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Abstract

In this dissertation, we propose and investigate several stationary capacity allocation methods that

anticipate time-varying demand. We apply these techniques to three practical settings in customer

acquisition and retention, cloud computing, and healthcare.

In the first part of this dissertation, we model the trade-off between customer acquisition and

retention as a multi-class queueing network with returning customers, time-dependent arrivals, and

abandonment. Based on its fluid approximation, we propose an approach to determine optimal

stationary staffing levels by partitioning the time-limiting solution of the dynamical system. We test

our method by applying it to two real-world applications, i.e., advertising campaigns and a clinical

setting, and demonstrate its superiority when comparing to other state-of-the-art approaches.

In the second part, we analyze a cloud computing system where a provider wants to determine

the optimal number of servers and retrial interval for incoming jobs when all servers are busy.

Servers in this setting represent components of a computer network and customers are jobs at-

tempting to access the cloud computing infrastructure. By modeling the system as a fluid queue

and using a calculus-of-variations approach, we derive the optimal amount of service capacity and

retrial interval in anticipation of time-varying dynamics. We conduct a case study using data

collected from a real cloud service provider and show that significant savings can be realized.

Finally, we estimate the demand for personal protective equipment (PPE) in the general internal

medicine (GIM) department of a hospital during the COVID-19 pandemic. We derive closed-form

estimates of demand for multiple types of PPE using a queueing framework with generally dis-

tributed service times that models medical interactions with heterogeneous patients whose hospital

admissions are time-varying. We parametrize our predictive model using a data set containing

patients’ clinical and operational records over a period of 9 years. We find that gloves and surgi-
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cal masks represent approximately 90% of predicted PPE usage. We also find that while demand

for gloves is driven entirely by patient-practitioner interactions, 86% of the predicted demand for

surgical masks can be attributed to the requirement that medical practitioners will need to wear

them when not interacting with patients.
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Chapter 1

Introduction

A common feature in many operations management applications such as call centers, healthcare,

penal systems, and technological services, is time variability (see Green et al. 2007a, for instance).

Understanding these time-varying dynamics is important for the accurate evaluation of a service

system’s performance. For example, due to the daily variability of visits in an emergency de-

partment, the average wait-time estimate does not adequately represent operational reality (Kang

and Park 2015). Further, demand for technological services is highly volatile because it follows

electricity consumption patterns affected by pricing and the circadian rhythm (Jang et al. 2016).

The successful management of systems operating in time-varying environments includes the

effective allocation of critical resources such as customer service agents, nurses and computing

hardware. Although dynamically allocating capacity by reassigning staff in real time is difficult

to justify in practice, stationary techniques that allocate resources in anticipation of time-varying

demand remain uncommon. In Chapter 2 and 3 of this dissertation, we develop such methods

for settings where time-varying demand is an essential feature. Then, in Chapter 4, we predict

the usage of Personal Protective Equipment (PPE) by analysing the non-stationary workload of a

hospital to aid in the management of scarce resources during the COVID-19 pandemic.

More specifically, in Chapter 2, we investigate the trade-off between acquisition and retention

efforts when customers are sensitive to the quality of service they receive, i.e., whether they get

timely access to a company’s resources when requested. We model the problem as a multi-class

queueing network with new and returning customers, time-dependent arrivals, and abandonment.

We derive its fluid approximation; a system of ordinary linear differential equations with continuous,
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piecewise smooth, right-hand sides. Based on the fluid model, we propose a novel approach to

determine optimal stationary staffing levels for new and returning customer queues in anticipation

of future time-varying dynamics. Using system accessibility as a proxy for service quality and

staffing levels as a proxy for investment, we demonstrate how to apply our approach to two families

of time-varying arrival functions motivated by real-world applications: an advertising campaign and

a clinical setting. In a numerical study, we demonstrate that our approach creates staffing policies

that maximize throughput while balancing acquisition and retention efforts more effectively (i.e.,

equitable abandonment from each customer class) than commonly used near-stationary methods

such as variants of square-root staffing policies. Our model confirms that acquisition and retention

efforts are intimately linked; this has been found in empirical studies but not captured in the

operations literature. We suggest that in time-varying environments, focusing on either alone is

not sufficient to maintain high levels of throughput and service quality.

In Chapter 3, we determine the jointly optimal service capacity and retrial intervals between

unsuccessful service attempts for a major provider of cloud computing services. Allocating suffi-

cient capacity to cloud services is a challenging task because demand is time-varying. Thus, most

firms have been expanding their capacity with little regard to the consequences associated with

idle resources, such as excessive energy consumption and excess costs. We model the system as

a multi-station queueing network where the arrival rate of jobs is time-varying and the servers

represent CPU cores. Jobs are infinitely impatient and those that are not immediately serviced

may retry several times before permanently abandoning the system. We introduce an offered load

approximation that allows us to construct a recursive representation of the offered load function

which describes the fluid dynamics of the system. We develop a calculus-of-variation approach to

minimize the total functional variation of the constructed offered load function. We show that an

optimal policy can be efficiently obtained and prove that it is similar to maximizing the penalized

system throughput. Using a data set of cloud computing requests over a representative 24-hour

period from a typical service of our partner organization, we show that our optimal policy results

in a 10% reduction in capacity. We also demonstrate that small changes to their service-level agree-

ments may elicit additional savings. Our model can help reduce idle capacity and has implications

for managing more sustainable and environmentally friendly cloud computing services. It may also

help to explain why so much global cloud capacity is typically idle. That is, in order to satisfy
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service level agreements encouraging retrial jobs to be processed during off-peak periods while also

ensuring that they have short wait times, providers must provision large amounts of capacity.

Finally, in Chapter 4 of the dissertation, we estimate the need for PPE in the general internal

medicine department of a hospital affected by the COVID-19 pandemic. Specifically, we determine

how much PPE the department has to procure in order to deliver appropriate care to all admitted

patients over a specified time-horizon according to the hospital’s safety regulations. These estimates

are derived by modelling hospital operations as an infinite capacity queue with time-varying arrivals

and generally distributed service times. We parametrize this model using a data set spanning over

9 years of clinical operations that includes the records of 22039 patients: their length-of-stay (LoS),

demographic data, and clinical information. Under the guidance of medical experts from our

partner hospital, we propose a functional relationship between LoS and PPE usage that admits a

closed-form expression. This allows us to obtain the estimates of PPE usage without performing

extensive simulations. Further, having closed-form expressions equips hospital administrators with

an efficient way to evaluate the sensitivity of our predictions to changes in model parameters.
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Chapter 2

Customer Acquisition and Retention:

A Fluid Approach for Staffing

The work in this chapter won the Queueing SIG student paper competition award from Canadian
Operations Research Society in 2019 and has been submitted for publication as the following:

Eugene Furman, Adam Diamant (advisor), Murat Kristal “Customer Acquisition and Retention:
A Fluid Approach for Staffing”, in Production & Operations Management, [2019]

Dr. Murat Kristal provided financial support for this research, i.e., its presentations in the
domestic and international conferences in 2018-2019.
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2.1 Introduction

Marketing researchers describe customers as discounted streams of revenue and suggest that retain-

ing clients for longer increases a firm’s profit margin (Berger and Nasr 1998, Jain and Singh 2002,

Malhotra 2007). Not surprisingly, as part of various customer relationship management (CRM)

programs, executives have looked for better ways to retain clients while simultaneously acquiring

new ones (Chen and Popovich 2003, Buttle 2004). Acquisition and retention practices are costly,

however, and allocating enough resources to support them is critical. For example, BCE invests

$110 million into acquiring new clients, and its investments into customer retention programs ex-

ceed this amount ten fold (BCE 2016). Further, the CRM industry is large and diverse - it includes

hotels, insurance companies, health care organizations, and universities (Milovic 2012) - and its

value is expected to reach 40 billion dollars in 2020 (Columbus 2016, Taylor 2018).

Motivated by the task of allocating resources to support CRM initiatives, we investigate the

operational trade-off between acquisition and retention efforts when customers are sensitive to the

quality of service they receive, i.e., whether they get timely access to a company’s resources when

requested. The value of capturing the effect of service quality in retention efforts is alluded to both

in the literature and industry reports. For instance, Keaveney (1995) identifies quality-of-service

as one of the major reasons customers seek a different service provider. Similarly, Oracle claims

that service quality substantially contributes to a customers decision to leave (Oracle 2011). We

focus on the relationship between a customer’s ability to access services and quality. Specifically,

increased access to company resources implies higher levels of service quality (Feinberg et al. 2002,

Dean 2002) which, in turn, results in fewer unhappy customers who change providers (Reichheld

and Sasser 1990, Reichheld and Schefter 2000). There is also an inverse effect, customers who find

it more difficult to access services will be more likely to leave.

We model a service system with new and returning customers as a three-station queueing net-

work with feedback and abandonment. After new customers receive service at the first station,

they decide whether to join the customer base (the second station). Returning customers peri-

odically request service (station three) and after each service episode, may choose to remain with

the company (returning to the second station for a period of time) or defect (leave the system).

Customers seeking service are impatient and may decide to leave if they wait sufficiently long. To
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capture the non-stationary nature of demand, we assume that new customers arrive according to a

non-homogeneous Poisson process. Exact analysis of the stochastic system is intractable, and thus,

we derive its fluid approximation which results in a system of ordinary linear differential equations

(ODE) with continuous, piecewise smooth right-hand sides. Conforming to our goal of balancing

acquisition versus retention, we consider the limiting behaviour of the system of ODEs. We formu-

late a mixed-integer program that determines how much capacity to allocate to each customer type

in order to maximize throughput while ensuring no customer type is disproportionally neglected

(i.e., abandonment). We focus on the development of appropriate stationary staffing policies in a

time-varying environment as frequent staffing changes are costly (Park and Bobrowski 1989, Koole

1997, Kitaev and Serfozo 1999, Batta et al. 2007), can result in added employee stress, and turnover

costs exceeding 20% of an employee’s annual compensation (Boushey and Glynn 2012).

We apply our theoretical results to two practical scenarios: an advertising campaign (Afèche

et al. 2017) and a clinical setting (Yom-Tov and Mandelbaum 2014a). The first scenario assumes

that the number of new customers seeking service increases following a promotion. Thus, the firm

must decide how much attention to reserve for new customers while also ensuring that existing

ones are not neglected. The second scenario assumes that the arrival rate of new customers is

periodic, like in the case of patients arriving to a medical facility. The institution must determine

the amount of resources to allocate to newly arriving patients versus those that need more frequent,

sustained service. In both cases, our model incorporates the time-variability of arrivals and customer

abandonment which represent features that affect the relationship between staffing assignments and

service quality over extended time periods. Although these represent different operating regimes,

our objective is to present the full generality of our methodology by demonstrating that it accounts

for a wide range of arrival patterns while proposing stationary staffing policies that are domain

specific. Further, it allows a manager to better analyze the long-term effects of resource allocation

decisions in a dynamic environment. Indeed, we find that a more realistic model yields additional

managerial insight to what can be obtained when demand is assumed to be stationary (e.g., Yom-

Tov and Mandelbaum 2014a, King et al. 2016, Afèche et al. 2017).

To evaluate the effectiveness of our approach, we conduct a simulation study and compare the

performance of our policy to several benchmarks that are based on the square root staffing (SRS)

rule (see, e.g., Feldman et al. 2008a, Janssen et al. 2011, Liu 2018). As compared to the benchmarks,
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we demonstrate that our approach recommends staffing levels that better balance acquisition and

retention efforts over a wide-range of system parameters and arrival functions. We also find that

although our objective is to ensure new and returning customers are adequately served, overall

throughput does not suffer. Finally, we demonstrate that employing time-varying staffing policies

when demand is time-varying may not always be necessary. This is important as there are many

settings where dynamically reassigning staff is not feasible (Chan and Sarhangian 2018).

We make several contributions to the literature. First, our research extends previous work on

stationary staffing policies for queueing systems by introducing a new method that better accounts

for time-dependent demand. Specifically, we show that our policies dominate the near-stationary

benchmarks by ensuring both new and returning customers receive timely service while maintaining

similar levels of throughput. Further, we identify regimes where our policy results in higher levels

of throughput (e.g., high traffic intensity, long service times, high service frequency, low abandon-

ment rate). Thus, our approach performs well without neglecting certain customer classes. An

added benefit is that our staffing polices can easily accommodate customers with varying profit

contributions and/or lifetime value considerations that are common in the CRM literature.

We add to the literature on customer acquisition and retention by introducing a model that

explicitly links these quantities to service quality. Further, in this more realistic setting, we confirm

and refine existing results on resource allocation strategies. Similar to King et al. (2016), for

instance, we find that acquisition efforts are vulnerable to diminishing returns. However, in contrast,

dedicating too few resources to acquisition efforts at any time results in poor performance. In fact,

our results suggest that customer acquisition and retention efforts are intimately intertwined, which

agrees with the marketing literature (see, for instance, Thomas 2001). Whereas assigning few staff

to returning clients results in a performance decrease, too few resources dedicated to acquisition

efforts undermines retention activities. Hence, balancing this trade-off requires careful consideration

of both acquisition and retention practices in a time-varying environment.

2.2 Literature Review and Contribution

Our paper contributes to the literature on deterministic fluid models for multiserver queueing

networks. Specifically, we apply a dynamical systems analysis to determine an optimal station-
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ary staffing policy in a multi-server queueing network with returning customers (feedback), time-

dependent arrivals, and abandonment. Many authors investigate queueing systems with arrivals

that follow a non-homogeneous Poisson process; see the surveys by Defraeye and Van Nieuwenhuyse

(2016), Whitt (2016), and Whitt (2018). The problem of staffing in dynamic service systems has

also been an active area of study (e.g., Henderson et al. 1999, Akcali et al. 2006, Bhandari et al.

2008, Robbins and Harrison 2010). Further, several papers investigate staffing in queueing systems

with time-dependent arrival processes and abandonment; see Harrison and Zeevi 2005, Bassamboo

and Zeevi 2009, Bekker and de Bruin 2010, Defraeye and Van Nieuwenhuyse 2013, Niyirora and

Pender 2016 for example. However, few papers examine stationary staffing models in queueing

networks with time-varying arrivals and both returning and impatient customers.

Our research proposes a methodology to assign a limited number of flexible servers to cus-

tomers of different classes given that customers may seek service multiple times. The dynamic

and static assignment of flexible servers has been investigated by several researchers; see the paper

by Andradóttir et al. (2001). The objective in these papers is to maximize the long-run average

throughput or minimize the long-run average costs. For problems where staff can be allocated

dynamically, several models have been proposed; single-server queueing systems (Andradóttir et al.

2003), tandem queues (Andradóttir et al. 2007), assembly-type queues (Tsai and Argon 2008),

and discrete assignment intervals (Chan and Sarhangian 2018). Our approach involves solving a

static optimization problem to determine the number of servers assigned to each customer class.

Although several papers investigate the assignment of a fixed-set of servers (e,g., Hillier and So

1989, Futamura 2000, Smith et al. 2010, Lee et al. 2014, Smith and Barnes 2015), few pursue this

objective for time-varying systems, i.e., Harrison and Zeevi (2004), Bassamboo et al. (2006).

The square-root staffing (SRS) rule is a well known dynamic staffing model in the operations

literature (see, for instance, Borst et al. 2004, Feldman et al. 2008a, Hampshire et al. 2009, Janssen

et al. 2011). A challenge for SRS, as described in Green et al. (1991, 2007b), is its application

to non-stationary systems. Further, most applications of the SRS rule assume that staffing levels

can be changed in real-time, a strong assumption that is typically not true in practice (e.g., health

care, unionized shift work). Instead, staffing levels are set at asynchronous intervals by management

over relatively long time horizons. In this case, a manager must anticipate the non-stationarity of

the arrival process. Our model accounts for this and we, to quantify the benefit of our approach,
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compare our policy to several variants of the SRS policy (Liu 2018).

As discussed, we analyze the dynamical system corresponding to the fluid limit of the original

stochastic queueing network (Halfin and Whitt 1981). Foundational results on fluid approximations

can be traced back to Mandelbaum et al. (1998), Whitt (2006), and Kang et al. (2010a) for cases

with reneging. The precision of fluid approximations are evaluated in Bassamboo and Randhawa

(2010), Daw and Pender (2019) while Pender et al. (2017) use the approach to analyze the impact

of delay announcements. Unlike previous work which grounds the evaluation of system performance

on a set of distributional assumptions applied to the fluid model (e.g., Jouini et al. 2013, Bassamboo

and Randhawa 2015), we focus solely on analyzing the performance of the fluid model.

Our work obtains insights on how to balance customer acquisition versus retention in dynamic

service environments. These systems are characterized by a set of new customers (a priori homoge-

neous) and returning customers (possibly heterogeneous in their service requirements). Although

several case studies and empirical research describe this phenomenon in the marketing literature

(e.g., Thomas 2001, Reinartz et al. 2005), there are few papers that model and analyze the trade-

off. Fruchter and Zhang (2004) formulate differential game, with two competing firms and a fixed

market, to investigate how effective acquisition and retention efforts are at generating sales. They

find that under various conditions, a focus on either customer retention or acquisition can be an

optimal long-run strategy for a firm but do not discuss how to dynamically balance these efforts

over time. Dong et al. (2011) develop incentive mechanisms to determine the sales channel (i.e.,

direct selling versus delegation) for customer retention and acquisition. They find that when acqui-

sition and retention efforts are in conflict, a firm should choose to focus on retention. King et al.

(2016) introduce a discrete-time, deterministic dynamic programming model to optimally allocate

the resources of a profit maximizing firm. They derive an optimal investment policy which indicates

that a firm should shift its focus from acquisition to retention as the size of a firm’s customer base

grows over time. Finally, Afèche et al. (2017) present a static optimization model to find a set of

optimal staffing levels when customers differ in their service request rates, have rewards that may

depend on service, and have different return probabilities. They find that an optimal policy has a

“bang-bang” structure - certain customers get service or not at all. We extend this literature by

incorporating time-varying demand and abandonment. Further, the trade-off between whether to

invest in customer acquisition and retention efforts is modeled directly into the dynamics of the
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problem as the ability of a firm to allocate enough resources to satisfy time-varying demand.

The customer retention and acquisition literature is related to the analysis of service systems

with feedback (de Véricourt and Jennings 2011); Jacobson et al. (2012) model an emergency re-

sponse environment using a closed-queueing network model with feedback and a fixed number of

customers who may leave the system. Ding et al. (2015) analyze a call center with unspecial-

ized servers, retrials, and reconnects. Yom-Tov and Mandelbaum (2014a) and Huang et al. (2015)

propose a SRS policy to stabilize the performance of a time-varying network with returning cus-

tomers without abandonment. Liu and Whitt (2017) extend this work by developing an offered-load

approximation in a time-varying, many-server queueing system with customer abandonment and

returning customers. Chan et al. (2014) present an analysis of a piecewise smooth dynamical sys-

tem with discontinuous right-hand sides where the service rate is dependent on the number of

customers in the system. Our paper takes an alternative approach: we determine an optimal sta-

tionary staffing level in anticipation of time-varying dynamics. Further, we demonstrate that our

asymptotic analysis and static optimization model can be adapted to a variety of service settings.

2.3 Model Formulation

In this section, we introduce a stochastic queueing network to model a firm’s ability to acquire and

retain customers, derive its fluid limit, and formulate the corresponding dynamical system.

Let I ≡ {a, b} be a set of customer classes that correspond to new and returning clients

respectively. Class-a clients represent new customers that arrive to the system according to a non-

homogeneous Poisson process with time-varying intensity λ ≡ λ(t). Class-b clients are customers

that have received service sometime in the past and may require service again. Class-i ∈ I clients

have service requirements that are exponentially distributed with rate µi. There is also a fixed-sized

pool of s > 0 flexible staff that are able to serve any class of customer and a decision maker that

must decide how many staff to dedicate to each customer class. We assume that the staffing policy

is stationary, i.e., once decided it cannot be easily changed. Let sa and sb be the staffing assignment

to new (Qa) and returning (Qb) service stations, respectively, such that sa + sb ≤ s. Servers attend

to customers of an assigned class under the standard first-in, first-out (FIFO) service policy.

We account for the revenue differential, or the penalty of customer abandonment, by assigning
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weights ρa and ρb to new and base customers attempting to receive service in accordance with

their relative average lifetime value. That is, we define ρi to be relative average lifetime value (LV)

of a class-i client seeking service where, without loss of generality, ρb = 1 and ρa = LVa
LVb
∈ R≥0.

The inclusion of these weights links our queueing model to the CRM literature where balancing

acquisition and retention efforts is achieved by maximizing the long-term profit of the firm.

After a class-a customer arrives to the system, she is served immediately if there is an available

server at station Qa, and waits for service otherwise. All customers are impatient and may decide

to abandon the queue before receiving service. We assume abandonment times of class-a customers

are exponentially distributed with rate τa. Then, class-a clients who complete their service either

leave the system or join the customer base (which we model as a station Qc with infinite capacity);

they become a class-b client. If a client joins the customer base, she may again seek service, this

time at station Qb, after an exponentially distributed amount of time with mean 1/r. Customers

may also decide to cease their relationship with the service provider; attrition times from station

Qc are exponentially distributed with rate ζ. Class-b clients that seek service at station Qb are,

again, impatient; abandonment times are exponentially distributed with rate τb. Class-b customers

who abandon the queue rejoin the customer base (i.e., Qc) with probability θc or leave the system.

Let QN ≡ (M, I,P) define the topology of the queueing network where M = {Qa, Qb, Qc} is

the set of stations in the network, I is the set of customer classes, and P : (M×M)→ [0, 1] is a

function defining the routing probabilities among the stations for clients who complete their service

requirements. More specifically,

P : (M×M)→


Paa Pab Pac

Pba Pbb Pbc

Pca Pcb Pcc

 =


0 0 θac

0 0 θbc

0 1 0

 ,

where Pjj′ is the probability that a customer who finishes service at station Qj is routed to station

Qj′ for j, j′ ∈ {a, b, c}; θac is the probability that a new customer joins the customer base, and θbc

is the probability that a returning customer rejoins the customer base. For simplicity, we refer to

a queueing network with specified arrival, service and abandonment rates by its network topology

QN .
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Let W = {Wa(t),Wb(t),Wc(t)} be a set of headcount stochastic processes corresponding to the

number of customers waiting for service in Qj where j ∈ {a, b, c}. Let X = {Xa(t), Xb(t), Xc(t)}

be a set of headcount stochastic processes corresponding to the number of busy servers at each

station. The system states evolve according to the following equations.

Qa(t) = Wa(t) +Xa(t), Wa(t) = (Qa(t)− sa)+ , Xa(t) = (Qa(t) ∧ sa);

Qb(t) = Wb(t) +Xb(t), Wb(t) = (Qb(t)− sb)+ , Xb(t) = (Qb(t) ∧ sb);

Qc(t) = Xc(t).

(2.1)

With a slight abuse of notation, we denote stations by Qj and corresponding to them counting

stochastic processes by Qj(t). The states of QN are described by the stochastic vector Q =

(Qa(t), Qb(t), Qc(t))
T ∈ R3

≥0. The dynamics of the system is presented in Figure 2.1.

Figure 2.1: Dynamics of service system
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2.3.1 Stochastic Queueing Model

Let N j
λ, N j

µ and N j
τ be the standard Poisson arrival, departure and abandonment processes with

time-varying intensities for station j, respectively, and let Q0 = (Qa(t0), Qb(t0), Qc(t0))T be a

vector of initial conditions, i.e., the number of customers at station j at some starting time t0. Due

to the distributional assumptions introduced in Section 2.3, the system can be modeled as three

non-stationary, Erlang-A queues. This, as shown in Mandelbaum et al. (1998), allows us to express
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the stochastic vector Q in the following functional form.

Qa(t) = Qa(t0) +Na
λ

(∫ t

t0

λ(u)du

)
−Na

µ

(∫ t

t0

µa (Qa(u) ∧ sa) du
)

−Na
τ

(∫ t

t0

τa (Qa(u)− sa)+ du

)
,

Qb(t) = Qb(t0) +N b
λ

(∫ t

t0

rQc(u)du

)
−N b

µ

(∫ t

t0

µb (Qb(u) ∧ sb) du
)

(2.2)

−N b
τ

(∫ t

t0

τb (Qb(u)− sb)+ du

)
,

Qc(t) = Qc(t0) +Na
µ

(∫ t

t0

θacµa (Qa(u) ∧ sa) du
)

+N b
µ

(∫ t

t0

θbcµb (Qb(u) ∧ sb) du
)

+N b
τ

(∫ t

t0

θcτb (Qb(u)− sb)+ du

)
−N c

µ

(∫ t

t0

rQc(u)du

)
−N c

τ

(∫ t

t0

ζQc(u)du

)
.

The stochastic processes in (2.2) describes the evolution of the system. New customers that finish

service may leave Qa and join the customer base, Qc, or they may leave the system entirely.

Returning customers may leave Qc to seek service at Qb or may defect. After a returning customer

receives service at Qb, she may either leave the system or rejoin the customer base Qc. Thus, the

non-stationary arrival rate of new customers has a knock-on effect where the arrival, departure,

and abandonment processes from all stations in the network QN are non-stationary.

2.3.2 Fluid Limit and Dynamical System

A cornerstone of constructing the fluid (limiting) approximation of the stochastic equations in

(2.2) is to describe the asymptotic dynamics of a corresponding large (scaled-up) queueing system.

We employ the heavy traffic limit theorems described in Halfin and Whitt (1981) and Mandel-

baum et al. (1998). The procedure is used pervasively in the literature (see, for example, Iglehart

1965, Borovkov 1967, Iglehart 1973a,b). Specifically, we consider a family of queueing networks

parametrized by η such that the arrival rate and number of servers of system QN η are scaled up

by a factor of η while the traffic intensity is held constant. We also scale up the processes in Q and
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the initial conditions in Q0. This transforms (2.2) into

Qηa(t) = Qηa(t0) +Na
λ

(∫ t

t0

ηλ(u)du

)
−Na

µ

(∫ t

t0

µa (Qηa(u) ∧ ηsa) du
)

−Na
τ

(∫ t

t0

τa (Qηa(u)− ηsa)+ du

)
,

Qηb (t) = Qηb (t0) +N b
λ

(∫ t

t0

rQηc (u)du

)
−N b

µ

(∫ t

t0

µb
(
Qηb (u) ∧ ηsb

)
du

)
(2.3)

−N b
τ

(∫ t

t0

τb
(
Qηb (u)− ηsb

)+
du

)
,

Qηc (t) = Qηc (t0) +Na
µ

(∫ t

t0

θacµa (Qηa(u) ∧ ηsa) du
)

+N b
µ

(∫ t

t0

θbcµb
(
Qηb (u) ∧ ηsb

)
du

)
+N b

τ

(∫ t

t0

θcτb
(
Qηb (u)− ηsb

)+
du

)
−N c

µ

(∫ t

t0

rQηc (u)du

)
−N c

τ

(∫ t

t0

ζQηc (u)du

)
.

The relations in (2.3) describe a sequence of queueing systems where the number of servers and the

number of arrivals grow as η →∞. The compact convergence of (2.3) to its fluid limit is established

in Mandelbaum et al. (1998) and we provide the result, without proof, in the following lemma.

Lemma 1. Let Qη(t) be a scaled up queueing process parametrized by η that corresponds to the

original queueing process Q(t) for all t ≥ 0. Then, we have

q(t) ≡ lim
η→∞

sup
t∈T

1

η
Qη(t) a.s., (2.4)

where T ⊂ R≥0 is a compact set such that q(t) solves the integral equation

q(t) = q(t0) +

∫ t

t0

(
λ(u)− µ(u)(q(u) ∧ s)− τ(u)(q(u)− s)+

)
du. (2.5)

Process Qη(t) is said to converge compactly to q(t), a fluid approximation of Q(t).

Consider the queueing network QN whose dynamics are governed by the stochastic functional

equations in (2.2). If q = (qa(t), qb(t), qc(t))
T , then by evaluating a limit of the sequence of queueing
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networks QN η as η →∞ and applying Lemma 1, we have that

qa(t) = qa(t0) +

∫ t

t0

λ(u)du−
∫ t

t0

µa (qa(u) ∧ sa) du−
∫ t

t0

τa (qa(u)− sa)+ du,

qb(t) = qb(t0) +

∫ t

t0

rqc(u)du−
∫ t

t0

µb (qb(u) ∧ sb) du−
∫ t

t0

τb (qb(u)− sb)+ du, (2.6)

qc(t) = qc(t0) +

∫ t

t0

[
θacµa (qa(u) ∧ sa) + θbcµb (qb(u) ∧ sb) + θcτb (qb(u)− sb)+] du

−
∫ t

t0

rqc(u)du−
∫ t

t0

ζqc(u)du.

which implies that q is the fluid approximation of Q component-wise.

The right-hand sides of (2.6) are piecewise smooth functions, and if we differentiate (2.6) piece-

wise with respect to t, the following relation is obtained

q̇(t) = f(q(t)), (2.7)

where f : R3 → R3 is a continuous, vector-valued, piecewise smooth function. Thus, q(t) is

differentiable for any t ≥ 0. Relation (2.7) with initial condition q0 = (qa(t0), qb(t0), qc(t0))T

defines the initial value problem (IVP)


q̇a(t)

q̇b(t)

q̇c(t)

 =


λ(t)− µa (qa(t) ∧ sa)− τa(qa(t)− sa)+

rqc(t)− µb (qb(t) ∧ sb)− τb(qb(t)− sb)+

θacµa (qa(t) ∧ sa) + θbcµb(qb(t) ∧ sb) + θcτb(qb(t)− sb)+ − (r + ζ)qc(t)

 .

q0 = (qa(t0), qb(t0), qc(t0))T

(2.8)

This IVP is a piecewise smooth system of ODEs with continuous right-hand sides.

Lemma 2. A solution to (2.8) exists, is unique, and is piecewise smooth.

Lemma 2 demonstrates that for any smooth time-varying arrival function, the IVP in (2.8)

has a unique solution and the solution is piecewise smooth with a continuous right-hand side.

Nevertheless, our analysis of staffing rests on a stronger assumption, namely, that the dynamical

system is stable, i.e., converges to a limit as t → ∞. The stability is especially important for

systems with monotonous arrival functions. The limit (equilibrium point) and the corresponding

speed of convergence provide insight into the behaviour of the solution for small values of t. The
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next result states a necessary and sufficient condition for the stability of (2.8).

Lemma 3. If λ(t) ∈ C1 is a smooth function and lim
t→∞

λ(t) <∞, (2.8) is stable.

Although stable systems with continuous monotonous arrival functions (e.g., exponential) are

mathematically convenient, there are many practical instances where the conditions of Lemma 3

are too strict. For example, we consider a particular instance from the family of periodic arrival

functions. To address this, we define the concept of boundedness for any initial condition. Specif-

ically, a solution to (2.8) is bounded if there exists a K > 0 such that q(t) < K for any t > 0.

Notice that all vector inequalities and products are defined component-wise.

Lemma 4. Suppose lim
t→∞

λ(t) is undefined for λ(t) ∈ C1 but there exists a K ′ > 0 such that

λ(t) < K ′ for any t > 0. Then, q(t) is bounded.

