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Abstract

This dissertation focuses on the development and implementation of statistical meth-

ods for high-dimensional and/or complex data, with an emphasis on p, the number

of explanatory variables, larger than n, the number of observations, the ratio of p/n

tending to a finite number, and data with outlier observations.

First, we propose a non-negative feature selection and/or feature grouping (nn-

FSG) method. It deals with a general series of sign-constrained high-dimensional

regression problems, which allows the regression coefficients to carry a structure of

disjoint homogeneity, including sparsity as a special case. To solve the resulting non-

convex optimization problem, we provide an algorithm that incorporates the differ-

ence of convex programming, augmented Lagrange and coordinate descent methods.

Furthermore, we show that the aforementioned nnFSG method recovers the oracle

estimate consistently, and yields a bound on the mean squared errors (MSE). Be-

sides, we examine the performance of our method by using finite sample simulations

and a real protein mass spectrum dataset.
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Next, we consider a High-dimensional multivariate ridge regression model under

the regime where both p and n are large enough with p/n→ κ(0 < κ <∞). On top

of that, by using a double leave-one-out method, we develop a nonlinear system of two

deterministic equations that characterize the behaviour of M-estimate. Meanwhile,

the theoretical results have been confirmed by simulations.

Ultimately, we present matching quantiles M-estimation (MQME), a novel method

establishing the relationship between the target response variable and the explana-

tory variables. MQME extends the matching quantiles estimation (MQE) method

to a more general one by replacing the ordinary least-squares (OLS) estimation with

an M-estimation, the latter being resistant to outlier observations of the target re-

sponse. In addition, MQME is combined with an adaptive Lasso penalty so it can

select informative variables. We also propose an iterative algorithm to compute the

MQME estimate, the consistency of which has been proved, as is the MQE. Numeri-

cal experiments on simulated and real datasets demonstrate the efficient performance

of our method.

Keywords: coordinate descent, cross-validation, difference convex programming,

double leave-one-out, feature grouping, feature selection, high-dimensional, match-

ing quantiles, M-estimation, multivariate regression, non-negative constraint, outlier

observations, regularization
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1 Introduction

In the era of data explosion, the volume and the complexity of data are growing

faster than ever. This creates opportunities to gain new insights but also demands

novel techniques and statistical methods to analyze the data. High-dimensional data,

p parallel to or exceeding n, can be found in many areas: genomics, neuroscience,

finance, and among others. In data analysis, one of the most important and common

questions is whether there is a statistical relationship between response variables

and explanatory variables (also called predictors, covariates, regressors). Regression

analysis is one of the classic tools to modelize this relationship. In regression models,

the response may be univariate or multivariate among which multiple responses are

correlated. Another method that one can use is MQE, which aims at finding a linear

combination of explanatory variables such that its distribution matches that of the

response variable.

Statistical modeling can entail many challenges stemming from the complexity

of data. In high-dimensional regression models, there are some commonly stated
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constraints that should be imposed on the regression coefficients in order to avoid

physically impossible or uninterpretable results. For instance, non-negativity is a

common constraint especially when modeling non-negative data, say, time measure-

ments, count data, chemical concentrations, intensity values of an image and econom-

ical quantities such as prices, incomes and growth rates (Slawski and Hein, 2013).

In addition, the regression vector may be sparse in the sense that the majority of

elements are zeros. One may also be interested in a situation, which is common

in biology (El Karoui, 2018), wherein the regression parameter vector is not sparse

but diffuse, i.e., all of the elements are small. Meanwhile, the rapid growth of data

volume may bring up another issue, that is, the data sets may encounter outliers

due to some uncontrollable factors. Ignoring the existence of outliers and directly

applying statistical methods that are not resistant to outliers can lead to inaccurate

results and unreasonable scientific conclusions.

This thesis thus incorporates some of these important statistical methods: high-

dimensional regression analysis by imposing non-negative constraints on regression

coefficients, M-estimation of the high-dimensional multivariate linear model associ-

ated with diffuse regression vectors, and MQME for selecting representative portfolios

when response observations contain outliers.
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1.1 High-dimensional regression analysis

Regression analysis aims at identifying the related explanatory variables of the

response and achieving high prediction accuracy (Rekabdarkolaee et al., 2017). For

high-dimensional regression problems, regularization methods are of critical impor-

tance in a broad sense, and great attention has been devoted to exploring sparseness

of regression vectors, including the Bridge regression (Frank and Friedman, 1993),

Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), elastic net (Zou and Hastie,

2005), adaptive Lasso (Zou, 2006), and MCP (Zhang, 2010). Moreover, extracting

one kind of lower-dimensional structure defined by groups has received increasing

attention. Literatures can be found in Arnold and Tibshirani (2016); Huang et al.

(2009); Jang et al. (2011); She (2010); Shen et al. (2012); Tibshirani and Taylor

(2011); Tibshirani et al. (2005); Xiang et al. (2015); Yang et al. (2012); Yuan and

Lin (2006); Zhu et al. (2013), among others. Methods introduced in the above arti-

cles intend to solve the problems where the regression vectors may carry a structure,

which partitions those vectors into disjoint homogeneous subgroups.

The non-negativity constraint on the regression coefficients is an effective regular-

ization technique for a certain class of high-dimensional regression problems. Slawski

et al. (2012) proposed non-negative least squares (NNLS)/non-negative least absolute

deviation (NNLAD) regression to extract patterns from a raw spectrum. Slawski and
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Hein (2013) showed that the performance of NNLS is comparable to that of Lasso

in terms of prediction and estimation. Similarly, Meinshausen (2013) confirmed the

effectiveness of the sign constraint for sparse recovery if explanatory variables are

strongly correlated, and provided an application on the link-level network topogra-

phy. Koike and Tanoue (2019) extended the results of Slawski and Hein (2013) and

Meinshausen (2013) to a more general setup, making them possible of general convex

loss functions and non-linearity of responses with respect to explanatory variables.

Wen et al. (2015) proposed a projection-based gradient descent method for solving

NNLS problems, and then applied it to the inverse problem of constructing a prob-

abilistic Boolean network. Shadmi et al. (2019) investigated NNLS for recovering

sparse non-negative vectors from noisy linear and biased measurements, as good as

l1 regularized estimations but without tuning parameters.

Other methods for dealing with such non-negative and sparse structures of re-

gression coefficients combine the regularization techniques with non-negativity con-

straints, like, non-negative Lasso (Itoh et al., 2016; Wu et al., 2014), non-negative

elastic net (Wu and Yang, 2014) and non-negative adaptive Lasso (Yang and Wu,

2016). Esser et al. (2013) added sparsity penalties, which are related to the ratio

of l1 and l2 norms, to the objective function in an NNLS-type model to solve linear

unmixing problems. Hu et al. (2015) applied a non-negative Lasso-based variable
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selection to identify the important amino acid sites and to evaluate their impor-

tance. Mandal and Ma (2016) proposed an efficient regularization path algorithm

for generalized linear models with non-negative regression coefficients.

Chapter 2 centers on high-dimensional linear regression problems by imposing

non-negative constraints on the regression coefficients. A regularization scheme-

based method is thus proposed. In addition to regression coefficients with sparsity

and non-negativity, the method is applicable to the cases where those regression

coefficients may carry homogeneous subgroups.

1.2 High-dimensional multivariate M-estimation

A well-known method for estimating the regression coefficients is OLS that is

mathematically convenient and efficient for normally distributed errors. However,

OLS is sensitive to outliers and unstable with respect to deviations from various

assumptions. Huber (1964, 1973) thus introduced an M-estimation, which plays an

important and complementary role in the development of robust methods. In the

past fifty-five years, many procedures based on the M-estimation have been pro-

posed in literature and their asymptotic properties have been investigated. Gener-

ally speaking, the asymptotic theories of M-estimation in linear regression models

are under three main regimes: (i) the classic regime that allows n to go to infin-
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ity with fixed p (see, e.g., Bickel (1975); He and Shao (1996); Huber (1973); Yohai

and Maronna (1979)); (ii) the second regime that permits both n and p to go to

infinity but restricts p/n → 0, which can be found in the following references, e.g.,

Bai and Wu (1994); He and Shao (2000); Li et al. (2011); Mammen (1989); Portnoy

(1984, 1985); Welsh (1989); Yohai and Maronna (1979); (iii) the most recent regime

covers two cases: (a) p/n → κ with 0 < κ < 1 (El Karoui et al., 2013; Lei et al.,

2018) and with 0 < κ < ∞ (El Karoui, 2013, 2018); (b) p >> n (Loh, 2017; Loh

and Wainwright, 2015; Negahban, 2012). It is noted that El Karoui et al. (2013)

proposed a nonlinear system of two deterministic equations to characterize the be-

havior of M-estimate under random design settings. This topic was also extended to

the ridge-regularized M-estimation in El Karoui (2013). Recently, El Karoui (2018)

presented rigorous proofs for a general situation, ‘elliptical-like’ distributed random

covariates and heavy-tailed random errors. Lei et al. (2018) investigated asymptotic

distributions of each coordinate of the regression M-estimate under the case where

random errors are the only source of randomness.

Great work has been done to solve the M-estimation problems of univariate linear

regression models. In many statistical applications, however, one may encounter

multivariate cases encompassing more than one outcome variable. It seems that

the M-estimation problem of multivariate responses has been rarely studied in the
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literature. In chapter 3, we consider a high-dimensional multivariate regression model

under the regime (iii), say, both p and n are large with p/n → κ(0 < κ < ∞).

We investigate theoretically some asymptotic properties on the ridge-regularized M-

estimate.

1.3 Matching quantiles M-estimation

In recent decades, financial market data have become available with increasingly

high frequency and dimension. For example, the number of the trades between

two major banks could easily be in the magnitude of tens of thousands or more.

Backtesting representative portfolios, a subset of all the trades, plays a key role in

recalibrating simulations and/or pricing models. Sgouropoulos et al. (2015) argued

that the representative portfolios should represent various characteristics of the total

portfolios, i.e., risk exposures, sensitivity to the risk factors, etc. Instead of building

a regression relationship between the total portfolio and the representative portfolio,

Sgouropoulos et al. (2015) thus constructed their distributions matching relationship,

that is, the representative portfolio is selected by matching the distribution of the

target total portfolio (response) by that of a linear combination of a subset of all

trades (covariates). MQE aims to minimize the mean-squared difference between

the quantiles of the two distributions across all levels, rather than matching the two
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distributions directly.

Although MQE achieves high goodness in matching distributions, it is sensitive

to outliers due to the fact that it is based on OLS. The existence of outliers dete-

riorates its performance. As we discussed in Section 1.2, M-estimation has received

considerable attention in the literature and its applications in many fields gain great

popularity as well. Some recent examples include (1) Lambert-Lacroix and Zwald

(2011) proposed an M-estimation by combining Huber’s discrepancy with a Lasso

penalty, which is resistant to heavy-tailed errors or outliers in observations of the re-

sponse variable; (2) Zhang et al. (2016) applied an adaptive Huber’s M-estimation to

the cubature Kalman filter to handle abnormal measurement noise, whose advantages

in terms of estimation accuracy, outlier-resistance, and reliability were demonstrated

by simulation studies; (3) Ollila et al. (2016) introduced two penalized M-estimation

methods for the problem of joint estimation of group covariance matrices.

Since a proper choice of discrepancy function can result in robustness against out-

liers, one learns that there are statistical procedures, say, M-estimation, one can be

used to modify MQE with the purpose of minimizing sensitivity to outliers. We thus

propose an enhancement of MQE by replacing OLS with M-estimation in Chapter

4.
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1.4 Notations

The following general notations will be used in subsequent chapters. More spe-

cialized notations are introduced in context.

• For any a, b ∈ R, min{a, b} and max{a, b} return the minimum and maximum

of a and b, respectively. sign(a) is the sign of a. a+ = a if a ≥ 0, otherwise

a+ = 0.

• We denote the l2-norm, l1-norm and l∞-norm of a vector a by ‖a‖, ‖a‖1, ‖a‖∞,

respectively. We use I{·} and Ip to denote an indicator function and a p × p

identity matrix, respectively. Let 1d be a d× 1 vector with all elements 1.

• For a square matrix A, we define its smallest and largest eigenvalues by λmin(A)

and λmax(A), respectively, and let tr(A) be the trace of A. A � (�)0 means

that A is a positive semi-definite (definite) matrix. We write A1 � A2 if A1−A2

is positive semi-definite. If A is an m× n matrix, we denote
√
λmax(A>A) by

‖A‖max and its vectorization by vec(A). Define PA as the projection matrix onto

the columns of A. For any two matrices A1 and A2, we write their Kronecker

product by A1 ⊗ A2.

• For any set A, |A| and Ac denote the size and the complement of A, respec-

tively. For any B ⊂ A, A\B = A ∩ Bc.
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• For some generic random variable ξ, we use L(ξ) to denote its distribution

and Fξ(·) and fξ(·) to denote its distribution function and probability density

function, respectively. We use Φ(·) to denote the cumulative distribution func-

tion of the standard normal distribution. Qξ(α) is the αth quantile of random

variable ξ, i.e., P{ξ ≤ Qξ(α)} = α, for α ∈ [0, 1]. Similarly, we write Qn,ξ(i/n)

to denote the i/nth sample quantile of random variable ξ.

• For any random vector ξ, we write ξ ∼ (0,Σ) when ξ is distributed according

to a distribution with mean vector 0 and covariance matrix Σ.

• For any vector-valued function g : Rm → Rm, we denote the derivative of g(x)

by ∇g(x), an m ×m matrix, for x ∈ Rm. If g(x) is invertible, we write the

inverse function of g(x) by g−1(x).

• For any twice differentiable function ρ : Rm → R, we denote the first and

second derivative of ρ(x) by ψ(x), and ∇ψ(x), for x ∈ Rm, respectively. If

∇ψ(x) is positive semi-definite, we write ∇ψ1/2(x) as its square root.

• Denote the convergence in probability by ‘
p−→’, the convergence almost surely

by ‘
a.s.−−→’, and the convergence in distribution by ‘

D−→’,
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2 Sign constrained feature selection and/or

grouping via regularization method

2.1 Introduction

In recent decades, high-dimensional problems appear in many fields due to the

explosion of massive data. One standard tool to perform data analysis statistically

is through a linear regression model, i.e.,

yi = x>i β + εi ( i = 1, . . . , n), (2.1)

where yi are response observations, xi = (xi1, . . . , xip)
> are p-dimensional vectors

of predictors, β ∈ Rp is a vector of unknown regression coefficients, εi are random

errors, and xi are independent of εi. In the high-dimensional setting, p is at least of

the same order of magnitude as n, say p = O(n) (p is not fixed), or even p >> n, in

which case β may be sparse (Slawski and Hein, 2013).

From a practical viewpoint, due to the inherent physical characteristics of systems
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under investigation, there are some commonly stated constraints, say, non-negativity,

that should be imposed on the regression parameters to avoid physically impossible

and uninterpretable results. We propose in this chapter a regularization scheme-

based method to deal with the non-negative feature selection problem. Addition-

ally, our method is applicable to the feature grouping cases where those regression

coefficients may carry homogeneous subgroups within which the elements are sim-

ilar or identical. Note that, throughout this study, we only consider non-negative

constraints since one can replace the covariates that are imposed to be negative

coefficients by their negative counterparts (Meinshausen, 2013).

In light of Shen et al. (2012), we initially introduce the nnFSG in its constrained

form, followed by the regularized one. A hybrid algorithm, combing with the differ-

ence convex programming, augmented Lagrange and coordinate descent, is provided

to solve the non-convex optimization problem. We investigate some theoretical prop-

erties of our nnFSG estimates in terms of grouping consistency and bounds on MSE.

We stress that feature selection can be regarded as a special case where only a group

of zeros is included. Our finite sample simulations show that the proposed method

is superior to some other methods that are available for computing non-negative

estimates. We also examine the performance of our proposed method using a real

protein mass spectrum dataset.
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The rest of this chapter is organized as follows. In Section 2.2, we introduce the

constrained form of nnFSG as well as the theoretical properties of the constrained

estimate. We describe the regularized form of the nnFSG in Section 2.3, along with

an algorithm to solve the resulting non-convex optimization problem and theoretical

properties of the estimate. We present the numerical studies in Section 2.4. The

proofs of these lemmas and theorems are relegated to appendix A.

2.2 Constrained nnFSG

2.2.1 The formulation of constrained nnFSG

Consider the linear regression model (2.1), where β might be sparsity with non-

negative constraints. Suppose that β0 is the true regression vector. The non-negative

feature selection (nnFS) is formulated by the constrained least squares criterion

min
β≥0

1

2n

n∑
i=1

(yi − x>i β)2, (2.2)

subject to

p∑
j=1

min

{
|βj|
τ
, 1

}
≤ s1, (2.3)

where s1(> 0) is a tuning parameter that controls feature selection. τ > 0, a thresh-

old parameter, determines when a small regression coefficient should be penalized.
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In particular, the unknown vector β may carry a structure with disjoint homo-

geneous subgroups within which the coordinates are identical or similar. Let the

number of disjoint subgroups be K + 1 (K ≤ p − 1), and denote the coefficients

index of k-th group by Gk satisfying ∪kGk = {1, 2, . . . , p} and ∩kGk = ∅. Denote

β = (β>0 ,β
>
1 , . . . ,β

>
K)>, where βk = αk1|Gk|, α0 = 0 and αk > 0 for k = 1, . . . , K.

In light of Shen et al. (2012), the constrained nnFSG is formulated by solving the

problem (2.2) subjecting to

p∑
j=1

min

{
|βj|
τ
, 1

}
≤ s1, and

∑
(j,j′)∈ε

min

{
|βj − βj′|

τ
, 1

}
≤ s2, (2.4)

where ε = {(j, j′) : j < j′, j, j′ = 1, . . . , p}, an arbitrary undirected graph. The

tuning parameter, s2(> 0), controls feature grouping. τ(> 0) also determines when

a small difference between two coefficients should be penalized. More details on the

constraints of (2.4) can be referred to Shen et al. (2012, 2013). Note that nnFSG

is reduced to nnFS if K = p − 1. Throughout this chapter, we thus only consider

the nnFSG problem. Our goal is to estimate β or equivalently, α = (α1, . . . , αK)>

and G = (G0,G1, . . . ,GK)>. A solution to (2.2) subjecting to (2.4) is referred to as a

constrained nnFSG estimate, denoted by β̂
cons

.
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2.2.2 Theoretical properties of the constrained nnFSG estimate

We denote the true grouping by G0 = (G0
0 ,G0

1 , . . . ,G0
K0) = (G0

0 ,G0
0
c
), and the true

regression parameter for the group k by α0
k for k = 1, . . . , K0, where K0+1 is the true

grouping number. Then β0 can be written as β0 = (01>|G00 |
, α0

11
>
|G01 |
, . . . , α0

K01>|G0
K0 |

)>.

