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Abstract

As a result of the low Greenhouse Gases (GHG) emissions in the electricity genera-

tion profiles, electrification of transit networks represents a promising approach to reduce

transportation-related GHG emissions. Two fundamental concepts have been adopted to

electrify transport systems: utilization of (i) battery storage for Battery Electric Vehicles

(BEV), and (ii) hydrogen for Fuel-Cell Electric Vehicles (FCEV). Each of the two concepts

has its own design and operation challenges in order to be widely and efficiently deployed.

Accordingly, this thesis focuses on developing new models to address the imminent chal-

lenges of design and operation practices that are associated with the adoption of both

concepts.

First, novel analytical methodologies are developed to be applied to the size estimation

of BEV and FCEV fueling stations, as a critical step to set the stage for the transportation

electrification. The ratings of various components are expressed in terms of the system

operation percentage using the proposed formulation, and the desired ratings are selected

at which the net profit reaches the maximum point.

Second, both Public Bus Transit (PBT) and power utility operators retain various chal-

lenges in facilitating the seamless integration of Battery Electric Bus (BEB) fleet systems.

The most salient challenges are: (i) the lack/unavailability of real-world and high-resolution

speed data of BEB to accurately calculate the Electric Bus Energy Consumption (EBEC),

and (ii) the lack of appropriate simulation tools to model and optimize BEB fleet systems.

Therefore, a novel model to generate a set of synthetic speed profiles is proposed using the
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basic information of the bus trip: duration, distance, and bus stops. A new mathematical

formulation is also proposed to model and optimize the design of BEB fleet systems. The

model considers the operational requirements of PBT systems, utility grid model and the

EBEC characteristics.

Third, the proliferation of hydrogen fueling stations throughout the transportation

network and justifying their economic viability are key factors to the success of the FCEVs.

Accordingly, a new model for optimal scheduling of distributed hydrogen storage stations

is proposed to serve the transport sector and the electricity market Demand Response

(DR) program, besides optimizing the hydrogen sale price. Further, the Liquid Organic

Hydrogen Carrier (LOHC) technology now offers a promising solution for the reliable and

safe storage of hydrogen. Hence, this thesis also demonstrates how such plants should

be optimally sized and operated for joint applications for concurrent services to both the

transportation sector and utility grid ancillary services.

The findings of this thesis highlight the feasibility of current BEBs technology to replace

diesel-based transit buses, shall appropriate technical design and measures be considered

to alleviate the negative interactions between power utilities and transit networks. In

addition, ancillary services provision to the grid is concluded to be a win-win situation to

the utility grid and the hydrogen facility that can reduce the hydrogen sale price.
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Chapter 1

Introduction

1.1 Background

The development of low–carbon technologies to mitigate GHG emissions has been con-

sidered a promising solution to address the global climate change concerns. Power utility

sectors have been moving toward accommodating high penetration levels of renewable gen-

eration resources [1]. As a result of the low GHG emissions in the electricity generation

profile, transportation sectors have been moving towards electric powertrain technologies

for personal mobility and public transit [2, 3, 4]. This is to reduce the transportation sector

major share in global emissions (i.e. 24% of the global CO2 production) [5]. Transporta-

tion electrification is envisioned as one of the most prominent solution to deal with the

environmental pollution resulted from the increasing number of fossil–fueled vehicles [5].

Two fundamental concepts have been adopted to realize the transportation electrifi-

cation: utilization of (i) battery storage for BEV and (ii) fuel cell for hydrogen–powered

vehicles. BEVs use an on–board battery energy storage system to drive an electric motor.

FCEV, on the other hand, rely on usage of hydrogen as the fuel to generate electricity

from fuel cell units; the generated electricity is used to propel the vehicle’s electric motor

or is stored in an energy storage device (i.e., battery) [6].
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Apart from the emission benefits, additional advantage of the electric powertrain is

that their electric drive motors have higher energy conversion efficiencies than the Internal

Combustion Engine (ICE). The energy conversion efficiency for the electric drive motors

is about 76% (i.e., from on-board battery to drive the wheels), which is about five times

higher compared to the average of the ICEs efficiency of 16% (i.e., from on-board fuel

storage to drive the wheels) [7]. The differences between BEVs and FCEVs involve the

grid to on-board storage efficiencies. BEVs have about 66% for DC fast chargers integrated

with battery storage system and 78% for slow charging mode using AC chargers integrated

with battery energy storage [8]. Therefore, the overall grid to wheels efficiency of BEVs is

about 50% and 60% for fast and slow charging, respectively. While, FCEVs have about 57%

energy conversion from grid to on-board storage [8]. Hence, by considering a 70% energy

conversion for the on-board fuel cell that converts hydrogen to electricity to be stored in a

buffer battery storage [9], the overall grid to wheels efficiency is about 30%. Although, the

FCEVs grid to wheels efficiency is about half of BEVs, FCEVs are known for their higher

mileage range, faster refueling rate, and the absence of energy storage degradation issues

[6]. For this reason, FCEV is considered a competitive option for transit electrification,

especially when it comes to higher mileage range and fast refueling requirements.

The electrification mix between BEVs and FCEVs has the potential to efficiently elec-

trify the transportation sector. However, each of the aforementioned transportation elec-

trification concepts has its own challenges to be efficiently deployed.

Firstly, with respect to the BEVs adoption, several studies in the literature focuses on

mitigating the challenges to deploy personal BEVs. A stream of research investigates the

integration of energy storage system with the BEVs parking lot. This is to (i) reduce the

demand charge per annum, (ii) relieve the pressure on the grid, and (iii) minimize the Op-

eration Expenditure (OPEX) thereby maximizing the net profit [10, 11]. In addition, the

studies for optimal sizing and allocation of the BEVs charging stations are diverse in the

literature [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. The main objectives of the optimal

2



sizing and allocation of the BEVs charging stations are (i) estimating the vehicles power

demand and charging schedule to satisfy the BEVs State of Charge (SOC), (ii) minimiz-

ing the Capital Expenditure (CAPEX) of the charging station components (i.e., number

of chargers, waiting spaces in the charging stations, storage system, backup distributed

generation units etc.) and the purchased electricity from the utility, (iii) satisfying the dis-

tribution system constraints, and (iv) investigating the opportunity of the BEVs charging

stations to provide ancillary services to the power grid to enhance their profitability.

Alongside the research efforts devoted to promote for the personal BEVs, electrification

of PBT has been considered as one of the most salient approaches to reduce transit–related

GHG emissions [24]. Public bus fleets operate on fixed routes to carry passengers from

one place to another according to a predetermined daily operating time schedule and fixed

routes, which makes them a potential target for full electrification [25], [26]. Further,

electrified PBT have the potential to maximize the utilization benefits from renewable

power generation [27]. In this regard, BEB technologies that utilize on–board batteries

and chargers are considered eminent solutions to move toward zero-emission PBT systems

[28]. This is due to the BEB high technology maturity level compared to other electrifica-

tion technologies such as fuel cell electric bus [28]. However, due to their emergent nature,

BEB technologies have created new transportation-energy matrix, which is incomprehen-

sible to transit and utility sectors. The transportation sector faces challenges in terms of

implementing a full electrification system, due to the conflict between transportation oper-

ational requirements and electric network obligations. Previous analysis of the interactions

between the operation of BEBs [27, 28, 29, 30], sheds light on several challenges, such as,

but not limited to: (i) impact of charger capacity upon the operational demand profile and

the charging queuing time of buses; (ii) additional BEB requirements to maintain the oper-

ational schedule; and (iii) transit impact of BEBs on the utility grid e.g., voltage, feeder’s

capacity, and power balance. It could be argued, therefore, that due to the variation in

PBT operation and utility grid profile, a trade-off is required in order to optimize transit
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operation, utility grid demand profile, and BEB configuration: these being battery size,

charger power, and number of required chargers.

Secondly, compared to BEVs, FCEVs are known for their higher mileage range, faster

refueling rate similar to diesel-based vehicles, and the absence of energy storage degradation

issues [31]. However, hydrogen gas, the FCEV feedstock, needs to be produced and made

available to the transportation sector [32]. Hydrogen can be cleanly produced using an

electrolyzer, known as the Power–to–Hydrogen (PtH) technology, whereby electricity is

utilized to diffuse water into hydrogen and oxygen [32]. The generated hydrogen from PtH

can be stored in the form of liquid or gas in a reservoir for later use. Hydrogen can then be

converted back into electricity and supplied to the power grid using a fuel cell, or it can be

directly sold to the transportation sector (i.e., to supply FCEVs) [33]. It should be noted

that hydrogen can be generated either centrally in large scale and then be transported to

hydrogen fueling stations, or produced on site (i.e., at hydrogen fueling stations). Despite

the fact that mass production at central hydrogen generation plants is more economical, the

transportation cost of the hydrogen to the consumption areas could escalate the overall

cost. For this reason, it has been argued that the production of hydrogen should take

place within the fueling station facility in order to alleviate the transportation cost and

increase the reliability of hydrogen availability [34], [35]. Although the implementation of

hydrogen fueling stations has attracted the attention of industry sectors [36], such stations

have not been completely materialized yet. This is mainly due to the following reasons:

(i) the development of the FCEVs is currently at the demonstration/commissioning stage

[37]; (ii) there is a gap between the present rate of return and the expected profit from

the investment in such stations, and (iii) the absence of the techno–economics models,

which investigates the optimal planning and operation of the distributed/centralized PtH

generation plants across the power system network [35]. Hence, deployment of hydrogen

fueling stations over the transportation network is required for the success of the FCEVs.

However, the economic viability of such stations needs to be justified in order for them to
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be proliferated. In addition, the integration of such stations into the power systems should

be carefully investigated, in order to avoid any negative impacts on the power system.

1.2 Thesis Objective

This thesis aims to facilitate the seamless adoption of electrified transportation systems

and their integration into the power grid by counteracting the timely research gaps that

challenge the realization of electrified personal and PBT networks. Battery–based personal

and PBT proliferation obstacles lay upon their limited driving range, negative charging im-

pact on the power grid, and their economic viability. Hence, novel planning and operation

models are required to maintain the power grid prerequisites constraints, while optimizing

their infrastructure economic metrics. In contrast, the challenge to realize hydrogen–based

transit networks are prescribed to be the lack of hydrogen availability i.e, production fa-

cility and infrastructure. Thereby, techno–economic planning and operational models for

the hydrogen production and storage facilities integrated with power grids are required to

advance the existence of hydrogen-based transit networks. Based on the above discussion,

this thesis aims to achieve the following identified objectives:

1. Development of an analytical sizing approach for the sizing of both battery–based

and hydrogen–based Electric Vehicles (EV)s fueling stations.

2. Development of a probabilistic model to generate synthetic electric buses speed pro-

files using the basic information of the bus trip (i.e., trip time, distance, and stop

locations) traffic conditions, weather conditions, and the operation of Heat, Ventila-

tion and Air Conditioning (HVAC) systems. Using such model, PBT planners can

accurately assess the energy consumption characteristics of electric buses at different

operating conditions to plan for the electrification of the PBT system, when there is

a lack or unavailability of real–world and high resolution data.
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3. Development of an integrated model for power utility grid and PBT network, which

aims at optimizing the BEB system configuration for a PBT fleet: these being battery

capacity; chargers’ rated size; and number of chargers.

4. Development of an optimal scheduling algorithm for the integration of distributed

hydrogen fueling stations into the distribution power network.

5. Development of an optimal planning and scheduling model for the integration of a

centralized hydrogen production and storage facility into the transmission network.

1.3 Thesis Layout

Following this introduction, the remainder of this thesis is outlined as follows:

• Chapter 2: Provides critical literature survey on the integration of electrified transit

networks into power systems.

• Chapter 3: Presents novel analytical sizing models for the sizing of both battery–

based and hydrogen–based Electric Vehicle Fuel Station (EVFS).

• Chapter 4: Presents a novel and generic probabilistic model to calculate the EBEC

without the need for a high–resolution speed profile data. Roadway Level of Service

(LoS) is incorporated in the proposed model to simulate different traffic conditions.

Further, the operation of the HVAC is also incorporated in the model using the

thermal mass balance principle.

• Chapter 5: Presents a new mathematical formulation to model BEB fleet systems.

The model considers the operational requirements of PBT systems and the energy

consumption characteristics of BEBs. The proposed transit model is then integrated

with the power distribution system model to develop an integrated utility-transit
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problem formulation for the optimal design of BEB systems. The formulated opti-

mization problem aims at determining the optimal configuration parameters of BEB

fleet systems that include: the bus battery capacity, chargers rated power, and the

total number of installed chargers in the charging station.

• Chapter 6: Presents a novel model for optimal scheduling of privately owned hy-

drogen storage stations to both serve the transport sector and the electricity market

operator. The model mainly aims to (i) exploit the lower electricity market prices

to reduce the power purchase cost and (ii) contribute to the capacity-based demand

response program to further enhance the economic feasibility of the investment.

• Chapter 7: Demonstrates how LOHC–based hydrogen generation and storage plants

should be sized and operated for joint applications, in order to enhance the system

rate of return. In particular, a new model is proposed for optimal sizing and schedul-

ing of the LOHC–based generation and storage plants for concurrent services to both

the transportation sector and ancillary services market.

• Chapter 8: Presents the conclusion of this dissertation, identify the contributions

and draw directions for possible future work.
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Chapter 2

Literature Survey

2.1 Introduction

The population growth in many countries will bring about an increase in public and freight

transportation levels of demand in the near future [30, 38]. As such, it is expected that

transportation sector GHG emissions will rise to higher emission rates [30, 39]. This will in

turn necessitate the need of deploying innovative approaches that are capable of effectively

serving the growing transportation demand while addressing their environmental concerns

[30, 38, 39, 40, 41]. The proliferation of electrified transportation systems is envisioned as

a promising solution that could significantly contribute to the reduction of environmental

pollution [42]. In this regard, this chapter presents a brief background and literature survey

on the challenges that face the seamless adoption of electrified transport networks.

2.2 Adoption of personal BEVs

Several studies in the literature investigate the economic viability of integrating energy

storage systems with the personal BEV charging station. In [10], a study is carried out to

assess the economic viability of coupling energy storage with a fast charger unit. The study
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indicates that storage is effective in reducing the demand charge per annum, in addition to

relieving the pressure on the grid. The authors in [11] develop a model that would manage

the operation of a fast charging station coupled with Photo–Voltaic (PV) units in order to

minimize the OPEX, thereby maximizing the net profit.

The studies for optimal sizing of the battery–EVFS or hybrid vehicle components are

diverse in the literature. In [12], the authors propose a methodology to optimally size

storage systems used for a BEV charging station by utilizing a probabilistic approach to

estimate the vehicles demand. The study aims to minimize the CAPEX of the storage and

the purchased electricity from the utility. In [13], the authors propose a searched–based

optimization approach that would solve a nonlinear integer problem in order to optimally

size a fully–green charging system consisting of storage and a set of PV panels. The model

aims at minimizing the charging station CAPEX, while satisfying the BEVs demand. The

study in [23] is focused on a mixed integer linear programming model for determining the

optimal sizing and operational strategy of battery storage integrated with fast BEVs charg-

ing stations. The study in [43], presents a sizing solution for fast BEVs charging stations

is presented based on an explicit temporal SOC characterization of the BEVs charging

demand. The optimal number of chargers and waiting spaces in the charging stations are

determined by the model taking into consideration the cost–benefit performance of the

system. The authors in [44] develop a method to design the number of charging points

and size an energy storage system for fast BEVs charging stations. This is to alleviate the

need to upgrade the electricity grid infrastructures at the charging station location. The

work in [44] considers the acceptable waiting period of BEVs in order to come up with

designing the number of charging points.

In addition, several studies present optimal sizing and allocation of the battery-EVFS

or hybrid vehicle components in the literature. A bi–layer Pareto optimization approach is

proposed in [14], in order to size and allocate a BEV–based parking lot. The model seeks

to maximize the parking lot profit, while satisfying the distribution system constraints.
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In [15], the authors propose an embedded Monte Carlo simulation–based method with

the genetic algorithm to optimally size and allocate a plug–in hybrid EV charging station

connected to a distribution system. The work in [15] considers profit gained by the charg-

ing station through participation of the BEVs charging stations to the demand response

program. In [16], the authors evaluate the impact of demand response program on the

profitability of BEVs charging stations considering the effect of the stations on distribu-

tion system power losses. The model utilizes a particle swarm optimization algorithm to

size and allocate the BEVs charging station that would minimize the stations initial cost

and systems losses. A two–stage optimization model is given in [17] that would allocate

and size stand–alone BEVs charging stations on highways. The optimization model han-

dles the uncertainties of the traffic and solar irradiance using a probabilistic distribution

model. In [19], the authors present an optimization process for sizing and allocation of

BEVs charging stations aiming to minimize the integrated cost of charging stations and

consumers. Case studies are conducted to demonstrate how the method can reduce the

initial and operation costs of BEVs charging stations. The authors in [20] present a model

for sizing and allocation of various renewable–based Distributed Generation (DG) units,

BEVs charging stations, and storage devices within a power distribution system. They

have formulated their model as a second–order conic programming problem taking into

consideration the time-varying nature of DG generation and demand consumption. The

study in [21] is mainly focused on optimal sizing and allocation of BEVs fast–charging

stations contemplating the interactions between the transportation and power networks.

The model also considers the security operation constraints of the distribution network to

ensure that the limitations of the grid are met by the model. The authors in [22] present a

technique for optimal sizing and allocation of fast BEVs charging stations considering the

transportation and power grid losses.

In addition to the above–cited studies on the optimal sizing and allocation of renewable–

based battery–EVFS, some studies have focused on the planning of such stations, e.g., in
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[45, 46, 47], while some have proposed methods for optimal locating of these stations, e.g.,

in [48].

While several optimization–based sizing models are presented in the literature, analyt-

ical models for sizing of the electrified transportation infrastructure that do not require

sophisticated optimization toolboxes are missing from prior studies. An analytical sizing

model involves mathematical equations as functions of the optimal sizing and system’s

reliability constraints [49]. The main challenge to solve such analytical models would be

to estimate coefficients and unknown parameters of the analytical equations [50]. For in-

stance, the work in [49] proposes an analytical model to optimize the size of a standalone

PV system that satisfies the loads reliability, while minimizing the system’s cost. A multi–

objective analytical sizing model is proposed in [50] to size a PV system that would supply

a water pumping unit. The model in [50] aims to minimize the system’s life cycle cost

and the deficiencies related to the power supply. In [51], an analytical model is utilized to

design the sizing of a hybrid wind, PV, fuel cell, and a hydrogen energy storage system.

An analytical sizing approach for customer–side battery storage system is proposed in [52],

in order to reduce the customer’s electricity bills while considering the system’s benefits

and costs.

2.3 Battery-Based Electric Buses

In tandem with the research efforts to promote for the adoption of personal EVs, the

electrification of PBT networks has been considered as one of the most salient approaches

to reduce transit–related GHG emissions [24]. Bus fleets operate on fixed routes and

schedules, which facilitate the planning and operation of electric buses [27, 28]. In order

to compensate for the limited BEB driving range, three operation concepts have been

proposed: battery swapping, wireless charging, and on–board battery charging [27, 53].
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Battery swapping technique involves the use of a mechanical arm to replace the drained

battery packs of the BEB in few minutes [26]. Yet, the battery swapping concept has several

drawbacks with regard to the need of huge investment in infrastructure, standardization

of battery packs for interoperability and changeability, as well as battery degradation and

ownership [26, 27].

The wireless charging concept implies transferring energy from a power transmitter that

consists of an inverter and inductive track [53]. Where, the BEB charges on–road during

its motion over the inductive track. Nonetheless, wireless charging for BEBs requires extra

investment in the road infrastructure and design [25]. This is due to the need for sizing

and allocating the wireless charger structure according to the BEBs’ battery capacity and

charging requirements [25].

Based on the aforementioned reasons, the concept of on–board battery charging systems

is currently under wide investigation and development as a critical mean for the large–scale

adoption of electrified PBT fleets. In this regard, two types of BEB charging–based systems

have been proposed: overnight and opportunity. The main difference between the two types

is the trade–off in the BEB battery capacity i.e., driving range, and the required rated power

of chargers i.e., charging time [27, 28]. BEB systems that rely solely on overnight–charging

require chargers that have relatively smaller power ratings. In which, overnight BEB

chargers are installed at the bus depot/garage to provide a long time charging for a large

battery capacity, compared to opportunity–based BEB. Previous studies, however, showed

that overnight–charging BEB systems might require an increase in the BEB fleet size,

relative to the current diesel–based fleet, to maintain the predefined operation scheduling

of transit networks [28]. Opportunity–charging BEB systems, in contrast, utilize on–route

high–powered chargers to provide frequent and short time charging for BEBs equipped with

relatively smaller battery capacity. On–route charging systems utilize automated overhead

pantographic arms to charge the BEBs in the transit hub(s) (i.e., bus terminal(s)) or

along the transit routes [54, 55]. Several world–wide demonstration projects showed that
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on–route charging technologies are capable of sufficiently charging BEBs within 4–6 minutes

[54, 55].

2.3.1 Battery Electric Bus Modeling

Recently, modelling EBEC is being the subject of many publications. BEBs consume en-

ergy to provide motive power and to support its HVAC system, besides their auxiliary

systems [56]. A real-world EBEC depends on many factors such as bus type, speed profile

(speed of a vehicle versus time), passenger loading and alighting, driver, HVAC operation

and auxiliary power demands [56, 57]. Furthermore, EBEC can be affected by some ex-

ternal factors such as traffic congestion and time of traffic [57, 58]. With accurate EBEC

analysis and estimation under real–world traffic conditions, the advantages of BEBs can

be accurately quantified [58]. EBEC model describes the quantitative relationship between

the energy consumption rate for BEBs and their impact factors through analytic and/or

data–driven models [59]. Future driving conditions can be predicted based on histori-

cal driving data and online estimation methods for a given city route [60, 61]. As such,

without complete information about future driving cycles, the genuine EBEC can not be

guaranteed, thereby efficient planning for the BEBs infrastructure can not be attained

[62]. From another side, measuring high time-resolution speed profile data is difficult, if

not impractical for large bus fleets [62, 63].

A number of state–of–the–art approaches used a single average or median value to

determine the energy requirements of BEBs. Authors reported energy consumption rate

(kWh/km) in wide ranges. The reported kWh/km consumption rates are 1.24–2.48 for

BEBs [64], 1.7– 4.1 for length of 12 m BEB [65], 1.2–2.9 for length of 10 m BEB [65], 1.1–

2.2 with an average of 1.6 for single-decker buses [63], 1.6–3.2 with averages of 2.3 and 2.5

for double-decker and articulated buses respectively [63], 2.4–4.5 for double–decker BEBs

in intercity bus services [66], 0.8–1.2 for BEBs [56], 1.5 for BEBs [67], 1.8–3 for series plug-
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in hybrid buses with high-power energy Li-ion battery [68], 3.2–5 for series hybrid buses

with high-power energy Li-ion battery [68], 3–5.8 for parallel hybrid buses with high-power

energy Li-ion battery [68], and 3.5–7.8 for parallel hybrid buses with supercapacitor [68].

Estimating EBEC based on a single average value is inaccurate because it doesn’t reflect

the high variability of real–world situations [63, 67]. In addition, ignoring uncertainty of

EBEC and travel time may cause unnecessarily over-sizing of the BEBs’ system design; and

thus, leads to a sub–optimal or infeasible plan for BEB systems [63]. For these reasons, it

is paramount to develop a stochastic model for investigating how the uncertainty in speed

profiles data would affect the EBEC model and in consequence the optimal BEBs’ system

design.

Several studies in the literature investigate the factors that impact the EBEC. Ref. [69]

used grey relational analysis method to analyze various external factors that affect EBEC

such as travel date (i.e., working day or weekend), weather conditions (temperature, haze

or rain), length of travel path, vehicle HVAC, and vehicle running limit. These influencing

factors are converted into numerical values through fuzzy rules. Then, wavelet neural

network was used to train EBEC factors together with EBEC data to establish the EBEC

prediction model. The proposed EBEC model requires actual survey data which reflects

the multiple external influencing factors to be used for training the wavelet neural network

and to establish a similar day selection model. However, most transit companies do not

have these real operational data about BEBs. Authors in [25] proposed BEB system with

wireless power transfer technology, however, randomness in speed and uncertainty in energy

demand are not included. They assumed that: (i) BEBs follow predefined velocity profiles;

(ii) the energy demand between stations is known; (iii) BEB stops at every station; and

(iv) 3 kW of extra electrical load per hour is uniformly needed in the energy demand

evaluation for the air conditioner and radio. Refs. [61, 64, 66] used the vehicle longitudinal

dynamics equation to model BEB with real-world driving data for routes under study.

These standardized historical bus drive cycles do not reflect uncertainties of real-time
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traffic. For instance, they do not account for different traffic conditions and the HVAC

operation and consumption. Ref. [65] proposed an operating mode binning method to

assess on-road EBEC and well-to-wheel air pollutants emissions of BEBs based on second–

by–second real-world data. BEBs were tested during rush and non-rush hours and under

three fixed usage conditions: 1) empty load with 5-10% of bus capacity and AC off, 2)

half load with 40-45% of bus capacity and AC off, and 3) half load and AC on. Also, all

usage conditions were subjected to stop for approximately 1 minute at each bus station.

Based on real–world trolleybus measurements, the author in [57] quantitatively assessed

the parameters that impact EBEC to be used as a basis for training drivers and an element

of eco–driving assistance systems. Trolleybus is bound to a certain track based on presence

of an overhead electric wire. This difference compared to autonomous BEBs has impact

on its supply system and electrical equipment. Also, influence of traffic conditions and

congestion may be different.

Multiple decision analysis methods, correlation analysis, and linear regression were

applied to select the EBEC parameters. Ref. [63] presented a longitudinal dynamics

model to calculate EBEC using low-resolution data that can be collected from day-to-day

operations. They assumed that: 1) the required auxiliary power for air conditioning and

various auxiliary services is constant over the driving duration and the dwell time; 2) there

is at least one intermediate halt per trip and one more for each 5 km/h-step that the

average speed of the trip takes under 25 km/h; and 3) the acceleration is constant during

each part in the speed profile (acceleration, coasting, and deceleration). Ref. [56] proposed

a simplified model to simulate EBEC in different operating conditions using measured data

from existing bus lines. The required auxiliary power was assumed to be 6 kW in mild

weather conditions, 14 kW in cold or hot conditions, and 22 kW in extreme cold conditions.

The passengers load was assumed to be 50 passengers (3750 kg) in all simulations. In Ref.

[59], EBEC under real-world traffic congestion was decomposed based on both positive

kinetic energy and negative kinetic energy (regenerative braking). Then, a data-driven
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model was built to estimate EBEC on each route. In [62], a multi-objective stochastic

model predictive control was proposed for EBECs. The vehicle longitudinal dynamics

model was applied to simulate BEBs’ demand torque. Furthermore, the Markov-chain

based stochastic driver model was built to describe the demand torque in different speed

ranges. Tested driving cycles were too short, and cycles repeated several times. Thus,

those driving conditions are simpler than real-world driving cycles. Moreover, optimal

results depend on the weight value for multi-objective problem.

Ref. [70] evaluated EBEC using vehicle longitudinal dynamics model. Authors calcu-

lated EBEC based on the average bus speed and distance between stops. A 60% and 100%

of full bi–articulated high capacity bus occupancy (250 passengers) were considered during

regular and rush hours, respectively. Furthermore, the probability of stops at traffic lights

represented with a binomial distribution function. Bus stops are distributed each 500 to

600 m. The average slopes between stops are considered through a route elevation profile

computed from altitude data using intermediate points. In [71], the vehicle longitudinal

dynamics model was applied to calculate the required torque at the wheel for BEBs. A hier-

archical clustering algorithm was applied for driving cycles’ data clustering. Then, support

vector machine method was applied to predict current driving cycle. The upper and lower

thresholds for the road slope are assumed to be 3% and -3% respectively. Linear mapping

was applied as results contain more than 90% information of the variance in the data. In

[72], the vehicle longitudinal dynamics model was applied to calculate the required power

for EBECs. The required auxiliary power for air conditioning systems, pumps, lights, and

instruments assumed to be constant power of 6 kW. Authors in [73] proposed a predic-

tive air-conditioner control for EBECs with passenger amount variation forecast. They

assumed that each BEB always stops at each station for 30 second and drives between two

adjacent stations for 120 second; and thus, the stopping time and driving time’s impact

was ignored. The driving profile is assumed to follow a fixed driving pattern between all

bus stops. However, real–life driving conditions are more complicated. Ref. [74] proposed
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a segment-based method for generating large numbers of varying synthetic driving cycles

and passenger numbers for a specific bus route. The uncertainties due to weather condition

variations and heater power were not included in the simulation model. Moreover, traffic-

related stops were not included to avoid excessively short segments, and the simulation

model is validated only for a specific ambient temperature.

In [67] a model to optimize charging infrastructure for BEBs in urban context is pre-

sented. The presented model did not include road elevation and it was assumed that

any increases of energy consumption due to uphill direction will be compensated by the

downhill direction of the route. Also, 1.5 kWh/km was applied as an average value for

the energy consumption rate. Ref. [4] explored a charging infrastructure for electric road

freight operations including auxiliary services for Electric Bus (EB)s. The average energy

consumption rate was calculated at 1.7 kWh/km. Authors assumed that vehicles are 50%

loaded with an overall mass of 2.8 ton. Also, a 2 kW constant load was assumed to model

the drawn power from the refrigeration unit.

2.3.2 BEB Integration into the Power Distribution System

The lack of modeling tools, standardization, and real–life experience of BEB systems along

with the availability of different configurations i.e., on–board battery packs and charging

technologies, have created a new transportation–energy matrix, which is incomprehensible

to transit and power utility stakeholders [30]. On one hand, transit agencies have a near

complete lack of knowledge for the operation of BEB systems and interaction with power

utilities [30]. Further, PBT operators have rigid bus schedules and operational logistics that

must be maintained when BEB systems are implemented. In this regard, previous works

investigated the relation between the charger’s capacity and the charging queuing time of

buses and its subsequent impact on the transit operation schedule. In [70], the authors

highlighted the need to increase the BEBs dwelling time at the bus stops to sufficiently
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charge the BEBs, thereby avoiding the need to integrate additional bus stops to charge

the BEBs on-route. The authors in [75] reveal that the queuing time of charging might

cause a decrease in the transit service frequency and/or increase in the trip time. However,

increasing the dwelling time, adding extra bus stops and decreasing the service frequency

challenge the predefined transit operational scheduling [70, 75]. In contrast, the work in

[76] shows that adopting appropriate charging strategy can maintain the transit schedule

requirements. On the other hand, power utilities have concerns regarding the negative

impacts of adopting the electrified transit fleet systems on power grids. The charging

schedules of the BEBs might impact the stability and losses of the power grid [53]. The

authors in [28] showed that BEBs opportunity–charging creates serious voltage regulation

challenges in power distribution systems. In order to mitigate a similar issue imposed

by personal BEVs on the Power Distribution System (PDS), authors in [77] proposed a

coordinated charging mechanism for BEVs according to the PDS condition. Also, in [78]

an optimization approach is presented to optimally charge the BEVs, in such a way as to

not violate the PDS operational constraints. However, flexible charging coordination of

BEBs is not a viable solution, due to the transit rigid operational requirements that are

defined by the transit schedules.