Because the solution to (2.8) defines a piecewise smooth, continuous, dynamical system in R3
≥0,

qa(t) = sa and qb(t) = sb describe planes (i.e., the boundary Σ) that split the state space into

four subspaces, Si, i = {1, 2, 3, 4}. The right-hand sides of (2.8) change each time the solution

crosses the boundary. We rigorously define the boundary, as well as the subsets Si, in Appendix A.

Nevertheless, because our system has continuous right-hand sides, solutions cross the boundaries

and immediately enter into adjacent regions, i.e., the amount of time spent on the boundary has

measure zero. This is in contrast to systems with discontinuous right-hand sides (e.g., Chan et al.

2014), where solutions can remain on the boundary for extended periods of time.

For either stable or bounded systems, as characterized by Lemmas 3 and 4, the queue for new

customers is described by a non-homogeneous ODE and the complexity of its solution depends on

the form of the arrival function. The dynamics governing the queue of returning clients and the

customer base requires solving a system of differential equations which take the form

qb(t) = ueψtv(ψ) + weχtv(χ) + q∗b (t),

qc(t) = ueψt + weχt + q∗c (t), (2.9)

where w and u are constants derived from initial conditions, ψ < 0 and χ < 0 are the smallest

and largest negative eigenvalues associated with the homogeneous solution, respectively, and v(ψ)

and v(χ) are the first coordinates of the eigenvectors corresponding to ψ and χ. Finally, q∗i (t) for
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i ∈ {b, c} is the non-homogeneous term, which converges to a stationary solution as t→∞. Given

a description of the system state q(t), at every point in time, we can calculate the value of the

customers in the system using the relation ρq(t) where ρ = (ρa, ρb, ρb)
T .

2.3.3 Model Discussion

Our model captures the trade-off between customer acquisition and retention. Specifically, the

number of customers that abandon and the waiting time at each station are functions of the

arrival rate and the staffing policy. Determining an optimal staffing assignment, then, involves

balancing the length of idle and busy periods for each customer class while also considering their

relative importance or average lifetime value. More servers assigned to a customer class implies

shorter busy periods in the stochastic regime. Conversely, having fewer severs results in longer busy

periods with higher numbers of customers who abandon. Thus, any staffing decision must balance

short, new customer waiting times (i.e., better quality-of-service) with a focus on retention and

an increased access to company resources. Our model explicitly incorporates the effects of service

quality by connecting it to abandonment, a relationship that has not been included in the customer

retention literature, while also including time-varying demand and feedback.

Analyzing the behavior of new and returning customers when demand is time-varying is cumber-

some in the stochastic regime. Instead, we study the systems fluid limiting behavior. This simplifies

the analysis of the dynamics, allows us to capture both overloaded and underloaded regimes, and

ensures that optimal control decisions (e.g., staffing) are tractable and implementable. Since a fluid

approach assumes a heavy traffic environment, classical application of these results are confined

to settings with a relatively large number of arrivals and servers. However, our simulations sug-

gest that our approach does consistently well in environments with a small number of servers and

steadily improves as the number of servers increases.

Our work is grounded in classical call center literature and we inherit many of its structural and

probabilistic assumptions. For example, we assume that new customers arrive according to a non-

stationary Poisson process. Although this may be not an accurate reflection of reality in all settings,

the approximation does improve as the system size increases. This also conforms to the heavy traffic

assumption used to derive the fluid approximation of the stochastic system. Second, we assume

that the service duration and time-to-abandonment are exponentially distributed. Although other
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more sophisticated distributions can be used, our focus is on how a firm balances acquisition and

retention efforts when demand is non-stationary. Using more realistic distributions would increase

model complexity and may obfuscate managerial insight. Third, we assume routing probabilities

are independent of a customer’s service experience. Fourth, following Hu et al. (2016), we consider

congestion and fitness abandonment. Customers who wait sufficiently long to obtain service may

abandon the system due to congestion (τi). This type of abandonment is not related to the quality

of service they receive and is dependent only on system accessibility. Those who experience poor

service quality may leave the system after a service completion (fitness abandonment). We assume

θbc > θc as customers are more likely join the customer base after successfully completing service.

For simplicity, we assume two classes of customers, i.e., new and returning clients. Our model,

however, can be naturally extended to include several classes of returning clients with a dedicated

queue for each additional base customer class. Servers can also be assigned to subsets of clients.

Nevertheless, our model assumes that once customers seek service, their rate of abandonment is a

function of the queue they enter and not an attribute of the customer class they identify with. The

routing probabilities after a service completion follow a similar relationship.

2.4 Staffing Analysis

In this section, we consider two families of arrival functions to better understand the trade-off

between acquisition and retention. Theoretically, we capture two broad types of asymptotic be-

haviour: convergence to a limiting point and convergence to a periodic function with an undefined

limit. Practically, the first family is motivated by an advertising campaign, i.e., an event which re-

sults in an immediate boost of new customers followed by a gradual decay (e.g., Afèche et al. 2017).

The second addresses environments with a periodic pattern of arrivals, such as a clinical setting

(e.g., Yom-Tov and Mandelbaum 2014a). In both cases, we study how resources should be allocated

given the firms objective is to appropriately serve their customers, i.e, provide timely access to their

resources when requested. To this end, we introduce a general four-stage modeling approach that

attempts to maximize throughput while ensuring no customer type is disproportionally neglected

(i.e., large number of abandonments).

1. Partition the domain into managerially relevant regions.

18



2. In each region, analyze the limiting behaviour of the dynamical system as t→∞.

Systems that converge to limiting points: Establish an ordering relationship amongst

the points to determine which piecewise smooth region is most preferable.

Systems that converge to periodic functions: Find the extrema of the periodic or-

bits and determine the times when they cross the boundaries of the piecewise smooth

regions.

3. Investigate the behavior of the system at finite times (state of disorder).

4. Formulate an mixed-integer program where the objective represents the sum of limiting points

(stage 2) weighted by a convex combination of the results from stage 3.

The optimal solution of the optimization model is a stationary staffing policy that accounts for the

resource capacity of the system and its time-varying dynamics.

2.4.1 Advertising Campaign: Exponential Decay

We consider a new advertising campaign launched by a service provider. At the start of the

campaign the number of customers that request the firm’s services rises to its maximum. The

increased intensity of arrivals causes an expansion of the customer base, provided the firm’s ability

to retain clients is not somehow compromised. As the effect of the campaign diminishes, the initial

spike in the acquisition of new customers fades and the arrival rate returns to pre-advertisement

(or more stable) levels. To capture this behavior, we model the intensity of the arrival process of

new customers as a decaying exponential function of the form

λ(t) ≡ λ1e
−δt + λ0, (2.10)

where λ1 > 0 is the intensity of the campaign, δ ∈ (0, 1) controls the steepness of the exponential

curve (i.e., the rate of decay), and λ0 is the intensity of the pre-advertisement arrival process. The

arrival function in (2.10) has three intuitive properties: it achieves the global maximum at λ1 +λ0,

it is monotonously decreasing for all t > 0, and lim
t→∞

λ(t) = λ0.

Representing the arrival rate of new customers in an advertising campaign as an exponentially

decaying function is a convenient choice both practically and mathematically. In Blattberg and
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Deighton (1996), for instance, a similar function is used to predict the number of customers acquired

over a time-horizon. Further, this choice remains in-line with the marketing literature, which

models advertising elasticity (a measure of an advertising campaign’s effectiveness in generating

new sales) as an exponential function of time (e.g., Parsons 1975, Dant and Berger 1996). Similar

considerations are employed in economics where demand is generally assumed to be an exponential

function of price (see Thompson and Teng 1984, for instance). Mathematically, an exponentially

decaying arrival function assures tractability of the time-varying dynamical system in (2.8).

Substituting (2.10) into (2.8), we obtain the following IVP.


q̇a(t)

q̇b(t)

q̇c(t)

 =


λ1e
−δt + λ0 − µa(qa(t) ∧ sa)− τa(qa(t)− sa)+

rqc(t)− µb(qb(t) ∧ sb)− τb(qb(t)− sb)+

θac(qa(t) ∧ sa)µa + θbc(qb(t) ∧ sb)µb + θτcτb(qb(t)− sb)+ − (r + ζ)qc(t)

 ,

q0 = (qa(t0), qb(t0), qc(t0))T .

(2.11)

By Proposition 2 and Lemma 3, the solution of (2.11) is piecewise smooth, and its form changes as

the system transitions from one smooth region to another. Further, in each region of the domain

(there are 4 such regions), the queue for base customers in (2.11) admits a closed-form solution

as in (2.9), and the equation for new customers has a closed-form solution obtained by standard

methods. We argue that characterizing the behavior of the system in only a few regions is sufficient

for developing a systematic approach to stationary staffing in a time-varying environment. To this

end, we partition the domain into three regions characterized by distinct modes of operation. The

first mode has high rates of customer acquisition, which in turn, lead to high rates of customer

retention. The ability to acquire new customers decreases in the second mode (as compared to the

start of the campaign), which results in a slower growth/decline of the customer base. In the third

mode, the ability of the firm to acquire new customers returns to pre-advertisement levels and the

customer base declines until it reaches a steady-state. Mathematically, we have

Mode 1 - Launch Region: qa(t) > sa and qb(t) 6= sb,

Mode 2 - Loyalty Region: qa(t) < sa and qb(t) > sb,

Mode 3 - Lessening Region: qa(t) < sa and qb(t) < sb.
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Given the partition of the domain into modes of operation, our goal is to investigate how a firm

can remain in the launch and loyalty regions as long as possible. This is appropriate because in the

lessening region, some servers are idle indefinitely, which implies that a new staffing assignment may

be more appropriate. Thus, in the second stage of our approach, we examine the limiting behavior

of (2.11) and focus specifically on the regions of interest, i.e., the launch and loyalty regions.

Proposition 1 (Limiting Points). The system state q(t) = (qa(t), qb(t), qc(t))
T is attracted by

(q∗a1
, q∗b1 , q

∗
c1) :=


(
λ0+sa(τa−µa)

τa
, rθacsaµa+sb(τb−µb)(r+ζ)−sbr(θτcτb−θbcµb)

τb(r(1−θτc)+ζ) , θacsaµa+sbµb(θbc−θc)
r(1−θc)+ζ

)
, qb(t) ≥ sb,(

λ0+sa(τa−µa)
τa

, rθacsaµa
µb(r(1−θbc)+ζ) ,

θacsaµa
r(1−θbc)+ζ

)
, qb(t) < sb,

the equilibrium solution in the launch region (i.e., the first mode of operation), and by

(q∗a2 , q
∗
b2 , q

∗
c2) :=

(
λ0
µa
,
rθacqa2(t0)µa + sb(τb − µb)(r + ζ)− sbr(θτcτb − θbcµb)

τb(r(1− θτc) + ζ)
,
θacqa2(t0)µa + sbµb(θbc − θc)

r(1− θc) + ζ

)
,

the limiting point in the loyalty region (i.e., the second mode of operation) early in the time horizon.

Proposition 1 demonstrates that within each mode of operation, limiting points exist and can

be written in closed-form. We note that although q∗b1 is piecewise defined, it does not affect our

subsequent analysis. We select q∗c1 corresponding to the case of qb(t) ≥ sb because it describes the

busiest time of operation in the launch phase. If q(t) remained in a particular mode of operation,

it would move towards the corresponding limiting point. However, due to the time-varying nature

of demand, q(t) may spend time in multiple modes of operation. As a result, we next establish

an ordering relationship amongst the limiting points to provide a criterion for determining which

mode of operation is better. In particular, we focus on the size of the customer base as t→∞ as

this represents the steady-state number of customers that the firm retains over the long-term.

Lemma 5 (Asymptotic Monotonicity). Let QN 1, QN 2 and QN 3 be queueing systems with iden-

tical parameters but different initial conditions, i.e., they originate in the launch, loyalty, and less-

ening regions, respectively; and neither system transitions into a higher mode of operation. Then,

for any combination of queueing parameters,

q∗c1 > q∗c2 > q∗c3 .
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Lemma 5 demonstrates that when q(t) is in the launch region, the limiting point that qc(t) is

moving towards is larger than the corresponding limiting point when q(t) is in the loyalty region.

Further, when q(t) transitions from the launch region to the loyalty region, qc(t) is moving to a

larger limiting point than a system in which q(t) never reached the launch region. As a result, for

long time horizons, QN 1 is more managerially preferable than QN 2.

Although Lemma 5 establishes an asymptotic ordering of the customer base between modes of

operation, it does not imply that this relationship holds for any time t. In particular, at finite times

the dynamics of the system are governed by two competing exponential functions, as described in

(2.9). Monotonicity guarantees are difficult to establish during this period, and we define q(t) to

be in a state of disorder. As both exponential terms approach zero, the solution becomes identical

to its non-homogeneous value. Thus, the third stage of our approach describes the duration of the

disorder period and, again, focuses specifically on the launch and loyalty regions.

Proposition 2 (Duration of Disorder Period). Let ψk be the smallest and χk be the largest negative

eigenvalues of the homogeneous system of ODEs corresponding to (2.11) in mode k ∈ {1, 2}. If

v(ψk) and v(χk) represent the first coordinates of the corresponding eigenvectors, then the duration

of the disorder period of qck(t) is determined by the time required for the constant w̄k = |wk|eχkt0

to exponentially reduce to 0 with a given degree of tolerance, where

wk =
v(ψk)[qc(t0)− q∗ck(t0)]− qb(t0) + q∗bk(t0)

eχkt0 [v(ψk)− v(χk)]
for k ∈ {1, 2},

and t0 is the time the system state switches into operating mode k.

Corollary 1. In the launch region, if qa1(t)→ q∗a1
, then w̄0 = |w0|e−τat0 → 0 where

w0 =

[
qa(t0)− λ1

τa − δ
e−δt0 − λ0 + sa(τa − µa)

τa

]
eτat0 .

For the final stage of our approach, we combine the above results to formulate the objective

function for our stationary staffing policy. This considers both the limiting points and the duration

of disorder results. Our goal is to formulate an optimization problem to determine sa and sb so as

to maximize the time spent in the launch and loyalty regions. From Lemma 5, for sufficiently large

t, it suffices to determine values sa and sb such that the limiting points are as large as possible.

Which points to choose follow from the modes of operation. For the launch region, we maximize
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q∗a1
and q∗c1 as the advertising campaign has just begun and the focus is on the acquisition of new

customers. For the loyalty region, we maximize q∗b2 as, at this point, the focus of the firm has

shifted to retention efforts because the rate of new arrivals has As per Proposition 1, the limiting

points q∗a1
, q∗c1 , and q∗b2 , are linear in the decision variables sa and sb. To combine them, we apply

Proposition 2. That is, we multiply each limiting point by a convex combination of the magnitude

of the exponential terms governing the length of the disorder period. Larger absolute values of the

exponential terms, (i.e., w̄0, w̄1, w̄2) indicate that dynamics of the corresponding queues are more

time-varying in the vicinity of the initial conditions. To ensure that lengthy queues do not form

over these periods, we give more weight to state functions with greater time-variability. As a result,

with a slight abuse of notation, we write down the objective of our optimization problem showing

the dependency of each of the terms on the decision variables as follows:

z(sa, sb) =
w̄0(sa)

w̄0(sa) + w̄1(sa, sb) + w̄2(sa, sb)|v(χ2)|
ρaq
∗
a1(sa) +

w̄1(sa, sb)

w̄0(sa) + w̄1(sa, sb) + w̄2(sa, sb)|v(χ2)|
ρbq
∗
c1(sa, sb)

+
w̄2(sa, sb)|v(χ2)|

w̄0(sa) + w̄1(sa, sb) + w̄2(sa, sb)|v(χ2)|
ρbq
∗
b2(sb).

(2.12)

We note that the correction factor v(χ2) that multiplies w̄2 comes from the general solution of

the homogeneous system of ODEs. Further, ρ is the relative average lifetime value associated with

each customer class. Also, maximizing z(sa, sb) ensures that the service system spends the least

amount of time in the lessening phase, which is the least managerially desirable. The mixed-integer

optimization problem is given by

max
sa∈Z≥0,sb∈Z≥0

z(sa, sb) subject to (EXP)

sa + sb ≤ s, (2.13)

sb ≥
(

1− ζ

r

)+

θbcsa, (2.14)

w̄0(sa) ≥ 0, (2.15)

w̄k(sa, sb) ≥ 0, k ∈ {1, 2}. (2.16)

We note that the w̄k(·) terms implicitly depend on the staffing level through the initial conditions of

the dynamical system. We make this relationship explicit by denoting them as functions of sa and

sb. As a result, EXP cannot be solved by an off-the-shelf solver tool. Nevertheless, in Section 2.4.3,
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we prove several structural properties that lead to an efficient solution procedure.

Constraint (3.16) bounds the number of staff that can be assigned to each customer class.

Constraint (2.14) defines a lower bound on the staffing level for returning customers. When the

attrition rate from the orbit is lower than the rate at which base customers request service (ζ ≤ r),

the firm benefits by sufficiently staffing station Qb. The benefit can be quantified; it is equal to the

value of having a server dedicated to new clients weighted by the probability that a base customer

returns to the orbit after service, i.e., θbc. When the attrition rate from the orbit is higher than

the rate at which base customers request service (ζ > r) the value of assigning a large number of

servers sb to station Qb diminishes. Finally, constraints (2.15) and (2.16) ensure that the system

reaches the launch and loyalty regimes, respectively.

2.4.2 Clinical Setting: Sinusoidal

Assuming that patients arrive uniformly over time is a severe limitation in the modeling of health

care systems. For instance, across a single day, many authors have found that the arrival rate in

emergency wards is periodic, see e.g., De Bruin et al. (2007) and Green et al. (2007b). Green et al.

(1991) model this periodicity by assuming that the arrival rate follows a sine function. This accounts

for the cyclical pattern of demand in their study, however, its flexibility in mathematical modeling

is particularly attractive as a linear combination of sine functions can be used to approximate

any periodic and time-varying arrival process (Yom-Tov and Mandelbaum 2014a). Systems with

periodic arrivals have also been analyzed by several researchers in the operations community (e.g.,

Whitt 2014, Liu and Whitt 2017) who use the form

λ(t) ≡ λ̄+ λ̄σ sin (ωt+ φ) , (2.17)

where λ̄ > 0, σ ∈ [0, 1], ω > 0 and φ ≥ 0 are the average arrival rate, relative amplitude, frequency,

and phase, respectively. We use a standard notation for the frequency of the sine function, i.e.,

ω = 2π
T , and assume the phase equals zero without loss of generality.
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Substituting (3.12) into (2.8), we obtain the following IVP.


q̇a(t)

q̇b(t)

q̇c(t)

 =


λ̄+ λ̄σ sin (ωt)− µa(qa(t) ∧ sa)− τa(qa(t)− sa)+

rqc(t)− µb(qb(t) ∧ sb)− τb(qb(t)− sb)+

θac(qa(t) ∧ sa)µa + θbc(qb(t) ∧ sb)µb + θτcτb(qb(t)− sb)+ − (r + ζ)qc(t)

 ,

q0 = (qa(t0), qb(t0), qc(t0))T .

(2.18)

Similar to Section 2.4.1, qa(t) can be written in closed-form while the solution to qb(t) and qc(t)

remains as in (2.9). In contrast, however, the dynamical system described by (2.18) is bounded as

per Lemma 4 and the asymptotic solutions may not converge to limiting points. Thus, we apply

the four-stage approach, except now, we examine a system that converges to a periodic function.

For the first stage, we again argue that characterizing the behavior of the system in only a few

regions is sufficient for developing a systematic approach to stationary staffing in this time-varying

environment. That is, we partition the domain into three regions characterized by distinct modes of

operation. The first mode has high rate of employee utilization. The second mode is the opposite,

employees are underutilized. Finally, the third mode represents all other regions.

Mode 1 - Overloaded Region: qa(t) > sa and qb(t) > sb,

Mode 2 - Underloaded Region: qa(t) ≤ sa and qb(t) ≤ sb.

Mode 3 - Mixed Region: qa(t) > sa and qb(t) ≤ sb, qa(t) ≤ sa and qb(t) > sb.

The institutions goal is to provide service to as many customers as possible while ensuring servers

are sufficiently utilized. Given the partition of the domain into modes of operation, the highest

utilization of servers is achieved in the first mode. Thus, it makes sense to investigate how the

institution can remain in the overloaded region while avoiding the second mode, i.e., the underloaded

region. As a result, in the second stage of our approach, we examine the limiting behavior of (2.18)

and find the extrema of these periodic orbits in these two regions of interest.

Lemma 6 (Asymptotic Dynamics). Suppose αj, βj and γj are real numbers for j ∈ {a, b, c} whose

values are dependent on the initial conditions of (2.18). Then,
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1. If min qa(t) ≥ sa then there exists a set of equilibrium points

(q∗b , q
∗
c ) :=


(
rθacsaµa+sb(τb−µb)(r+ζ)−sbr(θτcτb−θbcµb)

τb(r(1−θτc)+ζ) , θacsaµa+sbµb(θbc−θc)
r(1−θc)+ζ

)
, qb(t) ≥ sb(

rθacsaµa
µb(r(1−θbc)+ζ) ,

θacsaµa
r(1−θbc)+ζ

)
, qb(t) < sb,

(2.19)

while qa(t) converges to a periodic orbit of the form

q∗a(t) = αa + βasin(ωt) + γacos(ωt).

2. If max qa(t) ≤ sa then q(t) converges to a set of periodic orbits of the form

q∗j (t) = αj + βjsin(ωt) + γjcos(ωt) for j = {a, b, c}.

Notice that Lemma 6 describes the asymptotic behavior of the system in two extreme cases.

However, if max qa(t) > sa and min qa(t) < sa, the dynamics cannot be so easily characterized.

Figure 2.2 illustrates one such example; qb(t) and qc(t) do not converge to a sinusoid, rather, they

are more complex periodic functions. Nevertheless, in all cases, including those where the dynamics

cannot easily be characterized, the extrema of the periodic orbits can be derived.

Figure 2.2: Dynamics of ρ̄q(t) when max qa(t) > sa and min qa(t) < sa

Lemma 7 (Asymptotic Bounds). The limiting solutions of q(t) obey the following relations

q∗a(t) ≥ q∗a =
λ̄

µa
− λ̄σ

µ2
a + ω2

(
µasin

[
arctan

(µa
ω

)]
+ ωcos

[
arctan

(µa
ω

)])
,

q∗b (t) ≥ q∗b = αb + βbsin

[
arctan

(
βb
γb

)]
+ ρbγbcos

[
arctan

(
βb
γb

)]
,

q∗c (t) ≤ q̄∗c .
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Upper bounds for q∗a(t) and q∗b (t), and a lower bound for q∗c (t), can also be derived although we

omit the results as they do not play a role in subsequent theory. Note that in order to describe

when the bounds become tight, the second stage of the modeling approach also requires that the

time points corresponding to when qa(t) is underloaded or overloaded be known.

Lemma 8 (Crossing Points). The state function q∗a(t) crosses the boundary Σ at times

t =

2arctan

(
βa±
√
β2
a−(sa−αa+γa)(sa−αa−γa)

sa−αa+γa

)
ω

+
2π

ω
n, where n = 0, 1, 2 . . . .

Although similar expressions for q∗b (t) and q∗c (t) can be derived, only the crossing points of q∗a(t)

are important as they drive the asymptotic behavior of the system. An implication of Lemma 8

is that the proportion of time q∗a(t) spends underloaded or overloaded per period can be obtained.

Specifically, if t1 < t2 are two adjacent time points when q∗a(t) crosses Σ from above and below

respectively, κ := (t2 − t1) /T is the proportion of time q∗a(t) is underloaded. Thus, q(t) spends κT

time units per period of q∗a(t) in regions where the lower bounds in Lemma 7 are tight. Similarly,

q(t) spends (1 − κ)T time units per period in regions where the upper bound is tight. Note that

to compute the crossing points for the value of the new customers in the system, ρaqa(t), we need

only multiply the staffing level sa by 1
ρa

in Lemma 8. We denote the proportion of time that ρqa(t)

is underloaded each period by κρ.

The third stage of our approach accounts for the behaviour of q(t) at finite times. As in

Section 2.4.1, the dynamics of the system are initially governed by two competing exponential

functions and during this period, q(t) is said to be in a state of disorder. The exponential functions

approach zero as t → ∞ and q(t) converges to its non-homogeneous term, which by Lemma 6, is

a periodic function or, in some cases, may be an equilibrium point. Because the duration of the

disorder period is determined by the homogeneous part of the general solution in (2.9), Proposition 2

still holds, i.e., the homogeneous systems corresponding to (2.11) and (2.18) are identical.

Thus, the final stage of our approach combines the results from stage two and three by assigning

weights, derived in Proposition 2, to the asymptotic bounds from Lemma 7. The goal is to formulate

an optimization problem to determine sa and sb so as to maximize the time spent in the overloaded

region and minimize the time spent in the underloaded region. Using similar logic as in Section 2.4.1,
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we develop an objective function using q
¯
∗
b

and q̄∗c (i.e., the asymptotic bounds) multiplied by a convex

combination of weights w̄2(sa, sb) and w̄1(sa, sb). Because q̄∗c is reached when q∗a(t) is overloaded,

we multiply q̄∗c by the proportion of time per period that q∗a(t) spends in the overloaded state,

(1 − κ). Similarly, we multiply q
¯
∗
b

by κ to capture the amount of time per period q∗a(t) spends in

the underloaded state. With a slight abuse of notation, the objective is

z(sa, sb) = (1− κρ(sa))
w̄1(sa, sb)

w̄1(sa, sb) + w̄2(sa, sb)
ρbq̄
∗
c (sa, sb) + κρ(sa)

w̄2(sa, sb)

w̄1(sa, sb) + w̄2(sa, sb)
ρbq

¯

∗
b
.

Notice that maximizing z(sa, sb) is akin to serving as many customers as possible while ensuring that

servers are highly utilized. That is, maximizing the first term increases the number of customers

in the orbit while maximizing the second reduces the number of idle servers by increasing the load

of the system in the underloaded state. The mixed-integer optimization model is

max
sa∈Z≥0,sb∈Z≥0

z(sa, sb) subject to (SINE)

sa + sb ≤ s, (2.20)

sb ≥
(

1− ζ

r

)+

θbcsa, (2.21)

w̄k(sa, sb) ≥ 0, k ∈ {1, 2}. (2.22)

where (2.20) and (2.21) remain as in Section 2.4.1 and (2.22) is the analog of the constraints (2.15)-

(2.16). We again note that the w̄k(sa, sb) terms implicitly depend on the staffing level through the

initial conditions of the dynamical system.

2.4.3 Solution Approach

In both EXP and SINE, the objective functions are convex combinations of terms associated with

the length of the disorder period. Unfortunately, these terms are implicit functions of the decision

variables and thus, a simple mixed-integer linear program cannot be solved. Nevertheless, in this

section, we show that the problems exhibit structural properties that are conducive to formulating

a solution procedure that efficiently determines the optimal staffing levels.

First, the objective functions are neither convex nor concave. Thus, a straightforward rela-
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tionship between the initial conditions of the dynamical system and the associated weights in the

objective function cannot be exploited in an efficient solution approach. Instead, we prove that

there exists a small interval within the feasible region that contains the optimal solution. As a

result, we only need to perform an exhaustive search within this small interval to find globally

optimal solutions.

For EXP, notice that in Proposition 3, by requiring that qa(t) transitions into the overloaded

regime, we ensure that the optimal staffing level s∗a cannot be greater than the maximum of qa2(t)

which corresponds to the loyalty phase. Thus, we obtain the following result.

Proposition 3. The optimal staffing level s∗a for EXP is contained in the set

Sexp :=

sa ∈ Z≥0

∣∣∣∣∣sa ≥ λa
µa
, sa ≤


qa2(t∗), if t∗ ≥ 0,

qa(t0), otherwise.

 ,

where

t∗ =
log
(
−µa

[
qa2(t0)− λ0

µa
− λ1

µa−δe
−δt0

]
eµat0

)
− log

(
δλ1
µa−δ

)
µa − δ

.

Further, if λ0 →∞ as λ1 →∞, then |Sexp| → 0.

Proposition 3 provides a range of values where the optimal solution is guaranteed to be found.

Notice that this set is much smaller than the size of the feasible region corresponding to EXP. It

also indicates that as λ0 and λ1 increase, the number of candidate solutions decreases, i.e., Sexp

becomes empty.

Similarly for SINE, notice that in Proposition 4, we require that qa(t) must periodically reach

an overloaded state. As a result, if s∗a is greater than the upper bound of the underloaded queue

qa(t), then the overloaded state is never reached. Further, if s∗a is less than the lower bound of

the underloaded queue qa(t), then q∗a(t) will be overloaded indefinitely. According to the following

result, if λ̄ increases as fast as σ decreases, the number of candidate solutions decreases, i.e., Ssine

becomes empty.

Proposition 4. The optimal staffing level s∗a for SINE is contained in the set

Ssine :=
{
sa ∈ Z≥0

∣∣∣sa ≥ min q∗
a
(t), sa ≤ max q∗

a
(t)
}
,
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where q∗
a
(t) corresponds to q∗a(t) in the underloaded state. If σ → 0 as fast as λ̄→∞, |Ssine| → 0.

Proposition 3 and 4 represent necessary conditions for determining the optimal solutions to EXP

and SINE. They also suggest that as the total number of servers gets large and the requirements of

the propositions are satisfied, the number of candidate solutions decreases to 0. Thus, interestingly,

as the system size grows, relatively fewer points need to be evaluated to find the optimal solution.

Our solution approach begins by computing the upper and lower bounds of the sets Sexp and

Ssine. Note that because assigning less than s servers is suboptimal, constraint (3.16) and (2.20) are

always binding. Then, starting from the upper bound, we iteratively decrease sa and simultaneously

increase sb until constraint (2.15) and (2.16) for EXP and constraint (2.22) for SINE is no longer

satisfied or we reach the lower bound of the sets Sexp and Ssine. Constraint (2.14) and (2.21)

may also reduce the upper bound of the feasible solution region if they are violated. During each

iteration, we solve (2.11) for EXP and (2.18) for SINE using the given staffing level. We then

compute the objective function value and determine whether it is the maximum value observed so

far. If EXP or SINE are infeasible, then we assign the value of the upper bound Sexp or Ssine to

s∗a.

2.4.4 Model Discussion

The proposed four-stage procedure only requires that the arrival process be modeled by a smooth

function. Thus, the approach is general, and its implementation is straightforward: to derive a

staffing policy, it suffices to analyse the asymptotic behaviour of (2.8), weight its limiting points

and solve a simple optimization problem. Further, notice that we do not assign waiting costs

or penalties to customers that abandon: doing so results in complex optimal control problems

(e.g., Anderson Jr et al. 2006) with limited tractability in cases with piecewise smooth systems.

Massey and Pender (2018), for instance, propose a Lagrangian profit maximization based stationary

staffing procedure for Erlang-A systems. Instead, we identify preferable operating regimes (e.g.,

higher values of q∗c , q̄
∗
c and q

¯
∗
b
) and determine the staffing policies that induce them. The technique

is similar to identifying parameter values that result in desirable steady-state dynamics (see, e.g,

Pender et al. 2017). The inclusion of relative weights for staffing generalizes the overall premise of

lifetime value that is present in the CRM literature and makes the approach valid for environments
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featuring either equally valuable or prioritised classes of customers. For example, if base customers

are more profitable (i.e., spend more time per visit or pay a subscription fee), it might be better

for the firm to focus more on their abandonment. Conversely, if their switching cost is high, and

thus their loyalty, the firm can focus more on serving new customers.