Denote α0 = (α0
1, . . . , α

0
K0)>, and ZG0c0 = (XG011|G01 |, . . . , XG0K0

1|G0
K0 |). Now, we define

the oracle estimate,

β̂
ora

= (β̂ora1 , . . . , β̂orap )> = (01>|G00 |
, α̂ora1 1>|G01 |

, . . . , α̂oraK01>|G0
K0 |

)>,

where α̂ora = (α̂ora1 , . . . , α̂oraK0 )>, satisfying that

α̂ora = arg min
α

1

2n
‖y − Z>G00cα‖

2, αk > 0, k = 1, . . . , K0.

We denote the OLS estimate by

β̂
ols

= (β̂ols1 , . . . , β̂olsp )> = (01>|G00 |
, α̂ols1 1>|G01 |

, . . . , α̂olsK01>|G0
K0 |

)>,

where α̂ols = (α̂ols1 , . . . , α̂olsK0)> = (Z>G00
cZG00

c)−1Z>G00
cy with Z>G00

cZG00
c invertible. Note

that both β̂
ora

and β̂
ols

are defined based on the true grouping G0.

Before proceeding, we provide two metrics proposed by Shen et al. (2012) and

Zhu et al. (2013), which reflect the model’s difficulty. One level of the difficulty is

given by,

Cmin = min
G∈T

‖(I − PZGc0 )Xβ0‖2

nmax{|G0\G0
0 |, 1}

,
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where G = (G0,Gc0) = (G0,G1, . . . ,GK), PZGc0
= ZGc0(Z

>
Gc0
ZGc0)

−1Z>Gc0 with ZGc0 =

(XG11|G1|, . . . , XGK1|GK |), T = {G 6= G0 :
∑p

j=1 I{βj>0} ≤ s0
1,
∑

(j,j′)∈ε I{βj 6=βj′} ≤

s0
2}, a constrained set corresponding to (2.4) with s0

1 = |S| = p − |G0
0 | and s0

2 =∑
(j,j′)∈ε I{β0

j 6=β0
j′}

. We remark that Cmin defines the degree of separation between

G0
0 and G0 of a least favorable candidate model in the l2-norm. Another one is the

resolution level of the true regression coefficients,

γmin = min
{j,j′∈G00

c
,(j,j′)∈ε}

{β0
j , |β0

j − β0
j′|}.

The smaller the values of Cmin and γmin, the more difficult the situation. Denote K̄ =

max1≤i≤s01 K
∗
i /i, where K∗i = max{G∈T ,|G0\G00 |=i}K(Gc0), and K(Gc0) is the grouping

number of Gc0. Let T̄ = max1≤i≤s01 log Ti/i, where Ti = max{G∈T ,|G0\G00 |=i} |TGc0 |, and

TGc0 = {G = (G∗0 ,G1, . . . ,GK) ∈ T : G∗0 = G0
0}, a set of groupings indexed by the sets

of positive coefficients. More details on Cmin, γmin, T̄ and K̄ can be referred to Shen

et al. (2012) and Zhu et al. (2013).

Now, we make the following assumptions.

(A1) εi
iid∼ N(0, σ2), i = 1, . . . , n.

(A2) There exists a constant c0 such that λmin

(
n−1Z>G00

cZG00
c

)
≥ c0 > 0.

(A3) For the same constant c0 as in (A2), γmin > [2σ2 log{2nK0/(2π)1/2}/(nc0)]1/2.
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Lemma 2.1 Under the assumptions (A1)-(A3), it holds that

P (β̂
ora
6= β̂

ols
) = O

(
1

n(log n)1/2

)
.

In Lemma 2.1, we show that min1≤k≤K0 α̂olsk > 0 with probability at least 1 −

2K0
{

1− Φ
(
[2 log{2nK0/(2π)1/2}]1/2

)}
, which implies that with the same proba-

bility, β̂
ora

= β̂
ols

.

Theorem 2.1 Under the assumptions (A1)-(A3), it follows that, for any 0 < τ ≤

σ{log p/[2npλmax(X>X)]}1/2,

P
(
β̂
cons
6= β̂

ora
)
≤(exp(1) + 1) exp

(
− n

10σ2

{
Cmin −

10σ2

n

(
3 log p+ T̄ +

K̄

2

)})
+

c

n(log n)1/2
.

If, additionally, Cmin ≥ 10σ2n−1
(
log n+ log log n/2 + 3 log p+ T̄ + K̄/2

)
, then

(1) P
(
β̂
cons
6= β̂

ora
)

= O
(
n−1(log n)−1/2

)
;

(2) n−1E
∥∥∥Xβ̂cons −Xβ0

∥∥∥2

= n−1K0σ2(1 + o(1)).

β̂
cons

yields a consistent recovery of β̂
ora

, and also generates a bounded MSE.

Since β̂
ora

is defined based on the true grouping, Theorem 2.1 implies that β̂
cons

identifies the true grouping consistently.
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2.3 Regularized nnFSG

2.3.1 The formulation of the regularized nnFSG

By Lemma 1 of Shen et al. (2012), the minimizer of

1

2n

n∑
i=1

(yi−x>i β)2 subject to

p∑
j=1

min

{
|βj|
τ
, 1

}
≤ s1,

∑
(j,j′)∈ε

min

{
|βj − βj′|

τ
, 1

}
≤ s2,

is a local minimizer of

f(β) =
1

2n

n∑
i=1

(yi − x>i β)2 + λ1p1(β) + λ2p2(β),

where p1(β) =
∑p

j=1 min {|βj|/τ, 1}, and p2(β) =
∑

(j,j′)∈ε min {|βj − βj′ |/τ, 1}. We

impose non-negative constraints on β, i.e.,

min
β
f(β) subject to βj ≥ 0, j = 1, . . . , p. (2.5)

Using the penalty method in Chapter 13 of Luenberger and Ye (2015), the regularized

version of (2.5) is thus given by

min
β

1

2n

n∑
i=1

(yi − x>i β)2 + λ1p1(β) + λ2p2(β) + λ3p3(β), (2.6)

where p3(β) =
∑p

j=1(min{βj, 0})2. λ1(> 0), λ2(≥ 0) correspond to s1, s2 in (2.4),

respectively. λ3(> 0) controls the shrinkage speed of negative regression coefficients.

Obviously, by setting λ2 = 0, (2.6) reduces to the regularized nnFS, which solves
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the feature selection problems with non-negative constraints on the regression coef-

ficients. A solution to (2.6), denoted by β̂, is referred to as a nnFSG estimate.

Denote S(β) = (2n)−1
∑n

i=1(yi−x>i β)2+λ1p1(β)+λ2p2(β)+λ3p3(β). Since S(β)

is non-convex, the difference of convex programming is thus applied to solve (2.6).

Our main technical contribution is to extend the algorithm in Shen et al. (2012) to a

more general one by adding another penalty term p3(β), which, together with p1(β),

controls the non-negativity of the regression coefficients.

Firstly, decompose S(β) into the difference of two convex functions as follows,

S(β) = S1(β)− S2(β), (2.7)

where the convex functions S1(β) and S2(β) are given respectively by

S1(β) =
1

2n

n∑
i=1

(yi − x>i β)2 +
λ1

τ

p∑
j=1

|βj|+
λ2

τ

∑
(j,j′)∈ε

|βj − βj′|+ λ3

p∑
j=1

β2
j ,

S2(β) =
λ1

τ

p∑
j=1

(|βj| − τ)+ +
λ2

τ

∑
(j,j′)∈ε

(|βj − βj′ | − τ)+ + λ3

p∑
j=1

((βj)+)2.

Define η = (|β1|, . . . , |βp|, |β12|, . . . , |β1p|, . . . , |β(p−1)p|, β2
1 , . . . , β

2
p)
>, where βjj′ = βj−

β′j, (j, j
′) ∈ ε. Then, S2(β) can be expressed to

S̃2(η) =
λ1

τ

p∑
j=1

(|βj| − τ)+ +
λ2

τ

∑
(j,j′)∈ε

(|βjj′| − τ)+ + λ3

p∑
j=1

β2
j I{βj≥0}.

Approximate S̃2(η) by its affine minorization S̃2(η∗) + 〈η− η∗, ∂S̃2(η∗)〉 at a neigh-

bourhood of η∗ ∈ R(p2+3p)/2, where ∂S̃2(η) is the first derivative of S̃2(η) with respect
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to η; 〈·, ·〉 is the inner product. Now we construct a sequence of approximations of

S2(β) iteratively. At the m-th iteration, we replace S2(β) by S
(m)
2 (β) = S̃

(m)
2 (η) =

S̃2(η̂(m−1)) + 〈η − η̂(m−1), ∂S̃2(η̂(m−1))〉. Specifically,

S
(m)
2 (β) = S2(β̂(m−1)) +

λ1

τ

p∑
j=1

I{|β̂(m−1)
j |≥τ}

(
|βj| − |β̂(m−1)

j |
)

+
λ2

τ

∑
(j,j′)∈ε

I{|β̂(m−1)
j −β̂(m−1)

j′ |≥τ}

(
|βj − βj′ | − |β̂(m−1)

j − β̂(m−1)
j′ |

)
+λ3

p∑
j=1

I{β̂(m−1)
j ≥0}

(
β2
j − (β̂

(m−1)
j )2

)
.

Finally, an approximation to S(β) in (2.7) at the m-th iteration can be obtained by

S(m)(β) = S1(β)− S(m)
2 (β), which formulates the following subproblem,

min
β

1

2n

n∑
i=1

(yi − x>i β)2 +
λ1

τ

∑
j∈F(m−1)

|βj|+
λ2

τ

∑
(j,j′)∈ε(m−1)

|βj − βj′ |

+ λ3

∑
j∈N (m−1)

β2
j , (2.8)

where

F (m−1) = {j : |β̂(m−1)
j | < τ},

ε(m−1) = {(j, j′) : j < j′, |β̂(m−1)
j − β̂(m−1)

j′ | < τ}, (2.9)

N (m−1) = {j : β̂
(m−1)
j < 0}.

How to efficiently solve the subproblem (2.8) plays a key role in solving the problem

(2.6). Though we can apply quadratic programming to solve the subproblem (2.8),

it is inefficient for large-scale problems.
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2.3.2 Algorithm

In light of Shen et al. (2012), an algorithm integrated with augmented Lagrange

and coordinate descent methods is developed to solve the subproblem (2.8). We con-

vert the subproblem (2.8) with linear constraints to its unconstrained version through

slack variables βjj′ = βj − βj′ . Define ξ = (β1, . . . , βp, β12, . . . , β1p, . . . , β(p−1)p)
>.

Then an augmented equivalent problem of (2.8) is given, i.e.,

min
ξ

1

2n

n∑
i=1

(yi − x>i β)2 +
λ1

τ

∑
j∈F(m−1)

|βj|+
λ2

τ

∑
(j,j′)∈ε(m−1)

|βjj′|

+ λ3

∑
j∈N (m−1)

β2
j . (2.10)

For (2.10), the augmented Lagrange is employed to solve its equivalent unconstrained

problem iteratively with respect to t at the m-th iteration. Denote S̃(m)(ξ) =

(2n)−1
∑n

i=1(yi−x>i β)2+λ1τ
−1
∑

j∈F(m−1) |βj|+λ2τ
−1
∑

(j,j′)∈ε(m−1) |βjj′ |+λ3

∑
j∈N (m−1) β2

j .

In the t-th iteration, we minimize

S̄(m)(ξ) = S̃(m)(ξ) +
∑

(j,j′)∈ε(m−1)

τ
(t)
jj′ (βj − βj′ − βjj′)

+
1

2
ν(t)

∑
(j,j′)∈ε(m−1)

(βj − βj′ − βjj′)2, (2.11)

where τ
(t)
jj′ , ν

(t) are Lagrange multipliers. Update τjj′ and ν by

τ
(t+1)
jj′ = τ

(t)
jj′ + ν(t)(β̂

(m,t)
j − β̂(m,t)

j′ − β̂(m,t)
jj′ ) and ν(t+1) = ρν(t), (2.12)
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where ρ controls the speed of convergence. To speed up convergence, ρ is chosen

larger than 1.

We use the coordinate descent method to compute ξ̂(m,t) in terms of (2.11). For

each component of ξ, we fix the other components at their current values. Set an

initial value ξ̂(m,0) = ξ̂(m−1), where ξ̂(m−1) is the solution of the subproblem (2.8).

Then update ξ̂(m,t) by the following formulas, t = 1, 2, . . ..

(I) Given β̂
(m,t−1)
l , updating β̂

(m,t)
l , (l = 1, 2, . . . , p) by:

β̂
(m,t)
l = α−1γ, (2.13)

where

α =
1

n

n∑
i=1

x2
il + 2λ3I{β̂(m−1)

l <0} + ν(t)
∣∣j′ : (l, j′) ∈ ε(m−1) or (j′, l) ∈ ε(m−1)

∣∣ ,
and

γ = n−1

n∑
i=1

xilb
(m,t)
i,l −

∑
(l,j′)∈ε(m−1)

τ
(t)
lj′ + ν(t)

∑
(l,j′)∈ε(m−1)

(
β̂

(m,t)
j′ + β̂

(m,t)
lj′

)
,

if |β̂(m−1)
l | > τ , i.e., l ∈ F (m−1)c ; and

γ = ST

 1

n

n∑
i=1

xilb
(m,t)
i,l −

∑
(l,j′)∈ε(m−1)

τ
(t)
lj′ + ν(t)

∑
(l,j′)∈ε(m−1)

(
β̂

(m,t)
j′ + β̂

(m,t)
lj′

)
,
λ1

τ

 ,

if 0 < |β̂(m−1)
l | < τ , i.e., l ∈ F (m−1). Herein, b

(m,t)
i,l = yi − x>i(l)β̂

(m,t)

(l) ; xi(l) is the

vector xi after deleting the l-th element; xil is the l-th element of vector xi;
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τlj′ = −τj′l if l > j′; βlj′ = −βj′l if l > j′. ST (b, δ) = sign(b)(|b| − δ)+ is the

soft-thresholding operator.

(II) Given β̂
(m,t−1)
jj′ , updating β̂

(m,t)
jj′ , (j, j′) ∈ ε by:

β̂
(m,t)
jj′ =


(ν(t))−1ST

(
τ

(t)
jj′ + ν(t)(β̂

(m,t)
j − β̂(m,t)

j′ ), λ2
τ

)
(j, j′) ∈ ε(m−1),

β̂
(m−1)
jj′ (j, j′) ∈ ε(m−1)c .

(2.14)

The process of coordinate descent iterates until convergence, which satisfies the ter-

minate condition ‖β̂
(m,t)
− β̂

(m,t−1)
‖∞ ≤ δ∗, where δ∗ is a given small positive value.

Hence, β̂
(m)

= β̂
(m,t∗)

, where t∗ denotes the iteration at termination. The pseudo

codes of the developed algorithm are summarized in Algorithm 1, the convergence

of which is given in Theorem 2.2.

When solving the problem (2.6), the proposed method could potentially lead to a

local optimum as the objective function in (2.6) is non-convex. Hence it is critical to

assign a suitable initial value of β, which controls the initial values of F (0), ε(0),N (0).

A candidate initial value is adopted by the estimate of ncTLF in the R package FGSG

(Yang et al., 2012).

Theorem 2.2 The proposed Algorithm 1 converges, that is,

S(β̂(m))→ c, as m→ +∞, (2.15)

where c is a non-negative constant.
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Algorithm 1 A hybrid algorithm integrated with augmented Lagrange and coordi-

nate descent
Input: design matrix X ∈ Rn×p, response vector y ∈ Rn×1, parameters

τ, λ1, λ2, λ3, ρ, v, δ
∗.

Output: β̂(m)

Initialization: β̂(0),m = 0

do

m← m+ 1.

Update F (m), ε(m),N (m) according to (2.9).

Initialization: β̂(m,0) ← β̂(m−1), t = 0

do

t← t+ 1.

Update β̂l
(m,t)

according to updating formulas (2.13).

Update β̂
(m,t)
jj′ according to updating formula (2.14).

while ‖β̂(m,t) − β̂(m,t−1)‖∞ ≥ δ∗

while S(β̂(m))− S(β̂(m+1)) > 0

We derive the convergence of the proposed algorithm that is analogous to Shen et

al. (2012).
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2.3.3 Theoretical properties of the regularized nnFSG estimate

We show some properties of the proposed nnFSG estimate β̂. Before proceeding,

we make the following assumption.

(A4) 4τ−2(λ1s
∗+λ2|N |) < minK(Gc0)≤K∗ λmin(n−1Z>Gc0ZG

c
0
), where s∗ and K∗ are upper

bounds of the maximal number of non-zero coefficients and of the non-zero

groupings, respectively. |N | is the maximal number of direct connections of

variable xj to variable xj′ , where (j, j′) ∈ ε and j, j′ ∈ Gk, k = 1, . . . , K.

We remark that for a full connection ε = {(j, j′) : j < j′, j, j′ = 1, . . . , p}, |N | =

s∗(s∗ − 1)/2. Specifically, s0
1 ≤ s∗ ≤ p, K0 ≤ K∗ ≤ s∗.

Theorem 2.3 Under the assumptions (A1)-(A4), if γmin > 2τ ,

{
(γmin − 2τ)n1/2λ

1/2
min(n−1Z>G0c0

ZG0c0 )σ−1
}2

≥ max

{
8 log

nK0(K0 − 1)

(2π)1/2
, 2 log

2n(p− |G0
0 |)

(2π)1/2

}
, nλ1/τ

σ max
1≤i≤p

‖x(j)‖

2

≥ 2 log
2n|G0

0 |
(2π)1/2

,

(
nλ2/τ

2σD

)2

≥ 2 log
2n|N |
(2π)1/2

,

where D = max
k,A⊂G0k

‖XA1‖/|ε ∩ {A× (G0
k \ A)}|, and ′×′ denotes the Cartesian prod-

uct, then

P (β̂ 6= β̂
ora

) = O

(
1

n(log n)1/2

)
.

Furthermore, if

1

n
‖Xβ0‖2 +

τ 2

16
min

K(Gc0)≤K∗
λmin

(
1

n
Z>Gc0ZG

c
0

)
= o(K0(log n)1/2),
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then we have

1

n
E
∥∥∥Xβ̂ −Xβ0

∥∥∥2

=
K0σ2

n
(1 + o(1)).

Note that the results of Theorem 2.3 are parallel to that of Theorem 2.1. The

proposed non-negative estimate β̂ identifies consistently the true grouping, and also

yields a mean squared error bounded by n−1K0σ2(1 + o(1)).

2.4 Numerical studies

2.4.1 Evaluation measures

The criteria used for measuring the prediction accuracy of the estimate β̂ are

the mean squared error (MSE), MSE = n−1‖X(β̂ − β0)‖2, and mean absolute error

(MAE), MAE = n−1‖X(β̂ − β0)‖1. Since the regression vetctor is sparse, and may

also carry a structure with disjoint subgroups, in light of Yang et al. (2012), we thus

provide another two metrics, feature true positive rate (FTP),

FTP =

∑
j∈G00

I{β̂j=0} +
∑

j /∈G00
I{β̂j 6=0}

p
,

and group true positive rate (GTP),

GTP =

∑K0

k=1 GTPk + FTP

K0 + 1
,
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where

GTPk =

∑
j′ 6=j,j′,j∈G0k

I{β̂j′=β̂j} +
∑

j′ 6=j,j′∈G0k,j /∈G
0
k
I{β̂j′ 6=β̂j}

|G0
k |(p− 1)

, k = 1, . . . , K0.