Few attempts were recently carried out in literature to provide seamless adoption of

BEB systems. The authors in [79] proposed a charging schedule based on minimizing the

operational charging cost. However, the BEBs system’ configuration was predefined. Also,

a fixed charging time window was assumed i.e., it was not optimally allocated. Moreover,

the deadhead travel of the BEBs toward the charging station located at the transit depot

was neglected. In [80], a scenario–based BEB transit operation scheduling was developed

for routing network design and fleet planning; however the transit operational requirements

i.e., defined schedule and routes, were not maintained. In [81], a new configuration design

algorithm was developed to minimize the construction cost of BEB transit systems. The

developed algorithm in [81] assumed that the number of chargers is equal to the number of
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BEBs. Optimal wireless charging schedule for BEBs that considers the day–ahead electric-

ity market is proposed in [53], that aims to minimize the charging operation cost. In [27],

the authors proposed a mixed integer linear algorithm to design the BEBs charging sta-

tions for different transit networks for a predefined capacity of the bus battery packs. The

work in [82] proposed an operational energy management model to design and coordinate

the operation of an energy storage system, which aims to minimize the BEBs operation

charging cost.

2.4 State of the Art in the Adoption of Fuel Cell Elec-

tric Vehicles

FCEV powertrain is introduced as a promising technology to reduce the GHG emissions as-

sociated with the conventional ICE vehicles [31]. Compared to battery–based EVs, FCEVs

are known for their higher mileage range, faster refueling rate, and the absence of energy

storage degradation issues [31]. However, the limited existence of hydrogen infrastruc-

ture: production; storage; and transportation; impedes the investment and deployment of

FCEVs technologies [27].

Hydrogen gas, the FCEV feedstock, needs to be produced and made available to the

transportation sector [32]. Hydrogen can be produced using an electrolyzer, known as the

PtH technology, whereby electricity is utilized to diffuse water into hydrogen and oxygen

[32]. Steam Methane Reformer (SMR) is another means that can also lead to hydrogen

production by utilizing natural gas (i.e., methane). In such a technology, methane gas can

be accessed from renewable biogas resources, e.g., landfills, agricultural residues, waste,

etc. The generated hydrogen from PtH and/or SMR can be stored in the form of liquid or

gas in a reservoir for later use. Hydrogen can then be converted back into electricity and

supplied to the power grid using a fuel cell, or it can be directly sold to the transportation
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sector (i.e., to supply FCEVs) [33]. It should be noted that hydrogen can be generated

either centrally in large scale and then be transported to hydrogen fueling stations, or

produced on site (i.e., at hydrogen fueling stations). Despite the fact that mass production

at central hydrogen generation plants is more economical, the transportation cost of the

hydrogen to the consumption areas could escalate the overall cost. For this reason, it has

been argued that the production of hydrogen should take place within the fueling station

facility in order to alleviate the transportation cost and increase the reliability of hydrogen

availability [34, 35].

Electrolysis process to generate renewable hydrogen is a mature technology since the

early of the 20th century [83]. Since then, world–wide large electrolyzer plants have been

built close to the hydro power stations to utilize low electricity prices during off–peak pe-

riods [83]. There are three types of electrloyzer technologies known as alkaline, polymer

electrolyte membrane, and solid oxide. Both the alkaline and polymer electrolyte mem-

brane electrolyzers are currently commercially available, however solid oxide electrolyzers

are still under research and development stage [83]. Alkaline electrolyzer are developed

in the early of the 20th century, where in 1902 there was above 400 of operated alkaline

electrolyzers around the world [83]. The alkaline electrolyzers are known of their high

operation efficiency for large plants with high hydrogen production rates. According to

the literature, the deployment of hydrogen fueling stations has increased over the past

few years. In 2013, there were 224 hydrogen stations around the world, 37 of which had

on–site electrolyzers [84]. Ever since, more hydrogen stations have been deployed around

the world. Currently, there are 62 hydrogen fuel stations in the US, 30 of which have been

deployed in California between 2015 and 2017 [35].
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2.4.1 Distributed Hydrogen Generation

The implementation of distributed hydrogen fueling stations has attracted the attention

of industry sectors [36], though such stations have not been completely materialized yet.

This is mainly due to the following reasons: (i) the development of the FCEVs is currently

at the demonstration/commissioning stage [37]; and (ii) there is a gap between the present

rate of return and the expected profit from the investment in such stations [35].

Deployment of hydrogen fueling stations over the transportation network is required

for the success of the FCEVs. However, the economic viability of such stations needs to be

justified in order for them to be proliferated. The main role of hydrogen stations would be

to generate hydrogen, store it, and sell it to the vehicles as fuel. Single purpose utilization

of such stations, however, may not justify their intensive capital investment [35]; but rather,

they should be utilized for multiple purposes at the same time so that they could generate

revenue from multiple sources. This would, in turn, necessitate the development of new

models in order to optimize the scheduling of distributed hydrogen stations for multiple

purposes concurrently.

Several studies in the literature focus on the application of hydrogen storage units inte-

grated with the electric grid. In [85], the authors perform an optimal sizing for a hydrogen

storage system that utilizes the curtailed wind generation for hydrogen production. A

fuzzy–based real–time power management mechanism for a hybrid system including fuel

cell, electrolyzer, and hydrogen storage is presented in [86]. A hydrogen–based stand–alone

system for rural communities is proposed in [32], where the hydrogen is used to maximize

the penetration of renewable power and to perform active/reactive power management.

In [87], a local energy market for hydrogen–based hybrid power systems is proposed to

reduce the peak demand, and to eliminate the power mismatch between renewable gener-

ation and the demand. An operational algorithm for an integrated wind generation and

hydrogen storage unit is proposed in [88], where the algorithm aims to exploit the arbitrage

21



opportunities through a day–ahead contracted power trading mechanism with the power

grid. The authors in [89] perform an economic feasibility study for a hydrogen storage

system embedded with the power grid. The outcomes of the study highlight that stor-

ing electricity in the form of hydrogen for later electricity generation is not economical,

unless hydrogen is sold to the hydrogen market (i.e., supplying FCEVs), or for ancillary

services to the grid such as voltage and frequency regulations. In [34], the authors develop

a model to schedule the hydrogen production for hydrogen fueling stations, which aim to

meet the hydrogen demand and minimize the generation cost. A techno–economic study

is evaluated in [90] for central hydrogen production plant integrated with wind and PV

units. An energy management system for hydrogen–based microgrids is presented in [91],

where hydrogen energy is exploited to alleviate the mismatch between the power demand

and generation. An optimal sizing method for hybrid microgrids and storage systems is

proposed in [92] that includes a mix of renewable generation as well as battery and hydro-

gen storage unit. This is to investigate the optimal mix between various energy storage

systems that would ensure the system reliability and resilience. It is pointed out that

hydrogen storage can be economically justified when it is used to maximize the renewable

energy integration. An energy management system based on fuzzy logic is proposed in

[93] to optimize the operating cost for a standalone hybrid microgrid which hosts a mix of

renewable sources, battery storage, and hydrogen storage. In [94], the authors present an

optimization–based algorithm to size a hydrogen generation hub consisting of electrolyzers

and interconnected wind turbines. Supervisory–based controllers for distributed hydrogen

fueling stations using on–site electrolyzer is developed in [6]. The supervisory controller

aims to optimally schedule the electrolyzers and determine the hydrogen fuel prices, while

allowing the participation of the stations to the DR program.

Numerous studies are conducted in prior research works, as cited above, to facilitate

the utilization of hydrogen storage for multiple applications; yet, the economic features of

the hydrogen storage units for multiple applications from the private investor’s perspective
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is not adequately investigated in the literature.

Previous studies on the green transportation technologies mainly identify the BEVs as

the most viable option to replace ICE–based vehicles. For instance, the authors in [95]

propose an on–line pricing scheme to provide a fixed profit for the BEVs charging stations,

based on the energy and the time window at which BEVs charge. In [96], a safeguard

profit constraint is considered in a dynamic pricing algorithm for BEVs charging stations

in the presence of renewable generation and battery storage. The model is operated in

the wholesale electricity market and aims to achieve a certain level of guaranteed profit

via the profitability constraints, where the authors present a multi–objective optimization

framework for BEV charging that would determine the charging prices and the amount of

energy to be purchased from the real–time market. The authors in [97] develop a real–time

algorithm to maximize the profit of fast charging stations equipped with energy storage

and renewable generation units, where the algorithm considers providing reserve regulation

services to the grid. The algorithm aims to control the energy and reserve prices for BEVs

so that BEVs can determine their charging setpoints and reserve strategies accordingly.

Similarly, a multi–stage optimization–based algorithm is proposed in [98] for BEVs charging

stations equipped with battery storage and renewable generation units, where the model

updates the BEVs charging prices and setpoints on an hourly basis for maximizing the

profit. In [99], the optimal pricing for BEVs in a competitive market is proposed, so that

each station can have its own price as a function of the electricity market data. The authors

in [100, 101] consider the BEVs charging facilities as flexible resources for DR programs to

maximize the revenue.

2.4.2 Centralized Hydrogen Generation

Hydrogen–based transportation technologies are among the most promising solutions that

could contribute significantly to the mitigation of the environmental issues by replacing

23



the fossil–fueled vehicles. For this reason, research on hydrogen generation, storage, and

transportation has been widely devoted. Besides, the LOHC technology is now offering a

reliable and safe solution for hydrogen storage and transportation. The LOHC technology

allows hydrogen storage in a dense liquid medium using a catalytic hydrogenation reaction.

Thus, the need for high pressure and super insulated reservoirs for hydrogen storage and

transportation is eliminated [102]. This would also reduce the high transportation cost

associated with the transportation of the low density hydrogen gas. The superiority of the

LOHC technology is not limited to its high energy density, but also lies in its seamless

integration with the current fossil fuel logistics and supply chain [103]. Given that LOHC

can be transported and stored using the existing infrastructures, the initial expenditure

for diffusion of the LOHC–based fueling stations can be decreased considerably [104].

Several works in the literature investigate the implication of LOHC technologies as cited

and discussed below. An economic study for the supply chain of various hydrogen storage

technologies is carried out in [104]. The results indicate that the LOHC technology offers

an economic solution to store massive amounts of hydrogen. In [90] a techno–economic

study for LOHC–based storage systems is investigated. The study found that storage

systems are economically viable when the majority of the energy is provided from on–site

renewable sources. The study further shows that the LOHC technology is an economically

viable solution for storage when compared to alternative approaches [90]. The work in

[102] highlights the ability of the LOHC–based hydrogen storage systems to dynamically

respond to the variation of power demand. The study investigates how a dehydrogenation

unit can effectively and reliably release the hydrogen gas that would feed a fuel cell unit,

in order to dynamically supply variable loads. The authors in [105] develop an integrated

LOHC storage and combined heat and power system. The study uses the integrated system

to maximize the self–sufficiency of heat and electrical demand/generation and to improve

the efficiency of the system.
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2.5 Research Gaps in Electrified Transport Systems

Firstly, the deployment of EVFSs as the critical infrastructure is a prerequisite for the

successful proliferation of FCEVs and BEVs. In such a case, it is imperative that these

stations are properly sized to minimize the CAPEX and maximize the operating profit of

the stations. This would, in turn, promote private investments in this sector. To that

end, private investors are in need to have accessible analytical tools for the estimation of

the ratings of the EVFSs and the rate of return depending on the electricity market and

transportation demand in which the station is operated. Although, several optimization–

based sizing models are presented in the literature, analytical sizing models for electrified

trans portion fueling infrastructures are missing from prior studies. An analytical sizing

model compromises a set of mathematical equations as functions of the optimal sizing

and system’s reliability constraints [49]. The main challenge to solve such analytical mod-

els would be the estimation of the unknown parameters and coefficients of the derived

analytical equations [50].

Secondly, with respect to the EBEC estimation, most state-of-the-art methods have one

or more of the following limitations: 1) require high time-resolution speed profiles which

are difficult to obtain due to lack of operational data and high associated costs; 2) do not

consider complexity and variations of extensive real-world operational conditions; and 3)

depend on typical driving cycles and do not consider randomness in speed and uncertainty

in energy demand. In order to overcome the aforementioned issues, this thesis proposes a

practical alternative to calculate EBEC without the need for a high time-resolution speed

profile data, while still considering the operational details of transportation networks.

Thirdly, while several ongoing demonstration and pilot projects around the world will

provide the real–life data and experience, exploring the wide adoption of different BEB

fleet sizes requires appropriate modeling and design tools. Previous attempts in the design

of BEB systems share a common shortfall to: (i) develop a mathematical model for elec-
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trified PBT fleets; (ii) incorporate accurate modeling for the energy consumption of BEBs

taking into account the route topology, weather conditions, and traffic flow; (iii) consider

the operational requirements of power distribution networks; and (iv) define the optimal

configuration of both bus battery packs and chargers. As a result, transit agencies and

power utilities face substantial technological and operational obstacles in integrating off–

the–shelf BEB systems and thus research and development efforts are required to explore

their challenges and mitigation techniques

Fourthly, prior studies in the literature do not adequately address the techno–economic

aspects of a model for joint scheduling of distributed hydrogen fueling stations across the

transportation network. As such, the opportunity for these stations to provide distributed

ancillary services to the grid is not contemplated and studied in previous studies. In

addition, there is a need for exploring various strategies that could promote the deployment

of hydrogen fueling stations which is missing from the literature. Such strategies should

aim to utilize the full benefit for the stations in order to magnify the overall profit of the

investment.

Fifthly, the above–cited studies on the LOHC–based storage systems share common

shortfalls for not considering: (i) integration of the LOHC system with the power grid,

(ii) optimal sizing and scheduling to meet the transportation sector demand, and (iii) the

opportunities for participation in the ancillary services market. Hence, the LOHC–based

generation and storage plants should be sized and operated for joint applications in order

to enhance the system rate of return.
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Chapter 3

Analytical Size Estimation for

Electrified Transportation Fueling

Infrastructures

3.1 Introduction

The analytical models for size estimation of electrified transportation infrastructures are

missing from prior studies in the literature. Such models would be required to promote

the proliferation of electrified transportation around the globe. Such analytical models

do not require any optimization solver [49]; thus, they can be developed at the backend

of globally accessible website or software applications (e.g. available online financial and

investment estimators), where the input data from everywhere around the globe is given

to the model, and various sizing parameters related to each location are returned to the

user as shown in Fig. 3.1. As shown in the figure, a platform could be publicly deployed

for size estimation of EVFSs. The optimal size of the EVFSs has to be determined based

on the location at which such stations are to be deployed. Accordingly, the public–domain

input data of that location should be adopted for size estimation. As shown in Fig. 3.1,
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Figure 3.1: Globally accessible platform for size estimation of fueling stations.

the input data including market prices and transportation demand from around the globe

can be given to the size estimation model, where a user interfaces with the model via

websites, desktop software, or mobile applications. Accordingly, the size is estimated,

and the estimation results are returned to the user for the location from which the input

data are adopted. The output of the size estimation model would include the ratings of

the EVFS’s production and storage units, in addition to the calculated cost and profit.

Such analytical sizing models can readily be implemented in a user friendly web–based

environment, which does not have computational complexity.

To fill the gap between the existing and an analytical sizing approach, this research

work presents a new formulation that can be utilized for sizing of both the battery–based

and hydrogen–based EVFSs. In particular, the main contributions of this work are listed

as:

1. The mathematical formulation for sizing of various components of an EVFS using

public–domain data is presented. The proposed model aims to minimize the stations

CAPEX while maximizing the net profit resulted from arbitrage opportunities in

the electricity market and fuel sale to the transportation sector. The ratings of

various components are expressed in terms of operation percentage using the proposed
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formulation, and the desired ratings are selected at which the net profit reaches to

the maximum point.

2. The models are developed such that they suit both the BEVs and FCEVs charging

stations. Thus, the estimated parameters for both types of stations are returned with

one set of input parameters from the user. This would allow the user to comparatively

observe the size, cost, and profit quantities associated with both types of electrified

transportation infrastructures.

3. The proposed models are developed in such a way that they do not require any

optimization solver. As such, they can be developed at the backend of globally

accessible platforms or software applications, where the input data from around the

globe is given to the model, and various sizing parameters related to each location

are returned to the user.

Historical operating data from real–world systems are utilized for numerical evaluation

of the proposed formulation. The estimation error of the proposed model is analyzed in

order to demonstrate the accuracy and efficacy of the proposed estimation methods.

3.2 Problem Description and Hypothesis

Deployment of EVFSs as the critical infrastructure is a prerequisite for the successful

proliferation of FCEVs and BEVs. In such a case, it is imperative that these stations are

properly sized to minimize the CAPEX and maximize the operating profit of the stations.

This would, in turn, promote private investments in this sector. To that end, private

investors are in need to have accessible analytical tools for the estimation of the ratings of

the EVFSs and the rate of return depending on the electricity market and transportation

demand in which the station is operated. Accordingly, this chapter aims to present a new
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Figure 3.2: Schematic diagram for the main components of FCEVs fueling station.

analytical approach that would lead to the mathematical modeling for sizing of various

components of a BEVs and hydrogen–based fueling stations using public–domain historical

demand and market data local to the fueling station.

Fig. 3.2 shows a schematic diagram of an on–site hydrogen generation unit in a hy-

drogen fueling station. As shown in the figure, the electrolyzer that is used for hydrogen

generation is coupled with the AC–grid through an AC–DC converter. The electrolyzer

utilizes direct current to diffuse water molecules into the hydrogen and oxygen. Equation

(3.1) below expresses the steady–state hydrogen generation quantity in terms of the input

power to the electrolyzer [6]:

FElz = PElz · λElz · ηElz, (3.1)

where, PElz and FElz represent the electrolyzer input power (MW) and hydrogen outflow

(m3/h); λElz is the power to hydrogen conversion rate (m3/MWh); and ηElz is the elec-

trolyzer efficiency in percentage. The electrolyzer can be integrated with renewable energy

sources such as rooftop PV units across the fueling station. The produced hydrogen should

be stored in a hydrogen storage unit that would supply energy to the FCEVs. In such a

case, the following components are required to be sized in a hydrogen fueling station: the

AC–DC converter, electrolyzer, and hydrogen storage. Without loss of generality, the PV

panel is sized in this work based on the rooftop footprint at the station location.

Fig. 3.3, on the other hand, represents a schematic diagram for a BEVs fueling station.
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Figure 3.3: Schematic diagram for the main components of BEVs fueling station.

As shown in the figure, the station is composed of the following components that are to

be sized: AC–DC converter and optional combined battery energy storage and on–site

rooftop PV panels for local energy storage and generation. Here it is worth noting that

BEV chargers can be energized directly from the AC grid directly and/or through the

battery energy storage unit.

In what follows, the proposed sizing formulation is given, where each component of the

fueling station is represented as a unit i that supplies the demand Di(t). The relationship

between the unit’s demand (i.e., output) and the input power is determined based on the

unit’s efficiency ηi and conversion factor λi.

3.3 Proposed Sizing Methodologies

This work proposes a new analytical estimation–based sizing approach for EVFSs. In par-

ticular, this section aims to size BEVs and FCEVs fueling stations that purchase power

from the market and are equipped with optional on–site generation units. Where, the

EVFSs are assumed in this work to deal with the wholesale electricity market and expe-

rience real-time pricing. Fig. 3.4 shows the process flow for size estimation of various

components of EVFSs using the proposed model. As shown in the figure, the historical

FCEVs/BEVs demand and electricity prices are input to the sizing estimator. Such data

are location specific; i.e., they should be provided from the location at which the EVFSs

are to be set up. The mathematical formulation for various components of the EVFSs is
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Figure 3.4: Proposed model for size estimation of various components of FCEVs and
BEVs fueling stations using public–domain market data.

extracted based on the operation percentage. Accordingly, the component ratings, cost,

and profit quantities are estimated using the given inputs. The final output would be the

facility ratings, operating cost, CAPEX, and net profit; the net profit is computed con-

sidering the generated revenue while the operating cost and CAPEX values are deducted.

The sizing of various components are decided that would maximize the system net profit.

It is worth noting that the following assumptions are made in development of the

proposed model:

• The EVs demand data used for numerical studies are assumed to be forecasted [44].

In particular, such data represent the predicted probability for the EVs arrival across

the day and throughout the week, in addition to the average demand over the months

in one year [44].

• Historical electricity prices are inputted to the model. The model, then, assesses

the probability of the production unit operation at the hours corresponding to the

historical low electricity price instances.

• The EVFS is assumed to be owned and operated by a private investor in a competitive

market environment. As a private asset, the EVFS is not subject to financial penalties

for any unsatisfied demand although losing potential customers can adversely impact

the service quality. Hence, the financial penalties for unsatisfied demand are not

incorporated in this study.
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• The proposed analytical sizing model in this work does not deal with the scheduling

of individual EV demands, but rather it aims to size the EVFS components and stor-

age plants that would supply the aggregated EVs demand. In the sizing application,

the aggregated consumption pattern of EVs demand follows a rather predictable pat-

tern with lower uncertainties [106]; this is contrary to the consumption pattern of

individual vehicles which is associated with higher forecast inaccuracies. Hence, it is

assumed that the forecasted EVs demand is accompanied with negligible uncertain-

ties.

In the next sections, the proposed formulation for the analytical size estimation is given.

3.3.1 Modeling of Data Input

3.3.1.1 Demand Estimation Model

The EVFS demand, Di(t), is essentially a periodic signal with respect to the time of the

day, week, and month [107, 108]. Due to the periodic nature of the demand, it can be

modeled using Fourier series function, as follows:

Di(t) = a0 +
n=N∑
n=1

(
anCos(ωnt) + bnSin(ωnt)

)
∀ i ∈ I, (3.2)

where ao, an, and bn are unknown coefficients that need to be estimated; I states the

set of EVFS components; it is worth noting that the demand here refers to the power

consumption by converter, storage, and electrolyzer (in case of hydrogen fueling stations).

It is noteworthy that the estimated demand is not associated with uncertainties since

actual historical data are utilized rather than forecast parameters. In (3.2) ωn represents

the periodic frequency of the demand signal as follows:

ωn = 2πhnf ∀n ∈ {1, 2, 3, · · · , N}; (3.3)
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equation (3.3) indicates the demand as a function of the frequency component hn with the

fundamental frequency of f . Here it is worth noting that the number N – the order of

the frequency components – are determined based on the analysis of the historical demand

data. Equation (3.2) can be expanded as follows:

Di(t) = a0 +
(
a1Cos(ω1t) + a2Cos(ω2t) + · · ·+ aNCos(ωN t)

)
+
(
b1Sin(ω1t) + b2Sin(ω2t) + · · ·+ bNSin(ωN t)

)
∀ i ∈ I; (3.4)

equation (3.4) can be expressed in the matrix form as:

Di(t) =
[
a0 a1 . . . aN b1 . . . bN

]



1

Cos(ω1t)
...

Cos(ωN t)

Sin(ω1t)
...

Sin(ωN t)


∀ i ∈ I. (3.5)

In order to determine the unknown coefficients in (3.5), the least error square (LES)

technique is utilized. Where (3.5) can be stated in the matrix form as given in the following:

ΩK = D(t) + ed; (3.6)

where (3.6) is expanded to the following using simple conversion techniques [109]:

ΩtrKtrKΩ− 2 ΩtrKtrD(t) +D(t)trD(t) = etrd ed; (3.7)

the unknown matrix in (3.7) is stated by Ω to be determined towards minimizing the error
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ed. Accordingly, the derivation of (3.7) versus Ω is extracted that would result in:

2KtrKΩ− 2KtrD(t) = 0, (3.8)

where Ω can be expressed as follows:

Ω =
[
[KtrK]−1Ktr

]
D(t). (3.9)

3.3.1.2 Price Estimation Model

Electricity prices are volatile in the electricity market as set by the independent electricity

system operator. Therefore, the average cost of the electricity purchased by an EVFS

varies based on the EVFS operation hours across the year and can be given as follow:

E(ρ) =

∑
t∈T

{
min
h

(
EPrc

t

)}
ρ · hAnn

∀h = ρ · hAnn (3.10)

where h is the product of the percentage of annual operation, ρ, and the annual hours hAnn

i.e., 8760 hours. The average value of the electricity prices in this work implies calculating

the average of the minimum electricity prices across the year for a given operation hour

percentage per annum. In this regard, lower operation percentage enables the EVFS to

exploit the lower electricity prices in the market, and thus the average cost for the power

purchase goes lower. On the other hand, higher operation percentage across the year leads

to an increase in the average cost for the purchased electricity. Thus, the relationship

between the average electricity purchase cost, E, and the annual percentage of operation,

ρ, can be modeled as a polynomial function:

E(ρ) =

j=n∑
j=0

νj · ρj ∀ j ∈ J, (3.11)
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where νj states a set of unknown parameters in (3.11) that is to be estimated using the

historical values of electricity prices and operation percentage, as follows:

E(ρ) =
[
ν0 ν1 . . . νn

]


1 1 . . . 1

ρ1 ρ2 . . . ρj
...

ρn1 ρ
n
2 . . . ρ

n
j

 , (3.12)

In order to determine the unknown parameters in (3.12), the LES technique is utilized.

Where (3.12) can be stated in the matrix form as given in (3.13):

Ψρe = E(ρ) + ee; (3.13)

similar to the LES method demonstrated in (3.6)–(3.9), Ψ can be expressed as follows:

Ψ =
[
[ρtr

e ρe]−1 ρtr
e

]
E(ρ). (3.14)

After estimating the demand and electricity prices, the model aims to determine the

net profit, NP , of such stations, as formulated in the following:

NP (ρ) =
∑
t∈T

Rt −O(ρ)− C(ρ)/LS +
∑
t∈T

PRE
t · EPrc,F it, (3.15)

where, LS denotes the lifespan of the fueling station. Equation (3.15) expresses the EVFS

profit as a function of the station annual operation hour ρ, where the station operating

cost O(ρ) and the annualized CAPEX C(ρ)/LS are deducted from the gross revenue. The

parameters PRE
t and EPrc,F it represent the renewable power generation and the sale price

associate with it. In (3.15), the station revenue Rt is calculated as the product of the
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demand Di(t) and the fuel price V Prc as stated in the following:

Rt =
∑
t∈T

Di(t) · V Prc. (3.16)

In order to compute the net profit as formulated above, the station CAPEX and oper-

ating cost are to be estimated as described below.

3.3.2 CAPEX Estimation

The CAPEX of an EVFS system consists of the following costs: the converter cost (κi),

storage cost (κSto), energy dispenser cost (κED), and the cost related to the implementation

of the on–site renewable generation unit (κr,RE). The size of each component as mentioned

above is estimated in the below sections that would minimize the total CAPEX. After

sizing each component, the cost of the component is computed considering the $ value per

unit of the component size. The CAPEX is then calculated by adding up the cost of each

component.

3.3.2.1 Converter Unit

In general, the higher the percentage of operation (i.e., ρ) is, the smaller the size of the

converter unit needs to be. This is because the same amount of demand can be met with a

smaller converter once a longer generation time is utilized. Thereby, the size of the station

converter unit varies as a multiplicative inverse function with respect to ρ, as stated below.

The validity of this function is later confirmed in Section 3.4.

Si(ρ) =

∑
t∈T Di(t)

ρ · hAnn · ηi · λi
∀ i ∈ I, (3.17)
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where hAnn represents the annual hours (i.e., 8760 hours), i refers to the station’s converter

and electrolyzer in case of hydrogen fueling stations; while it refers to the station’s converter

in case of BEVs fueling station. Equation (3.17) states that the sizing of any unit within the

station depends on the demand, the operation hours, efficiency, and the energy conversion

factor.

3.3.2.2 Energy Storage Unit

The energy storage unit is represented by the SOC equation in (3.18) indicating the energy

balance at each time step t as a function of the storage input energy (ηChg · Si · λi · ηi · ϑt),

demand Di(t), and the dissipation rate γDsp · SOCt.

SOCt+1 = SOCt +
(
ηChg · Si(ρ) · λi · ηi · ϑt(ρ)

−Di(t)

ηDhg
− γDsp · SOCt

)
·∆t ∀ t ∈ T ∧ ∀ i ∈ I; (3.18)

as stated in (3.18), the storage input energy is the product of unit i capacity Si, the unit

efficiency ηi, conversion factor λi, and the operation probability ϑt. Where, ηChg and

ηDsp denotes the charging and discharging efficiency, respectively; and γDsp represents the

storage dissipation rate. The EVFS storage aims to satisfy the demand of the vehicles at

any time instant. Besides, exploiting the lower electricity price for fuel provision, known

as the arbitrage, is aimed by the storage unit.

Equation (3.19) expresses the probability of the production unit operation, ϑt(ρ), at

each hour based on the historical data of the electricity prices.

ϑt(ρ) =

∑
t∈T Λt,a

Na

∀ a ∈ A, (3.19)

where (3.19) shows the total operation hours over the number of years, Na, of historical
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data. Accordingly, the station operation state is given in (3.20) at each time step t:

Λt,a =

1 ∀EPrc
t,a ≤ EBE

a (ρ)

0 ∀EPrc
t,a > EBE

a (ρ)
∀ t ∈ T ∧ ∀ a ∈ A, (3.20)

where, EBE
a (ρ) = max

{
min
h

(
EPrc

t,a

)}
∀t ∈ T ∧ ∀a ∈ A ∧ ∀h = ρ · hAnn. (3.21)

As stated in (3.20), the station operates (i.e., Λt,a = 1) when the market price is below

the break–even price (i.e., EBE
a (ρ)) to ensure the system profitability; and it does not

operate (i.e., Λt,a= 0) when the market price is above the break–even value. The break–

even price is defined in (3.21) where h is the product of the desired utilization factor of

the station ρ, and the annual hours hAnn. Accordingly, the size of the storage device is

defined as the product of the storage utilization and the difference between the maximum

and minimum SOC over the annual time horizon.

SOCmax =
1

µSOC
·
(

max{SOCt}−min{SOCt}
)
∀ t ∈ T ∧ ∀µSOC = SOCub− SOC lb,(3.22)

where SOCub and SOC lb state the allowable upper and lower bounds of stored energy in

the storage device.

3.3.2.3 Energy Dispenser Units

Based on the predicated EVs demand, one of the sizing parameters of EVFSs that would be

calculated by the proposed sizing model is the number of energy dispensers. In particular,

these represent the number of charging points and hydrogen dispenser hoses for BEVs and

FCEVs fueling stations, respectively. The number of energy dispenser would be calculated

to satisfy the maximum hourly arrivals of EVs across the year as follows:

NED = max{NEV,Wek · P(DWek)} × max{P(DDay)} · T Fil,Avg, (3.23)
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where P(DWek) and P(DDay) represent the EVs arrival probability per week and day,

respectively; NED and T Fil,Avg denote the number of required energy dispensers by an

EVFS and the average refueling rate of EVs, respectively; and NEV,Wek indicates the

number of served EVs per week.

After the determination of the various components, the CAPEX equation is given as:

C(ρ) = κSto · SOCmax +
∑
i∈I

κi ·
∑

t∈T Di(t)

ρ · hAnn · ηi · λi
+NED · κED +

∑
r∈R

κr,RE · Sr,RE (3.24)

where κr,RE and Sr,RE represent the CAPEX and the rated power of the renewable unit r,

respectively; and κED represents the energy dispenser CAPEX.