We assign larger weights to the limiting points of state functions with greater variability during

early stages of the time horizon. That is, the weights in (2.9) characterize the deviation of the

solution from its steady-state caused by the initial conditions: larger weights correspond to more

variation prior to the solution approaching its limiting behaviour. The result is that queues with

relatively high variation will be prioritized by EXP and SINE when assigning servers. Weighting

the points in this fashion is similar to keeping safety stock in inventory systems with demand

uncertainty, i.e., products with higher demand variability have a larger amount of safety stock.

2.5 Numerical Results

In this section, we present a comprehensive numerical study of the staffing policies generated by

optimization problems EXP and SINE. We compare their performance to modifications of the tail

probability of delay (TPoD) staffing policy developed in Liu (2018), a generalized version of the

square root staffing (SRS) policy, by varying customer patience levels, the speed of service, and

the frequency of service requests. We also evaluate the magnitude of deviation of EXP and SINE

from the optimal staffing policy (OPT) determined by simulating all valid staffing levels in the

stochastic regime and choosing the policy that maximizes the throughput or minimizes the total

number of class a and b clients who abandon the system. Finally, we identify cases when EXP and

SINE outperform these benchmarks and discuss its implications for management theory.

We fix the attrition rate of base customers from the orbit to ζ = 1 and set the probabilities

of congestion and fitness abandonment to θc = 0.5 and θic = 0.9 for i = {a, b}, respectively. This

ensures that there is a high-likelihood of retention after a successful service completion while a

substantial chance that we will be unable to retain clients in a congested system; our results are

qualitatively similar as θic, i ∈ {a, b, τ}, is varied between 0.5 and 1 (see Afèche et al. 2017, for

instance). Relative to the attrition rate ζ, we introduce fast, intermediate, and slowly varying forms

of the exponential (Section 2.4.1) and sinusoidal (Section 2.4.2) arrival functions (see Appendix
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A “Simulation Parameters” for more details). The parameters are selected to ensure that the

maximum intensity of arriving customers is significantly larger than the attrition rate.

We choose a pool of twenty servers (s = 20) and assign them to new and returning customers.

This experimental setup is similar to Chevalier and Tabordon (2003), for instance, who consider a

pool of 6 specialized servers. We also conduct simulations of larger systems (s = 40 and s = 60)

to study how performance scales with the size of the system. We vary the service rate (µi) and

abandonment rate (τi) for i = {a, b} and the rate that base customers request service from the

orbit (r). The rates are chosen so that higher values are larger than the attrition rate and the

smallest values remain close to it. We consider scenarios of high and low abandonment, service

and arrival rate of returning clients (see Appendix A “Simulation Parameters”). We repeat these

trials for two time horizons; long (t = 25) and short (t = 10). This dichotomy is consistent

with the literature (see Liu and Xie 2018, for instance). Each experiment begins with a burn-in

period of t = 5 time units after which we record performance measures associated with service

quality. This includes the average number of new and returning customers served (throughput)

and the average total number of customers who abandon. Both metrics are commonly used in the

literature to evaluate the performance of fluid (deterministic) queueing systems (e.g., Buzacott and

Shanthikumar 1993, Bassamboo and Randhawa 2015). All reported values represent the average

over 10 stochastic simulations. The staffing policies and discrete-event simulation were programmed

in Matlab R2015a.

We compare our stationary staffing policies, EXP and SINE, to four benchmarks that are

stationary or near-stationary. The first, GSRS0, is a generalized square root staffing policy that

does not allow any reassignment of staff over the time horizon. The second, GSRSt, is similar

except that it allows staff to be reassigned a fixed number of times. Both are modifications of the

TPoD staffing policy. More specifically, for the stationary benchmark, we compute staffing levels

according to

sa := sh + ξ
√
sh, sb := s− sa, (2.23)

and

ξ := zχ

√
τa
µa
, sh :=

λ̄a
µa
e−τah

where λ̄a is the average arrival rate to Qa, µa is the average service rate of new customers, and ξ
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is the desired level of service. We compute zχ by inverting the standard normal distribution for

a specified probability of delay χ. Following Gans et al. (2003), Brown et al. (2005), Aksin et al.

(2007), and Liu (2018), we adhere to the rule that 80 percent of service requests are served within

1/3 of a time unit. Thus, we fix the probability of delay χ and delay parameter h to 0.2 and 1/3,

respectively. We then implement (2.23) by computing λ̄a over the entire time horizon.

For our non-stationary benchmark, the staffing levels follow the equations in (2.23) once again.

However, for the advertisement campaign, λ̄a is computed by splitting the time horizon into two

equal intervals. For the clinical setting, we compute λ̄a at times when λ(t) is above and below its

symmetry line. This ensures that the staffing policy switches once per period of λ(t). For both

the advertisement campaign and the clinical setting, our non-stationary benchmarks re-allocate

the staff over the intervals characterized by a higher and lower intensity of arrivals of new cus-

tomers, accordingly. We implement two versions of GSRS0 and GSRSt, with τa = 0 and τa 6= 0,

corresponding to the Erlang-C and Erlang-A versions of the TPoD, respectively.

2.5.1 Advertising Campaign: Results

In this setting, the amount that demand varies with time is determined solely by the decay rate of

the exponential (i.e., δ) in (2.10). Systems that slowly converge to a stationary state have small

values of δ and are characterized by low levels of non-stationarity whereas systems that quickly

reach a steady state solution are more time-varying and have large values of δ. Because our results

are qualitatively similar for both short and long horizons, we only discuss cases where t = 25.

For high levels of non-stationarity (δ ≥ 0.6) and varying levels of traffic intensity, EXP outper-

forms GSRS0 and GSRSt, i.e., throughput is better and total abandonment is similar or lower.

For example, when the abandonment rate is low (clients are patient), the throughput of EXP is 1.3

and 1.25 times larger than the GSRS0 and GSRSt, respectively. Remarkably, GSRS0 and GSRSt

with τa 6= 0 assign too few servers to new clients which results in poor performance (for additional

results, see Appendix A “Summary of Results for EXP, s = 20”).

As the system becomes less congested, the accuracy of the fluid approximation naturally de-

creases which reduces the performance gap among the policies. This explains why their throughput,

for example, equalizes in the “slow server” setting. In systems with faster servers, the traffic inten-

sity is significantly higher due to the small number of servers assigned to new clients.
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We note that as the system becomes more stationary (i.e., δ decreases) the performance of the

benchmarks improve and the gap between all staffing policies decrease. We demonstrate this in

Figure 2.3 where the performance of the staffing policies for the larger systems are presented. In

both settings, s = 40 and s = 60, the throughput equalizes as the value of δ becomes small whereas

the gap widens as δ increases. Moreover, the gap amongst all policies increase in the system size,

i.e., the performance of EXP improves as the system becomes larger. Finally, we observe that the

performance of EXP is close to OPT and the gap remains small as the system gets larger.

Figure 2.3: Total throughput for EXP with t = 25 for the systems where base customers require
frequent service: (a) s = 40; and (b) s = 60.

(a) (b)

Because Figure 2.3 displays the typical performance of the policies, it also demonstrates that

adjusting a staffing policy partway through the time horizon does not increase throughput. In fact,

doing so decreases throughput, i.e., it reduces service accessibility. This is because, as observed in

our simulations, EXP does not singularly focus on new customers. Instead, it attempts to strike

an equitable balance between the acquisition of new customers and the retention of existing ones.

Similar results are observed across all simulation experiments which indicates that, in contrast to

the benchmarks, EXP ensures high levels of service quality for all customer types.

2.5.2 Clinical Setting: Results

When demand is periodic, the degree of non-stationarity is determined by the cycle length T and

the relative amplitude σ of the sinusoid function. Following Green et al. (1991), systems that

exhibit high levels of time-varying behavior have short cycle lengths and large amplitude levels.

Our results are qualitatively similar in this setting as compared to Section 2.5.1. We again
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confirm that for the most time-varying regimes, when values of σ and T are large and small,

respectively, SINE outperforms the benchmarks in all queueing regimes (for additional results, see

Appendix A “Summary of Results for SINE, T = 2, 8, s = 20’). This effect is demonstrated in

Figure 2.4. In this setting, for the systems s = 40 and s = 60, the performance of SINE improves

as σ increases. Once again, as the system becomes more stationary, i.e., σ decreases or T increases,

the performance of all the policies equalizes. According to this figure, there is a gap between OPT

and the rest of policies but it does not grow as the system size increases.

Figure 2.4: Total throughput for SINE with t = 25 and T = 2 for the systems where base
customers require frequent service: (a). s = 40; and (b). s = 60

(a) (b)

Finally, we again observe that re-assigning staff partway through the period of the arrival

function does not improve throughput and performs worse than SINE . This result is consistent

with our findings from the previous section in that the performance of GSRSt is not better than

GSRS0.

2.6 Summary of Contributions

We contribute to the operations research literature by showing that our approach to staffing suc-

ceeds in cases where standard near-stationary methods fail (see, e.g., Green et al. 1991, Green and

Kolesar 1991). That is, our policies perform as well as the benchmarks in more stationary settings

and substantially better in environments characterized by high levels of time variability and traffic

intensity. In particular, our methodology ensures that neither new nor returning customers are

neglected - a common problem that is present in the existing literature, e.g., King et al. (2016),
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Afèche et al. (2017) - while high throughput levels are maintained. Our method is also more time-

efficient as compared to computer-based approaches that simulate multiple trajectories for each

staffing level and then use the results to derive the optimal server split.

Our analysis demonstrates that stationary policies may perform as well as time-dependent

alternatives when the time-varying dynamics of the system are accounted for. Specifically, the

results from our numerical study suggest that there is little benefit to re-assigning staff partway

through an advertising campaign. Further, re-assigning staff partway through a period, in a periodic

environemtn such as a clinic, is not useful either. In both cases, the benchmarks tend to severely

overestimate or underestimate the demand for either new or base clients and the quality of service

deteriorates as a result. Obviously, if more adjustments are allowed, higher throughput values can

be achieved. However, frequently re-assigning staff is costly - both cognitively and financially - and

becomes less operationally feasible. Thus, our work has important practical implications: managers

who want to minimize the number of staffing changes can be empowered to make well-performing

assignments using our stationary alternative while still accounting for time-varying dynamics.

We contribute to the literature on customer acquisition and retention by providing new insights

into the field of customer relationship management (CRM). For example, King et al. (2016) suggest

that companies with a larger customer base should begin to invest less in acquisition activities. This

is because retaining too many customers becomes expensive and acquiring new ones is no longer

essential; growth is not a priority for larger firms. We refine this argument by demonstrating that

either customer acquisition or retention efforts, if neglected, can reduce a customer’s ability to access

services. Thus, cost savings may come at the expense of service quality, and this affects customers’

overall perception of the company’s value. This perception, in turn, may have implications for the

future: customers may begin to leave for no specific reason (Griffin 2001, Gee et al. 2008) and the

ability to acquire new and retain base clients may be hindered.

Moreover, the need to serve both classes of customers at all times confirms a link between cus-

tomer acquisition and retention efforts found in empirical studies but not captured in the operations

literature. According to marketing researchers, assuming that these processes are independent leads

to incorrect estimations of the duration of the relationship between a customer and the firm, which

is important for retention analysis (Thomas 2001). Our approach explicitly models this dependence

and suggests that focusing on acquisition or retention efforts alone is not sufficient to maintain high
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levels of throughput and service quality (e.g., Afèche et al. 2017). Instead, we provide a decision

support tool for staffing that balances these competing priorities.

In addition, the high-traffic environments where our staffing approach performs well are im-

portant regimes for customer retention. Specifically, successful services attract many customers

and it is natural that they, in operationally efficient organizations, will experience some effects of

congestion (e.g., customers who must wait). According to Lu et al. (2013), although periods of high

congestion are correlated with high sales, a moderate increase in the number of queued customers

generates sales reduction equivalent to a 5% price increase. Campbell and Frei (2011) similarly

show that longer waiting times affect customer satisfaction and retention. We demonstrate that

our approach gives customers more access to company services which reduces abandonment and

as a result, long wait times. Thus, it follows that our approach to staffing, in addition to better

balancing acquisition and retention efforts, can lead directly to increased revenues.

Finally, We note that our approach is amenable to profit and/or lifetime value considerations

that are common in the CRM literature. In particular, when all clients are equally valuable, our

staffing policy maximizes the common good, i.e., it improves the service quality for all customers

equally. Conversely, if classes are not equally valuable, our method can easily account for this

by assigning greater weight to more profitable customers classes. We achieve this by circumvent-

ing classical approaches that use optimal control theory, which are notoriously difficult to solve

efficiently.
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Chapter 3

Optimal Capacity Planning for Cloud

Service Providers with Periodic,

Time-Varying Demand

The work in this chapter has been submitted for publication as the following:

Eugene Furman, Adam Diamant (advisor) “Optimal Capacity Planning for Cloud Service Providers
with Periodic, Time-Varying Demand”, in Manufacturing & Service Operations Management ,
[2020]
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3.1 Introduction

Data-driven decision-making and the explosion in operational processes guided by artificial intel-

ligence requires significant amount of data and large amounts of processing capacity. For these

reasons, the amount of data collected by global enterprises has been growing rapidly; it will reach

175 trillion gigabytes by 2025 which is 5.3 times larger than in 2018 (Reinsel et al. 2018). Much

of this data must be processed in real-time, and thus, cloud computing infrastructure with near

zero-latency has become an essential service for many corporations (Bruckner and Tjoa 2002). Un-

surprisingly, to support these challenging service requirements, the worldwide cloud service market

is expected to grow by 15% year-over-year to reach $354 billion in 2022 (Gartner 2019).

Many firms, however, have been expanding their cloud computing capacity with little regard

to the consequences associated with idle resources, i.e., the housing, provisioning, maintenance,

powering, and cooling of servers. Specifically, idle capacity can result in a massive amount of wasted

energy which is both a financial and environmental concern (Koomey et al. 2007, Uchechukwu et al.

2014). The scale is astonishing; 40% of cloud service providers pay for a larger capacity than needed

while some companies find that their average CPU utilization is only around 5% (Chapel 2019). On

a global scale, it is estimated that there are approximately 10 million idle servers which translates

into $30 billion worth of idle infrastructure (Forbes 2015). Alarmingly, idle servers represent over

35% of all cloud computing capacity (FLEXERA 2019).

Motivated by the systemic underutilization of servers for cloud computing, we consider a major

provider of such services that has become acutely aware of this issue. Cloud computing capacity

is allocated to different services for internal company use and to external subscribers on-demand.

Dynamically changing this allocation is not feasible as provisioning additional CPU units either

requires purchasing expensive hardware or re-allocating computing resources within the organiza-

tion; such changes cannot be processed immediately and require several hours before they can take

effect. Promptly analysing large volumes of data is critical for their operation, however, they also

believe that a more data-driven approach to provisioning resources can reduce their idle capacity,

decrease costs, and promote a more sustainable operations (e.g., reduce energy consumption).

To address this issue, we represent the aggregate capacity of the company’s cloud computing

infrastructure by the total number of homogeneous cores that it maintains, i.e., individual proces-
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sors within a CPU. Customers arrive stochastically to the system to gain access to the company’s

cloud capacity. As indicated by our industry partner, arriving customers request one CPU core

at any instant with a random service duration associated with the size of the job. If the job does

not immediately begin processing upon the customer’s arrival to the system, it leaves and requests

capacity once again after some time interval has passed. Thus, customers are infinitely impatient

and requests that are not immediately serviced may retry several times before permanently aban-

doning the system. To capture the non-stationary nature of demand, we assume that customers

arrive according to a non-homogeneous Poisson process. Exact analysis of the stochastic system is

intractable, and thus, we analyze the behaviour of a corresponding system with infinite capacity,

i.e., the offered load (Zychlinski et al. 2018). By analysing its fluid approximation and applying a

novel calculus-of-variations approach, we determine the jointly optimal service capacity and retrial

interval between unsuccessful attempts given a pre-specified service level. In addition, we demon-

strate that our methodology can incorporate constraints that give preference to certain types of

workload when the system is critically loaded, i.e., utilization exceeds a desired service-level.

Using a data set of cloud computing requests over a representative 24-hour period from a typical

service of our partner organization, we conduct a case study to demonstrate the practicality of our

methodology. We show that demand for cloud computing capacity is time-varying and exhibits

several peaks throughout the course of a single day. Using our approach to estimate the optimal

service capacity and retrial interval of unsuccessful requests, we argue that our industry partner

can significantly reduce their aggregate cloud computing capacity without affecting service. We

show that this reduction has significant cost implications and also contributes to their vision of

becoming a more sustainable organization and reducing their carbon footprint.

We contribute to the operations research literature by extending previous work on stationary

staffing policies for queueing systems with a finite number of retrials, and time-varying, periodic

demand. To this end, we introduce a new method that allows us to gain insight into the dynamics

of an otherwise intractable system. In particular, our approach of minimizing the variation in the

offered load can be applied to many systems with throughput-based objectives and/or service level

agreements; it can also accommodate a broad class of piecewise smooth arrival functions that are

general enough to describe most periodic demand processes in service settings. We contribute to

the literature on sustainable operations by proposing a quantitative technique that reduces the
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idle capacity of a cloud service provider without compromising service quality. As high energy

consumption results in operational costs, it also leads to high carbon emissions (Chang et al. 2010,

Garg and Buyya 2012, Chang et al. 2016). Thus, our optimal policy is an energy-efficient solution

that can be used to reduce the environmental impact of a cloud computing service.

3.2 Literature Review and Contribution

Our paper introduces a deterministic fluid model for a multi-server queueing system with a finite

number of retrial opportunities, i.e., customers who enter the system and find that all servers are

busy do not queue. Instead, they re-enter the system at a later time and attempt to obtain service.

Pioneering work in the study of retrial queues dates back to Cohen (1900), Wilkinson (1956), and

Falin and Templeton (1997). Since then, most papers assume an infinite number of retrial attempts,

i.e., customers can attempt to obtain service until capacity becomes available (Sung and Chae 2000,

Artalejo and Falin 2002, Krishnamoorthy and Ushakumari 2002, Artalejo 2010). From a theoretical

perspective, these analyses typically focus on approximations and state-space truncation methods.

Few papers derive fluid approximations for these systems (e.g., Kang et al. 2010b, Kang 2015)

as they involve the use of indicator functions and it is hard to motivate the resulting dynamical

system as the limit of the stochastic network. There is, however, a large body of literature that

analyzes queueing systems with feedback (i.e., customers who have multiple service interactions)

by incorporating infinite capacity orbits (de Véricourt and Jennings 2011, Jacobson et al. 2012,

Yom-Tov and Mandelbaum 2014a, Ding et al. 2015, Huang et al. 2015, Furman et al. 2019). Our

analysis builds on this work in that we introduce an offered load approximation for a multi-server

stochastic system with a finite number of retrial attempts using these infinite capacity orbits. Thus,

the fluid limit is well-motivated and widely accepted in the literature (Halfin and Whitt 1981). For

instance, Zychlinski et al. (2018) use an offered load approximation for capacity allocation decisions

in hospitals affected by bed blocking. We examine the workload dynamics of the original system

without limiting its size or imposing unrealistic retrial behaviour.

We determine the optimal stationary staffing policy for a queueing system in anticipation of

time-varying dynamics. Many authors investigate queueing systems with arrivals that follow a non-

homogeneous Poisson process; see the survey papers by Defraeye and Van Nieuwenhuyse (2016),
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Whitt (2016), and Whitt (2018). Several studies investigate stationary or near stationary staffing of

queueing systems with time-dependent arrival processes; see Harrison and Zeevi 2005, Bassamboo

and Zeevi 2009, Bekker and de Bruin 2010, Defraeye and Van Nieuwenhuyse 2013 and Niyirora

and Pender (2016) for example. The problem of staffing for a dynamic service system has also

been an active area of research (e.g., Henderson et al. 1999, Akcali et al. 2006, Bhandari et al.

2008, Robbins and Harrison 2010). Further, as shown in Aguir et al. (2008) and Pustova (2010),

the impact of retrial behavior on service capacity is difficult to model. To this end, Janssen and

van Leeuwaarden (2015) propose a modification of the square-root staffing (SRS) (see, for instance,

Borst et al. 2004, Feldman et al. 2008a, Hampshire et al. 2009, Janssen et al. 2011) that considers

a queue with an infinite number of retrial attempts. To the best of our knowledge, our work is

unique in that it determines the jointly optimal static service capacity and retrial interval for a

system with time-varying arrivals, a finite number of retrial attempts, and pre-specified service

levels. That is, we solve an optimization problem that minimizes the variation in total workload

subject to a set of operational restrictions during peak demand periods. We note that our proposed

solution approach is quite general; it can accommodate a large class of piecewise smooth arrival

functions, and thus, can be applied to other management science applications.

Our solution approach minimizes the variation in the offered load. Mathematical applications

that employ techniques from the family of “calculus-of-variations” methods are broad. For instance,

Bioucas-Dias and Figueiredo (2010), Mattingley and Boyd (2010), and Zhao et al. (2014) minimize

the total variation of a functional in order to remove noise for signal processing. Shu (1988),

Ryu et al. (1993), and Gottlieb and Shu (1998) apply the diminishing total variation approach to

develop numerical solvers for ordinary and partial differential equations. Zhu et al. (2008) use the

total variation technique to propose a cancer treatment planning algorithm for intensity modulated

radiation therapy. Minimizing the total variation, although suitable for a variety of applications, is

typically onerous (see, for instance, Li et al. 2013 and Goldstein et al. 2014). Our work applies this

approach to a management science problem and demonstrates that variation minimization can be

naturally linked to more familiar queueing concepts, i.e., throughput maximization.

We contribute to research on capacity allocation for technological services by applying our

methodology to the operations of a cloud service provider in order to address their excess cost and

sustainability concerns. Research on cloud computing has been growing as the industry continues
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to expand. Many studies determine the appropriate cloud capacity levels when demand is volatile.

For instance, Jiang et al. (2012), Dorsch and Häckel (2014), and de Assunção et al. (2016) propose

real-time capacity allocation schemes that can dynamically adjust depending on the utilization

of servers. The objective of these methods is to maximize revenue or minimize costs by solving

a stochastic dynamic program. Several studies model cloud computing operations as a queueing

system (for example, Khazaei et al. 2011, Vilaplana et al. 2014, Chiang and Ouyang 2014). This

literature focuses on classical queueing-theoretic approaches which model cloud services as Jackson

networks. They impose Markovian assumptions on the arrival process, often substitute the retrial

feature with feedback, and determine the service capacity of the cloud by minimizing long-run

costs. Other work focuses on establishing dynamic pricing policies to maximize revenue (e.g.,

Wang et al. 2010, Jin et al. 2014, Chen et al. 2019). Finally, a large body of literature is dedicated

to the growing sustainability concern related to the operations of cloud services. For example,

Pan et al. (2010), Garg and Buyya (2012), and Kalange Pooja (2013) describe features of the

cloud that could be implemented to reduce its energy footprint. Dorsch and Häckel (2012), for

instance, connect the sustainability discussion to optimal service capacity by suggesting that idle

servers be employed for other tasks. Our work extends these studies by proposing a queueing-based

methodology that incorporates more realistic assumptions (e.g., time-varying demand, stationary

capacity provisioning, and generally distributed retrial times) and provides a cloud service provider

guidance when determining the optimal trade off between the amount of idle capacity to provision

(excess cost and energy consumption) and the operational protocols to implement during peak

periods.

3.3 Model Formulation

In this section, we introduce a general stochastic queueing network and describe its suitability in

modeling the cloud service operation of our partner organization. In particular, every few weeks

our partner organization estimates demand for the upcoming period and cloud capacity s ∈ R>0

is provisioned. Once capacity is determined, jobs arrive and are serviced by the processing cores

of remote machines. While the peak number of computing requests during a one-hour period can

exceed four mullion, demand for cloud services is highly variable and exhibits a periodic pattern
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that repeats daily. When there is idle capacity, jobs are serviced immediately upon entering the

system. At times when capacity is fully utilized, a job may make multiple computing requests in

order to obtain service; the time interval between retrials is set by our partner organization.

We model this system as a multi-station queueing network with homogeneous, fully flexible

servers (processing cores) and exogenous, time-varying arrivals (jobs). In this setting, customers

submit jobs that require a single CPU core. New customers (Class-0) arrive to the system (station

X) according to a non-homogeneous Poisson process with periodic, time-varying intensity λ ≡ λ(t)

that repeats daily. We assume that the jobs they submit have service requirements which are

exponentially distributed with rate µ. If upon arrival to the system all servers are busy (i.e., all

cores are processing jobs), customers do not queue, but instead, join a retrial orbit (station O).

There are J − 1 retrial orbits; class-j customers represents jobs that have unsuccessfully attempted

service j ∈ J ≡ {1, . . . , J−1} times. Jobs leave retrial orbit Oj and attempt service according to a

general process with rate rj ; this value is set by our partner organization After J − 1 unsuccessful

attempts, jobs leave the system unserved. We assume that, in order to conform to the decision-

making timeline of our partner organization, the provisioning policy to determines s is stationary.

Let {X(t), Oj(t)|t ≥ 0} be a set of headcount stochastic processes corresponding to the number

of busy servers and jobs in the orbit, respectively. In addition, let {S(t) = (s − X(t))+|t ≥ 0}

denote the number of idle servers at time t. The dynamics of this system is presented in Figure 3.1.

Figure 3.1: Dynamics of the Service System
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3.3.1 Capacity Minimization Problem and Offered Load Approximation

To reduce the long-term financial and environmental costs of idle capacity, while also maximizing

system throughput, our partner organization would like to determine the minimum capacity s, and

retrial rates r := (r1, r2, . . . , rJ−1), so that for service-level parameters α ∈ (0, 1) and β ∈ (0, 1), a

fraction β of the system capacity is busy less than a proportion α of the planning horizon T > 0.

The service-level requirement also specifies that an access policy will take effect once the system

becomes critically loaded, i.e., X(t) > βs. More specifically, our partner organization has decided

to implement a policy such that once the workload from new customers and the first j − 1 orbits

enters into the critically loaded regime, on average, the number of jobs attempting service from the

jth orbit should be zero. Thus, when the system workload exceeds the threshold βs, jobs will be

restricted from accessing the server in descending order of the number of previous service attempts;

no service restrictions are imposed on the arrival of new jobs. The purpose of this policy is to

schedule retrial jobs so that the critically loaded regime does not persist for too long - it reduces

the potential for unexpected mechanical issues to arise - while being simple to implement (it is

parametrized by r) and not unreasonably rigid (e.g., an all-or-nothing policy). Finally, notice that

choosing a higher threshold is similar to increasing β while choosing a lower threshold is suboptimal,

i.e., it results in larger capacity levels and longer waiting times for retrial jobs.

Let rj := (r1, r2, . . . , rj) denote the retrial rates for the first j orbits; we define the upper and

lower bounds on rj to be rj(s, rj−1) and rj(s, rj−1), respectively, for j ∈ {2, 3, . . . , J−1}; similarly,

r1(s) and r1(s) are the respective bounds on r1. These bounds ensure that, in expectation, retrial

jobs do not attempt service when X(t) > βs; their functional form depends on the specification of

the arrival function. As a result, the throughput-based objective and operational constraints can

be formulated as a non-linear stochastic optimization model with J decision variables:

max
s∈R>0,r∈RJ−1

≥0

∫ T

0
(µE[X(t)]− γs) dt, subject to (QOPT)

1

T

∫ T

0
1{X(t)>βs}dt ≤ α, (3.1)

r1(s) ≤ r1 ≤ r1(s), (3.2)

rj(s, rj−1) ≤ rj ≤ rj(s, rj−1), j ≥ 2, (3.3)
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where γ is the amortized cost of purchasing and maintaining one CPU core over the horizon T given

that revenue is normalized to a unit value per customer. As specified by our partner organization,

we fix γ small enough so that servicing clients is always profitable, i.e., no job is refused.

The objective of QOPT is to jointly determine the minimum capacity level and optimal retrial

intervals in order to maximize throughput less a penalty that deters the selection of more capacity

than needed in order to satisfy demand. Including such penalty term in the objective is a well-

known technique that reduces a constrained problem to an unconstrained one. (Fletcher 1975,

Viswanathan and Grossmann 1990, Yeniay 2005). Constraint (3.1) represents a generalised service

level agreement (SLA). Although its form is induced by the SLA of the partner organization, it is

not new to the operations literature. Soh and Gurvich (2017), for instance, examine a probabilistic

variant of the minimization problem with service capacity as a single decision variable. Constraints

(3.2)-(3.3) bound average retrial times so that jobs attempt service only when total system workload

is less than βs. Notice that the bounds on r1 are functions of the service capacity only while the

bounds on rj for j ≥ 2 also account for the dynamics in the orbits that precede them.

Problem QOPT cannot be solved using techniques from classical queueing theory (e.g., Markov

chains). This is because the service-level restrictions (3.1)-(3.3) require that X(t) be known or

approximated; such approximation requires that the temporal ordering among arrivals be tracked.

Further, replacing the stochastic process X(t) by its fluid approximation is non-trivial due to

the general distribution of retrial times (Mandelbaum et al. 1998). To overcome these obstacles,

we construct an offered load approximation of the system, i.e., we increase the service capacity to

infinity. This removes the burden of including Oj(t) in the analysis (there can be no retrials because

servers are never fully utilized) and preserves information about the workload in the original system.

Let Π(·) be a standard headcount Poisson process and let {U(t)|t > 0} be a stochastic process

that represents the number of jobs in service at time t. If U(0) is the number of jobs that are initially

being processed, the stochastic equation governing the dynamics of the uncapacitated system is

U(t) = U(0) + Π

(∫ T

0
λ(t)dt

)
−Π

(∫ T

0
µU(t)dt

)
.

Define u(t) ∈ C1 to be the fluid approximation (offered load) of U(t) obtained by using either the

functional strong law of large numbers or the Chapman-Kolmogorov forward equations (Massey
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and Pender 2018). That is, u(t) is the solution to the following ordinary differential equation:

u̇(t) = λ(t)− µu(t). (3.4)

We also define x(t) to be the fluid approximation of X(t), i.e., the state descriptor of the original

capacitated system with s servers. For convenience, we reformulate QOPT with respect to x(t):

max
s∈R>0,r∈RJ−1

≥0

∫ T

0
(µx(t)− γs) dt, subject to (OPT)

1

T

∫ T

0
1{x(t)>βs}dt ≤ α, (3.5)

r1(s) ≤ r1 ≤ r1(s), (3.6)

rj(s, rj−1) ≤ rj ≤ rj(s, rj−1), j ≥ 2. (3.7)

Notice that OPT is equivalent to QOPT except that the expectation is removed in the objective;

the fluid approximation describes the system dynamics of the average stochastic path.

3.3.2 Modified Offered Load Function and Total System Workload

Because our partner organization is primarily concerned with the long-term dynamics of their cloud

service operation, we consider the asymptotic periodic orbit of u(t), i.e., υ(t) ∈ C1, and the time

points when it crosses a fixed level s. If there exist instances where υ(t) > s for some times t, then

in the capacitated system, some of the fluid is immediately served while the rest joins the orbit.