FTP and GTP measure respectively the accuracy of model’s performance in terms

of feature selection and feature grouping. It is clear that FTP, GTPk(k = 1, . . . , K0)

and GTP ∈ [0, 1]. Ideally, they should be close to 1.

2.4.2 Tuning free parameter: λ3

Although the regularization problem (2.6) contains four parameters, say, τ, λ1, λ2

and λ3, the amount of work to select tuning parameters is parallel to that of Shen et

al. (2012). Among those, τ, λ1, λ2 are selected by five-fold cross-validation. λ3 shrinks

the negative coordinates of β, which, together with λ1, controls the non-negativity.

It is easy to see that λ3 is not required to be tuned precisely. Indeed, a large positive

value is enough. Now, we perform finite sample simulations to illustrate the effects

of λ3 by fixing τ, λ1, λ2.

We generate the samples (xi, yi), i = 1, . . . , n, via a linear model yi = x>i β + εi,

where xi
iid∼ Np(0,Σ) with Σ = (σ`j) and σ`j = 0.5|`−j|, `, j = 1, . . . , p; the random

error εi
iid∼ N(0, σ2). We set the true regression coefficient

β0 = (1, . . . , 1︸ ︷︷ ︸
4

, 2, . . . , 2︸ ︷︷ ︸
4

, 3, . . . , 3︸ ︷︷ ︸
4

, 4, . . . , 4︸ ︷︷ ︸
4

, 0, . . . , 0︸ ︷︷ ︸
p−16

)> ∈ Rp.
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Figure 2.1: The values of STP, MAE, FTP and GTP with different λ3 and fixed

λ1, λ2, τ , averaged over 100 simulations.

Let τ = 0.1, λ1 = λ2 = 10−3λ̄, where λ̄ = ‖X>y‖∞, and λ3 ∈ {0, 1, 2, 3, 4, 5, 10, 15}.

Herein, we take σ = 1, n = 100, p = 50, 100, 150, 200.

Figure 2.1 displays the values of MAE, FTP and GTP, averaged over 100 simula-

tions for the post samples. In addition, we report the sign true positive rate (STP)

in the same figure. STP is defined as the proportion of non-negative coordinates of β̂

that is, STP =
∑p

j=1 I{β̂j≥0}/p. In an instance where p is fixed, all the criteria values

appear commensurate as λ3 exceeds a critical value. For example, when p = 100,
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the values of FTP, GTP and MAE tend to be stable and the STP values are exactly

1 as λ3 ≥ 1, which completely captures the non-negativity of the underlying true

coefficients. It indicates that the method’s performance in achieving non-negative

estimate is independent of λ3 as it exceeds a critical value. Indeed, we arrive at

the same results for the other instances, say, p = 50, 150, 200. We remark that the

critical value may be different under different model’s settings. In a real application,

we thus take a large value of λ3, say, 10 or even larger.

2.4.3 Model comparisons of non-negative feature selection

In our simulation study, we are interested in the performance of our proposed

method in feature selection. We carry out finite sample simulations via the linear

model yi = x>i β+ εi, i = 1, . . . , n, where the settings of xi and εi are the same as in

Section 2.4.2. The positive elements of the true coefficient vector β0 are randomly

generated from a uniform distribution [0.5, 5], s0
1 = 10, and εi

iid∼ N(0, σ2). Put

λ2 = 0, λ3 = 10. λ1 and τ are selected from candidate sets using five-fold cross-

validation. We take n = 100, p = 50, 100, 200, σ = 0.5, 1, 2.

We compare our method with others that also achieve non-negative estimates by

using the R packages, say, nnls (Mullen and van Stokkum, 2012), glmnet (Friedman

et al., 2016), penalized (Goeman, 2010), CVXR (Fu et al., 2017). The comparisons
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among those methods are based on how well they estimate the underlying true re-

gression vector, measured using MSE and MAE; and how well they perform in terms

of feature selection, measured using FTP. The larger the values of FTP, the better

the performance of feature selection. Table 2.1 reports the averages and standard

deviations of MSE, MAE and FTP, which are obtained based on 500 simulations.

As Table 2.1 illustrates, nnFSG outperforms the other methods in terms of MSE,

MAE and FTP uniformly.

2.4.4 Method performance in non-negative feature selection and group-

ing

nnFSG also permits non-negative disjoint smoothness of regression coefficients

whose values are similar or identical within a subgroup. We now conduct simulation

experiments to demonstrate the numerical performance of our proposed method.

We carry out simulations via the linear model yi = x>i β + εi, i = 1, . . . , n.

The true coefficients β0 = (1, . . . , 1︸ ︷︷ ︸
4

, 2, . . . , 2︸ ︷︷ ︸
4

, 3, . . . , 3︸ ︷︷ ︸
4

, 4, . . . , 4︸ ︷︷ ︸
4

, 0, . . . , 0)> ∈ Rp, a p-

dimensional regression coefficients with 5 groups, among which s0
1 = 16. Note that

the order of the elements of β0 is randomly given. The settings of xi and n are same

as in Section 2.4.3. Let p = 50, 100, 200, 500 and σ = 0.5, 1, 1.5. Put λ3 = 10. For

simplicity, we further set λ1 = λ2. The optimal regularization parameters τ, λ1 or λ2
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Table 2.2: The average values of MSE, MAE, FTP, GTP as well as their standard

deviations (in parenthesis) based on 500 simulations.

p σ MSE MAE FTP GTP

50 0.5 0.0115(0.0113) 0.0786(0.0341) 1.0000(0.0000) 0.9989(0.0072)

1.0 0.0701(0.0982) 0.1829(0.1073) 0.9994(0.0041) 0.9955(0.0137)

1.5 0.4815(0.4725) 0.4857(0.2672) 0.9914(0.0172) 0.9760(0.0253)

100 0.5 0.0128(0.0159) 0.0820(0.0383) 1.0000(0.0000) 0.9995(0.0036)

1.0 0.0883(0.1341) 0.2024(0.1246) 0.9995(0.0028) 0.9962(0.0092)

1.5 0.6985(0.5810) 0.6028(0.2878) 0.9886(0.0183) 0.9793(0.0161)

200 0.5 0.0277(0.1190) 0.0910(0.0792) 0.9999(0.0014) 0.9983(0.0066)

1.0 0.2904(0.5038) 0.3650(0.2284) 0.9981(0.0068) 0.9869(0.0153)

1.5 2.2393(3.8810) 1.0082(0.6470) 0.9766(0.0358) 0.9688(0.0297)

500 0.5 0.0469(0.1544) 0.1312(0.1140) 0.9999(0.0005) 0.9969(0.0072)

1.0 0.6388(6.5795) 0.4327(0.5002) 0.9988(0.0048) 0.9915(0.0143)

1.5 3.1120(7.9409) 1.2318(0.7128) 0.9849(0.0140) 0.9794(0.0252)

are chosen by five-fold cross-validation. When the number of independent variables

is very large, in order to promote the computational efficiency, we first screen out

those variables whose coefficients are identified as zeros through non-negative least

squares method by using R package nnls.

Table 2.2 reports the MSE, MAE, FTP and GTP, averaged over 500 simulations.

As the variance of random errors increases, both MSE and MAE increase, implying

that the method’s prediction accuracy decreases. Meanwhile, the values of FTP and

GTP decrease, which indicates that the method’s performance of feature selection

and grouping degrades slightly. As the dimension p increases, the prediction accuracy

decreases as well. However, the values of GTP and FTP are both above 0.97 over
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the whole scenarios, which reflects that nnFSG performs well in feature grouping

and selection.

2.4.5 Synthetic malaria vaccine data

Table 2.3: Comparison of glmnet, penalized, CVXR, nnls, and nnFSG assessed on

synthetic malaria vaccine data under the settings with n = 100, p = 90, σ = 0.2, 0.3.

The average values of MSE and MAE as well as their standard deviations (in paren-

thesis) are based on 500 simulations.

Case Method
σ = 0.2 σ = 0.3

MSE MAE MSE MAE

I glmnet 0.3833(0.1834) 0.4787(0.1083) 0.3956(0.1808) 0.4872(0.1072)

penalized 571.16(1692.30) 8.3371(21.4788) 589.02(1702.16) 8.8518(21.6545)

CVXR 26.4783(81.8077) 1.5315(3.7746) 26.9999(81.7741) 1.6466(3.7712)

nnls 0.0336(0.0119) 0.1446(0.0253) 0.0756(0.0267) 0.2169(0.0379)

nnFSG 0.0004(0.0006) 0.0155(0.0115) 0.0009(0.0013) 0.0234(0.0175)

II glmnet 0.0316(0.0112) 0.1403(0.0243) 0.0706(0.0248) 0.2097(0.0362)

penalized 1.7799(10.0871) 0.6020(1.1177) 2.2497(10.2750) 0.8325(1.1499)

CVXR 0.1082(0.4842) 0.1820(0.1851) 0.1576(0.4739) 0.2593(0.1784)

nnls 0.0336(0.0119) 0.1446(0.0253) 0.0756(0.0267) 0.2169(0.0379)

nnFSG 0.0024(0.0046) 0.0306(0.0256) 0.0105(0.0167) 0.0630(0.0530)

III glmnet 0.0313(0.0110) 0.1396(0.0241) 0.0701(0.0244) 0.2090(0.0359)

penalized 0.5864(1.0868) 0.5718(0.4335) 1.4806(1.5629) 1.0077(0.5419)

CVXR 0.0512(0.0486) 0.1697(0.0611) 0.1204(0.0775) 0.2656(0.0768)

nnls 0.0366(0.0119) 0.1447(0.0253) 0.0755(0.0266) 0.2170(0.0378)

nnFSG 0.0250(0.0205) 0.1187(0.0444) 0.0876(0.0556) 0.2272(0.0701)

In vaccine design study, it is very crucial to locate the important amino acid sites

and their associated importance (regression coefficients). A vaccine that is designed
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Table 2.4: Comparison of glmnet, penalized, CVXR, nnls, and nnFSG assessed on

synthetic malaria vaccine data under the settings with n = 100, p = 90, σ = 0.2. The

average values of Sen, Spe, Info, FTP and GTP as well as their standard deviations

(in parenthesis) are based on 500 simulations.

Case Method Sen Spe Info FTP GTP

I glmnet 1.0000(0.0000) 0.8033(0.0527) 0.8033(0.0527) 0.8558(0.0387) 0.7987(0.0193)

penalized 0.9503(0.1635) 0.8608(0.0585) 0.8112(0.1342) 0.8847(0.0370) 0.7988(0.0550)

CVXR 0.9824(0.0658) 0.7464(0.0557) 0.7288(0.0738) 0.8094(0.0398) 0.7709(0.0281)

nnls 1.0000(0.0000) 0.6735(0.0609) 0.6735(0.0609) 0.7606(0.0446) 0.7512(0.0223)

nnFSG 1.0000(0.0000) 0.9980(0.0447) 0.9980(0.0447) 0.9985(0.0328) 0.9993(0.0164)

II glmnet 0.9996(0.0041) 0.6952(0.0601) 0.6948(0.0604) 0.7766(0.0441) 0.8433(0.0147)

penalized 0.9930(0.0473) 0.8459(0.0439) 0.8389(0.0528) 0.8854(0.0303) 0.8765(0.0247)

CVXR 0.9972(0.0247) 0.7400(0.0524) 0.7372(0.0567) 0.8088(0.0385) 0.8531(0.0161)

nnls 0.9997(0.0037) 0.6734(0.0608) 0.6731(0.0609) 0.7606(0.0446) 0.8379(0.0149)

nnFSG 0.9992(0.0058) 0.9997(0.0021) 0.9989(0.0080) 1.0000(0.0000) 0.9916(0.0249)

III glmnet 0.9921(0.0187) 0.6969(0.0586) 0.6890(0.0623) 0.7798(0.0431) 0.8860(0.0109)

penalized 0.9617(0.0487) 0.8505(0.0465) 0.8122(0.0585) 0.8948(0.0315) 0.9092(0.0186)

CVXR 0.9789(0.0324) 0.7396(0.0521) 0.7185(0.0635) 0.8126(0.0379) 0.8926(0.0126)

nnls 0.9934(0.0173) 0.6710(0.0608) 0.6644(0.0638) 0.7604(0.0447) 0.8812(0.0112)

nnFSG 0.9566(0.0353) 0.9794(0.0183) 0.9360(0.0447) 0.9881(0.0183) 0.9301(0.0180)

to match those important sties can improve induced immunity. Furthermore, the

sites associated with immune response with negative coefficients should be excluded

in the model (Hu et al., 2015), in which a non-negative lasso method was applied

to identify the important amino acid and estimate their relative importance. For

some confidential reasons, we are not allowed to access the original data. We thus

assess the performance of our proposed method using the synthetic, but realistic, data
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Table 2.5: Comparison of glmnet, penalized, CVXR, nnls, and nnFSG assessed on

synthetic malaria vaccine data under the settings with n = 100, p = 90, σ = 0.3. The

average values of Sen, Spe, Info, FTP and GTP as well as their standard deviations

(in parenthesis) are based on 500 simulations.

Case Method Sen Spe Info FTP GTP

I glmnet 1.0000(0.0000) 0.7935(0.0526) 0.7935(0.0526) 0.8486(0.0386) 0.7951(0.0193)

penalized 0.9500(0.1643) 0.8618(0.0588) 0.8118(0.1344) 0.8853(0.0373) 0.7990(0.0550)

CVXR 0.9823(0.0656) 0.7468(0.0561) 0.7291(0.0736) 0.8096(0.0400) 0.7709(0.0280)

nnls 1.0000(0.0000) 0.6735(0.0608) 0.6735(0.0608) 0.7606(0.0446) 0.7512(0.0223)

nnFSG 1.0000(0.0000) 0.9900(0.0996) 0.9900(0.0996) 0.9927(0.0730) 0.9961(0.0367)

II glmnet 0.9993(0.0052) 0.6962(0.0597) 0.6955(0.0601) 0.7774(0.0438) 0.8435(0.0146)

penalized 0.9912(0.0487) 0.8461(0.0443) 0.8373(0.0542) 0.8857(0.0304) 0.8764(0.0251)

CVXR 0.9962(0.0253) 0.7405(0.0522) 0.7367(0.0569) 0.8094(0.0383) 0.8532(0.0161)

nnls 0.9994(0.0049) 0.6733(0.0609) 0.6727(0.0611) 0.7606(0.0446) 0.8378(0.0149)

nnFSG 0.9972(0.0111) 0.9984(0.0055) 0.9956(0.0157) 0.9996(0.0026) 0.9773(0.0368)

III glmnet 0.9772(0.0306) 0.6927(0.0580) 0.6699(0.0677) 0.7803(0.0431) 0.8858(0.0113)

penalized 0.8957(0.0768) 0.8648(0.0464) 0.7605(0.0785) 0.9042(0.0310) 0.8940(0.0352)

CVXR 0.9423(0.0514) 0.7394(0.0508) 0.6817(0.0768) 0.8152(0.0380) 0.8878(0.0148)

nnls 0.9821(0.0265) 0.6674(0.0609) 0.6494(0.0678) 0.7605(0.0450) 0.8809(0.0116)

nnFSG 0.9439(0.0456) 0.9538(0.0326) 0.8977(0.0516) 0.9515(0.0338) 0.9005(0.0303)

under the simulation benchmarks that are similar to Hu et al. (2015). In that article,

three cases were considered under the settings of n = 100, p = 90, s0
1 = 24. Suppose

that the explanatory variables are all independent. We randomly generate the i-th

sample (xi, yi) via the linear model yi = x>i β + εi. Denote xi = (xi1, . . . , xip)
>,

where xij
iid∼ Bernoulli(pj), pj

iid∼ Beta(2, 5) for j = 1, . . . , p. And εi
iid∼ N(0, σ2) for

i = 1, . . . , n. Consider three cases for the true β0,
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• Case I: β0 = (10, . . . , 10︸ ︷︷ ︸
s01

, 0, . . . , 0︸ ︷︷ ︸
p−s01

)>.

• Case II: β0 = (2, . . . , 2︸ ︷︷ ︸
s01/2

, 1, . . . , 1︸ ︷︷ ︸
s01/2

, 0, . . . , 0︸ ︷︷ ︸
p−s01

)>.

• Case III: β0 = (1, . . . , 1︸ ︷︷ ︸
s01/3

, 0.5, . . . , 0.5︸ ︷︷ ︸
s01/3

, 0.3, . . . , 0.3︸ ︷︷ ︸
s01/3

, 0, . . . , 0︸ ︷︷ ︸
p−s01

)>.

We remark that the order of the components of β0 is randomly given. Note that

yi are the immune response observations that are usually measured by the growth

inhibition assay. The source of measurement error may result from systematic error.

It is sensible to assume that the variability of measurement error is small. Let

σ = 0.2, 0.3. Again, we set λ3 = 10, and the rest tuning parameters τ, λ1, λ2 are

selected by five-fold cross-validation. We also compare our proposed method with

the others that are estimable by using the R package glmnet, penalized, CVXR,

nnls. Hu et al. (2015) adopted the evaluation criteria sensitivity (Sen), measuring

the probability of an important variable associated with a non-zero coefficient being

selected, and specificity (Spe), measuring the probability of an unimportant variable

associated with a zero coefficient not being selected. The larger the values of both

Spe and Sen, the better the performance of the method. A perfect situation would

be described as 100% sensitivity, meaning all important sites are correctly identified,

and 100% specificity, meaning all unimportant sites are excluded. In reality, there

is usually a trade-off between these two measures. We thus apply the third criteria
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informedness (Info), Info = Spe + Sen - 1, the magnitude of which measures the

probability of an informed decision. The simulation results are shown in Tables 2.3-

2.5. From Table 2.3, we observe that our proposed method performs best for almost

all scenarios in terms of MSE and MAE except the case III when σ = 0.3. Since the

objective of that work is to find the important site where the associated coefficient

is non-zero, we are more interested in Spe, Sen, Info and FTP (see Tables 2.4-2.5),

measuring effectiveness in identifying main sites or features. Moreover, one might be

interested in identifying the subgroups within which the important sites are similar or

identical. Considering the simulation settings of β0, we thus provide the GTP values

in Tables 2.4-2.5 as well. In terms of Spe and Sen, nnFSG achieves the largest values

in case I when σ = 0.2, 0.3. In case II and III, the largest values of Spe are obtained

by our method, albeit the Sen values are slightly smaller than those obtained by

glmnet and nnls. Given the trade-off between Sen and Spe, our method dominates

all other methods uniformly, which is reflected by the largest values of Info. Our

method’s outperformance in feature selection and grouping is also demonstrated by

the largest values of FTP and GTP among those scenarios.
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2.4.6 Protein mass spectrometry data

Mass spectrometry (MS) analysis has become a key role in extracting reliable

proteomic features (peptides) from complex biological mixtures (Renard et al., 2008),

a fundamental step in the automated analysis of proteomic MS experiments. A

peptide produces a signal at multiple mass positions, which becomes manifest in a

series of regularly spaced peaks. For more details on the backgrounds, one can refer

to Renard et al. (2008); Slawski et al. (2010, 2012). Figure 2.2 shows a protein mass

spectrum of Myoglobine in the m/z 800-2500 range, 118, 464 (m/z, intensity) pairs

in total. An initial part at the m/z range of 800-834 is zoomed. The peptides whose

intensities differ drastically occur in different m/z-regions. The data set is kindly

provided by B. Gregorius and A. Tholey, Department of Experimental Medicine,

Working Group for Systematic Proteomics, Christian-Albrechts-Universitaet zu Kiel,

which is avaiable in the R package IPPD (Slawski et al., 2012).

