolami solved a nonlinear, nonautonomous control problem with 

numerically formulated feedback linearization and an ad hoc feedback law which was 

derived using a linearized variational model to ensure robustness [13]. The performance of 

their controller was verified using flight data and proved to be very successful by meeting 

mission requirements with ample margins. Specifically, the maximum libration amplitude 

was less than 4 deg and final tether velocity was less than 0.02m/s (design requirements 

were <10 deg and <1m/s respectively).  

Takeichi et al. studied the control of a tethered system in elliptical orbits [62]. They 

studied an on-off control strategy using a thruster on the sub satellite to stabilize a periodic 

orbit (phase-plane orbit) and so the final state of the system is not the traditional local 

vertical found in the literature but a state that is in the neighborhood around the periodic 

solution. Their numerical simulation neglect elasticity, lateral deflection, damping and out-

of-plane motions which can have a significant impact on the dynamics of the system.  

Barkow et al. used the two dimensional dumbbell models and developed a pendulum 

control and targeting and chaos control [63]. Both controllers are activated after full free 

deployment of the tether and reduce the large amplitude oscillations at the end of free 

deployment. They compared their two control strategies (pendulum and controlling chaos) 
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with four different control strategies: free deployment due to gravity gradient vector, forced 

braked deployment, Kissel’s law using a linear PD Controller, open-loop time optimal 

control and showed that their controllers require less energy. They do not show an 

analytical model of their controller nor do they prove their controller will work. 

Yu et al. also leveraged the electrodynamic force to stabilize the deployment process in 

three dimensions [64]. In their strategy, the deployment process is uniform (open-loop) and 

the in-plane and out-of-plane libration angles are controlled by the current through the 

tether. Their results show that the system can be stabilized, albeit for small initial 

conditions and fairly oscillatory response. However, their deployment times is very long 

as compared to other controllers in the literature. Wen et al. were able to improve upon this 

to include a closed-loop deployment control law with EDT control [65]. Their deployment 

times are much faster, can operate over a larger range of initial conditions and only the out-

plane angle has excessive oscillations which damp out over a longer period of time. 

Zhang and Huang introduced a virtual signal that they claim to strengthen the coupling 

between the length and the in-plane libration angle [66]. Then, with this new virtual signal, 

they developed a controller that with a PD structure to stabilize the system. Although the 

approach is unique, the response of the system is relatively poor as compared to other 

controllers in the literature. The deployment times were on the order of 5~10 orbits and 

they did not plot the control input to the system. 

Kang and Zhu developed a novel control law using an artificial potential energy function 

and dissipative function [67]. Furthermore, constraints on control input and nonnegative 

deployment velocity were introduced via optimal control. 
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Wen et al. proposed a model predictive controller for the deployment and retrieval of 

space tethers [68]. In their controller, they transformed the nonlinear optimal control 

problem into a series of linear control problems which reduced the computational 

complexity significantly. Furthermore, through the use of optimal control, they were able 

to incorporate the positive tension constraint into the problem directly. 

Yu et al. developed an analytic controller under a flexible tether model [69]. They 

assumed the tether to be a massless elastic rod as opposed to the common assumption of 

massless rigid rod. This introduced the strain of the tether into the dynamic equations. The 

controller can stabilize the system even under a fully flexible model however, it appears 

that the out-of-plane angle is also stabilized by the controller. This is a surprising result 

that may have arose from either the flexible model, eccentric orbit, or a combination of the 

two. 

Although in most applications, it is desirable to stabilize the tether along the local 

vertical, there may be a need for the tether to maintain a periodic oscillation about the local 

vertical. Shi et al. developed a sliding mode controller that is able to stabilize periodic 

motion about the local vertical in elliptic orbits [70]. 

Zakrzhevskii proposed an interesting approach to the deployment problem by relating 

the tether length to the angular momentum of the tether [71] [72]. The tether length is 

controlled to purposefully change the angular momentum under the gravitational moment 

until the tether is aligned with the local vertical. The controller was simulated with an 

elastic tether in a circular orbit, but it would be interesting to see the performance under 

disturbances and model uncertainties as the controller lacked feedback terms and there was 
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no proof of stability. 

 NONNEGATIVE LENGTH RATE DURING DEPLOYMENT 

Liu et al. first tackled the problem of the positive velocity constraints for the tether 

deployment process [15]. They designed a reference trajectory with the desirable properties 

and then used a trajectory tracking controller to achieve the objective. Furthermore, they 

also incorporated a pulse-width pulse-frequency (PWPF) modulated signal on the control 

input to simply the actuator. Although some responses have oscillatory motion with the use 

of the PWPF signal, overall, the deployment is fast, and the constraints are satisfied. The 

authors later used a similar approach to constrain the maximum libration angle [73]. 

 GROUND BASED EXPERIMENTS 

There have been a few platforms to test the deployment of space tether technologies. 

Olivieri et al. demonstrated their test campaign in partnership with ESA’s science programs 

(“Fly your Thesis” and “Drop your Thesis”) [74]. The programs allow students to leverage 

some of ESA’s facilities and equipment such as parabolic flights and drop towers to emulate 

the micro-gravity environment of space. However, their experiments lacked the presence 

of the Coriolis force which is a vital component of tether dynamics. 

Bindra and Zhu developed an inclinable air-bearing turntable [75]. In their testbed, they 

attempted to recreate the forces seen in orbit including the Coriolis force. Simulation results 

were compared with experiments and the results were promising.  

Yu et al. demonstrated tether deployment with an analytical control law on an air-
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bearing table [69]. They used thrusters on the satellite simulators to emulate the forces the 

system would experience in space such as Coriolis and microgravity and then used tension 

control to control the tether deployment. 

 MOTIVATION AND PROPOSED METHODOLOGY 

The TSS system has been studied extensively, both from a dynamics and control theory 

perspective. Beginning with the simplest of models (dumbbell), academics have slowly 

relaxed assumptions to introduce more degrees of freedom and added various external 

forces/effects just as J2 perturbation, atmospheric drag, etc. From a controller standpoint, 

the model has been mostly limited to the simple planar dumbbell. This is a result of its 

simplicity as well as its effectiveness. As mentioned in Chapter 1, Section 1, two orbital 

missions relied on this simple model to achieve closed-loop controlled deployment of the 

TSS with impressive results. 

 From Table 1, it is evident that the spring and brake type deployment mechanism 

is the simplest and most popular choice. However, the literature does not address the key 

constraint of this mechanism within the controller development. In this mechanism, the 

system is provided an initial impulse via the spring, and then the brake is used to slow the 

deployment velocity and control the tether deployment profile. As such, the tether 

deployment velocity throughout this deployment process must be non-negative. 

Furthermore, all feasible controllers must maintain non-negative tension in the tether as 

well. This thesis will directly address this constraint in the controller development. 

 Many of the existing control strategies assume full-state feedback. In practice, this 
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may not be feasible especially in the context of nanosatellites. The concept of observers 

and their applications to the TSS needs to be explored. This thesis will provide a couple 

approaches to designing observers for the TSS and analyze their behavior. 

 The proposed methodology described in Section 1.4 is shown in the block diagram 

below. 
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Figure 2.2  Proposed Methodology 
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Chapter 3 DYNAMICS OF SPACE TETHER SYSTEM 

Summary: In this chapter, the space tether system will be simplified to the “dumbbell” 

model. Dynamic equations of the dumbbell will be derived, and extensions of the model 

will be briefly discussed. Specifically, emphasis on the applicability to nanosatellites will 

be analyzed and potential for future work will be outlined. Observability and controllability 

will be examined to validate the main results presented later in this thesis. Finally, the 

dynamics of the TSS will be analyzed to gain some useful insights into the system. 

 DERIVATION OF THE DUMBBELL MODEL 

The dynamics of the deployment of tether system has been studied extensively throughout 

the literature [76] [30] [77] [78]. However, in practical applications and control law 

development, the “dumbbell” model of the system is sufficient [29]. In this model, the 

tether is assumed straight, inextensible and massless. The spacecraft or satellites attached 

to the ends of tether will be simplified as lumped masses with their attitude dynamics 

ignored, because the tether length is typically orders of magnitude greater than the 

dimensions of spacecraft. 

Consider the TSS in a circular orbit of Earth shown Figure 3.1. Here, a circular orbit 

was chosen since it has a stable equilibrium whereas elliptic orbits do not. It is composed 

of two point masses 
1m  and 2m  which are connected by a massless inextensible tether of 

varying length l  orbiting around the Earth. The assumption provides a simple and 

convenient way of determining the location of the center of mass M  of the system. 
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However, although 1 2, tm m m , where 
tm  is the mass of the tether, is a reasonable 

assumption, the rigidity of the tether requires more justification. In reality, the tether has 

elastic deformations as it twists, stretches and bends, however, the tension in the tether is 

relatively small and the resulting elastic potential energy is negligible compared to the 

kinetic energy of the system. Furthermore, we assume (validated in simulation) that the 

tether is taut throughout the deployment. Nonetheless, for simplicity and in conjunction 

with the premise of an active control law where the tension in the tether is maintained, 

practical dynamics of this system can be derived. For detailed and practical engineering 

design, an elastic tether should be used and there have been a lot of work in the literature 

on this subject and is omitted from the scope of this thesis. 

 

Figure 3.1 Tether Dumbbell Model. 

The last assumption is that the out-of-plane libration dynamics is neglected because 

studies have shown that due to the weak coupling between in-plane and out-of-plane 

dynamics [32], the latter cannot be controlled through tension, and, relatively small initial 
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conditions will produce relatively small periodic oscillations around the equilibrium point. 

There are two main coordinate systems used for the TSS. The most popular choice is 

Polar coordinates, however, Cartesian coordinates have also been used [26]. This may be 

attributed to the resemblance of the motion of the TSS system to a simple pendulum. These 

co-ordinate systems are typically defined in the orbital frame since the main concern is the 

relative motion of the satellites with respect to the center of mass. 

Let , ,1 2 MR R R  be the vectors from the center of the Earth to masses 1 2,m m and the 

center of mass M  respectively. Let ,   represent the true anomaly of the center of mass 

motion and the angle the tether makes with respect to the local vertical (angle measures 

positive in counter-clockwise direction). Finally, let 1 2l ,l  represent the vectors from the 

center of mass to each point mass and let 
1 2l = l + l  be the total length of the tether. 

The dynamics of TSS will be derived by the Lagrange equation. Consider the equations 

of the form, 

i

i i i

d T T V
Q

dt q q q

  
− + =
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 (3.1) 

where ,T V  are the kinetic and potential energies of the system, ,i iq q  are the generalized 

coordinates and their time derivatives, and iQ are the generalized forces. 

From Figure 3.1, we have the following kinematic relationship 

( )( ) ( )( )
( )( ) ( )( )

1 1

2 2

cos cos sin sin

cos cos sin sin

M M

M M

R l i R l j

R l i R l j

     

     

= + + + + +

= − − + − −

1

2

R

R
 (3.2) 

where ,i j are the unit vectors along the ,x y  axes respectively.  
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Taking the time derivative of above equations yields, 
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The kinetic energy T  can be expressed as, 
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 (3.4) 

The distance to each point mass 
1 2,R R  is, 
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R R l l
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 (3.5) 

Therefore, the potential energy V  can be expressed as, 

1 2 1 2

2 2 2 2
1 2 1 1 2 22 cos 2 cosM M M M

m m m m
V

R R R l R l R l R l
 

 

  
 = − + = − + 
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 (3.6) 

For a circular orbit, the radius to the center of mass 
MR  is constant. Furthermore, the 

orbital angular rate  =  is constant as well, specifically,  

3

MR


 =  (3.7) 

Therefore, the generalized coordinates for the TSS become, 

 1 2l l =q  (3.8) 
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Before deriving the dynamics equations, it is worthwhile to perform some 

simplifications on the gravity terms. Consider the partial derivatives of the generalized 

coordinates with respect to the gravitational potential energy, 

( )

( )

( )

( )

( ) ( )
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 (3.9) 

Now consider just the first partial derivative 
1V l  , 

( )

( )

1
1

1 1

3 3
2 2 21

1 1
2 1 1

cos
cos

2 cos
1 2 cos

M

M M

M M

M

M M

l
m R

m R l RV

l
R l R l l l

R
R R

 
 




 
+ 

+  = =
  + +   

  + +       

 

Let 1

M

l
a

R
= , then, 
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2 21

cos

1 2 cosM
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 (3.10) 

Assuming 1a , taking the Maclaurin series of (3.10) and substituting (3.7) yield 
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2 21 1
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cos 1 3cosM

M M

l lV
m R O

l R R
 

  
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 (3.11) 

Proceeding analogously for the other partial derivatives yield, 
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 (3.12) 

After computing the remaining terms of (3.1), assuming no aerodynamic drag forces, 

the tension in the tether is consistent (i.e., 
1 2l l lQ Q Q= = ) and, the fact that no torque acts 

at the point of tether attachment, the dynamics equations of the system becomes, 
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 (3.13) 

Obviously, these equations describe the relative motion of each mass with respect to the 

center of mass of the system. Further simplification can be made by assuming 1 2m m . 

Given that 1 2l l l= + , Eq. (3.13) can be simplified as, 
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Then, the location of the center of mass of this system, 
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m m
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+
= 
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1 2
CM

l l
R R  (3.15) 

roughly coincides with 
1m  (i.e., 

1 20l l l   ). Then, Eq. (3.14) is further reduced to, 
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 (3.16) 

This is the standard form of the tether dumbbell model for in-plane libration, which is 

commonly found in the literature. This is also the model used for controller development 

in this thesis. It is important to note that the dynamics equations in (3.14) represent a system 

with arbitrary mass ratios. Controllers developed for this system are more general and is 

left outside the scope of this thesis. Presumably, (3.15) is a key relationship that would be 

part of the scaling factor from controllers developed in this thesis to the more general case. 

 EXTENSIONS OF DUMBBELL MODEL AND 

APPLICABILITY TO TETHERED NANOSATELLITES 

There are many assumptions made in the derivation of the dumbbell model. By relaxing 
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the assumptions, a more complete model can be obtained however, at the cost of increasing 

complexity. Standard extensions of the model were discussed in the literature review. If the 

system is composed of two satellites of comparable masses, Eq. (3.13) would be an 

appropriate model for controller development. However, if the mass of the tether is now 

comparable to the satellite masses, then a model that accounts for the variation in center of 

mass would need to be developed. Similarly, if the length and accordingly cross-sectional 

area of the tether is significantly large, then atmospheric drag needs to be included. A 

simplified model of atmospheric drag was studied by Zhe et al. and they showed that a 

simple controller can effectively stabilize the system with consideration of atmospheric 

drag [79]. However, it is important to note that atmospheric drag would need to be a 

function of the deployed tether length which would make controller development much 

more difficult. Inclusion of these conditions is necessary for a tethered nanosatellite system 

and is omitted in this thesis and left for future work. Instead, this thesis assumes that the 

subsatellite is a nanosatellite and the main satellite is orders of magnitude larger in mass. 