We define the amount of fluid that is immediately served upon arrival at time t by the system

load function (SLF) ῡ(t; s) := υ(t) ∧ s and introduce two piecewise smooth, continuous functions

z(t; r, s) and y(t; r, s). The first function, z(t; r, s), is the modified OLF representing the total

system workload for any service capacity s and the corresponding feasible stationary retrial rates

r. It represents the sum of fluid entering the system from both external and internal (i.e., retrial

orbits) sources at all times t. The second function, y(t; r, s), represents the aggregate amount of

retrial fluid from all orbits that attempt to obtain service at time t. Thus, we have that

z(t; r, s) = ῡ(t; s) + y(t; r, s). (3.8)
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Given a capacity level s, there exist stationary retrial rates that satisfy (3.8). Our goal, then,

is to select s∗ and r∗ so as to optimally solve OPT. In the following proposition, we derive an

explicit form of the retrial fluid y(t; r, s) that, given an optimal selection of retrial rates and service

capacity, maximizes system throughput by optimally redistributing the retrial fluid.

Proposition 5 (Explicit Representation of y(t; r, s)). Let υ(t) be a continuous function. For

j ∈ {1, 2, . . . , J − 1}, denote the modified OLF of a system with j orbits by zj(t; rj , s) such that

z1(t; r1, s) = ῡ(t; s) + (υ(t− r−1
1 )− s)+, (3.9)

zj(t; rj , s) = zj−1(t; rj−1, s) ∧ s+ (zj−1(t− r−1
j ; rj−1, s)− s)+ ∀j ≥ 2. (3.10)

Then, the modified OLF for the aggregate retrial fluid and the total system workload are

y(t; r, s) = zJ−1(t; rJ−1, s)− ῡ(t; s), z(t; r, s) = zJ−1(t; rJ−1, s). (3.11)

Proposition 5 describe a recursive relationship between the fluid leaving each orbit and the total

system workload. In particular, at each stage, (3.9)-(3.10) decompose the workload into two flows:

fluid serviced after j or fewer attempts and fluid serviced after the (j+ 1)st attempt. By definition,

in a system with J − 1 orbits, the modified OLF is given by z(t; r, s) = zJ−1(t; rJ−1, s). Thus, if

υ(t) admits a closed-form expression, the aggregate retrial function y(t; r, s) and the corresponding

OLF for the total system workload, z(t; r, s), can also be written in closed-form. Notice that

Proposition 5 only requires that υ(t) be a continuous function. Thus, the recursive relationship

holds in settings where υ(t) is a smooth or piecewise smooth function (see Section 3.4.2).

3.4 Variation-Based Capacity and Retrial Rate Optimization

In this section, we leverage the recursive definition of z(t; r, s) to develop a calculus-of-variations

approach to solving OPT. We first define the total variation of a function and use the concept to

formulate two optimization problems that minimize the variation in z(t; r, s). The first formulation,

presented in Section 3.4.1, assumes that arrivals are represented by a sinusoidal function, a common

modelling choice in the extant literature (Green et al. 2007a, Yom-Tov and Mandelbaum 2014b,
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Furman et al. 2019). In practice, however, the arrival rate may be described by more complicated

periodic functions. Thus, in Section 3.4.2, we extend our results and present a formulation that

assumes arrivals can be represented by any periodic smooth or piecewise smooth arrival process de-

fined such that the length of its smooth intervals equals the period of λ(t). Finally, in Section 3.4.3,

we discuss the implications of our approach and its connection to the original stochastic system.

Definition 1 (Total Variation of a Real-valued Function). Let f(t) be a bounded, continuous, real-

valued function for t ∈ D ⊂ R≥0. If E is a countable set of all points t where ḟ(t) does not exist,

then the total variation of f(t) is given by

V (f) =

∫
D\E
|ḟ(t)|dt.

By minimizing the variation in the modified OLF for system workload, we find parameters s∗

and r∗ that optimally redistributes fluid from peaks above s∗ to cavities that are below it, i.e.,

throughput will be maximized. Note that to avoid the complexity associated with integrating υ(t)

over incomplete periods, without loss of generality, we fix the planning horizon to T̃ := Ω−1TΩ.

3.4.1 Sinusoidal Arrival Functions

To illustrate our approach using a common specification for demand that is both time-varying and

periodic, we first analyze the setting where arrivals are represented by a sinusoid. That is,

λ(t) := λ̄+ λ̄σ sin (ωt+ φ) , (3.12)

where we define λ̄ > 0, σ ∈ [0, 1], ω > 0 and φ ≥ 0 to be the average arrival rate, relative amplitude,

frequency, and phase parameters, respectively.

Recall that u(t) is the OLF for the uncapacitated system. Because u(t) is affected by the

periodicity of λ(t), it approaches the periodic orbit υ(t) for sufficiently large t. If there exist

instances where υ(t) > s for some times t, then in the capacitated system, some of the fluid is

immediately served while the rest joins the orbit. Thus, for the demand function given by (3.12),

we first derive closed-form expressions for u(t), υ(t), and the time points when υ(t) crosses a level

s.
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Lemma 9. Let the dynamics of u(t) ∈ C1 be governed by (3.4) and λ(t) ∈ C1 be given by (3.12).

If u0 and υk are real numbers for k ∈ {1, 2, 3}, then the following three statements hold:

(i) The solution to (3.4) admits a closed-form expression of the form

u(t) = u0e
−µt + υ1 + υ2 cos(ωt) + υ3 sin(ωt). (3.13)

(ii) The OLF u(t) approaches a periodic curve of the form

υ(t) = υ1 + υ2 cos(ωt) + υ3 sin(ωt). (3.14)

(iii) For n ∈ Z, the equation υ(t) = s admits closed-form, periodic solutions

t(n, s) =

2arctan

(
υ3±
√
υ2

3−(s−υ1+υ2)(s−υ1−υ2)

s−υ1+υ2

)
ω

+
2π

ω
n, (3.15)

where we have explicitly noted the dependence of the time points on the capacity level s.

Lemma 9 indicates that, for sinusoidal demand, a solution to the dynamical system can be

easily determined and the limiting OLF υ(t) can be written in closed-form. This is important if

we wish to find an exact expression for z(t; r, s). In order to determine when flow from the orbits

can re-enter the system, it’s also crucial to characterize the time points when υ(t) moves from an

overloaded to an underloaded system. Lemma 9 demonstrates that these periods can be determined

exactly.

Define Z(n;βs) be a set of time points where z(t; r, s) > βs and υ(t) ≤ βs; these points can be

calculated in closed-form based on the results of Proposition 5 and Lemma 9. Using the definition

of total variation, we formulate the following optimization problem:

min
s∈R>0,rj∈R≥0

V (z(t; r, s)) subject to (VAR)

t2(n, βs)− t1(n, βs) + |Z(n;βs)|
Ω

≤ α, (3.16)

z1(t; r1, s) ≤ ῡ(t) ∀t ∈ {t|υ(t) ≥ βs}. (3.17)
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The objective of VAR is to minimize the total variation in system workload while ensuring that

the pre-specified service level is achieved and the retrial workload does not enter service in periods

where the system is critically loaded. Constraint (3.16) specifies that the SLA must be satisfied; the

left-hand side tracks the time z(t; r, s) spends above βs. When λ(t) is given by (3.12), the bounds

r1(s) and r1(s) can be simplified and replaced with (3.17) which guarantees that jobs from the

first orbit re-enter service only after the system workload drops below βs. Finally, in this setting,

constraint (3.7) becomes redundant and, as a consequence, is omitted from the formulation.

Lemma 10. Let t2(n, s) > t1(n, s) > t0(n, s) > 0 be consecutive solutions to the equation υ(t) = s

for n ∈ Z where υ̇(t0(n, s)) < 0, υ̇(t1(n, s)) > 0 and υ̇(t2(n, s)) < 0, respectively. Define the amount

of excess fluid, eΩ(s), and the total area of the cavity under level s, dΩ(s), per period as

eΩ(s) =

∫ t2(n,s)

t1(n,s)
υ(t)dt− s(t2(n, s)− t1(n, s)), dΩ(s) = s(t1(n, s)− t0(n, s))−

∫ t1(n,s)

t0(n,s)
υ(t)dt.

Then, constraint (3.17) implies that the following relation must hold

eΩ(s) ≤ dΩ(βs). (3.18)

Notice that (3.17) limits when retrial fluid can re-enter the system, i.e., when the workload

drops below βs. If the workload is too large, retrial fluid continuously accumulates and the orbits

never empty. However, if the amount of retrial fluid that has accumulated over Ω does not exceed

the area of the subsequent cavity, all of the retrial flow can be served. This logic is formalized in

Lemma 10 and is particularly important when determining the optimal solution to VAR.

Proposition 6 (Constrained Variation). Let s1 and s2 be the capacity levels obtained by equating

the left-hand and right-hand sides of (3.16) and (3.18), respectively, and solving for s. Then,

(i) The optimal capacity level of VAR is given by

s∗ = max{s1, s2}.
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(ii) Given s∗, the optimal retrial rates are such that r∗j ≥ 0 for j ∈ {2, 3, . . . , J − 1} and

(t1(n, βs∗)− t0(n, s∗))−1 ≤ r∗1 ≤ (t2(n, βs∗)− t1(n, s∗))−1. (3.19)

The proposition specifies that the optimal capacity level and retrial rates are selected such

that throughput in the original capacitated system matches throughput in the system where fluid

arriving when x(t) = s∗ is redistributed, i.e., x(t) = z(t; r∗, s∗) ∧ s∗. In general, smaller capacity

values result in smaller total variation values. As capacity decreases, the left-hand side of con-

straint (3.16) increases until it reaches its upper bound given by α (the right-hand side of this

constraint). Further, recall that y(t; r, s) represents the aggregate amount of retrial fluid from all

orbits that attempts to re-enter the system at time t. Constraint (3.18) specifies that over the

entire time horizon, this retrial fluid must fit into the corresponding area under βs that is available

to receive it. Higher values of capacity reduce the amount of excess fluid and increase the size of

the cavity that can be used to serve retrial fluid. As a result, even though the objective function

is non-linear, we have that s∗ equates the left-hand and right-hand sides of (3.16) or (3.18). We

also find that all retrial rates satisfying (3.19) are optimal solutions to OPT. Consequently, without

loss of generality, we select r∗1 so that jobs re-enter service as soon as possible and fix r∗j ≥ 0 for

j ∈ {2, 3, . . . , J − 1}.

We now demonstrate that minimizing the total variation in system workload is akin to maximiz-

ing the penalized throughput objective in OPT. We note that VAR is a much simpler optimization

problem. Directly solving OPT is intractable; it is a non-linear optimization problem where the

objective function and constraints do not have closed-form expressions.

Proposition 7 (Equivalency). The optimal solution to VAR is the optimal solution to OPT.

3.4.2 General Periodic Arrival Functions

In the previous section, we formulated a general calculus-of-variations approach to solve OPT for

settings where customer arrivals λ(t) can be described by a sine function, as in (3.12). Such arrival

function has properties that make VAR analytically tractable, i.e., point symmetry and exactly one

maximum and minimum per period Ω. As a result, if the SLA is satisfied, z(t; r, s) does not exceed
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βs level when υ(t) ≤ βs. This implies that at most one orbit is required to serve all jobs and the

time z(t; r, s) spends above βs level can be tracked given the closed-form expression of υ(t).

The results extend to more complicated periodic, smooth functions such as higher order poly-

nomials or a combination of sine functions. Although these arrival processes can fit many patterns,

they do not necessarily guarantee that the fitted λ(t) agrees with the observed data. This is because

polynomial functions are not periodic and one may not be able to estimate the frequency values of

sinusoids with sufficient precision (Chen et al. 2018). However, observed arrivals with a specified

period Ω ≥ 0 may be modelled using a piecewise smooth, continuous, periodic function of the form

λΩ(t) := λ(t mod Ω) (3.20)

defined such that λ(t) has a polynomial representation. Although other function classes may suffice,

polynomials are the simplest analytical form that allows for direct evaluation. Thus, in this section,

we extend our main results to accommodate this broad class of arrival functions. Specifically, we

show that solving OPT optimally using the variation approach generalizes to cases where periodicity

and the piecewise smoothness of arrivals are essential features (see Section 3.5).

Contrary to (3.12), however, λΩ(t) may not have point symmetry and there may be several

local extrema over Ω. Thus, in the following lemma, we generalize the results corresponding to the

OLF in the uncapacitated system and its periodic orbit.

Lemma 11. Let λΩ(t) be defined as in (3.20). Then, for a real number u0 and a polynomial

function υ(t), the following two statements hold.

(i) The solution to u̇Ω(t) = λΩ(t)− µuΩ(t) admits a closed-form expression of the form

uΩ(t) = u0e
−µt + υ(t mod Ω). (3.21)

(ii) The OLF uΩ(t) approaches a periodic, piecewise smooth function υΩ(t) := υ(t mod Ω).

Lemma 11 extends Lemma 9 and indicates that for any arrival function that takes the form of

(3.20), υΩ(t) is piecewise smooth, continuous, and admits a closed-form expression. In contrast to

Lemma 9, however, we do not derive explicit expressions for the time points when υΩ(t) crosses the
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capacity level s. Since this involves solving for the roots of a higher order polynomial - which, in

general, does not have closed-form expressions - one must determine them numerically.

For the nth period of υΩ(t), letMΩ ∈ Z>0 be the number of times υΩ(t) exceeds the capacity level

s and define {Am(n, s)}MΩ
m=1 and {Bm(n, s)}MΩ

m=1 to be consecutive, non-overlapping time intervals

corresponding to when υΩ(t) ≥ s and υΩ(t) < s, respectively. To redistribute the retrial fluid over

the intervals where υΩ(t) < βs, we follow the same recursive procedure as in Section 3.4.1. Because

υΩ(t) admits a closed-form expression, existence of a suitable modified OLF z(t; r, s) is guaranteed

by Proposition 5. Thus, defining Zm(n;βs) to be the set of time points where z(t; r, s) > βs and

υΩ(t) ≤ βs for all m and n ∈ N, we generalize VAR by presenting the following optimization

problem.

min
s∈Z>0,rj∈R≥0

V (z(t; r, s)) subject to (GVAR)∑M
m=1 (|Am(n, βs)|+ |Zm(n;βs)|)

Ω
≤ α, (3.22)

z1(t; r1, s) ≤ ῡΩ(t) ∀t ∈ {t|uΩ(t) ≥ βs}, (3.23)

zj(t; rj , s) ≤ zj−1(t; rj−1, s) ∀t ∈ {t|zj−1(t; rj−1, s) ≥ βs}, j ≥ 2, (3.24)

z(t; r, s)− s ≤ 0 ∀t. (3.25)

The objective of GVAR is identical to VAR; constraint (3.22) generalizes the SLA constraint given

by (3.16), i.e., its left-hand side tracks the time z(t; r, s) spends above βs, and (3.23) generalizes

(3.17) by ensuring that jobs from the first orbit re-enter service only after the system workload drops

below βs. Constraints (3.6)-(3.7) reduce to the relation between zj(t; rj , s) and zj−1(t; rj−1, s) as

given by (3.24); these constraints ensure that the retrial workload from orbits j ≥ 2 do not attempt

service when the system is critically loaded. Finally, because υΩ(t) may have multiple peaks above

the capacity level βs, contrary to the simpler sinusoidal case, minimizing the total variation in

system workload involves balancing the distribution of fluid over multiple cavities. Since it is

possible that some demand may not be processed, we include (3.25) which rectifies the issue.

Corollary 2 (Constrained Variation). If the fluid that accumulates per time interval Am(n, s) is

less than the total area of the cavity of Bm(n, s) for each n and m such that |Zm(n;βs)| = 0, then

(i) The capacity level s∗ that optimally solves GVAR is the solution to (3.22) at equality.
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(ii) Given s∗, the optimal retrial rates are such that r∗j ≥ 0 for j ∈ {2, 3, . . . , J − 1} and

1

r∗1
≥ max{|Am(n, βs∗) ∩ Bm(n, s∗)|+ |Am(n, s∗)|}Mm=1, (3.26)

1

r∗1
≤ min{|Am(n, βs∗) ∩ Bm(n, s∗)|+ |Bm(n, βs∗)|}Mm=1. (3.27)

In general, solving GVAR is challenging. However, under the assumption that the width,

depth, and area of each cavity is larger than the amount of retrial fluid entering the system, (3.22)

holds with equality. This assumption, which is expressed mathematically in Corollary 2, ensures

that the optimal capacity level and retrial rates are determined by equating throughput in the

original capacitated system with throughput in the system where fluid arriving when x(t) = s∗ is

redistributed, i.e., x(t) = z(t; r∗, s∗) ∧ s∗. Then, notice that given s∗, any stationary retrial rate

r1 that satisfies (3.26) and (3.27) is optimal. Without loss of generality, we select r∗1 so that jobs

re-enter service as soon as possible and fix r∗j ≥ 0 for j ∈ {2, 3, . . . , J − 1}.

Corollary 3 (Equivalency). The optimal solution to GVAR is the optimal solution to OPT.

Corollary 3 generalizes Proposition 7 and demonstrates that our approach of minimizing the

variation in system workload can be applied to a broad class of arrival functions. This is particularly

important as, although generalised sine functions are a common choice when modeling time-varying,

periodic arrival functions, real-world circumstances (e.g., Section 3.5) may be far more complex.

3.4.3 Model Discussion

Our calculus-of-variations approach introduces a new technique for determining the optimal sta-

tionary capacity and set of retrial intervals for a system with time-varying demand, a finite number

of retrial attempts, and pre-specified service levels. It applies to any setting where a decision maker

wishes to determine the minimum capacity level that maximizes system throughput while adhering

to various company requirements on how service should be administered. As demonstrated in Sec-

tion 3.4.2, our model accommodates a large class of periodic patterns of time-varying demand and

generally distributed retrial times. Whereas directly optimizing OPT is intractable, minimizing the

total variation yields optimal solutions that can be derived realitvely easily.
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Solving GVAR may lead to its own set of challenges. If the width, depth, and area of each cavity

exceeds the amount of retrial fluid waiting to re-enter the system, any retrial rate satisfying (3.26)

and (3.27) can return such fluid into the system; a corresponding s∗ can be obtained by solving a

single non-linear equation. However, if there exists cavities that cannot fit the accumulated retrial

fluid up to that point, a more exhaustive search is required. Fortunately, as the SLA becomes

stricter, more capacity will be provisioned. By increasing capacity levels, the total amount of

retrial fluid will decrease while the area in the cavities of the corresponding long-term OLF will

increase. Thus, it should be easier to solve GVAR for SLAs that encourage high-quality service.

Our analysis suggests that in order to minimize the total variation in workload, only one or-

bit is required. This is because the optimal retrial rate r1 is bounded for any service capacity s

and any value within these bounds serves the entire retrial workload. However, because we are

approximating the original stochastic system by a fluid, the rest of the orbits are useful in reducing

abandonment from the system in the stochastic regime. As previously discussed, the fluid approxi-

mation describes the system dynamics of the average stochastic path. Thus, our approach captures

well the average service experience, but there can be considerable variability in the sample paths of

customers in the original stochastic system. Thus, a decision maker should exercise caution when

setting the retrial rates. Changing rj for j = 2, . . . , J − 1 may impact the performance of the

original service system while remaining undetected by the fluid model.

3.5 Case Study

In this section, we apply our calculus-of-variations approach to determine the optimal cloud capacity

level and set of retrial rates for a single service within our partner organization. We estimate the

operational costs associated with this policy and evaluate its sensitivity with respect to changes in

the SLA. Our analysis suggests that substantial savings may be possible; further savings can be

achieved by slightly modifying the company’s current SLA without undermining service quality.

We use three performance measures to compare optimal policies under different service level

agreements: (i) operational costs; (ii) the probability of waiting before accessing service; and (iii)

the expected waiting time. As advised by our partner organization, operational costs are associated

with housing, maintaining, powering, and cooling one CPU core. Since this is equal to $0.03 per
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hour, the total annual operational costs C(s) of capacity can be calculated as

C(s) = 262.8s.

To estimate the latter two performance metrics, i.e., the probability that a computing request

waits before accessing service and the expected waiting time, we introduce fluid-based estimates

of the long-term probability of entering service after at least j ∈ {1, 2, . . . , J} attempts. Because

the fluid model tracks the average path of the original stochastic system, we can estimate the

probability that a request accesses service after at least two attempts by computing the proportion

of time υΩ(t) is above level s divided by the total amount of fluid in the system. The probability

that a request accesses service after at least j > 2 attempts can be computed in a similar fashion,

i.e., it is the proportion of time zj−2(t; rj−2, s) is above level s divided by the total amount of fluid

in the system. The logic is formally expressed in the following definition.

Definition 2 (Fluid-based Probability). Let Ξ ∈ {1, 2, . . . , J} be a discrete random variable repre-

senting the long-term average number of attempts before a job is serviced or lost. Define let eΩ(f, s)

to be the amount of fluid above level s for an OLF f(t) during a single period Ω. Then,

(i) The long-run probability of entering service after at least j ∈ {1, 2, . . . , J} attempts is

P̂(Ξ ≥ 1) = 1, (3.28)

P̂(Ξ ≥ 2) =
eΩ(υΩ, s)

eΩ(υΩ)
, (3.29)

P̂(Ξ ≥ j) =
eΩ(zj−2, s)

eΩ(υΩ)
j > 2. (3.30)

(ii) The fluid estimate of the probability mass function of Ξ is

P̂(Ξ = j) = P̂(Ξ ≥ j)− P̂(Ξ ≥ j + 1) ∀j. (3.31)

Let W ≥ 0 be a random variable that represents the waiting time before accessing service.

According to Definition 2, P̂(Ξ ≥ 2) = P̂(W > 0) and the fluid estimate of the long-term probability

of waiting in the original stochastic system can be computed. Notice that jobs are serviced after at

57



most J attempts or lost, i.e., leave the system without service. Thus, we have that Ξ ≤ J . Finally,

notice that a job serviced after exactly j > 1 attempts spends 1
r1

+ 1
r2
, . . . , 1

rj−1
time waiting in the

orbits on average. As a result, we can write the estimated expected waiting time in accordance with

the definition of the expectation of a discrete random variable. That is, for retrial rates rj 6= 0, the

fluid estimate of the expectation of W , or the expected waiting time before a job enters service, is

Ê[W ] =
J∑
j=2

j∑
k=2

1

rk−1
P̂(Ξ = j).

Our partner organization is composed of many different services. Each service has a specific

business focus and is allocated dedicated cloud computing capacity. Although each service may

differ in the functional form of the arrival rate and the service requirements of cloud computing

requests, they have similar features, i.e., demand is time-varying and jobs are homogeneous. A

typical service is characterised by a large number of arrivals with short service times. Our data

set contains per second counts of arriving jobs over a typical 24-hour period for one such service.

It accounts for approximately 50 million arrivals, and as indicated by our partner organization,

the average service time equals 25 milliseconds. In accordance with our partner organization’s

practices, we assume that the arriving pattern repeats daily and fix J = 3 so that requests not

serviced after 3 attempts are considered lost. Further, our partner organization implements an SLA

with α = 0.01 and β = 0.75, i.e., more than 75% of the system capacity should be busy less than

1% of each day.

We convert the data into instantaneous arrival counts and fit the resulting sample using a curve

fitting toolbox in Matlab R2015a. Figure 3.2a represents the fitted arrival process over two periods

Ω, i.e., 48 hours or 172,800 seconds. Without loss of generality, we assume t = 0 corresponds to

2am. According to this figure, the system experiences a high volume of arrivals from 5am to 6am

and from 4pm to 5pm; the intensity of arrivals is lowest at approximately 2am and 10:30am. Thus,

λΩ(t) is a piecewise smooth, periodic function that captures large fluctuations in the workload over

each day of operation. Because the length of the smooth intervals of λΩ(t) equals its period, the

arrival function satisfies the requirements in Section 3.4.2 and λ(t) is represented by an eighth

degree polynomial function (see Appendix B for more details).

As per Lemma 11, we derive a closed-form expression of υ(t) that can also be represented by

58



Figure 3.2: Fluid estimates: (a) λΩ(t) with T̃ = 48 hours; and (b) the optimal solution with
T̃ = 24 hours.

(a) (b)

an eighth degree polynomial function (see B for more details). By Corollary 2, we solve GVAR

and present its solution in Figure 3.2b (the solid line). The analysis indicates that our partner

organization needs 35.25 CPU cores to meet their service requirements (we refer to this service

capacity as the reference level and note that managers can round s∗ up or down in accordance with

the recommendations of their hardware engineers). Notice that, due to the SLA, the minimum

capacity that satisfies (3.22) is greater than the maximum of υΩ(t). As a result, P̂(W > 0) = 0

and Ê[W ] = 0. Further, in the fluid setting, the reference level is sufficient to serve all jobs

and selecting r has no effect on system performance. The optimal capacity s∗ produced by our

model is approximately 10% less than the partner organization’s current allocation for this service.

Because our partner organization allocates cloud computing capacity to thousands of services, a

10% reduction in capacity translates into a company-wide savings of tens of millions of dollars

annually.

In Figures 3.3 and 3.4, we perform a sensitivity analysis with respect to the SLA. Each group

of bars represents a capacity level and its annual costs, respectively. For Figures 3.3b, 3.4a, and

3.4b, we select the range of α such that each figure includes a set of representative scenarios (from

left to right): (i) the optimal capacity levels are less than the reference level but have Ê[W ] = 0;

(ii) the minimum capacity level where Ê[W ] = 0; and (iii) capacity levels where Ê[W ] > 0.

In Figure 3.3a, we fix α = 0.01 and vary β from 0.75 (first group of bars), 0.8 (second group of
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Figure 3.3: Sensitivity analysis of the SLA: (a) We fix α = 0.01 and vary β; and (b) We fix
β = 0.75 and vary α.

(a) (b)

bars), and 0.85 (third group of bars). We find that increasing β to 0.8 results in an additional 6.25%

increases annual savings when compared to the reference level with no change in Ê[W ]. The SLA

with β = 0.85 implies savings of 11.8% as compared to the reference level; again, there is no change

in Ê[W ]. In Figure 3.3b, we fix β and vary α noting that our partner organization has advised us

β = 0.75 is an engineering standard. We find that on average, increasing α by 0.01 reduces the

capacity level by approximately 0.33 servers. This does not change the expected waiting time or

the probability of waiting until α = 0.2922 where 26.49 CPU cores are provisioned. Beyond this

point, the expected waiting is positive and it is imperative r be selected optimally to obtain the

minimum waiting for that capacity. Nevertheless, in this regime, we observe that the expected

waiting time increases quickly. For α = 0.3622, three fewer servers are purchased as compared to

α = 0.2922. However, the fluid estimate of the probability of waiting increases to 14.5% while the

expected waiting time is 24.4 minutes (see Table B.1 in Appendix B for more details).

In Figures 3.4a-3.4b, we fix β = 0.8 and β = 0.85, respectively, and vary α. Although these

values of β are larger than the engineering standard, we find that we obtain lower values of α

for the same capacity level as compared with β = 0.75. As before, the expected waiting time

and probability of waiting does not change until the number of CPU cores exceeds 26.49. Beyond

this value, the expected waiting is positive (see Tables B.2-B.3 in Appendix B for more details).

Nevertheless, when s < 26.49, we observe that increasing β results in shorter expected waiting
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times because jobs are allowed to re-enter service faster. Because the expected waiting time of 25

minutes is considered long by the partner organization, we do not review capacity levels that result

in a longer wait.

Figure 3.4: Alternative SLAs by varying α fixing (a) β = 0.8; and (b) β = 0.85.

(a) (b)

Our analysis indicates that there are many SLA parameters that produce an expected waiting

time of zero for arriving jobs. Thus, a 10% reduction in capacity, as suggested by our initial analysis

using our partner organizations current SLA, may be a conservative estimate. In particular, the

results from Figures 3.3 and 3.4 suggest that our partner organization has two operational levers

with which to generate additional savings. By modifying their existing SLA using a combination

of α and β, capacity levels can be further reduced while still providing very high levels of service

quality. The reduction in capacity means that less electricity will be consumed and this addresses

the sustainability issues that have become an increasing concern in the cloud computing industry.

3.6 Summary of Contributions

Our analysis suggests that in settings where the arrival rate can be characterized by a sinusoid, jobs

will be serviced after at most two attempts. That is, the remaining retrial orbits do not impact the

fluid dynamics but perform a safeguarding role in the stochastic regime against abandonment due

to repeated service denials. Thus, managers that observe sinusoidal demand should be focused on

selecting the retrial rate parameter for the first orbit. When the demand function is more complex,
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as in our case study, we show that our approach is flexible in that it can accommodate complicated

arrival functions. Nevertheless, this complexity is not inherited by the corresponding optimization

problem as the optimal solution can be efficiently obtained. We confirm the utility of our method-

ology by showing that capacity at our partner organization can be reduced by approximately 10%.

We then introduce easy-to-compute performance measures that link the system performance of the

fluid model to the stochastic regime. We use the fluid-based performance measures to illustrate

that the proposed down-scaling of CPU capacity does not substantially affect service quality for a

large range of SLAs, i.e., the probability of waiting and the expected waiting time are zero. Thus,

additional savings are achievable with virtually no discernible service impact.

Although further investigation is required, our study suggests that cloud computing providers

may actually operate closer to optimality than has been previously thought. That is, the large

amounts of idle capacity (see Columbus 2016, FLEXERA 2019, for instance) may be a byprod-

uct of satisfying challenging service level agreements rather than a systemic undervaluation of idle

resources. To this end, our results encourage managers to carefully review their SLAs as small

changes may result in a substantial reduction in costs. Our partner organization shares these con-

clusions. They agree that reviewing their SLA is an important step in making their operations more

efficient and sustainable. Nevertheless, our analysis does confirm that cloud computing providers

determine capacity levels by ensuring that most of the workload during peak demand periods can

be immediately serviced. This explains reports (e.g., Chapel 2019) claiming that, for the most part,

cloud capacity around the globe is usually idle. It follows that, in order to satisfy strict SLAs and

accommodate access policies that encourage retrial jobs to enter service during off-peak periods

while preserving short waiting times, providers must provision large amounts of capacity.
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Chapter 4

Prediction of PPE in Hospitals

During COVID-19

The work in this chapter has been submitted for publication as the following:

Eugene Furman, Alex Cressman (medical practitioner), Saeha Shin (data analyst from a partner
organization), Alexey Kuznetsov (supervisory committee member), Fahad Razak (medical prac-
titioner), Amol Verma (medical practitioner) and Adam Diamant (advisor) “Prediction of PPE
in Hospitals During COVID-19”, in Health Care Management Science, [2020]
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4.1 Introduction

Personal protective equipment (PPE) includes items such as surgical masks, face shields, gloves,

eye protection, and gowns (Canadian Centre for Ocupational Health and Safety 2018). They are

designed to protect the wearer, and individuals they come in contact with, from potential exposure

to infectious diseases (FDA 2020). Although PPE is typically used in clinical settings, it has become

an essential commodity following the recent outbreak of Coronavirus Disease (COVID-19). That

is, to combat the spread of the virus, many governments are mandating the use of PPE in public

spaces such as retail stores, restaurants, community centers, and on public transit (e.g., Ontario

Health 2020a). Wearing a mask to conduct activities outside the home is now recommended by the

World Health Organization (WHO 2020), the Centers for Disease Control and Prevention (CDC

2020), and the Government of Canada (Canada.gov 2020). This non-pharmaceutical intervention is

designed to slow the spread of COVID-19, however, it has also resulted in large surges in demand for

PPE and, correspondingly, critical supply shortages (Gondi et al. 2020). This has had a detrimental

effect on the ability of hospitals to source PPE (Livingston et al. 2020) and outfit their staff (Ranney

et al. 2020). In some cases, the inability to provide adequate PPE to frontline health care workers

has led to higher rates of infection and death amongst patients (Balmer and Pollina 2020).