The peptides extraction problem is to identify those m/z-positions where peptides

are located, which can be recast as a sparse recovery problem. Renard et al. (2008)

and Slawski et al. (2010, 2012) proposed template matching-based methods to solve

the problem. Motivated by Tibshirani and Wang (2007), we can also regard the

peptides extraction as a ‘hot spot’ detection problem. The model’s setup for the

protein MS data is p = n = 118, 464, and X = Ip, that is, yi = βi + εi, i = 1, . . . , n.
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Figure 2.2: Raw protein mass spectrum of Myoglobine in the m/z 800-2500 range.

The left upper panel zooms at the m/z range of 800-834.

Given the non-negativity of yi (intensity), it is reasonable to impose non-negative

constraints on βi, the weight of the i-th m/z-site.

Simultaneously estimating the weights of all m/z sites for the MS data in Figure

2.2 is difficult since it is computationally unmanageable when p is ultrahigh, say,

118,464. We thus cut the data into consecutive blocks, which doesn’t affect the

estimating results. Herein, we choose m/z-sites in the range of 800-834 for analysis,

giving a total of 2,009 points. To make the computation efficient, we further cut

the 2,009 data points into four consecutive blocks, giving 500 data points in the

first three blocks and 509 data in the last block. The performance of our proposed

method on the MS data is illustrated in Figure 2.3. We can see that, on one hand,
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Figure 2.3: The upper panels show the four consecutive blocks from left to right.

The lower panel shows the m/z range of 800-834. The grey points represent the MS

data, and the solid blue line represents the estimated weights β̂ from the proposed

method. The blue points describes the weights of these m/z sites that are extracted.

the proposed method successfully identifies the amplification. On the other hand, the

method put same weights, rather than zeros, at those sites where the amplifications

are not significant. We consider the sites with identical weights as one base group

(see the horizontal blue solid line). Clearly, the second and third upper panels in

Figure 2.3 show that there is no peptide in the m/z region. These sites that are not

in the base group can be regarded as peptides, which are marked with blue points in

the lower panel of Figure 2.3. We remark that if we increase λ1, the weights of the

base groups will be shrunken to zeros.
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3 Asymptotic properties on high-dimensional

multivariate regression M-estimation

3.1 Introduction

In many statistical applications, there are more than one correlated response

variables. A general multivariate linear regression model is considered,

yi = Xiϑ+ ei, i = 1, . . . , n, (3.1)

where ϑ is a p-vector of unknown parameters; Xi are m × p random matrices (m

is fixed); ei are iid distributed m-vectors, which encompasses the traditional linear

regression model (m = 1). As pointed out by Bai et al. (1992), the model (3.1) is

more general than the classical multivariate linear regression model,

yi = Bxi + ei, i = 1, . . . , n, (3.2)

where B is an m×p matrix of unknown parameters; xi are p×1 vectors; yi are m×1

response vectors; and ei are iid m-vectors. More details on multivariate regression
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models can be found in Zellner (1962), and Koenker and Portnoy (1990).

A well-known method for estimating the regression coefficient vector ϑ in (3.1)

is the OLS estimation that is mathematically convenient and efficient for normal

distributed errors. However, OLS is not resistant to outliers and not stable in respect

to deviations from various assumptions. Huber (1964, 1973) thus introduced an M-

estimation of ϑ by minimizing

n∑
i=1

ρ(yi − x>i ϑ)

for a discrepancy function ρ. It is noted that Bai et al. (1992) developed asymptotic

theories of M-estimate of ϑ for model (3.1) under the classical regime that allows

n to go to infinity but fixes p. In this chapter, we also consider this model but we

study it under the regime that p, n→∞, p/n→ κ with 0 < κ <∞.

Motivated by El Karoui (2013, 2018), we assume that the true regression parame-

ter vector ϑ0 is not sparse but diffuse, i.e., the elements of ϑ0 are small and ϑ0 cannot

be well approximated by a sparse vector whose elements have mostly zeros. Inspired

by El Karoui (2013, 2018), we characterize the behavior of the ridge-regularized high-

dimensional regression M-estimate of ϑ defined by (3.3) through a nonlinear system

by using the double leave-one-out method. An analogous result of the unregularized

high-dimensional regression M-estimate of ϑ can be derived by setting τ = 0. One

should note that when m = 1, the model (3.1) reduces to the one studied by El
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Karoui (2013).

The remainder of this chapter is organized as follows. In Section 3.2, we state

the assumptions, main results and approximations. The derivation of double leave-

one-out method are given in Section 3.3. Examples to validate our developed system

are discussed in Section 3.4. We detail the propositions, lemmas and proofs of these

theorems in Appendix B.

3.2 Methodology

Consider the multivariate linear model (3.1), assuming that ei ∼ (0,Σe), the ran-

dom matrix Xi ∼ MNm×p(0,Σm,Σp), a matrix normal distribution, having mean

matrix 0 (m × p), covariance matrix Σm (among-row) and Σp (among-column).

Equivalently, vec(Xi)
iid∼ Nmp(0,Σp ⊗ Σm) with mean vector 0 (mp × 1) and covari-

ance matrix Σp ⊗ Σm (Dawid, 1981). If Σm = Im, the rows in Xi are independently

distributed. Similarly, if Σp = Ip, the columns in Xi are independently distributed.

Moreover, assume that ei are independent of Xi.

As we mainly consider the high-dimensional case, in light of El Karoui (2013,

2018), we estimate the high-dimensional regression parameter vector ϑ by the fol-

43



lowing ridge-regularized high-dimensional regression M-estimate

ϑ̂ = arg min
ϑ∈Rp

1

n

n∑
i=1

ρ
(
Σ−1/2
m (yi − Xiϑ)

)
+
τ

2
‖Σ1/2

p ϑ‖2. (3.3)

Here we assume that Σm and Σp are known, ρ is a continuously differentiable convex

function from Rm to R, and τ > 0 is given. For simple presentation, we make the

following transformation. By putting

Xi = Σ−1/2
m XiΣ

−1/2
p , ei = Σ−1/2

m ei, β0 = Σ1/2
p ϑ0, β = Σ1/2

p ϑ. (3.4)

The behavior of ϑ̂ is now equivalent to the behavior of β given by

β̂ = arg minβ∈Rp
1

n

n∑
i=1

ρ(yi −Xiβ) +
τ

2
‖β‖2, (3.5)

where yi = ei+Xiβ0, Xi
iid∼ MNm×p(0, Im, Ip), ei

iid∼ (0,Σe) with Σe = Σe, Σm = Im,

Xi are independent of ei, τ > 0 is a constant, and ρ is a discrepancy convex function

from Rm to R. It is noted that if τ = 0, (3.5) is reduced to the unregularized

high-dimensional regression M-estimate, β̂M , i.e.,

β̂M = arg minβ∈Rp
1

n

n∑
i=1

ρ(ei +Xiβ0 −Xiβ). (3.6)

By (3.4), the original estimate ϑ̂ in (3.3) is obtained by ϑ̂ = Σ
−1/2
p β̂. Thus, we

concentrate on the investigation of the behavior of β̂.
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3.2.1 Assumptions

In this subsection, we make some assumptions. We first introduce the vector-

valued proximal mapping of ρ, i.e., proxt(ρ)(z) : Rm → Rm, for t > 0, and u, z ∈ Rm

(see, e.g., Beck and Teboulle (2010); Moreau (1965) among others for more details)

proxt(ρ)(z) = arg minu ρt(z;u), where ρt(z;u) = tρ(u) +
1

2
‖u− z‖2.

We denote the power of log(n) by polyLog(n), i.e. polyLog(n) = O((log n)m0) for

some constant m0 > 0. For a sequence of random variables ξn, denote ξn = OLk(1)

if (E|ξn|k)1/k = O(1), and ξn = oLk(1) if (E|ξn|k)1/k = o(1). mξ denotes the median

of a random variable ξ. We make the following assumptions.

(A1) p/n→ κ, 0 < κ <∞ as p, n→∞.

(A2) ‖β0‖ ≤ c <∞, and ‖β0‖∞ = O(n−α) for α > 1/3.

(A3) ρ is a twice differentiable convex function satisfying that ρ(u) ≥ ρ(0) = 0 for

any u ∈ Rm. supu ‖ψ(u)‖ ≤ c, and supu λmax(∇ψ(u)) ≤ c. For any vector a,

b ∈ Rm, ‖∇ψ(a)−∇ψ(b)‖max ≤ c‖a− b‖.

(A4) Xi are iid, i = 1, . . . , n. All the elements of Xi are independently distributed.

Given any positive integer k < ∞, the k-th moment of any element of Xi is

bounded. Denote the j-th row of Xi by xi(j). For 1 ≤ j ≤ m, xi(j) ∼ (0, Ip).
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If f1 is a convex function satisfying 1-Lipschitz condition, then P (|f1(xi(j))−

mf1(xi(j))| > t) ≤ c exp(−cnt2), where t > 0 and 1/cn = O(polyLog(n)). De-

note the `-th column of X = (X>1 , . . . , X
>
n )> by x` for 1 ≤ ` ≤ p. For a

convex function f2 satisfying 1-Lipschitz condition, P (|f2(x`)−mf2(x`)| > t) ≤

c exp(−cnt2), where t > 0, and 1/cn = O(polyLog(n)).

(A5) ei
iid∼ (0,Σe), are independent of Xi for i = 1, . . . , n.

(F1) Given any vector u ∈ Rm, tr([Im +x∇ψ(proxx(ρ)(u))]−1) is a decreasing func-

tion for x ≥ 0.

The following two assumptions are the stronger versions of (A1) and (F1), which are

required for Corollary 3.1.

(A1′) p/n→ κ, 0 < κ < m as p, n→∞.

(F1′) ρ is strongly convex, and ∇ψ � 0. For any given vector u ∈ Rm, tr([Im +

x∇ψ(proxx(ρ)(u))]−1) is a strictly decreasing function for x ≥ 0.

Remark 3.1 Since we consider the case that β0 is not sparse, we limit each coor-

dinate of β0 to a small value in (A2). (A3) is made for the theoretical study of M-

estimation when p/n tends to a constant. Note that the requirement for supu ‖ψ(u)‖

having a bounded support no longer holds when ρ(x) = x>Ax/2. But our simu-

lation experiments indicate that our system performs well on that case. By (A3),
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∇ψ(u) � 0 and supu tr(∇ψ(u)) ≤ c in view that m is fixed. The last one in (A3)

can be viewed as a 1-Lipschitz condition. Motivated by El Karoui (2018), we make

a general assumption on Xi in (A4), which holds true if Xi ∼ MNm×p(0, Im, Ip),

where cn is a constant independent of p, or if Xi have independent entries with each

bounded by a constant and with mean 0 and variance 1. More justifications on the

assumption (A4) can be found in El Karoui (2009, 2013) and Ledoux (2001). (F1)

implies that tr([Im+x∇ψ(proxx(ρ)(u))]−1) has a unique root given τ > 0, which plays

a crucial role in proving the existence and uniqueness of µ in (3.7). (F1) holds true if

ρ(x) = x>Ax/2, where A � 0. It is easy to see that tr([Im+x∇ψ(proxx(ρ)(u))]−1) =

tr((Im + xA)−1), a decreasing function with respect to x ≥ 0. (F1) also holds true if

ρ(x) = ‖x‖.

3.2.2 Main results

We aim to characterize E‖β̂ − β0‖2 by using the double leave-one-out approach

for both observations and predictors, which was proposed by El Karoui et al. (2013).

This approach relates β̂ to the leaving one observation out estimate β̂(i) in (3.9) and

the leaving one predictor out estimate γ̂ in (3.15). The following theorem character-

izes the risk of β̂, i.e., E‖β̂ − β0‖2.
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Theorem 3.1 Assume that τ > 0 is given. Under the assumptions (A1)-(A5) and

(F1), ‖β̂−β0‖ is asymptotically deterministic. If z = e+ ‖β̂−β0‖z̃ with e having

the same distribution as ei, z̃ ∼ N(0, Im), and z̃ being independent of e, then there

exists a constant µ > 0 such that{
Etr(∇proxµ(ρ)(z)) = m− κ+ τµ,

κ2E‖β̂ − β0‖2 = κE‖z − proxµ(ρ)(z)‖2 + τ 2‖β0‖2µ2.
(3.7)

Both equations of this system establish functional relationships between µ and E‖β̂−

β0‖2. In theory, the risk as well as µ can be found out via (3.7). It is noted that (i) the

constant µ > 0 is dependent on ρ, κ, τ ; (ii) ‖β̂ − β0‖ is asymptotically deterministic

as p, n→∞, namely ‖β̂ − β0‖2 p−→ E‖β̂ − β0‖2; (iii) under this regime, β̂ is biased,

which is induced by the ridge regularization and the fluctuations of each coordinate as

p→∞. When τ = 0, Corollary 3.1 presented below characterizes the unregularized

high-dimensional regression M-estimate β̂M .

Corollary 3.1 Under the assumptions (A1′), (A2)-(A5) and (F1′), ‖β̂M − β0‖ is

asymptotically deterministic. If z = e+‖β̂M−β0‖z̃ with e having the same distribu-

tion as ei, z̃ ∼ N(0, Im), and z̃ being independent of e, then there exists a constant

µ > 0 such that {
Etr(∇proxµ(ρ)(z)) = m− κ,

κE‖β̂M − β0‖2 = E‖z − proxµ(ρ)(z)‖2.
(3.8)

The proofs of Theorem 3.1 and Corollary 3.1 are given in Appendix B.2.
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3.2.3 Main approximations

In this subsection, we state some important approximations that play vital roles

in the inferential procedures of the double leave-one-out method, thus rendering us

to obtain the systems (3.7) and (3.8).

3.2.3.1 Approximations of leaving one observation out

Let β̂(i) be the leaving one observation out estimate obtained by excluding the

i-th observation (Xi,yi), i.e.

β̂(i) = arg minβ∈Rp
1

n

n∑
j 6=i

ρ(ej +Xjβ0 −Xjβ) +
τ

2
‖β‖2. (3.9)

Note that β̂(i) is independent of Xi. The corresponding leaving i-th observation out

residual r̃j,[−i] = ej +Xjβ0−Xjβ̂(i), for j 6= i. For j = i, r̃i,[−i] is the prediction error

of the i-th observation. Denote Si = n−1
∑
j 6=i

X>j ∇ψ(r̃j,[−i])Xj, Ci = n−1Xi(Si +

τIp)
−1X>i , ci = n−1tr((Si + τIp)

−1), g̃(u) = u + Ciψ(u). Define the residual as

rj = ej +Xjβ0 −Xjβ̂, j = 1, . . . , n.

With the purpose of approximating β̂ by β̂(i), we introduce a new quantity,

β̃i = β̂(i) + ηi, where ηi =
1

n
(Si + τIp)

−1X>i ψ(g̃−1(r̃i,[−i])). (3.10)

The formulation of β̃i will be provided afterward. El Karoui (2013, 2018) assumed

intuitively that the difference between r̃j,[−i] and rj is negligible for j 6= i. For j = i,
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they showed that ri could be well approximated by a function of r̃i,[−i]. One can

expect reasonably that, therefore, those intuitive assumptions still hold true for the

multivariate case (m > 1), which is given by the following theorem.

Theorem 3.2 Under the assumptions (A1)-(A5), for any given τ > 0, we have

(i) sup1≤i≤n ‖β̂ − β̃i‖ = OLk(n
−1polyLog(n)). In particular, for 1 ≤ i ≤ n,

E(‖β̂ − β̃i‖2) = O(n−2polyLog(n)), and ‖β̂ − β̂(i)‖ = OLk(n
−1/2).

(ii) sup1≤i≤n supj 6=i ‖r̃j,[−i]−rj‖ = OLk(n
−1/2polyLog(n)), supi ‖ri−g̃−1(r̃i,[−i])‖ =

OLk

(
n−1/2polyLog(n)

)
, and supi ‖ri − proxci(ρ)(r̃i,[−i])‖ = OLk(n

−1/2polyLog(n)).

(iii) var(‖β̂ − β0‖2) = O(n−1polyLog(n)).

This theorem establishes a bound on ‖β̂ − β̃i‖, which thus induces the bounds

on ‖β̂ − β̂(i)‖ and var(‖β̂ − β0‖2) tending to 0. It can be clearly noted that β̃i

approximates to β̂ sufficiently well with the accuracy bounded by n−1polyLog(n).

If we exclude the n-th observation out, without loss of generality, by (3.10), the

estimate β̃n can be computed only based on the existing estimate (from the first

n− 1 observation) and a new observation (n-th observation). Together with the fact

that ‖β̂ − β̃n‖ = OLk(n
−1polyLog(n)), an approximation of β̂ can be calculated if

fast computing is required and/or data storage space is limited, which is very useful

in the application of big data analysis.
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Now we provide details on the formulation of β̃i. Firstly, we define

φ(β) = − 1

n

n∑
i=1

X>i ψ(ei +Xiβ0 −Xiβ) + τβ. (3.11)

Then we have

φ(β̂) = − 1

n

n∑
i=1

X>i ψ(ei +Xiβ0 −Xiβ̂) + τ β̂ = 0, (3.12)

and

φ(β̂(i)) = − 1

n

∑
j 6=i

X>j ψ(ej +Xjβ0 −Xjβ̂(i)) + τ β̂(i) = 0. (3.13)

Take the first-order Taylor expansion to (3.12)-(3.13) of ψ(ej +Xjβ0−Xjβ̂) (j 6= i)

with respect to β̂ around β̂(i). By performing basic computations, we obtain that

β̂ − β̂(i) '
1

n
(Si + τIp)

−1X>i ψ(ri), (3.14)

where ’'’ denotes the approximation. Note that when we do the first-order Tay-

lor expansion, the higher order terms are omitted. (3.14) establishes an approx-

imating relationship of β̂ and β̂(i). When it comes to the issue that ri is un-

known since we exclude the i-th observation out, it is actually reasonable to re-

place ri with its relatively proper approximation g̃−1(r̃i,[−i]). We thus define ηi =

n−1(Si + τIp)
−1X>i ψ(g̃−1(r̃i,[−i])), and the new quantity β̃i follows.
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3.2.3.2 Approximations of leaving one predictor out

We consider the leaving one predictor out estimate by omitting one of the predic-

tors, say the p-th predictor. Before proceeding, we make some notations. Denote the

first p− 1 columns of Xi by Xi,−p = (xi,1, . . . ,xi,p−1), where xi,k is the k-th column

of Xi for 1 ≤ k ≤ p. Write β0 = (β>0,−p, β0,p)
>, where β0,−p denotes the first p − 1

coordinates of β0. Let γ̂ be the leaving p-th predictor out estimate, i.e.,

γ̂ = arg minγ∈Rp−1

1

n

n∑
i=1

ρ(ei +Xi,−pβ0,−p −Xi,−pγ) +
τ

2
‖γ‖2. (3.15)

Define the corresponding residuals as ři,−p = ei + Xi,−pβ0,−p −Xi,−pγ̂, i = 1, . . . , n.