3.3.3 Operating Cost Estimation

The operating cost of the station is defined as the operation and maintenance cost of each

unit within the station and the cost for electricity purchase from the market, as follows:

O(ρ)=ρ · hAnn ·
∑
i∈I

(
OCi+E(ρ)

)
· Si(ρ)−

∑
r∈R

Sr,RE ·
(
EPrc

t,a −OCr,RE

)
∀ t∈T ∧ ∀ a∈A,(3.25)

where OCi denotes the operation cost of unit i, and OCr,RE denotes the operation cost of

renewable unit r. Having the CAPEX and operating cost terms estimated, the net profit

can be determined using (3.26).

NP (ρ) =
∑
t∈T

Di,t(t) · V Prc − ρ · hAnn ·
∑
i∈I

(
OCi + E(ρ)

)
·
∑

t∈T Di(t)

ρ · hAnn · ηi · λi

− 1

LS
·
(
κSto · SOCmax +

∑
i∈I

κi ·
∑

t∈T Di,t(t)

ρ · hAnn · ηi · λi
+NED · κED +

∑
r∈R

κr,RE · Sr,RE

)
+
∑
r∈R

Sr,RE ·
(
EPrc

t,a −OCr,RE

)
∀ t ∈ T ∧ ∀ a ∈ A, (3.26)
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In the next section, the numerical studies are conducted to evaluate the accuracy and

feasibility of the proposed model in this section.

3.4 Numerical Results

The proposed sizing model for EVFSs is coded and evaluated using the MATLAB software

package. The proposed model is evaluated at different operating percentages to find out

the ratings that would yield the maximum net profit. The historical electricity prices is

adopted from Ontario electricity market [110]. The FCEVs and BEVs demand data are

adopted from [107, 108]. The required set of frequency components for estimating the

FCEVs demand is found to be 84, while 20 polynomial order coefficients are considered for

market price estimation. The simulation and modeling parameters are given for a lifespan

of LS = 15 years as [6]:

1. Electrolyzer: Power to hydrogen conversion rate is considered as λi = 360 m3/MWh

with an efficiency rate of ηi = 60%; a CAPEX of κi = $0.6 M /MW; and maintenance

cost of OCi = $2.05 /MWh [6].

2. AC–DC Converter: Power conversion rate is considered as λi = 1 with an efficiency

rate of ηi = 99%; a CAPEX of κi = $0.12 M/MVA; and maintenance cost of OCi =

$0.41 /MWh [42].

3. Energy Storage: Hydrogen storage CAPEX and maintenance are considered as

κSto = $50/m3 and OCi = 2%×κSto/ (8760×LS) $/m3.h, respectively. The hy-

drogen charging and discharging efficiency of ηChg = ηDhg = 99.5% are considered

[6, 104]. The battery energy storage CAPEX and maintenance are considered as

κSto = $1 M/MWh and OCi =2.5%×κSto/(8760×LS) $/MWh, respectively. Be-

sides, the battery energy storage charging and discharging efficiency is assumed to
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be ηChg = ηDhg = 92% [6]. The dissipation rates of the studied storage systems is

considered to be γDsp = 0.006% [6].

4. Energy Dispenser: BEVs charging point dispenser CAPEX is considered to be

κED= $ 25 k/charger [111], the average charging time per BEV T Fil,Avg = 20 minutes,

where the BEV charging price is considered to be V Prc = 145 $/MWh in this study

[6]. The hydrogen energy dispenser hose is considered as κED = $ 75 k/dispenser

[112], the average refueling time per FCEV is T Fil,Avg = 5 minutes per fill [112],

while the hydrogen sale price is considered to be V Prc = $6 /kg [6, 104].

5. Rooftop Solar Panels: A 160 rooftop PV panels of Sr,RE = 300 W/panel are as-

sumed to be deployed at the stations. The PV CAPEX is given as κr,RE = $1300 /kW

and the maintenance is given as OCr,RE = 13%×κr,RE/(8760×LS) $/kWh. The feed-

in tariff price for the PV generation is considered as EPrc,F it = $200 /MWh [113].

3.4.1 Model Validation

The accuracy of the proposed estimation techniques is evaluated by computing the Mean

Absolute Percentage Error (MAPE) and the Standard Deviation of Absolute Percentage

Error (SAPE), where SAPE is defined as follows:

SAPET ∗ =

√
1

H − 1
·
∑
g∈G

(APEg −MAPET ∗)2, (3.27)

where T ∗ indicates the SAPE period (i.e., hourly, daily, weekly, etc.), H states the number

of hours within T ∗, and G expresses the set of hours within the T ∗ period.

Fig. 3.5 shows the hourly, daily, and monthly hydrogen and electric demand by the

FCEVs and BEVs, respectively, used for simulation studies, which are adopted from [107]

and [108]. As shown in Figs. 3.5 (a) and (b), demand changes on an hourly basis while
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Figure 3.5: (a): FCEVs hourly demand probability, (b): BEVs hourly demand
probability, (c): BEVs/FCEVs daily demand probability, (d): FCEVs monthly demand,

and (e): BEVs monthly demand.

it is minimum early in the morning and late at night, maximum during rush hours, and

medium for the rest of the times. In addition, Figs. 3.5 (c)–(e) indicate the daily and

monthly changes in the demand.
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Figure 3.6: Estimated and actual average electricity prices.
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Figure 3.7: Estimated and actual FCEVs demand for a typical week.

Sun Mon Tue Wed Thu Fri Sat

Days

0

0.75

1.5

2.25

3

B
E

V
s
 D

e
m

a
n
d
 (

M
W

)

Actual

Estimated

Figure 3.8: Estimated and actual BEVs demand for a typical week.

Figs. 3.6, 3.7, and 3.8 depict the actual/estimated values of electricity price, FCEVs

demand, and BEVs demand, respectively, using the proposed method for a typical week

out of the studied year. The results show that the estimated and the actual curves are

almost a perfect match, indicating the accuracy of the proposed estimation model. Here
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Figure 3.9: FCEVs demand estimation MAPE under (a): proposed time–based Fourier
series, and (b): Neural Network.

it is worth noting that the estimated curve does not represent forecast results, thereby is

not associated with the forecast uncertainties. The average electricity prices in this work

implies calculating the average of the annual minimum electricity prices for a given annual

operation percentage. Fig. 3.6 shows that the average electricity prices are negative at low

annual operation percentage. This is due to the surplus power generation in Ontario that

causes low and even negative prices in the wholesale electricity market [110]. Utilizing

such negative or low electricity prices would enhance the overall profit of the EVFSs.

Nonetheless, at higher annual operation percentages, when the EVFS tends to operate

more over the year, the average of the utilized market prices increases since the model has

to utilize higher price instances as well.

Fig. 3.9 shows the Probability Density Function (PDF) and Cumulative Density Func-

tion (CDF) of the demand MAPE using the proposed method as compared with the Neural

Network technique. While the estimation error is small under all methods, the MAPE value

using the proposed model is considerably lower than the one under the Neural Network

method. In addition, Fig. 3.10 shows that the SAPE value under the proposed model is

lower than the one under the Neural Network method.
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Figure 3.10: FCEVs demand estimation SAPE under (a): proposed time–based Fourier
series, and (b): Neural Network.
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Figure 3.11: BEVs demand estimation MAPE under (a): proposed time–based Fourier
series, and (b): Neural Network.

Figs. 3.11 and 3.12 represent the MAPE and SAPE values of the BEVs demand estima-

tion using the proposed model compared to common artificial intelligence based technique

e.g. Neural Network technique. The Neural Network is selected as a feed-forward network

with one hidden layer of 30 neurons. Where, Neural Network samples are divided into 70%

for training, and 15% each for validation and testing. The results show that the MAPE

and SAPE quantities are negligible under the proposed model indicating the accuracy of

the proposed estimation model compared to the Neural Network technique.
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Figure 3.12: BEVs demand estimation SAPE under (a): proposed time–based Fourier
series, and (b): Neural Network.

3.4.2 FCEVs Fueling Station Size Estimation

The FCEVs hydrogen station used for numerical studies aims to serve a reasonable number

of FCEVs per week (i.e., 3500 FCEVs/week) with the consumption trend depicted in Fig.

3.5. In such a case, the hydrogen supply from the station comes to 650 kg/day on average.

Moreover, it is worth mentioning that the maximum probability of BEVs arrival per day

is found to be 18.3% as shown in Fig. 3.5 (c), while the maximum probability of FCEVs

arrival per hour is found to be 9.9% as shown in Fig. 3.5 (a). Given that the EVFS is

designed to serve 3500 FCEVs per week and the average fueling time for FCEVs is 5 minutes

[112], the number of required hydrogen dispensers is calculated using (3.23) that would be

equal to 6. Fig. 3.13 shows the profit, CAPEX, operating cost, and sizing characteristic

curves for the hydrogen fueling stations in terms of the percentage of operation. Given

that the main criterion for sizing in the proposed model is to maximize the net profit, the

component sizing would be considered optimal where the system net profit is maximized.

As shown in Fig. 3.13 (a), the system net profit increases with the increase of the

percentage of operation from the lower bound to the mid point. The figure shows that the

curve is almost flat between 55 to 75 operation percentages; it then tends to decrease when
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Figure 3.13: Estimated parameters of the FCEVs fueling station using the proposed
model; (a): Annual net profit, (b): CAPEX, (c): Operating cost, (d): Electrolyzer rating,

and (e): Storage rating.

the percentage of operation is more than 75%. The total cost is composed of two compo-

nents as follows: (i) the energy purchase cost and (ii) the initial investment. Operation at

lower percentages necessitates large components so that the system would be able to meet

the demand in a shorter period of time. Operation at higher percentages, on the other
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hand, implies that smaller components can meet the demand as shown in Figs. 3.13 (d)

and (e). In such a case, the CAPEX tends to decrease as shown in 3.13 (b). However, the

facility operator would have to make a larger payment for power purchase from the market

at higher operation percentages; as depicted in Fig. 3.13 (c) the operating cost increases

with the increase of the operating percentages. This is because the facility utilizes lower

market price instances over the year, but as it operates more throughout the year, it has

to utilize higher market price instances as well. As such, an optimal trade off would have

to be determined aiming at profit maximization, which happens at percentage of operation

between 55% to 75% as shown in Fig. 3.13 (a).

3.4.3 BEVs Fueling Station Size Estimation

A similar analysis as the one conducted in Section 3.4.2 is performed for BEVs station

optimal sizing, and the results are presented in Fig. 3.14. The BEVs station used for

numerical studies aims to serve 3500 BEVs per week with the consumption trend depicted

in Fig. 3.5. In such a case, the power supply from the station comes to 26 MWh/day on

average. Using (3.23), it is found that the required charging points to be deployed in the

BEVs charging stations is 21. This is because the maximum probability of BEVs arrival

per day is found to be 18.3% as shown in Fig. 3.5 (c), and the maximum probability of

BEVs arrival per hour is found to be 9.6% as shown in Fig. 3.5 (b). In addition, the EVFS

expects the arrival of 3500 BEVs per week and the average fueling time for BEVs would

be 20 minutes [111]. Fig. 3.14 (a) shows that the net profit tends to increase with an

increase in the percentage of operation from lower bound of 15% up to 70%. Once the

operation rate further increases from 70% to 100%, the profit tends to decrease. Fig. 3.14

(b) shows that the CAPEX of the BEV station shrinks at higher operation percentages due

to a decrease in the cost of the battery charger and the storage components (see Figs. 3.14

(d) and (e)). At higher operation percentages, however, the facility operator has to utilize
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Figure 3.14: Estimated parameters of the BEVs fueling station using the proposed
model; (a): Annual net profit, (b): CAPEX, (c): Operating cost, (d): Converter rating,

and (e): Storage rating.

higher market prices, and thus, the cost of energy purchase tends to increase as shown in

Fig. 3.14 (c). As such, a balance has to be made between the cost of the components and

the cost paid for the energy purchase from the market. Fig. 3.14 (a) represents that such

50



Table 3.1: Optimal Ratings of FCEVs and BEVs Fueling Station Components

FCEVs Fueling Station BEVs Fueling Station

ρ= 75% ρ= 70%

NP (ρ)= $0.9578 M NP (ρ)= $0.836 M

C(ρ)= $2.034 M C(ρ)= $5.43 M

O(ρ)= $339.2 k /year O(ρ)= $170.6 k /year

E(ρ)= $18.22 /MWh E(ρ)= $17.73 /MWh

PElz = SCon = 2 MW/MVA SCon= 1.673 MVA

SOCmax= 1315 m3 SOCmax= 4.65 MWh

NED= 6 NED= 21

a balance is made at operation between 65% to 70% when the net profit maximizes.

The final optimum ratings of the FCEVs and BEVs fueling stations components are

extracted from Figs. 3.13 and 3.14, and the results are reported in Table 3.1.

3.4.4 Impact of PV Panel Implementation

In order to evaluate the impact of PV panels implementation on the EVFS net profit,

the size estimation for the EVFS are evaluated without considering rooftop PV panels.

Then, it is compared with the results given in Sections 3.4.2 and 3.4.3 for the FCEVs and

BEVs fueling stations, respectively. It is found that the sizing results is neither sensitive

to existence of the PV panels nor adding considerable cost to the EVFS CAPEX. The PV

panels implementation would not add a financial burden to the operator of the EVFSs,

but rather they can enhance the system net profit. For instance, implementing the PV

panels within the EVFS would increase the CAPEX by $ 62.4 k. However, the existence of

PV panels would reduce the dependence of EVFSs on the grid electricity. Therefore, the

OPEX would decrease by $ 13.33 k per year. This leads to a higher net profit by $ 9.13 k

per annum when compared with the case without PV panels.
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3.5 Discussion and Summary

This chapter presents analytical approaches for the application to the size estimation of

electric and hydrogen–based fueling stations as the two major foundations for electrified

transportation. The mathematical formulation for sizing of various components of the

fueling stations using public–domain market data is presented. The proposed models are

developed in such a way that they do not require any optimization solver. As such, they

can be developed at the backend of globally accessible websites or software applications,

where the input data from everywhere around the globe is given to the model, and various

sizing parameters related to each location are returned to the user. As such, the proposed

analytical models in this work can be utilized to promote the proliferation of electrified

transportation at a global scale. Historical operating data from real–world systems are

utilized for numerical evaluation of the proposed formulation. The accuracy of the proposed

estimation model is analyzed using the MAPE and SAPE quantities and validated as

compared with the artificial intelligence–based methods; where, the estimated parameters

are not forecasted, thereby not associated with forecast uncertainties. Various components

of the FCEVs and BEVs fueling stations are sized using the proposed sizing model. The

results indicate that a trade–off has to be made between capital and operation costs in

order to maximize the annual net profit while meeting the FCEVs/BEVs demand. It is

demonstrated that the optimal value for the operation percentage can be estimated using

the proposed model, and components can be sized accordingly towards maximizing the net

profit.
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Chapter 4

BEB Energy Consumption Model

based on Probabilistic Synthetic

Speed Profile

4.1 Introduction

Operating range and energy consumption are primary factors in determining EBs’ oper-

ating strategy and cost analysis [65]. EBEC has high economic and ecological importance

as a key parameter in determining the fuel cost and the GHG emissions from PBT [57].

Appropriate estimation of EBEC is a vital requirement for their planning, deployment,

and required charging infrastructure [63]. The speed profile for EBs is one of the main

factors that impacts the EBEC, and should be available for the accurate assessment of the

EBEC. To that end, in this chapter a probabilistic model is applied to generate synthetic

speed profiles using basic information of the EB trip (i.e., trip time, distance, and stop lo-

cations). This model is anticipated as a practical alternative to overcome the unavailability

of real–world speed profiles data, in addition to EBEC literature gap with respect to: 1)

the requirement of high time-resolution speed profiles which are difficult to obtain due to
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lack of operational data and high associated costs; 2) the inconsideration of complexity and

variations of extensive real-world operational conditions; and 3) the dependence on typical

driving cycles that lack the randomness behaviour in speed and uncertainty in energy de-

mand. The proposed probabilistic model of EBEC considers route characteristics, traffic

conditions, weather conditions, and the operation of HVAC systems. Using such model,

PBT planners can accurately assess the energy consumption characteristics of EBs at dif-

ferent operating conditions. Hence, they link EBs’ feasibility to real-world performance

and facilitates accurate design of the on board batteries and charging infrastructure. To

that end, Table 4.1 presents the definition of the proposed model indices, sets, parameters,

and variables.

Table 4.1: Chapter 4 Nomenclature

A. Indices

s Indices for designated bus stops.

j Indices for generated speed profile.

t Indices for time step.

n Indices for sections within a speed profile.

B. Sets

S Set of designated bus stops for a given
route.

J Set of generated speed profiles.

N Stp
j Set of actual bus stops for speed profile

j.

ΥStt Set of different possible combinations of
bus stop states by an electric bus (EB).

ΛStt
j Set of EB stop states at each bus stop s

for speed profile j.

T Set of speed profile time steps.

Tn Set of section n travel time steps.

Td Set of section n dwelling time steps.

T +, T − Set of acceleration and deceleration
time instants.

Xn Set of generated speed values within sec-
tion n.

C. Parameters

Ns Number of designated bus stops for a
route.

NStp
j Number of actual stops and speed profile

sections within the generated speed pro-
file j.

nt Number of the speed profile time steps.

∆t Speed profile time step resolution (s).

λStts,j Binary state representing the EB stop
status at bus stop s for speed profile j.

%Stps Probability of EB to stop at bus stop s
(%).
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Table 4.1: Chapter 4 Nomenclature ... continued

χStt
j Probability of ΛStt

j stop states combina-
tion (%).

TStp,0
n Randomly generated EB travel time for

section n (s).

∆tStp,0n Randomly generated EB dwelling time
after section n (s).

v/c Ratio of traffic volume v, to roadway
practical capacity c.

DTrp Trip distance (m).

T Trp,N Nominal trip time (s).

V Avg Trip average velocity (m/s).

Tmax
n , Tmin

n Maximum and minimum travel
time for section n, respectively (s).

∆tStpmax,n Maximum dwelling time after section
n (s).

∆tStpmin,n Minimum dwelling time after section n
(s).

DStp
n Section n distance (m).

xmax Roadway maximum free flow speed
(m/s).

ξAvg Average roadway velocity factor (%).

x0t Randomly generated speed at time step t
(m/s).

xmax, xmin Maximum and minimum speed lim-
its (m/s).

aAcc, aDec EB acceleration and deceleration
limits (m/s2).

cd, fr EB drag and rolling resistance coefficient.

AF EB frontal surface area (m2).

mt EB mass weight at time t (kg).

g Gravitational force (m/s2).

ρAir Air density (kg/m3).

ηBat EB battery discharge efficiency (%).

ηReg EB regenerative braking efficiency (%).

mAir Mass of air inside the EB (kg).

Cp Air specific heat capacity (kJ/kg K).

ks Temperature set point inside the EB (K).

kub, klb Comfort temperature upper–bound
and lower–bound range, respectively (K).

Req EB absolute thermal resistance (K/W).

LWin, LChs EB windows and chassis thickness
(m).

AWin, AChs EB windows and chassis area, re-
spectively (m2).

uWin
c , uChs

c EB windows and chassis thermal
conductivity, respectively (W/m K).

A,Ador EB total surface and door area, respec-
tively (m2).

hExt
c , hIntc EB external and internal convective

heat transfer coefficients (W/m2 K).

CA Air flow coefficient (m3/s)/(m2 Pa0.5).

Rp Pressure factor (Pa).

ψV nt EB ventilation requirement (%).

V̇ Hvac HVAC air flow rate (m3/s).

hPas heat gain per passenger (W).

ηCOP HVAC system coefficient of performance.

QHvac
R HVAC rated power (kW).

D. State Variables

φ(dt) Route grade at distance dt (rad).

κt Dwelling time and traffic stops indica-
tor/differentiator.
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Table 4.1: Chapter 4 Nomenclature ... continued

F Trc
t EB traction force at time t (N).

kEB
t EB internal temperature at time t (K).

kExt
t EB external temperature at time t (K).

βPas
t Passengers number at time t.

QHvac
t HVAC system thermal power at time t

(kW).

QLos
t Conductive and convective thermal losses

at time t (kW).

QInf
t Infiltration losses at time t (kW).

QV nt
t Ventilation losses at time t (kW).

QPas
t Passenger heat gain at time t (kW).

V Inf
t Air infiltration flow rate (m3/s).

γt HVAC cooling/heating operation mode
indicator.

PHvac
t HVAC power consumption at time t

(kW).

PAux
t Auxiliary power consumption at time t

(kW).

PFan
t HVAC fan Power consumption at time t

(kW).

vFan
t , iFan

t HVAC system’s fan voltage (V) and
current (A) at time t, respectively.

ETrc EB total traction energy (kWh).

EHvac Total HVAC consumption within a trip
(kWh).

E. Optimization Variables

TStp
n EB travel time within section n (s).

∆tStpn EB dwelling time after section n (s).

T Trp Variable trip time according to traffic flow
condition (s).

V Avg
n Section n average speed (m/s).

xt Generated speed at time step t (m/s).

ẋt EB acceleration at time t (m/s2).

dt EB covered distance at time t (m).

4.2 Probabilistic Synthetic Speed Profile Model

The speed profile for EBs is essentially random, where each single trip results in a different

speed profile according to the traffic conditions, driver behaviour, and passenger boarding

and/or alighting. Nonetheless, the speed profile for an EB on a specific route attains some

common characteristics such as the trip time, maximum speed limit, trip distance, and the

designated locations of bus stops. In this sense, and in order to overcome the need for a

set of high time-resolution speed data to assess the EBEC, this work aims to propose a

model that generates speed profiles, which mimic the bus speed behaviour. In particular,
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Figure 4.1: Schematic diagram for the proposed speed profile generator model.

the following data is required to be inputted to the proposed model:

1. Trip distance (DTrp) and nominal trip time (T Trp,N).

2. Stop location(s) i.e., distance between bus stops (DStp
n ).

3. Probability of an EB to stop at each designated bus stop (%Stps ).

4. Traffic condition parameter (v/c). Where, the traffic condition is incorporated in

the proposed model as a constraint, as such the traffic condition parameter impacts

the simulated trip time. For instance, heavy traffic condition will lead to higher trip

time, and vice versa.

5. Maximum (Tmax
n ) and minimum (Tmin

n ) dwelling time of EBs at bus stops.

6. Maximum acceleration (aAcc) and deceleration (aDec) of the EB.

7. Maximum (xmax) and minimum (xmin) velocity of the simulated route.

Fig. 4.1 illustrates the proposed mechanism for generating the speed profile. As shown

in Fig. 4.1, the predefined bus trip time is divided into sections based on the number

of bus stops. Each section n has its own average speed, V Avg
n and dwelling time at the

bus stop, ∆tStpn . In this regard, the proposed model consists of two stages. The first

stage aims to allocate the time of each speed profile section, T Stp
n , in addition to the EB
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dwelling time, ∆tStpn , between two consecutive sections. The average speed profile between

each two consecutive bus stops is determined in the first stage based on three predefined

parameters: 1) trip time, 2) trip distance, and 3) number of bus stops the EB might have.

Those parameters are utilized to formulate the first stage constraints as shown in Section

4.2.1. Here it is worth noting that the EB might not stop at each located bus stop. In this

regard, the number of bus stops an EB might have in each trip is determined based on a

probabilistic model described in Section 4.2.1. The second stage utilizes the output of the

first stage (i.e., average speed in each section n) to randomly generate a speed profile, as

shown in Fig. 4.1, which satisfies the first stage average speed and the EB acceleration and

deceleration limits. The following two subsections elaborate on the details of the proposed

mechanism for generating the speed profile.

4.2.1 Stage 1: Evaluating Bus Stops Probability, Average Speed,

and Dwelling Time

The set of designated bus stops for a given route can be expressed as:

S =
{

1, 2, 3, . . . , s, . . . , Ns

}
. (4.1)

Based on the passenger boarding and/or alighting requirements, a bus may choose to

skip on-route stops during trips (i.e., EB may not stop at each designated stop). In this

regard, the set of actual number of bus stops and speed profile sections during a trip for a

generated speed profile j is defined as:

N Stp
j = {1, 2, 3, . . . , n, . . . , NStp

j } ∀ j ∈ J ∧N
Stp
j ≤ Ns, (4.2)

where, NStp
j denotes the number of actual stops and speed profile sections within the

generated speed profile j. The NStp
j might be smaller than the number of designated bus
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stops, if the EB skip bus stops. Otherwise, the NStp
j would be equal to the number of

designated bus stops Ns. The number of actual bus stops of each generated speed profile,

NStp
j , is modeled using a probabilistic model, given that EBs stops is based on the stochastic

nature of passengers alighting/boarding process at each bus stop. Where, λStts,j is a binary

state representing the EB stop state for speed profile j; it equals one when the EB stops

at the designated bus stop s, and it is zero otherwise. It is also noted in (4.2) that the

number of speed profile sections equals the number of bus stops. Therefore, the number of

actual stops for the speed profile j is given as the summation of the EB stops state, λStts,j :

NStp
j =

∑
s∈S

λStts,j ∀ j ∈ J ∧ ∀ λStts,j ∈ ΛStt
j ∧ ∀ ΛStt

j ∈ ΥStt, (4.3)

where, ΥStt is the EB set of different possible combinations of bus stop states, (ΥStt ={
ΛStt

j

}
), and different j combination of EB stop states, ΛStt

j , is given as follows:

ΛStt
j =

{
λStt1,j , λ

Stt
2,j , . . . , λ

Stt
s,j , . . . , λ

Stt
Ns,j

}
∀ s ∈ S ∧ ∀ j ∈ J . (4.4)

The joint probability of each possible combination j could be expressed as the product

of the bus stops’ probabilities and is stated as:

χStt
j =

∏
s∈S

(
%Stps · λStts,j + (1− %Stps ) · λStts,j

)
∀s ∈ S ∧ ∀j ∈ J ∧ ∀ λStts,j ∈ ΛStt

j ∧ ∀ΛStt
j ∈ ΥStt, (4.5)

where, %Stps is the probability for the bus to stop at designated stop s; and λStts,j is the

complement state of λStts,j .

The problem in the first stage is formulated mathematically as an optimization model.

Equation (4.6) represents the objective function of the developed optimization model. As

shown, in order to preserve the randomness of the generated average speed profile, equation
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Figure 4.2: Speed versus different LoS, (a) standard roadway 60 km/h FFS, (b) at
different trip’s average speed.

(4.6) is formulated to minimize the deviation between: 1) the randomly generated time,

T Stp,0
n , and T Stp

n for each section n, and 2) the random generated dwelling time, ∆tStp,0n ,

and ∆tStpn between two consequent sections.

Min.:
∑

n∈NStp
j

(
T Stp
n − T Stp,0

n

)
+
(
∆tStpn −∆tStp,0n

)
∀ j ∈ J . (4.6)

The objective function in (4.6) is subjected to the time of the EB trip, where the

summation of the trip sections’ travel times and dwelling times is constrained to the trip

time as follows:

∑
n∈NStp

j

(
T Stp
n + ∆tStpn

)
= T Trp. (4.7)

It is noteworthy that the trip time, T Trp, varies according to the traffic flow conditions,

which is known as the roadway LoS. The LoS, (v/c), is defined as the ratio of traffic

volume, (v), to roadway practical capacity (c) [114]. Fig. 4.2 (a) shows different roadway
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LoS (i.e., LoS A - F) with an average of 60 km/h Free Flow Speed (FFS) [114]. As shown

in Fig. 4.2 (a), the LoS relation with the roadway speed is estimated using a quadratic

function. Similarly, the average speed of the EB trip will be impacted by the roadway

LoS, and consequently the trip time. In this regard, the variation of the average EB trip

velocity has been modeled using the estimated quadratic function as shown in Fig. 4.2

(b). Therefore, the trip time can be determined as a function of the traffic flow parameter

(v/c) as follows:

T Trp =
DTrp

V Avg(v/c)
(4.8)

V Avg(v/c) =
DTrp

T Trp,N
·
(
− 0.51

[v
c

]2
+ 0.219

v

c
+ 1.14

)
, (4.9)

where, DTrp and T Trp,N denote the trip distance and trip nominal time, respectively.

The time between two consecutive bus stops (i.e., section n), T Stp
n , is constrained to its

maximum and minimum time limits as expressed in (4.10) and (4.11).

Tmin
n ≤ T Stp

n ≤ Tmax
n ∀n ∈ N Stp

j (4.10)

Tmax
n =

DStp
n

V Avg(v/c)
, Tmin

n =
DStp

n

ξAvg · xmax
∀n ∈ N Stp

j . (4.11)

Equation (4.11) defines section n maximum time, Tmax
n , as a function of section n

distance, DStp
n , over the roadway LoS average velocity. Similarly, section n minimum time,

Tmin
n , is calculated based on the product of the average roadway velocity factor, ξAvg, and

maximum roadway FFS, xmax.

The objective function in (4.6) is also subjected to the dwelling time constrained after

each section n stated as:

∆tStpmin,n ≤ ∆tStpn ≤ ∆tStpmax,n ∀n ∈ N
Stp
j . (4.12)
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After solving the problem in (4.6)–(4.12), the average speed of each section n can be

calculated as follows:

V Avg
n =

DStp
n

T Stp
n

∀n ∈ N Stp
j . (4.13)

The outputs of the first stage in the proposed model (T Stp
n , ∆tStpn , and V Avg

n ) are in-

putted to the second stage problem explained in the next subsection to generate the syn-

thetic speed profile.

4.2.2 Stage 2: Generating Synthetic Speed Profile

The second stage aims to generate a speed profile that mimics the actual behaviour of

the EBs along the trip route under the study. In this regard, the second stage starts by

initializing a random speed profile, x0t , at each time step t within the trip time horizon

defined as follows:

T =
{

1, 1 + ∆t, 1 + 2∆t, . . . , t, . . . , nt −∆t, nt

}
, (4.14)

where, ∆t is the speed profile time step resolution and nt = T Trp/∆t is the number of trip

time steps.

Similar to the first stage, the problem in the second stage is formulated as an opti-

mization model. The objective function of the second stage is defined in Equation (4.15).

As depicted, in order to preserve the generated speed profile randomness, (4.15) aims to

minimize the deviation between the randomly generated speed profile and the estimated

values of the speed profile that satisfy the objective function constraints.

Minimize:
∑
t∈T

xt − x0t . (4.15)
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Equation (4.15) is constrained by the maximum and minimum route speed limits as:

xmin ≤ xt ≤ xmax ∀ t ∈ T , (4.16)

where, the generated speed profile is also subjected to the EB acceleration, aAcc and de-

celeration, aDec, limits expressed as:

aDec ≤ xt+1 − xt
∆t

≤ aAcc ∀ t ∈ T . (4.17)

Equation (4.15) is also subjected to the average speed constraints at each section n

given as:

Xn = V Avg
n ∀ Xn = {xt} ∧ ∀n ∈ N Stp

j ∧ ∀ t ∈ Tn ∧ ∀ Tn ⊂ T . (4.18)

Equation (4.18) implies that the average speed values, Xn, at each section n is equal

to the yielded average speed from the first stage of the proposed model. Where, Tn is the

set of section n time steps, Tn = {t, t + ∆t, t + 2∆t, . . . , t + T Stp
n − 1}. Equation (4.19)

below defines the bus stop instant by equating the velocity to zero at time steps that

does not belong to the trip sections time steps and belongs to the dwelling time steps,

Td = {t, t+ ∆t, t+ 2∆t, . . . , t+ ∆tStpn − 1}.

xt = 0 ∧ κt = 1 ∀ t ∈ T ∧ ∀ t ∈ Td ∧ ∀ t /∈ Tn ∧ ∀n ∈ N Stp
j , (4.19)

where, κt is defined to differentiate whether the EB stops for passenger boarding and/or

alighting (i.e., κt = 1), or due to traffic conditions (i.e., κt = 0).
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4.3 Electric Bus Energy Consumption

In this section, a detailed consumption model for the EB propulsion, HVAC, and auxiliary

loads is presented.