This allows the assumptions in the standard dumbbell to be valid and proceed with the 

dynamic analysis and controller development. 

 DUMBBELL MODEL IN NON-DIMENSIONLESS FORM 

The system in Eq. (3.16) can be transformed into a more convenient form suitable for 

controller development. It is advantageous to convert the system into a non-dimensionless 

form, develop the controllers then apply appropriate scaling factors to achieve desired 

results and performance. 



36 

 

Let 
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1 2

e

m m
m

m m
=

+
 be the effective mass of the system, t =   the true anomaly, and 

0
max

l
l

 =  the dimensionless length of tether where 
maxl  is the maximum desired tether 

length. Denote ()  as the derivate with respect to  . Then, Eq. (3.16) can be rewritten in a 

dimensionless form as, 
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where 2

max

l

e

Q
T

m l
=


 is the dimensionless tension. In this configuration, the equilibrium 

point of Eq. (3.17) is the set  0 0 0 0, , , | 1 0           =  = = =x . Here, x is the state 

space of the system. It is also convenient to translate the system such that the origin is the 

equilibrium point. Define 
0 1 = − , Eq. (3.17) becomes, 
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 (3.18) 

 DUMBBELL MODEL IN STATE-SPACE FORM 

Define the state vector in the state space as  

 
T

    =x  (3.19) 

Then, Eq. (3.18) can be expressed as, 
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Obviously, this system is highly nonlinear and therefore difficult to analyze and develop 

controllers. Indeed, the system can be linearized in the vicinity of the equilibrium and the 

model reduces even further to, 
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3 4

4 2 3

ˆ3 2

2 3

x x

x x x T

x x

x x x

=

= + −

=

= − −

 (3.21) 

The system in both the linear and nonlinear state-space form will be commonly used 

throughout this thesis in the development of control laws. 

 OBSERVABILITY AND CONTROLLABILITY 

The tether dumbbell system is clearly a two-degree of freedom, underactuated, and second-

order system. Therefore, observability and controllability must first be analyzed. In this 

thesis, the local behavior will be discussed through linearization as the application of 

nonlinear tools for this analysis is outside the scope. Consider the system in the following 

form, 

x = Ax

y = Cx
 (3.22) 

where, 
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3 0 0 2
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0 2 3 0
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 
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− − 

A C

 

and y is the output vector. Complete observability of the system in Eq. (3.22) can be 

determined if and only if the observability matrix, 

( )
1

| | |
n− 

 
C* A*C* A* C*  (3.23) 

is of full rank. Here the ( )*  denotes the conjugate transpose. Proceeding accordingly, the 

observability matrix for the linearized tether dumbbell system is, 

1 0 3 0

0 1 0 1

0 0 0 6

0 0 2 0

 
 

−
 
 −
 
   

which is obviously of rank 4. Therefore, the system is completely observable. Interestingly, 

using measurements of 1x =  (length of the tether) alone, we can deduce the remaining 

states through proper observer design. This is highly advantageous as measurement of the 

length rate directly may be difficult/noisy and measurements of the libration angle and its 

rate may be expensive.  

Analogously, controllability can be determined if and only if the controllability matrix 

is of full rank. Consider now an extension of Eq. (3.22) such that the tether system in the 

form, 

ux = Ax + B

y = Cx
 (3.24) 

where, 
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The controllability matrix can be computed as, 

1

0 1 0 1

1 0 1 0
| | |
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 
−
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 

− 

B AB A B  (3.25) 

which is rank 4 as well, therefore, the system is completely controllable as well. 

 DYNAMIC ANALYSIS OF TETHER SPACE SYSTEM 

Analysis of the dynamics of the system is crucial in understanding its intrinsic behavior. 

Again, local behavior will be studied, and the global nonlinear behavior is omitted for 

future work. The theory of linear systems provides many tools to analyze this system.  

Consider the open-loop poles of the system in Eq. (3.21), 

1
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3

4

1.2671

1.2671

2.3676

2.3676

p

p

p i

p i

= −

=

=

= −

 (3.26) 

Obviously, the system is unstable because the pole 
2p  is in the right-half plane. 

Furthermore, we have poles 3p  and 
4p that sit on the imaginary axis cause an oscillatory 

response in the output as shown in Figure 3.2 below. The initial conditions are shown in  
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Figure 3.2 Open Loop Response of deployed tether length vs orbit numbers under 

various initial conditions. 

Table 3-1 Initial Conditions for Open Loop Response 

Initial Conditions Case 1 Case 2 Case 3 Case 4 

10x
 -0.99 -0.99 -0.99 -0.99 

20x
 0.1 1 1 1 

30x
 0 0 

4



 8


−

 

40x
 0 0 

4



 4


−

 
 

Further examination of the root locus yields greater insight into the system. The system 

in (3.24) is transformed into the following transfer function, 

( )
( )
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4 2
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4 9
p

Y s s
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U s s s

− −
= =

+ −
 (3.27) 

where ( )Y s is the output 1x  (length of tether) and ( )U s is the control input. The root locus 
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of (3.27) is plotted in Figure 3.3 below, 

 

Figure 3.3 Root Locus Plot of Tether Dumbbell System 

Given the open-loop system, the root locus indicates the location of the closed loop 

poles as a function of control gain K . This implies that a proportional control gain would 

not suffice to stabilize the system. Indeed, a proportional plus a derivative term is necessary 

to stabilize the tether dumbbell system as this would “shift/pull” the root locus to the left. 

In the next chapter, it will be shown that a simple PD control is sufficient in controlling the 

system. Furthermore, the root locus cannot be arbitrarily shifted to the left because of the 

open-loop zeros on the imaginary axis. This will ultimately result in a pair of dominant 

closed-loop poles to reside near the imaginary axis which implies a small natural frequency 

of the system (i.e., a slow-response in the output; slow deployment). 

 EQUILIBRIA OF TETHER SYSTEM 

Consider Eq. (3.20). The equilibrium of the system can be obtained by solving for the states 



42 

 

of the system that yield zero dynamics (i.e., 
1 2 3 4 0x x x x= = = = ). Therefore, 

1 2

3 4

0 0

0 0

x x

x x

=  =

=  =
 (3.28) 

Using (3.28) yields  

4 3 30 3sin cos 0x x x= − =  (3.29) 

which implies  3
30, , ,

2 2
x  = . Finally, 

2

2 1 3
ˆ0 3(1 )cos 0x x x T=  + − =  (3.30) 

If 3 0x = or 3x = , then  

13 3 0x T+ − =  (3.31) 

Therefore, the equilibrium length of the tether depends on the final tension. The desired 

equilibrium is such that 1 0x = (since the equations of motion were translated), therefore, 

3T = . However, consider the case when 3 2
x = or 3

3
2

x = . This implies that 0T = , 

which although is theoretically possible, infers that the masses have independent motion 

(i.e., not constrained by the tether) and the tether can be of any length. It can be shown that 

these equilibria when the tether is horizontal is unstable. 
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Chapter 4 DEPLOYMENT CONTROL LAW OF 

TETHERED SPACE SYSTEM  

Summary: In this Chapter, the tether deployment problem is introduced followed by a 

brief overview of deployment mechanisms and measurement systems. Then, linear and 

nonlinear controllers are developed, followed by a modulation technique (PWPF) that can 

be used to simplify the actuator. For each controller, case studies are presented and 

analyzed with a roughly common set of initial conditions to make reasonable comparisons. 

 PROBLEM STATEMENT 

Consider the forces on the tether system as shown in Figure 4.1. 

 

Figure 4.1 Forces on Tether Spacecraft System. 

It is important to note that the Coriolis force will be generated during deployment and 

is proportional to the tether deployment velocity, because the model describes the motion 
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of the system in the orbital (rotating) frame. Neglecting the Coriolis force, the gravitational 

and centrifugal forces are balanced at the center of mass, 

2
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3

e M
M M M

M

e
M

M

GM M
M R

R

GM

R





=

=

 (4.1) 

where G is the universal gravitational constant, ,e MM M  are the mass of the Earth and 

mass of the tether system respectively, 
MR is the distance from the center of the Earth to 

the center of mass, and 
M is the orbital angular velocity of the center of mass 

MM . As a 

result of the tether, the two satellite masses are constrained to have the same orbital angular 

velocity as the center of mass of the TSS. If the masses were to have independent motion, 

their orbital angular velocities would be, 

( )

( )

2

1 3

1

2

2 3

2

e

M

e

M

GM

R l

GM

R l





=
+

=
−

 (4.2) 

Clearly, the upper mass moves faster than the lower mass of the TSS, This results in a 

larger centrifugal force at the upper mass (higher altitude) and a smaller centrifugal force 

at the lower mass (lower altitude). This imbalance, called gravity gradient, yields the 

balancing tether tension. Furthermore, the resultant force from the tension, centrifugal and 

gravitational forces yield a resultant torque that attempts to align the tether with the local 

vertical. 

Consider the deployment process in which the tension in the tether is directly controlled. 

This now implies that we can indirectly control the resultant torque that aligns the tether 
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with the local vertical (i.e., 0 →  or  → ). However, during the deployment process, 

the Coriolis force causes the tether to move away from the local vertical ( 2c iF m v= −  ; 

v – tether deployment velocity). Therefore, the tension is sufficient to control both the 

length of the tether and, the libration angle   of the tether. However, it is important to note 

that since the Coriolis force directly depends on the deployment velocity and that the fact 

that the magnitude of the resultant restoring torque is relatively small, there exists an upper 

bound on the deployment velocity in order to prevent the tether from wrapping around 

and/or reaching an undesired equilibrium. 

 DEPLOYMENT MECHANISM 

The tree structure in Figure 4.2 below depicts the various types of deployment mechanisms. 

Broadly speaking, they can be categorized into active and passive mechanisms and the 

deployment is achieved through thrusters or tension control. Indeed, a combination of 

thrusters and tension control could also be conceived and theoretically would provide the 

optimal performance. Although conceptually the type of tether used is agnostic to the 

deployment mechanism, mechanically they would differ significantly. 
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Figure 4.2 Types of Deployment Mechanisms 

4.2.1 Actuation with Thrusters 

Control of tether deployment has been achieved with the use of thrusters as mentioned in 

the Introduction in Table 1-1. In this mechanism, thrusters are placed on all three axes to 

achieve full control of the relative motion of the satellite. There have also been scenarios 

where thrusters were augmented with tension control to achieve the same objective. The 

obvious drawback of thrusters is the need for propellant which among others, adds 

complexity to the assembly, integration and testing (AIT) phase of the mission as well as 

additional mass and cost. However, depending on the configuration of the thrusters, far 

superior performance can be achieved in terms of the control objectives and deployment 

speed/time. 

4.2.2 Tension Control Mechanisms 

There are two types of tethers that are commonly used, cable and taped. The early 
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developments of tethers and deployment mechanisms were primarily focused on the cable 

type. Only two missions included closed-loop feedback deployment systems, SEDS-II and 

YES2 missions. Their deployment mechanisms are depicted in Figure 4.3. 

 

Figure 4.3 SEDS-II Deployment Mechanism [13] 

 

Figure 4.4 YES2 Deployment Mechanism [14] 
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Interestingly, both the deployers employ the same strategy in which a spring is used to 

provide an initial impulse and separation velocity, and then a braking mechanism is used 

to control the deployment process and damp out the kinetic energy provided by the spring. 

The braking mechanism for the cable type tether is essentially a barber pole in which the 

number of turns of the tether around the pole controls the friction (braking force) which in 

turn controls the tension. A closer look at the barber pole braking mechanism for the YES2 

mission is shown in Figure 4.5. 

 

Figure 4.5 YES2 Barber pole [14] 

Therefore, the dynamics of the system can be described as in (3.20) and a tension 

controller can be developed. Then, the tension in the tether is related to the braking force 

as follows [13], 

( ) ( ) ( )2

0 0exp expE

relT T I L A f B  −= +  −  (4.3) 

where 0T  is the minimum tension, I  is the inertia of barber pole system,   is the linear 

density of the tether, L  is the velocity of the tether, max1 /rel solA A L L= − , solA  is the tether 

annulus solidity, L  and maxL are the deployed tether length and maximum length of the 
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tether respectively, E  is the area exponent, f  is the friction coefficient, 0  is the null-

friction exit angle,   is the tether libration angle, 2B fn=  is the brake parameter and n

is the number of turns of brake axle. 

The frictional model was developed from experimental data and classical formulas. As 

such, it carries a significant amount of uncertainty which is unavoidable. Proper 

characterization of the parameters is required, and practical controllers may include 

robustness or adaptive terms to increase performance. However, from flight data recorded 

during these missions, the mechanism performed surprisingly well even under all the 

uncertainties. This could be largely attributed to the fact that a closed-loop control system 

was utilized.  

A simplified schematic of the YES2 deployment mechanism is shown in Figure 4.6 to 

get a better understanding of the deployment mechanism. It is important to note that both 

systems had a tether cut mechanism which is used to sever the tethered payload at the end 

of deployment which were objectives of the respective missions. However, it has no impact 

on the deployment process itself. 

Yi et al. proposed an adaptive reel mechanism [80]. The mechanism is designed to 

minimize winding, tumbling and other disturbances experienced during tether deployment 

and retrieval. The advantage of the reel mechanism is the ability to have positive and 

negative tether velocities and more general class of controllers are applicable with much 

faster deployment times. In their paper, their outline the dynamical equations of their 

mechanism along with some experiments to validate the process. 
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Figure 4.6 YES2 Deployment Schematic Diagram [14] 

The tape tether was introduced recently and conceptually, which is very similar to the 

cable tether. In the tape tether deployment system, there still exists a spring which provides 

an initial impulse and then a brake is used to control the deployment process. However, the 

braking mechanism is arguably simpler. Figure 4.7 depicts a braking mechanism for a tape 

tether. It is important to note that the mechanism shown is actually passive. The top region 

of folded tether deploys with no control/brake and the final portion is used to slow the 

tether. However, the brake can be placed at any arbitrary location within the storage box 

and a stepper motor or solenoid can be used to control the braking force. Indeed, this 

mechanism suffers similar drawbacks in terms of uncertainty and the need for proper 
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calibration/characterization. Given the success of the alternative mechanism, this design 

appears promising. 

 

Figure 4.7 Tape Tether Deployment Mechanism. 

An important characteristic of these deployment mechanisms is that fundamentally, they 

do not allow retrieval of the tether. Therefore, the deployment of the tether must be 

monotonic in length. It is an important property that has been neglected in the literature 

and previous missions. This thesis aims to directly address this issue within the controller 

development. 