Denote ∆p = n−1
∑

iX
>
i,−p∇ψ(ři,−p)Xi,−p, up = n−1

∑
iX
>
i,−p∇ψ(ři,−p)xi,p.

The aim of the work is to find an approximation of β̂. Decompose β̂ = (β̂
>
−p, β̂p)

>.

We introduce another quantity b̃ = (b̃
>
−p, b̃p)

>,

b̃−p = γ̂ − (b̃p − β0,p)(∆p + τIp−1)−1up, (3.16)

b̃p = β0,p
ξn

τ + ξn
+
n−1

∑
i x
>
i,pψ(ři,−p)

τ + ξn
, (3.17)

where ξn = n−1
∑

i x
>
i,p∇ψ(ři,−p)xi,p − u>p (∆p + τIp−1)−1up. Please be noted that

the formulation of b̃ is straightforward. We will briefly explain it afterward.

The following results yielded by leaving one predictor out are analogous to those

in Theorem 3.2.
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Theorem 3.3 Under the assumptions (A1)-(A5), for any fixed τ > 0, we have

(i) ‖β̂ − b̃‖ = OLk

(
polyLog(n)
min{n,n2α}

)
, and |β̂p − b̃p| = OLk

(
polyLog(n)
min{n,n2α}

)
.

(ii) sup1≤i≤n ‖Xi(β̂ − b̃)‖ = OLk

(
n1/2polyLog(n)

min{n,n2α}

)
.

(iii) sup1≤i≤n ‖ri − ři,−p‖ = OLk

(
n1/2polyLog(n)

min{n,n2α}

)
.

As pointed by El Karoui (2013, 2018), β̂ can be well approximated by b̃ with the

accuracy bounded by polyLog(n)/min{n, n2α}. Moreover, the difference between

ři,−p and ri is negligible. It is shown in the above theorem that those approximations

still hold true under our model regime.

Now we briefly explain the formulation of b̃. Denote the first p − 1 coordinates

and the p-th coordinate of φ(β̂) as φ−p(β̂) and φp(β̂), respectively. By the definition

of γ̂, we have that φ(γ̂) = −n−1
∑

iX
>
i,−pψ(ři,−p)+ τ γ̂ = 0p−1, which, together with

(3.12), yields that

φ−p(β̂) =
1

n

∑
i

X>i,−p(ψ(ri)−ψ(ři,−p)) + τ(γ̂ − β̂−p) = 0p−1, (3.18)

φp(β̂) =
1

n

∑
i

x>i,pψ(ri)− τ β̂p = 0. (3.19)

We take the first-order Taylor expansions to (3.18) and (3.19) of ψ(ri) with respect

to ri around ři,−p, respectively. Together with the fact that ri − ři,−p = Xi,−p(γ̂ −

β̂−p)− (β̂p − β0,p)xi,p, by basic computations, we have

β̂−p ' γ̂ − (β̂p − β0,p)(∆p + τIp−1)−1up, (3.20)
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β̂p ' β0,p
ξn

τ + ξn
+
n−1

∑
i x
>
i,pψ(ři,−p)

τ + ξn
. (3.21)

Note that when we do the first-order Taylor expansion, the higher order terms are

omitted. By (3.20) and (3.21), we thus define the quantity b̃ as the approximation

of β̂.

3.3 Details on double leave-one-out method

The double leave-one-out method allows us to understand the behavior of the

ridge-regularized high-dimensional regression M-estimate β̂ in (3.5). Now we detail

the procedures of the approach.

3.3.1 Derivation of leaving one observation out

We begin with β̂ − β̂(i) ' n−1(Si + τIp)
−1X>i ψ(ri) in (3.14). Multiplying the

expression above by Xi, we obtain that

r̃i,[−i] − ri '
1

n
Xi(Si + τIp)

−1X>i ψ(ri). (3.22)

Next, we show that

r̃i,[−i] − ri ' µψ(ri), (3.23)

which is equal to show that the (s, t)-th entry of n−1Xi(Si + τIp)
−1X>i (denoted as

cst) can be approximated by µI{s=t}. Let xi(s) and xi(t) be the s-th and t-th rows

54



of Xi, s, t = 1, . . . ,m, respectively. We thus have

cst = n−1x>i (s)(Si + τIp)
−1xi(t) ' tr(n−1(Si + τIp)

−1)I{s=t} ' µI{s=t}.

The first ‘'’ in the above expression follows by (B.8). For the second ‘'’, it can be

proved by the following two steps. Firstly, we show that ci = tr(n−1(Si + τIp)
−1) '

tr(n−1(S + τIp)
−1) = cτ in view of (B.8) and (B.9). Secondly, we prove that cτ is

asymptotically deterministic (see Proposition B.8 in Appendix B.1). And µ is the

limit of cτ as both n, p→∞ with p/n→ κ.

3.3.2 Derivation of leaving one predictor out

Before proceeding, we state the following Sherman-Morrison-Woodbury (SMW)

formula. For a matrix U and an invertible matrix A,

(A+ UU>)−1 = A−1 − A−1U(I + U>A−1U)−1U>A−1.

Specially,

U>(A+ UU>)−1U = I − (I + U>A−1U)−1. (3.24)

Denote X−p = (X>1,−p, . . . , X
>
n,−p)

>, xp = (x>1,p, . . . ,x
>
n,p)
>, and

D =

 ∇ψ(ř1,−p)
. . .

∇ψ(řn,−p)

 . (3.25)
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Then ∆p = n−1X>−pDX−p and up = n−1X>−pDxp. We define thatB = n−1/2D1/2X−p

and P = B(B>B+τIp−1)−1B>. By the definitions of ∆p and up, it is easy to deduce

that

u>p (∆p + τIp−1)−1up =n−2x>pDX−p(n
−1X−p

>DX−p + τIp−1)−1X−p
>Dxp

=n−1x>pD
1/2PD1/2xp.

Denote ∆p(i) = ∆p − n−1X>i,−p∇ψ(ři,−p)Xi,−p, and

P =

 P11

. . .

Pnn

 , (3.26)

where Pii is the i-th entry matrix on the diagonal of P (i = 1, . . . , n), i.e.,

Pii =n−1∇ψ1/2(ři,−p)Xi,−p
(
∆p(i) + τIp−1 + n−1X>i,−p∇ψ(ři,−p)Xi,−p

)−1
X>i,−p∇ψ1/2(ři,−p)

=Im −
(
Im + n−1∇ψ1/2(ři,−p)Xi,−p(∆p(i) + τIp−1)−1X>i,−p∇ψ1/2(ři,−p)

)−1

.

(3.27)

The second ‘=’ results from the SMW formula in (3.24) upon choosing A = ∆p(i) +

τIp−1, U = X>i,−p∇ψ1/2(ři,−p). It follows that,

Im − Pii =
(
Im + n−1∇ψ1/2(ři,−p)Xi,−p(∆p(i) + τIp−1)−1X>i,−p∇ψ1/2(ři,−p)

)−1

'(Im + µ∇ψ(ři,−p))
−1, (3.28)
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where n−1Xi,−p(∆p(i) + τIp−1)−1X>i,−p ' tr(n−1(∆p(i) + τIp−1)−1)Im ' tr(n−1(∆p +

τIp−1)−1)Im ' µIm. In view of the above definitions of P,∆p and B,

tr(P ) = tr((∆p + τIp−1)−1∆p) = p− 1− τtr((∆p + τIp−1)−1) ' p− 1− nτµ,

and thus,
∑n

i=1 tr(Im−Pii) = nm− [(p− 1)−nµτ ] ' nm− p+nµτ, which, together

with (3.28), entails that

1

n

n∑
i=1

tr([Im + µ∇ψ(ři,−p)]
−1) ' m− p

n
+ τµ. (3.29)

Define the vector valued function gµ(x) = x + µψ(x) = z. Then x = g−1
µ (z) =

proxµ(ρ)(z) and ∇proxµ(ρ)(z) = (Im+µ∇ψ(z))−1, which jointly with (3.23), (3.29),

Theorem 3.3(iii) and Proposition B.7, concludes the first equation in (3.7).

We now drive the second equation in our system. Considering ξn in (3.17), it

follows that,

ξn =
1

n

∑
i

x>i,p∇ψ1/2(ři,−p)(Im − Pii)∇ψ1/2(ři,−p)xi,p

' 1

n

∑
i

x>i,p∇ψ1/2(ři,−p) (Im + µ∇ψ(ři,−p))
−1∇ψ1/2(ři,−p)xi,p

=
1

nµ

∑
i

x>i,p
(
Im − (Im + µ∇ψ(ři,−p))

−1
)
xi,p

' 1

nµ

∑
i

tr(Im − (Im + µ∇ψ(ři,−p))
−1)

' 1

nµ
(mn−mn+ p− nτµ) =

p

nµ
− τ. (3.30)
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The first and the last ‘'’ are derived from (3.28) and (3.29), respectively. Since

Im−(Im+µ∇ψ(ři,−p))
−1 is a random symmetric matrix depending only on Xi,−p, by

Lemma 3.37 in El Karoui (2018), the second approximation ‘'’ holds. The second ‘=’

follows by applying the SMW formula given in (3.24). Plugging the approximation

ξn + τ ' p/(nµ) into (3.17) entails that

√
nµ(ξn + τ)(β̂p − β0,p) '

1√
n

∑
i

µx>i,pψ(ři,−p)−
√
nµτβ0,p.

Since ři,−p is independent of xi,p, Exi,p = 0, Cov(xi,p) = Im, and ri ' ři,−p (by

Theorem 3.3), we have

E

((p
n

)2

n(β̂p − β0,p)
2|{Xi,−p, ei; i = 1, . . . , n}

)
' 1

n

n∑
i=1

‖µψ(ři,−p)‖2 + nµ2τ 2β2
0,p

' 1

n

n∑
i=1

‖µψ(ri)‖2 + nµ2τ 2β2
0,p.

Summing over all coordinates, it follows that

E

((p
n

)2

‖β̂ − β0‖2

)
'p
n

1

n

n∑
i=1

E‖µψ(ri)‖2 + µ2τ 2‖β0‖2. (3.31)

By (3.23), ψ(ri) ' µ−1(r̃i,[−i] − ri), (3.31) therefore becomes

(p
n

)2

E‖β̂ − β0‖2 ' p

n

1

n

∑
i

E‖r̃i,[−i] − ri‖2 + µ2τ 2‖β0‖2.

By Theorem 3.2 and Proposition B.7 in Appendix B.1, the second equation in (3.7)

follows.
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3.4 Examples

We present some examples to explore the behaviors of ridge-regularized (τ >

0) and/or unregularized (τ = 0) high-dimensional regression M-estimates via the

nonlinear systems stated in Theorem 3.1 and Corollary 3.1.

3.4.1 ρ(x) = x>Ax/2

In this example, ρ(x) = x>Ax/2, A � 0, and ψ(x) = Ax. We thus have

proxµ(ρ)(z) = (Im + µA)−1z and ∇proxµ(ρ)(z) = (Im + µA)−1. Assume that z has

mean vector 0 and covariance matrix, Cov(z) = Σe + E‖β̂ − β0‖2Im (Cov is the

abbreviation of covariance). Hence,

E‖z − proxµ(ρ)(z)‖2 = tr((Im − (Im + µA)−1)2Σe) + tr((Im − (Im + µA)−1)2)E‖β̂ − β0‖2.

Together with (3.7) in Theorem 3.1, by elementary computations, we obtain that,

for a given τ > 0,

tr((Im + µA)−1) = m− p

n
+ τµ,

and

E‖β̂ − β0‖2 =
p
n
tr((Im − (Im + µA)−1)2Σe) + τ 2‖β0‖2µ2

p2

n2 − p
n
tr((Im − (Im + µA)−1)2)

.

When τ = 0, it is reduced to the result in (3.8). We thus obtain µ and E‖β̂ − β0‖2

by solving the above two equations. One should note that the risk of β̂ depends on
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the covariance matrix of e, say Σe, rather than its distribution.

We explore and compare the risks of the high-dimensional regression M-estimates

that we obtain using system prediction (R) and numerical simulations under the cases

of multivariate normal errors (ER − N ) and multivariate t errors (ER − T ). We

details the simulation settings as follows.

• Let m = 5;n = 100; p/n = 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5; τ = 0, 0.1, 1, 10.

• Consider ei ∼ N (0,Σe) and ei ∼ T3(0,Σe/3), where Σe = (σ`j), the diagonal

entries (σ11, σ22, σ33, σ44, σ55)> = (1, 1, 1.2, 1.5, 1.1)> and else σ`j = 0.8|`−j| for

` 6= j. T3(0,Σe/3) denotes a multivariate t-distribution with degree of freedom

3 and covariance matrix Σe.

• Let A = Σ−1
e , β0 = (0.5, . . . , 0.5) ∈ Rp. Note that each element of β0 is 5/

√
n.

We can also set each entry to be c/
√
p.

• For simplicity, we limit our attention to the case that Xi ∼MNm×p(0, Im, Ip)

for i = 1, . . . , n.

We carry out 500 simulations. Table 3.1 displays the risks of β̂ estimated by the

system and numerical simulations. As expected, for a given τ ≥ 0, the discrepancies

between the system prediction risk R and the empirical risk by simulations, ER−N

(or ER− T ), are relatively small, which implies that the nonlinear system captures
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the behaviors of M-estimate very well under our model settings.

Table 3.1: ρ(x) = x>Ax/2: results for the risks of β̂ obtained by system prediction

(R) and numerical simulations in the cases of multivariate normal errors (ER−N )

and multivariate t errors (ER− T ) for different τ , p/n.

τ Method p/n

0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 R 0.170 0.863 1.657 2.280 2.779 3.274 3.909 4.912 6.874 12.696

ER−N 0.167 0.855 1.636 2.256 2.787 3.271 3.952 4.941 6.972 12.827

ER− T 0.167 0.898 1.534 2.318 2.716 3.193 3.779 5.369 6.850 12.372

0.1 R 0.165 0.830 1.580 2.167 2.653 3.173 3.908 5.127 7.255 10.855

ER−N 0.166 0.842 1.571 2.203 2.668 3.177 3.919 5.139 7.325 10.929

ER− T 0.163 0.817 1.483 2.152 2.873 3.252 3.790 5.177 7.174 10.571

1 R 0.181 1.010 2.348 4.157 6.598 9.800 13.844 18.763 24.547 31.152

ER−N 0.180 1.025 2.364 4.195 6.637 9.857 13.731 18.701 24.612 31.157

ER− T 0.178 1.002 2.317 4.286 6.658 9.883 13.863 18.680 24.411 31.159

10 R 1.050 5.561 11.918 18.949 26.546 34.592 43.061 51.869 60.963 70.307

ER−N 1.043 5.552 11.920 18.929 26.480 34.691 43.093 51.772 61.037 70.510

ER− T 1.047 5.526 11.897 18.932 26.510 34.611 43.163 51.981 60.964 70.299

3.4.2 ρ(x) =
∑m

`=1 ρ(x`)

For simplicity, in this example, we consider a discrepancy function of special type

that was studied by Koenker and Portnoy (1990): ρ(x) =
∑m

`=1 ρ(x`), where ρ(x`)

is a univariate convex function, say, L1 discrepancy function ρ(x`) = |x`|, or Huber
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Table 3.2: Results for the risks of β̂ obtained by system prediction (R[H]) and by

numerical simulations (ER[H]) in the case of Huber discrepancy function and multi-

variate normal errors for different τ, p/n.

τ Method p/n

0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 R[H] 0.025 0.135 0.303 0.517 0.799 1.191 1.773 2.736 4.656 10.441

ER[H] 0.026 0.137 0.307 0.523 0.811 1.202 1.783 2.752 4.732 10.571

0.1 R[H] 0.025 0.137 0.309 0.528 0.819 1.224 1.819 2.762 4.382 7.326

ER[H] 0.025 0.138 0.316 0.527 0.823 1.229 1.847 2.777 4.415 7.381

1 R[H] 0.126 0.838 2.499 5.508 10.058 15.925 22.798 30.431 38.655 47.351

ER[H] 0.127 0.845 2.505 5.534 10.032 15.855 22.681 30.315 38.617 47.343

10 R[H] 1.493 9.302 20.199 31.500 43.004 54.637 66.359 78.149 89.992 101.878

ER[H] 1.493 9.291 20.182 31.493 42.993 54.637 66.364 78.135 90.001 101.887

discrepancy function,

ρk(x`) =

{
x2
`/2 if |x`| ≤ k,

k(|x`| − k
2
) if |x`| > k,

where k > 0 shows where the transitions from quadratics to linear take place. The

Huber discrepancy function becomes more similar to | · |, L1 discrepancy function,

for small values of k. Therefore, we focus only on the case of Huber discrepancy

function. We have, ψk(x`) = x`I{|x`|≤k} + ksign(x`)I{|x`|>k} for ` = 1, . . . ,m, and

proxµ(ρk)(z`) =

{
z`/(1 + µ) if |z`| ≤ (1 + µ)k,

z` − µksign(z`) if |z`| > (1 + µ)k.

Assume that ei
iid∼ N (0,Σe) for i = 1, . . . , n. Denote s2

` = σ2
` + E‖β̂ − β0‖2, and

α` = (1 + µ)k/s`, where σ2
` is the `-th diagonal entry in Σe. Then z` ∼ N(0, s2

`),
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and Ez2
` I{|z`|≤(1+µ)k} = s2

`(2Φ(α`) − 1 − 2α`φ(α`)), where φ and Φ are respective

the standard normal density and distribution function. Thus the first and second

equations in (3.7) become

m∑
`=1

Φ(α`) =
1

2

(
m+

1 + µ

µ

(p
n
− µτ

))
,

and

p

n
E‖β̂ − β0‖2 − n

p
µ2τ 2‖β0‖2

=

(
µ

1 + µ

)2 m∑
`=1

s2
`(2Φ(α`)− 1− 2α`φ(α`)) + (µk)2

(
m−

(p
n
− µτ

) 1 + µ

µ

)
,

respectively. Now we compare the risk estimated by the system to the empirical

risk obtained by numerical simulations. The settings of m,n, p/n, τ,Σe, β0, Xi

are the same as in Section 3.4.1. In the case of Huber discrepancy function and

ei ∼ N (0,Σe), we denote the system prediction risk by R[H] and the empirical risk

by ER[H]. Herein we take k = 1.345. The simulations are repeated 500 times, and

the results are presented in Table 3.2. It can be seen from the table that our system

predictions match very well with the numerical simulation results, which demon-

strates the capacity of our system prediction in capturing the behaviors of ‖β̂−β0‖2

in expectation. We remark that the common distribution of random errors can also

be extended to a general symmetric distribution. We omit the case here. For more

details on the univariate case, one can refer to El Karoui et al. (2013).
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3.4.3 ρ(x) = ‖x‖

The third case that we are interested in is ρ(x) = ‖x‖ that was studied by

Bai et al. (1992). In this case, ψ(x) = x/‖x‖ (except at 0). Then x + µψ(x) =

x + µx/‖x‖ = x(1 + µ/‖x‖), (x 6= 0). Define z = x(1 + µ/‖x‖). We thus have

‖x‖(1 + µ/‖x‖) = ‖z‖, or, ‖x‖ = ‖z‖ − µ. It follows that

x = proxµ(ρ)(z) = z − µ z

‖z‖
(z 6= 0),

and

∇proxµ(ρ)(z) = Im − µ
1

‖z‖

(
Im −

zz>

‖z‖2

)
.