4.3.1 Electric Bus Propulsion Energy Consumption Model

The calculation of the propulsion EBEC model based on Newton’s second law of motion

is evaluated. The main inputs to the propulsion EBEC model are the bus speed profile,

passenger profile, route gradient, and the bus technical specifications such as the drag

coefficient, cd, rolling resistance coefficient, fr, and frontal surface area, AF . Here it is

worth noting that, the bus speed profile input can be obtained from: (i) the proposed

synthetic speed profile model proposed in Section 4.2, in case of it’s unavailability, or (ii)

the actual real-world speed profile data recorded by the transit network telematics system,

if it is available. Equation (4.20) represents the required traction force, F Trc
t , to propel the

EB with a specified, xt velocity [70], [115].

F Trc
t = mt · ẋt +mt · g · sin

(
φ (dt)

)
+mt · g · fr · cos

(
φ (dt)

)
+

1

2
ρAir · cd · AF · x2t , ∀ t ∈ T , (4.20)

where, φ (dt) is the route grade as a function of the distance, dt, covered by the EB at t:

dt =
t′=t∑
t′=1

xt′ ·∆t ∀ t ∈ T . (4.21)

Equation (4.20) yields a positive traction force during acceleration and thus the power

is transferred from the battery to the wheel to propel the EB. During deceleration instants,

however, the traction force is negative and thus the kinetic power is transferred to recharge
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the battery. Accordingly, the EBEC due to traction during a trip could be formulated as:

ETrc =
∑
t∈T +

F Trc
t · xt ·∆t
ηBat

+
∑
t∈T −

F Trc
t · xt ·∆t · ηReg ∀ T + ⊂ T ∧ ∀ T − ⊂ T . (4.22)

4.3.2 HVAC Consumption Model for EBs

The HVAC operation of EBs is modeled in this work using the steady state thermal and

mass balance equation as expressed in (4.23). Equation (4.23) implies that the change

in the stored thermal energy in the EB, mAir · Cp · (kEB
t − kEB

t+1), is equal to the added

HVAC thermal energy, QHvac
t , while the conductive and convective thermal energy losses,

QLos
t , the air infiltration energy loss due to the frequent opening of the EB door, QInf

t , and

the energy loss due to ventilation requirements, QV nt
t , are deducted. Also, the developed

HVAC model accounts for the passenger heat energy gain, QPas
t , as depicted in (4.23).

mAir · Cp ·
(
kEB
t − kEB

t+1

)
=
(
QHvac

t −QLos
t −QInf

t −QV nt
t +QPas

t

)
·∆t ∀t ∈ T . (4.23)

The HVAC system operates in either heating–mode (i.e. γt = 1), cooling–mode (i.e.

γt = 2), or off–mode (i.e. γt = 0) according to the EB internal temperature, kEB
t , as:

γt =


1 ∀ (kEB

t < klb) ∨ (∀γt−1 = 1 ∧ ∀ kEB
t < kS)

2 ∀ (kEB
t > kub) ∨ (∀γt−1 = 2 ∧ ∀ kEB

t > kS)

0, Otherwise

∀ t ∈ T . (4.24)

As shown in (4.24), the HVAC operates in heating–mode under either of the following

two conditions: 1) when the EB internal temperature is below the lower bound of the

comfort temperature range (klb); or 2) when the HVAC is operating in heating–mode,

while the EB temperature is still below the desired temperature set point, kS. Similarly,
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the HVAC operates in cooling–mode when: 1) the EB internal temperature is above the

upper bound of the comfort temperature range (kub); or 2) the HVAC is operating in

cooling–mode, while the EB temperature is still above the desired temperature set point,

kS. Otherwise, the HVAC is turned off. Here it is worth noting that, the HVAC operation

is either on or off according to the aforementioned operation mode [116], thus the added

thermal energy by the HVAC at each time step is expressed in this work as follows:

QHvac
t =


QHvac

R ∀ γt = 1 ∧ ∀ t ∈ T

−QHvac
R ∀ γt = 2 ∧ ∀ t ∈ T

0 ∀ γt = 0 ∧ ∀ t ∈ T .

(4.25)

The conductive and convective thermal losses are given as the difference between the

EB’ internal and external temperatures, over the EB thermal resistivity as [117]:

QLos
t =

(
kEB
t − kExt

t

)
Req

∀ t ∈ T , (4.26)

Req =
LWin

AWin · uWin
c

+
LChs

AChs · uChs
c

+
1

A · hExt
c

+
1

A · hIntc

, (4.27)

It is worth noting that the external convective heat transfer coefficient in (4.27) is

impacted by the speed of the wind flow over the heated/cooled object and is expressed as

follows [118]:

hExt
c = hIntc − xt + 10x0.5t ∀ t ∈ T , (4.28)

with out loss of generality, in this work the speed of the EB represents the speed of wind

flow over the EB with respect to the EB position. The impact of the EB door opening

at bus stops is modeled according to the American Society of Heating, Refrigerating and

Air-Conditioning Engineers (ASHRAE) modeling for air infiltration rate through door
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openings, and is expressed as follows [119]:

QInf
t = ρAir · Cp ·

(
kEB
t − kExt

t

)
· V Inf

t ∀ t ∈ T , (4.29)

where, V Inf
t is the air infiltration flow rate in (m3/s) [119]:

V Inf
t =

CA · Ador ·
√
Rp ∀ κt = 1 ∧ ∀ t ∈ T .

0 ∀ κt = 0 ∧ ∀ t ∈ T .
(4.30)

The designing process of any HVAC system accounts for an adequate ventilation rate to

provide comfortable fresh air mixture [120]. In this regard, the ventilation requirements for

the EB add burden to the HVAC operation, by allowing a controlled flow rate of fresh air

with exterior temperature. The ventilation requirements impact on the HVAC operation

is given as follows:

QV nt
t = ψV nt · V̇ Hvac · ρAir · Cp ·

(
kEB
t − kExt

t

)
∀ t ∈ T . (4.31)

The impact of the passenger heat gain on the HVAC operation in (4.23) is modeled as

follows [121]:

QPas
t = hPas · βPas

t ∀ t ∈ T , (4.32)

where, hPas is the heat gain per passenger (W), which is the product of the passenger

metabolic rate (i.e., 1 W/m2 for rested passenger) and the passenger average skin area

(i.e., 1.8 m2) [122]. While, βPas
t denotes the passenger profile.

Therefore, the HVAC power consumption can be calculated over the trip duration as:

PHvac
t =

| QHvac
t |

ηBat · ηCOP
∀ t ∈ T , (4.33)
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where, ηCOP indicates the relation between the thermal energy and the consumed electri-

cal energy [116, 123]). In addition to the QHvac
t consumption that is responsible for EB

heat exchange (QHvac
t ), the HVAC fan units power consumption for ventilation should be

considered as:

P Fan
t = vFan

t · iFan
t ∀ t ∈ T , (4.34)

Therefore, the total HVAC consumption over the trip duration can be calculated as follows:

EHvac =
∑
t∈T

(PHvac
t + P Fan

t ) ·∆t. (4.35)

Based on the above discussion, the total EBEC can be expressed as the summation of

the traction energy expressed in (4.22), HVAC consumption represented in (4.35) and the

consumption of the auxiliary loads (i.e., light, sound and radio system), PAux
t . Hence, the

normalized rate of EBEC in kW h/km could be calculated as:

EEB =
EHvac + ETrc +

∑
t∈T P

Aux
t ·∆t

DTrp
. (4.36)

4.4 Numerical Studies

The proposed EBEC model is coded and simulated in the MATLAB environment. Where,

the speed profile resolution, ∆t, is defined in this study as one second. The numerical

studies is divided into two case studies. First case aims to study the traffic conditions

on the EBEC of Route 17 city–bus service in Brampton, Ontario, Canada [124]. While,

the second case study investigates different traffic conditions impact of an intercity bus

service. In both cases, the HVAC consumption of the generated speed profiles is evaluated
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at different temperature conditions. Route 34 of the GO transit is selected for the second

case study, where Go transit is an intercity bus service within the Greater Toronto and

Hamilton Area (GTHA), Ontario, Canada [125].

Without loss of generality, the EB mass weight (mt) is considered as the EB gross vehicle

weight rating (GVWR). Where, the GVWR defines the maximum total weight of the EB

including the passengers and their belongings (i.e., bags, Baggage’s, etc.) as specified by

the manufacturer [126]. While in the HVAC energy consumption numerical studies, the

EB is assumed to have a full passenger capacity, i.e., 38 passengers for the single-decker EB

[127], and 81 passengers for the double–decker EB [128]. Here it is worth mentioning that

the simulated traffic conditions in this study are neither historical nor forecasted. In fact,

this model allows the users such as transit network planners to simulate the speed profile

according to their different traffic conditions across the day, by setting the LoS parameter.

For this reason, the numerical studies in this work are evaluated at different LoS values to

cross compare the impact of traffic condition on the EBEC.

The proposed optimization model is identified as a linear optimization problem. Dif-

ferent methods can be used to solve the formulated optimization model. It is solved, in

this work, using Interior Point linear programming algorithm. This method is coded as a

built-in function in the Matlab optimization toolbox. Thereby, the optimization model is

coded and solved in the MATLAB environment. The optimization problem is executed in

a PC with the following specifications: Core i7-6700, 3.4 GHz CPU, 16 GB RAM, and 64

bits system. The convergence tolerance and the maximum number of iterations are set to

10-6 and 250, respectively. The optimization problem solution is converged in an average

of 32 iterations for all scenarios.
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Figure 4.3: The studied Brampton transit Route 17 at the southbound direction between
Trinity Common Terminal toward Bramalea Terminal.
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Figure 4.4: Brampton Route 17 northbound: (a) grade, and (b) elevation.

4.4.1 First Case Study: Traffic Conditions Impact on the Energy

Consumption of Single–Decker EB

This section aims to generate a set of speed profiles for different traffic conditions for

the first case study. This is to analyze the impacts of traffic conditions on the energy

consumption due to traction, regenerative, auxiliary, and HVAC system. As shown in

Fig. 4.3, Route 17 in Brampton, Ontario, Canada is used for the first case studies. Route

17 has a round bus service trip in southbound and northbound directions with a total

distance of 5.75 km for each direction. The studied route delivers the bus transportation

service in an average of 16 minutes in both of the trip directions [124]. Fig. 4.4 shows the

grade and elevation of the studied route. In which, each of southbound and northbound
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Table 4.2: Route and Speed Profile Modeling and Simulation Parameters

DTrp = 5.75 km T Trp,N = 16 min Ns =18

xmax = 50 km/h xmin = 0 km/h ξAvg = 75%

∆tStpmin,n = 15 s ∆tStpmax,n = 30 s ρAir = 1.2258 kg/m3

∆t = 1 s Cp = 1.005 kJ/kg.K g = 9.8 m/s2

Table 4.3: EB Modeling and Simulation Parameters

mt = 19700 kg ηBat = 95% ηReg = 50%

aAcc = −aDec = 7.2 km/h2 fr = 0.015 cd = 0.65

AF = 9.095 m2 mAir = 111 kg QHvac
R = 30 kW

kS = 21◦C klb = 18.9◦C kub = 23.1◦C

uWin
c = 0.0566 W K/m AWin = 31.8 m2 LWin = 20 mm

uChs
c = 0.0738 W K/m AChs = 138.2 m2 LChs = 50 mm

hIntc = 10.45 W/m2K A = 170 m2 Ador = 1.85 m2

CA = 0.1 (m3/s)/(m2 Pa0.5) Rp = 0.3 Pa ψV nt = 20%

V̇ Hvac = 1.13 m3/s hPas = 1.8 W ηCOP = 2

vFan
t = 27 V iFan

t = 106 A PAux
t = 9 kW

trip direction has eighteen specified bus stops. In this study, each bus stop has a stop

probability of 50% (i.e., %s = 50%), except three bus stops, which are a must stop locations

at major intersections and thus they have stop probabilities of 100%. The studied route

and generated speed profiles modeling parameters are given in Table 4.2 [124]. Table 4.3

presents the EB modelling and simulation parameters, where a 40 ft single-deck city bus

is considered in this study [116, 118, 119, 120, 122, 129].

In order to evaluate the impact of the traffic conditions on the EBEC due to propulsion,

regenerative, auxiliary, and HVAC, a set of 100 synthetic speed profiles is generated for

different LoS (i.e., (v/c) values). Where, the generated speed profiles follow the number

of bus stops probability distribution for the studied route number of bus stops given in

Fig. 4.5. A sample of three generated speed profiles for free, light, and congested traffic
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Figure 4.5: Number of bus stops probability for Brampton Route 17.
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Figure 4.6: Samples from the southbound generated speed profiles: (a) Free traffic
condition, (b) Light traffic condition, and (c) congested traffic condition.

conditions that corresponds to 0.35, 0.55, and 0.95 LoS, respectively are shown in Fig. 4.6.

As depicted, free and light traffic conditions have higher speed values as shown in Fig. 4.6

(a) and (b), compared to congested traffic condition in Fig. 4.6 (c). It is also shown that the

impact of the traffic condition is reflected on the trip duration. Where, the trip duration

for the free, light, and congested traffic condition are 16 minutes, 18.5 minutes, and 34

minutes, respectively, as shown in the figure. As such, the average speed of the free, light

and congested traffic conditions are 21.7 km/h, 18.77 km/h, and 10.3 km/h, respectively.

Table 4.4 presents a breakdown of the EBEC associated with the speed profiles depicted in
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Table 4.4: Energy Consumption Breakdown for the Sampled Speed Profiles in Figure 4.6
using Single–Deck EB

Consumption Free Traffic Light Traffic Congested Traffic

Breakdown (kW h/km) (v/c =0.35) (v/c =0.55) (v/c =0.95)

Traction Southbound 1.46 1.344 1.1

Traction Northbound 1.854 1.726 1.53

Regenerative Southbound −0.331 −0.3 −0.22

Regeneration Northbound −0.24 −0.2 −0.149

Auxiliary 0.417 0.483 0.884

HVAC at 5°C 0.289 0.332 0.56

Total Southbound 1.835 1.859 2.324

Total Northbound 2.32 2.341 2.825

Fig. 4.6. Where, the HVAC consumption is evaluated at exterior temperature of 5◦C. As

shown in Table 4.4, trips in the northbound direction yield a higher average of EBEC due

to traction of 0.4 kW h/km higher than the southbound direction, as a result of the uphill

elevation during the northbound trip as shown in Fig. 4.4 (b). For the same reason, the

results show that the regenerative energy into the EB battery is lower in the northbound

trip direction compared to the southbound direction. The results also show that both the

traction and regenerative energies decreases with the increase of the LoS, due to the lower

velocity values at high LoS conditions. However, energy consumption due to auxiliary

loads and HVAC increases with the increase of the LoS, where they are impacted by the

trip duration, which relies on the LoS. It is, thus, noteworthy that although the traction

energy decreases at higher LoS conditions, the total EBEC increases due to the impact of

LoS on the regenerative energy, auxiliary loads, and HVAC.

Figs. 4.7, 4.8, and 4.9 show the EBEC histogram for the generated speed profiles

at free, light, and congested traffic conditions, respectively. Figs. 4.7 (a), 4.8 (a), and

4.9 (a) present the traction EBEC histograms for the aforementioned traffic conditions,

respectively. As depicted in the figures, traction EBEC varies between 1-2 kW h/km in
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free traffic condition, 1-1.8 kW h/km in light traffic conditions, and 0.8-1.8 kW h/km in

congested traffic conditions. Where, lower traction EBEC’s are noted at congested traf-

fic conditions. While, Figs. 4.7 (b), 4.8 (b), and 4.9 (b) show the regenerative energy

histograms for the three traffic conditions, respectively. Although, the mean of the regen-

erative energy in the shown traffic conditions is almost the same around -0.317 kW h/km,

chances of higher regenerative energy occur at free and light traffic conditions. Figs. 4.7

(c), 4.8 (c), and 4.9 (c) show the auxiliary loads consumption that have a fixed value,

given that all the generated speed profiles have the same time duration at a given traffic

condition. While, Figs. 4.7 (d), 4.8 (d), and 4.9 (d) present the histograms for the HVAC

energy consumption for the aforementioned traffic conditions, respectively. As shown in

the figures, the energy consumption due to HVAC has a slight distribution variation around

the mean consumption value. This variation occurs due to the changes of the actual stops

of the bus during trips, as per the probability described in Fig. 4.5, and thus different rate

of air infiltration occurs due to the bus door opening.
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Figure 4.7: Southbound trip histogram for the free traffic conditions: (a) Traction consumption, (b) Regenerative
energy, (c) Auxiliary consumption, (d) HVAC consumption, and (e) Total consumption.
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Figure 4.8: Southbound trip histogram for the light traffic conditions: (a) Traction consumption, (b) Regenerative
energy, (c) Auxiliary consumption, (d) HVAC consumption, and (e) Total consumption.
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Figure 4.9: Southbound trip histogram for the congested traffic conditions: (a) Traction consumption, (b)
Regenerative energy, (c) Auxiliary consumption, (d) HVAC consumption, and (e) Total consumption.
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Figure 4.10: Energy consumption at different LoS conditions: (a) Traction, (b)
Regenerative, (c) Auxiliary, (d) HVAC, and (e) Total consumption.

Fig. 4.10 depicts the distribution of the EBEC at different LoS conditions at the

southbound trips direction. The central mark in Figs. 4.10 (a), (b), and (e) depicts the

median of the energy consumption, while the box top and bottom edges depicts the 75th and

25th percentiles of the EBEC data, respectively. While, the bar chart in Fig. 4.10 (c) and

(d) represent the auxiliary loads and the HVAC average energy consumption. As shown in

Fig. 4.10, the trend of the EBEC components is consistent versus the roadway LoS. Where,

traction energy consumption and regenerative energy decrease with the increase of LoS.
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Figure 4.11: Route 34 of the GO transit at the westbound direction from Finch Bus
Terminal towards Pearson Airport Terminal.

While, the energy consumption due to the auxiliary loads and HVAC system increases at

higher roadway LoS. As a result, the total EB increases at higher roadway LoS as shown

in Fig. 4.10 (e).

4.4.2 Second Case Study: Traffic Conditions Impact on the En-

ergy Consumption of Double–Decker EB

There is a variation in transit network characteristics, besides different EB categories in

the market. In such a case, studying the EBEC under different conditions is worth inves-

tigating. For this reason, this section aims to generate a set of 100 synthetic speed profiles

for an intercity bus service. Fig. 4.11 shows the map of the studied GO transit route,

between Finch bus terminal and Pearson Airport terminal in Toronto, Ontario, Canada

[125]. Unlike a transit city bus service, intercity bus service has fewer bus stops, and trav-

els long distances with high speed ranges through highway routes [66]. Additionally, the

Go transit intercity bus service utilizes a double-decker buses that have higher GVWR,

which is investigated in this case study. Table 4.5 presents the updated parameters to

model the double-decker EB compared to Table 4.3. Route 34 has a round bus service

in an eastbound and a westbound trip directions with an average time of 30 minutes for

each trip direction. The trip distances for the eastbound and westbound trip directions

are 24.4 km and 25.3 km, respectively. Fig. 4.12 shows the grade and elevation of the
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Figure 4.12: Elevation characteristics of the studied GO transit Route 34.

Table 4.5: Double–Decker EB Modeling and Simulation Updated Parameters Compared
with Table 4.3

mt = 26500 kg mAir = 131.5 kg

AWin = 76.94 m2 AChs = 115.4 m2

Ador = 2.5 m2 AF = 10.4 m2

A = 192.35 m2 V̇ Hvac = 2 m3/s

QHvac
R = 45 kW PAux

t = 15 kW

studied route with a minimum and maximum dwelling time at each bus stop of 60 to 180

seconds. In which, each of eastbound and westbound trip direction has eleven designated

bus stops. Each bus stop has a stop probability of 50%, except three bus stops, which are

a must stop locations at major terminals and thus they have stop probabilities of 100%

[125]. To that end, a set of 100 synthetic speed profiles is generated for different settings

of LoS. Where, the generated set of speed profiles follow the probability distribution given

in Fig. 4.13. The generated set of speed profiles are then utilized to investigate the impact

of the traffic conditions on the EBEC components: propulsion, regenerative, auxiliary, and

HVAC. Three generated speed profiles for free, light, and congested traffic conditions are

presented in Fig. 4.14. Similar to the first case study, the speed values decrease and the

trip duration increases at higher LoS. It is found that, the trip duration for the free, light,

and congested traffic conditions are 30 minutes, 35 minutes, and 64 minutes, respectively,

as shown in the figure. Where, the average speed of the free, light and congested traffic

conditions are 48.66 km/h, 42.23 km/h, and 23.14 km/h, respectively.
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Figure 4.13: Probability of the number of bus stops for the studied GO transit route.
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Figure 4.14: Samples from the westbound generated speed profiles: (a) Free traffic
condition, (b) Light traffic condition, and (c) congested traffic condition.

The breakdown of the EBEC components for the speed profiles shown in Fig. 4.14 are

presented in Table 4.6; where, the HVAC consumption is evaluated at exterior temperature

of 5°C. Unlike the first case study, it is found that differences between eastbound and west-

bound traction and regenerative energy consumption are not consistent (i.e., eastbound

might be higher, lower, or equal than/to the westbound energy consumption). This incon-

sistency is due to Route 34 topography shown in Fig. 4.12, where in both directions there
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Table 4.6: Energy Consumption Breakdown for the Sampled Speed Profiles in Figure
4.14 using Double–Decker EB

Consumption Free Traffic Light Traffic Congested Traffic

Breakdown (kW h/km) (v/c =0.35) (v/c =0.55) (v/c =0.95)

Traction Eastbound 2.26 2.07 1.75

Traction Westbound 2.15 2.22 1.74

Regenerative Eastbound −0.31 −0.274 −0.208

Regeneration Westbound −0.25 −0.4 −0.267

Auxiliary 0.3 0.343 0.63

HVAC at 5°C 0.154 0.177 0.313

Total Eastbound 2.396 2.32 2.482

Total Westbound 2.351 2.344 2.414

are uphills and downhills elevation. Hence, neither of the trip directions is guaranteed to

have higher EBEC than the other due to the route elevation. In contrast, the first case

study always has an uphill elevation in the northbound, and vice versa for the southbound

trip direction. For instance, as shown in Table 4.6, the traction consumption of the east-

bound trip compared to the westbound trip is higher in free traffic condition, lower in light

traffic condition, and almost equal in congested traffic condition. However, the traction

and regenerative energies constantly decrease with the increase of the LoS. In some cases,

it is observed that the traction energy consumption and regenerative energy for a given

LoS are higher than their corresponding lower LoS. For example, Table 4.6 shows that

the westbound traction and regeneration energy in light traffic condition of 2.22 kW h/km

and -0.4 kW h/km, respectively, are higher than those in free traffic condition i.e., 2.15

kW h/km and -0.25 kW h/km, respectively. This result is due to the smooth speed profile

shown in Fig. 4.14 (a) for free traffic condition. Where, lower instances of acceleration and

deceleration results in lower traction and regenerative energy values. In contrast, the light

traffic condition speed profile depicted in Fig. 4.14 (b) has many instances of acceleration

and deceleration according to the traffic condition. As a result, the speed profile in Fig.
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Figure 4.15: Energy consumption at different LoS conditions: (a) Traction, (b)
Regenerative, (c) Auxiliary, (d) HVAC, and (e) Total consumption vs. real world speed

profiles EBEC.

4.14 (b) has higher traction and regeneration energy compared to Fig. 4.14 (a).

Fig. 4.15 presents the distribution of the EBEC at different settings of the LoS at the

westbound trips direction. As shown in Fig. 4.15, the traction and regenerative energies

tend to decrease with the increase of LoS. While, auxiliary loads and HVAC system energy

consumptions increase at higher roadway LoS. As shown in Fig. 4.15 (e), the total EBEC

in the second case study slightly decreases from LoS of 0.25 to 0.65, then the total EBEC
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increases once again until it reaches its higher level at LoS of 1.05. Whereas, the decrease

rate in the traction energy consumption from LoS of 0.25 to 0.65 is higher than the increase

in the regenerative energy.

Fig. 4.15 (e) also presents an EBEC comparison between the distribution of the pro-

posed synthetic speed profiles and real–world speed profiles at different LoS conditions.

In particular, thirteen real–world speed profiles for the second case study are utilized to

validate the proposed model. The thirteen speed profiles are categorized based on their

traffic LoS and then their energy consumption have been calculated using the same EB,

route, and weather temperature specifications. As shown in the figure, the energy con-

sumption of the real–world speed profiles are within the calculated range for the synthetic

speed profiles. Where, the minimum and maximum absolute difference between the EBEC

of the real–world speed profiles and the median of the synthetic speed profiles distribu-

tion are 0.75% and 13.9%, respectively. While the average absolute difference between the

real–world speed profiles EBEC and their corresponding median is 8.5%.

4.4.3 Impact of Weather on the Energy Consumption of HVAC

In this section, the HVAC operation and consumption of the generated speed profiles will

be evaluated. The operation of the HVAC system at 5◦C for the speed profile shown in Fig.

4.6 (b) is depicted in Fig. 4.16. The interior EB temperature and the HVAC operation in

the heating mode are shown in Fig. 4.16 (a) and (b), respectively. As shown in Fig. 4.16,

at the beginning of the trip, the HVAC operation status is on to raise the EB temperature

from the initial temperature of 5◦C to the comfortable temperature range (18.9 - 23.1 ◦C).

Once the EB interior temperature reaches the comfortable temperature range, the HVAC

will operate only once the temperature falls below this range. Fig. 4.16 (c) shows the

ventilation burden on the HVAC operation, where 20% of the HVAC airflow should be

fresh air that is characterized by the EB external temperature [120]. Therefore, a portion
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Figure 4.16: EB: (a) Interior temperature, (b) HVAC operation state, (c) HVAC
ventilation energy, (d) HVAC infiltration losses, and (e) HVAC thermal losses.

from the HVAC heating capacity will be responsible for heating the fresh air, instead of

heating the circulated air from inside the EB. Fig. 4.16 (d) depicts the infiltration losses

due to the EB door opening at bus stops, which can be correlated with the temperature

drop in Fig. 4.16 (a). Fig. 4.16 (e) presents the summed EB conduction and convection

thermal losses, which are functions of the exterior and interior temperatures.

In order to better understand the consumption behaviour at different weather condi-

tions, the HVAC energy consumption for the two studied cases in Section 4.4.1 and 4.4.2
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Figure 4.17: First case study EBEC at different weather temperature: (a) HVAC
consumption, (b) Total consumption, and (c) HVAC consumption percentage.

are assessed at various temperature ranges from −40◦C to 40◦C. In this regard, Fig. 4.17

(a) presents the HVAC energy consumption for the first case study speed profile shown

in Fig. 4.6 (b) at different temperature conditions. Fig. 4.17 (b) shows the total energy

consumption at different temperature ranges. While, Fig. 4.17 (c) shows the contribution

percent of the HVAC energy consumption to the total EBEC. It is worth noting that the

HVAC consumption is maximum at 0.8 kW h/km during extreme cold temperature of -

40◦C, which raises the EBEC by 52.2%. As observed, the HVAC consumption decreases

gradually as the temperature increase until it reaches the minimum consumption point of

0.152 kW h/km at 20◦C. Although, the temperature condition at 20◦C is within the pas-

sengers comfortable temperature range, the HVAC ventilation’s fans might operate in case

of closed EB windows. At this condition the HVAC fans operation increases the EBEC

by 9.95%. The HVAC consumption, then, increases gradually with the increase of the

temperature toward 40◦C. In which, the HVAC consumes 0.37 kW h/km at 40◦C, which

increases the EBEC by 24%.
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Similar analysis is carried out to evaluate the impact of HVAC consumption at tem-

perature ranges from −40◦C to 40◦C for the second case study. The results demonstrate

a similar behaviour to Fig. 4.17. The HVAC consumption varies from 0.51 kW h/km at

-40◦C, then decrease to a minimum consumption point of 0.067 kW h/km at 20◦C, then

increases once again to 0.21 kW h/km at 40◦C. Where, the HVAC consumption contributes

to an additional 23.41% at -40◦C, only 3.1% at 20◦C, and 9.65% at 40◦C. Here it is worth

mentioning that the impact of the HVAC consumption in the second case study in terms

of kW h/km and contribution percent are lower than those found in the first case study

because of the longer covered distance i.e., 24.4 – 25.3 km compared to 5.75 km in the first

case study.

4.5 Discussion and Summary

A novel probabilistic model for generating large numbers of varying speed profiles of a

specific bus route was developed in this work. The model does not require a high time-

resolution speed profile data as it uses the basic information of the electric bus trip (i.e.,

trip time, distance, and stop locations). The proposed model has been utilized to analyze

the electric bus energy consumption variations due to route characteristics, traffic con-

ditions, weather conditions, and the operation of HVAC system. The conducted energy

consumption analysis considers the impact of roadway level of service on the traffic average

speed in order to simulate different real–world traffic conditions. Several case studies have

been presented to quantitatively assess the parameters that impact the energy consump-

tion of EBs at different real-world traffic and weather conditions. The case studies indicate

that different trip directions (i.e., eastbound versus westbound and southbound versus

northbound) might have different EBEC due to the route topography. Different weather

temperatures also have a substantial impact on the EBEC that can increase the energy

consumption by more than 50%. In addition, the numerical studies reveal that traffic con-
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ditions impact the EBEC components. In particular, the EB traction energy consumption

and regenerative energy decrease at higher traffic conditions, due to lower speed values at

high traffic conditions. While, the auxiliary loads and HVAC energy consumption increase

at higher traffic conditions, because of longer trip duration at higher traffic conditions. In

overall, the total energy consumption rate increases at higher traffic conditions, due to the

overall impact of traction, regenerative, auxiliary loads, and HVAC energy consumptions.

Furthermore, the type of the EB (i.e., single–decker versus double–decker) and the type

of the transit service (city versus intercity bus service) affect the EBEC. Double-decker

EB has higher traction energy than single–decker EB due to higher GVWR; in addition

intercity bus service has higher traction energy than city bus service due to higher speed

ranges. The presented energy consumption modeling and analysis is immensely useful to

conduct accurate feasibility and operation studies related to the adoption of EBs in transit

systems. As such, the developed probabilistic model for the speed profiles is superior in

capturing the true EBEC without the need for high resolution data.
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Chapter 5

Integrated Utility–Transit Model for

Optimal Configuration of BEB Fleets

5.1 Introduction

In this chapter, a new mathematical model is developed for electrified bus fleets. The

proposed mathematical formulation is developed for the integrated utility–transit model,

which aims at optimizing the BEB system configuration: these being battery capacity;

chargers’ rated size; and number of chargers. The formulated optimization model minimizes

the capital expenditure, while considering the operational constraints imposed by both

power and transit networks. Detailed BEB energy consumption model is also incorporated

in the optimal configuration model to enhance its accuracy.