In hospitals, PPE has traditionally been used to protect healthcare workers when performing

various types of medical procedures (Akduman et al. 1999, Benson et al. 2013). During the pan-

demic, however, PPE has become a requirement for all patient-practitioner interactions; any time

a health worker enters a patient’s room or physically interacts with a patient, they are required

to wear PPE. As a result, although patient volumes initially decreased with the onset of the pan-

demic as many non-emergent procedures were postponed, there has been a large increase in the

use of PPE to manage urgent and non-elective patient care (Daly 2020). For instance, in response

to the COVID-19 pandemic, the Canadian government has ordered approximately 395 and 154

million surgical and N95 masks, respectively, to distribute directly to hospitals (Public Services

and Procurement Canada 2020). As acute care facilities resume normal operations (e.g., diagnostic

testing, elective surgery, ambulatory care), all staff, employees, and visitors will likely be required

to wear PPE at all times (UHN 2020) while additional PPE requirements will be mandated dur-

ing medical procedures (Ontario Health 2020b). This will put even more pressure on PPE supply
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chains which, in some health care systems, face estimated delays of up to 6 months and have had

major distributors unable to fill orders (Mehrotra et al. 2020). Since one of the biggest obstacles to

restarting normal hospital operations is the consistent and timely supply of PPE, these statistics

are particularly troubling (Daly 2020).

Given the importance of PPE in acute care centers, proactive PPE management has become

an essential component in hospital operations (Crawley 2020). Successful administration of PPE

inventory is directly linked to accurately predicting the demand for medical services, and in par-

ticular, the number and nature of all patient-practitioner interactions (see Barrett et al. 2020, for

instance). Doing so is challenging due to the large number of diagnoses, clinical procedures, and

surgical interventions as well as the time-dependent nature of patient arrivals (e.g., Yom-Tov and

Mandelbaum 2014b). While various simulation studies have been used to estimate hospital work-

load during the pandemic (Calafiore et al. 2020, Toda 2020, Wangping et al. 2020), they are hard to

replicate, time-consuming to build, difficult to use effectively, and are not conducive to performing

a comparative analysis that is required for prescriptive managerial decision-making.

In this work, we develop a time-varying queueing model to predict the amount of PPE required

in a clinical inpatient setting over a specified time horizon. As has been well-established in the

literature (e.g., Whitt and Zhang 2017, Yom-Tov and Mandelbaum 2014a), we assume that the

process governing when patients arrive to the hospital is time-dependent. We then cluster patients

with similar hospital experiences (e.g., diagnosis, expected treatment plan) into classes and estimate

their length-of-stay (LoS) in the hospital as well as the PPE requirements for each interaction with

a practitioner. We show that these dynamics can be modeled using multiple independent Mt/G/∞

queues (see Massey and Whitt 1993, for instance), one for each patient class, and as a consequence,

derive closed-form estimates for the expected amount of PPE required during the time horizon.

Using a large data set of clinical, demographic, and operational attributes from 22,039 patients

admitted to the general internal medicine (GIM) service at St. Michael’s Hospital (a primary care

facility in Toronto, Canada) from April 2010 to November 2019, we demonstrate the practicality

of our approach. We first validate the assumption that time-varying demand is an appropriate

modelling choice. We then describe how to group patients into classes depending on the nature

of their medical interactions as well as their LoS values. Note that this is an important step to

ensure that patients in the same class have similar hospital experiences. Next, we use our model
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to predict the yearly PPE requirements of the GIM service at St. Michael’s Hospital when it

returns to normal operations excluding those patients who are diagnosed with COVID-19. Using

the current regulations governing PPE use at the hospital and leveraging pre-pandemic patient

volumes, we show that the GIM service will need approximately 225,000 gloves, 11,500 gowns,

181,500 surgical masks, 7500 N95 masks, and 4000 face shields. Thus, gloves and surgical masks

represent approximately 90% of the predicted PPE usage. We also find that while demand for

gloves is driven entirely by patient-practitioner interactions, 86% of the predicted demand for

surgical masks can be attributed to the requirement that medical practitioners will need to wear

masks when not interacting with patients. In addition, we show that our approach provides upper

and lower bounds for the amount of PPE predicted to be used. We also perform an analysis to

determine the sensitivity of the predictions to the number of patient classes chosen by the modeller.

We contribute to the operations research and medical literature by applying a queueing theo-

retical framework to a high-impact medical problem. To the best of our knowledge, our work is the

first to obtain closed-form expressions for PPE usage in a hospital setting. Our method is analyti-

cal, computationally efficient, and does not require that a hospital develop an extensive simulation

study. By deriving closed-form expressions, the sensitivity of the predictions to changes in the

model’s parameters can be evaluated. This helps hospital administrators gain practical insight into

the dynamics of PPE usage which is especially valuable for the effective management of a scarce

resource in a rapidly changing environment. Finally, we note that our approach is easily scalable;

it can be used to make predictions for a single department, an entire hospital, or be deployed at

the regional or provincial level.

4.2 Literature Review and Contribution

To predict PPE consumption, we introduce a stochastic queueing framework with multiple inde-

pendent Mt/G/∞ queues to model the dynamics of distinct patient classes that are admitted to

the hospital, receive clinical care, and interact with practitioners. Pioneering theoretical work in

the study of Mt/G/∞ systems date back to Palm (1943) and Khintchine (1955) who show that

the number of jobs in the system at any time instant follows a Poisson process with a time-varying

rate. Since then, the extant literature has shown that departures from such queues also follows a
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non-homogeneous Poisson process (see Brown 1969, Foley 1982, 1986). More recent work derives

the expected number of jobs remaining in the system after each departure, i.e., the number of busy

servers, for specific service distributions Eick et al. (1993a,b). Further, several studies derive the

steady-state distribution and fluid limit of systems with a periodic arrival rate Dong and Whitt

(2015a,b), Whitt (2015). For a review of queueing systems with non-stationary demand, see the

survey papers by Defraeye and Van Nieuwenhuyse (2016) and Whitt (2018).

From a practical perspective, the number of applications that use Mt/G/∞ queues to model

service systems is vast: they have been employed, for instance, to evaluate the adequacy of storage

systems (Crawford 1977), determine the readiness of military equipment (Hillestad and Carrillo

1980, Crawford 1981), and model the arrival of customers to in-bound call centers (Khudyakov

et al. 2010, Vizarreta et al. 2018). Specific to healthcare, several studies have used the model

to analyse practitioner staffing and capacity management problems (Yom-Tov and Mandelbaum

2014a, Pender 2016, Furman et al. 2019, Razak et al. 2020). Due to the assumption of infinite

capacity, Mt/G/∞ queues are particularly useful in situations where service delay is near zero

Green and Kolesar (1998). The principle of zero waiting time is common in the estimation of

total workload for staffing analyses and is also known as the offered load approximation (Feldman

et al. 2008a, Janssen et al. 2011, Liu 2018, Furman and Diamant 2020). For instance, de Véricourt

and Jennings (2011) model a medical unit as a closed queueing network and determine optimal

nurse-to-patient ratios. There are also several papers that analyze the supply of hospital beds and

derive expressions to promote better management strategies in settings with time-varying demand

Green and Nguyen (2001), Green et al. (2007b), Zeltyn et al. (2011), Zychlinski et al. (2018). We

contribute to this literature by using multiple Mt/G/∞ queues to derive closed-form expressions

to predict PPE consumption from an offered load estimate of hospital workload.

Our work is related to the literature that develops best-practices for supply chain disruptions.

Tang (2006), Stecke and Kumar (2009) and Carbonara and Pellegrino (2018) provide insight into

how a supply chain can respond to natural disasters, terrorist attacks, and other unforeseeable

emergencies. Logistics networks can be built with redundant transportation routes (Dash et al.

2013), suppliers are encouraged to invest in more robust infrastructure (Dolinskaya et al. 2018),

and inventory postponement can be employed to better understand the changing demand-supply

relationship (Chiou et al. 2002, Yeung et al. 2007, Choi et al. 2012). Nevertheless, especially in

67



demand-driven supply chains, these approaches are not always useful in situations with extreme

demand volatility unrelated to infrastructure damage or logistical disturbances (Chan and Chung

2004, Chen and Xiao 2009, Verdouw et al. 2011). Instead, effective inventory management and

accurate demand predictions are crucial (Chen et al. 2001, Milner and Rosenblatt 2002, Qi et al.

2004, Xu et al. 2003). We add to this literature by proposing an analytical demand prediction tool

for PPE usage that can be employed in settings with supply chain disruptions where consumption

is a function of the length of a customers interaction with an organization.

Specific to research on COVID-19, our analysis is related to studies that predict future demand

for medical services; see the surveys by Sahin et al. (2020), Workman et al. (2020) and Harapan

et al. (2020). Since the onset of the pandemic, this literature has grown substantially. Some studies

employ deterministic compartmental modifications of Susceptible-Infected-Recovered (SIR) models

which are parameterized by empirical studies (Tuite et al. 2020, Calafiore et al. 2020, Biswas et al.

2020). Such methods result in systems of differential equations that must be solved numerically to

obtain predictions or insight related to possible public health initiatives (Liu et al. 2020). Other

studies combine dynamic SIR models with Bayesian inference techniques (see Chen and Qiu 2020,

for example) or propose stochastic Markov models to predict the spread of the disease (see Zhang

et al. 2020, for example); solutions are obtained by performing a simulation analysis. Stochastic

implementations of SIR models are also common in the literature (Bardina et al. 2020, Karako et al.

2020, Simha et al. 2020). We provide an approach that can be used alongside these models. In

particular, given a PPE policy and a (potentially) time-varying demand curve for hospital services

using one of the above methods, our model derives a closed-form expression for PPE usage and can

be employed during a COVID-19 outbreak or after regular operations have resumed.

Finally, our work contributes to the literature on critical shortages of PPE during the COVID-19

pandemic. While many studies leverage COVID-19 transmission models to evaluate the effective-

ness of non-pharmaceutical containment strategies (e.g., Evgeniou et al. 2020, Flaxman et al. 2020,

Zhang and Enns 2020), the literature predicting demand for PPE is scarce. Some authors propose

qualitative techniques to manage PPE in a medical setting (Rowan and Laffey 2020, Ranney et al.

2020). These strategies are consistent with practices that are used when there are demand and/or

supply disruptions in the pharmaceutical industry (see Fox et al. 2009, for example). Other papers

use simulation-based frameworks to derive PPE usage (Barrett et al. 2020). These approaches are
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difficult to reproduce, and thus, their estimation error is hard to quantify. Our work is the first to

propose an analytical predictive model of PPE demand in a clinical setting that can be deployed at

multiple scales (departmental, hospital, regional), settings (outbreaks or regular operations), and

can also be independently used by administrative personnel for operational planning and supply

management.

4.3 Model Formulation and Workload Estimation

In this section, we introduce a general stochastic queueing model and describe its suitability in

estimating the amount of PPE required for a hospital department. Let I be a set of patient classes

defined using managerially-relevant features, for instance, demographic characteristics, patients

with varying acuity levels, clinical diagnoses, and length-of-stay. Classes should be chosen such

that all patients in class-i ∈ I have similar care paths, i.e., a sequence of medical investigations

and interventions, and LoS values. Class i patients are assumed to arrive to the hospital and be

admitted according to a non-homogeneous Poisson process Λi(t) with time-varying intensity rate

λi ≡ λi(t). Further, each class-i patient stays at the hospital for a random time Si which represents

their length-of-stay (LoS); we define the corresponding stochastic vector S := (S1, S2, ..., SI). The

LoS for each patient within each class is independent and identically distributed where class-i

patients have cumulative distribution function Gi. Finally, we assume that Si is independent from

Λi(t) for any time t ∈ R.

Our goal is to estimate the total clinical workload of a hospital department, which in turn,

will allow us to predict the PPE required. Thus, we do not restrict hospital capacity and instead,

assume that practitioners can provide medical care to any admitted patient as soon as they arrive.

As a result, we estimate the total workload of a hospital department by aggregating the workload

from I = |I| independent Mt/G/∞ queues leveraging the merging/splitting property of a Poisson

process. Inferring the workload from such systems is a standard modelling technique in the oper-

ations literature (Eick et al. 1993b, Massey and Whitt 1993, Feldman et al. 2008b). In addition,

patients transferred from one clinical service to another are considered discharged by the former

and newly admitted by the latter. Such events are rare and thus, we can consider these individuals

as new arrivals for estimation purposes. Note that the intensive care unit (ICU) constitutes an
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exception to this rule: between 5 to 10 percent of GIM patients are transferred to the ICU at least

once over the duration of their treatment. In this study, we consider the ICU as an external service,

and, thus, subtract the times patients spend there from their total length-of-stay.

Let {∆i(t)|t ∈ R} be a headcount stochastic process corresponding to the number of class

i patients being discharged over the interval [0, t]. Applying Theorem 1 in Eick et al. (1993b),

we obtain the steady-state probability distribution of ∆i(t). Because the GIM service has been

continuously operating for a long time, the steady-state assumption is appropriate in our setting.

Specifically, the number of class i patients discharged over the interval [0, t] is given by {∆i(t)|t ∈ R}

which is a non-homogeneous Poisson process with mean

E[∆i(t)] :=

∫ t

0

∫ ∞
0

λi(u− s)dGi(s)du ∀i ∈ I. (4.1)

Notice that, following the framework of Eick et al. (1993b), we assume t ∈ R but only consider the

dynamics of the system at times t ≥ 0.

Unfortunately, for most LoS distributions, (4.1) must be computed numerically as closed-form

expressions do not exist unless, for example, Gi is exponentially distributed. In addition, the

departure process ∆i(T ) is dependent on the LoS of class-i patients. As a result, we condition on

the individual quantiles of the LoS distribution for each class i ∈ I. More specifically, let σi be

the desired quantile value for class-i patients where we define σσσ := (σ1, . . . , σI) and let ∆i(t;σi)

denote the departure process of class-i patients conditioned on Si = σi for each i ∈ I. Thus,

{∆i(t;σi)|t ∈ R} is a headcount stochastic process that represents the number of class i patients

discharged over the interval [0, t] with LoS value equal to σi. This corresponds to a non-homogeneous

Poisson process with mean

E[∆i(t, σi)] :=

∫ t

0
λi(u− σi)du ∀i ∈ I. (4.2)

4.3.1 Prediction of Demand for PPE

Multiple types of PPE are used in clinical settings, such as surgical masks, N95 respirators, gloves,

face shields, etc. Further, demand for different kinds of PPE varies depending on the nature of

the interaction between patients and practitioners as well as current public health regulations and
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institutional guidelines (see Ontario Health 2020b, Barrett et al. 2020, for instance). Thus, we

assume that a hospital uses N different types of PPE in its daily operations.

Total demand of PPE comprises all protective equipment used by employees, i.e., medical staff,

and patients. Although, in this study, we assume that patients admitted to the hospital occupy

separate rooms and do not need to wear PPE while on their own, our model can be naturally

extended to account for patients with shared accommodations. Further, hospital policy dictates

that clinicians wear a surgical mask and a face shield for all interactions with hospitalized patients.

Additional precautions may be used by hospital staff and clinicians when performing particular

procedures and/or assessments. There may also be separate regulations for patients who are placed

in a higher level of isolation, such as those diagnosed with COVID-19. As a result, we define Qmn

to be the total quantity of type n ∈ {1, 2, ..., N} PPE used by employees when no interaction

with patients takes place and Qui,n to be the amount of type n PPE used by medical staff during

interactions with class i patients. Thus, the total demand for type n PPE is given by

Qn := Qmn +

I∑
i=1

Qui,n ∀n ∈ {1, 2, . . . , N}. (4.3)

We assume, without loss of generality, that PPE is not reused but discuss this extension in Sec-

tion 4.4.3.

Define m := (m1,m2, . . . ,mN )′ to be a vector such that element mn represents the average

number of type n PPE items used daily by an employee when not interacting with patients. Then,

Qmn = mnW (T ) ∀n ∈ {1, 2, . . . , N}, (4.4)

where W (T ) is the number of estimated work days of all medical employees over the planning hori-

zon. In particular, note that we assume Qmn increases linearly in the workload W (T ). Discussions

with medical practitioners indicate that this is the most appropriate model.

Suppose there are J different categories of clinical interactions such as nursing (e.g., vital signs

measurement, medication administration), physician visits, medical testing, and surgical proce-

dures. Define an I × J matrix C where element ci,j is the average daily number of clinical interac-

tions from category j that are required by a class i patient (note: median values can also be used to
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reduce the effect of outliers although we did not observe any appreciable difference in our results).

We also define an I × J matrix Un such that element uni,j represents the average number of type

n PPE items used during each category j interaction with a patient of class i (see Table C.2 in

Appendix C). Then,

Qui,n = σi∆i(T ;σi)
J∑
j=1

ci,ju
n
i,j (4.5)

∀i ∈ {1, 2, . . . , I},∀n ∈ {1, 2, . . . , N},

where the estimate is conditioned on the LoS value σi.

Notice that ci,ju
n
i,j represents the average daily number of type n PPE used by class i patients

during all medical interactions belonging to category j. Aggregating over each j and multiplying

by the stochastic quantity Si gives the average number of type n PPE used by a class i patient

during their length-of-stay in the hospital. Finally, multiplying these terms by the integral of the

headcount stochastic process gives the average amount of type n PPE used by all class i patients

discharged over the specified time horizon T .

As noted above, ∆i(T ) and Si are dependent, i.e., the number of discharged patients at time

t is a function of the LoS of class-i patients. This makes deriving the marginal expectation of Qn

cumbersome to obtain. Instead, in the following lemma, we leverage (4.2) and derive the conditional

expectation of Qn given that the LoS of class-i patients is fixed to a given quantile.

Lemma 12 (Conditional Expectation). For every i, suppose σi > 0 and T > σi. Then,

E[Qn|S = σ] =
I∑
i=1

σi

J∑
j=1

ci,ju
n
i,j

∫ T

0
λi(u− σi)du (4.6)

+mnW (T ), ∀n ∈ {1, 2, . . . , N}.

Equation (4.6) is derived by conditioning on a particular quantile of the LoS distribution. For

example, if σi = E[Si] for all i ∈ I, then for a class-i patient, (4.6) considers the dynamics of

the average stochastic path of the departure process ∆i(t;σi) as the total number of paths grows

to infinity. Further, as the variances of the hospital LoS and the average daily counts of medical

interactions decrease, the gap between the conditional and unconditional expectation of the demand
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for type n PPE (Qn) also decreases. Thus, (4.6) provides a better approximation to the demand

for PPE if the classes of patients are selected such that their LoS and treatment requirements are

relatively similar; this motivates why patients should first be clustered into I classes.

Table 4.1: Summary of the notation.

λi(t) class i patient’s rate of admission to the hospital
Si random variable corresponding to the hospital length-of-stay of a class i patient
S I × 1 stochastic vector of length-of-stay random variables
σi desired quantile value chosen for the length-of-stay distribution of a class i patient
σσσ I × 1 vector of length-of-stay quantile values
Gi(t) cumulative distribution function for the length of stay of class i patient
∆i(t) stochastic process counting the number of class i patients discharged over [0, t]
∆i(t;σi) stochastic process counting the number of class i patients discharged over [0, t] conditional on Si = σi
Qn total stochastic demand for type n PPE
Qmn total stochastic demand for type n PPE by all hospital employees while not interacting with patients
Qui,n total stochastic demand for type n PPE by all hospital employees during their interactions with class i patients

C I × J matrix of average daily counts of medical interactions j required by class i patient
m N × 1 vector of average daily counts of type n PPE used by hospital employees while not interacting with patients
Un I × J matrix of average number of type n PPE used during medical interaction j with a class i patient

4.4 Data Description and Results

We apply our approach to estimate the PPE needs for the GIM service at St. Micheal’s hospital.

The GIM accounts for approximately 40% of all emergency department admissions to the hospital

Verma et al. (2017) and cares for patients with a broad range of diseases Verma et al. (2018) while

focusing on cases with complex medical needs. Because the operations at St. Michael’s Hospital is

directly affected by the COVID-19 pandemic, effective prediction of PPE usage is critical to their

inventory planning and their ability to deliver adequate medical care.

To parameterize our predictive model, we used 9 years of data from April 2010 to November

2019 collected from St. Michael’s Hospital by the General Medicine Inpatient Initiative (GEMINI)

Verma et al. (2017). The data set includes both administrative and clinical records of discharged

patients. GEMINI data sets have been rigorously validated and are demonstrated to be highly

reliable Pasricha et al. (2020). Our data set comprises of 37,492 hospital admissions for 22,039

unique patients whose median age is 66 years old (52, 79), where values in brackets correspond to

the first and third quartile, respectively. Approximately 43% of hospital admissions to the GIM are

by female patients and the five most common clinical diagnoses are chronic obstructive pulmonary

disease and bronchiectasis (6%), pneumonia (5%), acute cerebrovascular disease (5%), urinary tract
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infections (5%), and gastrointestinal hemorrhages (4%).

The median value for LoS is 4.83 days (2.58, 9.54) which suggests an asymmetrical probability

distribution. We determine the average daily counts of medical interactions per patient as well

as the corresponding type of interaction and PPE usage from the data set and by interviewing

medical experts in the partner hospital (see Appendix C for details on the semi-structured interview

protocol). Notice that Table C.2, provided in Appendix C, displays the average amount of PPE

used during all medical interactions in addition to the items already worn by clinical staff when not

interacting with patients. Thus, in cases where no additional PPE is required, the value in the table

is equal to zero. Alternatively, some medical interactions are conducted by multiple practitioners

which means that a larger amount of PPE is required. For example, surgical procedures typically

require two porters, a surgeon and one or two trainees, an anesthesiologist, and two nurses.

When not interacting with patients, medical staff require two surgical masks per shift (which is

approximately 12 hours in length) and one face shield per week. The GIM service at St. Michael’s

Hospital requires 50 nurses, 4 phlebotomists, 10 porters, 20 doctors, 3 physiotherapists, 3 occu-

pational therapists, 2 dietitians, 2 language pathologists, and 3 discharge planners each day. For

simplicity, we assume that shifts of all medical staff are of the same length. Notice that this as-

sumption is easy to relax. Finally, we consider seven types of PPE (N = 7): gloves, gowns, surgical

masks, N95 masks, face shields, bouffants, and boot covers.

We use equation (4.6) to derive an annual estimate of PPE usage by clustering all patients

into classes based on the nature of their medical interactions as well as their length-of-stay within

the hospital. To account for the aforementioned asymmetry in the LoS distribution, and since

(4.6) computes a conditional expectation, we evaluate PPE usage assuming that LoS remains at

one of its quantile values for each class. We fix our planning horizon (T ) to one year (365 days)

and estimate the value of
∫ T−σi

0 λi(u)du by calculating the number of class-i discharges that occur

during a typical year prior to the pandemic. In the remainder of this section, we confirm that a

non-homogeneous Poisson distribution best describes the arrival process. We then discuss how we

cluster patients into classes and present estimates of the projected annual PPE usage.
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4.4.1 Testing the Non-homogeneous Poisson Assumption

Because our data set contains the arrival times and discharge times of each patient, the number of

discharges from the GIM over a planning horizon can be computed without evaluating the integral in

(4.6). However, there are many cases where such fine-grained data is not available. In such settings,

only arrival times and/or LoS values may be accessible. In other cases, the prediction interval set

by the modeller may be sufficiently short (e.g., daily or weekly) which necessitates the evaluation

of a functional form of departing patients at time t. In these scenarios, computing the integral

is essential. Therefore, both for completeness and to ensure that the analytical representation of

the demand for PPE in (4.6) is valid, we test the assumption that the arrival process follows a

non-homogeneous Poisson distribution.

We closely follow the procedure described in Brown et al. (2005), i.e., we test the null hypothesis

(H0) that admissions to the GIM follow a Poisson distribution with a piecewise constant rate. To

do this, we break up the planning horizon into progressively smaller non-overlapping time intervals.

Note that, for this analysis, we consider admissions to the GIM from the two most recent years

in order to account for possible changes in the demand for GIM services. We then continue to

decrease the length of these intervals until the arrival rate remains stationary over at least 90%

of the constructed intervals. We test the hypothesis of stationarity by applying the Kolmogorov-

Smirnov (KS) test and confirming that, for each time interval, the logarithmically transformed

arrival times can be modeled by independent standard exponential random variables.

Table 4.2: Testing the non-homogeneous Poisson assumption for different time intervals.

Number of Intervals Length (days) % Not Rejected By KS Test

10 90.8 0.00
20 43.0 35.00
30 28.2 63.30
40 21.0 80.00
80 10.3 88.75
800 1.00 90.38

According to Table 4.2, as the length of each interval reduces to one day, the arrival rates over

90% of the intervals follow a Poisson distribution with a stationary rate according to the KS test

(0.05 significance level). This implies that a non-homogeneous Poisson distribution best describes

the arrival rate and that a Mt/G/∞ modelling framework is appropriate for this application.
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4.4.2 Clustering Results

To ensure patient classes have similar care paths and LoS values, we cluster patients into groups

based on the nature of their medical interactions (15 types) and LoS (see Table C.2 in Appendix

C). In our data set, each medical intervention is captured by a set of timestamps. To avoid counting

the same patient-practitioner interaction multiple times, we assume that all timestamps within a

one hour interval are related to a single interaction. This assumption is critical as some interactions

between patients and practitioners result in multiple timestamps that are minutes apart (e.g., vital

signs, the administration of drugs, and laboratory test collections) and, thus, reflect a single episode

of PPE use.

We use the Uniform Manifold Approximation and Projection (UMAP) algorithm paired with the

k-means clustering algorithm to group patients into classes. UMAP is a dimensionality reduction

technique based on Riemannian geometry and algebraic topology that projects high-dimensional

data (15 types of medical interactions and LoS) onto a two-dimensional space; see Figure 4.1a for

a visual representation. The smaller total squared error within a cluster implies that there is a

high similarity of patients assigned to that class. It also improves the quality of our conditional

estimate of demand for PPE. Thus, we determine the optimal number of clusters by applying the

k-means clustering algorithm which minimizes the total squared error within each cluster. We use

the elbow method to determine the best value of k Joshi and Nalwade (2013).

Figure 4.1: Clustering results.

(a) Cluster Visualization (b) Elbow Plot
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As demonstrated in Figure 4.1b, the within cluster error decreases slowly as the number of

clusters exceeds 7; adding more clusters does not model the data significantly better. For more

information on the clustering approach, please see Appendix C and Table C.1.

To illustrate the effect of our clustering procedure, we present a quantile summary of the LoS

(days) distribution by comparing non-clustered patients to the clustered results. Having relatively

similar LoS values in each cluster is important as we would like its within-cluster variation to

decrease so that the gap between our conditional estimates and their corresponding marginal quan-

tities is small. If all patients are assigned to a single class, one quarter stay in the GIM between 0

Table 4.3: The effect of clustering on the different quantiles for the LoS distribution (days).

0% 25% 50% 75% 100%

Cluster 1 of 1 (100%) 0.0 1.9 3.9 7.9 354.2

Cluster 1 of 7 (18%) 0.0 0.5 0.8 1.4 4.8
Cluster 2 of 7 (27%) 0.1 1.7 2.3 2.9 6.4
Cluster 3 of 7 (22%) 0.4 3.7 4.5 5.2 7.1
Cluster 4 of 7 (17%) 5.3 6.9 7.9 9.3 11.7
Cluster 5 of 7 (10%) 10.8 12.7 14.3 16.6 20.9
Cluster 6 of 7 (6%) 20.4 24.2 29.2 35.8 57.0
Cluster 7 of 7 (1%) 59.0 65.6 82.0 128.2 354.2

and 1.9 days (first quartile); similarly, 25% of patients remain in the GIM more than 7.9 but less

than 354.2 days (fourth quartile). The clustered patients, however, have more similar LoS ranges.

In particular, cluster one contains patients who remain in the GIM for a very short period of time,

cluster two and three are assigned patients who stay in the hospital less than one week, cluster four

includes patients who stay in care less than 11 days, cluster five includes patients with LoS shorter

than 20 days, and cluster six includes patients who stay in the facility significantly longer. Cluster

seven, which contains approximately 1% of patients, represent the departments heaviest users. We

note that some clusters have overlapping LoS ranges because other factors describing their care

path differ.

4.4.3 PPE Estimation Results

We apply equation (4.6) to compute the total demand for type n PPE using 5, 6, 7, and 8 cluster

partitions. To describe its distribution, we condition our estimates on the quartiles of the LoS and

present the results in Table 4.4, where the first and third rows per each cluster quantity correspond
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to the lower and upper bounds of PPE usage. According to the seven-cluster estimates in Table 4.4,

Table 4.4: Prediction of PPE usage as a function of the number of clusters.

LoS Quartile Gloves Gowns Surgical Masks N95 Masks Face Shields Bouffants Boot Covers

Five Clusters (I = 5)

Q1 122,771 6,422 169,193 4,094 3,906 6,422 6,422
Median 206,459 10,748 180,093 6,891 3,906 10,748 10,748

Q3 264,107 13,785 187,208 8,787 3,906 13,785 13,785

Six Clusters (I = 6)

Q1 134,232 6,935 169,917 4,385 3906 6,935 6,935
Median 219,111 11,348 180,954 7,239 3906 11,348 11,348

Q3 279,440 14,517 188,221 9,203 3906 14,517 14,517

Seven Clusters (I = 7)

Q1 129,216 6,779 169,233 4,229 3,906 6,779 6,779
Median 226,007 11,721 181,774 7,476 3,906 11,721 11,721

Q3 277,995 14,433 187,989 9,161 3,906 14,433 14,433

Eight Clusters (I = 8)

Q1 151,878 7,839 171,964 4,980 3,906 7,839 7,839
Median 229,751 11,850 182,296 7,610 3,906 11,850 11,850

Q3 274,123 14,163 187,491 9,051 3,906 14,163 14,163

gloves and surgical masks are the most prevalent items as they constitute 90% of the total PPE

predicted. Further, the annual usage of gowns represents only 3% (similarly to bouffants and

boot covers) of the total (454,324) amount of PPE used, while N95 masks constitute only 2%. As

a reminder, due to the nature of our data, these estimates account for non-COVID-19 patients

only, i.e., those patients who are not under investigation for the Coronavirus. However, our model

is flexible enough and can accommodate these patients as separate classes if the data becomes

available.

Table 4.4 also helps to understand the sensitivity of our results to the number of patient classes

specified by the modeller. In general, we observe higher predictions in the amount of PPE as the

number of clusters increases. This is because the average and median values of features included

in the clustering procedure are more heavily influenced by larger-valued observations. However,

the increase in predicted PPE usage with the number of clusters is sample specific; data sets with

fewer outliers may have a decreasing pattern. Although using more clusters decreases the total

squared error, fewer data points contribute to the length-of-stay estimate. This may lead to an

inaccurate prediction for the LoS distribution even though patients may have similar care plans.