 MEASUREMENT SYSTEMS FOR TETHER DEPLOYMENT 

The four states of the tether system are the length, length rate, libration angle and, libration 

angle rate of the tether. As mentioned earlier, the tether system is observable under the 

length measurement alone. A simple length measurement system for tape tethers is shown 

in Figure 4.8. 
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Figure 4.8 Tether Length Measurement System 

In this system, a tether made of a highly reflective material such as aluminum is coated 

with black strips/paint at equally spaced intervals. Then, using a LED and photodiode, we 

can detect the number of black strips as the tether deploys and infer the total length. Both 

the hardware and software (computational complexity) are inexpensive, however, the 

measurements of the length are discrete and appear at non-uniform/time-varying intervals. 

It can be considered discrete because the rate at which the measurements are collected will 

be much slower than the desired rate at which the actuators will be controlled. Furthermore, 

the rate itself is dependent on the tether deployment velocity. If the velocity was constant, 

the length measurements will arrive at constant intervals. However, the real velocity profile 

is non-linear and has regions of both acceleration and deceleration. Therefore, the 

measurements will appear at time-varying intervals. 

Although the length measurement is sufficient to estimate the remaining states, more 

advanced controllers may not perform well with the augmentation of an observer. This is 



53 

 

attributed to the insufficient convergence rate of the observer itself. Therefore, it may be 

necessary to directly measure the remaining states, specifically the libration angle.  

Grassi et al. proposed a length measurement system for a cable type tether [81]. They 

placed IR emitters on the tether spool and IR receivers on the outer canister. As the tether 

is deployed, the angular rate of the spool is measured, and the length of the deployed tether 

is inferred. 

 

Figure 4.9 Schematic of tether libration angle. 

Since the libration angle is measured from the local vertical, its measurement system is 

generally much more complex and expensive than the length and length rate. Consider the 

system depicted in Figure 4.9. Assuming that the attitude of the spacecraft can be 

controlled, we can relate the horizontal distance x  to the libration angle   as follows 

1sin
x

l
 −  
=  

 
 (4.4) 

where 1 2l l l= +  is the length of the tether that can be determined from independent 
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measurements. The horizontal distance can be determined via computer vision or 

differential GPS measurements among other techniques. Computer vision is generally 

inexpensive in hardware but quite expensive in software/computational complexity. 

Differential GPS measurements have reciprocal trade-offs since hardware is quite 

expensive and software is relatively inexpensive. Other techniques based on radar through 

highly accurate characterization of antenna beam patterns can also be conceived. However, 

proper trade studies along with verification and validation needs to be conducted to 

determine feasibility and viability. 

 LINEAR CONTROL  

4.4.1 Pole Placement 

Consider the system in the following form 

u

y

x = Ax + B

Cx
 (4.5) 

where 

 

0 1 0 0 0

3 0 0 2 1
, , 1 0 0 0

0 0 0 1 0

0 2 3 0 0

   
   
   = = =
   
   

− −   

A B C  (4.6) 

The tether system can be considered as a Type 0 system [82] since the plant has no 

integrator (poles at the origin of the s-plane). We can then proceed to design a linear state 

feedback controller to drive the system to a desired reference in finite time by choosing the 

feedback law as, 
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Iu k

r

Kx

Cx
 (4.7) 

This closed loop system can be shown schematically in Figure 4.10. 

 

Figure 4.10 Type 1 Servo Block Diagram 

which can also be expressed in state-space form as, 

0 0 1
u r

x A 0 x B 0

-C
 (4.8) 

Define 

,
ss

e ss

ss

u u u
 

 
= = − 

− 

x - x
e  (4.9) 

where ,ss ssx and
ssu are the steady-state values of the state, augmented and control 

variables respectively. If we assume the reference r  is a step input, then, the error dynamics 

can be written as, 

ˆ ˆ
eue = Ae + B  (4.10) 

with 
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ˆ ˆ,
0 0

A 0 B
A B

-C
 (4.11) 

By choosing ˆ
eu Ke , where 

ˆ
IkK K  (4.12) 

and choosing K̂  such that ˆ ˆ ˆA - BK  is Hurwitz, the error dynamics will asymptotically 

approach to zero. Therefore, 10ss y r x r .  

Furthermore, given that the system is stable, we can deduce the following, 

1 2

3 4

4 2 3 3

0 0

0 0

0 2 3 0 0

x x

x x

x x x x

 (4.13) 

Therefore, the system asymptotically reaches the final equilibrium of 0 0 0rx . 

We can now proceed to designing the state feedback matrix K̂  using the pole-placement 

method. In general, there are a few approaches that could be used to find the state feedback 

matrix and the most popular choice is Ackermann’s Formula [83]. A necessary and 

sufficient condition for this approach is that matrix P  is of rank n , 

0

A B
P

-C
 (4.14) 

For a proof of this method, we refer the reader to [84]. 

The above pole placement is demonstrated by numerical simulation with the full 

nonlinear model. The Ackermann’s formula is a part of MATLAB’s Control Systems 

Toolbox and can directly be used to find the appropriate state feedback matrix. The 

parameters of the simulations are detailed in Table 4-1 below.  
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Table 4-1 Pole-Placement Simulation Parameters 

Initial Conditions Case 1 Case 2 Case 3 Case 4 

10x
 -0.99 -0.99 -0.99 -0.99 

20x
 0.1 1 1 1 

30x
 0 0 

4



 8


−

 

40x
 0 0 

4



 4


−

 
 

The simulation results are shown in Figure 4.11 to Figure 4.15. The controller is stable 

for a wide range of initial conditions and full deployment can be achieved within two orbits. 

It is worth noting that higher initial velocities 20x  do not yield faster deployment, as is the 

case with many of the other controllers which are to be presented later. In fact, for this 

control, which has a structure similar to a PD controller, increasing the initial velocity 

results in larger control efforts. Conversely, decreasing the initial velocity below a certain 

threshold results in a negative control input as illustrated with Case 1 in Figure 4.15. 

Physically, this can be realized through thrusters or some other force to accelerate the 

satellite but, this is undesirable in practice. As such, relatively large initial velocities are 

needed with this controller. To give some context, if we apply the appropriate scaling 

parameters for a 400 km circular orbit with a 1 km tether, an initial deployment velocity in 

Cases 2,3 and 4 become 1.13 m/s. There is a correlation between the initial angular 

displacement and rate ( 30 40,x x ) with negative control input, however, it is very small 

compared to the initial deployment velocity. 

Referring to Figure 4.11, there is a considerable amount of overshoot in tether length. 
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This can only be reduced by modifying the location of closed-loop poles to have a slower 

response (i.e., slower deployment). A couple disadvantages of overshoot in this context, is 

that additional length of tether needs to be stored (approx. 50% more) and, the actuator 

needs to be capable of reeling the tether back in to prevent slack and maintain the 

appropriate amount of tension. 

 

 

Figure 4.11 Deployment Length vs Time. 
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Figure 4.12 Length Rate vs Time. 

 

Figure 4.13 In-Plane Angle vs Time 
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Figure 4.14 In-Plane Angle Rate 

 

Figure 4.15 Control Input vs Time. 

4.4.2 Optimal Gain Selection 

The pole-place method is a powerful tool if the dynamics of the system is well-known and 
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well approximated. In the case of the TSS, where there have been numerous assumptions 

and simplifications, the performance may not be ideal. Another approach, which does not 

rely heavily on the dynamics model, is to numerically tune the gain parameters to achieve 

desired performance. The key here is to use the full nonlinear model when tuning the 

parameters to obtain the best results. 

Consider a tension feedback law of the form [34],  

1 1 2 2 3 3 4 4 5T k x k x k x k x k  (4.15) 

where ki (i = 1, …, 5) are the control gains to be determined. This controller resembles the 

structure of a PD controller where 1 1 3 3k x k x+  is the proportional term and 
2 2 4 4k x k x+  is 

the derivative term, with the desired state as the origin. 

Substituting (4.15) into (4.5) yields, 

1 2

2 1 1 2 2 3 3 4 4 5

3 4

4 2 3

(3 ) (2 ) 3

2 3

x x

x k x k x k x k x k

x x

x x x

 (4.16) 

According to Routh’s stability criterion along with the KTC theorem [85], the stable 

region for the control gains are, 

1 2 3 4 1 5

1
: 3,  0,  0,  (1 ),  3

2
ik k k k k k k  (4.17) 

It is then necessary to determine the optimal set of control gains within this set. 

Denote the ideal system as xideal and define the cost function as 

0

( ) ( )

t

T

ideal idealJ dx x W x x  (4.18) 
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where W is the weight matrix for each state. By minimizing the cost function subject to 

constraints (4.17), the optimal set of gains can be determined. There are many search 

algorithms that could achieve this task and the genetic algorithm was chosen because it has 

the potential to find a global minima.  

The ideal system is chosen such that the transient and steady state response of the system 

is desirable and is of the same order as the plant to be controlled. For this system, 

deployment should be achieved within a single orbit with a 2% settling time as shown in 

Figure 4.16. Then, the ideal system can be defined as, 

1 2

2 1 2

3 4

4 3 4

1.6211 2.5465

x x

x x x

x x

x x x

 (4.19) 

 

Figure 4.16 Ideal System Length vs Time 

The initial condition was identical to Case 1 from Table 4-1. It is important to note that 
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in the ideal system, the libration dynamics has been decoupled from the length dynamics. 

Although this is not physically accurate, the purpose of this method is to establish a baseline 

profile for which the deployment process will follow. Also, in the ideal system, the libration 

dynamics is stable and given the set of initial conditions, the angle and angular rate will 

remain zero for all time. 

Accordingly, the optimal gains are computed via the genetic algorithm, 

1 2 44.8 3.4 0.4 3T x x x  (4.20) 

The above tension controller is implemented in MATLAB again with the use of the full 

nonlinear model. MATLAB’s gamultiobj function was used as the genetic algorithm with 

the following input parameters (FITNESSFCN, NVARS, A, B, Aeq, beq, LB, UB, 

options). Where FITNESSFCN is the cost function; NVARS is the number of variables in 

this 4; A, B, Aeq, beq were not used; LB and UB are the lower and upper bounds 

respectively and were chosen provided the stability constraints mentioned above; and 

options is the options structure which is used to plot the results. The same set of initial 

conditions as found in Table 4-1 were used. The simulation results are shown in Figure 

4.17 to Figure 4.21. 

The controller can clearly be seen to meet the transient and steady state requirements 

set out above and match closely to the ideal system even under a range of initial conditions. 

However, similar to the pole-placement method, the initial deployment velocity plays a 

critical role in the viability of the controller for nanosatellite application. 

There are couple of improvements of this controller over the previous approach as the 

deployment response is much faster and the overshoot is significantly reduced. If any 
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overshoot is undesirable and the response must be critically, or over- damped, then a 

constraint can be placed on a state of the system namely, 2 0x   and the genetic algorithm 

can re-compute the control gains. This constraint on the state of the system is discussed in 

more detail in the latter sections of this chapter. 

 

 

Figure 4.17 Deployment Length vs Time. 
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Figure 4.18 In-plane Angle vs Time. 

 

Figure 4.19 Length Rate vs Time. 
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Figure 4.20 Control Input vs Time. 

 

Figure 4.21 In-Plane Angle Rate vs Time. 

 NONLINEAR CONTROL - PASSIVITY BASED CONTROL 

Linear control is effective for the tether dumbbell system. However, it may not be suitable 
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with the braking mechanism actuator since the deployment must be monotonic. Indeed, 

proper choice of control gains can achieve monotonicity, but it is not guaranteed especially 

since the model is linearized. In this section, nonlinear control laws are introduced. A 

general nonlinear control is developed without the constraint of monotonic deployment, 

and then manifold based control laws are developed with the constraint directly 

incorporated into controller development. 

Before introducing the monotonic constraint on deployment, a general nonlinear control 

is introduced. This control can be used in the more general deployment systems in which 

the tether can be “reeled” back in. Indeed, similar to the linear control, the control gains 

can be chosen to satisfy the monotonic constraint but is neglected in this section. 

4.5.1 Derivation of Control Law  

Consider the tether system in the following affine form, 

( ) ( )

( )

x f x g x u

y h x
 (4.21) 

This system can be considered passive if there exists a positive definite storage function 

such that 

0 0 0

0

( ( , , )) ( ) ( ( , , )) ( )

t

TV t x u V x h x u u d  (4.22) 

where 0( , , )t x u is the solution of (4.21) with initial condition x
0
 and input u(t). 

Through feedback passivation and appropriate choices of the output and storage 

functions, the system in (4.21) can be made passive. Then, we can use the Byrnes-Isidori-

Willems Theorem to obtain a passivity-based feedback law which will asymptotically 
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stabilize the equilibrium.  

Feedback passivation can be applied through a change of control variables as follows, 

2 2 4
1 4 1 3 4

1

(1 )(1 ) 3(1 )cos 1 2 1
1

x
T x x x x x W

x
 (4.23) 

where W is the new control input. The dynamics becomes, 

1 2

4
2 1 4

1

3 4

2
4 4 3 3

1

2 1
1

2 1 3cos sin
1

x x

x
x x x W

x

x x

x
x x x x

x

 (4.24) 

Choose the storage and output functions as, 

2 2 2 2

1 2 3 4

2

1
( ) 3sin

2

( )

V x x x x x

h x x

 (4.25) 

The system becomes passive under ( )V x since, 

2V x W  (4.26) 

The system can be considered lossless because it is equality as opposed to an inequality. 

Now, we can choose a passivity-based feedback (PBF) that will asymptotically stabilize 

the origin. 

Choose the following PBF, 

2( ( ))W h x kx  (4.27) 

This is a valid PBF since, 2

2 0kx  for all x , and 2

2 0kx if and only if 0x  with 

0k . The second condition can be shown by applying LaSalle’s invariance principle. 
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Also the system is zero-state detectable under the PBF since, 2 0x and ( ) 0u t for all 

0t 0( , ) 0t x as t . 

The resulting control law can now be expressed by substituting the PBF into (4.23), 

2 2 4
1 4 1 3 4 2

1

(1 )(1 ) 3(1 )cos 2 1 1
1

x
T x x x x x kx

x
 (4.28) 

4.5.2 Case Study 

The set of initial conditions for the passivity-based control law is identical to that of the 

linear controllers except for the initial deployment velocity. Similar to its linear 

counterparts, the passivity control needs a sufficiently large “push” to achieve deployment 

in comparable times. If the initial deployment velocity is reduced, the controller produces 

several oscillations in the early stages of deployment. 

From Figure 4.22, the simulation results from Case 1 has the best performance. This is 

a result of the control gains being “tuned” to this set of initial conditions. This figure depicts 

the variation in controller performance with the same set of control gains. However, in 

comparison to the linear control laws, the range of initial conditions did not adversely affect 

the controller performance. This is largely a result of the libration angle and its rate being 

used as feedbacks in the control laws. If the initial condition is known relatively accurately, 

the control gains can be tuned to achieve the desired requirements. 