5.2 Problem Hypothesis

PBT has traditionally been designed to serve the public in relatively dense urban areas,

where travel patterns and volumes enable service along fixed routes to follow predetermined
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Figure 5.1: Framework for the proposed utility–transit optimization model.

schedules. Transit network scheduling is a process yielding a timetable that includes de-

parture times from all the stops served by each route in the network. Each route–based

timetable consists of the departure times from the initial terminal, the expected departure

times from each bus–stop on the route, and expected arrival times at the final depot. The

transit network timetabling is dependent on many factors; among which, the most promi-

nent are: transit route networks, passenger demand, transfer coordination, and fleet size

[130]. Hence, a seamless transition toward electric transit systems necessitates preserving

the operation timetable [28, 30].

Fig. 5.1 shows a schematic overview for the proposed utility–transit electrification

model. As shown in the figure, the transit network operational schedule is inputted to the

BEBs transit fleet model. This would lead to the transit network electrification parameters

that preserve the transit network operational requirements. Also, transit fleet data and

network topology (i.e., BEBs weight, efficiencies, speed profiles, and routes distance and

topography) is inputted to the energy consumption model to calculate the BEBs energy
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consumption in kWh/km. To that end, the output of the BEBs transit fleet model and

the energy consumption model, besides the utility grid data and operational requirements

are inputted to the developed utility–transit model. The utility–transit model aims to

determine the optimal configuration for an electric transit city bus fleet: BEBs battery

capacity and the dimensions of the charging stations, e.g., size and number of chargers.

5.3 Modeling of BEBS Fleet and Energy Consump-

tion

In this section, the mathematical modeling of the BEBs transit fleet and the BEBs energy

consumption model are presented. Table 5.1 presents the definition of the proposed model

indices, sets, parameters, and variables.

Table 5.1: Chapter 5 Nomenclature

A. Indices

b, r Indices for transit network buses / routes.

a, j Indices for bus’s assignments / trips.

t, d Indices for time steps.

i Indices for nodes / branches in PDS.

B. Sets

B Set of transit network buses.

R Set of transit network routes.

A Set of transit network assignments.

Ja Set of trips within assignment a.

Ts Set of optimization time steps.

I Set of nodes / branches in PDS.

Tb,j,a Set of BEB b charging opportunity time
steps after trip j within assignment a.
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Table 5.1: Chapter 5 Nomenclature ... continued

C. Parameters

Nb Number of transit network buses.

Nr Number of transit network routes.

Na Number of transit network assignments.

N trp
a Assignment a number of trips.

Nt Number of optimization time steps.

Nopp
j,a Number of charging opportunity time

steps after trip j within assignment a.

lr Route r length (km).

Sa Defined schedule for assignment a.

T str
a Start time for assignment a (h).

T end
a End time for assignment a (h).

ttrpa Trip time for assignment a (mins).

tcyca Cycle time for assignment a (mins).

treca Recovery time after each trip within as-
signment a trips (mins).

tnxta Recovery time after completing assign-
ment a trips (mins).

tpio Time for plug in and out the charger
(mins).

tch,max
j,a Maximum charging time after trip j

within assignment a (mins).

karrj,a Trip j arrival time step within assignment
a.

T opt Optimization problem time horizon (h).

∆tstp Optimization time step interval (mins).

F trc
t,j,a BEB traction force at time t, trip j, and

assignment a (N).

Etrc
j,a BEB average traction energy at time t,

trip j, and assignment a (kWh).

EBtW
j,a Battery–to–wheel traction energy for

trip j within assignment a (kWh).

Econs
j,a BEB energy consumption for trip j

within assignment a (kWh/km).

P aux
b,t BEB b auxiliary loads at time t (kW).

mt,j,a BEB mass at time t, trip j, and assign-
ment a (kg).

φt,j,a Route gradient angle at time t, trip j, and
assignment a (Rad).

vt,j,a BEB velocity at time t, trip j, and assign-
ment a (m/s).

v̇t,j,a BEB acceleration at time t, trip j, and
assignment a (m/s2).

g, ρ Gravitational force (m/s2), and air den-
sity (kg/m3).

A, ct BEB cross section area (m2) and drag co-
efficient, respectively.

f BEB rolling resistance coefficient.

ηBtW Battery-to-wheel efficiency (%).

ηch Charger efficiency (%).

Cexp
b Battery expenditure cost ($/kWh).

Cexp
ch Charger expenditure cost ($/kW).

Cinst
ch Charger installation cost ($/charger).

SOCmin
b BEB b minimum SOC (%).

SOCmax
b BEB b maximum SOC (%).

Emin
b BEB bminimum battery capacity (kWh).

Emax
b BEB b maximum battery capacity

(kWh).

Pmin
ch Minimum charger size limit (kW).

Pmax
ch Maximum charger size limit (kW).
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Table 5.1: Chapter 5 Nomenclature ... continued

Nmin
ch Minimum charger’s number limit.

Nmax
ch Maximum charger’s number limit.

P dem
i,t Active power demand at node i and time

t (MW).

Qdem
i,t Reactive power demand at node i and

time t (MVAr).

Yii′ Admittance magnitude between node i
and i′ (pu).

θii′ Admittance angle between node i and i′

(Rad).

V min
i Bus i minimum voltage limit (pu).

V max
i Bus i maximum voltage limit (pu).

Pmax
i Branch i maximum rating capacity

(MW).

D. Variables

Eb BEB b battery size (kWh).

Pch Charger Size (kW).

Nch Number of chargers.

SOCdepb,j,a BEB b departure SOC for trip j
within assignment a (%).

SOCarrb,j,a BEB b arrival SOC after trip j within
assignment a (%).

∆SOCb,j,a BEB b charged SOC after trip j
within assignment a (%).

T ch
b,j,a BEB b charging time after trip j within

assignment a (mins).

xbd=t BEB b charging status binary variable at
time t.

Xb BEB b charging binary vector.

NXj,a Number of available charging time steps
after trip j within assignment a.

P gen
i,t Active power generation at node i and

time t (MW).

Qgen
i,t Reactive power generation at node i and

time t (MVAr).

Vi,t Voltage magnitude at node i and time t
(pu).

δi,t Angle at node i and time t (Rad).

Pi,t Power flow at Branch i and time t (MW).

P dem
i′′,t BEBs charging demand at node i′′ and

time t (MW).

5.3.1 Modeling of Electrified Public Bus Transit Fleet

PBT network integrates two components: Nb number of buses i.e., bus fleet, and Nr number

of routes. Both could be represented with identification numbers in the form of sets and,

respectively, as:

B = {1, 2, . . . , b, . . . , Nb}, (5.1)

R = {1, 2, . . . , r, . . . , Nr}. (5.2)
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Figure 5.2: Schematic diagram for the transit schedule assignments for a bus b.

Transit operators assign buses to routes according to their operational requirements,

which can be mathematically represented in the form of sets of assignments. Each set of

assignments throughout the operating hours can be given as:

A = {1, 2, . . . , a, . . . , Na} ∀ a = [b, r, Sa], (5.3)

where in each assignment a, bus b is scheduled for route r for a pre–specified scheduling

period, defined as follows:

Sa = [T str
a , T end

a , ttrpa , treca , tnxta , N trp
a ] ∀ a ∈ A. (5.4)

Fig. 5.2 shows a schematic diagram for bus b assignments described in (5.3) and (5.4).

As shown in the figure, the schedule timeframe for each assignment a is defined by a start

time, T str
a , and an end time, T end

a , for a specific assigned route r. Sequentially, each bus

operates the given number of trips, N trp
a , in a pre–specified time, which is followed by a

given recovery time treca i.e., the time at which the bus is idling at the bus terminal station

after each trip. It is noteworthy that each bus b may have more than one assignment

with different routes and/or schedule during the daily operation hours. This concept is

known in transit scheduling as interlining operation. As depicted in the figure, between

two consecutive assignments there is a recovery time for the bus at the terminal defined as

tnxta . Such time is dependent on the interlining process defined by the PBT operators.
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Given that the assigned buses and their operation schedules for a specific route r usually

vary throughout the daily operation (i.e., peak vs off–peak operation), the set of assigned

trips for each bus in a given assignment a can be defined as:

Ja = {1, 2, . . . , j, . . . , Nj,a} ∀ a ∈ A, (5.5)

where, the number of trips in each assignment is calculated:

N trp
a =

T end
a − T str

a + treca /60

tcyca /60
∀ a ∈ A, (5.6)

and the cycle time for each assignment a is given as follows:

tcyca = ttrpa + treca ∀ a ∈ A. (5.7)

It is worth noting that, the assignment end time, T end
a , does not include a recovery

time for the last trip, instead a recovery time between two consecutive assignments, tnxta ,

is considered. For this reason, equation (5.6) considers the last trip recovery time term to

maintain the equation time balance.

5.3.2 BEBs Consumption Model

Accurate estimation of the energy consumption for BEBs is vital requirement for the BEBs

planning and operation [57]. In particular, BEBs energy consumption is required to deter-

mine the optimal configuration of the batteries and chargers in order to ensure satisfying

the transit schedule requirement. Although, BEB manufacturers provide nominal energy

consumption rate for the BEBs, the nominal values lack the special characteristics of the

transit network i.e., routes topography and speed characteristics. In such a case, determin-

ing the accurate energy consumption based on the transit system characteristics of each
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route is worth investigating. In this context, the battery–to–wheel energy consumption of

a BEB depends on several factors; among which the most salient are: 1) route topogra-

phy characteristics (i.e., length and altitude), 2) weather conditions (i.e., air density and

temperature), 3) passengers occupancy rate (i.e., weight of BEB), and 4) traffic conditions

(i.e., speed profile) [57]. Generally, the energy consumption depends on the forces that act

upon the bus and the required traction force that overpower those forces to maintain the

BEB velocity during the trip [70, 115]. Hence, the traction force at any time instant in

trip j is deduced from Newton’s second law of motion as:

F trc
t,j,a = mt,j,a v̇t,j,a +mt,j,a g sinφt,j,a +mt,j,a g f cosφt,j,a

+
1

2
ρ ct A v2t,j,a ∀ j ∈ Ja ∧ ∀ a ∈ A ∧ ∀ t ∈ Ts. (5.8)

Equation (5.8) expresses the required traction force to overcome inertial, gravitational,

rolling resistance, and the aerodynamic forces. It is worth noting that during acceleration,

the traction force is positive and thus the required power is transferred from the battery to

the wheel. During deceleration, however, the traction force is negative and thus the kinetic

power is transferred to recharge the battery. Accordingly, the BEBs’ kinetic energy can be

recovered by the regenerative braking system during deceleration situations. The required

traction energy in kWh can be calculated through the summation of the bus traction force

and velocity product over the duration of the trip as follows:

Etrc
j,a =

∑
t∈Ts

F trc
t,j,a · vt,j,a ·∆tstp ∀ a ∈ A ∧ ∀ j ∈ Ja. (5.9)

It is noted that the bus battery power is inverted through an on–board bidirectional

DC/AC inverter to feed an electric motor. The motor then produces the traction power

required for the bus velocity and acceleration. Therefore, the average traction energy (i.e.,
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battery–to–wheel) can be given as:

EBtW
j,a = Etrc

j,a/η
BtW ∀ j ∈ Ja ∧ ∀ a ∈ A . (5.10)

The battery–to–wheel overall efficiency is obtained via the product of the inverter,

motor, and driver shaft efficiencies. For all battery electric buses, in addition to the

traction energy, the BEB provides energy to supply the auxiliary loads, such as heating,

cooling, lighting and sound systems. Therefore, the normalized total consumed energy per

trip length in kWh/km is calculated as follows:

Econs
j,a =

1

lr

(
EBtW

j,a +
∑
t∈Ts

P aux
b,t ·∆tstp

)
∀j ∈ Ja ∧ ∀a ∈ A. (5.11)

5.4 Integrated Utility–Transit Optimization Model

The objective function of the proposed optimization model consists of three terms as shown

in (5.12): i) the cost of the BEBs battery packs, (Nb ·Eb ·Cexp
b ), as the product of the number

of BEBs, their battery capacity, and the expenditure cost of the battery; ii) the cost of the

charging units, (Nch · Pch · Cexp
ch ), as the product of the number of chargers, charger rated

power and the charger expenditure cost; and iii) the charger installation cost, (Nch ·Cinst
ch ),

as the product of the number of chargers and the installation cost per charger.

Minimize :
b∈B

Nb · Eb · Cexp
b +Nch · Pch · Cexp

ch +Nch · Cinst
ch . (5.12)

Without loss of generality, it is assumed in this work that BEBs in the fleet are identical,

i.e., BEBs have the same battery size in order to provide transit network operators with

the flexibility to interline their buses (i.e., assign BEBs to different routes) [30]. Similarly,

chargers are assumed to be equal in size. To this end, for each bus b at trip j, the departure
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and arrival SOC (from/to the bus terminal) of the bus battery are constrained by the SOC

limits imposed by the bus manufactures given as:

SOCdepb,j,a ≤ SOCmax
b ∀ b ∈ B ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A, (5.13)

SOCarrb,j,a ≥ SOCmin
b ∀ b ∈ B ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A. (5.14)

The bus manufacturers set those limits to maintain a long battery lifetime and avoid

limp issues. Using the energy consumption model described in (5.11), the arrival SOC for

each bus b can be calculated as:

SOCarrb,j,a = SOCdepb,j,a − 100×
Econs

j,a

Eb
· lr ∀ b ∈ B ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A. (5.15)

Equation (5.15) determines the trip arrival SOC of each BEB as a function of its battery

capacity and departure SOC, in addition to the trip consumption rate and distance. As

such, the BEB battery size is constrained by the capacity limits available in the market as

follows:

Emin
b ≤ Eb ≤ Emax

b ∀ b ∈ B. (5.16)

Equation (5.12) is also subject to the SOC charging equation upon the arrival of the

BEB to the terminal after each trip:

SOCdepb,j,a = SOCarrb,j,a + ∆SOCb,j,a ∀ b ∈ B ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A, (5.17)

and

∆SOCb,j,a = ηch ·

((
Pch/60

)
×
(
T ch
b,j,a − tpio

)
Eb

)
∀ b ∈ B ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A. (5.18)
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Equation (5.18) shows that the added SOC (∆SOCb,j,a) depends on the battery capacity

(Eb), the plug–in charging power (Pch), and charging duration (Tb,j,a). The design of the

electrified transit system charging power is constrained by the minimum and maximum of

the available charger specifications in the market, as follows:

Pmin
ch ≤ Pch ≤ Pmax

ch , (5.19)

while, the BEBs charging duration decision variable after each trip is constrained as follows:

tpio ≤ T ch
b,j,a ≤ tch,max

j,a ∀ b ∈ B ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A. (5.20)

In the constraint set defined by (5.20) the BEBs charging duration is bounded to the

charger plug–in and plug–out time duration as a lower–bound, and the maximum allowed

charging duration as an upper–bound. Where, the maximum allowed charging duration is

defined as:

tch,max
j,a =

t
rec
a ∀ j 6= N trp

a ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A

tnxta ∀ j = N trp
a ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A

. (5.21)

As shown in (5.21), the maximum allowed charging duration equals to the recovery time

when the bus has an upcoming trip within the same assignment, otherwise it equals to the

recovery time for the next assignment (i.e., recovery time between consecutive assignments).

In order to model the opportunity of charging for each bus during the scheduled time of

operation, T opt is divided into Nt equal time steps represented as follows:

Ts = {1, 2, . . . , t, . . . , Nt} ∀ Nt =
T opt

∆tstp/60
. (5.22)

Based on (5.22), the opportunity of BEBs to charge at each time they arrive to the
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Figure 5.3: Schematic diagram for BEB charging opportunity after each trip j.

charging station is formulated in this work as a binary matrix given as:


X1

...

Xb

...

XNb

 =



x1d=1 . . . x1d=t . . . x1d=Nt...
...

...

xbd=1 . . . xbd=t . . . xbd=Nt...
...

...

xN
b

d=1 . . . xN
b

d=t . . . xN
b

d=Nt


∀ b ∈ B ∧ ∀ t ∈ Ts. (5.23)

The dimension of the binary matrix defined in (5.23) is Nb ×Nt. Each binary variable

in the matrix is assigned “one” when the bus charges and “zero” when the bus skips the

charging opportunity. As such, each row in (5.23) represents the charging opportunities of

a BEB during its scheduled operation period. It is noteworthy that the binary variables

for charging opportunities of each bus are defined only in the time steps at which the

bus stops at the charging station. To that end, Fig. 5.3 shows a schematic diagram of the

opportunity charging for each BEB upon it arrival to the charging station after a scheduled

trip j. As shown in the figure, the recovery time of the arrived bus is represented as a set

of charging opportunity time steps (Tb,j,a) as follows:

Tb,j,a = {karrj,a + 1, karrj,a + 2, . . . , karrj,a +N opp
j,a } ∀ b ∈ B ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A, (5.24)

where,

karrj,a =
60× T str

a + j · tcyca − treca

∆tstp
∀ j ∈ Ja ∧ ∀ a ∈ A, (5.25)
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N opp
j,a =

⌊
tch,max
j,a

∆tstp

⌋
∀ j ∈ Ja ∧ ∀ a ∈ A, (5.26)

where, karrj,a is the time step at which the bus arrives to the charging station after trip

j and b c is a floor function of the charging opportunity time steps, N opp
j,a , at which the

charging time variable (Tb,j,a) can take place. Defining the charging opportunity of each

BEB is crucial in the proposed utility–transit model, to allocate the BEB charging duration

(T ch
b,j,a) decision variable within the available charging opportunities (Tb,j,a), in addition to

integrate the transit system charging profile into PDS. As such, the charging allocation

optimally coordinate the transit system BEBs charging duration, in such a way as to: (i)

minimize the number of required chargers, and (ii) ensure that there is no negative impact

upon the PDS. Also, it is worth noting that the charging opportunity binary variables

have impact on the optimal design of the BEBs battery capacity and charging power. For

instance, the optimization problem may decide that the BEB will either not charge (i.e.,

binary variables are set to zero) or charge for small time duration after a certain trip due

to any reason (e.g. negative impact on PDS and/or minimize the number of charger). In

this context, the BEB battery capacity and/or the charger size might increase to ensure

that the BEB has sufficient energy to perform the next trip service. Hence, the binary

vector for any BEB b is constrained by the opportunity charging time steps as follows:

∑
t∈Tb,j,a

xbd=t =

NXj,a
, ∀ Tb,j,a ⊆ Ts

0, Otherwise
∀ b ∈ B ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A, (5.27)

NXj,a
=

⌈
T ch
b,j,a

∆tstp

⌉
∀ b ∈ B ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A, (5.28)

where d e is a ceil function of the required charging time steps. Equation (5.27)–(5.28)

limits the charger utilization to the number of time steps that satisfies the charging time.

In order to avoid the assignment of discontinuous charging for the bus during the charging

99



opportunity duration, the following constraint is applied:

|xbd=y − xbd=y−1|+
∑
t∈Tb,j,a

|xbd=t+1 − xbd=t| =

0, ∀ T ch
b,j,a = tpio

2, ∀ T ch
b,j,a > tpio

∀ y = karrj,a + 1 ∧ ∀ b ∈ B ∧ ∀ j ∈ Ja ∧ ∀ a ∈ A. (5.29)

Equation (5.29) states that during the charging opportunity period, only one rising

edge (i.e., charging status changes from 0 to 1) can exist. Similarly, one falling edge (i.e.,

charging status changes from 1 to 0) can exist. Therefore, the BEB charging status changes

twice, if the BEB charges during the available charging time. Accordingly, equation (5.29)

will be equal two, otherwise equation (5.29) is equal zero that means no change in the

charging status. The number of required chargers is function of the assigned charging in

(5.23) and it can be represented mathematically as follows:

Nch = Max
(∑

b∈B

Xb
)
, (5.30)

as such, the number of chargers in (5.30) is the maximum of the summation of the binary

matrix in equation (5.23) at each time t, which is constrained by its design limits as follows:

Nmin
ch ≤ Nch ≤ Nmax

ch . (5.31)

In this regard, the BEBs charging coordination in (5.23) plays a key role in minimizing

the number of the required chargers as per the objective function in (5.12).

The objective in (5.12) is also subjected to the operation constraints of the PDS in-

cluding the active and reactive power balance given in (5.32) and (5.33), respectively [131].

P gen
i,t − P dem

i,t = |Vi,t|
∑
i′∈I

[
|Vi′,t| · |Yii′ | × Cos

(
δi − δi′ − θii′

)]
∀i ∈ I ∧ ∀t ∈ Ts, (5.32)
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Qgen
i,t −Qdem

i,t = |Vi,t|
∑
i′∈I

[
|Vi′,t| · |Yii′| × Sin

(
δi − δi′ − θii′

)]
∀i ∈ I ∧ ∀t ∈ Ts. (5.33)

It is noted that the power demand of node i′′ at which the BEB charging station is

located can be expressed at a given time t as follows:

P dem
i′′,t = Pch ·

∑
b∈B

xbd=t ∀ t ∈ Ts ∧ ∀ i′′ ∈ I, (5.34)

where, equation (5.34) express the aggregated charging demand of the transit system as a

function of the charger power and the BEBs charging status in (5.23) at each time t.

Equation (5.12) is also subjected to the allowable node’s voltage limit and the branches’

capacity limits defined as:

V min
i ≤ Vi,t ≤ V max

i ∀ i ∈ I ∧ ∀ t ∈ Ts, (5.35)

|Pi,t| ≤ Pmax
i ∀ i ∈ I ∧ ∀ t ∈ Ts. (5.36)

5.5 Simulation Results

The optimization model described in (5.12)–(5.36) is a Mixed Integer Non-Linear Program-

ming (MINLP) problem. In this work, the proposed formulated optimization problem is

solved using the Basic Open-source Nonlinear Mixed INteger (BONMIN). BONMIN solver

uses a combined Interior Point nonlinear programming and branch and cut linear pro-

gramming techniques for solving the MINLP optimization problem [132]. Also, it is worth

noting that BONMIN algorithm has the functionality to incorporate heuristic techniques

to handle large MINLP problems. In particular, the incorporated heuristic techniques help

speeding up the detection of an infeasible solution search path and thus rapidly finds a

feasible solution [133]. BONMIN optimization solver is bundled as a MATLAB built-in
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Figure 5.4: Belleville city PBT map, BEBs assignments data, and its integration with the
33-power distribution system.

function in the OPTimization Interface (OPTI) toolbox [134]. Hence, the problem has

been coded and solved using the interfaced OPTI toolbox. The coded optimization algo-

rithm is executed in a PC with the following specifications: Core i7-6700, 3.4 GHz CPU, 16

GB RAM, and 64 bit windows operating system. The convergence tolerance is set to 10-7,

while, the maximum number of iterations, function evaluations and integer solver nodes

are set to 104.

Fig. 5.4 shows a schematic diagram for the integrated utility-transit system utilized to

test the effectiveness of the proposed model. As shown in the figure, the studied integrated

utility–transit system includes a 33–bus PDS coupled with a PBT network at node 10,

besides the transit network weekday operational timetable. The PBT network shown in

Fig. 5.4 is a real-world network for the city of Belleville in Ontario, Canada. For the

purpose of this study, the network is assumed to be fully electrified i.e., all diesel buses are

replaced by BEBs. Due to the unavailability of the PDS data at Belleville, the well-known
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Figure 5.5: Typical daily load profile for the studied system.

Table 5.2: Data of on–Board Bus Batteries and Fast Chargers

SOCmin
b = 20% SOCmax

b = 90%

Emin
b = 75 (kWh) Emax

b = 500 (kWh)

Pmin
ch = 75 (kW) Pmax

ch = 500 (kW)

Nmin
ch = 1 Nmax

ch = 6

tpio = 2 (minutes) Cexp
b = 300 ($/kWh)

Cinst
ch = 450 ($/kW) Cexp

ch = 35,000 ($/charger)

BEB GVWR = 17,200 (kg) P aux
b,t = 15 (kW)

GVWR: Gross vehicle weight rating

33 bus PDS is utilized in this study [135]. The charging station of the BEBs is located

at the bus terminal that is usually located at the city center [28]. In this context, the

charging station is assumed to be connected to node 10, which is the PDS center load.

Fig. 5.5 shows a typical daily load profile that is adopted for the studied PDS system

loads i.e., without the BEBs. As such, the acceptable voltage deviation is considered as

per the American National Standards Institute Range A (i.e., 5%) [136]. Table 5.2 shows

the input parameters for the bus batteries and the fast chargers [111, 137], where the time

step of the studied utility–transit model is 5 minutes.

Given the temporal variation in the traffic flow characteristics, the speed profile is not

constant during the scheduled trips. Therefore, three traffic flow conditions, using the ratio

(v/c) of traffic volume (v) to roadway practical capacity (c), are considered to accommodate
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the temporal variation in traffic conditions. These traffic conditions are free flow, light,

and congested traffic. In addition, the speed profile of each bus under each traffic flow

condition is calculated and aggregated for the transit network. To that end, two scenarios

are carried out in this work to determine the optimal BEBs configuration for the studied

transit network. Scenario 1 is the base case scenario, where neither the utility model nor

the traffic conditions are considered. In this scenario, the rate of energy consumption of

the BEBs is assumed to be fixed at an average of 1.05 kWh/km as claimed by most of the

bus manufactures [27]. Scenario 2 represents the proposed integrated model that accounts

for traffic flow conditions and the utility operational requirements stated in (5.32)–(5.36).

In Scenario 2, the BEBs energy consumption models are calculated using the Advanced

Vehicle Simulator (ADVISOR) according to their manufacture technical specifications,

routes topology, trips time frame, and the corresponding traffic flow conditions. ADVISOR

is a simulation tool for vehicle modeling developed by the National Renewable Energy

Laboratory of the United States Department of Energy. In order to accurately calculate the

energy consumption in Scenario 2, the BEB speed profile, route topography, and auxiliary

loads rating should be inputted to the BEBs’ energy consumption model shown in Section

5.3.2. For instance, Fig. 5.6 (a)–(c) show the elevation and gradient for Loyalist route

(one of Belleville city PBT routes shown in Fig. 5.4) and the speed profile for its assigned

BEB in a congested traffic condition, respectively. Figs. 5.7 (a) shows the corresponding

power consumption in Scenario 2 for the simulated trip. It is noted that the positive power

consumption in Fig. 5.7 (a) refers to the drawn power from the BEB energy storage units

to drive the BEB and supply the auxiliary loads, while the negative power represents the

recovered power during deceleration. Figs. 5.7 (b) shows the BEB SOC in both scenarios

(i.e., Scenario 1 and Scenario 2) for the simulated trip. As depicted in the figure, the first

scenario SOC is linear as it lacks the route characteristics, while the second scenario SOC

reflects the route topography and speed characteristics. The simulation has been conducted

for all eleven routes at the three traffic conditions i.e., free flow, light, and congested traffic.
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Figure 5.6: Scenario 2: (a) Speed profile, (b) gradient, and (c) elevation, for Loyalist
route.

0 5 10 15 20 25

B
E

B
 P

o
w

er

C
o

n
su

m
p

ti
o

n
 (

k
W

)

-200

0

200

400
(a)

Time (minutes)

0 5 10 15 20 25

B
E

B
 S

O
C

 (
%

)

70

75

80
(b)

Scenario 1 Scenario 2

Figure 5.7: BEB #9 operated at Loyalist route (a) Scenario 2 energy consumption, and
(b) Scenario 1 and Scenario 2 SOC.

Table 5.3 shows the average rate of energy consumption for the studied transit network

under different traffic conditions. It should be noted that the uncertainty associated with

weather condition is not considered in the model, and the resulted energy consumption is

aggregated at the route level. The aggregation of the energy consumption for the transit
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Table 5.3: BEBs Energy Consumption Based on Traffic Flow Condition

Parameters
Free Traffic

(v/c = 0.35)

Light Traffic

(v/c =0.55)

Congested Traffic

(v/c = 0.92)

Consumption (kWh/km) 0.825 1.1 1.65

Time frame (h) 20:00–7:00 9:00–15:00, 18:00–20:00 7:00–9:00, 15:00–18:00

Table 5.4: Optimal BEBs Configuration

Scenario (ID) Nch Pch (kW) Eb (kWh) Cost (k$) Trips consumption (MWh)

Scenario (1) 3 500 75 1027.5 2.65

Scenario (2) 4 250 300 1580 3.21

network is essential from the transit agencies point of view, in order to standardize their

BEBs fleet. Therefore, the BEBs can be scheduled to serve any of the transit system

routes. The data in Table 5.3 is inputted to the proposed optimization model. Further, a

sensitivity analysis between the feasible BEBs configuration is carried out for the studied

scenarios. This is to concisely evaluate: 1) the impact of integrating the PDS model; and

2) quantify the trade-off relation between the BEBs optimal configurations.

5.5.1 Optimal BEBs Configuration

Table 5.4 shows the optimal configuration of the BEB system for the studied transit network

in the two scenarios. The table shows also the cost of each configuration and the total daily

consumed energy by the electric PBT network. As shown in the table, accounting for the

PDS and the traffic flow conditions requires an increase of the net transit electrification cost

by 53.8%, compared to Scenario 1 in order to satisfy the scheduled transit operation. It is

also noticed that accurate consideration of the traffic flow conditions increases the BEBs

fleet energy consumption by almost 21%. Figs. 5.8 (a)–(b) show the BEB charging profile

of the two studied scenarios. Further, the impact of BEBs charging on the PDS voltage
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Figure 5.8: The BEBs charging profile at: (a) Scenario 1, and (b) Scenario 2.
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Figure 5.9: The PDS-wide minimum voltage profile for the studied scenarios.

profile is shown in Fig. 5.9, which represents the minimum voltage magnitude across the

entire PDS at each time step. As depicted in the figure, without considering the PDS in

the design of the BEB configuration, an undervoltage occurs due to the scheduled charging

of the BEBs during peak loading conditions. Fig. 5.8 (b) and Fig. 5.9, however, show

that the proposed integrated model adapted the BEBs configuration and their charging

profile in such a way as to do not violate the prescribed voltage limit of the PDS. For this

reason, the required charger size in Scenario 2 is found to be 250 kW compared to 500 kW

in Scenario 1, as shown in Table 5.4. Yet, in order to maintain the scheduled operation

of the transit network, the decrease in the charger size requires an increase in the BEBs

battery from 75 to 300 kWh. With a larger battery capacity, BEBs could complete few
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consecutive trips without the need of being fully charged. In addition, as illustrated in Fig.

5.8, BEBs with larger battery capacities require more time to be fully charged after the

completion of their daily assignments to prepare for the next day trips. The results also

show that although the charger size in Scenario 2 is decreased (compared to Scenario 1),

the available chargers are not fully utilized during heavy–loading conditions of PDS. For

example, during the time of 10:00 to 14:00, only two chargers at a time can be utilized out

of four available chargers as shown in Fig. 5.8 (b).