Furthermore, the estimates may overfit to the data in the sample. Thus, we advise that a modeller
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does not increase the number of clusters too far beyond the point that is recommended by the

elbow method.

We find that some types of PPE, such as surgical masks and face shields, show little variation in

forecasted demand. That is, their quartile estimates are similar regardless of the number of patient

classes chosen. This is because the majority of the annual need for these types of PPE occur when

practitioners are not interacting with patients; the estimate is 156,220 and 3,906 for surgical masks

and face shields, respectively. Thus, while demand for gloves is solely driven by the number of

medical interactions, 86% of surgical mask use is driven by the requirement that medical employees

must wear a mask whilst in the hospital.

Finally, we note that the above approach can be adapted to address situations where PPE can

be reused. In particular, let γn be the proportion of type n PPE which can be reused over rn

interactions. Then, (1 − γn)E[Qn|S = σσσ] + γn
rn
E[Qn|S = σσσ] represents the total predicted demand

of type n PPE.

4.5 Conclusions

In this paper, we leverage results time-varying queueing models to present a prediction framework

that can be used to forecast the amount of PPE required over a specified time horizon. To this end,

we first cluster patients with similar hospital experiences into classes and estimate their LoS in the

hospital as well as the PPE requirements of each patient-practitioner interaction. By demonstrating

that the dynamics of each patient class can be modelled using an Mt/G/∞ queue, we present closed-

form estimates for the expected amount of PPE required for each patient class and aggregate the

results together to generate a prediction of PPE usage.

We contribute to the pandemic and supply chain disruption literature by helping practitioners

mitigate unexpected changes in demand when disruptions do not affect the operation of a service,

but instead, prompt new mandatory regulations that affect the equipment used in its performance.

Moreover, our analysis provides bounded estimates that anticipate the time-variability in the sys-

tem. In particular, using current PPE-usage guidelines under COVID-19, we find that the general

internal medicine department at our partner hospital must anticipate much higher demand for

gloves and surgical masks than gowns. The former comprises 90% of the total 454,324 items pre-
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dicted while the latter accounts for only 3% of the annual PPE usage. In addition, our analysis

suggests that only 14% of demand for surgical masks in a hospital setting is caused by interactions

with patients. Thus, an annual estimate of usage for this type of PPE is expected to be less volatile

than the anticipated demand for gloves.

As suggested in Section 4.3, our approach is versatile and computationally efficient. A simple

application of Lemma 12 admits a back-of-the-envelope calculation. In this case, the aggregate

number of departures from the system per patient type as well as a quantile estimate for the LoS are

sufficient to derive bounded conditional estimates of PPE usage. Contrary to Barrett et al. (2020),

for instance, our predictions do not require that an extensive simulation study be constructed; the

technique we develop is not restricted to estimates of PPE during a quarantine and can be applied

to other settings such as normal hospital operations. In addition, our approach may be used for a

comparative analysis. For example, if patient classes are pre-specified by a medical practitioner, the

demand for PPE can be estimated and compared for multiple choices of arrival functions and LoS

distributions over a planning horizon of arbitrary length. Our time-varying queueing framework

naturally accommodates this exploratory approach by providing an analytical way of estimating

the total number of departures conditioned on a carefully selected LoS value.

Although our PPE prediction tool can be applied to a wide variety of clinical settings, our study

includes a number of data-specific limitations. In particular, the guidelines governing the use of

PPE for each type of medical interaction, as summarized in Table C.2 in Appendix C, is distinct to

St. Michael’s Hospital. These estimates may vary depending on the location and clinical focus of

the medical institution under consideration. Further, we estimate the clinical workload generated

by typical medical interactions based on the data collected prior to the COVID-19 pandemic, i.e.,

we exclude both confirmed COVID-19 patients and patients who are under investigation for the

virus. As this data becomes available, the PPE needs for these patient categories can be estimated

and added to the prediction model. While 15 important types of clinical interactions are captured

in the data set, some are represented more crudely than others. For example, a nurse who assists a

patient with toileting or bathing is not captured. As a result, our approach may underestimate the

hospital’s overall PPE needs. However, these limitations may be addressed by collecting additional

data fields or by consulting a patients electronic health record. To this end, future research should

seek to validate the predicted estimates of PPE usage against real-world demand.
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Despite these limitations, our methodology complements ongoing efforts that help to manage

supply chains during the COVID-19 pandemic. For instance, using an arrival function estimated

by SIR models, we can derive the corresponding PPE requirements over a planning horizon of

arbitrary length. Our study also shows good synergy with emerging platforms that connect PPE

suppliers to consumers (University of Wisconsin 2020, Afèche et al. 2020) as consumers can more

accurately predict their PPE usage and liaise with suppliers that have the requisite capacity.
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Chapter 5

Conclusions

In this dissertation, we propose computationally efficient techniques for stationary resource alloca-

tion in anticipation of time-varying dynamics. We apply these methods to the settings of customer

acquisition and retention, cloud computing and healthcare.

In Chapter 2, we introduce a new methodology to assign a fixed pool of servers to multiple

classes of homogeneous clients within an environment with time-varying demand. Leveraging a

fluid and dynamical systems approach, our methodology proposes a stationary staffing policy that

performs well in anticipation of non-stationary dynamics. We also extend the literature on customer

acquisition and retention by incorporating accessibility as a measure of service quality. This provides

a link between staffing decisions and the effect they have on service quality and customer defections.

We conduct an extensive numerical study to show that our staffing policy outperforms modifications

of the commonly-used square-root staffing rule (SRS) by providing better access to service for all

customers while maintaining high levels of throughput. Thus, by finding the optimal allocation of

servers to customer classes, our approach endogenously balances acquisition and retention efforts.

In Chapter 3, we develop a new calculus-of-variations approach to determine the jointly optimal

stationary capacity level and retrial rates for an environment with time-varying demand and jobs

that have a finite number of retrial attempts. The proposed methodology overcomes challenges

associated with the analysis of non-Markovian retrial queues where models must be restricted to

only a few servers and/or arriving customers are assumed to be infinitely patient. Leveraging an

offered load approximation that decomposes the workload into new versus retrial jobs, we construct

a recursive representation of the offered load function (OLF) that describes the fluid dynamics of

82



the original stochastic system. This OLF is piecewise smooth and has a closed-form expression for

a large class of arrival patterns. To derive the optimal policy, we minimize the total variation of

the OLF and show that the optimal capacity level and retrial rates can be explicitly derived for a

variety of cases - albeit, with some assumptions - such as when the arrival function is sinusoidal

or is piecewise smooth, continuous, and periodic. Finally, we prove that minimizing the functional

variation of the constructed OLF is equivalent to maximizing system throughput.

In Chapter 4, in response to the increasing demand for PPE induced by the ongoing COVID-19

pandemic, we predict the annual requirements for multiple types of PPE in the GIM department at

St. Michael’s hospital in Toronto, Canada. Our estimation approach features a queueing framework

with time-varying exogenous arrivals and generally distributed service times. We use this model

to predict the workload of patients admitted to the GIM and determine a functional relationship

mapping this workload to PPE used by medical staff. Further, we parametrize our predictive model

by conducting interviews with medical practitioners of the partner institution and by collecting

operational and clinical data over a 9-year period. This allows us to estimate a patient’s length-of-

stay (LoS), the number and nature of different patient-practitioner interactions, and the number of

PPE used per interaction. Using current PPE-usage guidelines under COVID-19, we find that the

general internal medicine department at our partner hospital must anticipate much higher demand

for gloves and surgical masks than gowns. The former comprises 90% of the total 454,324 items

predicted while the latter accounts for only 3% of the annual PPE usage. In addition, our analysis

suggests that only 14% of demand for surgical masks in a hospital setting is caused by interactions

with patients. Thus, an annual estimate of usage for this type of PPE is expected to be less volatile

than the anticipated demand for gloves.

.
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Andradóttir S, Ayhan H, Down DG (2003) Dynamic server allocation for queueing networks with flexible

servers. Operations Research 51(6):952–968.
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complutense 15(1):101–129.

84

http://www.covidppehelp.ca/


Artalejo JR (2010) Accessible bibliography on retrial queues: Progress in 2000–2009. Mathematical and

computer modelling 51(9-10):1071–1081.

Balmer C, Pollina E (2020) Italy’s Lombardy asks retired health workers to join Coronavirus fight. World

Economic Forum, Reuters.

Bardina X, Ferrante M, Rovira C (2020) A stochastic epidemic model of COVID-19 disease. Preprint Avail-

able from arXiv: 2005.02859.

Barrett K, Nakamachi Y, et al. (2020) Estimated demand for personal protective equipment for Ontario acute

care hospitals during the COVID-19 pandemic. Accessed from https://drive.google.com/file/d/

1LEW0irL6426OIYtVYo-s-XMHrvxalVh1/view?usp=sharing.

Bassamboo A, Harrison JM, Zeevi A (2006) Design and control of a large call center: Asymptotic analysis

of an lp-based method. Operations Research 54(3):419–435.

Bassamboo A, Randhawa RS (2010) On the accuracy of fluid models for capacity sizing in queueing systems

with impatient customers. Operations research 58(5):1398–1413.

Bassamboo A, Randhawa RS (2015) Scheduling homogeneous impatient customers. Management Science

62(7):2129–2147.

Bassamboo A, Zeevi A (2009) On a data-driven method for staffing large call centers. Operations Research

57(3):714–726.

Batta R, Berman O, Wang Q (2007) Balancing staffing and switching costs in a service center with flexible

servers. European journal of operational research 177(2):924–938.

BCE (2016) Annual report. Accessed from http://www.bce.ca/investors/AR-2016/

2016-bce-annual-report.pdf.

Bekker R, de Bruin AM (2010) Time-dependent analysis for refused admissions in clinical wards. Annals of

Operations Research 178(1):45–65.

Benson SM, Novak DA, Ogg MJ (2013) Proper use of surgical n95 respirators and surgical masks in the OR.

AORN journal 97(4):457–470.

Berger PD, Nasr NI (1998) Customer lifetime value: Marketing models and applications. Journal of inter-

active marketing 12(1):17–30.

Bhandari A, Scheller-Wolf A, Harchol-Balter M (2008) An exact and efficient algorithm for the constrained

dynamic operator staffing problem for call centers. Management Science 54(2):339–353.

Bioucas-Dias JM, Figueiredo MA (2010) Multiplicative noise removal using variable splitting and constrained

optimization. IEEE Transactions on Image Processing 19(7):1720–1730.

85

https://drive.google.com/file/d/1LEW0irL6426OIYtVYo-s-XMHrvxalVh1/view?usp=sharing
https://drive.google.com/file/d/1LEW0irL6426OIYtVYo-s-XMHrvxalVh1/view?usp=sharing
http://www.bce.ca/investors/AR-2016/2016-bce-annual-report.pdf
http://www.bce.ca/investors/AR-2016/2016-bce-annual-report.pdf


Biswas K, Khaleque A, Sen P (2020) COVID-19 spread: Reproduction of data and prediction using a SIR

model on Euclidean network. Preprint Available at arXiv: 2003.07063.

Blattberg RC, Deighton J (1996) Manage marketing by the customer equity test. Harvard business review

74(4):136.

Borovkov A (1967) On limit laws for service processes in multi-channel systems. Siberian Mathematical

Journal 8(5):746–763.

Borst S, Mandelbaum A, Reiman MI (2004) Dimensioning large call centers. Operations research 52(1):17–34.

Boushey H, Glynn SJ (2012) There are significant business costs to replacing employees. Center for American

Studies 16.

Brown L, Gans N, Mandelbaum A, Sakov A, Shen H, Zeltyn S, Zhao L (2005) Statistical analysis of a

telephone call center: A queueing-science perspective. Journal of the American statistical association

100(469):36–50.

Brown M (1969) An invariance property of poisson processes. Journal of Applied Probability 6(2):453–458.

Bruckner RM, Tjoa AM (2002) Capturing delays and valid times in data warehouses – towards timely

consistent analyses. Journal of Intelligent Information Systems 19(2):169–190.

Buttle F (2004) Customer relationship management (Routledge).

Buzacott JA, Shanthikumar JG (1993) Stochastic models of manufacturing systems, volume 4 (Prentice Hall

Englewood Cliffs, NJ).

Calafiore GC, Novara C, Possieri C (2020) A modified SIR model for the COVID-19 contagion in Italy.

Preprint Available at arXiv: 2003.14391.

Campbell D, Frei F (2011) Market heterogeneity and local capacity decisions in services. Manufacturing &

Service Operations Management 13(1):2–19.

Canadagov (2020) Non-medical masks and face coverings: About Accessed from https://www.

canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection/

prevention-risks/about-non-medical-masks-face-coverings.html.

Canadian Centre for Ocupational Health and Safety (2018) Personal protective equipment (PPE) Accessed

from https://www.ccohs.ca/teach_tools/phys_hazards/ppe.html.

Carbonara N, Pellegrino R (2018) Real options approach to evaluate postponement as supply chain disrup-

tions mitigation strategy. International Journal of Production Research 56(15):5249–5271.

CDC (2020) CDC calls on americans to wear masks to prevent COVID-19 spread Accessed from https:

//www.cdc.gov/media/releases/2020/p0714-americans-to-wear-masks.html?start=yes.

86

https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection/prevention-risks/about-non-medical-masks-face-coverings.html
https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection/prevention-risks/about-non-medical-masks-face-coverings.html
https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection/prevention-risks/about-non-medical-masks-face-coverings.html
https://www.ccohs.ca/teach_tools/phys_hazards/ppe.html
https://www.cdc.gov/media/releases/2020/p0714-americans-to-wear-masks.html?start=yes
https://www.cdc.gov/media/releases/2020/p0714-americans-to-wear-masks.html?start=yes


Chan CW, Sarhangian V (2018) Dynamic server assignment in multiclass queues with shifts, with ap-

plication to nurse staffing in emergency. Accessed from http://www.columbia.edu/~cc3179/shift_

scheduling_2017.pdf.

Chan CW, Yom-Tov G, Escobar G (2014) When to use speedup: An examination of service systems with

returns. Operations Research 62(2):462–482.

Chan FT, Chung SH (2004) A multi-criterion genetic algorithm for order distribution in a demand driven

supply chain. International Journal of Computer Integrated Manufacturing 17(4):339–351.

Chang V, Walters RJ, Wills GB (2016) Organisational sustainability modelling – an emerging service and

analytics model for evaluating cloud computing adoption with two case studies. International Journal

of Information Management 36(1):167–179.

Chang V, Wills G, De Roure D (2010) A review of cloud business models and sustainability. 2010 IEEE 3rd

International Conference on Cloud Computing, 43–50 (IEEE).

Chapel J (2019) Cloud waste to hit over $14 billion in 2019. DevOps.com Accessed from https://devops.

com/cloud-waste-to-hit-over-14-billion-in-2019/.

Chen F, Federgruen A, Zheng YS (2001) Coordination mechanisms for a distribution system with one supplier

and multiple retailers. Management science 47(5):693–708.

Chen IJ, Popovich K (2003) Understanding customer relationship management (CRM) people, process and

technology. Business process management journal 9(5):672–688.

Chen K, Xiao T (2009) Demand disruption and coordination of the supply chain with a dominant retailer.

European Journal of Operational Research 197(1):225–234.

Chen N, Lee D, Shen H (2018) Can customer arrival rates be modelled by sine waves? Preprint Available

from at SSRN 3125120.

Chen S, Lee H, Moinzadeh K (2019) Pricing schemes in cloud computing: Utilization-based vs. reservation-

based. Production and Operations Management 28(1):82–102.

Chen X, Qiu Z (2020) Scenario analysis of non-pharmaceutical interventions on global COVID-19 transmis-

sions. Preprint Available from arXiv: 2004.04529.

Chevalier P, Tabordon N (2003) Overflow analysis and cross-trained servers. International Journal of Pro-

duction Economics 85(1):47–60.

Chiang YJ, Ouyang YC (2014) Profit optimization in sla-aware cloud services with a finite capacity queuing

model. Mathematical Problems in Engineering 2014.

Chiou JS, Wu LY, Hsu JC (2002) The adoption of form postponement strategy in a global logistics system:

the case of taiwanese information technology industry. Journal of Business Logistics 23(1):107–124.

87

http://www.columbia.edu/~cc3179/shift_scheduling_2017.pdf
http://www.columbia.edu/~cc3179/shift_scheduling_2017.pdf
https://devops.com/cloud-waste-to-hit-over-14-billion-in-2019/
https://devops.com/cloud-waste-to-hit-over-14-billion-in-2019/


Choi K, Narasimhan R, Kim SW (2012) Postponement strategy for international transfer of products in a

global supply chain: A system dynamics examination. Journal of operations Management 30(3):167–

179.

Cohen J (1900) Basic problems of telephone traffic the ory and the influence of repeated calls. Pillips

Telecomm. Rev. 18(2).

Columbus L (2016) 2015 gartner CRM market share analysis shows salesforce in the lead, growing faster

than market. Forbes Accessed from https://www.forbes.com/sites/louiscolumbus/2016/05/28/

2015-gartner-crm-market-share-analysis-shows-salesforce-in-the-lead-growing-faster-than-market/.

Crawford G (1977) Wrsk/blss analysis, the plans-oriented requirements model. Headquarters Pacific Air

Forces/OA, March .

Crawford GB (1981) Palm’s theorem for nonstationary processes. Technical report, RAND CORP SANTA

MONICA CA.

Crawley M (2020) How Ontario hospitals are preparing for a surge in

COVID-19 cases Accessed from https://www.cbc.ca/news/canada/toronto/

covid-19-coronavirus-ontario-hospitals-emergency-plans-1.5504991.

Daly R (2020) After patient volume collapsed amid the coronavirus pandemic, some

see signs of recovery Accessed from https://www.hfma.org/topics/news/2020/05/

after-patient-volume-collapsed-amid-the-coronavirus--some-see-si.html.

Dant RP, Berger PD (1996) Modelling cooperative advertising decisions in franchising. Journal of the oper-

ational research society 47(9):1120–1136.

Dash SR, Mishra US, Mishra P (2013) Emerging issues and opportunities in disaster response supply chain

management. International Journal of Supply Chain Management 2(1):55–61.

Daw A, Pender J (2019) New perspectives on the erlang-a queue. Advances in Applied Probability 51(1):268–

299.

de Assunção MD, Cardonha CH, Netto MA, Cunha RL (2016) Impact of user patience on auto-scaling

resource capacity for cloud services. Future Generation Computer Systems 55:41–50.

De Bruin AM, Van Rossum A, Visser M, Koole G (2007) Modeling the emergency cardiac in-patient flow:

an application of queuing theory. Health Care Management Science 10(2):125–137.

de Véricourt F, Jennings OB (2011) Nurse staffing in medical units: A queueing perspective. Operations

Research 59(6):1320–1331.

Dean AM (2002) Service quality in call centres: implications for customer loyalty. Managing Service Quality:

An International Journal 12(6):414–423.

88

https://www.forbes.com/sites/louiscolumbus/2016/05/28/2015-gartner-crm-market-share-analysis-shows-salesforce-in-the-lead-growing-faster-than-market/
https://www.forbes.com/sites/louiscolumbus/2016/05/28/2015-gartner-crm-market-share-analysis-shows-salesforce-in-the-lead-growing-faster-than-market/
https://www.cbc.ca/news/canada/toronto/covid-19-coronavirus-ontario-hospitals-emergency-plans-1.5504991
https://www.cbc.ca/news/canada/toronto/covid-19-coronavirus-ontario-hospitals-emergency-plans-1.5504991
https://www.hfma.org/topics/news/2020/05/after-patient-volume-collapsed-amid-the-coronavirus--some-see-si.html
https://www.hfma.org/topics/news/2020/05/after-patient-volume-collapsed-amid-the-coronavirus--some-see-si.html


Defraeye M, Van Nieuwenhuyse I (2013) Controlling excessive waiting times in small service systems with

time-varying demand: an extension of the isa algorithm. Decision Support Systems 54(4):1558–1567.

Defraeye M, Van Nieuwenhuyse I (2016) Staffing and scheduling under nonstationary demand for service: A

literature review. Omega 58:4–25.

Ding S, Remerova M, van der Mei RD, Zwart B (2015) Fluid approximation of a call center model with

redials and reconnects. Performance Evaluation 92:24–39.

Dolinskaya I, Besiou M, Guerrero-Garcia S (2018) Humanitarian medical supply chain in disaster response.

Journal of Humanitarian Logistics and Supply Chain Management .

Dong J, Whitt W (2015a) Stochastic grey-box modeling of queueing systems: fitting birth-and-death pro-

cesses to data. Queueing Systems 79(3-4):391–426.

Dong J, Whitt W (2015b) Using a birth-and-death process to estimate the steady-state distribution of a

periodic queue. Naval Research Logistics (NRL) 62(8):664–685.

Dong Y, Yao Y, Cui TH (2011) When acquisition spoils retention: Direct selling vs. delegation under CRM.

Management Science 57(7):1288–1299.
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Appendix A

Chapter 1: Implementation Details

and Proofs of Statements

State Space

We define a piecewise smooth system (PSS) using a finite set of ODEs as follows

q̇ = fi(q, t), q0 = (qa, qb, qc)
T , q ∈ Si ⊂ R3

≥0, (A.1)

where Si, i = 1, 2, 3, 4, are open non-overlapping regions separated by two-dimensional boundaries

(planes). Planes defined by qa(t) = sa and qb(t) = sb partition R3
≥0 into four subsets with the

values of right-hand side (RHS) fi(q, t), changing in each Si. Define Si

S1 = {qa(t), qb(t), qc(t) ∈ R≥0 : qa(t) > sa, qb(t) > sb}, S2 = {qa(t), qb(t), qc(t) ∈ R≥0 : qa(t) < sa, qb(t) > sb},

S3 = {qa(t), qb(t), qc(t) ∈ R≥0 : qa(t) < sa, qb(t) < sb}, S4 = {qa(t), qb(t), qc(t) ∈ R≥0 : qa(t) > sa, qb(t) < sb}.
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Observe that

4⋃
i=1

Si does not include the boundaries among Si. Hence, the subset of boundaries,

Σ =
4⋃

j,k=1,j 6=k
Σjk, can be defined as (with S̄i denoting the closure of Si)

Σ12 =
(
S̄1 ∩ S̄2

)
\ Σ13 = {qa(t) = sa, qb(t) > sb}, Σ13 = S̄1 ∩ S̄3 = {qa(t) = sa, qb(t) = sb},

Σ14 =
(
S̄1 ∩ S̄4

)
\ Σ13 = {qa(t) > sa, qb(t) = sb}, Σ23 =

(
S̄2 ∩ S̄3

)
\ Σ13 = {qa(t) < sa, qb(t) = sb},

Σ24 = S̄2 ∩ S̄4 = S̄1 ∩ S̄3 = Σ13, Σ34 =
(
S̄3 ∩ S̄4

)
\ Σ13 = {qa(t) = sa, qb(t) < sb}.

Simulation Parameters

Table A.1: Queueing Parameters

τa = τb µa = µb r

minimum (low) 0.5 1.2 0.5
average 2.5 2 2.9

maximum (high) 7 4.2 8

Table A.2: Advertising Campaign

λ0 λ1 δ

fast 3 22 0.6
fast 3 22 0.4

intermediate 3 22 0.2
slow 3 22 0.1
slow 3 22 0.01

Table A.1 describes the range of queueing parameters (minimum, average, and maximum) that

we use for the simulations of the advertising campaign and clinical setting scenarios. Table A.2

presents the arrival function parameters associated with (2.10) used in the advertising campaign

experiments. We consider cases where the arrival function approaches its limit quickly in (A.2),

with an intermediate speed in (A.3) and slowly in (A.4). That is,

λ1,exp(t) = 22e−0.6t + 3, λ2,exp(t) = 22e−0.4t + 3, (A.2)

λ3,exp(t) = 22e−0.2t + 3, (A.3)

λ4,exp(t) = 22e−0.1t + 3, λ5,exp(t) = 22e−0.01t + 3. (A.4)

Table A.3: Clinical Setting

Fast Intermediate Slow

λ̄ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
σ 0.9 0.7 0.5 0.9 0.7 0.9 0.3 0.5 0.7 0.5 0.9 0.7 0.1 0.3 0.1 0.3 0.1 0.5 0.3 0.1

Period 2 2 2 4 4 6 2 4 6 6 8 8 2 4 4 6 6 8 8 8
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Table A.3 presents the arrival function parameters associated with (3.12) used in the clinical setting

experiments. The arrival function approaches an asymptotic periodic curve quickly (6 scenarios),

with an intermediate speed (6 scenarios), and slowly (8 scenarios). For example, in the first column

of Table A.3, the average of λ1,sine(t) is equal to 7, its relative amplitude is 0.9, and its period is 2.

Thus, the arrival function oscillates quickly with amplitude equal to 90% of its average value.

For EXP and the corresponding benchmarks SRS(0) and SRS(1), we conduct 90 simulations (3

staffing policies; low and high abandonment, service time and the arrival of base clients; 5 variants

of the arrival function, i.e., 3 · (2 + 2 + 2) · 5 = 90). We repeat the simulations for short and

long time horizons, t = 10 and t = 25, respectively, which results in 180 simulations in total.

Similarly, for the staffing policy in SINE, we conduct 360 simulations (3 · (2 + 2 + 2) · 20 = 360).

We repeat the simulations for t = 10 and t = 25, which results in 720 simulations in total. Note

that additional 1440 simulations were performed to investigate managerially relevant parameter

settings; for simplicity, we have omitted the results and only show the most important regimes.
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Summary of Results for EXP, s = 20

Each row of Tables 4-7 displays the performance of EXP, GSRS0, GSRSt as compared to the stochastic optimal policy (OPT). The results are presented in groups of four: for δ = 0.6 (Column 2-5),
δ = 0.2 (Column 6-9) and δ = 0.01 (Column 10-13). Table 4 and 6 display results for the Erlang-C version of GSRS0 and GSRSt. Conversely, Table 5 and 7 display results for the Erlang-A version of
GSRS0 and GSRSt.

Table 8 displays how many candidate solutions were considered in order to obtain the optimal solution to EXP with the length of the time horizon and the value of δ fixed, Row 1 and 2, respectively.

OPT is constructed by simulating all valid staffing levels in the stochastic regime and choosing the best performing policy according to the metric of interest (total served, total abandonment, etc).

Bolded text indicates which staffing policy is closest to OPT.

Table A.4 Total Served, Erlang-C version of GSRS0 and GSRSt, Time Horizon = 25
δ 0.6 0.2 0.01

Policy EXP GSRS0 GSRSt OPT EXP GSRS0 GSRSt OPT EXP GSRS0 GSRSt OPT
Fast servers 284.8 196.6 187.1 289.8 425.2 362.4 253.4 425.2 733.8 714.9 702.2 735.6
Slow servers 235.3 231.1 191.2 257.1 351.8 345.5 250.4 352.3 490.1 514.8 507.9 526.9

Impatient clients 260 174.8 190.7 272 347.7 350.4 236.3 380 616.5 619.1 621.4 621
Patient clients 286.2 220.8 229.5 301 365.1 392.6 282.4 406.2 664.3 661.3 657.9 664.3

High demand of base clients 323.9 296.1 289.1 345.4 374 414 351.4 414.3 619.6 619.6 632.5 633.7
Low demand of base clients 145.8 97.2 104 152.5 264.1 195.8 142.2 273.9 615.4 613.4 613.5 621.5

average 256.0000 202.7667 198.6000 269.6333 354.6500 343.4500 252.6833 375.3167 623.2833 623.8500 622.5667 633.8333

Table A.5 Total Served, Erlang-A version of GSRS0 and GSRSt, Time Horizon = 25
δ 0.6 0.2 0.01

Policy EXP GSRS0 GSRSt OPT EXP GSRS0 GSRSt OPT EXP GSRS0 GSRSt OPT
Fast servers 284.8 196.6 181.4 289.8 425.2 240.7 263.7 425.2 733.8 580.2 596 735.6
Slow servers 235.3 191.2 152.6 257.1 351.8 335.2 250.3 352.3 490.1 490.1 491.9 526.9

Impatient clients 260 115 131.6 272 347.7 137.4 140.3 380 616.5 385.1 376.6 621
Patient clients 286.2 220.8 236.7 301 365.1 392.6 283.6 406.2 664.3 661.3 651.7 664.3

High demand of base clients 323.9 296.1 187.7 345.4 374 394.9 342.4 414.3 619.6 568.7 565.4 633.7
Low demand of base clients 145.8 97.2 64.7 152.5 264.1 157.3 122.1 273.9 615.4 487.5 474.4 621.5

average 256.0000 186.1500 159.1167 269.6333 354.6500 276.3500 233.7333 375.3167 623.2833 528.8167 526.0000 633.8333

Table A.6 Abandonment Ratio, Erlang-C version of GSRS0 and GSRSt, Time Horizon = 25
δ 0.6 0.2 0.01

Policy EXP GSRS0 GSRSt OPT EXP GSRS0 GSRSt OPT EXP GSRS0 GSRSt OPT
Fast servers 0.0475 0.2053 0.2142 0.0453 0.1552 0.1734 0.3138 0.1384 0.3602 0.3628 0.3662 0.3602
Slow servers 0.1330 0.1179 0.1915 0.0772 0.1940 0.2067 0.3236 0.1940 0.4787 0.5113 0.5044 0.4770

Impatient clients 0.0934 0.2360 0.2031 0.0770 0.2545 0.2029 0.3465 0.1810 0.4361 0.4348 0.4299 0.4348
Patient clients 0.0536 0.1345 0.1197 0.0402 0.2331 0.1487 0.2650 0.1484 0.3786 0.3720 0.3801 0.3715

High demand of base clients 0.1706 0.1380 0.1406 0.1169 0.3482 0.2620 0.2731 0.2615 0.5146 0.5146 0.5059 0.4946
Low demand of base clients 0.0402 0.3116 0.2930 0.0060 0.0344 0.2530 0.4314 0.0235 0.1516 0.1544 0.1565 0.1503

average 0.0897 0.1906 0.1937 0.0604 0.2032 0.2078 0.3256 0.1578 0.3867 0.3917 0.3905 0.3814

Table A.7 Abandonment Ratio, Erlang-A version of GSRS0 and GSRSt, Time Horizon = 25
δ 0.6 0.2 0.01

Policy EXP GSRS0 GSRSt OPT EXP GSRS0 GSRSt OPT EXP GSRS0 GSRSt OPT
Fast servers 0.0475 0.2053 0.2254 0.0453 0.1552 0.3301 0.3013 0.1384 0.3602 0.3945 0.3899 0.3602
Slow servers 0.1330 0.1960 0.2869 0.0772 0.1940 0.2113 0.3086 0.1940 0.4787 0.4787 0.4800 0.4770

Impatient clients 0.0934 0.4029 0.3627 0.0770 0.2545 0.5350 0.5267 0.1810 0.4361 0.5171 0.5230 0.4348
Patient clients 0.0536 0.1345 0.1214 0.0402 0.2331 0.1487 0.2638 0.1484 0.3786 0.3720 0.3834 0.3715

High demand of base clients 0.1706 0.1380 0.2850 0.1169 0.3482 0.2615 0.2746 0.2615 0.5146 0.4963 0.5029 0.4946
Low demand of base clients 0.0402 0.3116 0.5204 0.0060 0.0344 0.3650 0.4872 0.0235 0.1516 0.2849 0.2996 0.1503

average 0.0897 0.2314 0.3003 0.0604 0.2032 0.3086 0.3603 0.1578 0.3867 0.4239 0.4298 0.3814

Table A.8 Number of iterations to find optimal staffing level.
Time Horizon = 10 Time Horizon = 25

δ 0.6 0.4 0.2 0.1 0.001 0.6 0.4 0.2 0.1 0.001
Fast servers 1 1 1 1 1 1 1 1 1 1
Slow servers 1 6 7 4 1 1 6 7 7 1

Impatient clients 1 1 1 6 2 1 3 1 6 3
Patient clients 1 1 5 6 2 1 1 1 6 3

High demand of base clients 4 6 7 7 1 3 6 7 8 2
Low demand of base clients 1 1 1 1 1 1 1 1 1 1
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Summary of Results for SINE, T = 2, s = 20

Each row of Tables 9-12 displays the performance of SINE, GSRS0, GSRSt as compared to the stochastic optimal policy (OPT). The results are presented in groups of four: for δ = 0.6 (Column 2-5),
δ = 0.2 (Column 6-9) and δ = 0.01 (Column 10-13). Table 9 and 11 display results for the Erlang-C version of GSRS0 and GSRSt. Conversely, Table 10 and 12 display results for the Erlang-A version
of GSRS0 and GSRSt.