One can obtain the first equation in (3.7)

Etr

(
Im − µ

1

‖z‖

(
Im −

zz>

‖z‖2

))
= m− µ(m− 1)E

1

‖z‖
= m− p

n
+ τµ,

namely µ(m−1)E(‖z‖−1) = p/n−τµ. On the other hand, sinceE‖z−proxµ(ρ)(z)‖2 =

E‖z − (z − µz/‖z‖)‖2 = µ2, thus

(p
n

)2

E‖β̂ − β0‖2 =
p

n
E‖z − proxµ(ρ)(z)‖2 + τ 2‖β0‖2µ2 =

(p
n

+ τ 2‖β0‖2
)
µ2,

which, jointly with µ(m − 1)E(‖z‖−1) = p/n − τµ, deduces E‖β̂ − β0‖2 and µ for

τ ≥ 0.
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4 General matching quantiles M-estimation

4.1 Introduction

MQE was first proposed by Sgouropoulos et al. (2015) as a way to address the

problem of estimating representative portfolios for backtesting counterparty credit

risks. However, financial applications can entail many challenges stemming from the

complexity of data. For example, financial modeling with outliers may result in naive

interpretation of statistics and unreliable scientific conclusions, which may further

lead to large economic loss. To overcome the challenge, a robust method is developed

to construct representative portfolios.

In this chapter, we propose a general enhancement of MQE by replacing the

OLS estimation with an M-estimation. We show that in addition to being resistant

to outliers, the MQME estimate is consistent, as is MQE. The proposed MQME

can handle situations when both n and p are large, but the number of informative

variables is small. This is common in many modern problems. This suggests that a
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‘sparse’ matching quantiles estimate is highly desirable. Therefore, a sparse MQME

is also developed by combining MQME with an adaptive Lasso penalty. As with the

original MQME, we expect the ‘sparse’ variant to be robust to outlier observations.

The rest of this chapter is organized as follows. In Section 4.2, we introduce

the MQME method. We discuss its theoretical properties in Section 4.3. Numerical

experiments of varying designs are explored in Section 4.4, followed by a real case

study of the stock market index in Hong Kong during the period of 2013-2016 in

Section 4.5. All proofs to any presented theoretical results can be found in Appendix

C.

4.2 The methods

4.2.1 Matching Quantiles M-Estimation (MQME)

Consider all linear combinations of p random variables {X1, . . . , Xp}. The goal

is to match the distributions of Y and β>X for some β, i.e.,

L(Y ) = L(β>X). (4.1)

A straightforward approach one could take is to match the distribution (or proba-

bility density) functions of Y and β>X by only matching the center parts of their

distributions well because both distributions are close to 1 or 0 for extremely large
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or small values. In some fields including risk management, however, those extreme

values may be very important and useful. It is noted that the distribution of Y

is rarely known. In order to find a β such that the distribution of β>X matches

the distribution of Y not only in the middle but also at the tails, Sgouropoulos et

al. (2015) proposed searching for β by minimizing the squared difference of the two

quantiles functions across all levels, given by

S̃(β) =

∫ 1

0

(
QY (α)−Qβ>X(α)

)2

dα, (4.2)

and defined the matching quantiles estimate β̃n of β to be the one minimizing the

following matching sample quantiles

S̃n(β) =
1

n

n∑
i=1

(
Y(i) − (β>X)(i)

)2

. (4.3)

However, in some real applications, we may encounter outliers due to uncontrollable

factors. For such data, procedures based on OLS estimation behave badly (El Karoui

et al., 2013; Huber, 1973). Therefore, we develop a more general matching quantiles

estimation procedure based on M-estimation, i.e., by searching for β such that it

minimizes

Š(β) =

∫ 1

0

ρ
(
QY (α)−Qβ>X(α)

)
dα (4.4)

for a convex discrepancy function ρ(·) that satisfies the assumption (A1) in Section

4.3. We define the matching quantiles M-estimate β̌n of β to be the one minimizing
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the following matching sample quantiles

Šn(β) =
1

n

n∑
i=1

ρ
(
Y(i) − (β>X)(i)

)
. (4.5)

The particular cases of ρ(·) are respectively the L1 discrepancy function, and the

Huber discrepancy function ρc(·) given in (4.7), which have been extensively studied

and applied in modeling against outliers (Lambert-Lacroix and Zwald, 2011). Specif-

ically, the L1 matching quantiles estimate β̌L1 is defined by minimizing the convex

function

ŠL1
n (β) =

1

n

n∑
i=1

∣∣∣Y(i) − (β>X)(i)

∣∣∣. (4.6)

We now define the Huber discrepancy function-based matching quantiles estimate

β̌H . For any c > 0, the Huber discrepancy function is defined as

ρc(x) =


x2/2 if |x| ≤ c,

c(|x| − c/2) if |x| > c.

(4.7)

The parameter c shows where the transitions from quadratics to linear take place.

The Huber discrepancy function ρc(·) becomes more similar to the L1 discrepancy

function, for small values of c while it becomes more similar to (·)2, i.e., the L2

discrepancy function, for large values of c (Lambert-Lacroix and Zwald, 2011). The

Huber discrepancy function-based matching quantiles estimate β̌H is defined by min-
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imizing the convex function, i.e.,

ŠHn (β) =
1

n

n∑
i=1

ρc

(
Y(i) − (β>X)(i)

)
. (4.8)

It is sensible that the choice of c has an impact on the estimation, and thus the c

value should be properly chosen. The details on how to select c will be given in

Section 4.2.4.

4.2.2 Sparse MQME

In recent years, there has been a great focus on the sparse modeling where p

and/or n are very large. A ‘sparse’ matching quantiles estimate is highly desirable.

We thus combine the MQME with the adaptive Lasso penalty, which is named as

sparse MQME. The purpose of sparse MQME is to search for β such that it minimizes

S(β), i.e.,

S(β) =

∫ 1

0

ρ
(
QY (α)−Qβ>X(α)

)
dα + λ

p∑
j=1

ωj|βj|. (4.9)

The sparse matching quantiles M-estimate β̂n is thus obtained by minimizing

Sn(β) =
1

n

n∑
i=1

ρ
(
Y(i) − (β>X)(i)

)
+ λ

p∑
j=1

ωj|βj|, (4.10)

where λ ≥ 0 and ωj ≥ 0, j = 1, 2, . . . , p, are tuning parameters. Zou (2006) showed

that the adaptive Lasso enjoys the consistency and oracle property in variable selec-

tion by choosing a proper λ and ωj, j = 1, 2, . . . , p. The procedure of how to select
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proper tuning parameters will be discussed in Section 4.2.4.

Remark 4.1 In practice, one may interest in matching a part of distribution of Y ,

say, that between the anth quantile and the bnth quantile, 0 ≤ an < bn ≤ 1. Herein

both an and bn are dependent on n, while they both are fixed in Sgouropoulos et al.

(2015). We hence replace (4.9) and (4.10) by

S(β; an, bn) =

∫ bn

an

ρ
(
QY (α)−Qβ>X(α)

)
dα + λ

p∑
j=1

ωj|βj|, (4.11)

and

Sn(β;n1, n2) =
1

n

n2∑
i=n1+1

ρ
(
Y(i) − (β>X)(i)

)
+ λ

p∑
j=1

ωj|βj|, (4.12)

respectively. In (4.12), n1(n) = [nan] and n2(n) = [nbn], where [x] denotes the

greatest integer less than or equal to x. Note that n1(n), n2(n) are dependent on n.

We drop the suffix n for notational convenience.

4.2.3 Iterative algorithm for (sparse) MQME

The matching quantiles M-estimate β̂n does not admit an explicit solution. In

light of Sgouropoulos et al. (2015), we provide an iterative algorithm for computing

β̂n that minimizes Sn(β) in (4.10), which also works for computing β̌n as Šn(β) in

(4.5) is a special case of Sn(β) with λ = 0.

Let β̂(k) denote an optimal estimate in the kth iteration such that β̂(k) = arg minβ S
k
n(β),
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where Skn(β) is defined by

Skn(β) =
1

n

n∑
i=1

ρ
(
Y(i) − β>X(k−1)

(i)

)
+ λ

p∑
j=1

ωj|βj|. (4.13)

Here
{
X

(k)
(i)

}
is a permutation of {Xi} at the kth iteration such that (β̂(k))>X

(k)
(1)

≤ (β̂(k))>X
(k)
(2) ≤ · · · ≤ (β̂(k))>X

(k)
(n). The iterative algorithm consists of the following

three steps:

Step 1: Set an initial estimate β̂(0).

Step 2: At the kth (k ≥ 1) iteration, given a β̂(k−1), obtain β̂(k) by minimizing

Skn(β).

Step 3: Iterate Step 2 until |Skn(β̂(k)) − Skn(β̂(k−1))| is less than a prespecified

small positive number.

The sparse matching quantiles M-estimate β̂n is β̂(k). The convergence of the itera-

tive algorithm was proved by Sgouropoulos et al. (2015) when ρ(·) is L2 discrepancy

function. In this chapter, we show that the convergence of the algorithm still holds

for a general discrepancy function ρ(·), which is given in Theorem 4.1.

We remark that in the step 1, β̂(0) may be taken as an M-estimate that mini-

mizes n−1
∑n

i=1 ρ(Yi−β>Xi), which becomes the OLS estimate if ρ(·) = (·)2, or the

minimum L1-norm estimate if ρ(·) = | · |.
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4.2.4 Selection of tuning parameters

The constant c in Huber function regulates the amount of robustness as argued in

Huber (1981). By Wang et al. (2007), the choice of c in Huber function should reflect

the possible proportion of outliers in the data. Huber (1981) recommended the value

of c = 1.345 for location problems to achieve about 95% efficiency when the data are

normally distributed. Some other values of c, say 1.25 or 1.2, can be found in Street

et al. (1988), Chi (1994), and Cantoni and Ronchetti (2001) among others. Since

the choice of c may impact the estimation efficiency, Wang et al. (2007) and Jiang

et al. (2019) proposed data driven approaches to adjust the values of c. Recently, a

popular method to select the tuning constant c is through cross-validations (Chen et

al., 2017; Fan et al., 2017).

The regularization parameter λ in (4.10) may be chosen by a grid search us-

ing cross-validation or information-based criterion, for example, Akaike Information

Criterion (AIC) or Bayesian Information Criterion (BIC), or the cross validated mea-

surement, such as Mean Absolute Error (MAE), Mean Squared Error (MSE)(Fan et

al., 2017).

In this chapter, if ρ is the Huber discrepancy function, we run a two-dimensional

grid search using five-fold cross-validation to find the optimal pair (c, λ) that mini-

mizes the mean absolute matching errors (MAME) (see the definition (4.22)) of the
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validation datasets. Similarly, we use one-dimensional grid search to find the best

λ if ρ is L2 or L1 discrepancy function. The weights ωj, j = 1, . . . , p, in (4.10), are

usually constructed based on unpenalized estimates (Zou, 2006). For example, let

β̂[M ] be an M-estimate of β. Then ωj can be set as |β̂[M ]
j |−γ, where γ > 0 and β̂

[M ]
j

is the jth element of the M-estimate β̂[M ].

4.3 Theoretical properties

In this section, the convergence of the above iterative algorithm, and the statisti-

cal properties the matching quantiles M-estimate are presented. Before proceeding,

we make the following assumptions.

(A1) ρ(x) is a convex function satisfying that ρ(x) ≥ ρ(0) = 0, and is Lipschitz

continuous, that is, there exists a constant M ≥ 0, such that for any x1, x2 ∈ R,

|ρ(x1)− ρ(x2)| ≤M |x1 − x2|.

(A2) For any 0 < τ0 < τ1 < 1/2, there exists Ωn such that (i) infQξ(α)∈Ωn fξ(Qξ(α))

= n−(τ1−τ0); (ii) supQξ(α)∈Ωn |f ′ξ(Qξ(α))| <∞; (iii) P (ξ ∈ Ωc
n) = o(n−τ0), where ξ = Y

or β>X for any fixed β.

Remark 4.2 (A1) is commonly made in the theoretical study of M-estimation. (A2)

controls the behavior of the tail densities of the random variable ξ, which is weaker

than the Conditions B (ii)-(iii) made in Sgouropoulos et al. (2015), where the bounded
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supports of Y and X are needed. If ξ ∼ N(0, 1), one can take Ωn = [−(2(τ1 −

τ0) log n− log 2π)1/2, (2(τ1− τ0) log n− log 2π)1/2] for any 2τ0 < τ1 < 1/2, then (A2)

holds true.

Under the assumption (A2) (i)-(ii), we can show that fξ and f ′ξ satisfy the Kiefer

conditions on Ωn, and we have (see Kulik (2007))

fξ(Q(α))n1/2(Qξ(α)−Qn,ξ(α))− n1/2(Fn,ξ(Qξ(α))− α) = Rn(α), (4.14)

where Rn(α)
a.s.−−→ n−1/4(log n)1/2(log log n)1/4.

We now present our lemmas and theorems .

Theorem 4.1 Under the assumption (A1), for a fixed n, the iterative algorithm

proposed in Section 4.2.3 converges, i.e., the following holds true:

Skn(β̂(k))→ η, as k → +∞, (4.15)

where η is a nonnegative constant, and β̂(k) = arg minβ S
k
n(β).

Remark 4.3 Theorem 4.1 no longer holds if we search for β>X that matches a

part of distribution of Y by employing L2 discrepancy function (Sgouropoulos et al.,

2015). This issue remains if the L2 discrepancy function is replaced by a general

discrepancy function ρ(·).

The following lemma is needed in the proof of Theorem 4.1.
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Lemma 4.1 Under the assumption (A1), let {ai}ni=1 and {bi}ni=1 be any two se-

quences. Then we have

n∑
i=1

ρ(a(i) − b(i)) ≤
n∑
i=1

ρ(ai − bi), (4.16)

where a(i) and b(i) (i = 1, 2, . . . , n) are the ith ordered values of {ai}ni=1 and {bi}ni=1,

respectively.

Theorem 4.2 Under the assumptions (A1)-(A2), we have

sup
β∈B
|Sn(β)− S(β)| p−→ 0, as n→∞, (4.17)

where B is any compact subset in Rp.

The following lemma is needed in the proof of Theorem 4.2.

Lemma 4.2 Under the assumptions (A1)-(A2), for any fixed β ∈ Rp and τ0 < 1/2,

nτ0{Sn(β)− S(β)} p−→ 0, as n→∞. (4.18)

Let β0 = arg minβ S(β) for λ ≥ 0. Then we have the following two theorems.

Theorem 4.3 Under the assumptions (A1)-(A2), we have

Sn(β̂n)
p−→ S(β0), as n→∞. (4.19)

Note that β0 might not be unique for L2 discrepancy function (Sgouropoulos et al.,

2015), which remains true for a general discrepancy function ρ(·). Namely, β̂n that
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minimizes (4.10) may not be unique. Nevertheless, by writing B0 = {β, S(β) =

S(β0)} and defining d(β̂n,B0) = minβ∈B0 ‖β̂n − β‖, we have the following theorem.

Theorem 4.4 Under the assumptions (A1)-(A2), for any ε > 0, we have

P{d(β̂n,B0) ≥ ε} → 0, as n→∞. (4.20)

We remark that these proofs are in light of Sgouropoulos et al. (2015). However,

compared to Sgouropoulos et al. (2015), our work overcomes the challenges in the

proofs of theoretical results as we replace the L2 discrepancy function with a general

discrepancy function ρ, and we no longer requireX and Y to have bounded supports.

In fact, the most notable differences are in the assumptions and the proofs of Lemmas

4.1-4.2 and Theorem 4.2, which are not a straightforward extension of Sgouropoulos

et al. (2015).

4.4 Simulations study

The simulations are performed under different scenarios, without or with outliers.

The L2, L1, and Huber discrepancy functions are chosen for comparison purpose. We

remark that the tuning parameters for all methods are chosen by using five-fold cross-

validation. For convenience, the MQME method based on Huber ρc (c > 0), L1, and

L2 discrepancy functions are abbreviated as HUBER, LAD, and LS, respectively.
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4.4.1 Evaluation measures

The objective of this study is to find a β̂n such that the distribution of β̂>nX

matches the distribution of Y sufficiently well. Thus, we use three measures to

evaluate the performance of the proposed method by using a post-sample of size n,

which is generated with each drawn sample as in Sgouropoulos et al. (2015), and

denoted by {(ỹj, x̃j), j = 1, . . . , n}. The first measure is the root mean squared

matching error (rMSME), and another one is the mean absolute matching error

(MAME), which are respectively defined as

rMSME =

{
1

n

n∑
i=1

[
ỹ(i) − (β̂>n x̃)(i)

]2
}1/2

, (4.21)

and

MAME =
1

n

n∑
i=1

∣∣∣ỹ(i) − (β̂>n x̃)(i)

∣∣∣ , (4.22)

where β̂n is the (sparse) matching quantiles M-estimate. The third one is the measure

for the partial goodness-of-match (Sgouropoulos et al., 2015),

R̂ = 1− 1

2

[n/k]∑
j=1

∣∣∣Cj − k/n∣∣∣, (4.23)

where

Cj =
1

n

n∑
i=1

I
{(j − 1)k

n
< Ui ≤

jk

n

}
, Ui =

1

n

n∑
j=1

I
{
ỹj ≤ β̂>n x̃i

}
.
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The smaller the difference between the distributions of Y and β̂>nX, the smaller the

values of rMSME and MAME, and the larger the value of R̂, where R̂ ∈ [0, 1]. The

ideal case is that R̂ = 1, which happens if and only if n/k is an integer and each

interval ((j − 1)k/n, jk/n], j = 1, . . . , n/k contains exactly k points from U1, . . . , Un.

It is easy to see that k should be large enough to guarantee that there are enough

sample points in each of [n/k] intervals (see Sgouropoulos et al. (2015) for details).

4.4.2 Example 1

To make the proposed MQME method applicable in the financial market, we

generate synthetic data that mimic the styles of assets returns. The simulation design

is similar to Sgouropoulos et al. (2015). This example is conducted to illustrate the

finite-sample properties of MQME via a linear model,

Yi = β>Xi + Zi, i = 1, 2, . . . , n, (4.24)

and Xi, 1 ≤ i ≤ n, are defined by a multi-factor model

Xi = AVi + εi, i = 1, . . . , n,

where A is a p × 3 constant factor loading matrix with the elements drawn inde-

pendently from U [−1, 1]; the three elements of Vi are independently linear AR(1)

processes with Lognormal (0,1) innovations in which the three autoregressive coeffi-

cients are drawn independently from U [−0.95, 0.95]; εi is a p×1 random error vector
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Table 4.1: Mean (standard deviation) of MAME, rMSME and R̂ for post-samples

from 1000 simulations in Example 1.