5.5.2 Sensitivity Analysis of the BEBs Configurations

The results of the above subsection shows that there is a trade-off between the choices of the

BEB battery capacity and the charger size for a transit network. To that end, a sensitivity

analysis is conducted in this section using the proposed optimization model for the two

studied scenarios. Given that, the BEB battery capacity is modular, different battery

capacities is considered for the sensitivity analysis. Where, the studied battery capacities

are within the minimum and maximum limits shown in Table 5.2, with a 25 kWh unit

interval. Figs. 5.10 (a) and (b) show the optimal configurations for the electrified transit

city bus at different number of chargers for Scenarios 1 and 2, respectively. As shown in

Fig. 5.10, the relation between the required battery capacity and the required charger size

is inverse proportional i.e., the battery capacity decreases with the increase of the charger

size. As shown in Fig. 5.10 (a), the maximum required battery capacity is found to be

425 kWh for three 75 kW chargers. Fig. 5.10 (b), however, shows that the maximum

battery capacity for Scenario 2 is 500 kWh at 75 kW charger size for three chargers and

above. Hence, in the latter scenario, increasing the number of chargers at 75 kW rated

power does not reduce the required battery capacity. As such, a 500 kWh is required for

the BEBs battery capacity, so the BEBs can deliver the assigned transit schedule given the

low charger size of 75 kW. This is mainly because the lower charger size cannot provide
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Figure 5.10: Feasible BEBs configurations at different number of chargers for; (a)
Scenario 1, and (b) Scenario 2.

sufficient energy to the BEBs during the recovery time. Therefore, a large battery capacity

is needed regardless increasing the probability of BEBs charging opportunity (i.e. number

of charger).

It is also noticed that, the BEBs battery capacity in Scenario 2 is always higher than

Scenario 1, because of the PDS incapability to charge the BEBs during high loading condi-

tions. Therefore, larger battery capacity is required in order to satisfy the transit schedule

and BEBs SOC constraints without violating the PDS constraints. For instance, the re-

sults show that only 75 kWh battery is required for three 500 kW chargers in Scenario 1

optimal configuration as shown in Table 5.4. However, as depicted in Fig. 5.10 (b), the

required battery capacity for three 500 kW chargers is found to be 300 kWh for Scenario

2 due to the imposed constraints of the PDS.

109



5.6 Discussion and Summary

This chapter proposes an integrated utility-transit mathematical model for the optimal

configuration design of transit BEB systems. The configuration includes the BEBs bat-

tery capacity, chargers size, and the number of required chargers. The objective of the

optimization problem is to minimize the electrification expenditure cost of PBT networks.

The proposed optimization algorithm takes into account the operation requirements of both

power distribution and transit networks. It also incorporates accurate modeling for the

BEBs energy consumption considering bus models, route topology, and traffic conditions.

A real-world transit system has been utilized to validate the effectiveness of the proposed al-

gorithm. The results show that the operation practices of both transit and power networks

are highly sensitive to the BEB configuration. It is noted in the case studies that during

heavy power loading conditions, PDS may not able to satisfy the charging requirements

of the BEB fleet when the BEBs configuration and charging schedule are not optimally

designed. When PDS is highly congested under certain BEB configuration, the following

design aspects related to the BEB system can be considered. i) Increase the BEBs’ battery

capacity to deliver few consecutive trips without the need for a charging session. ii) Adjust

the charging schedule so less number of BEBs could have the opportunity to charge during

heavy–loading conditions. iii) Decrease the charger’s size to allow BEBs to be charged

without impacting the PDS during heavy–loading conditions. iv) Increase the number of

chargers to sufficiently charge the BEBs before and after the heavy–loading conditions,

given that BEBs will not have the full opportunity to charge during such conditions.
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Chapter 6

Optimal Scheduling of Hydrogen

Storage for Fuel Supply and Capacity

Based Demand Response

6.1 Introduction

As the emerging technology offers more economic and efficient mechanisms for hydrogen

production, FCEVs are expected to be deployed more extensively in the near future. Prolif-

eration of hydrogen fueling stations throughout the transportation network and justifying

their economic viability are key factors to the success of the FCEVs. On the other hand,

in today’s deregulated market environment, many governments are encouraging private

investors to invest in key infrastructures including the hydrogen fueling stations. To that

end, this chapter presents a new model for optimal scheduling of hydrogen fueling stations

to both serve the transport sector and the electricity market operator. The model schedules

the stations to yield the maximum revenue via the stacked profit from multiple sources.

The main objectives and contributions of the present chapter are listed in the following:
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1. A new central scheduling model is proposed to coordinate distributed hydrogen fu-

eling station in order to (i) exploit the lower electricity market prices to reduce

the power purchase cost; (ii) contribute to the Capacity–Based Demand Response

(CBDR) program in order to further enhance the economic feasibility of the sta-

tions; and (iii) satisfy the hydrogen demand by the transportation sector. The model

considers profitability constraints and dynamic hydrogen pricing mechanisms in the

optimization problem to ensure that the expected profit is achieved.

2. The CBDR management is incorporated into the optimization problem. The stacked

benefit from the CBDR market and the hydrogen sale to the transportation sector

enhances the economic viability of the stations. Thus, the expected profit can be

achieved at the lower hydrogen sale prices.

3. The concept of the distributed coordination for the hydrogen fueling stations to

respond to the DR signal is incorporated into the model. Based on this concept,

hydrogen fueling stations might have different response behaviors to the DR signal

depending on their SOC and the hydrogen demand by the transportation sector; yet

they all contribute to the CBDR program as a whole by following the DR signal.

To that end, Table 6.1 presents the definition of this chapter indices, sets, constant,

time–dependent parameters, and variables.
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Table 6.1: Chapter 6 Nomenclature

A. Indices

t Index of time steps.

h Index of hydrogen fueling stations.

n Index of power network nodes/feeders.

B. Sets

T Set of optimization problem time steps.

H Set of hydrogen fueling stations.

N Set of nodes in power distribution system.

C. Constants

∆t Time interval of the optimization prob-
lem (h).

T Optimization horizon (h).

Fmin
h Minimum hydrogen outflow of elec-

trolyzer (m3/h).

Fmax
h Maximum hydrogen outflow of elec-

trolyzer (m3/h).

V min
n Minimum voltage magnitude at Node n

(pu).

V max
n Maximum voltage magnitude at Node n

(pu).

Pmax
n Maximum power at Branch n (MW).

Ynn′ Admittance magnitude from Node n to n′

(pu).

θnn′ Admittance angle from Node n to n′

(Rad).

SOCmin
h Minimum hydrogen state of charge
(m3).

SOCmax
h Maximum hydrogen state of charge
(m3).

ηPtH Efficiency of the PtH unit (%).

ηF Faraday’s efficiency (%).

F Faraday’s constant (MAh/m3).

ηCmp Compression efficiency (%).

LHVH2 Lower heat value of hydrogen
(MWh/kg).

λH2 Hydrogen density (kg/m3).

ηPtH Efficiency of the PtH unit (%).

vPtH PtH unit input voltage (V).

ΠPtH Power to hydrogen conversion factor
(m3/MWh).

γDsp Hydrogen storage energy dissipation rate
(%/h).

DRHr Normalized demand response contribu-
tion (h/yr).

αAdj,Prc Penalty factor for hydrogen prices
(m3/h).

αAdj,ER Penalty factor for expected revenue de-
viation (1/h).

DRU,Prc CBDR utilization price ($/MW).

DRA,Prc CBDR availability price ($/h).

RExp Expected revenue for hydrogen stations
($).

RDev Acceptable revenue deviation ($).

PrcH2,min Hydrogen minimum sale price
($/m3).

βAdj,Prc
h Price adjustment factor to control hy-

drogen prices.

CPtH Operating cost of the PtH unit ($/m3).
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Table 6.1: Chapter 6 Nomenclature ... continued

D. Time–Dependent Parameters

PrcElc
t Electricity prices ($/MWh).

FDem
h,t Hydrogen demand by transportation

sector (m3/h).

SOCCBDR
t Available state of charge for CBDR
(m3).

PDem
n,t Power demand at Node n (MW).

QDem
n,t Reactive power demand at Node n

(MVAr).

PSgl
t Demand response signal (MW).

ρPtH
t PtH unit pressure (bar).

ρStot Hydrogen storage pressure (bar).

E. Variables

PrcH2
h,t Hydrogen sale price ($/m3).

PrcH2,Adj
h,t Slack variable for hydrogen sale

price ($/m3).

P PtH
h,t Input power of PtH unit (MW).

QPtH
h,t Reactive power of PtH unit (MVAr).

PCmp
h,t Input power of compressor at Station h

(MW).

F PtH
h,t Outflow of hydrogen from electrolyzer

unit (m3/h).

SOC lb
h,t Lower bound SOC (m3).

SOCh,t SOC of the hydrogen station (m3).

SOCA,DR
h,t Slack variable for DR SOC (m3).

RAdj,Exp
t Slack variable to adjust the deviation

of the expected revenue for hydrogen sta-
tions ($).

PGen
n,t Power generation at Node n (MW).

QGen
n,t Reactive power generation at Node n

(MVAr).

δn,t Voltage angle at Node n (Rad).

Vn,t Voltage magnitude at Node n (pu).

Pn,t Power flow at Branch n (MW).
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Figure 6.1: PtH unit interface with power grid and its control structure.

6.2 Problem Description

Fig. 6.1 shows a block diagram of the PtH interface with power grid and its power circuit

control structure. The operational principle of the PtH system involves applying direct

current through two electrodes, which are immersed in water to diffuse the water molecules

into hydrogen and oxygen. In such a setup, the PtH unit requires a high level of DC

current at a low voltage supply [138]. For this reason, the AC power needs to be rectified

and regulated through an AC–DC converter [139]. The control system mainly consists of

the PtH flow rate and pressure control [140], where the steady–state equations showing

the PtH flow rate are given as follows [140]:

P PtH
h,t =

F PtH
h,t

ΠPtH · ηPtH
∀t ∈ T ∧ ∀h ∈ H, (6.1)

ΠPtH =
ηF

2 · F · vPtH
∀t ∈ T ∧ ∀h ∈ H, (6.2)

ηPtH =
F PtH

h,t · LHVH2 · λH2

P PtH
h,t

∀t ∈ T ∧ ∀h ∈ H. (6.3)

The control system generates the switching signals for the converter that would control

the PtH input power flow, and thus, the produced hydrogen. The PtH system utilizes a

feedback controller to adjust the pressure of the storage reservoir [140]. To that end, the

pressure control mechanism generates a reference signal for the compressor input power
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(PCmp), depending on the electrolyzer and hydrogen pressures as feedback quantities; the

steady–state equation of the pressure controller is given as follow:

P Cmp
h,t =

F PtH
h,t

ηCmp
· k ·R · T

PtH

k − 1

[( ρStot

ρPtH
t

) k−1
k − 1

]
∀ t ∈ T ∧ ∀ h ∈H, (6.4)

where, k, R, and T PtH represent the polytropic coefficient, gas constant, and PtH temper-

ature, respectively.

Hydrogen fueling stations are likely to be distributed throughout the transport network

to support the consumers (i.e., FCEVs) in a wide area. A central controlling mechanism

would, then, be required to supervise and schedule the stations connected at several points

in the power distribution system. Central controllers have been used in industry and widely

studied in the literature. Central controllers require bidirectional communication channels

to collect the data, and then send the scheduling/control signals to multiple devices. Such

controllers, for instance, aim to collect data from multiple assets in a microgrid and optimize

the operation of the microgrid by providing the optimal setpoints to different assets such

as generators, dispatchable loads, energy storage, etc. [141]. In the proposed algorithm,

the central controller aims to optimize the joint operation of the distributed hydrogen

fueling stations. In this regard, the received signals by the central controller include:

(i) the hydrogen demand by the transportation sector (i.e., distributed hydrogen fueling

stations), (ii) the hydrogen fueling station SOC, (iii) the electricity market prices, and

(iv) the DR signal by the electricity market operator. The central controller processes the

received data and determines the optimal setpoints of the PtH units for each hydrogen

fueling station. In addition, hydrogen sale prices are decided by the central controller. It

is also worth noting that the power grid’s constraints are met by the scheduling model.

The general layout for the integrated hydrogen stations and power grid is represented in

Fig. 6.2. As shown in the figure, it is assumed that the PtH unit (i.e., electrolyzer) is placed

on site at the hydrogen fueling stations, where the hydrogen is supplied to the consumer.
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Figure 6.2: Hydrogen storage scheduling using a central controller.

Several electrolyzers are connected at different locations in the power distribution system

that would convert the electricity to the hydrogen, which is stored in local storage and

supplied to the consumers. In such a setup, there is also a potential for electrolyzers to

act as dispatchable loads to provide some services to the power grid. The electrolyzers can

participate in various DR programs in the electricity market, thereby achieving a higher

revenue level. This work has targeted CBDR, which is a promising source of revenue for

dispatchable consumers governed by some power system operators in North America [142].

The CBDR program allows the contracted DR providers to participate in the wholesale

market by accepting the DR signals. In particular, the electrolyzers under CBDR are

scheduled to take less power from the grid when such an action is demanded by the market

operator. The storage would, however, need to be scheduled properly to provide reserve

to support the transport sector since electrolyzers would have to generate less hydrogen

when they receive DR signals during peak power demand.

This work aims to develop an optimal scheduling model that would incorporate DR

signals into the optimization model to prepare the storage for the following purposes:

• Utilizing the lower/negative electricity market prices for hydrogen production to re-
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duce the power purchase cost.

• Contributing to the CBDR program to further improve the economic feasibility of

the investment in hydrogen stations.

While the main objective of the hydrogen stations would be fuel supply to the transport

sector, the CBDR is chosen as the second objective due to the following reasons:

• Hydrogen fueling stations are dispatchable and can easily follow the DR signals issued

by the market.

• Hydrogen fueling stations can accommodate lower power consumption for a short

period of time once such a request is made by the market. In such a case, hydrogen

stations rely on the reserved hydrogen in the storage.

• Several stations could be distributed over the network as a chain; thus, there would

be a sizable amount of stored energy which may not always be needed by the trans-

portation sector. The stored hydrogen can then be utilized to compensate for the

lack of required hydrogen demand at peak power periods, usually when a DR signal is

issued. This would enable the facility to serve the electricity market by participating

to the CBDR program.

It is noteworthy that once the DR signal is issued, the model would prioritize the

DR contribution to the hydrogen production. Such a mechanism is accommodated in the

objective function using slack variables as explained in Section 6.3. The DR contribution is

given the highest priority in order to (i) ensure that the stations can fulfill their commitment

to the market, and (ii) enhance the generated profit since the DR revenue is usually higher

than the revenue resulted from fuel supply during the DR signal time duration, i.e., the

first objective [142].
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Figure 6.3: Schematic of the proposed central scheduling mechanism.

Fig. 6.3 shows the scheduling mechanism of the central controller that aims to optimize

the setpoint of the hydrogen fueling stations and determine the hydrogen sale prices. In

order to consider the load and renewable generation variability, the scheduling setpoints

are recursively updated by reprocessing the optimization problem at each time step [143].

As shown in Fig. 6.3, the scheduling model stores and utilizes the historical revenue data

that are added to the future revenue values; based on which the hydrogen sale prices are

decided to ensure that the expected revenue is obtained over a given time period (i.e., T ∗).

The computed profit is resulted from the sum of the historical revenue data in the past

several hours and the look–ahead revenue quantities. This ensures that unexpected and

sudden changes in the market would not lead to abrupt changes in the hydrogen prices. As

such, the hydrogen price follows a smoother trend to ensure that the longer–term revenue

values meet the expectations rather than very short–term revenues.

6.3 Proposed Model

The proposed model for optimal scheduling of the PtH stations are formulated in this

section. The model aims to (i) maintain the expected profit via stacked profit, and (ii) offers
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the lowest values for the hydrogen sale prices. The objective function of the optimization

problem is formulated as:

Maximize :
PPtH

h,t , Prc
H2
h,t , Prc

H2,Adj
h,t , RAdj,Exp

t∑
t∈T

(∑
h∈H

FDem
h,t · PrcH2

h,t−
∑
h∈H

P PtH
h,t · PrcElc

t

−αAdj,ER ·RAdj,Exp
t −

∑
h∈H

αAdj,Prc · PrcH2,Adj
h,t

)
·∆t. (6.5)

The objective function stated by (6.5) aims to maximize the profit of hydrogen fuel

stations, including the following terms:

1) Controlling the hydrogen price as a decision variable to meet the profitability con-

straint:
∑

h∈H F
Dem
h,t · PrcH2

h,t

2) Deciding the optimal setpoints of the PtH unit to purchase the power at lower

market prices:
∑

h∈HP
PtH
h,t · PrcElc

t . Here it is worth noting that the objective function

minimizes the electricity cost associated with the hourly volatile electricity prices in the

wholesale electricity market. While, other electricity costs, such as global adjustment and

peak demand payments would be paid as a percentage of the electricity bill [110].

3) Controlling the revenue deviation slack variable: αAdj,ER ·RAdj,Exp
t

4) Controlling the hydrogen price slack quantity:
∑

h∈H α
Adj,Prc · PrcH2,Adj

h,t .

The objective function is subject to the PtH constraints as follows:

Fmin
h ≤ F PtH

h,t ≤ Fmax
h ∀ t ∈ T ∧ ∀ h ∈ H (6.6)

F PtH
h,t = ΠPtH · ηPtH · P PtH

h,t ∀ t ∈ T ∧ ∀ h ∈ H, (6.7)

where, (6.6) limits the operation of electrolyzer units to its minimum and maximum phys-
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ical capacity, while (6.7) indicates the hydrogen production in m3/h in terms of the con-

sumed electric power by the electrolyzer.

The objective function is also subject to the hydrogen storage SOC balance equation:

SOCh,t = SOCh,(t−1) + (F PtH
h,t − FDem

h,t − γDsp · SOCh,t) ·∆t ∀ t ∈ T ∧ ∀ h ∈ H, (6.8)

where (6.8) ensures that the net energy into the storage reservoir at any given time step is

equal to the available SOC plus the inflow of the generated hydrogen, while the hydrogen

demand and the storage system dissipation are deducted.

The hydrogen storage is constrained based on its minimum and maximum capacity as

expressed in (6.9)–(6.11) to meet the requirement for participation to the CBDR program.

SOC lb
h,t ≤ SOCh,t ≤ SOCmax

h ∀ t ∈ T ∧ ∀ h ∈ H (6.9)

SOC lb
h,t = SOCmin

h + SOCCBDR
t − SOCA,DR

h,t ∀ t ∈ T ∧ ∀ h ∈ H (6.10)

0 ≤ SOCA,DR
h,t ≤ SOCCBDR

t ∀ t ∈ T ∧ ∀ h ∈ H, (6.11)

where the DR slack variable in (6.10) allows the utilization of the contracted CBDR SOC,

i.e., SOCCBDR
t to respond to the DR signals. The CBDR SOC slack variable is separately

assigned to each station and enables different contributions from each station to meet the

CBDR requirement as a whole. While the contribution from each station is different, the

aggregated SOC, SOC lb
h,t, should satisfy the CBDR program requirement at each time step

as formulated in the following constraint:

∑
h∈H

SOCmin
h +

(
1− Sgn(P Sgl

t )
)
· SOCCBDR

t ≤
∑
h∈H

SOCh,t

≤
∑
h∈H

SOCmax
h ∀t ∈ T ∧ ∀h ∈ H ∀P Sgl

t ≥ 0, (6.12)

where, Sgn(P Sgl
t ) states the sign function of the DR signal at the time interval t, i.e.,
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equals one if the signal has a non–zero value and equals zero if the signal is zero, per-

taining no participation to the DR program is required. As expressed in (6.12), once the

signal Sgn(P Sgl
t ) is zero, the SOC lower bound would be boosted by the addition of the

SOCCBDR
t . Once the signal Sgn(P Sgl

t ) is non–zero, however, the SOC would be allowed

to approach the minimum value so that the SOCCBDR
t can be freed up to respond to the

DR signal. In any case, the SOC is bounded by the maximum value as stated by (6.12). It

should be noted that the issued DR signal aims to limit the total intake power of the fueling

stations. The optimization constraint in (6.13) ensures that the optimization problem can

act as per the DR signal, once the signal is issued.

∑
h∈H

P PtH
h,t ≤ Sgn(P Sgl

t ) · P Sgl
t +

(
1− Sgn(P Sgl

t )
)
·
∑
h∈H

Pmax
h

∀ t ∈ T ∧ ∀ h ∈ H ∧ ∀ P Sgl
t ≥ 0; (6.13)

equation (6.13) implies that the sum of the PtH intake power should not exceed the quantity

of the DR signal (P Sgl
t ). This is generally defined according to the executed contract

between the market operator and the market participants who are willing to contribute

to the DR program. As expressed by (6.13), once the signal is zero, the aggregated input

power of the PtH units are limited to their maximum ratings stated by Pmax
h , i.e., pertaining

no limitation imposed by the electricity market operator. Once the signal is issued by the

market operator (non–zero value for Sgn(P Sgl
t )), the PtH units are scheduled accordingly

to consume less power in order to serve the grid during peak periods. In such a case, the

sign function of the DR signal changes to one; thus, (6.13) ensures that the aggregation of

the PtH input power does not exceed the DR signal quantity. Equation (6.14) expresses the

profitability constraint of the optimization problem, where it would adjust the hydrogen

sale prices at each time interval to ensure that the expected revenue is achieved.
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RExp −RAdj,Exp
t ≤

∑
t∈T ∗

{∑
h∈H

(
F̂Dem
h,t · P̂ rc

H2

h,t − P̂ PtH
h,t · P̂ rc

Elc

t − CPtH · F̂ PtH
h,t

)
·∆t

+DRU,Prc · P̂ Sgl
t +DRA,Prc · ŜOC

CBDR

t

ΠPtH · ηPtH
·DRHr

}
∀t ∈ T . (6.14)

As such, the quantities of (6.14) over a set of time steps in T ∗ include several historical

and look–ahead values that would contribute to the revenue calculation. These quantities

are distinguished from the original optimization variables/parameters by ̂ as expressed

in (6.14). It is noteworthy that the historical revenue data are stemmed from the actual

operation in the previous scheduling hours, where at each time step, the algorithm directly

adds both the historical and look–ahead revenue data with the same weighting factor. This

ensures that the long–term expected profit is met without experiencing a high volatility

in hydrogen prices in order to achieve the expected revenue at every optimization cycle.

The adopted methodology for the computation of the revenue, however, would ensure that

the longer–term profitability of the system is met instead of meeting the targeted revenue

at each optimization cycle. The generated revenue is set to equal or exceed the expected

revenue, i.e., RExp, where the slack variable is bounded in the following (i.e., RAdj,Exp
t

allows the expected revenue to be deviated to a certain extent as needed):

0 ≤ RAdj,Exp
t ≤ RDev ∀ t ∈ T . (6.15)

The revenue deviation in (6.15) would prevent the infeasibility of the optimization

problem by creating a soft profitability constraint, where the expected revenue cannot be

achieved temporarily. The future operation would compensate for the loss of revenue if the

revenue is deviated from the expected value in one cycle. The slack variable RAdj,Exp
t is

penalized in the objective function so that the revenue is not deviated from the expected
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value unless this is needed for the convergence of the optimization problem. While the

hydrogen price is defined as a variable in the formulated optimization problem, it is bounded

by the model based on the hydrogen price margin in the market. Thus, the hydrogen price

does not arbitrarily increase to generate a higher profit. As such, the objective function

given in (6.5) is also subject to the hydrogen price constraints as follows:

PrcH2
h,t = PrcH2,min

h + PrcH2,Adj
h,t ∀ t ∈ T ∧ ∀ h ∈ H (6.16)

0 ≤ PrcH2,Adj
h,t ≤ βAdj,Prc

h,t · PrcH2,min
h ∀ t ∈ T ∧ ∀ h ∈ H. (6.17)

Equation (6.16) states that the hydrogen price can increase from a predefined minimum

value up to a certain limit adjusted by another variable, i.e., PrcH2,Adj
h,t . The adjusting

variable can be anywhere between zero and a certain factor of the minimum price as

stated by (6.17). The slack variable PrcH2,Adj
h,t is penalized in the objective function to

prevent price increases unless it is required to meet the expected revenue. It is noted that

while both slack variables RAdj,Exp
t and PrcH2,Adj

h,t are penalized in the objective function,

the penalty factor for the former is larger, and both penalty factors are higher than the

electricity prices to prioritize generating the expected profit versus offering a lower sale

price to FCEVs. Such a requirement is met by the following constraint:

αAdj,ER >> αAdj,Prc>> PrcElc
t ∀ t ∈ T . (6.18)

The objective function is also subject to the set of power flow and voltage constraints

as stated in the following:

Pn,t ≤ Pmax
n ∀ t ∈ T ∧ ∀ n ∈ N (6.19)

V min
n ≤ Vn,t ≤ V max

n ∀ t ∈ T ∧ ∀ n ∈ N . (6.20)
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The active and reactive power injected in the system at each node n are stated as:

Pn,t = |Vn,t|
∑
n′∈N

[
|Vn′,t| · |Ynn′ |×Cos

(
δn − δn′ − θnn′

)]
∀ t ∈ T ∧ ∀n ∈ N ∧ ∀h ∈ H (6.21)

Qn,t = |Vn,t|
∑
n′∈N

[
|Vn′,t| · |Ynn′ |×Sin

(
δn − δn′ − θnn′

)]
∀ t ∈ T ∧ ∀n ∈ N ∧ ∀h ∈ H. (6.22)

The active and reactive power balance constraints in the power grid are stated by (6.23)

and (6.24); in which x(n) equals one for buses to which a fueling station is connected.

∆Pn,t = PGen
n,t − PDem

n,t − x(n) · P PtH
h,t − Pn,t ∀ t ∈ T ∧ ∀ n ∈ N ∧ ∀ h ∈ H (6.23)

∆Qn,t = QGen
n,t −QDem

n,t − x(n) ·QPtH
h,t −Qn,t ∀ t ∈ T ∧ ∀ n ∈ N ∧ ∀ h ∈ H. (6.24)

6.4 Numerical Illustration

Fig. 6.4 shows the 33–bus power distribution system [98, 109] adopted to numerically

evaluate the proposed algorithm. As shown in the figure, the power system is integrated

with a mix of wind and solar generation, in addition to the distributed hydrogen fueling

stations. Each hydrogen fuel station is comprised of an electrolyzer and a hydrogen storage

unit. The modeling and simulation parameters for the stations are adopted from the

literature [89, 144], as listed in Table 6.2. Fig. 6.5 shows the hydrogen demand profile of

the transit sector at each fueling station. As shown in the figure, each station is assumed

to have a different consumption pattern depending on the demand requirement at that

station. The figure also shows that the demand varies from the minimum during night

time to the maximum during day time.
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Figure 6.4: 33–bus power distribution test system with high penetration of renewable
generation, integrated with hydrogen fueling stations.

Table 6.2: Modeling and Simulation Parameters

Fmax
h = 430 (m3/h) Fmin

h = 0

SOCmax
h = 5000 (m3) SOCmin

h = 10%× SOCmax
h

ΠPtH = 360 (m3/MWh) ηPtH = 60%

γDsp = 0.006%× SOCh,t Pmax
n = 10 (MW)

V max
n = 1.05 (pu) V min

n = 0.95 (pu)

Total CAPEX = $2.5 Million LS = 15 (Year)

CPtH = 3%× $2.5M/(Fmax
h × 8760) SOCCBDR

t = 20%× SOCmax
h

DRA,Prc = 30 ($/h) DRU,Prc = 30 ($/MW)

PrcH2,min
h = 0.25 ($/m3) βAdj,Prc = 2

RExp = 13%× CAPEX RDev = 3%× CAPEX
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Figure 6.5: Hydrogen demand by the transit sector at (a) Station 1, (b) Station 2, and
(c) Station 3.

The ratings for the electrolyzer and hydrogen storage units are selected based on the

transportation demand and the requirement to participate to the CBDR program. For

simulation purposes, it is assumed that the distributed hydrogen stations have different

demand profiles. It should also be noted that while the expected revenue RExp in (6.14)

could vary depending on the project risk profile, it is assumed to be 13% of the CAPEX for

the numerical studies [145] in this section. In any case, considering different values for the

expected revenue would not change the proposed concepts and the ultimate comparative

study.

The formulated model in Section 6.3 is categorized as a nonlinear optimization problem

and is solved using a combined Interior Point nonlinear programming and Newton Trust

Region solution mechanism. It should be noted that while the optimization formulation

is general in this research work, the optimization horizon is considered as 3 hours with

1–hour time interval in the numerical studies [146]. The look–ahead optimization problem
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Figure 6.6: (a) Electricity market prices; operational setpoints of hydrogen fuel stations
at: (b) Station 1, (c) Station 2, and (d) Station 3.

decides the scheduling setpoints for the next T hours based on the demand forecast for the

same hours. Thus, storage will be prepared accordingly for the upcoming demand by the

transportation sector. The proposed algorithm is coded and simulated in the MATLAB

environment. The optimization algorithm is run in a PC with the following specifications:

Core i7-6700, 3.4 GHz CPU, 16 GB RAM, and 64 bits system. The convergence tolerance

and the maximum number of iterations are set to 10-6 and 500, respectively. It is found

that the average execution time is around 10 seconds which would be suitable for the hourly

scheduling model.

6.4.1 Operational Scheduling of Hydrogen Storage Stations

Fig. 6.6 shows the optimal scheduling setpoints of the hydrogen fueling stations at a given

week out of the studied year. As depicted in the figure, PtH units operate at negative/lower
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Figure 6.7: Minimum and maximum voltages in the power system.

market prices to reduce the power purchase cost and maximize the system profit. The

operational setpoints are also impacted by the hydrogen demand at each station, hence

they vary at different stations. Fig. 6.7 shows the system–wide minimum and maximum

bus voltages in the test system; i.e., the maximum/minimum voltages in the entire system

at each time interval. If system–wide voltages are within the allowable limits at each time

interval, the operation of the entire system would be acceptable. As shown in Fig. 6.7,

the optimization algorithm ensures that the system voltages are maintained within the

acceptable limits, according to the ANSI code [136].

Fig. 6.8 (a) shows the DR signal issued by the market to the central controller of the

hydrogen stations. The minimum allowed SOC, offered CBDR SOC, and the actual SOC

are shown in Figs. 6.8 (b)–(d). It can be observed that the SOC at each station varies

according to the local hydrogen demand by the transportation sector at the station. In

addition, the CBDR capacity offered to the market is not utilized unless the DR signal

is issued; this is to ensure that storage remains ready to follow the signal; i.e., actual

SOC stays above the CBDR capacity. Once the signal is issued, however, the CBDR

capacity is released so that the signal can be followed without affecting the supply to the

transportation sector; this can be observed from the figure where the SOC crosses the DR

capacity border once the signal is not zero. In such a case, each station would respond

differently to the signal depending on the optimal setpoints decided by the optimization

problem. Fig. 6.8 (e) shows the aggregated SOC of all the stations as a whole, which is
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Figure 6.8: (a) Electricity market CBDR signal; hydrogen stations SOC at: (b) Station 1,
(c) Station 2, (d) Station 3; (e) aggregated SOC

offered to the CBDR market. The stations operator receives both the availability payment

(via CBDR SOC) and the utilization payment (via operation as per the signal quantity).

The hydrogen sale prices for each station are also decided by the optimization problem,

as shown in Fig. 6.9, when the stations participate to the CBDR program. While the

market prices are different at various hours, the average values are found to be 0.326,

0.321, and 0.323 $/m3 for Stations 1, 2 and 3, respectively. These prices are decided so

that the stations can achieve the expected revenue as per the constraint stated in (6.14).

While different hydrogen sale prices are decided by the stations depending on the local
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Figure 6.9: Hydrogen sale prices with contribution to CBDR program at: (a) Station 1,
(b) Station 2, and (c) Station 3.

hydrogen demand, they all work as a whole to achieve the expected revenue.