It is also important to note the small number of oscillations of the libration angle and 

libration angle rate in Figure 4.23 and Figure 4.26. Clearly, the time for the angle and its 

rate to stabilize is consistent among the range of initial conditions and is much longer than 

the time to stabilize the length and the length rate. This may be due to the choice of the 
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output, 2( )h x x=  the length rate of the tether, being stabilized first and since the libration 

angle has not reached zero at the same time, there is a small number of damped oscillations 

at the end. 

Table 4-2 Simulation Parameters 

Initial Conditions Case 1 Case 2 Case 3 Case 4 

10x  -0.99 -0.99 -0.99 -0.99 

20x  4 2 2 2 

30x  0 0 
4


 

8


−  

40x  0 0 
4


 

4


−  

 

 

Figure 4.22 Deployment Length vs Time 
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Figure 4.23 In-plane Angle vs Time. 

 

Figure 4.24 Length Rate vs Time. 
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Figure 4.25 Control Input vs Time. 

 

Figure 4.26 In-plane Angle Rate vs Time. 

 

 

 CONTROL LAWS WITH MONOTONIC DEPLOYMENT 
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The monotonic tether deployment requires a non-negative tether deployment velocity, such 

that,   

2: 0xx  (4.29) 

The constraint of non-negative tether deployment velocity can be explicitly satisfied by 

transferring (4.29) into an invariance property of the control system. 

Theorem: For a dynamic system x f(x) . Let :χ  be 1C  and let 

: ( ) 0x x . Suppose for all 
n

x , such that ( ) 0x  and 0xd , then,  

is positively invariant if and only if ( ) 0fL x  at the boundary  ( ) 0n
x x . 

Define 2( ) xx . Then, the constraint on the non-negative tether deployment velocity 

in (4.29) can be replaced by the non-negative Lie derivative of ( )x  with respect to F(x,u) 

in (4.21) at the boundary ( ) 0x , such that, 

0
( ) 0FL ux     or   

0
0u  (4.30) 

4.6.1 Approach I 

4.6.1.1 Manifold Selection 

Assume the tethered space system (TSS) is subject to a new control input 

2 2

1 4 3
ˆ(1 ) (1 ) 1 3cosu x x x u R  and the output state (y) is the tether length 

such as 
1 ( )y x h x R . The SIMO system in (4.21) is transformed to the following 

affine control system, such that, 
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( , )

( )

u u

y h

x f(x) g(x) F x

x
 (4.31) 

where 

2

4

2
4 3

1

0

3
2 (1 ) sin 2

1 2

x

x

x
x x

x

f(x) ,    

0

1

0

0

g(x)  

Then, the TSS is transferred to a single-input-single-output (SISO) system. 

Accordingly, the Lie derivatives of output state h(x) and function g(x) of TSS are, 

2

2

0 1

( ( ))( )
( ) ,    ( ) 0

( )
( ) 0,  

( ( ))
( ) ( ) 0,   ( ) 1 0

f

f f

g

f

g f g g f

L hh
L h x L h

h
L h

L h
L L h L h L L h

xx
x f(x) x f(x)

x x

x
x g(x)

x

x
x x x g(x)

x

 (4.32) 

Obviously, the affine control system has the relative degrees of 2  over R2. Thus, 

the dynamic system in (4.31) can be segregated into two subsystems, with 1 2,x x  describing 

the dynamics of tether length (defined as external dynamics) and 3 4,x x  describing the 

dynamics of libration angle (defined as internal dynamics), such that, 

2 ( ) ( )

( , )

f g fL h L L h u

Q

y x x

ξ 
 (4.33) 

where 1 2 1 2[ , ] [ ( ), ( )] [ , ]T T

fx x h L h 2
x x ξ R=  and 2

3 4 1 2[ , ] [ , ]T Tx x η R  

denote the external and internal states of the SISO system. 

Consider a control strategy where a braking force is applied such that the external states 
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(tether deployment length and velocity) reach a zero-equilibrium state 
1 2[ , ]Tx x ξ 0 . 

Then, the internal dynamics is reduced to the zero dynamics ( , )η Q 0 η , such that, 

3 4 4 3

3
,    sin 2

2
x x x x  (4.34) 

The stability for the tether deployment control requires the zero dynamics ( , )η Q 0 η  

stable or critically stable at the zero equilibrium [86]. Considering that the eigenvalues of 

the linearized zero dynamics of (4.34) near the zero equilibrium are 3i , respectively, 

the internal dynamics is critically stable. Thus, the TSS is controllable with only tension 

control input and the stable tether length deployment is achievable. 

It is well-known that the libration motion of TSS is induced by the Coriolis force. This 

force is proportional to the tether deployment velocity 2x . As the tether deployment 

completes, the Coriolis force approaches to zero. Thus, it is intuitive to introduce 2x  as a 

pseudo-control input to the internal dynamics ( )η Q ξ,η , such that, 

3 4

2
4 3

1

3
2 sin 2

1 2

x x

x
x x

x

 (4.35) 

Assume a manifold 
1 2 1 4 0s x p x  with 1 0p  to link the tether deployment 

velocity with the libration angular velocity. Obviously, the libration angular velocity 

approaches to zero at the end of tether deployment process ( 2 0x ). Substituting the 

manifold 
1s  into (4.35) and then linearizing it near the zero-equilibrium state yield 

3 4

4 3 1 43 2

x x

x x p x
 (4.36) 
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The corresponding eigen values of (4.36) are 2

1 1 3p p . Thus, the control law 

2x derived from the manifold 
1 2 1 4 0s x p x  is stable because of Re( ) 0   for all 

1 0p .  

Now introduce the following manifolds, 

1 2 1 4

2 1 2

0

0

s x p x

s cx x
 (4.37) 

where c is a positive constant. It can be seen that the 
1s  yields an equilibrium state set 

2 3 4: 0x x x x , while the 2s  drives the state 1x  to the zero-equilibrium state.  

4.6.1.2 Control Law Derivation 

Thus, a direct Lyapunov-type control law can be designed by defining a Lyapunov function 

candidate as, 

21

2
V S  (4.38) 

where 
1 2S s s  and  is a positive constant.  

The derivative of the Lyapunov function yields 

1 2 1 2

2 1 4 1 1 4 2

( )( )

1 1

V SS s s s s

x p x cx u p x cx
 (4.39) 

Define the control law as 

4 2 1 2 1 4 1

1
1

1
u px cx k x p x cx  (4.40) 

where k1 is a positive constant. 
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Substituting (4.40) into (4.39) yields 

2

1 2 1 4 11 0V k x p x cx
 

Thus, the control law is stable. 

In order to show the stability of equilibrium state under this new control law, we follow 

a similar approach as demonstrated by the authors in [52]. Consider the dynamics on the 

manifold S , 

1 2

2 4 1 2

2 4 1

0

0

1

1

S s s

S x px cx x

x px cx

 (4.41) 

Substituting these dynamics into (4.31) and linearizing about the equilibrium point yields, 

1 1

2 2

3 3

4 4

0 1 0 0

2 3
0 0

1 1

0 0 0 1

0 2 3 0

x x
p c p

x x

x x

x x

 (4.42) 

Let 
2

1

p c
a  and 

3

1

p
b . Obviously both , 0a b  since , p  and c  are all 

positive. Notice how the 1x  dynamics are decoupled from the rest of the system. Therefore, 

we can focus on the stability of the reduced system namely 2 3,x x  and 4x . The associated 

eigenvalue equation becomes, 

3 2 3 3 2 0a a b  

It can be shown that
1,2,3Re( ) 0 for all , 0a b . Therefore, 

2 3 4, , 0x x x  and from the 
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manifold S , 
1 0x . Thus, the equilibrium state is stable under the dynamics on the 

manifold. 

4.6.1.3 Proof of Non-Negative Length Rate 

From (4.40) the Lie derivative at the boundary 
2( ) 0xx  and the manifold 

1 4 20 0s x x  becomes 

( )
1 3 1 10

1 3
sin 2

1 2
u p x k cx




=

 
= − − 

+  
 (4.43) 

Thus, under the following conditions, (i) 
11 0x , and (ii) 

3 3/ 2 0  sin2 0x x , (4.43) becomes 
0

0u  and the positive invariant 

condition is satisfied. Condition (i) is a direct implication of (4.29) as an overshoot in length 

violates the constraint and can be resolved through appropriate choice of control gains. 

Also, consider the fact that the libration angle is induced by the Coriolis force in the 

negative direction of  3x , which is generated by a positive tether length deployment 

velocity. As the 
2 0x , the libration angle will approach to zero under the restoring 

gravity torque. Thus, it is reasonable to assume the libration angle satisfies Condition (ii). 

Accordingly, Now, it is proved that the constraint of non-negative tether deployment 

velocity 2: 0xx  is explicitly satisfied by the proposed control law.  

4.6.1.4 Case Study 

It appears that the natural motion/physics of the system is exploited by this control law as 

described in the justification for the choice of manifold and the proof of nonnegative length 
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rate. The initial libration angle rate is a result of the Coriolis torque, which is proportional 

to the positive tether deploying velocity, being more dominant than the restoring torque of 

gravity-gradient. However, halfway through the deployment, when the length rate peaks, 

the gravity-gradient becomes dominant and the libration angle rate becomes positive and 

gradually approaches to zero along the control manifold. This also results in the controller 

accelerating the length very slowly in the beginning of deployment, which results in a 

reduced libration angular rate and angle as seen in Figure 4.29 and Figure 4.30. 

Furthermore, Condition (ii) used to prove the nonnegative length rate is also shown to be 

satisfied in Figure 4.28. From Figure 4.28 and Figure 4.30, the manifold selection of 

2 4x px=  can be seen. Here 1p   and a scaled down version of the length rate is seen in 

the libration angle rate. The controller can converge to the manifold just after an orbit.  

This gives rise to the smooth deployment profile and significantly large penalties for 

large initial deployment velocities such as that seen in Figure 4.28 in case 2. The large 

penalty is a result of the controller trying to drive the system toward the manifold. The 

penalization of large initial “push” is contrary to the previous control laws that have been 

introduced so far as they relied on these initial conditions to achieve fast deployment. It is 

also for this reason that the deployment time is relatively much longer and cannot be 

optimized much further. However, in practical implementations, this is a desirable property 

especially in the context of nanosatellites as a large force is not required. 

This control law is more sensitive to the initial conditions, as the performance of the 

controller is dependent on the initial conditions. More precisely, the controller performance 

is dictated by the initial distance of the system from the manifold. Since the first objective 
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of the controller is to drive the system to the manifold and then along the manifold to the 

equilibrium. Case 3 is interesting because the initial conditions allowed the system to begin 

very close to the manifold and was able to converge very quickly, allowing for faster 

deployment as well.  

 

Figure 4.27 Nondimensional length vs Time. 
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Figure 4.28 Nondimensional Length Rate vs Time. 

 

Figure 4.29 In-plane Angle vs Time. 
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Figure 4.30 In-plane Angle Rate vs Time 

 

Figure 4.31 Control Input vs Time 

4.6.2 Approach II 

4.6.2.1 Control Law Derivation 
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The second control law is derived based on the theory of nonholonomic/holonomic system 

[87] - [88]. 

Define a new set of state, 

1 3 
T

x xq  (4.44) 

Then, the system equations in (4.31) can be rewritten in the matrix form, 

ûMq +n(q,q) = B  (4.45) 

where 

1 0 1
,  

0 1 0
M B ,   

2 2

1 4 3

2
4 3

1

1 1 1 3cos

( )
3

2 1 sin 2
1 2

x x x

x
x x

x

n q,q  

Further define a manifold 
2 2 4 0x p x . Then, the velocity of state can be replaced by 

a new scalar velocity v  as 

v=q G  (4.46) 

where 2[ , 1]TpG
. 

Left-multiplying (4.45) by 
T

G  yields a reduced order dynamic system about the 

manifold 

ˆ( , )v v uM n q B  (4.47) 

where 

, ) , )v v v

T

T T

T

M = G MG

n(q G MG G n(q G

B = G B

. 

Thus, an invertible feedback law can be designed to stabilize this system by 



84 

 

1
ˆ ,u a vM n q

B
 (4.48) 

where a  is the acceleration, which is a new tension control input to TSS. 

Consider a direct Lyapunov-based control law by defining a Lyapunov function 

candidate as, 

21

2

TV q q  (4.49)

  

The stability requirement ( 0V ) leads to a control law as, 

2

Ta kq G  (4.50) 

where 
2 0k  is the control gain.  

Substituting (4.50) into the invertible feedback law (4.48), yields, 

22 2
2 2 3 2 2 1 3 2

2 1 2

2

2 22
2 1 3

2

2 3
sin 2 1

(1 ) 2
1

ˆ

1 1 1 3cos

x x
x p x p p x x k

p x p
u

p x
p x x

p

 (4.51) 

4.6.2.2 Proof of Non-Negative Length Rate 

Define 2( ) xx . The Lie derivative of ( )x  with respect to F in (4.31) at the boundary 

2( ) 0xx  and the manifold 
2 2 4 4 20 0x p x x x  becomes 

2

2
3 2 1 30

2 2

13
( ) sin 2

2
F

p
L x p x x

p p
x  (4.52) 

Based on the same consideration in the Approach I, we have 
11 0x  and 

3/ 2 0x . Thus, the Lie derivative of ( )x  with respect to F(x,u) will satisfy the 
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positive invariant condition 
0

( ) 0FL x , if we impose the extra conditions 2 0p  and 

2 1 3 0p x x  on the controller. Accordingly, the control law in (4.51) is stable and 

complies explicitly with the constraint of non-negative tether deployment velocity. 

4.6.2.3 Case Study 

An important distinction between the manifold chosen for this control law versus the 

previous control law is the sign change. In this new controller, the manifold is defined as 

2 4x px= − . This allows the control to initially align with Coriolis force and allows the 

length rate to increase immediately, whereas the previous controller waited for the signs of 

the length rate and libration angle rate to equalize before accelerating the tether length. 

Overall, this controller still penalizes large initial length rates but starts accelerating the 

tether much quicker, see Figure 4.33. This results in slightly better performance. 

Furthermore, this results in a much larger libration angle as compared to the previous 

controllers. 

Interestingly, this controller is not as sensitive its initial conditions and a constant set a 

gain yield similar performance over a range of initial conditions. Finally, the constraint of 

nonnegative length rate is satisfied from Figure 4.33 and the assumed conditions of 

bounded length and libration angle can be seen in Figure 4.32 and Figure 4.34. 

However, it is important to note that one of the initial conditions (Case 4), explicitly 

violates the assumed condition, 
3/ 2 0x , yet the controller is still able to maintain 

a nonnegative length rate. We can conclude that this condition is sufficient but not 

necessary. 
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Figure 4.32 Nondimensional Length vs Time. 