(Scenario, p)
MAME rMSME R̂

LS LAD HUBER LS LAD HUBER LS LAD HUBER

(I, 10) 0.5614

(0.4240)

0.2808

(0.0955)

0.2027

(0.0485)

0.6309

(0.4103)

0.4077

(0.1367)

0.2878

(0.0649)

0.9229

(0.0613)

0.9542

(0.0230)

0.9646

(0.0175)

(I, 20) 0.5137

(0.3495)

0.3791

(0.1272)

0.2279

(0.0511)

0.5961

(0.3395)

0.5509

(0.1967)

0.3193

(0.0698)

0.9465

(0.0359)

0.9557

(0.0207)

0.9700

(0.0150)

(I, 50) 0.5737

(0.3491)

0.5564

(0.1879)

0.3089

(0.0796)

0.6910

(0.3536)

0.8116

(0.2736)

0.4309

(0.1147)

0.9581

(0.0237)

0.9562

(0.0210)

0.9724

(0.0146)

(II, 10) 1.1096

(1.0644)

0.3072

(0.1136)

0.2358

(0.0774)

1.2028

(1.0496)

0.4504

(0.1658)

0.3390

(0.1129)

0.8663

(0.1250)

0.9536

(0.0229)

0.9628

(0.0191)

(II, 20) 0.9510

(0.8841)

0.4017

(0.1391)

0.2572

(0.0679)

1.0559

(0.8749)

0.5904

(0.2159)

0.3632

(0.0936)

0.9100

(0.0838)

0.9552

(0.0211)

0.9684

(0.0160)

(II, 50) 0.7905

(0.5593)

0.5778

(0.2039)

0.3298

(0.0919)

0.9276

(0.5585)

0.8426

(0.2945)

0.4602

(0.1244)

0.9457

(0.0384)

0.9561

(0.0216)

0.9722

(0.0147)

(III, 10) 4.7797

(4.8848)

0.3983

(0.1732)

0.3230

(0.1360)

5.0725

(5.0240)

0.5771

(0.2581)

0.4502

(0.1935)

0.6460

(0.2352)

0.9479

(0.0242)

0.9565

(0.0193)

(III, 20) 6.1347

(6.5863)

0.5400

(0.2432)

0.3931

(0.1814)

6.4841

(6.7499)

0.7775

(0.3479)

0.5352

(0.2570)

0.6656

(0.0237)

0.9486

(0.0239)

0.9611

(0.0176)

(III, 50) 7.7869

(8.2518)

0.7948

(0.3733)

0.6353

(0.3452)

8.4185

(8.5867)

1.1393

(0.5129)

0.8680

(0.4920)

0.7074

(0.2105)

0.9486

(0.0234)

0.9593

(0.0187)
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with mean 0 whose components are independently distributed as t(4); the underly-

ing regression coefficient vector β0 in (4.24) are drawn independently from uniform

distribution, β0
j ∼ U [−0.5, 0.5], j = 1, . . . , p, with p = 10, 20, 50. As p increases,

it is sensible to consider the sparse structure of the parameter vector β0. We thus

assume that β0 = (β0
1 , . . . , β

0
10, 0, . . . , 0)> for p = 50, 100, where β0

j ∼ U [−0.5, 0.5],

1 ≤ j ≤ 10. We consider the following three scenarios without or with outliers.

• Scenario I: There are no outlier observations. The random errors Zi, i =

1, 2, . . . , n, are generated from N(0, 1).

• Scenario II: There exist Type A outliers. The random errors Zi, i = 1, 2, . . . , n,

follow a contaminated-normal distribution (1 − π)N(0, 1) + πN(0, 64) with

π < 0.5.

• Scenario III: There exist Type B outliers. {Yi} are contaminated as follows:

randomly take [πn] observations from {Yi}, and replace their values by m

multiples of max1≤i≤n{Yi} with m > 1.

We carry out 1000 simulations for each setting with n = 300, π = 0.025, and

m = 1.5. We first perform MQME when the underlying true regression vector

β0 is not sparse for p = 10, 20, 50. We compute the MAME, rMSME, and R̂

with k/n = 0.025 using the post-samples in Table 4.1. For all the settings, HUBER
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Table 4.2: Mean (standard deviation) of MAME, rMSME and R̂ from 1000 simula-

tions in Example 1 with β0 being sparse.

(Scenario, p)
MAME rMSME R̂

LS LAD HUBER LS LAD HUBER LS LAD HUBER

(I, 50) 0.4351

(0.2839)

0.2937

(0.0970)

0.2042

(0.0479)

0.5109

(0.2721)

0.4310

(0.1561)

0.2908

(0.0663)

0.9390

(0.0373)

0.9538

(0.0234)

0.9653

(0.0173)

(I, 100) 0.7673

(0.6259)

0.2955

(0.1009)

0.2157

(0.1173)

0.8347

(0.6079)

0.4349

(0.1569)

0.3047

(0.1523)

0.8982

(0.0893)

0.9534

(0.0234)

0.9638

(0.0194)

(II, 50) 1.3780

(1.2293)

0.3207

(0.1148)

0.2388

(0.0716)

1.4673

(1.2181)

0.4753

(0.1851)

0.3429

(0.1010)

0.8390

(0.1350)

0.9528

(0.0233)

0.9635

(0.0179)

(II, 100) 1.2961

(1.1361)

0.3209

(0.1171)

0.2486

(0.1069)

1.3837

(1.1253)

0.4764

(0.1791)

0.3550

(0.1444)

0.8479

(0.1323)

0.9523

(0.0240)

0.9612

(0.0200)

(II, 50) 4.8764

(4.5731)

0.4170

(0.1841)

0.3600

(0.1631)

5.1257

(4.6942)

0.5987

(0.2708)

0.5006

(0.2370)

0.6292

(0.2233)

0.9461

(0.0246)

0.9537

(0.0195)

(III, 100) 4.0397

(3.8521)

0.4123

(0.1799)

0.3810

(0.3203)

4.3105

(3.9498)

0.5960

(0.2581)

0.5333

(0.4248)

0.6842

(0.2023)

0.9465

(0.0246)

0.9514

(0.0263)

outperforms the other two methods, i.e., LAD and LS, and LAD performs better than

LS in general. Another interesting finding is that even though the target random

variable Y is not contaminated, both LAD and HUBER outperforms LS, which can

be due to the large volatility in the data that simulate assets returns. We also report

the MAME, rMSME, and R̂ in Table 4.2 when β0 is sparse for p = 50, 100. We draw
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the same conclusion as above, that is, HUBER outperforms both LAD and LS in all

the settings, and LAD performs better than LS.

4.4.3 Example 2

Our purpose is to match the distribution of a target random variable Y by a

linear combination of p random variablesX, L(Y ) = L(β>X),β ∈ Rp. As the linear

regression relationship between Y andX is too obvious in Example 1, we thus weaken

the simulation setting by generating Xi, Yi, i = 1, . . . , n as follows: Xi ∼ Np(0,Σ),

Σ = (σjj′) with σjj′ = 0.5|j−j
′|, j, j′ = 1, . . . , p; Yi ∼ L(β>X) = N(0,β>Σβ). Since

such generated data set does not contain an outlier, this scenario is still named as

Scenario I for simple presentation. Similar to the previous scenario II, we contaminate

Yi by generating from the distribution (1 − π)N(0,β>Σβ) + πN(0, 64β>Σβ) with

π < 0.5 to create Type A outliers in the data. For simple presentation, this scenario

remains named as Scenario II. The scenario III for Example 2, and the settings of

β0, π, m,n, p are the same as those in Example 1.

The MAME, rMSME, and R̂ with k/n = 0.25 are calculated based on the post-

samples for HUBER, LAD, and LS. We report their values in Tables 4.3-4.4. By

these tables, it can be observed that when there are no outliers, the three methods

have similar performance since their differences in matching errors and R̂ values are
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Table 4.3: Mean (standard deviation) of MAME, rMSME and R̂ from 1000 simula-

tions in Example 2.

(Scenario, p)
MAME rMSME R̂

LS LAD HUBER LS LAD HUBER LS LAD HUBER

(I, 10) 0.0882

(0.0311)

0.0884

(0.0321)

0.0880

(0.0314)

0.1160

(0.0344)

0.1165

(0.0355)

0.1161

(0.0349)

0.9406

(0.0254)

0.9409

(0.0260)

0.9402

(0.0253)

(I, 20) 0.1404

(0.0511)

0.1363

(0.0476)

0.1380

(0.0497)

0.1845

(0.0566)

0.1810

(0.0531)

0.1830

(0.0548)

0.9394

(0.0252)

0.9414

(0.0258)

0.9408

(0.0268)

(I, 50) 0.3089

(0.1209)

0.2721

(0.1026)

0.2891

(0.1127)

0.4011

(0.1384)

0.3555

(0.1163)

0.3769

(0.1295)

0.9323

(0.0297)

0.9383

(0.0258)

0.9372

(0.0285)

(II, 10) 0.2733

(0.1294)

0.0990

(0.0395)

0.0980

(0.0433)

0.3500

(0.1591)

0.1309

(0.0463)

0.1288

(0.0532)

0.8813

(0.0483)

0.9377

(0.0269)

0.9381

(0.0272)

(II, 20) 0.4706

(0.2192)

0.1591

(0.0608)

0.1493

(0.0575)

0.5993

(0.2711)

0.2104

(0.0714)

0.1967

(0.0668)

0.8695

(0.0495)

0.9366

(0.0269)

0.9383

(0.0276)

(II, 50) 1.1554

(0.4714)

0.3275

(0.1314)

0.3260

(0.1753)

1.4644

(0.5834)

0.4301

(0.1566)

0.4249

(0.2140)

0.8467

(0.0482)

0.9312

(0.0311)

0.9323

(0.0314)

(III, 10) 0.1533

(0.0556)

0.0997

(0.0402)

0.0926

(0.0349)

0.1997

(0.0659)

0.1315

(0.0468)

0.1219

(0.0399)

0.9193

(0.0336)

0.9372

(0.0278)

0.9388

(0.0270)

(III, 20) 0.2608

(0.0917)

0.1580

(0.0600)

0.1439

(0.0557)

0.3379

(0.1088)

0.2093

(0.0706)

0.1896

(0.0649)

0.9106

(0.0353)

0.9368

(0.0273)

0.9393

(0.0274)

(III, 50) 0.6234

(0.1924)

0.3296

(0.1308)

0.3169

(0.1360)

0.8002

(0.2302)

0.4318

(0.1535)

0.4140

(0.1644)

0.8940

(0.0377)

0.9314

(0.0300)

0.9328

(0.0298)
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Table 4.4: Mean (standard deviation) of MAME, rMSME and R̂ from 1000 simula-

tions in Example 2 with β0 being sparse.

(Scenario, p)
MAME rMSME R̂

LS LAD HUBER LS LAD HUBER LS LAD HUBER

(I, 50) 0.0937

(0.0352)

0.0933

(0.0345)

0.0946

(0.0360)

0.1220

(0.0387)

0.1217

(0.0381)

0.1235

(0.0404)

0.9371

(0.0282)

0.9381

(0.0267)

0.9384

(0.0278)

(I, 100) 0.0923

(0.0339)

0.0910

(0.0416)

0.1021

(0.0380)

0.1207

(0.0379)

0.1193

(0.0484)

0.1339

(0.0445)

0.9382

(0.0280)

0.9397

(0.0399)

0.9306

(0.0333)

(II, 50) 0.2506

(0.1326)

0.1049

(0.0427)

0.1001

(0.0388)

0.3210

(0.1642)

0.1371

(0.0498)

0.1311

(0.0448)

0.8870

(0.0486)

0.9355

(0.0293)

0.9324

(0.0318)

(II, 100) 0.2808

(0.1593)

0.1058

(0.0536)

0.1026

(0.0417)

0.3583

(0.1976)

0.1389

(0.0645)

0.1348

(0.0490)

0.8795

(0.0523)

0.9337

(0.0516)

0.9342

(0.0302)

(II, 50) 0.1353

(0.0540)

0.1045

(0.0420)

0.0998

(0.0385)

0.1768

(0.0646)

0.1367

(0.0487)

0.1300

(0.0441)

0.9262

(0.0335)

0.9357

(0.0278)

0.9318

(0.0317)

(III, 100) 0.1405

(0.0564)

0.1050

(0.0441)

0.1025

(0.0424)

0.1839

(0.0687)

0.1377

(0.0526)

0.1348

(0.0500)

0.9237

(0.0324)

0.9361

(0.0361)

0.9333

(0.0303)

small. But for the scenarios II and III, our methods LAD and HUBER outperform

LS overwhelmingly in terms of the MAMEs, rMSMEs, and R̂s. In addition, Huber

generally outperforms LAD in terms of their MAMEs and rMSMEs though their

differences are small. Moreover, it is hard to conclude that one method dominates

others via their R̂ values.

84



4.5 A real case study

In this section, a real example is considered for investigating the performance of

(sparse) MQME. Our purpose is to assemble a representative portfolio with different

securities that matches various characteristics of a benchmark index. The function

ρ(·) is chosen to be L2, L1 or Huber discrepancy function. The tuning parameter c

in Huber function is selected via five-fold cross-validation.

We apply the proposed method to the stock market index in Hong Kong during

the period of 2013-2016. These data are from Yahoo!Finance (https://finance.yahoo.com/).

Hang Seng Index (HSI) is the main indicator of the overall market performance in

Hong Kong. It records and monitors daily changes of the largest companies of the

Hong Kong stock market. Let the target random variable Y be the net returns of

HSI, and X = {X1, X2, . . . , Xp} be the whole set of returns of 41 actively traded

stocks included in HSI (p = 41) from 2013 to 2016. The returns are calculated using

the adjusted daily closing prices. By eliminating the missing data, the data set con-

tains 974 recorded net returns of HSI between 2013 and 2016, which are displayed

in Figure 4.1. This figure visually shows that the overall market behavior during the

period is not homogenized. After applying the R package changepoint to the data,

we divide the financial market into Market I (overall positive average return) of size

552 and Market II (overall negative average return) of size 422. The Market II has
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a higher volatility than the Market I. Given the different characteristics of the two

markets, the representative portfolio may be different. For Market I, we further split

the data set into the in-sample of size 252, and the out-sample of size 300. We also

divide the data set in Market II into the in-sample of size 222, and the post-sample

of size 200. We apply the in-samples to estimate portfolios, and post-samples to

compare their performances with the returns of HSI from each market.
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Figure 4.1: Daily net returns of HSI. The data set is divided into two parts corre-

sponding to Markets I and II by the different overall means and variances.

In order to examine the outliers resistance of MQME, we contaminate HSI by

Type B outliers. In each market, randomly select one point from the in-sample,

and reset it to be m multiples of the maximum of the sample. We perform (sparse)

MQME on the contaminated data for both markets. In some cases, an investor has

prior information and he/she is interested in forming a portfolio based on a specific
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subset X1 of X , where |X1| < |X | with | · | denoting the size of a set. In other cases,

however, an investor may not have any prior information, and he/she regards every

stock in X evenly. Herein, two modeling schemes are carried out to estimate the

representative portfolios.

• Scheme 1: Firstly, randomly select a subset X1 of X . Let |X1| = 3, 5, 8. Then

form portfolios based on X1 by computing MQME for both markets.

• Scheme 2: Form a portfolio based on X by computing sparse MQME. Thereby

a subset of X is selected.

Table 4.5: Matching errors (MAME and rMSME) under the scheme 1 for Markets I

and II.

Method No.S
Market I Market II

MAME rMSME MAME rMSME

LS 3 0.1144 0.2050 0.2237 0.3094

LAD 3 0.0725 0.1132 0.1213 0.1882

HUBER 3 0.0664 0.0992 0.1353 0.2044

LS 5 0.1609 0.3404 0.3563 0.4658

LAD 5 0.0535 0.1171 0.0649 0.0961

HUBER 5 0.0507 0.1198 0.0695 0.1004

LS 8 0.2084 0.3763 0.3708 0.4964

LAD 8 0.0700 0.1267 0.0611 0.0926

HUBER 8 0.0596 0.1233 0.0647 0.0947

We compare the distribution matching for three different discrepancy functions

via MAME and rMSME, which are given in Table 4.5 (Scheme 1) and Table 4.6
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Table 4.6: Matching errors (MAME and rMSME) under the scheme 2 for both

markets.

Method
Market I Market II

No.S MAME rMSME No.S MAME rMSME

LS 5 0.1246 0.3292 5 0.4663 0.6619

LAD 5 0.0642 0.0826 5 0.0784 0.1078

HUBER 5 0.0754 0.0917 5 0.0663 0.0964

LS 10 0.1250 0.3046 9 0.3760 0.5590

LAD 10 0.0436 0.0610 9 0.0751 0.1042

HUBER 10 0.0468 0.0628 9 0.0604 0.0813

LS 13 0.1449 0.3647 11 0.3247 0.4785

LAD 13 0.0368 0.0589 11 0.0610 0.0819

HUBER 13 0.0402 0.0551 11 0.0518 0.0686

(Scheme 2), where ‘No.S’ stands for the number of stocks. We also plot the R̂ defined

in (4.23) with k/n = 0.05, 0.01, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 in Figure 4.2

(Scheme 1) and Figure 4.3 (Scheme 2). Inspecting Tables 4.5-4.6 and Figures 4.2-4.3

reveals both LAD and HUBER outperform LS in terms of the distribution matching,

showing smaller MAME and rMSME than LS overall, and larger values of R̂ than

LS in most cases. Although HUBER has smaller matching errors than those by LAD

in general, the performance difference between LAD and HUBER is relatively small,

as the values of MAME and rMSME do not differ significantly. This phenomenon

agrees with the R̂ values in Figures 4.2-4.3.

In addition, we provide the summary statistics of the target portfolio (HSI) and

the representative portfolios, which include the number of stocks (No.S) assembled in
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Figure 4.2: Matching goodness (R̂) under the scheme 1 for Market I (upper three

panels) and Market II (lower three panels).

Table 4.7: Summary statistics under the scheme 1 for Markets I and II.

Method No.S
Market I Market II

Mean Min Max STD NM SS Mean Min Max STD NM SS

HIS 50 0.032 -2.936 2.273 0.860 -0.675 −− 0.038 -3.415 3.141 0.978 -0.768 −−
LS 3 0.049 -3.202 3.561 1.019 -0.734 -0.453 0.019 -3.622 5.732 1.238 -0.909 0.000

LAD 3 0.020 -2.898 2.785 0.927 -0.757 0.000 0.013 -2.912 5.019 1.075 -0.775 0.000

HUBER 3 0.019 -2.842 2.692 0.909 -0.724 0.000 0.013 -2.994 5.140 1.102 -0.794 0.000

LS 5 0.067 -3.534 5.184 1.113 -0.727 -0.248 0.004 -4.341 4.192 1.403 -0.981 -0.684

LAD 5 0.042 -2.666 3.453 0.903 -0.646 0.000 0.035 -2.830 3.572 0.962 -0.748 0.000

HUBER 5 0.049 -2.904 3.405 0.904 -0.637 0.000 0.034 -2.945 3.763 0.979 -0.754 0.000

LS 8 0.037 -3.990 4.870 1.180 -0.789 -0.678 0.048 -4.949 5.174 1.460 -1.189 -0.358

LAD 8 0.046 -3.276 2.945 0.934 -0.659 -0.009 0.037 -3.073 3.521 0.983 -0.772 0.000

HUBER 8 0.045 -3.251 3.092 0.929 -0.671 0.000 0.036 -3.089 3.610 0.991 -0.764 0.000
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Figure 4.3: Matching goodness (R̂) under the scheme 2 for Market I (upper three

panels) and Market II (lower three panels).