Fig. 6.10 shows the sale prices when the stations do not participate to the CBDR

program, but the same level of revenue is expected. It can be observed that the prices tend

to be higher in this case to compensate for the lack of revenue that would have been achieved

via the DR program. The average hydrogen prices for the three stations are found to be

0.398, 0.384, and 0.386 $/m3, respectively. Hence, the participation to the CBDR program

leads to an average reduction of the hydrogen sale prices of 20.7%. Thus, via participation

to the CBDR program, lower hydrogen prices can be offered to the transportation sector,

thereby becoming more competitive in the market without compromising the expected

revenue. The revenue of hydrogen fuel stations for the studied week is found to be $18.4k,

i.e., 12.8% of the stations CAPEX (i.e.,$ 7.5 M).

The generated revenue is a key factor in every investment, and it has an expected value

that should be met. The hydrogen sale price is a variable in the model that is dynamically

131



0 24 48 72 96 120 144 168
0.25

0.35

0.45

0.55
(a)

0 24 48 72 96 120 144 168

H
y
d
ro

g
e
n
 F

u
e
l 
S

ta
ti
o
n
s
 S

a
le

 P
ri
c
e
 (

$
/m

3
)

0.25

0.35

0.45

0.55
(b)

Time (Hour)

0 24 48 72 96 120 144 168
0.25

0.35

0.45

0.55
(c)

Figure 6.10: Hydrogen sale prices without contribution to CBDR program at: (a) Station
1, (b) Station 2, and (c) Station 3.

adjusted so that the expected revenue could be achieved. The model also profits from

contribution to the CBDR program. Therefore, the higher the CBDR prices are, the lower

the hydrogen sale prices will be at a given expected revenue value. In such a case, the

impact of the CBDR price on the hydrogen sale prices is worth investigating. Accordingly,

the required hydrogen sale prices to achieve the expected revenue of 13% are determined

at different prices for the CBDR contribution, and the results are given in Fig. 6.11. As

expected, the hydrogen sale prices decrease as the CBDR price goes higher at a given value

for the expected revenue (i.e., 13% of the initial investment per year). This is because the

CBDR revenue increases with the increase of its price and, thus, a lower hydrogen price

occurs.

Another factor that could change depending on the project risk profile is the expected

revenue. The hydrogen sale prices by the fueling stations are considerably sensitive to the

expected revenue. Accordingly, the required hydrogen sale prices at different values of the

expected revenue are computed while the price for the CBDR is considered constant in this
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Figure 6.11: Average hydrogen sale price at different CBDR prices.
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Figure 6.12: Average hydrogen sale price at different expected revenue values.

case; the results are shown in Fig. 6.12. As depicted, the average value of hydrogen sale

prices changes from 0.25 to 0.49 $/m3 at the expected revenue of 8% and 20%, respectively.

6.4.2 Comparative Study: Hydrogen vs BEV Stations Revenue

A comparative economic study for different operational scenarios of the hydrogen and BEV

charging stations is conducted in this section. Four cases are contemplated as follows:

Case 1 : Hydrogen stations with participation to CBDR.

Case 2 : BEV stations with participation to CBDR.

Case 3 : Hydrogen stations without participation to CBDR.

Case 4 : BEV stations without participation to CBDR.
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In order to fairly compare the cases, it is assumed that the total energy supply in all

cases are equal; i.e., the same mileage would be achieved for the transportation sector in

all cases, where the BEVs charging demand is calculated as follows:

PBEV,Dem
h,t = FDem

h,t · EDen
H2
· 1

lH2

· lBEV ·
1

EDen
elec

∀ t ∈ T ∧ ∀ h ∈H. (6.23)

In (6.23), PBEV,Dem
h,t , lBEV , and EDen

elec represent the BEVs charging demand, energy

consumption of 1.11 Mj/km (i.e., equivalent to 0.31 kWh/km), and electric energy density

of 3600 Mj/MWh, respectively [147]. In addition, lH2 and EDen
H2

state the FCEV energy

consumption of 0.94 Mj/km (i.e., equivalent to 0.094 m3/km), where the hydrogen energy

density is considered as 10 Mj/m3, respectively [147]. It is noteworthy that the BEVs

charging stations are sized to have the same CAPEX as the hydrogen fueling stations.

While the initial investment is contemplated in the comparative studies, the land cost for

both cases are ignored. Accordingly, the storage capacity of the stations and the power

inverters are sized to be 5 MWh and 2 MW, respectively. In addition, the operating cost of

the BEVs charging stations (CBEV ) is considered to be 60% of the hourly maintenance cost

(i.e., 5% of CAPEX) at the maximum inverter rate. The energy sale prices for all cases

were set based on the average retail prices in the market; i.e., 0.5 $/m3 for the hydrogen

[89] and 145 $/MWh for electricity [148].

Under the above–mentioned assumptions, the accumulated revenue of the fueling/charging

stations for all cases is computed. It is emphasized that the revenue is calculated under

the fixed hydrogen/electricity pricing with the values mentioned above. Fig. 6.13 presents

the hourly revenue for the hydrogen and BEV charging stations both with participation

to the CBDR program, i.e., Cases 1 and 2. As shown in the figure, the hourly revenue is

volatile under both cases. The revenue has a positive peak once hydrogen is sold to the

transportation sector. In addition, the generated revenue temporarily moves below zero

once the stations pay for the power purchase. The figure also shows that the revenue of the

134



Time (Hour)

0 24 48 72 96 120 144 168

R
e

v
e

n
u

e
 (

$
)

-60

80

220

360

500

640

760 Hydrogen Fuel Stations EVs Charging Stations

Figure 6.13: Comparative hourly revenue of hydrogen and BEV stations with
participation to CBDR program.

Table 6.3: Comparative Energy Consumption

Station 1 Station 2 Station 3 Total

FCEVs H2 Stations (Mj) 2.98e5 3.16e5 3.02e5 9.165e5

BEVs Charging Stations (Mj) 2.03e5 2.21e5 2.22e5 6.465e5

hydrogen stations is slightly higher than that of the BEV charging stations. This mainly

stems from the fact that hydrogen is all together a more expensive form of energy in the

market than electricity. As such, it is sold with a higher price as compared to the electric-

ity. It is worth noting that the hydrogen stations reveal a higher energy consumption rate

compared to the BEVs stations. This can be observed from the results in Table 6.3. The

values in the table are achieved under the same mileage range for the vehicles (i.e., FCEVs

and BEVs).

In order to compare the economic values of all cases, the annual revenue, Net Present

Value (NPV), Internal Rate of Return (IRR), and the profitability of the investments are

computed for the above–mentioned cases and reported in Table 6.4 by using a discount rate

of 2.5%. The system profitability considers the initial cost and expected rate of return,

and is calculated as a ratio between the annual revenue to the expected rate of return

plus the normalized CAPEX over the lifespan of the facility [149]. As indicated in the
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Table 6.4: Comparative Revenue and Profitability Values

Hydrogen Fuel Station BEV Charging Station
With CBDR Without CBDR With CBDR Without CBDR

Annual Revenue (M$) 1.3 1.126 1.124 1.074

Profitability (%) 88.14 76.34 76.2 72.81

NPV (M$) 8.595 6.561 6.416 5.797

IRR (%) 15.28 12.5 12.4 11.54

table, hydrogen fueling stations offer a higher investment desirability. This is because the

NPV and IRR of hydrogen stations are higher than the ones for BEV stations. Besides,

the participation to the CBDR program enhances the NPV and IRR of the project for

both the hydrogen fuel stations and BEVs stations. It is worth noting that the hydrogen

stations are more profitable than BEV stations due to higher hydrogen sale prices. The

following outcomes can be drawn from the results indicated in Table 6.4:

• The highest value of revenue is achieved for the hydrogen stations when they partici-

pate to the CBDR program. The higher revenue is resulted from the stacked benefit

from the electricity market and the hydrogen sale to the transportation sector. For

a similar reason, the revenue for the BEV charging stations is boosted once they

participate to the CBDR program.

• The revenue of hydrogen stations is higher than that of the BEV stations under no

contribution to the CBDR program. As mentioned above, this is stemmed from the

fact that hydrogen in today’s market is a more expensive product than the electricity.

In order to investigate the ability of the hydrogen and BEVs stations to achieve the

expected profit, the profitability of investment needs to be determined. While the expected

profit could vary for different projects, it is assumed to be 13% of the CAPEX per year

plus the CAPEX value exhausted over the plant lifespan [145]. With the CAPEX and
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plant lifespan reported in Table 6.2, the rate of return of $1.475 M per year is expected

in order for the plant to be considered profitable. Under the revenue values acquired for

all cases, the profitability of the plant is computed for all cases and reported in Table 6.4.

The results indicate that the generated revenue is not yet enough to meet the expected

profit under either of the cases; however, a higher profitability level is resulted for hydrogen

stations with participation to the CBDR program. This would intensify the fact that the

stations should be utilized for as many ancillary services as possible in order to become

profitable. It should also be noted that as the technology grows, the CAPEX for the

stations is expected to shrink; thus, there would be a higher opportunity for the stations

to return the expected revenue in the near future.

6.5 Discussion and Summary

This chapter proposes a model for the central scheduling of distributed electrolyzer–based

hydrogen fueling stations. The proposed model aims at (i) utilizing the lower/negative

electricity prices towards hydrogen generation, and (ii) optimizing the operation of the hy-

drogen stations, in order to increase the profitability of investment. Profitability constraints

and dynamic hydrogen pricing mechanisms are contemplated in the model to achieve the

expected profit though adjusting hydrogen sale prices. The model is numerically evaluated

on a power distribution test system that supplies power to the distributed hydrogen storage

stations. Numerical studies indicate that the system profit is considerably intensified once

fueling stations participate to the CBDR program under the proposed model. The model

would, thus, bring about new opportunities for the investment in distributed hydrogen

stations.

Comparative studies are conducted in order to assess the economic viability of the in-

vestment in storage–based hydrogen fueling stations versus BEV charging stations. The

study reveals that the investment in hydrogen fueling stations can result in a higher profit.
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On the other hand, higher hydrogen fuel costs may actually be a reason for drivers to

prefer BEVs over FCEVs. The results also indicate that the generated revenue is not yet

enough to equal the expected rate of return under either of the cases. However, partici-

pation to the CBDR program enhances the generated profit. As the emerging technology

materializes, the CAPEX of hydrogen stations is expected to shrink; thus, there would be

more opportunities for the hydrogen fueling station to yield the expected revenue in the

near future.
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Chapter 7

Optimal Sizing and Scheduling of

LOHC–Based Generation and

Storage Plants

7.1 Introduction

LOHC technology now offers a promising solution for the reliable and safe storage of

hydrogen. In this regard, this chapter demonstrates how LOHC–based hydrogen generation

and storage plants should be sized and operated for joint applications, in order to enhance

the system rate of return. Since the LOHC reservoir is significantly inexpensive compared

to the generation plant and does not occupy a large space due to the LOHC higher energy

density, the reservoir can be readily expanded to realize longer–term energy storage, e.g.,

weekly, monthly, or seasonal. A larger storage reservoir with massive amount of energy also

allows for disaggregation of electrolyzer and storage capacity to provide multiple services

to the transportation sector and power grid; the operating setpoints of the electrolyzer can

be optimally scheduled to provide a combination of ancillary services to the market. The

stacked profit yielded from multiple sources can alleviate the gap between the current and
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the expected rate of return. As such, LOHC–based generation and storage plants can be

optimally sized and operated for joint applications to serve both the transportation sector

and ancillary services market.

Ancillary services provision to the grid has been identified as a win–win situation to

the utility grid and the customers. On one hand, ancillary services allow the grid operator

to be able to maintain the grid’s normal conditions, i.e., Reactive Power (VAR) control

for keeping the voltage within the limits and balancing out the generation and demand

[150, 151], and DR for balancing the demand and generation in the grid [152]. On the

other hand, ancillary services contributors are incentivized due to their participation to

the market, thereby obtaining a higher rate of return level [6].

Here it is worth noting that, some of the electricity system operators do not have a

specific energy conservation program that compensate for the VAR support. However,

other electricity system operators such as Midcontinent Independent System Operator

(MISO) in the Midwest United States and the Canadian province of Manitoba, and the

independent electricity system operator in Ontario provide a compensation for the reactive

power resource owner for its voltage control capability [150, 153]. Hence, in this work

VAR support is adopted as an ancillary service that would be compensated based on its

capability to follow the received VAR ancillary service signal.

To fill the gap between the existing studies and an industry–level model, this work

shows how the LOHC–based generation and storage plants should be sized and operated

for joint applications in order to enhance the system rate of return. This research work

is the first of its kind to size and schedule the centralized LOHC–based generation and

storage plants for concurrent services to the transportation sector and ancillary services

market. In particular, this chapter presents the following contributions:

1) A new algorithm is developed for optimal sizing of LOHC–based generation and

storage plants. The proposed algorithm is based on maximizing the system net profit
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under various operating scenarios. The generation and storage plants are optimally sized

considering the operation of the facility for multiple services to the transportation system

and ancillary services market.

2) A new optimal scheduling model is presented for the LOHC–based generation and

storage plants that would (i) exploit the lower electricity market prices considering the

transportation demand, (ii) follow the ancillary service signals through the incorporation

of slack variables into the model, and (iii) allow the seasonal storage in order to maximize

the system profit.

3) The SOC in the storage plant is adaptively adjusted by the proposed scheduling

model for each service in order to further enhance the system net profit. The adaption of

the storage reserved capacity involves optimal scheduling for allocating and manging the

required reserve for each ancillary service.

To that end, Table 7.1 presents the definition of indices, sets, constant, time–dependent

parameters, proposed model sizing variables, and proposed model scheduling variables in

this chapter.

Table 7.1: Chapter 7 Nomenclature

A. Indices

t Index of time steps.

b Index of power network buses.

s Index of Monte Carlo scenarios.

B. Sets

T Set of optimization problem time steps.

B Set of buses in power transmission sys-
tem.

S Set of Monte Carlo simulation.

C. Constants

∆t Time interval of the optimization prob-
lem (h).

Vb,min Minimum voltage magnitude at Bus b
(pu).

Vb,max Maximum voltage magnitude at Bus b
(pu).

Pb,max Maximum power at Bus b (MW).

Ybb′ Admittance magnitude from Bus b to b′

(pu).

θbb′ Admittance angle from Bus b to b′ (Rad).
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Table 7.1: Chapter 7 Nomenclature ... continued

ηElz Efficiency of the electrolyzer unit (%).

ηH
+

Efficiency of the LOHC hydrogenation
unit (%).

ηH
−

Efficiency of LOHC dehydrogenation unit
(%).

ΓElz Electrolyzer conversion factor (m3
H2

/MWh).

ΓH+
Hydrogenation consumption factor
(MWh/m3

H2
).

ΓH− Dehydrogenation consumption factor
(MWh/m3

LH).

ξLH LOHC volumetric storage density
(m3

LH/m
3
H2

).

ωH+
Hydrogenation heat production factor
(kWh/m3

H2
).

ωH− Dehydrogenation heat demand factor
(kWh/m3

H2
).

γDsp LOHC storage energy dissipation rate
(%/h).

CElz Electrolyzer capital cost ($/MW).

CCon Converter capital cost ($/MVA).

CH+
Hydrogenation unit capital cost ($.h/m3

H2
).

CSto LOHC storage unit capital cost ($/m3
LH).

OCElz Electrolyzer operating cost ($/MWh).

OCH+
LOHC hydrogenation operating

cost ($/m3
H2

).

OCSto LOHC storage unit operating cost
($/m3

LH.h).

LHPrc LOHC–based fuel price ($/m3
LH).

VARPrc Reactive power (denoted by VAR) an-
cillary service price ($/MVAr.h).

DRPrc DR ancillary service price ($/MWh).

EA,Prc Average electricity price for annual op-
erating hours ($/MWh).

EBE Maximum Electricity price during opera-
tion ($/MWh).

OH Annual operating hours (h).

HVAR VAR ancillary service hours per day (h).

HDR DR ancillary service hours per day (h).

βVAR Penalty factor for VAR ancillary service
($/MVAr.h).

βDR Penalty factor for DR ancillary service
($/MWh).

ρRew Generation reward factor.

FElz
min Minimum outflow capacity of electrolyzer

(m3
H2

/h).

SOCLH
min Minimum capacity of LOHC storage
(m3

LH).

D. Time–Dependent Parameters

EPrc
t Electricity price at time t ($/MWh).

FLH
t,Dem LOHC demand by transportation sec-

tor (m3
LH/h).

QVAR
t VAR ancillary service signal (MVAr).

PDR
t DR ancillary service signal (MW).

E. Sizing Variables

PElz
max Electrolyzer rated power (MW).

SCon
max Rated power of electrolyzer converter

(MVA).

FElz
max Maximum hydrogen outflow of elec-

trolyzer (m3
H2

/h).
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Table 7.1: Chapter 7 Nomenclature ... continued

F. Scheduling Variables

QCon
max Maximum VAR of electrolyzer converter

(MVAr).

SOCLH
max Maximum capacity of LOHC storage
(m3

LH).

SOCVAR VAR SOC reserve margin (m3
LH).

SOCDR DR SOC reserve margin (m3
LH).

PDR
min Minimum value of DR signal (MW).

Λt Operation state of LOHC facility.

λDR Limitation factor for DR service (%).

λVAR Limitation factor for VAR service (%).

PElz
t Electrolyzer unit input power (MW).

FElz
t Electrolyzer unit hydrogen outflow

(m3
H2

/h).

PH+

t Hydrogenation unit power consumption
(MW).

FH+

t Hydrogenation unit LOHC outflow
(m3

LH/h).

PH−
t Dehydrogenation unit power consump-

tion (MW).

FH−
t Dehydrogenation unit LOHC inflow

(m3
LH/h).

FH2
t Dehydrogenation unit hydrogen outflow

(m3
H2

/h).

∆HH+

t Hydrogenation heat power release
(kW).

∆HH−
t Dehydrogenation heat power require-

ment (kW).

SOCLH
t SOC of LOHC storage unit (m3

LH).

QCon
t Converter reactive power generation

(MVAr).

QVARM
t Slack variable for VAR signal manage-

ment (MVAr).

QVARM ′
t Slack variable for VAR signal manage-

ment (MVAr).

PDRM
t Slack variable for DR signal manage-

ment (MW).

δb,t Voltage angle at Bus b (Rad).

Vb,t Voltage magnitude at Bus b (pu).

Pb,t Active power at Bus b (MW).

Qb,t Reactive power at Bus b (MVAr).

7.2 Problem Statement

The LOHC–based technology is considered as a promising solution to promote the prolifer-

ation of hydrogen fueling stations, thereby leading to the deployment of hydrogen–powered

vehicles. In this regard, the merits of the LOHC technology needs to be economically jus-

tified. In what follows, the overall structure of the LOHC–based systems including the

electrolyzer, hydrogenation plant, and storage units as well as the supply chain for the
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Figure 7.1: LOHC generation, storage, and supply chain for transportation electrification.

transportation sector is explained. Then, the proposed algorithm for sizing and scheduling

of the generation and storage systems is presented.

As shown in Fig. 7.1, hydrogen is produced using an electrolyzer that diffuses the water

molecules into oxygen and hydrogen. The steady state relationship between the generated

hydrogen and the electrolyzer power is given as a function of the electrolyzer power to

hydrogen conversion factor (i.e., ΓElz= 360 m3
H2

/MWh) and efficiency (i.e., ηElz= 60%) as

follows [6], [104]:

FElz
t = PElz

t · ΓElz · ηElz ∀ t ∈ T. (7.1)

Then, the generated hydrogen is fed into the LOHC–based hydrogenation reactor that

would chemically bound the hydrogen gas with the organic carrier. The hydrogenation

reactor requires electric energy to produce LOHC, while the hydrogenation process is

exothermal that produce heat as a bi–product [104]. Equation (7.2) presents the steady

state outflow of the LOHC from the hydrogenation unit as a function of the hydrogen

to LOHC conversion factor (i.e., ηLH= 1/630 m3
LH/m

3
H2

) and the hydrogenation unit effi-

ciency of ηH
+

= 97% [104]. Equation (7.3) shows the required power by the hydrogenation

system (i.e., ΓH+
= 0.031 kWh/m3

H2
) [104]. Besides, (7.4) states the exothermal heat as a

function of the hydrogen inflow to the hydrogenation unit and the hydrogenation process

heat production factor (i.e., ωH+
= 0.75 kWh/m3

H2
) [104].

FH+

t = FElz
t · ξLH · ηH+ ∀ t ∈ T (7.2)
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PH+

t = FElz
t · ΓH+ ∀ t ∈ T (7.3)

∆HH+

t = FElz
t · ωH+ ∀ t ∈ T. (7.4)

The generated LOHC can then be stored in the liquid form under the ambient condition

and transported to hydrogen fueling stations. In such a case, the LOHC density of 630

m3
H2
/m3

LH offers the capability to store/transport 57 kg of hydrogen in one cubic meters

of LOHC [154]. Once LOHC is transported to the hydrogen fueling stations, it should

be converted back to the hydrogen gas using a dehydrogenation unit before being loaded

to the vehicles. Dehydrogenation is an endothermal process that requires heat energy

(i.e., ωH−= 0.75 kWh/m3
H2

), in addition to electric power (i.e., ΓH−= 0.0195 MWh/m3
LH=

0.031 kWh/m3
H2

) for operation with an efficiency of ηH
−

= 99% [104]. In this regard, (7.5)

states the conversion of LOHC to hydrogen gas while (7.6) and (7.7) express the required

electricity and heat energy during the dehydrogenation process, respectively [104].

FH2
t = FH−

t · ηH− / ξLH ∀ t ∈ T (7.5)

PH−

t = FH−

t · ΓH− ∀ t ∈ T (7.6)

∆HH−

t = FH2
t · ωH− ∀ t ∈ T. (7.7)

Based on the aforementioned discussion, the round-trip LOHC hydrogenation and de-

hydrogenation conversion process has an efficiency about 96%. Additional energy about

17.5% of the hydrogen energy content (i.e., 16.2% by dehydrogenation process heat require-

ment and 1.3% electric power requirements) is required by the LOHC conversion process.

Compared to other conventional hydrogen storage process, such as hydrogen compression

and liquification, LOHC storage is regarded as a more efficient process to store hydrogen.

Storing hydrogen in a compressed form requires only an additional 10% of the hydrogen

energy content. However, compressed hydrogen at the highest end of the typical storage

pressure range at 350 bars has relatively low volumetric storage density of 20 kg/m3) [155].
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While, the hydrogen liquification process has high additional energy demand represented

by 36 – 45% of the hydrogen energy content to store 71 kg hydrogen in 1 m3 [155].

To that end, in order to maximize the efficacy and economic viability of an LOHC–

based system, each component needs to be optimally sized and scheduled as elaborated in

Sections 7.3 and 7.4.

7.3 Proposed Sizing Algorithm for LOHC Facility

One of the important motivations to the optimal sizing would be to minimize the CAPEX

and operating costs in order to enhance the system net profit. In this regard, a Monte

Carlo–based algorithm is proposed in this section to maximize the project net profit by

shrinking the system initial and operating costs. The following quantities are inputted to

the proposed algorithm that utilizes the Monte Carlo simulation for optimal sizing: (i) the

LOHC demand by the hydrogen fueling stations, (ii) historical electricity prices, (iii) cost

of LOHC facility components, and (v) ancillary service prices and contracted service hours.

Two types of ancillary services are considered in this chapter as follows: (i) VAR support

to the grid and (ii) DR in which the facility is scheduled to absorb not more than a certain

quantity of power, when requested by the utility operator [142]. The Monte Carlo–based

algorithm generates several scenarios, s, for the sizing problem. In such a case, the system

net profit as a function of the facility size, to be maximized by the algorithm, is given as:

Maximize :
{

Rev(s)− Cost(s)−
(
CAPEX(s)/LS

)}
∀s ∈ S, (7.8)

where (7.8) states the annual net profit by deducting the costs and annualized CAPEX from

the revenue (i.e., Rev). The project CAPEX is given in (7.9) as a function of the LOHC

facility components including: (i) electrolyzer (PElz
max), (ii) electrolyzer converter (SCon

max),

(iii) hydrogenation unit inflow (i.e., FElz
max), and (iv) LOHC storage reservoir (SOCLH

max).
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CAPEX(s) = PElz
max(s) · CElz + SCon

max(s) · CCon + FElz
max(s) · CH+

+ SOCLH
max(s) · CSto

∀s ∈ S. (7.9)

The system gross revenue depicted in (7.10) states the profit obtained from the LOHC–

based fuel sale, in addition to the revenue from ancillary service provision to the market.

In such a set–up, ancillary services can be provided using the following two components:

(i) the electrolyzer converter interconnected with the power grid that would provide VAR

support, and (ii) a reserve capacity margin within the LOHC storage reservoir that would

realize DR services. The former service is stemmed from the ability of a power electronic–

based converter that can be controlled to absorb/inject VAR from/to the grid in response

to a signal received from the grid operator. The latter, however, is originated from the

capability of storage to reserve energy that would be used for LOHC supply when the grid

operator requests the facility to consume less power, known as the capacity based–demand

response program [6]. Various ancillary services could be offered by the LOHC–based facil-

ity to the electricity market such as frequency regulation and reserve provision. However,

such services require LOHC to power conversion, thereby adding financial burden to the

facility operator; such an arrangement would need the following additional components:

(i) dehydrogenation unit to convert LOHC to hydrogen gas and (ii) fuel cell unit to con-

vert the hydrogen back to electricity. This is to ensure maintaining bi–directional energy

exchange with the grid, i.e., charge from and discharge to the grid [156, 157]. In addition,

bi-directional energy conversation causes higher energy losses and reduces the system over-

all efficiency. As such, DR and ancillary services are considered in this study that would

only require adjustment in the intake power rather than bi-directional energy exchange. In

such a case, DR and VAR ancillary services contractual agreement between the consumer

(i.e., LOHC–based facility) and grid operator is carried out. Such a contract represents an
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agreement between a dispatchable electricity consumer and the grid operator that declares:

(i) the DR/VAR signal quantity sent to the participant by the grid operator, (ii) the fi-

nancially compensation for the participant, and (iii) the maximum number and duration

of daily signals that could be sent by the grid operator [158]. The profit resulted from

ancillary services provision to the grid is calculated based on the service hours contracted

between the facility and the grid operator. Therefore, the profit from the DR services is

given as the product of the DR service hours (HDR), DR service price (DRPrc), and the

minimum contracted DR signal (i.e., PDR
min); this is similar for the VAR services denoted

by QCon
max, as:

Rev(s) =
∑
t∈T

FLH
t,Dem(s) · LHPrc ·∆t+HV AR · V ARPrc ·QCon

max(s)

+HDR ·DRPrc · PDR
min(s) ∀ s ∈ S. (7.10)

The annual cost is given in (7.11) as the product of the annual operating hours (i.e.,

OH) and the following terms: (i) the electricity consumption and operating cost of the

hydrogenation unit, i.e., FElz
max·, (OCH+

+ΓH+ ·EA,Prc), (ii) the operating cost of the storage

unit, i.e., SOCLH
max ·OCSto, and (iii) the electrolyzer electricity consumption and operating

cost, i.e., PElz
max · (EA,Prc +OCElz):

Cost(s) = OH(s) ·
{
FElz
max(s) ·

(
OCH+

+ ΓH+ · EA,Prc(s)
)

+

SOCLH
max(s) ·OCSto + PElz

max(s) ·
(
EA,Prc(s) +OCElz

)}
∀ s ∈ S, (7.11)

where EA,Prc represents the average of the electricity prices during the operating hours.

In this work, the average value of the electricity prices in a given scenario, s, involves

computing the average of the annual minimum electricity prices for the annual operation
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percentage of scenario s as follows:

EA,Prc(s) =

∑
t∈T

{
min
OH

(
EPrc

t (s)
)}

OH
∀ s ∈ S ∧ ∀OH = ρ · hAnn, (7.12)

where OH is the product of the percentage of annual operation, ρ, of a scenario s, and the

annual hours hAnn i.e., 8760 hours. The aforementioned equation implies that the facility

would operate and store LOHC during low electricity price instances to maximize its profit.

As elaborated in Section 7.4, EA,Prc is used to calculate the optimized average electricity

price for seasonal scheduling of the LOHC generation and storage plants.

The objective function in (7.8) is subject to the electrolyzer and the hydrogenation unit

constraints as given below:

PElz
max(s) ≥

∑
t∈T F

LH
t,Dem(s) ·∆t

OH(s) · ξLH · ηH+ · ΓElz · ηElz
∀ s ∈ S (7.13)

FElz
max(s) = PElz

max(s) · ΓElz · ηElz ∀ s ∈ S. (7.14)

As stated in (7.13), the facility operating hours and the LOHC demand impact the

sizing of the electrolyzer and hydrogenation unit. Distributing the hydrogen production

across a wide range of operating hours minimizes the sizing of the components. However,

the operation of the facility over a long period of time limits the possibility to exploit lower

electricity market prices, thereby adversely impacting the overall profit.

The objective function in (7.8) is also subject to the storage SOC given as:

SOCLH
t+1(s) = SOCLH

t (s) +
(
FElz
max(s) · ξLH · ηH+ · Λt

−FLH
t,Dem(s)− γDsp · SOCLH

t (s)
)
·∆t ∀ s ∈ S ∧ ∀ t ∈ T (7.15)

SOCLH
min(s) ≤ SOCLH

t (s) ≤ SOCLH
max(s) ∀ s ∈ S ∧ ∀ t ∈ T (7.16)
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Λt(s) =

1 ∀ EPrc
t (s) ≤ EBE(s)

0 ∀ EPrc
t (s) > EBE(s)

∀ s ∈ S ∧ ∀ t ∈ T, (7.17)

where (7.15) and (7.16) represent the energy balance equation, and the SOC limit of the

LOHC storage reservoir, respectively. Equation (7.17) determines the ON/OFF operating

state of the LOHC–based facility at each time step t, represented by Λt = 1 and 0,

respectively. As stated in (7.17), the facility operates when the market price is below the

break even price (i.e., EBE) to ensure the system rate of return.

Providing ancillary services to the grid stacks additional means of profit to the revenue

resulted from the LOHC–based fuel sale. Nonetheless, ancillary services provision could

limit the capability of the electrolyzer unit for hydrogen production, which needs to be

considered in the sizing problem in order to ensure the LOHC production reliability is not

impacted. In this regard, the optimization problem is subject to (7.18), which optimizes

the storage reserve margin to provide VAR support to the grid.

HV AR · λV AR(s) · PElz
max(s) ≤ SOCV AR(s)

ξLH · ηH+ · ΓElz · ηElz
∀ s ∈ S; (7.18)

equation (7.18) implies that the stored LOHC energy for VAR support (i.e., SOCV AR)

should be at least equal to the contracted VAR requirements, where the electrolyzer power

limitation factor due to the VAR ancillary service is given as follows:

λV AR(s) =
PElz
max(s)−

√
SCon
max(s)2 −QCon

max(s)2

PElz
max(s)

∀ s ∈ S. (7.19)

Similarly, the reserve SOC margin constraint for the DR ancillary service is defined as:

HDR ·
(
Sgn(PDR

min) · λDR(s)
)
· PElz

max(s) ≤ SOCDR(s)

ξLH · ηH+ · ΓElz · ηElz
∀ s ∈ S; (7.20)

where (7.20) ensures that the LOHC storage reservoir maintains enough energy to accom-
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modate the LOHC requirements, when the electrolyzer is set to lower operation in response

to the DR signal. In (7.20), the DR limitation factor is defined as:

λDR =
PElz
max(s)− PDR

min(s)

PElz
max(s)

∀ s ∈ S, (7.21)

Accordingly, the size of the storage reservoir in (7.9) is defined as the sum of maximum

SOC over the optimization horizon and the reserve requirements for the VAR and DR

support as below:

SOCLH
max(s) = max{SOCLH

t (s)}+ SOCDR(s) + SOCV AR(s) ∀ s ∈ S ∧ ∀ t ∈ T. (7.22)

In the next section, a scheduling model is presented for the optimally sized LOHC–

based generation and storage plants. The scheduling model would adaptively manage the

stored LOHC for concurrent services to the transportation sector and ancillary services

market.