 

Figure 4.33 Nondimensional Length Rate vs Time. 
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Figure 4.34 In-plane Angle vs Time. 

 

Figure 4.35 In-plane Angle Rate vs Time. 
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Figure 4.36 Control Input vs Time. 

 PULSE WIDTH PULSE FREQUENCY MODULATION FOR 

MONATOMIC DEPLOYMENT 

Consider the braking mechanism as described in Section 4.2. From the controllers that have 

been presented so far, the control input follows a nonlinear profile that may be 

difficult/expensive to replicate. Instead, the continuous actuation mechanism can be 

simplified with an on-off braking system that can be simply constructed by a solenoid or 

stepper motor to actuate the brakes at two states “on” or “off”. Thus, we can replace a 

continuous time control input by a discretized “on-off\bang-bang” control. In fact, there 

exists methods that can transform continuous-time signals into discretized pulsed signals 

with fixed amplitude but varying pulse width and pulse frequency (PWPF) [89] [90] [91] 
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[15].  

Consider the block diagram in Figure 4.37, the error signal is fed through a low-pass 

filter to smooth out the signal, and then through a Schmitt trigger. The Schmitt trigger has 

on/off thresholds 
onU , offU , and outputs a constant magnitude mU . 

 

Figure 4.37 PWPF Block Diagram. 

The modulation frequency f  and duty cycle D  can be computed from these external 

parameters as follows [92] [93], 

1

1 ln 1

ln 1
1

on off

f
T T

b

c
D

b

c

=
+

 
+ + 

 =
 
+ 

− 

 (4.53) 

where 
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( )

( )

ln 1
ˆ

ln 1
ˆ

ˆ

on off

on m

m M on

on off

off m

m off

on off

m s d

d

s d

on
d

m

off

s m

m

U U
T T

K e U U

U U
T T

K e U

U U
b

K E E

e E
c

E E

U
E

K

U
E U

K

 −
= − +  − − 

 −
= − − 

 − 

−
=

−

−
=

−

=

= +

 (4.54) 

4.7.1 Case Study 

The goal is then to design the filter, on/off thresholds and the output magnitude to achieve 

desired performance. 

A simple linear control in Section 4.4.2 and the passivity based nonlinear control in 

Section 4.5 were used to illustrate the effectiveness of the PWPF method. The initial 

conditions and control gains were kept the same to be consistent with the results presented 

in their respective sections. Furthermore, the results have been normalized as described in 

Section 3.3. Figure 4.38 and Figure 4.40 clearly show that the controller can converge to 

the desired equilibrium and the performance of the controller has not been adversely 

affected. Figure 4.39 and Figure 4.41 depicts the response of the system without PWPF 

modulation. Clearly the discrepancy between the response with and without the PWPF is 

negligible. Figure 4.42 shows the PWPF modulated control input. The figure appears to 

show spikes because of the sampling rate of the simulation. In fact, the minimum pulse 
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width of the signal is 0.0001 orbits, which translates to 0.5 seconds for a LEO orbit around 

400km. This minimum pulse width can be controlled based on mission/system 

requirements by adjusting the PWPF parameters. 

 

 

Figure 4.38 System Response with Linear control and PWPF modulation. 

                           

      

  

    

    

    

    

 

   

   

   

 
 
  

 
  
 
 
 
  
 
  
 

      

           

               

                    



92 

 

 

Figure 4.39 System Response with Linear Control and without PWPF modulation 

 

 

Figure 4.40 System Response with Nonlinear control and PWPF modulation. 
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Figure 4.41 System Response with Nonlinear control and without PWPF modulation . 

 

Figure 4.42 PWPF Modulated Control Input 
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Chapter 5 OBSERVERS FOR TETHERED SPACE 

SYSTEM  

Summary: In this chapter, the concept and application of observers for the TSS are 

introduced. The need for observers arises from the limited resources available on 

nanosatellites. Then, linear and nonlinear observers are derived and compared. Finally, 

similar to the controller development, case studies for each observer are presented and 

analyzed. 

 INTRODUCTION 

As discussed earlier, the tether dumbbell system is observable with the measurement of the 

length of the tether alone. It is advantageous to only collect this measurement and estimate 

the remaining states if needed. In some of the linear control laws, the feedback was limited 

to the length and length rate. However, the nonlinear counterparts required all states for 

feedback. In this chapter, a simple linear observer is designed to handle nominal cases 

where the measurements are assumed to be continuous and then a nonlinear observer is 

designed to handle scenarios where the measurements are discrete and appear at time-

varying intervals. Arguably, since the length is measured, the length rate can be numerically 

computed, however, it will be very noisy especially for the proposed length measurement 

system in this thesis. It will result in zero speed at times between measurements and then 

spikes/jumps at the time of measurements. The proposed observer addresses this limitation 

by providing a smooth estimation of the speed of the tether. 



95 

 

 LINEAR OBSERVER 

Linear observers are powerful tools in control theory that permit the use of full-state 

feedback controllers with noisy and limited measurements of the system. Given the 

surprisingly pleasant performance of linear controllers for the tethered system, this section 

will design and analyze the performance of a linear observer. For this observer, it is 

assumed that the measurement is continuous. 

Consider the observer system shown in Figure 5.1. The observer dynamics can be 

described as, 

( )u y= + − −obsx Ax B K Cx  (5.1) 

where x is the observed state and obsK  is the observer gain to be designed. Now consider 

the observer error dynamics, 

( ) ( )( )=
obs obs

x - x = Ax - Ax - K Cx - Cx A - K C x - x  (5.2) 

where the output =y Cx . Therefore, the observer design essentially becomes choosing the 

observer gain matrix obsK  such that the matrix obsA - K C  is Hurwitz. Similar to the design 

of linear controllers, there are many approaches to choosing the observer gain matrix. For 

simplicity, the pole-placement method is chosen and since the system is fully observable, 

arbitrary placement of the observer pole is possible. 
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Figure 5.1 Observer State Feedback Block Diagram. 

Interestingly, the effects and therefore choice of the observer poles is independent of 

the choice of the state feedback control gain matrix. Consider the dynamics of the system, 

u

y =

x = Ax + B

Cx
 (5.3) 

The state feedback for this system is, 

u = −Kx  

The dynamics of the system is now, 

x = Ax - BKx  (5.4) 

Now add and subtract BKx  to (5.4) to yield, 

( ) ( )x = A - BK x + BK x - x
 (5.5) 

Define e = x - x  and note (5.2) can be expressed as, 

( )obs
e = A - K C e  (5.6) 

Combining the system dynamics (5.5) and the observer dynamics (5.6) yields, 
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    
    

    obs

A - BK BKx x
=

0 A - K Ce e
 (5.7) 

The characteristic equation of this system is, 

s s
obs

I - A + BK I - A + K C  (5.8) 

Clearly, the poles contributed by the controller and observer are independent of each 

other which implies that they can be designed separately without knowledge of the other. 

However, this does not guarantee that the performance of the controller with the observer 

will meet the desired requirements. This can be attributed to the fact that the observer needs 

some time to converge to the actual states. During this period, in which the controller 

although bounded and stable, may not perform as designed. It is important to note that the 

order of the system has now increased from 2n n→ . 

5.2.1 Case Study 

The observer was designed using the pole-placement method where the closed-loop poles 

were arbitrarily chosen as, 

1 2 3 45, 3, 2 3 , 2 3p p p i p i= − = − = − + = − −  (5.9) 

This resulted in the following observer gain matrix, 

12

56

6

40

K

 
 
 =
 −
 
 

 (5.10) 

Although the observer was designed using the linear system, the results were simulated 

using the full nonlinear system and the passivity based nonlinear control law presented in 
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Section 4.5. This controller was chosen since it required full-state feedback and had the 

optimum performance compared to the other nonlinear controllers. As seen in Figure 5.2, 

the observer state feedback performs well as all states converge to the equilibrium within 

two orbits. As mentioned before, the results have been normalized as in Section 3.3. 

The observer error was also analyzed under varying initial conditions Table 5-1. Case 1 

was identical to the case used in Section 4.5.2 without the presence of the observer as a 

benchmark and the remaining two cases were used to illustrate the rate of convergence of 

the observer. Clearly the large change in initial conditions did not greatly affect the 

performance of the observer as the error still converged in 0.6 orbits. It is important to note 

that although the closed-loop poles of the observer were arbitrarily chosen, other choices 

only yielded marginal improvements in the performance of the observer. This is probably 

a result of the fidelity of the model since a linear approximation is used to estimate the 

nonlinear behavior.  

Finally, as mentioned earlier, although the controller and observer can be designed 

independently without knowledge of the other, the controller performance with the 

observer is not guaranteed. This is evident in Figure 5.6 where the controller without the 

observer can achieve deployment within an orbit and with the observer requires more than 

two orbits. However, it is possible to achieve slightly better performance with modified 

gains. 

Table 5-1 Linear Observer Initial Conditions 

Initial Conditions Case 1 Case 2 Case 3 
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10x  -0.99 -0.99 -0.99 

20x  2 1 1 

30x  0 0 4−  

40x  0 0 8−  

 

 

Figure 5.2 Results of nonlinear control with observer. 
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Figure 5.3 Observer error length. 

 

Figure 5.4 Observer error of normalized length rate. 
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Figure 5.5 Observer error in-plane angle. 

 

Figure 5.6 Comparison with and without observer. 

 NONLINEAR OBSERVER 

Continuous-time observers have been extensively studied throughout the literature [94] 
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[95] [96] [97] [98]. In many practical implementations where the sampling rate of 

measurements is sufficiently high, these observers provide the ideal solution because of 

their simplicity. There are instances however, where the sampling rate of measurements 

cannot meet the desired requirements, and/or they are not guaranteed to occur in constant 

intervals. Thus, continuous-discrete time observers were introduced to compensate for 

these irregularities [99] [100] [101]. The basic principle is that continuous predictions are 

made between 1k kt t t +   and at 
1kt +
, measurements are sampled, and predictions are 

updated. 

The class of nonlinear systems applicable to the observer can be described as, 

( )

( )

( ) ( ) ( ), ( )

( )k k

t t u t t

y t t

= +

=

x Ax f x

Cx
 (5.11) 

where, 

( )

( )

1 1 1

1 1 1 1

( , )

,
( , , , )

( , )

n

q q q

q q

p p p

p p p

p

p p p

u

u
u

u

− − −

   
   
   =  =
   
      
   

 
 
 = =
 
  
 

x f x

x f x
x f x x

x f x

0 I 0

A C I 0 0
I

0 0 0

 (5.12) 

Here, 
i px  are the state variables, 

su  is the control input with s n , and 

py are the system outputs that are sampled at 0 kt    with time-varying intervals 

1k k kt t += − . The functions if , are assumed to be globally Lipschitz with respect to x  

uniformly in u  and the main assumption here is that f  has a triangular structure. Therefore, 
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if the system is not of this form, then there needs to exist a diffeomorphism that puts the 

system into the desired form. Indeed, in general, the transformation in (5.13) may be used 

but, the inverse may not be trivial and in general, may not be unique. 

1

( )

( )

( )

f

r

f

h

L h

L h−

 
 
 =
 
  
 

x

x
T(x)

x

 (5.13) 

where 
ph   and r  is the relative degree of the system. However, through a slightly 

different perspective, we propose to relax the assumption of a triangular structure on f  so 

that the observer is applicable to a wider class of nonlinear systems. 

Consider the same system as in (5.11) now with the following function f , 

1

1

( , )

( , )

( , )

q

q

u

u

u

−

 
 
 =
 
  
 

f x

f
f x

f x

 (5.14) 

Then, the following candidate observer is applicable to this system as well. 

( ) ( )
1 ( )1( ) ( ), ( ) ( ) ( )kt t

k kt u t t e t t


 − −−= + − −
K

x Ax f x Δ K Cx y  (5.15) 

where ( )1T T T
q=x x x  are the state estimates, ( )1T T T

q=K K K  is the gain matrix where 

i
K  is a p p  matrix that is designed such that A = A-KC  is Hurwitz and Δ  is defined 

as follows with 1  . 

1

1 1
p p pq

diag
  −

 
=  

 
Δ I I I  (5.16) 

To see that this observer is applicable to the wider class of nonlinear systems, we must 
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carefully review the proof of this observer in detail which essentially extends upon the 

traditional continuous-time observer to allow for bounded and irregular sampling intervals 

[102]. It can be seen that by simply replacing the Lipschitz constant, the proof is still valid. 

Consider the following, 

1 1

11

0 0( , ) ( , )

( , )
( , ) 0( , ) 0

0 ( , )( , ) 0

qq

qq

u u

u
uu

uu

−−

       
       
       = = + + +
       
          

      

f x f x

f x
f xf x

f xf x

 (5.17) 

Then, according to the Lipschitz condition, 

1 1

1 1

0( , ) ( , )

( , ) ( , )
( , ) ( , )0

00

0

0

( , ) ( , )

q q

q q

i

i

u u

u u
u u

u u

L

− −

−

−  + +
−

+

−

 −

f x f x

f x f x
f x f x

f x f x

x x

 (5.18) 

where iL  is the associated Lipschitz constant for each i
f . Thus, choosing the appropriate 

Lipschitz constant ˆ i

i

L L  permits the use of this observer to this extended class of 

nonlinear systems.  

5.3.1 Case Study 

Consider the following transformation, 
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( )

11

22

43

34

2

3sin 2

xz

xz

xz

xz

  
  
  = =
  
  
−   

z  (5.19) 

Then, using the following identity ( ) ( )1 1 2cos sin sin cos 1x x x− −= = − , the system can 

be transformed into, 

( )

1 2

2 2

3 4
2 3 3 1 1

32
3 4

1

2

4
4 3

3
1 1 1

4 2 9

4 1
1 2

3 1
9

z z

z z
z z z z z

zz
z z

z

z
z z

=

  
 = + + + + + − 

    

  
= − +  

+   

= − −

 (5.20) 

Let, 

( )

( )

 

2 2

3 4
3 1 1

32

1

2

4
3

0

3
1 1 10 1 0 0

4 2 9
0 0 1 0

, ,
0 0 0 1 4 1

1 20 0 0 0

3 1
9

1 0 0 0

z z
z z z

u zz

z

z
z

 
 

   
 + + + + −            

   = =      − +     +      
 

− − 
 

=

A f z

C

 (5.21) 

Clearly the system is of the from (5.12) with the modification to f   as in (5.14). The 

candidate observer in (5.15) performs well and is able to estimate the remaining states 

relatively accurately as compared to the linear observer. 