Table 13 displays how many candidate solutions were considered in order to obtain the optimal solution to SINE with the length of the time horizon and the value of δ fixed, Row 1 and 2, respectively.

OPT is constructed by simulating all valid staffing levels in the stochastic regime and choosing the best performing policy according to the metric of interest (total served, total abandonment, etc).

Bolded text indicates which staffing policy is closest to OPT.

Table A.9 Total Served, Erlang-C version of GSRS0 and GSRSt, Time Horizon = 25
σ 0.9 0.5 0.1

Policy SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT
Fast servers 610.1 461.9 508.2 738.6 499.4 499.4 415.4 726 496.2 496.2 483.8 708.5
Slow servers 572 472.8 538.4 631.8 525.8 468.3 529.1 615.5 467.1 467.1 458.3 609.8

Impatient clients 517.2 457.4 441.7 670.3 460.7 460.7 468.2 672.7 451.9 451.9 438.9 643
Patient clients 640.8 547.2 619.3 731 556.8 556.8 563.4 712.5 533.1 533.1 516.8 684.1

High demand of base clients 847 747.7 756.5 847 794.6 794.6 745.4 868.6 749.7 749.7 733.3 845.7
Low demand of base clients 273.1 237.1 252.3 373.4 251.5 251.5 243.6 359.7 238.5 238.5 218.1 348

average 576.7 487.35 519.4 665.35 514.8 505.2167 494.1833 659.1667 489.4167 489.4167 474.8667 639.85

Table A.10 Total Served, Erlang-A version of GSRS0 and GSRSt, Time Horizon = 25
σ 0.9 0.5 0.1

Policy SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT
Fast servers 610.1 283.6 393.5 738.6 499.4 296.4 429.9 726 496.2 283.9 305.9 708.5
Slow servers 572 398.5 383.1 631.8 525.8 423.9 426.3 615.5 467.1 337.9 421.7 609.8

Impatient clients 517.2 146.5 204.5 670.3 460.7 142.7 251.3 672.7 451.9 146.8 152.9 643
Patient clients 640.8 547.2 610.6 731 556.8 556.8 581 712.5 533.1 533.1 541.1 684.1

High demand of base clients 847 623 608.7 847 794.6 625.6 566.9 868.6 749.7 616.4 662.6 845.7
Low demand of base clients 273.1 192.7 193.4 373.4 251.5 205.1 178 359.7 238.5 196 197.9 348

average 576.7 365.25 398.9667 665.35 514.8 375.0833 405.5667 659.1667 489.4167 352.35 380.35 639.85

Table A.11 Abandonment Ratio, Erlang-C version of GSRS0 and GSRSt, Time Horizon = 25
σ 0.9 0.5 0.1

Policy SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT
Fast servers 0.1009 0.2006 0.1755 0.0229 0.1547 0.1547 0.2315 0.0193 0.1448 0.1448 0.1543 0.0118
Slow servers 0.1119 0.1869 0.1970 0.0961 0.1261 0.1716 0.1649 0.0852 0.1653 0.1653 0.1784 0.0663

Impatient clients 0.1586 0.2134 0.2318 0.0694 0.1926 0.1926 0.1994 0.0511 0.1858 0.1858 0.2016 0.0506
Patient clients 0.0622 0.1136 0.1331 0.0239 0.0929 0.0929 0.1339 0.0169 0.0910 0.0910 0.1273 0.0153

High demand of base clients 0.1139 0.1343 0.1647 0.1139 0.1085 0.1085 0.1350 0.1021 0.1100 0.1100 0.1246 0.1005
Low demand of base clients 0.2184 0.3026 0.3288 0.0046 0.2466 0.2466 0.3087 0.0014 0.2577 0.2577 0.3159 0.0023

average 0.1277 0.1919 0.2052 0.0551 0.1536 0.1611 0.1956 0.0460 0.1591 0.1591 0.1837 0.0411

Table A.12 Abandonment Ratio, Erlang-A version of GSRS0 and GSRSt, Time Horizon = 25
σ 0.9 0.5 0.1

Policy SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT
Fast servers 0.1009 0.3773 0.2591 0.0229 0.1547 0.3451 0.2155 0.0193 0.1448 0.3496 0.3231 0.0118
Slow servers 0.1119 0.2428 0.2892 0.0961 0.1261 0.2096 0.2329 0.0852 0.1653 0.2823 0.2162 0.0663

Impatient clients 0.1586 0.6035 0.5034 0.0694 0.1926 0.5977 0.4259 0.0511 0.1858 0.5832 0.5698 0.0506
Patient clients 0.0622 0.1136 0.1193 0.0239 0.0929 0.0929 0.1074 0.0169 0.0910 0.0910 0.1118 0.0153

High demand of base clients 0.1139 0.1819 0.2025 0.1139 0.1085 0.1629 0.2038 0.1021 0.1100 0.1595 0.1429 0.1005
Low demand of base clients 0.2184 0.4107 0.4350 0.0046 0.2466 0.3597 0.4425 0.0014 0.2577 0.3591 0.3602 0.0023

average 0.1277 0.3216 0.3014 0.0551 0.1536 0.2946 0.2713 0.0460 0.1591 0.3041 0.2873 0.0411

Table A.13 Number of iterations to find optimal staffing level.
Time Horizon = 10 Time Horizon = 25

σ 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1
Fast servers 1 1 1 1 1 1 1 1 1 1
Slow servers 1 1 1 1 1 1 1 1 1 1

Impatient clients 1 1 1 1 1 1 1 1 1 1
Patient clients 1 1 1 1 1 1 1 1 1 1

High demand of base clients 1 1 1 1 1 1 1 1 1 1
Low demand of base clients 1 1 1 1 1 1 1 1 1 1
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Summary of Results for SINE, T = 8, s = 20

Each row of Tables 14-17 displays the performance of SINE, GSRS0, GSRSt as compared to the stochastic optimal policy (OPT). The results are presented in groups of four: for δ = 0.6 (Column 2-5),
δ = 0.2 (Column 6-9) and δ = 0.01 (Column 10-13). Table 14 and 16 display results for the Erlang-C version of GSRS0 and GSRSt. Conversely, Table 15 and 17 display results for the Erlang-A version
of GSRS0 and GSRSt.

Table 18 displays how many candidate solutions were considered in order to obtain the optimal solution to SINE with the length of the time horizon and the value of δ fixed, Row 1 and 2, respectively.

OPT is constructed by simulating all valid staffing levels in the stochastic regime and choosing the best performing policy according to the metric of interest (total served, total abandonment, etc).

Bolded text indicates which staffing policy is closest to OPT.

Table A.14 Total Served, Erlang-C version of GSRS0 and GSRSt, Time Horizon = 25
σ 0.9 0.5 0.1

Policy SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT
Fast servers 572.3 478.3 310.8 750.2 492.1 492.1 316.6 757.1 485.5 485.5 507.8 693.2
Slow servers 551.4 438.7 224.8 578.9 526.7 509.1 398.5 633.4 457.9 457.9 427.5 595.2

Impatient clients 568.6 425.8 183.3 636.3 559.4 520 314.7 688.3 472.2 472.2 403.4 648.6
Patient clients 648 521.5 234.8 724.6 645.4 572.4 359.5 746.3 535.8 535.8 447.8 681.1

High demand of base clients 793 705.2 321.5 795.1 858.5 826.3 519.1 867 798.4 798.4 644.4 835.9
Low demand of base clients 290.5 228.8 98.5 399.7 298.9 260.7 171.5 386.6 247.7 247.7 202.8 338

average 570.6333 466.3833 228.95 647.4667 563.5 530.1 346.65 679.7833 499.5833 499.5833 438.95 632

Table A.15 Total Served, Erlang-A version of GSRS0 and GSRSt, Time Horizon = 25
σ 0.9 0.5 0.1

Policy SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT
Fast servers 572.3 260.6 290.3 750.2 492.1 287.3 339.4 757.1 485.5 289 297.3 693.2
Slow servers 551.4 374.5 224 578.9 526.7 372.4 304 633.4 457.9 346.2 361.5 595.2

Impatient clients 568.6 146.9 156.7 636.3 559.4 151 165.9 688.3 472.2 138.4 157.4 648.6
Patient clients 648 521.5 365.7 724.6 645.4 572.4 461.6 746.3 535.8 535.8 442.2 681.1

High demand of base clients 793 617.9 323.3 795.1 858.5 652.7 508.1 867 798.4 635.6 650.2 835.9
Low demand of base clients 290.5 179 87.3 399.7 298.9 203.4 152 386.6 247.7 197.4 199.6 338

average 570.6333 350.0667 241.2167 647.4667 563.5 373.2 321.8333 679.7833 499.5833 357.0667 351.3667 632

Table A.16 Abandonment Ratio, Erlang-C version of GSRS0 and GSRSt, Time Horizon = 25
σ 0.9 0.5 0.1

Policy SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT
Fast servers 0.1381 0.2171 0.3716 0.0559 0.1817 0.1817 0.3445 0.0228 0.1427 0.1427 0.1357 0.0099
Slow servers 0.1553 0.2358 0.4876 0.1448 0.1538 0.1695 0.2661 0.0919 0.1595 0.1595 0.1851 0.0619

Impatient clients 0.1569 0.2652 0.5582 0.1220 0.1467 0.1819 0.3624 0.0692 0.1613 0.1613 0.2262 0.0381
Patient clients 0.0864 0.1591 0.4484 0.0627 0.0679 0.1164 0.2809 0.0248 0.0844 0.0844 0.1600 0.0132

High demand of base clients 0.1535 0.1661 0.4117 0.1535 0.1168 0.1204 0.2465 0.1168 0.0959 0.0959 0.1437 0.0959
Low demand of base clients 0.2272 0.3669 0.6926 0.0179 0.1904 0.2730 0.4847 0.0018 0.2327 0.2327 0.3309 0.0003

average 0.1529 0.2351 0.4950 0.0928 0.1429 0.1738 0.3308 0.0545 0.1461 0.1461 0.1969 0.0366

Table A.17 Abandonment Ratio, Erlang-A version of GSRS0 and GSRSt, Time Horizon = 25
σ 0.9 0.5 0.1

Policy SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT SINE GSRS0 GSRSt OPT
Fast servers 0.1381 0.4321 0.3927 0.0559 0.1817 0.3811 0.3308 0.0228 0.1427 0.3344 0.3228 0.0099
Slow servers 0.1553 0.3030 0.4896 0.1448 0.1538 0.2913 0.3673 0.0919 0.1595 0.2756 0.2546 0.0619

Impatient clients 0.1569 0.6250 0.6096 0.1220 0.1467 0.6052 0.5758 0.0692 0.1613 0.5894 0.5562 0.0381
Patient clients 0.0864 0.1591 0.2958 0.0627 0.0679 0.1164 0.1899 0.0248 0.0844 0.0844 0.1543 0.0132

High demand of base clients 0.1535 0.2067 0.4090 0.1535 0.1168 0.1812 0.2559 0.1168 0.0959 0.1426 0.1398 0.0959
Low demand of base clients 0.2272 0.4757 0.7214 0.0179 0.1904 0.3968 0.5272 0.0018 0.2327 0.3474 0.3475 0.0003

average 0.1529 0.3669 0.4863 0.0928 0.1429 0.3287 0.3745 0.0545 0.1461 0.2956 0.2959 0.0366

Table A.18 Number of iterations to find optimal staffing level.
Time Horizon = 10 Time Horizon = 25

σ 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1
Fast servers 1 1 1 1 1 1 1 1 1 1
Slow servers 4 4 1 1 1 4 4 3 1 1

Impatient clients 1 1 1 1 1 1 1 1 1 1
Patient clients 1 1 1 1 1 1 1 1 1 1

High demand of base clients 3 1 1 1 1 3 2 2 1 1
Low demand of base clients 1 1 1 1 1 1 1 1 1 1



Proofs of the results

Proof of Lemma 2

Proof. Consider IVP (2.8) where fi(q, t) ∈ C1
≥0 for each region Si, i ∈ {1, 2, 3, 4} (see Appendix

A “State Space”). According to the classical theory of linear ODEs, the solution to each of the

equations q̇ = fi(q, t), q0 = (qa, qb, qc)
T exists and is unique for all i with a maximal interval of

existence Ji. The difficulty arises if q(t) ∈ Σ for some time t. We show that the number of points

where the solution belongs to the boundary Σ is finite, i.e., such points form a set with finite

cardinality and are included in the maximal interval of existence of (2.8).

Let H(q) be an orthogonal vector to a boundary Σij (i 6= j) at point q(t), so that q(t) ∈ Σij , i.e.,

the solution q(t) hits the boundary at some time. Then, define σ(q) = 〈H(q), fi(q, t)〉 〈H(q), fj(q, t)〉,

where 〈·, ·〉 denotes the scalar product. Let TΣ = {t : σ(q) > 0} be a set of time points where q(t)

approaches Σ transversally and let EΣ = {t : σ(q) = 0} be a set of time points where q(t) is tangent

to Σ. Because for any q(t) ∈ Σij separating two adjacent regions Si and Sj , fi(q, t) = fj(q, t),

i, j ∈ {1, 2, 3, 4} and i 6= j, (A.1) is piecewise smooth continuous. In such systems, orbits in region

Si approaching the boundary Σij transversally, cross it, and enter into the adjacent region Sj .

Then, q(t) achieves a local extremum at t ∈ EΣ. Hence, EΣ ⊂ ∪4
i=1Ji and the cardinality of TΣ is

finite. Let I0 = ∪4
i=1Ji ∪ EΣ \ TΣ = ∪4

i=1Ji \ TΣ, then because I0 is the union of open intervals,

over which the solution to (2.8) exists and is unique, we can define values of q(t) as the finite

collection of points excluded from I0 as initial conditions. As a result, the solution to (2.8) exists

over I0 ∪ TΣ = R≥0 and is unique; it is also piecewise smooth. By specifying that I0 ∪ TΣ is the

maximal interval of existence of (2.8), the proof is complete. Note that a similar result for a system

with unspecialized servers is presented in Mandelbaum et al. (1998). The difference is that in our

system, the servers are specialized.

Proof of Lemma 3

Proof. A process x(t) is stable if limt→+∞ x(t) <∞. Thus, we must show that limt→+∞ q(t) <∞.

We first show that limt→+∞ qa(t) < 0. The general solution to the ODE for qa(t) is

qa(t) =
1

u(t)

(∫
u(t)b(t)dt+ C

)
, (A.5)
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where u(t) = e
∫
adt is an integration factor, C is a real number, and b(t) is a forcing term. Because

b(t) is a sum of λ(t) and a scalar, and limt→+∞ λ(t) <∞, limt→∞ b(t) exists and limt→+∞ qa(t) <∞.

Separating qa(t) from qb(t) and qc(t), we rewrite the non-homogeneous system of equations (2.8)

with respect to q1(t) = (qb(t), qc(t)
T ) in matrix form

q̇1(t) = Aq1(t) + b(t), (A.6)

where A is a non-singular n × n matrix of coefficients of a homogeneous part of (A.6) and b(t) is

a continuous vector-valued function. By Proposition 2, the solution to (2.8) exists and is unique.

Denote a fundamental matrix solution to q̇1(t) = Aq1(t) by Φ(t). From the classical theory of

linear ODEs, the solution to (A.6) is

q1(t) = Φ(t)Φ−1(0)q0 +

∫ t

0
Φ(t)Φ−1(z)b(z)dz, (A.7)

where q0 is a vector of initial conditions. We must show that limt→+∞ q1(t) < ∞. Recall that

Φ(t) = eAt, such that A =

a1 b1

a2 b2

, where

a1 =


−τb, if qb > sb,

−µb, if qb ≤ sb,
a2 =


τbθc, if qb > sb,

µbθbc, if qb ≤ sb,
b1 = r, b2 = −(ζ + r). (A.8)

Consider the characteristic equation ψ2 − Tψ + D = 0, where T and D are the trace and the

determinant of A respectively. For a set of positive queueing parameters
√
T 2 − 4D > 0, and

because T < 0 and D > 0 for q(t) ∈ ∪4
i=1Si, there are two distinct eigenvalues of A, ψ1 and

ψ2, that are negative and real. Because elements of eAt are linear combinations of eψ1t and eψ2t,

eAt → 0 as t → +∞. Therefore, limt→+∞Φ(t)Φ−1(0)q0 = limt→+∞ e
AtΦ−1(0)q0 = 0. The limit

of the second term in (A.7) exists when the improper integral converges. Because b(t) is a vector

whose elements are the sum of λ(t), a scalar, and qa(t) multiplied by a scalar, limt→+∞ λ(t) <∞.

Thus, limt→+∞ b(t) <∞ and further, there exists vector M , such that |b(t)| ≤M . By the squeeze
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theorem:

lim
t→+∞

(∫ t

0
Φ(t)Φ−1(z)b(z)dz

)
≤ lim

t→+∞

(∫ t

0
Φ(t)Φ−1(z)Mdz

)
= lim

t→+∞

(
MeAt

∫ t

0
e−Azdz

)
= lim

t→+∞
−MA−1eAt

(
e−At − I

)
= lim

t→+∞

(
−MA−1 +MA−1eAt

)
<∞.

We have shown that the limit of (A.7) exists if limt→+∞ λ(t) <∞ which completes the proof.

Proof of Lemma 4

Proof. We consider the general solution to (A.6) in (A.7). From Lemma 3, qa(t) is bounded.

Further, there exists a vector M1, such that |Φ(t)Φ−1(0)q0| <M1 for any time t ∈ R≥0. Suppose

there exists a scalar K ′ such that λ(t) < K ′. Then, as in Lemma 3, there exists a vector K such

that |b(t)| ≤K. Further, there exists a vector M2 such that

lim
t→+∞

∫ t

0
Φ(t)Φ−1(z)b(z)dz ≤ lim

t→+∞

∫ t

0
Φ(t)Φ−1(z)Kdz ≤M2 <∞.

Thus, q1(t) <M where M = M1 +M2. Hence, q(t) is bounded which concludes the proof.

Proof of Proposition 1

Proof. We evaluate the asymptotic behaviour of q(t) in the launch and loyalty regions. The launch

phase includes two scenarios: (I) qa(t) ∈ S1 and (II) qa(t) ∈ S4. We consider them separately.

I. We rewrite (2.11) with subscript ”1” in state functions corresponding to the mode of operation:


q̇a1(t)

q̇b1(t)

q̇c1(t)

 =


λ1e
−δt + λ0 − µasa − τa(qa1(t)− sa)

rqc1(t)− µbsb − τb(qb1(t)− sb)

θacsaµa + θbcsbµb + θcτb(qb1(t)− sb)− (r + ζ)qc1(t)

 ,

q01
= (qa1(t0), qb1(t0), qc1(t0))T .

The non-homogeneous linear ODE for qa(t) is solved in closed-form by standard methods:

qa1(t) =

[
qa1(t0)− λ1

τa − δ
e−δt0 − λ0 + sa(τa − µa)

τa

]
e−τa(t−t0) +

λ1

τa − δ
e−δt + q∗a1

, (A.9)
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where q∗a1
= limt→+∞ qa1(t) = λ0+sa(τa−µa)

τa
. The expression for the equilibrium point (q∗b1 , q

∗
c1) is

obtained by solving the linear system (q̇b1(t), q̇c1(t))T = 0. Then, by Cramer’s rule:

(q∗b1 , q
∗
c1) =

(
rθacsaµa + sb(τb − µb)(r + ζ)− sbr(θτcτb − θbcµb)

τb(r(1− θτc) + ζ)
,
θacsaµa + sbµb(θbc − θc)

r(1− θc) + ζ

)
.

II. We rewrite (2.11) accordingly


q̇a1(t)

q̇b1(t)

q̇c1(t)

 =


λ1e
−δt + λ0 − µasa − τa(qa1(t)− sa)

rqc1(t)− µbqb1(t)

θacsaµa + θbcqb1(t)µb − (r + ζ)qc1(t)

 ,

q01
= (qa1(t0), qb1(t0), qc1(t0))T .

The solution to qa1(t) remains as in Scenario I and the equilibrium point (q∗b1 , q
∗
c1) is obtained:

(q∗a1
, q∗b1 , q

∗
c1)T =

(
λ0 + sa(τa − µa)

τa
,

rθacsaµa
µb(r(1− θbc) + ζ)

,
θacsaµa

r(1− θbc) + ζ

)T
. (A.10)

For the loyalty phase, we write down (2.11) for qa(t) < sa and qb(t) ≥ sb
q̇a2(t)

q̇b2(t)

q̇c2(t)

 =


λ1e
−δt + λ0 − µaqa2(t)

rqc2(t)− µbsb − τb(qb2(t)− sb)

θacqa2(t)µa + θbcsbµb + θcτb(qb2(t)− sb)− (r + ζ)qc2(t)

 ,

q02
= (qa2(t0), qb2(t0), qc2(t0))T .

The equation for qa2(t) is solved in closed-form

qa2(t) =

[
qa2(t0)− λ0

µa
− λ1

µa − δ
e−δt0

]
e−µa(t−t0) +

λ1

µa − δ
e−δt +

λ0

µa
(A.11)

with q∗a2
= λ0

µa
. We evaluate the asymptotic behaviour of (qb2(t), qc2(t))T by considering the system

q̇b2(t)

q̇c2(t)

 =

 rqc2(t)− µbsb − τb(qb2(t)− sb)

θacqa2(t)µa + θbcsbµb + θcτb(qb2(t)− sb)− (r + ζ)qc2(t)

 ,

q02
= (qa2(t0), qb2(t0), qc2(t0))T .

(A.12)
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The dynamical system (A.12) is non-autonomous, and the solution to (q̇b2(t), q̇c2(t))T = 0 is a

vector valued function of time. To overcome this difficulty, we construct a quasi-static equilibrium

(QSE) of (A.12) (see, e.g, Ding et al. 2015, Hahn 2016, Hoyer-Leitzel et al. 2017). A QSE of

ẋ(t) = f(x(t), q(t)) is a set of equilibrium solutions of the corresponding autonomous systems with

q(t) equal to some constant, i.e., any point in the range of q(t). Thus, the QSE is a set of equilibria

parameterized by p ∈ R≥0 which gives a sequence of autonomous systems {(qb2(t), qc2(t))T }p. Their

solutions track the QSE in that for any time t, there exists a ball with finite radius R, such that∣∣(qb2(t), qc2(t))T − (q̄∗b2 , q̄
∗
c2)T

∣∣ < R, where (q̄∗b2 , q̄
∗
c2)T is an equilibrium point of {(qb2(t), qc2(t))T }p

(it follows from Lemma 4). The solution of (A.12) moves in the direction of the equilibrium

points {(qb2(t), qc2(t))T }p→0 and {(qb2(t), qc2(t))T }p→+∞ when t → 0 and t → +∞, respectively.

Because we are interested in the behaviour of q(t) at early times, we use the equilibrium point

{(qb2(t), qc2(t))T }p→0, i.e., (q∗b2 , q
∗
c2). Thus, the asymptotic dynamics of q(t) in the loyalty phase is


q∗a2

q∗b2

q∗c2

 =

(
λ0

µa
,
rθacqa2(t0)µa + sb(τb − µb)(r + ζ)− sbr(θτcτb − θbcµb)

τb(r(1− θτc) + ζ)
,
θacqa2(t0)µa + sbµb(θbc − θc)

r(1− θc) + ζ

)T
.

Proof of Lemma 5

Proof. Let QN 1, QN 2, QN 3 be queueing systems defined by (2.11) and originating in the launch,

loyalty, and lessening phases with initial conditions q01
∈ S1 ∪ S4, q02

∈ S2 and q03
∈ S3, respec-

tively. Also, let neither system transitions to a higher mode of operations as t gets larger. The

asymptotic behaviour of QN 1 and QN 2 is characterized by the limiting points in Proposition 1.

The limiting behaviour of QN 3 is defined by the dynamics of qa2(t) in (A.11) and the solution to

(q̇b3(t), q̇c3(t))T = 0. As in Proposition 1, we construct a sequence {(qb3(t), qc3(t))T }p indexed by p

and derive an expression for the equilibrium point of the term with p→ 0.

(
q∗b3(t), q∗c3(t)

)T |p=0 =
(
q∗b3 , q

∗
c3

)T
=

(
rθacqa3(t0)µa

µb(r(1− θbc) + ζ)
,
θacqa3(t0)µa
r(1− θbc) + ζ

)T
. (A.13)
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Because qa3(t0) < qa2(t0), and if sa � qa3(t0), and θbc > θc the following holds

θacqa3(t0)µa
r(1− θbc) + ζ

<
θacqa2(t0)µa + sbµb(θbc − θc)

r(1− θτc) + ζ
<
θacsaµa + sbµb(θbc − θc)

r(1− θc) + ζ
.

Proof of Proposition 2

Proof. Let QN 1 and QN 2 be fluid systems defined by (2.11) and originating in mode k ∈ {1, 2},

respectively. The homogeneous systems of the ODEs with respect to (qhbk , q
h
ck

)T are as follows:

q̇hb1(t)

q̇hc1(t)

 =

 rqhc1(t)− τbqhb1(t)

θcτbq
h
b1

(t)− (r + ζ)qhc1(t)

 ,

q01
= (qb1(t0), qc1(t0))T .

q̇hb2(t)

q̇hc2(t)

 =

 rqhc2(t)− µbqhb2(t)

θbcµbq
h
b2

(t)− (r + ζ)qhc2(t)

 ,

q02
= (qb2(t0), qc2(t0))T ,

(A.14)

where the first system corresponds to mode 1 with q(t) ∈ S1 and mode 2, and the second system

corresponds to mode 1 with q(t) ∈ S4. Let ψk and χk be the smallest and largest eigenvalues

of Ak corresponding to mode k, respectively. Matrix Ak is defined in Lemma 3, where we also

show that it has negative real and distinct eigenvalues. Let v(ψk) = (v1(ψk), v2(ψk))
T and v(χk) =

(v1(χk), v2(χk))
T be the eigenvectors corresponding to eigenvalues ψk and χk, respectively. Then,

qhbk(t)

qhck(t)

 =

ukeψktv1(ψk) + ωke
χktv1(χk)

uke
ψktv2(ψk) + ωke

χktv2(χk)

, (A.15)

where ωk and uk are scalars. Because ψk < χk < 0, (qhbk(t), qhck(t))T approaches 0 as t → ∞,

(qbk(t), qck(t))T approaches its equilibrium solution when ωke
χkt → 0.

For a fixed q0k
= (qbk(t0), qck(t0))T , the expression for ωk is obtained using Cramer’s rule. That

is, denoting the first coordinate of the eigenvectors corresponding to the eigenvalues ψk and χk by

v(ψk) and v(χk), respectively, we have that

wk =
v(ψk)[qc(t0)− q∗ck(t)]− qb(t0) + q∗bk(t)

eχkt0 [v(ψk)− v(χk)]
for k ∈ {1, 2, 3}.
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Proof of Corollary 1

Proof. Let qa1(t) approach q∗a1
at time t∗ in the launch phase. Then, as per (A.9),

lim
t→t∗

[
qa1(t0)− λ1

τa − δ
e−δt0 − λ0 + sa(τa − µa)

τa

]
e−τa(t−t0) = 0, lim

t→t∗
λ1

τa − δ
e−δt = 0.

The desired result holds as t→ t∗:

ω0 := qa1(t0)− λ1

τa − δ
e−δt0 − λ0 + sa(τa − µa)

τa
, |ω0|e−τat → 0

Proof of Lemma 6

Proof. Let min qa(t) ≥ sa (i.e., qa(t) ≥ sa, ∀t). Then, the solution to q̇a(t) = λ̄+λ̄σ sin (ωt)−µasa−

τa(qa(t)− sa) approaches q∗a(t) = αa + βa sin(ωt) + γa cos(ωt) as t→ +∞, where the constants

αa =
λ̄+ sa(τa − µa)

τa
, βa =

τaλ̄σ

ω2 + τ2
a

, γa = − ωλ̄σ

ω2 + τ2
a

are derived by the method of undetermined coefficients. Because qa(t) is overloaded, the asymptotic

behaviour of the system of ODEs with respect to (qb(t), qc(t))
T remains as in Proposition 1 part I.

Let max qa(t) ≤ sa (i.e., qa(t) ≤ sa, ∀t). Then, qa(t) = ω0e
−µat + αa + βa sin(ωt) + γa cos(ωt)

where

αa =
λ̄

µa
, βa =

µaλ̄σ

ω2 + µ2
a

, γa = − ωλ̄σ

ω2 + µ2
a

.

The constants can again by derived by the method of undetermined coefficients and as a result,

qa(t) approaches the periodic orbit q∗a(t) = αa + βa sin(ωt) + γa cos(ωt) as t→ +∞.

To show that qb(t) and qc(t) approach periodic orbits, we need to consider two systems of ODEs

corresponding to cases where qb(t) ≥ sb and qb(t) < sb, respectively. We write them in general

form: q̇b(t)
q̇c(t)

 =

 a1qb(t) + b1qc(t) + d1

a2qb(t) + b2qc(t) + d2 + µaθacω0e
−µat + µaθacφ(t)

 , (A.16)
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where

a1 =


−τb, if qb ≥ sb,

−µb, if qb < sb,

a2 =


τbθc, if qb ≥ sb,

µbθbc, if qb < sb,

b1 = r, b2 = −(ζ + r), (A.17)

d1 =


sb(τb − µb), if qb ≥ sb,

0, if qb < sb,

d2 =


θacλ̄+ sb(θbcµb − θcτb), if qb ≥ sb,

θacλ̄, if qb < sb,

(A.18)

φ(t) = φ̄
(
µa sin(ωt)− ω cos(ωt)

)
, φ̄ =

λ̄σ

µ2
a + ω2

. (A.19)

The general solution of (A.16) is obtained by standard ODE solutions methods:

qb(t)
qc(t)

 =

ω1e
ψ1t−b2+ψ1

a1
+ ω2e

ψ2t−b2+ψ2

a1
+ αb +B1e

−µat + βb sin(ωt) + γb cos(ωt)

ω1e
ψ1t + ω2e

ψ2t + αc +B2e
−µat + βc sin(ωt) + γc cos(ωt)

 , (A.20)

where

αb = −d1

a1
− b1
a1

(
a2d1 − d2a1

a1b2 − a2b1

)
, αc =

a2d1 − d2a1

a1b2 − a2b1
,

B1 =
b1µaθacω0(a1 + µa)

(a1 + µa)2(µa + b2)− (a1 + µa)a2b1
, B2 = − µaθacω0(a1 + µa)

(a1 + µa)(µa + b2)− a2b1
.