7.4 Proposed Scheduling Model for LOHC Facility

Fig. 7.2 represents the schematic diagram of the proposed framework in which an LOHC–

based hydrogen generation/storage plant is managed by a scheduling algorithm. The

scheduling model interacts with the electricity market operator, where it would receive

market prices and communicate the ancillary services data. The optimization problem is

executed by the scheduling algorithm, and the optimal setpoints are sent to the electrolyzer

to produce the required amount of hydrogen and to follow the ancillary services signal. The

generation and storage plants, however, would be owned and operated by a private investor

and is scheduled by one central model. Such a setup brings about more opportunities for

the operator of the stations from serving the transportation sector and power grid.
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Figure 7.2: Optimal scheduling of LOHC–based generation and storage facility.

The proposed model for optimal scheduling of the LOHC–based facility is formulated

below. The model aims to (i) optimally schedule the LOHC production unit to exploit

the lower electricity market prices and (ii) participate to the transmission grid ancillary

services. The objective function consists of four main terms that maximize the profit of

the facility as formulated in the following:

Maximize :
∑
t∈T

(
RSch

t −OPEXt +RRew
t − βPen

t

)
·∆t. (7.23)

The first term in (7.23) represents the revenue (i.e., RSch
t ), resulted from operation of

the facility in the power and transportation markets, given as follows:

RSch
t = FLH

t,Dem · LHPrc + V ARPrc· | QCon
t | +DRPrc ·

(PDR
t − PDRM

t )− EPrc
t · (PElz

t + PH+

t ) ∀ t ∈ T. (7.24)

The second term in (7.23) includes the OPEX of the facility as:

OPEXt = PElz
t ·OCElz + FElz

t ·OCH+

+ SOCLH
t ·OCSto ∀ t ∈ T ; (7.25)
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equation (7.25) ensures that the electrolyzer and hydrogenation unit OPEX are considered

while optimizing the scheduling operation.

The third term in (7.23) states a function rewarding the LOHC–based facility to be

operated during low electricity price instances as given below:

RRew
t = ρRew · PElz

t ·
(
EA,Prc − EPrc

t

)
∀ t ∈ T ; (7.26)

the reward function allows the scheduling model to provide long–term storage without

requiring the long–term price forecast; the storage is charged when the real–time market

price is below the optimized price threshold, as determined in Section 7.3. Here it is

worth noting that the accurate hourly scheduling is performed using short–term market

price forecast, while the reward function in (7.26) enhances the optimization horizon to

enable seasonal storage; this is performed by motivating the facility to produce and store

LOHC at very low market prices over the seasonal horizon. Where, it is assumed that

the objective function would only minimizes the electricity cost associated with the hourly

volatile electricity prices in the wholesale electricity market. While, other electricity costs,

such as global adjustment and peak demand payments would be paid as a percentage of

the electricity bill [110]. The fourth term in (7.23) aims to manage the participation of

the LOHC–based facility to the ancillary services market. As stated in (7.27), this term

penalizes the non–zero values of VAR and DR slack variables to ensure that the ancillary

services signal is effectively followed by the facility:

βPen
t = βV AR · (QV ARM

t +QV ARM ′

t ) + βDR · PDRM
t ∀ t ∈ T. (7.27)

Equation (7.28) below represents the constraint that forces the LOHC generation facil-
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ity to provide the VAR support requested by the utility:

QCon
t = QV AR

t +QV ARM
t −QV ARM ′

t

∀ QV AR
t 6= 0 ∧ 0 ≤ QV ARM

t , QV ARM ′

t ≤ QV AR
t ∧ ∀ t ∈ T ; (7.28)

as stated in (7.28), this equation is provisional to non–zero values of the ancillary services

signal. Besides, slack variables QV ARM
t and QV ARM ′

t create soft constraints to ensure the

feasibility of the optimization problem. It is worth noting that once no signal is issued by

the utility, the power converter of the facility is operated at the unity power factor.

Similarly, equation (7.29) limits the operation of the LOHC generation facility up to

the DR value commanded by the utility:

PElz
t ≤ PDR

t + PDRM
t ∀ PDR

t 6= 0 ∧ ∀ 0 ≤ PDRM
t ≤ PElz

max − PDR
t ∧ ∀ t ∈ T. (7.29)

The objective function in (7.23) is also subject to the electrolyzer constraints as follows:

FElz
min ≤ FElz

t ≤ FElz
max ∀ t ∈ T. (7.30)

The objective function is subject to (7.1), which expresses the hydrogen production as

a function of the electrolyzer power consumption. The constraints related to the LOHC

production and power consumption of the hydrogenation unit are also represented in (7.2)

and (7.3), respectively.

The objective function is subject to the storage SOC balance equation as follows:

SOCLH
t+1 = SOCLH

t + (FH+

t − FLH
t,Dem − γDsp · SOCLH

t ) ·∆t ∀ t ∈ T, (7.31)
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where, the LOHC storage is constrained to its minimum and maximum bounds as follows:

(
1− | Sgn(QV AR

t ) |
)
· SOCV AR +

(
1− Sgn(PDR

t )
)
· SOCDR

+SOCLH
min ≤ SOCLH

t ≤ SOCLH
max ∀ t ∈ T ; (7.32)

equation (7.32) states that the storage SOC should be greater than the physically–limited

minimum value, (SOCLH
min), plus the reserve margin for the DR, (SOCDR), and VAR,

(SOCV AR), ancillary services to the grid. As stated in (7.32), once a signal is received for

either of the VAR or DR support, the relevant reserve margin is released by reducing the

lower limit.

The objective function is also subject to power/voltage constraints and power flow

equations as follows:

Pb,t ≤ Pb,max ∀ t ∈ T ∧ ∀ b ∈ B (7.33)

Vb,min ≤ Vb,t ≤ Vb,max ∀ t ∈ T ∧ ∀ b ∈ B (7.34)

Pb,t = Vb,t
∑
b′∈B

(
Vb′,t · Ybb′ × Cos(δb − δb′ − θbb′)

)
∀ t ∈ T ∧ ∀ b ∈ B (7.35)

Qb,t = Vb,t
∑
b′∈B

(
Vb′,t · Ybb′ × Sin(δb − δb′ − θbb′)

)
∀ t ∈ T ∧ ∀ b ∈ B. (7.36)

7.5 Numerical Studies

In this section, the proposed sizing and scheduling algorithm for the LOHC–based genera-

tion and storage facility is numerically evaluated. The daily, weekly, and monthly hydrogen

demand data is adopted from the National Renewable Energy Laboratory of the United

States Department of Energy [159]. Different station ratings are considered in order to

provide fuel to vehicles according to the following range: 1190 to 2870 vehicles per week

with an average hydrogen amount of 4.6 kg [160], where this range mimics the average gas
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Figure 7.3: Demand at stations: (a) LOHC fuel and (b) equivalent of hydrogen gas.

demand from current gas fueling stations [160]. It is also worth noting that the demand of

hydrogen by the transportation sector is converted to its LOHC equivalent using (7.5).

Fig. 7.3 shows the average daily demand by the transit sector at eight hydrogen fueling

stations that needs to be provided by the LOHC–based generation facility [6]. Comparing

Fig. 7.3 (a) and (b), one can realize how the LOHC technology can substantially reduce

the fuel volume by converting and storing it in the liquid form; e.g., 22660 m3 hydrogen

gas has been reduced to 36.33 m3 of LOHC. Accordingly, the LOHC demand quantities

as depicted in Fig. 7.3 are used as input data for scenario design and case study in this

chapter. It is worth noting that the demand of a centralized hydrogen generation plant

(i.e., LOHC facility) is represented by aggregation of the individual vehicles demand. Such

an accumulation of vehicles demand is known as temporal aggregation, which effectively

reduces the uncertainties associated with the demand estimation or forecast [106]. Hence,

without loss of generality, in this work the hydrogen demand is assumed to be represented

by the average demand probability [159] that includes negligible uncertainties in both the

sizing and scheduling models. Monte Carlo simulation and historical market prices are

used for sizing purposes, while short–term point forecast data are employed for schedul-
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Table 7.2: Modeling and Simulation Parameters

ΓElz = 360 (m3
H2

/MWh) ηElz = 60%

ΓH+
= 0.031 (kWh/m3

H2
) ηH

+
= 97%

ΓH− = 0.0195 (MWh/m3
LH) ηH

−
= 99%

ξLH = 1/630 (m3
LH/m

3
H2

) LHPrc = 250 ($/m3
LH)

γDsp ≈ 0 CCon = 120 (1000$/MVA)

CElz = 600 (1000$/MW) OCElz = 3% × CElz/8760 ($/MWh)

CH+
= 1850 ($.h/m3

H2
) OCH+

= 3% × CH+
/8760 ($/m3

H2
)

CSto = 2650 ($/m3
LH) OCSto = 2% × CSto/8760 ($/m3

LH.h)

HV AR = 3 (h) HDR = 3 (h)

V ARPrc = 30 ($/MVAr.h) DRPrc = 30 ($/MWh)

ing. Table 7.2 reports the simulation and modeling parameters used for numerical studies

[6, 104, 154]. The historical data from Ontario electricity market over the past five years

are used for numerical studies [110]. The proposed sizing and scheduling models described

in Section 7.3 and 7.4 are solved using the combined Interior Point nonlinear program-

ming and Newton Trust Region algorithms [6]. Interior Point and Newton Trust Region

programming techniques are already incorporated as built–in functions in MATLAB, re-

ferred to as fmincon toolbox. Hence, the optimization problem is coded and solved in the

MATLAB environment. The optimization problem is executed in a PC with the following

specifications: Core i7-6700, 3.4 GHz CPU, 16 GB RAM, and 64 bits system. The conver-

gence tolerance and the maximum number of iterations are set to 10-6 and 500, respectively.

It is found that the average execution time for the proposed sizing model is 3.5 seconds

with 39 iterations on average. In addition, the average execution time for the proposed

scheduling model is around 65 seconds with 27 iterations.
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Figure 7.4: Probability density function & probability of LOHC facility annual profit.

7.5.1 Optimal Sizing of LOHC Generation and Storage Plants

In order to evaluate the sizing model, Monte Carlo simulation is used to generate various

electricity price profiles. The historical electricity price profiles are inputted to the Monte

Carlo simulation algorithm that would generate 60 annual electricity profiles. The electric-

ity price profiles are generated using the Monte Carlo technique while bounded between the

minimum and maximum values of the historical market data. Then, the generated annual

electricity price profiles are mapped into different annual operation percentages (i.e., 15%

up to 100% with a step of 5%) to generate 1080 scenarios in total. Each scenario repre-

sents one electricity price profile on an hourly basis over the year with a given percentage

of the facility annual operation, which is inputted to the sizing model for numerical studies.

Based on the input data, the proposed optimal sizing algorithm is executed and the annual

net profit is computed for each scenario. Fig. 7.4 shows the PDF and probability of the

estimated annual net profit for all simulated scenarios. As shown in the figure, the annual

net profit is bounded between $7.8 M and $13.3 M, but the highest PDF value occurs at

$13.2 M. This means that while the profit could equal to any value between $7.8 M and

$13.3 M, most likely it comes to around $13.2 M per annum. In order to evaluate the

profit on an average basis, the mean value of the market prices at each operating scenario

is considered; accordingly, the annual net profit profile is computed, and the results are

represented in Fig. 7.5 for each operating scenario. Fig. 7.5 also shows the CAPEX curve

and the mean value of the electricity prices used for profit calculation. As shown in the
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Figure 7.5: LOHC facility annual net profit, CAPEX, and average of electricity prices
under various operating scenarios.

figure, the mean value of market prices at which the facility operate increases with the

increase in the percentage of operation. The facility utilizes lower market price instances

over the year, but as it operates more over the year, it has to utilize higher market price

instances as well. For this reason, the average of the utilized market prices increases with

an increase in the operation percentage. The CAPEX, however, reduces as the facility

operates more since the facility can meet the demand with smaller ratings of components,

thereby less expensive initial cost for each component. As such, higher percentage of op-

eration positively impacts the CAPEX but adversely impacts the opportunity for utilizing

lower market prices. In order to find the optimum point, the net profit should be taken

into consideration as depicted in Fig. 7.5. As shown in the figure, the maximum profit of

$13.2 M occurs at 60% of operating hours over the year.

In order to evaluate the accuracy of the performed Monte Carlo simulations, the Con-

fidence Interval (CI) for the simulated scenarios is computed which comes to at 95%. The

CI represents an interval range including the true mean of a value with a probability of a

specified confidence level [161]. In such a case, small CI values denote the precision of the

estimated values reflecting the sufficiency of the simulated Monte Carlo scenarios [161]. To

that end, a 95% CI value can be calculated as 1.96 × σ/
√
n [161, 162]. In such a case,
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Table 7.3: Original values and CIP of the evaluated parameters as depicted in Fig. 7.5

Annual Operation

Percentage (%)

Electricity Price

$/MWh (CIP)

Net Profit

k$ (CIP)

CAPEX

M$ (CIP)

15% 0.0310 (4.58%) 41.0 (0.49%) 0.5623 (0.22%)

20% 0.0284 (1.42%) 34.3 (0.33%) 0.4689 (0.24%)

25% 0.0271 (0.84%) 28.7 (0.25%) 0.3956 (0.24%)

30% 0.0263 (0.61%) 25.8 (0.21%) 0.3446 (0.25%)

35% 0.0255 (0.47%) 23.3 (0.18%) 0.3037 (0.25%)

40% 0.0250 (0.38%) 19.6 (0.15%) 0.2491 (0.23%)

45% 0.0248 (0.33%) 19.0 (0.14%) 0.2357 (0.24%)

50% 0.0249 (0.29%) 16.2 (0.12%) 0.1898 (0.21%)

55% 0.0246 (0.25%) 16.2 (0.12%) 0.1823 (0.22%)

60% 0.0245 (0.23%) 15.0 (0.11%) 0.1735 (0.23%)

65% 0.0248 (0.21%) 14.9 (0.11%) 0.1753 (0.25%)

70% 0.0249 (0.19%) 12.7 (0.09%) 0.1371 (0.21%)

75% 0.0252 (0.18%) 11.4 (0.08%) 0.1106 (0.18%)

80% 0.0257 (0.17%) 11.5 (0.08%) 0.1075 (0.19%)

85% 0.0272 (0.16%) 10.8 (0.08%) 0.0904 (0.17%)

90% 0.0311 (0.17%) 9.4 (0.07%) 0.0660 (0.14%)

95% 0.0398 (0.19%) 10.8 (0.08%) 0.0436 (0.11%)

100% 0.0708 (0.26%) 17.7 (0.15%) 0 (0%)

σ denotes the standard deviation and n represents the population samples. The facility

parameters are depicted in Fig. 7.5, while Table 7.3 reports the CI for such parameters.

In addition, the Confidence Interval Percentage (CIP) that states the percentage of the CI

to the parameter mean value is given in Table 7.3. As reported in the table, the electricity

price average shows small CI and CIP values with average values of 0.0295 $/MWh and

0.61%, respectively. The CI for the net profit of the LOHC–based facility comes to an

average value of $18.8k which equates to about CIP of 0.1625%. Moreover, the results

indicate low CI and CIP values for the CAPEX of the LOHC–based facility with CI of

$0.21M on average, which equates to about 0.2% CIP on average. Given the low values of

CI and CIP for the evaluated parameters of the LOHC facility, the number of simulated
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Figure 7.6: Component sizing: (a) electrolyzer rated power and hydrogenation unit inflow
capacity, and (b) LOHC storage capacity, at various operating scenarios.
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Figure 7.7: (a) Maximum VAR and minimum DR signals, and (b) required reserve
margin for VAR and DR ancillary service, at various operating scenarios.

Monte Carlo scenarios is deemed adequate.

Having the optimum operation determined (i.e., 60% in this case), the optimum sizing

of various components can be determined as discussed below.

Fig. 7.6 (a) shows the electrolyzer rated power and the LOHC hydrogenation unit

inflow (i.e., electrolyzer outflow) at various operating scenarios. Fig. 7.6 (b), on the other

hand, shows the LOHC storage capacity at various operating scenarios. As depicted in

the figures, at higher operation percentage, smaller ratings for the electrolyzer (and thus

hydrogenation) and storage capacity is required. Fig. 7.7 represents the maximum VAR
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Table 7.4: Optimal Ratings of Various Components of LOHC–based Facility

PElz
max= 47.5 MW SOCLH

max= 8500 m3
LH PDR

min= 12 MW

FElz
max= 10200 m3

H2
SOCDR

max= 35.5 m3
LH QCon

max= 28.5 MVAr

SCon
max= 47.5 MVA SOCV AR

max = 9.5 m3
LH EA,Prc= 10.6 ($/MWh)

and minimum DR ancillary service signals and the required reserve margin by each ancillary

service. It is noticed that the VAR ancillary service requires less reserve margin compared

to DR services. This is because the DR ancillary service has a higher limitation factor upon

the electrolyzer production compared to the VAR ancillary service. Accordingly, at the

optimum operation percentage of 60%, the ratings of various components and requirements

are computed and reported in Table 7.4. It is noteworthy that the CAPEX of the facility

is considered as $75.6M at the optimum operation percentage.

7.5.2 Optimal Operation Scheduling

The proposed scheduling model for the LOHC–based facility formulated in Section 7.4

is based upon a look–ahead optimization problem considering the next T hours as the

optimization horizon. The scheduling quantities for the next T hours are determined

by the optimization problem according to the demand forecast. The optimal set points

are, then, recursively updated at each time steps (i.e., 1–hour in this work) through re–

executing the optimization problem. In this regard, the SOC of the LOHC storage will be

prepared accordingly to accommodate the transportation sector demand. The proposed

scheduling model is evaluated using the well–known 30–bus IEEE transmission system

shown in Fig. 7.8. It is worth noting that due to higher ratings of the LOHC generation

facility, it is assumed that the facility is directly connected to the transmission grid and

deals with the wholesale electricity market [163, 164]. As depicted in the figure, there is a

large–scale facility for LOHC–based hydrogen generation attached to Bus 18 of the system.

In addition to conventional generation plants, renewable energy generations are assumed
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Figure 7.8: IEEE 30–bus transmission system employed for numerical studies.

to be installed. Wind turbines are located at Buses 20 and 30 with a rated capacity of 10

MW each, while a solar generation unit is located at Bus 26 with a rated capacity of 5

MW. Real–world load profile, wind generation, and solar data are obtained from Ontario

for simulation purposes. The facility as optimally sized in Section 7.5.1 with the ratings

reported in Table 7.4 is used for simulation. The proposed model is simulated for a typical

year in Ontario market, and the results are discussed.

Fig. 7.9 represents the monthly average of (a) electricity prices, (b) electrolyzer and

hydrogenation unit consumption, (c) LOHC–based fuel generation and demand, and (d)

LOHC storage SOC. As shown in the figure, the electrolyzer shows higher operation during

the months with lower market prices that would reduce the power purchase cost. It is

noteworthy that the power consumption for hydrogenation process is only 0.69% of the

electrolyzer consumption indicating that hydrogenation only slightly contributes to the

power purchase cost (see Fig. 7.9 (b)). Fig. 7.9 (c) shows that the LOHC demand is fairly

consistent in various months over the year, while hydrogen generation varies depending on

the market prices in each month as shown in Fig. 7.9 (b). Fig. 7.9 (c) shows that the SOC
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Figure 7.9: Monthly average of: (a) electricity price, (b) electrolyzer and hydrogenation
unit consumption, (c) LOHC–based fuel generation and demand, and (d) LOHC storage

SOC.

decreases when the demand exceeds the generation and vice versa as depicted in Fig. 7.9

(d). The storage SOC follows both the daily and seasonal trends as shown in Fig. 7.9 (c)

that would improve both the short–term and long–term rate of return. Accordingly, the

net profit for the simulated year is calculated as $14.76M.

7.5.3 Participation to Ancillary Services Market

Fig. 7.10 shows the hourly operation of the facility in response to the ancillary service

signals for one week out of the studied year. The LOHC–based fuel delivery is assumed to
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Figure 7.10: (a) electricity market price, (b) LOHC demand, (c) electrolyzer input power,
(d) DR signal, (e) VAR signal, and (f) LOHC storage SOC, over a week.

take place towards the end of the day as shown in Fig. 7.10 (b), which is a time period for

the trucks to transport the fuel from the generation site to fueling stations. As shown in

Fig. 7.10 (c), the electrolyzer tends to operate during the period of low electricity prices.

However, the operation of the electrolyzer is impacted once DR and VAR ancillary service

165



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Months of the Year

0

0.5

1

1.5

N
e

t 
P

ro
fi
t 

(M
$

)

With DR & VAR Services

With VAR Service

With DR Service

Without Services

Figure 7.11: Monthly net profit with and without ancillary services contribution.

signals are issued since the facility has to operate as commanded by the utility operator.

As shown in Figs. 7.10 (c) and (d), the input power of the electrolyzer is limited up

to the value determined by the utility operator once a DR signal is issued. The facility

takes no more than the utility–determined power to support the grid mainly during higher

power demand periods. In addition, Figs. 7.10 (c) and (e) show that the operation of

the electrolyzer is slightly impacted by the VAR signal; because the electrolyzer has to

be operated in capacitive/reactive mode once reactive support is requested by the utility

operator, thereby impacting its hydrogen generation capacity. Fig. 7.10 (f) shows the

storage SOC variation in response to the operation of the electrolyzer and the hydrogen

demand.

7.5.4 Profit Assessment

While the generation and storage facilities are operated for LOHC–based fuel supply to

the transportation section, they are also utilized for ancillary services provision to the

electricity market for higher profit. Fig. 7.11 shows the net profit of the LOHC facility

achieved with and without participation to the ancillary services market. As shown in the

figure, the net profit has been set to the lowest value when the facility does not provide

any ancillary services, i.e., $13.52 M per annum. The profit is elevated to $13.88 M and

$14.37 M once the facility provides DR and VAR services, respectively. In addition, the
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Figure 7.12: Ancillary services profit at different prices: (a) DR ancillary service, and (b)
VAR ancillary service.

total annual net profit with participation to both the DR and VAR services results in

$14.76 M, thereby 9.17% enhancement in the net profit per annum.

7.5.5 Impact of Ancillary Services Price

Ancillary services price vary depending on the electricity market policies and regulations.

For instance, California independent system operator (CAISO) offers DR regulation at

10 $/MWh, while Pennsylvania New Jersey Maryland (PJM) interconnection operator in

the US offers 30 $/MWh for DR contribution [165]. In the case studies in Sections 7.5.1

and 7.5.2, 30 $/MWh and 30 $/MVAr are considered for contribution to the DR and VAR

ancillary services, respectively. However, the impact of changes in these prices on the

system profit is evaluated in this section, and the results are depicted in Fig. 7.12. As

shown in Fig. 7.12 (a), the annual stacked profit resulted from the participation to the DR

ancillary service is found to vary from $57 k at the DR price of 10 $/MWh up to $551.2

k at 50 $/MWh for the DR price. This corresponds to an additional profit of 0.42% up
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Figure 7.13: Net profit reduction at different electricity price threshold values.

to 4.1%, respectively, compared to the LOHC facility annul profit without participation in

any services i.e., $13.52M. Fig. 7.12 (b), represents the annual stacked profit resulted from

the participation to the VAR ancillary services. As illustrated, the stacked profit varies

from $245.5 k at the VAR price of 10 $/MVAr up to $1.49 M at 50 $/MVAr for the VAR

price. This corresponds to an additional stacked profit of 1.81% up to 11%, respectively,

compared to the LOHC facility annul profit without participation in any services.

7.5.6 Impact of Electricity Price Threshold Values

The application of the LOHC seasonal storage is presented as one of the features of the

scheduling model in this chapter. In particular, the reward function in (7.26) motivates the

facility to provide long–term storage (in addition to the short–term scheduling) without

the need for long–term price forecasting. The optimized price threshold value for seasonal

storage is determined as 10.6 $/MWh as stated in Section 7.5.1. However, the impact of

the facility’s net profit at different price threshold values is worth evaluating as carried out

in this section. Fig. 7.13 depicts the reduction in the net profit at different electricity price

threshold values. As shown in the figure, the net profit is reduced by 4% and 2.56% at

2 $/MWh and 6 $/MWh, respectively, when the threshold value is lower than the optimized

one. This is mainly due to the incapability of the LOHC generation facility to properly

capture lower electricity prices when an unoptimized threshold is employed. In addition,
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the facility’s net profit decreases by 4.6%, 6.56%, and 7.32% at 14 $/MWh, 18 $/MWh, and

22 $/MWh threshold values, respectively, when the threshold is higher than the optimized

value. This is due to the over–operation of the LOHC facility that leads to a generation

level surplus to the required quantity by the transportation sector. As such it is imperative

that the proper threshold for each market is used and regularly updated using the most

recent market prices in order to maximize the profit generation.

7.6 Discussion and Summary

This chapter demonstrates how LOHC–based generation and storage plants can be sized

and optimally operated for joint applications. A new model is proposed for optimal sizing

and operation scheduling of LOHC facilities for concurrent services to both the transporta-

tion sector and ancillary services market. The model aims to (i) maximize the net profit

of the facility through exploiting the lower market prices, (ii) satisfy the LOHC demand

by the transportation sector, and (iii) participate to the ancillary services market. The

ancillary service signals are incorporated into the scheduling model in order to prepare the

generation and storage plants to effectively participate in the market. It is demonstrated

that due to the LOHC higher density, massive amount of hydrogen can be stored in storage

units with 1/630 m3 smaller footprints, thereby allowing for the safe and reliable storage

and transportation of the fuel. It is indicated that optimal scheduling of the LOHC–based

generation and storage plants for concurrent services enhances the system rate of return.

The proposed model shrinks the gap between the present and the expected rate of return

of the LOHC facilities by about 10%, thereby promoting private investment in this area.
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Chapter 8

Conclusions and Future Work

8.1 Summary and Conclusions

The research in this thesis presents a number of new algorithms to address and mitigate the

integration challenges of the electrified transport networks into power grids. Specifically,

the thesis focuses on addressing three main challenges; they are: sizing of personal battery-

based and hydrogen-based EVFS (chapter 3), adoption of BEB to fully electrify PBT

system and integrate them with existing power grids’ infrastructure (chapter 4 and 5), and

the integration of hydrogen-based generation and storage plants into power grids to serve

the hydrogen powered transport sector (chapter 6 and 7).

Chapter 3 presents new analytical methodologies for the application to the size esti-

mation of electric and hydrogen-based fueling stations as the two major foundations for

electrified transportation. The ratings of various components are expressed in terms of the

system operation percentage using the proposed formulation, and the desired ratings are

selected at which the net profit reaches to the maximum point. Historical public-domain

data from real-world systems are utilized for numerical evaluation of the proposed formu-

lation. In addition, the estimation error of the proposed model is analyzed and compared
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with artificial intelligence-based models for validation purposes. The results indicate that

a trade-off has to be made between capital and operation costs in order to maximize the

annual net profit while meeting the FCEVs/BEVs demand. Further, it is indicated that

the operation percentage of the EVFS across the year to consume/store energy impacts

the annual net profit, due to the variability in the wholesale electricity prices across the

year. Using the proposed model in Chapter 3, it is demonstrated that the optimal value

for the operation percentage can be estimated, and components can be sized accordingly

towards maximizing the net profit.

Chapter 4 proposes a novel and generic model to calculate the EBEC without the need

for a high time-resolution speed profile data. The proposed model generates a set of speed

profiles using the basic information of the bus trip: trip time, trip length, and distances

between successive bus stops. Roadway LoS is incorporated in the proposed model to

simulate different traffic conditions. Further, a stochastic model for the bus speed profile

is adopted to simulate the probability of the bus to stop at each on-route designated stop.

The operation of the heat, ventilation and air conditioning system is also incorporated in

the model using the thermal mass balance principle. The numerical results indicate that

different trip directions might have different EBEC due to the route topography. Different

weather temperatures also have a significant impact on the EBEC that can increase the

energy consumption by more than 50%. In addition, the case studies reveal that traffic

conditions impact the EBEC components. Moreover, the type of the BEB (i.e., single–

decker versus double–decker) and the type of the transit service (city versus intercity bus

service) affect the EBEC.

Chapter 5 proposes a new mathematical formulation to model BEB fleet systems. The

model considers the operational requirements of PBT systems and the energy consumption

characteristics of BEBs. The proposed transit model is then integrated with the power dis-

tribution system model to develop an integrated utility-transit problem formulation for the

optimal design of BEB systems. The formulated optimization problem aims at determining
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the optimal configuration parameters of BEB fleet systems that include: the bus battery

capacity, chargers rated power, and the total number of installed chargers in the charging

station. A real-world transit system data is used to validate the efficacy of the proposed

integrated utility-transit model. The simulation results indicate that consideration of both

power distribution and transit networks operation requirements significantly impact the

choice of the BEBs configuration.

Chapter 6 presents a new model for optimal scheduling of hydrogen fueling stations to

both serve the transport sector and the electricity market operator. The model schedules

the stations to yield the maximum revenue via the stacked profit from multiple sources.

Through such constraints, hydrogen sale prices would dynamically change to maintain the

system profitable at the lowest possible hydrogen price. Numerical studies indicate that

the system profit is considerably intensified once fueling stations participate to the CBDR

program under the proposed model.

Chapter 7 presents optimal sizing and operation algorithms for LOHC–based hydrogen

generation and storage facility to serve the FCEVs. It is demonstrated that the proposed

model can alleviate the gap between the present and the expected rate of return of the

LOHC–based plants via joint scheduling for DR and VAR services.

8.2 Future Work

Currently, there is an interesting research argument between the economic, efficient and

reliable transit electrification technology to be deployed: Battery-based versus Fuel cell-

based electrification concept. To be more concise, the key question is: what should be

the optimal electrification mix between the two electrification technologies? In order to

evidently answer such a question, profound technical, economical, and environmental inves-

tigations on both electrification technologies are required. These investigations will allow
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for a better techno-economic decision making in the context of multiple transport electri-

fication scenarios, the impact of each electrification scenario on the power grid, and the

different mitigation strategies. Therefore, the research work in this thesis can be extended

in future studies as listed below:

• Investigate the planning and operation mechanisms of the electrified bus fleets us-

ing battery-swapping and in-motion wireless charging techniques and compare such

mechanisms with opportunity and overnight charging practices.

• Identify and mitigate the impacts of mass electrification of PBT and freight trans-

portation networks on local power distribution and bulk transmission systems.

• Optimize the variable renewable generation mix requirement for cleaner transit elec-

trification in order to guarantee the potential target of adopting a zero-emission

electrified transport networks.

• Investigate and compare different pathways to generate, store, and distribute hy-

drogen fuel to electrify wide fleets of personal, transit and freight transportation

networks. This investigation will include different technologies for hydrogen produc-

tion (power grid versus natural gas), hydrogen storage (gaseous versus liquefied) and

hydrogen delivery (pipeline versus trailer).
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