Figure 5.7 depicts the discretized measurements of length and length rate and it is 
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evident that the intervals between measurements are non-uniform. Once again, the 

dimensions are normalized as described in Section 3.3. Furthermore, there are periods that 

extend as long as 5-10% of the orbit without a measurement and yet, the observer and 

controller are still able to achieve successful deployment. This upper limit can in theory be 

calculated but is quite complex and left for future work. However, when the time between 

measurements extend beyond this threshold (i.e., when the deployment velocity is slow 

towards end of deployment), the observer begins to oscillate and potentially diverge. A 

brute force solution is to decrease the step size between measurements towards the end of 

deployment. For example, if measurements are collected at every 5m, then towards the end 

of deployment, measurements should be collected at every 5cm. Again, the exact ratio can 

be calculated theoretically but is left outside of the scope of this thesis. 

Both controllers were simulated with PWPF modulation. Table 5-2 below outlines the 

simulation parameters. For each case, the system response and the observer error has been 

plotted. The nonlinear control with the same initial conditions has almost negligible error 

and the observer is able to estimate the states of the system very effectively. It would be 

interesting to see the performance of the observer under disturbances such as atmospheric 

drag but has been left for future work. 

In the linear observer case, there was degraded performance due to the presence of the 

observer, however, in the nonlinear case, these adverse effects are negligible. This can be 

attributed to the better convergence performance of the nonlinear observer and the use of 

the full nonlinear model. Furthermore, there is significant performance improvements of 

the estimation of the length and length rate of the nonlinear observer as compared to its 
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linear counterpart. 

Table 5-2 Simulation Parameters for Nonlinear Observer 

 
Case 1 

Linear Control  

Case 2 

Linear Control 

Case 3 

Nonlinear Control 

Case 4 

Nonlinear Control 

 Plant Observer Plant Observer Plant Observer Plant Observer 

10x  -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 -0.99 

20x  0.5 0.5 0.5 1 2 2 2 2.5 

30x  0 0 0 0 0 0 0 0 

40x
 0 0 0 0 0 0 0 0 

 

 

Figure 5.7 Discrete measurements of tether length and length rate. 
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Figure 5.8 Case 1 system response. 

 

Figure 5.9 Case 1 observer error. 
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Figure 5.10 Case 2 system response. 

 

Figure 5.11 Case 2 observer error. 
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Figure 5.12 Case 3 system response. 

 

Figure 5.13 Case 3 observer error. 
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Figure 5.14 Case 4 system response. 

 

Figure 5.15 Case 4 observer error. 

 



112 

 

Chapter 6 SOFTWARE-IN-THE-LOOP SIMULATION  

Summary: In lieu of ground based experiments, this chapter will focus on the use of 

commercial software to validate the TSS deployment under higher fidelity dynamics 

models and a variety of external disturbances. First, rationale and a brief overview of the 

commercial software and its capabilities will be presented, followed by the integration of 

the controllers with the commercial software. Finally, a case study is analyzed to show the 

effectiveness of this approach. In the case study, one simple linear controller is utilized to 

show a proof-of-concept. The integration of more advanced controllers is left for future 

work. 

 RATIONALE FOR SIL SIMULATION 

As mentioned in Section 2.4, ground based experiments for TSS deployment is difficult to 

procure and conduct. Therefore, in this thesis, advanced simulations are performed and 

analyzed to supplement this shortcoming and validate the controller development. The 

controllers are placed in a closed feed-back loop with the commercial software and from 

this perspective, the plant model is essentially replaced by the commercial software. The 

advantage of this approach is the ability to include a variety of different plant models and 

disturbances while iterating rapidly on the controller performance, if necessary. 

 COMMERCIAL SOFTWARE 

AGI’s System Tool Kit (STK) is a powerful tool used to analyze and visualize complex 
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systems such as spacecrafts in low earth orbit. The software contains high fidelity models 

of the Earth and its atmosphere, as well as common disturbances found in the space 

environment such as gravitational forces from other bodies (i.e., sun, moon, etc…) and 

solar radiation to name a couple. The software has many features and tools, but the most 

relevant features for this thesis are the ability to use these models to propagate the motion 

of satellites in all six degrees of freedom, as well as the ability to include custom user-

define forces during propagation. Since STK does not have any properties or functionality 

that can be used to simulate the dynamics of the tether, it needs to be artificially included 

through user-defined functions. STK exposes these functions through a dedicated 

programming interface with support for various programming languages. An 

implementation of this approach with VBScript and MATLAB can be found in Appendix 

A. 

 INTEGRATION OF CONTROLLERS WITH COMMERCIAL 

SOFTWARE 

The objective is to simulate the deployment dynamics of the tether in STK. This can be 

achieved by using a user-defined function to compute the forces the tether exerts on the 

spacecraft, given the current state and, send it to STK in real-time at every timestep. Then, 

STK can propagate the motion of the spacecraft as if it were constrained by a tether. This 
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is illustrated in Figure 6.1 where ( )f x is the user-defined function. 

 From the discussion in Section 4.1, it is evident that the tether tension is the only 

force exerted by the tether on each spacecraft, and all other forces are due to orbital 

dynamics. Therefore, we can leverage STK to compute the complex orbital dynamics 

which may include a variety of disturbances and utilize the user-defined function to 

compute the tension in the tether. Interestingly, this result coincides with the objective of 

the controller. As such, the user-defined function can directly be replaced by the controller. 

Also, STK can compute attitude dynamics as well, so in theory the effects of the tether on 

the attitude of the spacecraft can be analyzed but is left out of the scope of this thesis. 

Assumptions identified in Chapter 3 are still valid where the spacecrafts are considered as 

point masses connected by a massless rigid tether and the mass of one spacecraft is orders 

of magnitude larger than the other.  

Environmental disturbances are introduced into the system where atmospheric drag 

is presumed to be the most significant/dominant especially for orbits with altitude less than 

500km. Other disturbances such as oblateness of the Earth, solar radiation pressure and 

third-body gravity perturbations are included but they have negligible effects since the 

time-scales of the deployment process is much less than that of the effects of the 

Figure 6.1 Interfacing STK with a user-defined function  

STK 
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disturbances. Eddy current induced magnetic torque effects on nanosatellites are also 

ignored since attitude dynamics were neglected. Mechanical disturbances such as those 

from friction at tether exit and kinks of folded tether are ignored at this stage and is left for 

future work. 

 The inputs to the controller will be limited to the length and length rate of the tether 

to be consistent with the results of this thesis. Since the notion of a tether does not exist in 

STK and the assumption of a massless and rigid tether still holds, the tether can be replaced 

by the vector between the two spacecrafts as in Figure 3.1. STK can easily output this 

vector and its derivative which are used as the length and length rate. Similarly, the 

controller outputs the tension T in the tether which, STK will view this as an external force 

on the spacecraft. It is important to note that this force is a vector and in the TSS, the unit 

force vector coincides with the unit length vector. Therefore, the output of the controller is 

the unit length vector (which was received as an input) with magnitude T . It is also 

important to note that these vectors are in the body frame of the main satellite. In STK, the 

body frame is chosen as the Local-Vertical Local-Horizontal (LVLH) frame. 

 CASE STUDY 

Consider the TSS system in a low earth orbit with the following properties, 

• Mass of the main satellite is 100kg, mass of the sub-satellite is 1kg 

• Main satellite is in a circular orbit at an altitude of 400km above the equator 

• Air drag acts on both satellites, each with a drag coefficient of 2.2 

• Desired tether length 100m 
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STK’s parameters were as follows, 

• Epoch Jan. 22nd, 2019 (arbitrarily chosen) 

• Earth geoid – EGM2008 with degree/order of 21 

• Third-body gravity from Sun and Moon 

• Jacchia-Roberts atmospheric density model 

• ICRF Coordinate System 

• HPOP Propagator 

• RKF 7(8) Integrator – Runge-Kutta-Fehlberg integration method of 7th order with 

8th order error control for the integration step size 

There are many more parameters that can be enabled if greater fidelity is required. 

Discussion of these options and appropriate trade-offs are left outside the scope of this 

thesis. 

The simple linear controller found in 4.4.2 was chosen for this simulation to provide 

a proof-of-concept. The gains were recomputed (
1 2 3 4 54.6, 3.6, 0, 0, 3k k k k k= = = = = ) 

since the libration rate is not available for feedback. Also, since the control law is in non-

dimensional form, the output was scaled appropriately as in Section 3.3. The results of the 

simulation are shown in the figures below.  

It is evident that controller is still able to achieve its objectives in a much more 

complex scenario. The error between the results of the MATLAB simulation and STK are 

reasonable. There exists quite a bit of discrepancy in the length rate (Figure 6.3), libration 

angle (Figure 6.4) and the beginning of the libration angle rate (Figure 6.5). This could be 

attributed to the disturbances acting on the system which is not considered in the MATLAB 
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simulation. Furthermore, the errors at the end of  Figure 6.3 is a result of numerical error. 

It is important to note that in these simulations, the tether is considered massless and the 

atmospheric drag effects of the tether have been neglected. Future work needs to be 

conducted to address this topic as careful consideration of the tether model in STK is 

required. 

Since STK propagates the motion in all six degrees of freedom, the out-of-plane 

motion of the tether deployment process can be analyzed. From Figure 6.6, the assumption 

of weak-coupling between this state and the rest of the system is clearly validated. The 

slight divergence towards the end of the deployment process is again attributed to 

numerical error. Therefore, in controller design and analysis, this state can be neglected.  

This approach could be extended to much more complex controllers and observers 

as well. There are two similar approaches that could be utilized. This first is the approach 

shown in this thesis with the code provided in Appendix A. The second is to connect STK 

with Simulink (tool part of MATLAB package). This approach may be more desirable 

when the controllers or observers rely on numerical integrators or first, second, or higher-

order dynamics to compute their outputs. A few samples on this approach can be found on 

the internet for reference.  
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Figure 6.2 Comparison of Deployed Tether Length 

 

Figure 6.3 Comparison of Tether Velocity 
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Figure 6.4 Comparison of Libration Angle 

 

Figure 6.5 Comparison of Libration Angle Rate 
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Figure 6.6 Out-of-Plane Tether Libration Angle 
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Chapter 7 CONCLUSIONS 

 SUMMARY OF CONTRIBUTIONS 

The main contributions of this thesis are in the development of control laws for the space 

tether deployment problem, the development of advanced nonlinear observers for state 

estimation and validation of controllers under advanced plant models and disturbances. 

The control laws are developed for a deployment mechanism that is compatible with 

nanosatellites. The contributions are summarized as follows 

7.1.1 Deployment Control of Space Tethers with Explicit Velocity 

Constraint 

Most deployment mechanisms utilize a spring to generate an initial impulse and then a 

braking mechanism to control the deployment process. However, majority of the literature 

has neglected this property and assume the tether velocity is unconstrained. The limited 

research that has been conducted on this topic has either leveraged optimal control to 

achieve this objective or tackled this problem from a trajectory tracking point of view. In 

this thesis, a framework was developed in which the constraint is guaranteed to be satisfied 

mathematically. In fact, under the proposed framework, the controller development is 

decoupled from the constraint itself. Instead, it is shown that the constraint can be achieved 

through proper selection of control gains. 
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7.1.2 Observers for Space Tether Deployment Control 

Linear controllers can be realized through feedback of the tether length and tether velocity 

alone. However, the nonlinear controllers rely on all states of the system to be 

available/measured for feedback. In this thesis, it was shown that the tether system is 

observable under only the measurement of the tether length. As such, a cost-effective 

approach is to develop observers to estimate the remaining states. A simple length 

measurement system used on the DESCENT mission was discussed which introduced a 

new and challenging problem. The measurements arrived at discrete time-varying 

intervals. Therefore, the observer would need to predict the states of the system in-between 

measurements and update its prediction at the measurement itself. Therefore, continuous-

discrete observers were developed in this thesis to address this issue. 

7.1.3 Software-In-The-Loop (SIL) Simulations 

Ground based experiments for the tether deployment problem are difficult/expensive to 

procure and access. Instead, commercial software with advanced models of the space 

environment can be used to supplement this shortcoming. The advantage of this approach 

is the ability to quickly iterate on solutions and analyze the behavior/performance of the 

system under a variety of disturbances which is not feasible in ground-based experiments. 

In this thesis, controllers developed in MATLAB generated outputs which were fed into 

the commercial software. Then, the commercial software would propagate the motion of 

the system and feed the data back into the controller. The effectiveness of the proposed 

controllers is shown in these closed-loop simulations. 
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 SUMMARY OF FINDINGS 

This thesis has presented a framework that allows controller development under state 

constraints. This approach was then leveraged to tackle the TSS deployment problem with 

a spring-brake actuator. In this deployment mechanism, the tether must be deployed 

monotonically and cannot be reeled back in. Mathematically, this constraint can be stated 

as a non-negative tether length velocity throughout the deployment process. Closed-loop 

controllers that are proved to satisfy these constraints were developed.  Furthermore, a new 

type of observer was applied to the TSS system that allows the measurement systems to be 

relatively inexpensive. Specifically, the length measurement system which produces 

measurements at discrete, time-varying intervals at time-scales much larger than controller 

actuation, were transformed into continuous estimates for closed-loop feedback through 

the use of a novel continuous-discrete nonlinear observer.  Finally, advanced simulations 

beyond any found in the literature, were utilized to validate the performance of the TSS 

deployment controller. These simulations introduced advanced plant models and 

disturbances under which a simple linear controller was validated. The results showed that 

the simplified dumbbell model is a reasonable description of the physical system and 

closed-loop control laws derived from this model have relatively good performance. 

 FUTURE WORK 

There are a few avenues to explore to continue and expand the current work. Potential 

future directions are discussed below. 

1. Experimental validation of the measurement, observer estimation and closed loop 
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control. 

2. Analyze the controller performance with model uncertainties and disturbances. In 

particular, if the mass of the tether is introduced, the aerodynamic drag would 

increase significantly. 

3. Develop controllers for space tether deployment with two nanosatellites connected 

by a tether. 

4. Consider the effects of attitude dynamics on the deployment process. 
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Appendix A STK SAMPLE CODE 

The following sample code was used in the STK Chapter. The VBScript was based off a 

sample template provided by STK. 

Appendix A.1 VBScipt 

'====================================================== 
'  Copyright 2005, Analytical Graphics, Inc.           

' ===================================================== 

 
'================================ 

' Matlab specific variables 

'=============================== 
 

Dim m_mFileName 

Dim m_MatlabApp 
 

Set m_MatlabApp = nothing 

m_mFilename = "example1Hpop" 
 

' NOTE: to attach to an existing matlab session, 

' you must execute: enableservice('AutomationServer',true) 
' in that matlab session. If you do not, then a new Matlab 

' session will be opened 

 
' NOTE: our current experience is that even when you open 

' the session yourself and attach to it, it will be closed 

' once the plugin component is freed and releases its 
' Matlab attachment. 