And βc, γc, βb and γb are computed from the following matrix equation



βc

γc

βb

γb


=



b2 w a2 0

−w b2 0 a2

b1 0 a1 w

0 b1 w a1



−1 

−µ2
aθacφ̄

ωµaθacφ̄

0

0


.

As t→ +∞, qb(t) and qc(t) approach periodic orbits q∗b (t) and q∗c (t) as stated.

Proof of Lemma 7

Proof. We first derive the expression for the lower bound of q∗a(t). Because q∗a(t) ∈ R≥0, its lower

bound exists: let q∗
a
∈ R≥0 be a lower bound of q∗a(t). To derive it, we compute min q∗a(t). For

simplicity, let g(t) = q∗a(t) = αa + βa sin(ωt) + γa cos(ωt), then ġ(t) = ωβacos(ωt) − ωγasin(ωt).
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By solving ġ(t) = 0, we find the critical points t∗: ωt∗ = arctan
(
βa
γa

)
+ nπ, where n ∈ Z. Now,

consider g̈(t) = −ω2βa sin(ωt) − ω2γa cos(ωt) noting cos(ωt∗) 6= 0 and sin(ωt∗) 6= 0 for ω > 0.

Observe that βa > 0 and γa < 0 so βa
γa

< 0 as per Lemma 6. Because arctan(−θ) ∈ (−π
2 , 0) for

θ > 0, for n = 0, ωt∗ ∈ (−π
2 , 0) so that −ω2βa sin(ωt∗) > 0, −ω2γa cos(ωt∗) > 0, and g̈(t∗) > 0.

Thus, min g(t) = αa + βa sin(ωt∗) + γa cos(ωt∗) where ωt∗ = arctan
(
−µa

ω

)
+ nπ for n = 0, 2, 4...

which gives:

min g(t) = q∗
a

=
λ̄

µa
− λ̄σ

µ2
a + ω2

(
µasin

[
arctan

(µa
ω

)]
+ ωcos

[
arctan

(µa
ω

)])
. (A.21)

Similarly, because q∗b (t) ∈ R≥0, its lower bound exists. In a similar fashion,

q∗
b

= αb + βbsin

[
arctan

(
βb
γb

)]
+ γbcos

[
arctan

(
βb
γb

)]
,

with αb, βb, and γb derived in Lemma 6.

The upper bound of q∗c (t) equals to q∗c as in Proposition 1 part I. We use a balance of flow

argument to show this result. Customers arrive to station 3 from station 1 and 2. Hence, if qa(t)

and qb(t) increase, qc(t) also weakly increases. As a result, qc(t) should obtain its largest value

when qa(t) ≥ sa and qb(t) ≥ sb. Thus, for any qa(t) ≥ sa and qb(t) ≥ sb, the asymptotic behaviour

of qc(t) is described by the equilibrium point from Proposition 1, i.e., q∗c = θacsaµa+sbµb(θbc−θc)
r(1−θc)+ζ . This

holds for the asymptotic curves q∗a(t), q
∗
b (t), and q∗c (t): for any value of q∗a(t) and q∗b (t) less than sa

and sb, respectively, q∗c (t) ≤ q∗c , ∀t. Thus, q̄∗c is the upper bound of q∗c (t) as desired.

Proof of Lemma 8

Proof. We find roots of the equation q∗a(t) = sa. First note the trigonometric identities

sin(ωt) = 2sin

(
ωt

2

)
cos

(
ωt

2

)
= 2tan

(
ωt

2

)
cos2

(
ωt

2

)
=

2tan
(
ωt
2

)
sec2

(
ωt
2

) , (A.22)

sec2

(
ωt

2

)
=

1

cos2
(
ωt
2

) =
sin2

(
ωt
2

)
+ cos2

(
ωt
2

)
cos2

(
ωt
2

) = tan2

(
ωt

2

)
+ 1. (A.23)
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Substituting z = tan
(
ωt
2

)
and (A.23) into (A.22) we obtain sin(ωt) = 2z

1+z2 . Similarly, rewriting

cos(ωt) = 1− 2sin2

(
ωt

2

)
= 1− 2tan2

(
ωt

2

)
cos2

(
ωt

2

)
= 1−

2tan2
(
ωt
2

)
sec2

(
ωt
2

) ,
and substituting z = tan

(
ωt
2

)
gives cos(ωt) = 1 − 2z2

1+z2 = 1−z2

1+z2 . As a result, q∗a(t) = sa =

αa + βa
2z

1+z2 + γa
1−z2

1+z2 which can be solved for z. By substituting tan
(
ωt
2

)
= z in the quadratic

formula, we get

t =

2 arctan

(
βa±
√
β2
a−(sa−αa+γa)(sa−αa−γa)

sa−αa+γa

)
ω

+
2πn

ω
,

where n ∈ Z, such that αa, βa, and γa are defined in Lemma 6.

Proof of Proposition 3

Proof. 1. Consider EXP and denote its optimal solution (s∗a, s
∗
b). We now derive the bounds for

s∗a. There are two scenarios to consider: qa(t0) is overloaded and qa(t0) is underloaded.

If qa(t0) is overloaded, then qa(t0) > s∗a and qa(t0) is an upper bound. Alternatively, if qa(t0)

is underloaded, then qa(t) must switch to an overloaded regime at some time t because s∗a is

optimal and, thus, w̄0(s∗a) ≥ 0. Hence, the maximum of qa2(t) is an upper bound of s∗a.

The equation for qa2(t) is given by (A.11). Because both exponential terms are decreasing in

t, qa2(t) is either decreasing or has a global maximum. The extremum of qa2(t) is given by

taking its first derivative, equating it to zero, and solving for t. This gives

t∗ =
log
(
−µa

[
qa2(t0)− λ0

µa
− λ1

µa−δe
−δt0

]
eµat0

)
− log

(
δλ1
µa−δ

)
µa − δ

.

Thus, s∗a ≤ qa(t0) ∨ qa2(t∗). For the lower bound, because qa(t) cannot be overloaded indef-

initely, it eventually switches to the underloaded regime. The minimum of qa2(t) coincides

with this equilibrium point, λ0
µa

. As a result, we have that λ0
µa
≤ s∗a ≤ qa(t0) ∨ qa2(t∗).

2. If Sexp denotes the search region of EXP, the corresponding solution range Sexp becomes:

Sexp =

[
qa2(t0)− λ0

µa
− λ1

µa − δ
e−δt0

]
e−µa(t∗−t0) +

λ1

µa − δ
e−δt

∗
. (A.24)
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We now show that Sexp does not become unbounded as the values of the parameters increase.

Clearly, Sexp can get large with λ0 and/or λ1. Thus, we consider a limit of Sexp as λ1 →∞.

For this analysis, we let t0 = 0 as we determine the bounds of the solution space at the

beginning of the time horizon, and assume qa2(t0) < s∗a is a constant. Because λ1 and λ0

may change together, without loss of generality, we set λ0 = h(λ1) ∈ C1 which represents any

continuous, smooth non-linear function of λ1. In order to evaluate the limit of Sexp, we first

determine what happens with t∗ as λ1 increases, i.e.,

lim
λ1→∞

t∗ = lim
λ1→∞

 log
(
−µa

[
qa2(0)− λ0

µa
− λ1

µa−δ

])
− log

(
δλ1
µa−δ

)
µa − δ

 .
This is equivalent to:

lim
λ1→∞

t∗ = lim
λ1→∞

log
[(
−µaqa2(0) + λ0 + µaλ1

µa−δ

)
µa−δ
δλ1

]
µa − δ

.

By L’Hospital’s Rule, the expression under the natural logarithm goes to L := ḣ(λ1)(µa−δ)+µa
δ

as λ1 → ∞. Observe that because limλ1→∞ t
∗ ≥ 0 and µa > δ, without loss of generality,

limλ1→∞ ḣ(λ1) ≥ 0. Thus, λ0 is increasing in λ1 as λ1 → ∞. Further, L = ∞ because the

first derivative of h(λ1) is a function of λ1 and it is asymptotically positive. When L = ∞,

t∗ → ∞ as λ1 → ∞. Thus, the limit of (A.24) as λ1 → ∞ is 0: limλ1→∞
λ1

µa−δe
−δt∗ = 0

and limλ1→∞
λ1

µa−δe
−µat∗ = 0 because an exponent reaches infinity faster than a polynomial;

limλ1→∞
λ0
µa
e−µa(t∗) = 0 because Sexp is non-negative, which implies that λ0 cannot reach

infinity faster than µae
µa(t∗). We conclude that if λ0 →∞ as λ1 →∞, then |Sexp| → 0.

Proof of Proposition 4

Proof. 1. Consider SINE and denote its optimal solution by (s∗a, s
∗
b). We now determine the

bounds of s∗a. Contrary to Proposition 3, we only require that the overloaded and underloaded

regimes are reached periodically as time gets large. Thus, the maximum and minimum of

q∗a(t) in the underloaded regime are the upper and lower bound of s∗a, respectively. Denote

the underloaded version of q∗a(t) by q∗
a
(t). The expression for its minimum has been derived
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in (A.21). As per Lemma 7, the maximum of q∗
a
(t) is reached at time points

ωt∗ = arctan

(
βa
γa

)
+ nπ,

where n ∈ {1, 3, 5, . . .}, so that

max q∗
a
(t) =

λ̄σ

µ2
a + ω2

(
ωcos

[
arctan

(µa
ω

)]
+ µasin

[
arctan

(µa
ω

)])
+

λ̄

µa
(A.25)

and

min q∗
a
(t) ≤ s∗a ≤ max q∗

a
(t).

2. If Ssine denotes the search region of SINE, then the corresponding solution range Ssine be-

comes:

Ssine =
2λ̄σ

µ2
a + ω2

(
ωcos

[
arctan

(µa
ω

)]
+ µasin

[
arctan

(µa
ω

)])
.

We show that Ssine does not become unbounded as values of the parameters increase. Because

λ̄ is the only parameter that can cause the solution range to become unbounded, we evaluate

the limit of Ssine as λ̄→∞. It clearly follows that if σ → 0 as fast as λ̄→∞, limλ̄→∞ Ssine =

0. Note that we assume ∞ · 0 := 0.
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Appendix B

Chapter 2: Implementation Details

and Proofs of Statements

Case Study: Arrival Function and Asymptotic OLF

Our data set represents arrival counts per second over a typical 24-hour period, i.e., 86400 data

points in total. We transform this data to average instantaneous counts at the beginning of each

one second period. This can be done by converting counts per second to counts per millisecond.

We then fit the resulting data of instantaneous arrival counts in a curve fitting toolbox of Matlab

R2015a. Our best fitting function λ(t) ∈ C1 is an eighth order polynomial. Consequently, the

asymptotic OLF, a particular solution to (3.4), is also a polynomial function of eighth order such

that

λ(t) =
8∑

k=0

λkt
k, υ(t) =

8∑
k=0

υkt
k,

where λk ∈ R and υk ∈ R for k ∈ {0, 1, . . . , 8} are polynomial coefficients. Because λk and υk have

many digits after the decimal point, they quickly accumulate a rounding error, and can only be

reported in a .mat file attachment to ensure reproducibility. We make a mat file containing these

coefficients available in a shared Google Drive folder.
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k λk υk
0 23.3155319631730 0.582912116248628
1 −0.0381052644866565 −0.000952686772086839
2 4.41275772705046e− 05 1.10319840853815e− 06
3 −4.78759197337980e− 09 −1.19690340518401e− 10
4 2.16472930776578e− 13 5.41183906337450e− 15
5 −5.05405757472458e− 18 −1.26351680268878e− 19
6 6.42401295446502e− 23 1.60600509026714e− 24
7 −4.23234261180524e− 28 −1.05808621985254e− 29
8 1.13380246953280e− 33 2.83450617383199e− 35

Case Study: Tables

Tables B.1 - B.3 compliment Figures 3.3b,3.4a,3.4b, respectively. Note: bolded rows match groups of bars in a corresponding figure from left to

right.

α, β: values of the SLA constants α and β.

s∗: the optimal capacity level obtained by solving GVAR.

Ê[W ]: the expected waiting time (in seconds) before accessing service per Definition 2.

P̂(W > 0): the long-term probability of waiting, i.e., accessing service after at least 2 attempts.

C: the annual operational cost of capacity s∗.

Table B.1: β = 0.75, complimentary to Figure 3.3b

α β s∗ Ê[W ] P̂(W > 0) C

0.0100 0.7500 35.2508 0.0000 0.0000 9263.8984
0.0123 0.7500 35.2193 0.0000 0.0000 9255.6309
0.0473 0.7500 33.9180 0.0000 0.0000 8913.6599
0.0823 0.7500 31.5919 0.0000 0.0000 8302.3398
0.1173 0.7500 31.3327 0.0000 0.0000 8234.2274
0.1522 0.7500 30.7493 0.0000 0.0000 8080.9041
0.1872 0.7500 29.9313 0.0000 0.0000 7865.9509
0.2222 0.7500 28.9246 0.0000 0.0000 7601.3931
0.2572 0.7500 27.7635 0.0000 0.0000 7296.2498
0.2922 0.7500 26.4854 0.0000 0.0000 6960.3631
0.3272 0.7500 25.1209 871.8314 0.1010 6601.7856
0.3622 0.7500 23.6962 1466.1979 0.1448 6227.3614
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Table B.2: β = 0.80, complimentary to Figure 3.4a

α β s∗ Ê[W ] P̂(W > 0) C

0.0100 0.8000 33.0486 0.0000 0.0000 8685.1782
0.0423 0.8000 32.0648 0.0000 0.0000 8426.6331
0.0824 0.8000 29.6173 0.0000 0.0000 7783.4175
0.1225 0.8000 29.3079 0.0000 0.0000 7702.1055
0.1627 0.8000 28.6215 0.0000 0.0000 7521.7252
0.2028 0.8000 27.6577 0.0000 0.0000 7268.4411
0.2430 0.8000 26.4854 0.0000 0.0000 6960.3631
0.2831 0.8000 25.1495 793.0319 0.1000 6609.3014
0.3232 0.8000 23.6962 1377.9107 0.1448 6227.3614

Table B.3: β = 0.85, complimentary to Figure 3.4b

α β s∗ Ê[W ] P̂(W > 0) C

0.0100 0.8500 31.1039 0.0000 0.0000 8174.1006
0.0362 0.8500 30.4347 0.0000 0.0000 7998.2298
0.0855 0.8500 27.8693 0.0000 0.0000 7324.0584
0.1347 0.8500 27.4203 0.0000 0.0000 7206.0596
0.1839 0.8500 26.4854 0.0000 0.0000 6960.3631
0.2331 0.8500 25.2125 698.5645 0.0976 6625.8363
0.2823 0.8500 23.6962 1287.2927 0.1448 6227.3614

Proofs of the results

Proof of Lemma 9

Proof. (i) Fixing the phase φ to 0, we plug (3.12) into (3.4) to obtain u̇(t) = λ̄+λ̄σ sin (ωt)−µu(t).

This is an ordinary linear nonhomogeneous differential equation. We use the method of

undetermined coefficients to obtain a closed-form expression for u(t)

u(t) = u0e
−µt + υ1 + υ2 cos(ωt) + υ3 sin(ωt)

where

u0 ∈ R, υ1 =
λ̄

µ
, υ2 = − ωλ̄σ

ω2 + µ2
a

, υ3 =
µλ̄σ

ω2 + µ2
.

(ii) As t→∞, u0e
−µt approaches 0. Thus, υ(t) = υ1 + υ2 cos(ωt) + υ3 sin(ωt).

(iii) This follows from Lemma 8 in Furman et al. (2019).
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Proof of Proposition 5

Proof. Define a piecewise smooth function zj(t, rj , s) for j ∈ {1, 2, . . . , J − 1} to be the modified

OLF of a system with j orbits as in (3.9)-(3.10). We need to show that y(t; r, s) = zJ−1(t; rJ−1, s)−

ῡ(t; s). Observe that ῡ(t; s) represents the workload that accesses service immediately upon arrival,

i.e., attempts service one time in total. Also, (υ(t − r−1
1 ) − s)+ is a horizontal shift r−1

1 of the

workload that requires at least two service attempts and equals z1(t; r1, s)− ῡ(t; s). By induction,

zj(t; rj , s) − ῡ(t; s) describes the aggregate workload that requires at least j + 1 attempts to get

serviced and re-enters the system after at most j sequential horizontal shifts r−1
1 , r−1

2 , . . . , r−1
j .

Therefore, zJ−1(t; rJ−1, s)− ῡ(t; s) = y(t; r, s). By (3.8), we also have zJ−1(t; rJ−1, s) = z(t; r, s).

Proof of Lemma 10

Proof. We prove this result by contradiction. Let there exist such s and r1 that constraint (3.17) is

satisfied. Then, (υ(t−r−1
1 )−s)+ = 0, ∀t ∈ {υ(t) ≥ βs} and (υ(t−r−1

1 )−s)+ ≥ 0, ∀t ∈ {υ(t) < βs}.

That is, fluid does not re-enter the system when υ(t) ≥ βs. Assume that eΩ(s) > dΩ(βs), then, the

cavity of υ(t) under βs level cannot contain the entire excess fluid and ∃t ∈ {υ(t) ≥ βs} such that

(υ(t− r−1
1 )− s)+ 6= 0. Thus, we acheive a contradiction and eΩ(s) ≤ dΩ(βs) must hold.

Proof of Proposition 6

Proof. Let υ(t) be defined as in Lemma 9. We first show that there exists a unique value of service

capacity s and retrial rate r1 that optimally solves min
s∈R>0,rj∈R≥0

V (z(t; r, s)) and also maximizes

throughput. Let zj(t; rj , s) be defined as in Proposition 5. Because υ(t) has a reference line at υ1

level and ∃δ > 0, such that υ(t)− υ1 = υ1− υ(t+ δ−1) for any t ∈
[
0, Ω

2

]
, V (z1(t; δ, υ1)) = 0. Thus,

z1(t; δ, υ1) ∧ υ1 = z1(t; δ, υ1) and (z1(t; δ, υ1)− υ1)+ = 0 for ∀t. We have that z2(t; δ, r2, υ1) = . . . =

zJ−1(t; δ, r2, . . . , rJ−1, υ1) = z1(t; δ, υ1) for rj ≥ 0 and j ∈ {2, 3, . . . , J − 1}.

Second, we show that having one orbit in the system is sufficient to serve all clients and to satisfy

(3.16). Observe that s∗, an optimal solution to VAR, is always greater than υ1. By definition, s∗

satisfies (3.16), i.e., there exist such time t and optimal retrial rates r∗ that z(t; r∗, s∗) < βs.

However, z(t; δ, υ1) > βs for any t. Thus, to satisfy (3.16) more capacity than υ1 is required.
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Because capacity υ1 is sufficient to serve the entire workload after at most two service attempts,

any s > υ1 serves all jobs by employing a single orbit, i.e., there exists such δ∗ that z2(t; δ∗, r2, sα) =

. . . = zJ−1(t; δ∗, r2, . . . , rJ−1, sα) = z1(t; δ∗, sα) for rj ≥ 0 and j ∈ {2, 3, . . . , J − 1}.

Third, we show that V (z(t; r, s)) is convex in s. For any s ∈ [0, υ1], max(z(t; r, s)) decreases

in s while min(z(t; r, s)) increases in s. Then, V (z(t; r, s)) is decreasing. Similarly, for any s ∈

[υ1,max(υ(t))], max(z(t; r, s)) increases in s while min(z(t; r, s)) decreases in s. Then, V (z(t; r, s))

is increasing. Thus, V (z(t; r, s)) is convex in s over [0,max(υ(t))].

Fourth, due to the aforementioned convexity of V (z(t; r, s)), s∗ is the minimum capacity that

satisfies (3.16) and (3.17) at the same time. By Lemma 10, (3.17) implies eΩ(s) ≤ dΩ(βs). Further,

because s∗ ≥ υ1, V (z(t; r, s)) is increasing in s ≥ s∗ and s ≤ max{υ(t)}. Equivalently, s∗ is the

minimum capacity ensuring that at least one of the constraints (3.16) and (3.18) is binding. Thus,

s1, the solution to equation t2(n,βs)−t1(n,βs)+|Z(n;βs)|
Ω = α is the optimal solution to VAR with (3.16)

only while s2, the solution to equation eΩ(s) = dΩ(βs), is the optimal solution to VAR with (3.17)

only. Thus, s∗ = max{s1, s2} can be computed by solving a single non-linear equation and solves

VAR optimally.

Finally, we select such retrial rate r∗1 that satisfies (3.17). Let t2(n, s) > t1(n, s) > t0(n, s) > 0

be consecutive solutions to the equation υ(t) = s for n ∈ Z where υ̇(t0(n, s)) < 0, υ̇(t1(n, s)) > 0

and υ̇(t2(n, s)) < 0, respectively. For any capacity s ≥ υ1, to ensure that (3.17) is satisfied, the

following constraints hold by construction

(t1(n, βs)− t0(n, s))−1 ≤ r1 ≤ (t2(n, βs)− t1(n, s))−1. (B.1)

Writing (B.1) for s∗ results in (3.19) while r∗j ≥ 0 for j ∈ {2, 3, . . . , J − 1}.

Corollary 4 (Solution to VAR). Let s∗ defined as in Proposition 6 be the optimal solution to VAR.

Also, let capacity level υ1 be the optimal solution to the unconstrained VAR. Then, there exists retrial

rate δ∗ that solves VAR optimally and it equals t2(n, l)− t1(n, s∗), where l = υ1 − (s∗ − υ1).

Proof of Corollary 4

Proof. Let capacity level s∗ solve VAR optimally. Then, for some δ∗ > 0, similar to Proposition 6,

because s∗ ≥ υ1, there exists a unique level l ≤ βs∗ such that z1(t; δ∗, s∗) fills the cavity below βs∗
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with fluid up to this level exactly. Thus, min(z1(t; δ∗, s∗)) = l and min(z1(t; r1, s
∗)) < l for any

r1 6= δ∗. Hence, given that max(z1(t; r1, s
∗)) = s∗ remains fixed, V (z1(t; δ∗, s∗))) < V (z1(t; r1, s

∗)))

by definition of the total variation of a function. Hence, s∗ and δ∗ are jointly optimal. Let t2(n, l)

be a solution to υ(t) = l, such that υ̇(t2(n, l)) < 0. Notice that because υ(t) has point symmetry,

l = υ1 − (s∗ − υ1). Then, we have that δ∗1 = t2(n, l)− t1(n, s∗) by construction.

Proof of Proposition 7

Proof. By construction, x(t) = z(t; r∗, s∗), and thus (3.16) and (3.5) are equivalent. We also have

that (3.17) and (3.6) are equivalent for j = 1 and (3.7) always hold for j ∈ {2, 3, . . . , J−1} as these

orbits are empty. The value of r1 that solves VAR optimally is unique and it satisfies (3.19) given

capacity s∗ which is implied by (3.17). Therefore, because s∗ is the minimal capacity that satisfies

(3.5)-(3.6) and serves all jobs at the same time, the optimal solution to VAR is the optimal solution

to OPT.

Proof of Lemma 11

Proof. (i) Let λ(t) admit a polynomial representation and λΩ(t) be defined as in (3.20). Then,

the solution to u̇(t) = λΩ(t)−µu(t) over period Ω becomes u(t) = u0e
−µt+υ(t), where u0 ∈ R

and υ(t) also admits a polynomial representation. Because the term λΩ(t) is periodic, υ(t)

inherits this property. Thus, for any time t ≥ 0,

u(t) = u0e
−µt + υ(t mod Ω).

Without loss of generality we denote u(t) by uΩ(t).

(ii) As t→∞, u0e
−µt approaches 0. Thus, uΩ(t) approaches a periodic orbit asymptotically, i.e.,

υΩ(t) = υ(t mod Ω).

Proof of Corollary 2

Proof. Let sα be the optimal solution to GVAR with (3.22) only. We first observe that because each

cavity below level βs is large enough to accommodate the entire workload, i.e., |Zm(n;βs)| = 0, ∃s
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and r1 such that υ(t) − s ≤ s − υ
(
t+ 1

r1

)
holds for all n,m and t ∈

⋃M
m=1Am(n, s). Therefore,

all jobs get serviced after at most two attempts and the left-hand side of (3.22) is a function of

υ(t) whose closed-form expression is available so that constraint (3.25) is non-binding. Because

|Zm(n;βs)| = 0, we have that constraints (3.23)-(3.24) are also non-binding. Further, because the

left-hand side of (3.22) decreases in s while V (z(t; r, s)) increases in s, by the convexity argument

in Proposition 6, constraint (3.22) is always binding. Then, s∗ = sα is the optimal solution to

GVAR, i.e., it is the minimum capacity that satisfies constraint (3.22).

Then, we select such r∗1 that also satisfies (3.23). Observe that, for any capacity s, to ensure

that (3.23) is satisfied, the following constraints hold by construction

1

r1
≥ max{|Am(n, βs) ∩ Bm(n, s)|+ |Am(n, s)|}Mm=1, (B.2)

1

r1
≤ min{|Am(n, βs) ∩ Bm(n, s)|+ |Bm(n, βs)|}Mm=1. (B.3)

Constraints (3.24) are always satisfied as these orbits are empty under the assumption of Corollary 2.

Writing (B.2) - (B.3) for s∗ results in (3.26) - (3.27) while r∗j ≥ 0 for j ∈ {2, 3, . . . , J − 1}.

Proof of Corollary 3

Proof. By construction, x(t) = z(t; r∗, s∗) and, thus, (3.22) and (3.5) are equivalent. We also have

that (3.23)-(3.24) and (3.6)-(3.7) are equivalent. Further, given the penalty term of the objective

function in OPT, the optimal capacity s∗ serves the entire demand. This property is ensured by

constraint (3.25). By the convexity of V (t; r, s) in s, the optimal value of s that solves GVAR is

either the minimal capacity that satisfies (3.22)-(3.24) or the minimal capacity that satisfies (3.25),

i.e., it equals s∗. Similar to Corollary 2, because the unique value of r1 that solves GVAR optimally

is an optimal solution to OPT, the optimal solution to GVAR is the optimal solution to OPT.

125



Appendix C

Chapter 3: Implementation Details

and Proofs of Statements

Appendices and Proofs of Statements

Proof of Lemma 12

For σi > 0 and T > σi for all i, we apply the conditional expectation operator to (4.3). Then, given

(4.2), and by the linearity of expectation, (4.6) holds.

Clustering Procedure

We cluster patients based on 16 variables which include a patient’s length-of-stay in the hospital

(days) and their average daily count of 15 medical interactions as per Column 1 in Table C.2. For

example, a patient with a length-of-stay equal to 3.5 days and 12 vital sign measurements will be

assigned an average daily count of 12/3.5 = 3.4 measurements of vital signs.

To improve the quality of our clustering procedure, we employ Uniform Manifold Approximation

and Projection technique (UMAP) (McInnes et al. 2018) as a pre-processing step. Contrary to other

non-linear projection methods (t-SNE or Isomap, for instance), it does not favor the preservation

of local distances over global distance. That is, using UMAP as a pre-processing step for clustering

preserves both the local (dissimilarities within clusters) and global (dissimilarities between clusters)

structure of the data set. Further, the algorithm is less computationally intensive than t-SNE, for
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instance, and in contrast to linear projection techniques such as Principal Component Analysis

(PCA), does not attempt to construct multidimensional vectors to recreate the location of each

data point. Thus, it is not vulnerable to 20% - 30% loss in representative accuracy.

Because we do not aim to predict cluster membership for future patients and would like to

cluster all existing patients without exceptions, we choose a standard k-means approach. To ensure

the stability of the clusters, we initialize the procedure with 25 random starting partitions (see

nstart option for the kmeans function in the R documentation). Contrary to our needs, density

based techniques, (HDBSCAN, for instance) may consider some of the data points as noise.

Table C.1: Within cluster variation as a function of the number of clusters used.

Number of Clusters, k Total Squared Error Within Clusters

1 290,250
2 140,491.9
3 86,060.95
4 56,175.68
5 42,133.06
6 33,761.11
7 25535.31
8 20880.25
9 17563.34
10 15222.13

Table C.2: Average PPE usage per patient-practitioner interaction.

Interaction Types, j Gowns, u1,j Gloves, u2,j Surgical Masks, u3,j N95 Masks, u4,j Shields, u5,j Bouffants, u6,j Boot Covers, u7,j

Vital signs measurement 0 1 0 0 0 0 0
Medication administration 0 1 0 0 0 0 0

Lab Test Collection 0 1 0 0 0 0 0
X-ray 0 2 0 0 0 0 0
CT 0 2 0 0 0 0 0

MRI 0 2 0 0 0 0 0
Ultrasound 0 2 0 0 0 0 0

Nuclear Medicine 0 1 0 0 0 0 0
Interventional Radiology 3.5 3.5 0 3.5 0 3.5 3.5

Transthoracic Echocardiography (TTE) 0 1 0 0 0 0 0
Transesophageal Echocardiography (TEE) 3 3 3 3 0 3 3

Bronchoscopy 4 4 4 4 0 4 4
Dialysis 0 1 0 0 0 0 0

Surgical Procedure 5.5 5.5 4 2 0 5.5 5.5
Room Transfer 0 1.5 0 0 0 0 0

We use the total squared error within clusters as a single aggregate measure of similarity amongst

patients. This is because a sample variance estimate is dependent on the size of the cluster.

Table C.1 presents the within cluster variation as a function of the number of clusters that are

used. Due to the multi-dimensional nature of the data, the clustering technique aims to reduce the

variation amongst all variables at the same time rather than focusing on one of them specifically.
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Estimation of the Number of Medical Interactions Per Day as well

as PPE Usage

The first column in Table C.2 represents the most common types of medical interactions between

patients and practitioners for individuals admitted to the GIM service at St. Micheal’s hospital.

In columns 2-8, we display the count of type n ∈ {1, 2, . . . , 7} PPE used during each type of

interaction. While the values in column 1 are obtained by analyzing the types of interactions in the

data set, the values in columns 2-8 were obtained by conducting semi-structured interviews with

various medical practitioners in each sub-speciality of our partner hospital and summarizing their

responses.

More specifically, we engaged key stakeholders from clinical departments throughout St. Michael’s

Hospital. They included a nurse manager for the general internal medicine (GIM) department, a

medical imaging manager, an echocardiography team leader and a cardiac sonographer, a dialysis

charge nurse, a gastroenterologist, a respirologist, and an anesthesiologist. The semi-structured

interviews were conducted with each individual and process-mapping techniques were used to un-

derstand the workflow, number of patient interactions, personnel needs, and the PPE usage per

episode of patient care. For elective and non-elective surgeries, we used common surgical procedures

conducted on GIM patients, including laparoscopic intra-abdominal surgeries or vascular procedures

such as amputation, to inform the model. These interviews provided pragmatic estimates of PPE

usage and helped to estimate the number of patient interactions on a daily basis.
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