 

'================================= 
' Reference Frames Enumeration 

'================================= 

Dim eUtFrameInertial, eUtFrameFixed, eUtFrameLVLH, eUtFrameNTC 
    

eUtFrameInertial   = 0 

eUtFrameFixed    = 1 
eUtFrameLVLH    = 2 

eUtFrameNTC    = 3 
  

 

'================================== 

' Time Scale Enumeration 

'================================== 

Dim eUTC, eTAI, eTDT, eUT1, eSTKEpochSec, eTDB, eGPS 
   

eUTC    = 0 

eTAI    = 1 
eTDT    = 2 

eUT1    = 3 

eSTKEpochSec  = 4 
eTDB    = 5 

eGPS    = 6 

 
 

'================================== 

' Log Msg Type Enumeration 
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'================================== 
Dim eLogMsgDebug, eLogMsgInfo, eLogMsgForceInfo, eLogMsgWarning, eLogMsgAlarm 

 

eLogMsgDebug   = 0 
eLogMsgInfo   = 1 

eLogMsgForceInfo  = 2 

eLogMsgWarning   = 3 
eLogMsgAlarm   = 4 

 

'================================= 
' Sun Position Enumeration 

'================================= 

Dim eApparentToTrueCB, eApparent, eTrue, eSRP 
 

eApparentToTrueCB  = 0 

eApparent    = 1 
eTrue     = 2 

eSRP     = 3 

 
'================================= 

' Accel Type Enumeration 

'================================= 
Dim eTotalAccel, eTwoBodyAccel, eGravityAccel, ePerturbedGravityAccel, eSolidTidesAccel 

Dim eOceanTidesAccel, eDragAccel, eSRPAccel, eThirdBodyAccel, eGenRelativityAccel, eAddedAccel 

 
eTotalAccel    = 0 

eTwoBodyAccel    = 1 
eGravityAccel    = 2 

ePerturbedGravityAccel  = 3 

eSolidTidesAccel   = 4 
eOceanTidesAccel   = 5 

eDragAccel     = 6 

eSRPAccel     = 7 

eThirdBodyAccel   = 8 

eGenRelativityAccel  = 9 

eAddedAccel    = 10 
 

' ================================= 

'  ForceModel Type Enumeration 
' ================================= 

 

eGravityModel    = 0 
eSolidTidesModel  = 1 

eOceanTidesModel   = 2 

eDragModel    = 3 
eSRPModel     = 4 

eThirdBodyModel   = 5 

eGenRelativityModel  = 6 
 

'=========================================== 

' AgEAttrAddFlags Enumeration 

'=========================================== 

Dim eFlagNone, eFlagTransparent, eFlagHidden, eFlagTransient, eFlagReadOnly, eFlagFixed 

 
eFlagNone   = 0 

eFlagTransparent = 2 

eFlagHidden   = 4 
eFlagTransient  = 8   

eFlagReadOnly  = 16 

eFlagFixed  = 32 
 

 

'================================ 
' Global Variables 

'================================ 

Dim m_AgUtPluginSite 
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Dim m_AgStkPluginSite 
Dim m_AgAttrScope 

Dim m_CrdnPluginProvider 

Dim m_CrdnConfiguredVector 
Dim m_CrdnConfiguredVector_derivative 

Dim m_CrdnConfiguredVector_Ref 

Dim m_CalcToolProvider 
 

Set m_AgUtPluginSite         = Nothing 

Set m_AgStkPluginSite        = Nothing 
Set m_AgAttrScope         = Nothing 

Set m_CrdnPluginProvider       = Nothing 

Set m_CrdnConfiguredVector     = Nothing 
Set m_CrdnConfiguredVector_derivative  = Nothing 

Set m_CrdnConfiguredVector_Ref    = Nothing 

Set m_CalcToolProvider       = Nothing 
 

Dim m_Name 

Dim m_Enabled 
Dim m_VectorName 

Dim m_VectorName_derivative 

Dim m_VectorName_Ref 
Dim m_AccelRefFrame 

Dim m_AccelRefFrameChoices(3) 

Dim m_AccelX 
Dim m_AccelY 

Dim m_AccelZ 
Dim m_MsgStatus 

Dim m_EvalMsgInterval 

Dim m_PostEvalMsgInterval 
Dim m_PreNextMsgInterval 

Dim m_PreNextCntr 

Dim m_EvalCntr 

Dim m_PostEvalCntr 

Dim m_Range 

Dim m_Range_vel 
 

m_Name      = "Matlab.Example1.Hpop.wsc" 

m_Enabled     = true 
m_VectorName    = "Satellite1" 

m_VectorName_derivative  = "Satellite1_derivative" 

m_VectorName_Ref   = "Body.-Z" 
 

m_AccelRefFrame    = 0 

m_AccelRefFrameChoices(0) = "eUtFrameInertial" 
m_AccelRefFrameChoices(1) = "eUtFrameFixed" 

m_AccelRefFrameChoices(2) = "eUtFrameLVLH" 

m_AccelRefFrameChoices(3) = "eUtFrameNTC" 
 

m_AccelX     = 0.0 

m_AccelY     = 0.00 

m_AccelZ     = 0.0 

m_MsgStatus     = false 

m_EvalMsgInterval   = 5000 
m_PostEvalMsgInterval  = 5000 

m_PreNextMsgInterval  = 1000 

 
m_PreNextCntr    = 0 

m_EvalCntr     = 0 

m_PostEvalCntr    = 0 
 

m_Range  = null 

m_Range_vel = null 
 

 

'======================= 
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' GetPluginConfig method 
'======================= 

Function GetPluginConfig( AgAttrBuilder ) 

 
 If( m_AgAttrScope is Nothing ) Then 

    

  Set m_AgAttrScope = AgAttrBuilder.NewScope() 
   

  '=========================== 

  ' General Plugin attributes 
  '=========================== 

  Call AgAttrBuilder.AddStringDispatchProperty( m_AgAttrScope, "PluginName", "Human readable plugin name 

or alias",                 "Name",       0 ) 
  Call AgAttrBuilder.AddBoolDispatchProperty  ( m_AgAttrScope, "PluginEnabled",     "If the plugin is enabled 

or has experience an error", "Enabled",    0 ) 

  Call AgAttrBuilder.AddStringDispatchProperty( m_AgAttrScope, "VectorName", "Relative vector",              
"VectorName", 0 ) 

  Call AgAttrBuilder.AddStringDispatchProperty( m_AgAttrScope, "VectorName_Derivative", "Relative Vector 

derivative",              "VectorName_Derivative", 0 ) 
  Call AgAttrBuilder.AddStringDispatchProperty( m_AgAttrScope, "VectorName_Ref", "Reference Vector",              

"VectorName_Ref", 0 ) 

 
     

  '=========================== 

  ' Propagation related 
  '=========================== 

  Call AgAttrBuilder.AddChoicesDispatchProperty( m_AgAttrScope, "AccelRefFrame", "Acceleration Reference 
Frame",    "AccelRefFrame", GetAccelRefFrameChoices() ) 

  Call AgAttrBuilder.AddDoubleDispatchProperty  ( m_AgAttrScope, "AccelX",         "Acceleration in the X 

direction", "AccelX",        0 ) 
  Call AgAttrBuilder.AddDoubleDispatchProperty  ( m_AgAttrScope, "AccelY",         "Acceleration in the Y 

direction", "AccelY",        0 ) 

  Call AgAttrBuilder.AddDoubleDispatchProperty  ( m_AgAttrScope, "AccelZ",         "Acceleration in the Z 

direction", "AccelZ",        0 ) 

     

  '=========================== 
  ' Messaging related attributes 

  '=========================== 

  Call AgAttrBuilder.AddBoolDispatchProperty( m_AgAttrScope, "UsePropagationMessages",     "Send messages 
to the message window during propagation",                               "MsgStatus",           0 ) 

  Call AgAttrBuilder.AddIntDispatchProperty ( m_AgAttrScope, "EvaluateMessageInterval",  "The interval at 

which to send messages from the Evaluate method during propagation", "EvalMsgInterval",     0 ) 
  Call AgAttrBuilder.AddIntDispatchProperty ( m_AgAttrScope, "PostEvaluateMessageInterval",  "The interval at 

which to send messages from the PostEvaluate method during propagation", "PostEvalMsgInterval",     0 ) 

  Call AgAttrBuilder.AddIntDispatchProperty ( m_AgAttrScope, "PreNextStepMessageInterval", "The interval at 
which to send messages from the PreNextStep method during propagation", "PreNextMsgInterval", 0 ) 

 

 End If 
 

 Set GetPluginConfig = m_AgAttrScope 

 

End Function   

 

'=========================== 
' VerifyPluginConfig method 

'=========================== 

Function VerifyPluginConfig(AgUtPluginConfigVerifyResult) 
    

    Dim Result 

    Dim Message 
 

 Result = true 

 Message = "Ok" 
 

    If( Not ( m_AccelX <= 10 And m_AccelX >= -10 ) ) Then 

     



144 

 

     Result  = false 
     Message = "AccelX was not within the range of -10 to +10 meters per second squared" 

     

    ElseIf( Not ( m_AccelY <= 10 And m_AccelY >= -10 ) ) Then 
 

     Result  = false 

     Message = "AccelY was not within the range of -10 to +10 meters per second squared" 
 

    ElseIf( Not ( m_AccelZ <= 10 And m_AccelZ >= -10 ) ) Then 

 
     Result  = false 

     Message = "AccelZ was not within the range of -10 to +10 meters per second squared" 

     
 End If 

 

 AgUtPluginConfigVerifyResult.Result  = Result 
 AgUtPluginConfigVerifyResult.Message = Message 

 

End Function   
 

'====================== 

' Init Method 
'====================== 

Function Init( AgUtPluginSite ) 

 
 Set m_AgUtPluginSite = AgUtPluginSite 

  
 If( Not m_AgUtPluginSite is Nothing ) Then 

  

  If( m_Enabled = true ) Then 
   

   Dim siteName 

   siteName = m_AgUtPluginSite.SiteName 

    

   If(siteName = "IAgStkPluginSite" Or siteName = "IAgGatorPluginSite") Then 

    Set m_CrdnPluginProvider  = m_AgUtPluginSite.VectorToolProvider 
    Set m_CalcToolProvider = m_AgUtPluginSite.CalcToolProvider 

 

    If(Not m_CrdnPluginProvider is Nothing) Then 
     Set m_CrdnConfiguredVector     = 

m_CrdnPluginProvider.ConfigureVector( m_VectorName, "<MySelf>", "LVLH", "<MySelf>") 

     Set m_CrdnConfiguredVector_derivative   = 
m_CrdnPluginProvider.ConfigureVector( m_VectorName_derivative, "<MySelf>", "LVLH", "<MySelf>") 

     Set m_CrdnConfiguredVector_Ref    = 

m_CrdnPluginProvider.ConfigureVector( m_VectorName_Ref, "<MySelf>", "Body", "<MySelf>") 
    End If 

     

    If(Not m_CalcToolProvider is Nothing) Then 
     Set m_Range  = 

m_CalcToolProvider.GetCalcScalarWithRate("length", "<MyObject>") 

     Set m_Range_vel = m_CalcToolProvider.GetCalcScalar("length", 

"<MyObject>")      

    End If 

     
    If ( m_MsgStatus = true ) Then 

       

     Call m_AgUtPluginSite.Message( eLogMsgDebug, "Init():" ) 
     Call m_AgUtPluginSite.Message( eLogMsgDebug, "Init(): AccelRefFrame( " 

& GetAccelRefFrame() & " )" )   

     Call m_AgUtPluginSite.Message( eLogMsgDebug, "Init(): AccelX( " & 
m_AccelX & " )" ) 

     Call m_AgUtPluginSite.Message( eLogMsgDebug, "Init(): AccelY( " & 

m_AccelY & " )" ) 
     Call m_AgUtPluginSite.Message( eLogMsgDebug, "Init(): AccelZ( " & 

m_AccelZ & " )" ) 
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    End If 
     

    If(m_CrdnConfiguredVector is Nothing) Then 

     Call m_AgUtPluginSite.Message( eLogMsgDebug, "Init(): Could not obtain " 
& m_VectorName ) 

     Call m_AgUtPluginSite.Message( eLogMsgDebug, "Init(): Turning off the 

computation of SRP Area" ) 
    End If 

   Else 

    Call m_AgUtPluginSite.Message( eLogMsgDebug, "Init(): " & siteName & " does not 
provide VectorToolProvider" ) 

    Call m_AgUtPluginSite.Message( eLogMsgDebug, "Init(): Turning off the computation of 

SRP Area" ) 
   End If 

  Else 

   
   Call m_AgUtPluginSite.Message( eLogMsgDebug, "Init(): Disabled" ) 

   

  End If 
   

  ' Get handle to Matlab 

   
  If(m_Enabled = true) Then 

      Dim filepath 

      filepath = "" 
       

      Set m_MatlabApp = GetObject(filepath,"Matlab.Application") 
 

      If(m_MatlabApp is Nothing) Then 

    MsgBox "Cannot get handle to Matlab" 
    m_Enabled = false 

      End If 

           

  End If 

  

 End If 
     

    Init = m_Enabled 

 
End Function 

  

'====================== 
' PrePropagate Method 

'====================== 

Function PrePropagate( AgAsHpopPluginResult ) 
 

 If( Not m_AgUtPluginSite is Nothing ) Then 

  
  If( m_Enabled = true ) Then 

   

   If( Not AgAsHpopPluginResult is Nothing ) Then 

     

    'm_SrpIsOn = AgAsHpopPluginResult.IsForceModelOn( eSRPModel ) 

     
    'If(m_SrpIsOn) Then 

    ' m_SRPArea = AgAsHpopPluginResult.SRPArea 

    'End if 
    

   End If 

    
  Else 

   

   If( m_MsgStatus = true ) Then 
    

    Call m_AgUtPluginSite.Message( eLogMsgDebug, "PrePropagate(): Disabled" ) 
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   End If 
   

  End If 

  
 End If 

  

 PrePropagate = m_Enabled 
 

End Function 

    
'====================== 

' PreNextStep Function 

'====================== 
Function PreNextStep( AgAsHpopPluginResult ) 

 

 m_PreNextCntr = m_PreNextCntr + 1 
  

 If( Not m_AgUtPluginSite is Nothing ) Then 

  
  If( m_Enabled = true ) Then 

 

   If( m_MsgStatus = true ) Then 
    

    If( m_PreNextCntr Mod m_PreNextMsgInterval = 0 ) Then 

 
     Call m_AgUtPluginSite.Message( eLogMsgDebug, "PreNextStep( " & 

m_PreNextCntr & " ):" ) 
  

    End If 

 
   End If 

   

  Else 

   

   If( m_MsgStatus = true ) Then 

    
    Call m_AgUtPluginSite( eLogMsgDebug, "PreNextStep(): Disabled" ) 

    

   End If 
   

  End If 

 
 End If 

  

 PreNextStep = m_Enabled 
  

End Function 

 
'================= 

' Evaluate Method 

'================= 

Function Evaluate( AgAsHpopPluginResultEval ) 

 

 m_EvalCntr = m_EvalCntr + 1 
  

 If( Not m_AgUtPluginSite is Nothing ) Then 

  
  If( m_Enabled = true ) Then 

 

   Call EvaluateTetherForce( AgAsHpopPluginResultEval) 
 

   Call AgAsHpopPluginResultEval.AddAcceleration( m_AccelRefFrame, m_AccelX, m_AccelY, 

m_AccelZ ) 
 

   If( m_MsgStatus = true ) Then 
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    If( m_EvalCntr Mod m_EvalMsgInterval = 0 ) Then 
 

     Call m_AgUtPluginSite.Message( eLogMsgDebug, "Evaluate( " & 

m_EvalCntr & " ):" ) 
  

    End If 

 
   End If 

   

  Else 
   

   If( m_MsgStatus = true ) Then 

    
    Call m_AgUtPluginSite( eLogMsgDebug, "Evaluate(): Disabled" ) 

    

   End If 
   

  End If 

 
 End If 

  

 Evaluate = m_Enabled 
 

End Function 

 
Function EvaluateTetherForce( ResultEval ) 

 
  

  ' This interface may not be present 

  If( Not m_CrdnConfiguredVector is Nothing) Then 
 

   '============================= 

   ' Position Velocity variables 

   '============================= 

   Dim PosVelArray  

   Dim PosX_Index, PosY_Index, PosZ_Index 
   Dim VelX_Index, VelY_Index, VelZ_Index 

 

   Set PosVelArray = Nothing 
   PosX_Index = 0 

   PosY_Index = 1 

   PosZ_Index = 2 
   VelX_Index = 3 

   VelY_Index = 4 

   VelZ_Index = 5 
 

   '============================= 

   ' Vector variables 
   '============================= 

   Dim VecArray 

   Dim VecX_Index, VecY_Index, VecZ_Index 

 

   Set VecArray = Nothing 

   VecX_Index = 0 
   VecY_Index = 1 

   VecZ_Index = 2 

 
   '============================= 

   ' Vector derivative variables 

   '============================= 
   Dim VecArray_derivative 

   Dim VecXd_Index, VecYd_Index, VecZd_Index 

 
   Set VecArray_derivative = Nothing 

   VecXd_Index = 0 

   VecYd_Index = 1 
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   VecZd_Index = 2 
    

   '============================= 

   ' Vector Reference variables 
   '============================= 

   Dim VecArray_Ref 

   Dim VecXRef_Index, VecYRef_Index, VecZRef_Index 
   Set VecArray_Ref = Nothing 

   VecXRef_Index = 0 

   VecYRef_Index = 1 
   VecZRef_Index = 2 

 

   '============================= 
   ' Calculation variables 

   '============================= 

   Dim VecPosDotProd, VecMag, PosMag, Theta 
 

   VecPosDotProd = 0.0 

   VecMag = 0.0 
   PosMag = 0.0 

   Theta  = 0.0 

   Dim rangeArray, rangeVelArray 
   Dim length_Index, vel_Index 

   Set rangeArray = Nothing 

   length_Index  = 0 
   vel_Index  = 1 

 
   If (Not m_Range Is Nothing) Then 

    rangeArray = m_Range.CurrentValue_Array(ResultEval) 

    rangeVelArray = m_Range_vel.CurrentValue_Array(ResultEval) 
   End If 

 

 

   If( Not ResultEval is Nothing ) Then 

 

    PosVelArray = ResultEval.PosVel_Array( eInterial ) 
 

    VecArray    = m_CrdnConfiguredVector.CurrentValue_Array( 

ResultEval ) 
    VecArray_derivative = m_CrdnConfiguredVector_derivative.CurrentValue_Array( 

ResultEval ) 

    VecArray_Ref   = m_CrdnConfiguredVector_Ref.CurrentValue_Array( 
ResultEval ) 

         

    ' Set variables into the base workspace of Matlab 
    Call m_MatlabApp.PutWorkspaceData("posX", "base", CDbl(PosVelArray( PosX_Index 

))) 

    Call m_MatlabApp.PutWorkspaceData("posY", "base", CDbl(PosVelArray( PosY_Index 
))) 

    Call m_MatlabApp.PutWorkspaceData("posZ", "base", CDbl(PosVelArray( PosZ_Index 

))) 

    Call m_MatlabApp.PutWorkspaceData("vectorX", "base", CDbl(VecArray( VecX_Index 

))) 

    Call m_MatlabApp.PutWorkspaceData("vectorY", "base", CDbl(VecArray( VecY_Index 
))) 

    Call m_MatlabApp.PutWorkspaceData("vectorZ", "base", CDbl(VecArray( VecZ_Index 

))) 
    Call m_MatlabApp.PutWorkspaceData("length", "base", CDbl(rangeArray( length_Index 

))) 

    Call m_MatlabApp.PutWorkspaceData("vel", "base", CDbl(rangeArray( vel_Index ))) 
     

    ' Execute the mfile on those variables 

     
    Dim outResult 

     

    Call m_MatlabApp.Feval(m_mFilename, 3, outResult, _ 
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      "vectorX=", "vectorY=", "vectorZ=", _ 
      "length=", "vel=", "posX=", "posY=", "posZ=") 

       

    ' Get the computed variable 
    m_AccelX = CDbl(outResult(0)) 

    m_AccelY = CDbl(outResult(1)) 

    m_AccelZ = CDbl(outResult(2)) 
 

   Else 

 
    If( Not m_AgUtPluginSite is Nothing And m_MsgStatus = true ) Then 

 

     Call m_AgUtPluginSite.Message( eLogMsgWarning, "Crdn Configured 
Vector or Result Eval was null" ) 

 

    End If 
 

   End If 

 
  End If 

  

 EvaluateTetherForce = True 
 

End Function 

 
'================= 

' PostEvaluate Method 
'================= 

Function PostEvaluate( AgAsHpopPluginResultPostEval ) 

 
 m_PostEvalCntr = m_PostEvalCntr + 1 

  

 If( Not m_AgUtPluginSite is Nothing ) Then 

  

  If( m_Enabled = true ) Then 

 
   If( m_MsgStatus = true ) Then 

    

    Call m_AgUtPluginSite.Message( eLogMsgDebug, "PostEvaluate():" ) 
 

   End If 

   
  Else 

   

   If( m_MsgStatus = true ) Then 
    

    Call m_AgUtPluginSite( eLogMsgDebug, "PostEvaluate(): Disabled" ) 

    
   End If 

   

  End If 

 

 End If 

  
 PostEvaluate = m_Enabled 

 

End Function 
 

'======================================================== 

' PostPropagate Method 
'======================================================== 

Function PostPropagate( AgAsHpopPluginResult) 

 
 If( Not m_AgUtPluginSite is Nothing ) Then 

  

  If( m_Enabled = true ) Then 



150 

 

   
   If( m_MsgStatus = true ) Then 

    

    Call m_AgUtPluginSite.Message( eLogMsgDebug, "PostPropagate():" ) 
    

   End If 

   
  Else 

   

   If( m_MsgStatus = true ) Then 
    

    Call m_AgUtPluginSite.Message( eLogMsgDebug, "PostPropagate(): Disabled" ) 

    
   End If 

   

  End If 
  

 End If 

  
 PostPropagate = m_Enabled 

 

End Function 
    

'=========================================================== 

' Free Method 
'=========================================================== 

Sub Free() 
 

 If( Not m_AgUtPluginSite is Nothing ) Then 

  
  If( m_MsgStatus = true ) Then 

   

   Call m_AgUtPluginSite.Message( eLogMsgDebug, "Free():" ) 

   Call m_AgUtPluginSite.Message( eLogMsgDebug, "Free(): PreNextCntr( " & m_PreNextCntr & " )" 

) 

   Call m_AgUtPluginSite.Message( eLogMsgDebug, "Free(): EvalCntr( " & m_EvalCntr & " )" ) 
   Call m_AgUtPluginSite.Message( eLogMsgDebug, "Free(): PostEvalCntr( " & m_PostEvalCntr & " 

)" ) 

   
  End If 

   

  Set m_AgUtPluginSite      = Nothing 
  Set m_CrdnPluginProvider       = Nothing 

  Set m_CrdnConfiguredVector     = Nothing 

  Set m_CrdnConfiguredVector_derivative  = Nothing 
  Set m_CrdnConfiguredVector_Ref    = Nothing 

 

 End If 
 

End Sub 

 

'============================================================= 

' Name Method 

'============================================================= 
Function GetName() 

 

 GetName = m_Name 
 

End function 

 
Function SetName( name ) 

 

 m_Name = name 
 

End function 
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'============================================================ 
' Enabled property 

'============================================================ 

Function GetEnabled() 
 

       GetEnabled = m_Enabled 

 
End Function 

 

Function SetEnabled( enabled ) 
 

       m_Enabled = enabled 

 
End Function 

 

'============================================================ 
' VectorName property 

'============================================================ 

Function GetVectorName() 
 

       GetVectorName = m_VectorName 

 
End Function 

 

Function SetVectorName(vectorname) 
 

       m_VectorName = vectorname 
 

End Function 

 
Function GetVectorName_derivative() 

 

       GetVectorName_derivative = m_VectorName_derivative 

 

End Function 

 
Function SetVectorName_derivative(vectorname) 

 

       m_VectorName_derivative = vectorname 
 

End Function 

 
Function GetVectorName_Ref() 

 

       GetVectorName_Ref = m_VectorName_Ref 
 

End Function 

 
Function SetVectorName_Ref(vectorname) 

 

       m_VectorName_Ref = vectorname 

 

End Function 

 
'=========================================================== 

' AccelRefFrame property 

'=========================================================== 
Function GetAccelRefFrame() 

        

 GetAccelRefFrame = m_AccelRefFrameChoices( m_AccelRefFrame ) 
 

End Function 

 
Function SetAccelRefFrame(accelrefframe) 

 

 If( m_AccelRefFrameChoices(0) = accelrefframe ) Then 
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  m_AccelRefFrame = 0 

 

 ElseIf( m_AccelRefFrameChoices(1) = accelrefframe ) Then 
  

  m_AccelRefFrame = 1 

 
 ElseIf( m_AccelRefFrameChoices(2) = accelrefframe ) Then 

  

  m_AccelRefFrame = 2 
 

 ElseIf( m_AccelRefFrameChoices(3) = accelrefframe ) Then 

  
  m_AccelRefFrame = 3 

 

 End If 
  

End Function 

 
'=========================================================== 

' AccelRefFrameChoices property 

'=========================================================== 
Function GetAccelRefFrameChoices() 

 

       GetAccelRefFrameChoices = m_AccelRefFrameChoices 
 

End Function 
 

Function SetAccelRefFrameChoices(accelrefframechoices) 

 
       m_AccelRefFrameChoices = accelrefframechoices 

 

End Function 

 

'========================================================== 

' AccelX property 
'========================================================== 

Function GetAccelX() 

 
       GetAccelX = m_AccelX 

 

End Function 
 

Function SetAccelX(accelx) 

 
       m_AccelX = accelx 

 

End Function 
 

'========================================================= 

' AccelY property 

'========================================================= 

Function GetAccelY() 

 
       GetAccelY = m_AccelY 

 

End Function 
 

Function SetAccelY(accely) 

 
       m_AccelY = accely 

 

End Function 
 

'========================================================= 

' AccelZ property 
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'========================================================= 
Function GetAccelZ() 

 

       GetAccelZ = m_AccelZ 
 

End Function 

 
Function SetAccelZ(accelz) 

 

       m_AccelZ = accelz 
 

End Function 

 
'====================================================== 

' MsgStatus property 

'====================================================== 
Function GetMsgStatus() 

 

       GetMsgStatus = m_MsgStatus 
 

End Function 

 
Function SetMsgStatus(msgstatus) 

 

       m_MsgStatus = msgstatus 
 

End Function 
 

'======================================================= 

' EvalMsgInterval property 
'======================================================= 

Function GetEvalMsgInterval() 

 

       GetEvalMsgInterval = m_EvalMsgInterval 

 

End Function 
 

Function SetEvalMsgInterval(evalmsginterval) 

 
       m_EvalMsgInterval = evalmsginterval 

 

End Function 
 

'======================================================= 

' PostEvalMsgInterval property 
'======================================================= 

Function GetPostEvalMsgInterval() 

 
       GetPostEvalMsgInterval = m_PostEvalMsgInterval 

 

End Function 

 

Function SetPostEvalMsgInterval(postevalmsginterval) 

 
       m_PostEvalMsgInterval = postevalmsginterval 

 

End Function 
 

'======================================================= 

' PreNextMsgInterval property 
'======================================================= 

Function GetPreNextMsgInterval() 

 
       GetPreNextMsgInterval = m_PreNextMsgInterval 

 

End Function 



154 

 

 
Function SetPreNextMsgInterval(prenextmsginterval) 

 

       m_PreNextMsgInterval = prenextmsginterval 
 

End Function 

 
'====================================================== 

'  Copyright 2005, Analytical Graphics, Inc.           

' ===================================================== 

 

Appendix A.2 MATLAB Script 

% NOTE: for this example to work, this m-file must be on your Matlab path 

% 

% Use SetPath in Matlab to set the path or copy this m-file to your m-file 
% working area 

 

function [accelX, accelY, accelZ] = example1Hpop(xVec, yVec, zVec, length, vel, posX, posY, posZ) 
 

% Save the data to a text file 
fid = fopen('C:\Users\Latheepan\Documents\STKData_3.txt','a'); 

 

% Parameters for simulation 
r = 6678.14; % km 

m = 1; % kg 

l_max = 100; % meters 
 

% Input from STK 

vec = [xVec, yVec, zVec]; % Vector between satellite and CM 
pos = [posX, posY, posZ]; % Vector between satellite and CM 

omega = sqrt(398600/r)/r; % rad/s 

 
 

 

% Normalize input 
length = length/l_max; 

vel = vel/(l_max*omega); 

 
 

% Control Law 

k1 = 4.6; 
k2 = 3.6; 

T = k1*(length - 1) + k2*vel + 3; 

T_s = T*m*(omega^2)*l_max; % Re-introduce dimensions 
 

if (norm(vec) == 0) 

  

 % Prevent error 

 accelX = 0; 

 accelY = 0; 
 accelZ = 0; 

else  

 % Calculate acceleration. Compute unit vector of "vec" and scale 
  

 % vec is in LVLH frame 

 accelX = ((T_s/m)/norm(vec))*xVec; 
 accelY = ((T_s/m)/norm(vec))*yVec; 

 accelZ = ((T_s/m)/norm(vec))*zVec; 

end 
 

% Debugging purposes 

fprintf(fid, '%f, %f, %f \n', [length vel T_s]); 
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fclose(fid); 