Table 4.8: Summary statistics under the scheme 2 for Markets I and II.

Method
Market I Market II

No.S Mean Min Max Sd NM SS No.S Mean Min Max Sd NM SS

HIS 50 0.032 -2.936 2.273 0.860 -0.675 −− 50 0.038 -3.415 3.141 0.978 -0.768 −−
LS 5 0.086 -3.255 5.836 1.075 -0.701 0.000 5 -0.036 -4.149 7.293 1.550 -1.123 -2.082

LAD 5 0.021 -2.880 2.434 0.808 -0.620 0.000 5 0.074 -3.675 2.706 0.999 -0.799 0.000

HUBER 5 0.002 -2.811 2.173 0.797 -0.599 0.000 5 0.070 -3.613 3.213 1.030 -0.835 0.000

LS 10 0.093 -2.984 5.559 1.048 -0.686 -0.112 9 -0.021 -3.627 6.762 1.437 -1.053 -2.149

LAD 10 0.017 -2.898 2.402 0.855 -0.688 0.000 9 0.060 -3.949 3.483 1.058 -0.833 0.000

HUBER 10 0.020 -2.846 2.316 0.830 -0.621 0.000 9 0.064 -3.589 3.135 1.015 -0.826 0.000

LS 13 0.104 -3.295 6.435 1.107 -0.687 -0.272 11 -0.002 -3.135 6.232 1.366 -1.000 -2.114

LAD 13 0.020 -2.953 2.524 0.875 -0.673 0.000 11 0.051 -3.775 3.459 1.026 -0.815 0.000

HUBER 13 0.021 -2.877 2.353 0.839 -0.628 0.000 11 0.061 -3.510 3.126 0.998 -0.798 0.000
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each portfolio, mean, maximum (Max), minimum (Min), standard deviations (STD),

the negative mean (NM) of the daily returns, and the percentages for short sales (SS).

Herein NM is defined as the mean of all the negative returns (Sgouropoulos et al.,

2015). As seen from Tables 4.7-4.8, we can easily tell that the portfolios of either

LAD or HUBER are superior to the LS by presenting similar statistics, say, Max,

Min, STD and NM, to the target portfolio HSI. The larger absolute values of STD

and NM indicate that the LS portfolios are more risky. The risk of a portfolio is also

reflected by the large short sales, the goal of which is to hedge the risk. LS yields

larger average daily returns than LAD and HUBER in most cases, together with the

larger STD, NM, and SS, which indicates the LS portfolios are more risky. While

in the Market II under scheme 2 (see Table 4.8), the LS portfolio shows negative

average daily returns with a higher risk though the average return of HSI is positive.

For both markets, the LAD or HUBER portfolios yield positive average returns with

a lower risk, and they have similar characters in majority cases, which agrees with

the fact that both LAD and HUBER work well when there are large outliers.
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5 Conclusions and future work

5.1 Conclusions

In this dissertation, we investigate the sign-constrained high-dimensional linear

regression model, high-dimensional multivariate regression M-estimation and match-

ing quantiles M-estimation.

Firstly, we propose a method for high-dimensional regression problems where the

regression coefficients are non-negative, sparse, or even carrying a structure with

homogeneous subgroups. We aim to identify the underlying optimal grouping and

obtain the optimal estimate that satisfies the sign constraints. Specifically, we for-

mulate a regularized minimization problem with a non-convex, but the difference

of convex, objective function. By using the difference of convex programming, a

subproblem at each iteration is reformulated as a constrained minimization problem

with a convex objective, which is solved by applying the augmented Lagrange and

the coordinate descent methods. The theoretical results show that the nnFSG esti-
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mate can consistently identify the underlying true grouping and features associated

with non-zero coefficients. In addition, the numerical studies show that our method

achieves high accuracy in model prediction, feature grouping and/or selection.

Second, we study the properties of ridge-regularized and un-regularized M-estimate

under the matrix framework as p/n tends to a finite number. We first establish a

nonlinear system of two deterministic equations that characterizes the behaviours

of M-estimate. We also provide some examples that demonstrate the remarkable

accuracy of our proposed system in measuring the bounds of β̂.

Finally, we propose an MQME method that is resistant to outliers. The MQME

combined with the adaptive Lasso penalty encourages sparsity in the estimate. Since

the MQME does not admit an explicit solution, an iterative algorithm is thus devel-

oped to solve it. The theoretical properties of the MQME estimate are investigated

based on the assumptions that are weaker than those of MQE made in Sgouropoulos

et al. (2015). Experimental results on both simulated and real data demonstrate the

effectiveness of the MQME.

5.2 Future work

In the era of data explosion, data sets with outliers or heavy tails are ubiquitous in

high-dimensional statistical modeling. This means that innovative methods should
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be explored to explain and analyze those complex data, such as high-dimensional

regression M-estimation with general constraints. It may lead to another problem,

non-convex M-estimation which has been rarely studied. My short-term plan is to

study the statistical properties of M-estimates and develop an algorithm to solve the

corresponding non-convex optimization problem.

In terms of multivariate high-dimensional M-estimation, we use a nonlinear sys-

tem of two deterministic equations to characterize the properties of the M-estimates.

Since the proximal mapping function proxt(ρ)(·) is involved in our system, it is of

great challenge to solve it for many choices of the discrepancy function ρ. Regarding

the application of the proposed nonlinear system, an additional task to perform is

to develop a numerical algorithm to solve the equations. A potential research topic

is to consider ‘elliptical-like’ explanatory variables inspired by El Karoui (2018).
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A Appendix

This part contains the proofs of those lemmas and theorems in Chapter 2. These

proofs are all under the assumptions presented in Chapter 2.

Proof of Lemma 2.1. Since α̂ols = (α̂ols1 , . . . , α̂olsK0)> = (Z>G00
cZG00

c)−1Z>G00
cy = α0 +

(Z>G00
cZG00

c)−1Z>G00
cε, α̂ols ∼ N

(
α0, σ2(Z>G00

cZG00
c)−1

)
, namely,

α̂olsk − α0
k ∼ N

(
0, σ2(Z>G00

cZG00
c)−1
kk

)
, k = 1, . . . , K0,

where (Z>G00
cZG00

c)−1
kk denotes the k-th diagonal element of matrix (Z>G00

cZG00
c)−1.

By the assumption (A2), it yields that the variance of α̂olsk is bounded from above

by σ2/(nc0) for all k = 1, . . . , K0. In view of the assumption (A3), min1≤k≤K0 α0
k =

minj∈G00
c β0

j > cn, where cn = [2σ2 log{2nK0/(2π)1/2}/(nc0)]1/2. Similar to Mein-

shausen (2013), by Bonferroni’s inequality, we thus have

‖α̂ols −α0‖∞ ≤ cn,

with probability at least

1− 2K0
{

1− Φ
(
cn(nc0)1/2/σ

)}
= 1− 2K0

{
1− Φ

(
[2 log{2nK0/(2π)1/2}]1/2

)}
.
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It implies that, with the same probability, min1≤k≤K0 α̂olsk > 0, and thus α̂ora = α̂ols

or β̂
ora

= β̂
ols

. That is,

P
(
β̂
ora
6= β̂

ols
)
≤ 2K0

{
1− Φ

(
[2 log{2nK0/(2π)1/2}]1/2

)}
.

Since 1− Φ(x) ≤ (2π)−1/2x−1 exp(−x2/2) for any x > 0, it follows that

P
(
β̂
ora
6= β̂

ols
)
≤ 1

n

1

[2 log{2nK0/(2π)1/2}]1/2
= O

(
1

n(log n)1/2

)
.

Proof of Theorem 2.1. Let G be a grouping of the constrained problem in Section

2.2, where G = (G0,G1, . . . ,GK), satisfying that 0 ≤ β̂consj ≤ τ if j ∈ G0, |β̂consj −

β̂consj′ | > τ if j ∈ Gk, j′ ∈ Gk′ , j = 1, . . . , p; 1 ≤ k 6= k′ ≤ K.

If G = G0, then |Gc0| = s0
1. By the first constraint

∑p
j=1 min {βj/τ, 1} ≤ s1,∑

j∈G0 β̂
cons
j /τ + s0

1 ≤ s0
1, which implies that β̂consj = 0, j ∈ G0. By the second

constraint
∑

(j,j′)∈ε min {|βj − βj′ |/τ, 1} ≤ s2, similarly, we obtain that β̂consj = β̂consj′ ,

j, j′ ∈ Gk = G0
k , (j, j′) ∈ ε, k = 1, . . . , K. Thus, β̂

cons
= β̂

ora
if G = G0, which,

together with the fact that P (β̂
cons
6= β̂

ora
) = P (β̂

cons
6= β̂

ora
,G 6= G0) + P (β̂

cons
6=

β̂
ora
,G = G0), yields that

P
(
β̂
cons
6= β̂

ora
)

= P
(
β̂
cons
6= β̂

ora
,G 6= G0

)
. (A.1)

Denote S̄(β) = 2−1‖Y −Xβ‖2. In view that P (β̂
cons
6= β̂

ora
,G 6= G0) = P (β̂

cons
6=
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β̂
ora
, β̂

ora
= β̂

ols
,G 6= G0)+P (β̂

cons
6= β̂

ora
, β̂

ora
6= β̂

ols
,G 6= G0), (A.1) thus becomes

P
(
β̂
cons
6= β̂

ora
)
≤ P

(
S̄(β̂

cons
)− S̄(β̂

ora
) ≤ 0, β̂

ora
= β̂

ols
,G 6= G0

)
+ P

(
β̂
ora
6= β̂

ols
)
.

(A.2)

The second term in (A.2) has already proved in Lemma 2.1. Next, we work on the

first term in (A.2), and denote it by Γ.

Consider the case where β̂
ora

= β̂
ols

and G 6= G0. Define β̄ = (β̄1, . . . , β̄p)
>,

satisfying

β̄j =

{ ∑
j′∈Gk

β̂cons
j′

|Gk|
, if j ∈ Gk, k = 1, . . . , K,

0, if j ∈ G0.

It follows that |β̄j − β̂consj | ≤ τ , ‖β̄ − β̂
cons
‖2 ≤ τ 2p, and thus

‖X(β̄ − β̂
cons

)‖2 ≤ λmax(X>X)τ 2p. (A.3)

Note that

‖Y −Xβ̄‖2 ≥ ‖Y − PZGc0Y ‖
2 = ‖(I − PZGc0 )Xβ0 + (I − PZGc0 )ε‖2. (A.4)

For any vector u,v ∈ Rp and a > 0, it holds that ‖u+ v‖2 ≥ a−1(a− 1)‖u‖2− (a−

1)‖v‖2 (Shen et al., 2012). We thus have

S̄(β̂
cons

) =
1

2

∥∥∥Y −Xβ̂cons∥∥∥2

≥ a− 1

2a

∥∥Y −Xβ̄∥∥2 − a− 1

2

∥∥∥X(β̄ − β̂
cons

)
∥∥∥2

.

(A.5)
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By substituting (A.3)-(A.4) into (A.5) and together with S̄(β̂
ols

) = 2−1‖(I−PZG0c0 )ε‖2 ≤

2−1ε>ε, we obtain that, for any a > 1,

2a
{
S̄(β̂

cons
)− S̄(β̂

ora
)
}

= 2a
{
S̄(β̂

cons
)− S̄(β̂

ols
)
}
≥ −L1 − L2 + L3,

where L1 = {ε − (a − 1)(I − PZGc0
)Xβ0}>(I − PZGc0

){ε − (a − 1)(I − PZGc0
)Xβ0},

and L1σ
−2 follows noncentral chi-squared distribution χ2

k,Λ with degrees of freedom

k = max{n−K(Gc0), 0}, and noncentral parameter Λ = (a−1)2‖(I−PZGc0 )Xβ0‖2/σ2;

L2 = aε>PZGc0
ε is independent of L1, and a−1σ−2L2 follows chi-squared distribution

χ2
κ with degrees of freedom κ = K(Gc0); L3 = a(a − 1)‖(I − PZGc0

)Xβ0‖2 − a(a −

1)λmax(X>X)τ 2p. Note that, by the definition of Cmin, ‖(I − PZGc0 )Xβ0‖2 ≥ nCmin.

For Γ, by Markov inequality and moment-generating function of chi-squared dis-

tribution, it holds that, for any 0 < t < 1/(2a) and 1− 2at < 1− 2t < 1 (a > 1), by

Shen et al. (2012),

Γ ≤
s01∑
i=1

i∑
j=0

(
p− s0

1

j

)(
s0

1

s0
1 − i

)
Ti×

exp
{
t(a−1)2niCmin

(1−2t)σ2

}
exp

[
− t
σ2

{
−a(a− 1)λmax(X>X)pτ 2 + a(a− 1)niCmin

}]
(1− 2t)

n−K∗
i

2 (1− 2at)
K∗
i
2

≤
s01∑
i=1

i∑
j=0

(
p− s0

1

j

)(
s0

1

s0
1 − i

)
Ti exp

{
(a− 1) log p

4n
− nt(a− 1)iCmin

σ2

1− 2at

1− 2t

}
(

1− 2t

1− 2at

)K∗i /2 1

(1− 2t)n/2
,
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where K∗i = max{G∈T ,|G0\G00 |=i}K(Gc0). Note that the last inequality holds true be-

cause

t

σ2
a(a− 1)λmax(X>X)pτ 2 ≤ 2ta(a− 1) log p

4n
≤ (a− 1) log p

4n

for any τ ≤ σ[log p/{2npλmax(X>X)}]1/2 . We choose a = 4+n/4, t = 4−1(a− 1)
−1

,

and define b = (1− 2t)/(1− 2at). Then b = (2a− 3)/(a− 2) < 5/2, and (a −

1)/(4n) ≤ 1. Since − log(1 − x) ≤ x(1 − x)−1 for 0 < x < 1, and 0 < 2t =

2−1(a− 1)−1 < 1, it follows that

−n
2

log(1− 2t) ≤ n

2

1/{2(a− 1)}
1− 1/{2(a− 1)}

≤ n

2

1

2(4 + n/4)− 3
≤ 1,

which, jointly with the facts(
s0

1

s0
1 − i

)
≤ (s0

1)i,
i∑

j=0

(
p− s0

1

j

)
≤ (p− s0

i )
i and (p− s0

1)s0
1 ≤ p2/4

yields that

Γ ≤
s01∑
i=1

(
p2

4

)i
Ti exp

(
(a− 1) log p

4n
− niCmin

4cσ2

)
bK
∗
i /2

1

(1− 2t)n/2

≤ exp(1)

s01∑
i=1

exp

(
i(3 log p+ T̄ − nCmin

10σ2
+
K̄

2
)

)

≤ exp(1)

s01∑
i=1

exp

(
−i n

10σ2

(
Cmin −

10σ2

n
(3 log p+ T̄ + K̄/2)

))
. (A.6)

Since (1− z)−1 =
∑∞

i=0 z
i for |z| < 1, we thus obtain that, for x < 0,

s01∑
i=1

exp(ix) ≤ −1 +
1

1− exp(x)
=

exp(x)

1− exp(x)
.
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We take x = −10−1σ−2n{Cmin−10σ2n−1(3 log p+T̄+K̄/2)} if Cmin > 10σ2n−1(3 log p+

T̄ + K̄/2). Together with Γ ≤ 1, (A.6) becomes

Γ ≤ {exp(1) + 1} exp

(
− n

10σ2

(
Cmin −

10σ2

n
(3 log p+ T̄ + K̄/2)

))
. (A.7)

Similarly, we can show that (A.7) still holds for Cmin ≤ 10σ2n−1(3 log p+ T̄ + K̄/2).

By Lemma 2.1 and (A.7), (A.2) becomes

P
(
β̂
cons
6= β̂

ora
)
≤{exp(1) + 1} exp

(
− n

10σ2

{
Cmin −

10σ2

n
(3 log p+ T̄ + K̄/2)

})
+

c

n(log n)1/2
. (A.8)

(1) If Cmin ≥ 10σ2n−1
(
log n+ 2−1 log log n+ 3 log p+ T̄ + K̄/2

)
, by (A.8),

P
(
β̂
cons
6= β̂

ora
)

= O

(
1

n(log n)1/2

)
.

(2) We denote T1 = n−1E(‖Xβ̂
cons
− Xβ0‖2I{G}), and T2 = n−1E(‖Xβ̂

cons
−

Xβ0‖2I{Gc}), where G = {n−1‖Xβ̂
cons
−Xβ0‖2 ≥ 25σ2}. It is easy to see that

1

n
E
∥∥∥Xβ̂cons −Xβ0

∥∥∥2

= T1 + T2.

Now, we work on T1. By the definition, T1 =
∫∞

25σ2 P (n−1‖Xβ̂
cons
−Xβ0‖2 ≥ x)dx+
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25σ2P (n−1‖Xβ̂
cons
−Xβ0‖2 ≥ 25σ2). For the first term of T1,

∫ ∞
25σ2

P
(
n−1‖Xβ̂

cons
−Xβ0‖2 ≥ x

)
dx

≤
∫ ∞

25σ2

P
(
4n−1‖ε‖2 ≥ x

)
dx

≤
∫ ∞

25σ2

E

{
exp

(
‖ε‖2

3σ2

)}
exp

(
− nx

12σ2

)
dx

=

∫ ∞
25σ2

exp
(
− n

12σ2
{x− 6(log 3)σ2}

)
dx

<

∫ ∞
25σ2

exp
{
− n

12σ2
(x− 24σ2)

}
dx

=
12σ2

n
exp

(
− n

12

)
= o

(
K0σ2

n

)
. (A.9)

Since ‖Xβ̂
cons
−Xβ0‖2 ≤ 2(‖Y −Xβ̂

cons
‖2 +‖Y −Xβ0‖2) ≤ 4‖Y −Xβ0‖2 = 4‖ε‖2,

the first ‘≤’ follows. The second ‘≤’ is obtained by the Markov inequality. In view

of the moment generating function for Chi-squared distribution, the first ‘=’ holds.

For the second term of T1,

25σ2P (n−1‖Xβ̂
cons
−Xβ0‖2 ≥ 25σ2) ≤ 25σ2 exp(−n/12) = o

(
K0σ2

n

)
. (A.10)

By (A.9) and (A.10), we thus have T1 = o(K0σ2/n).

On the other hand,

T2 =E

(
1

n

∥∥∥Xβ̂cons −Xβ0
∥∥∥2

I{Gc}I{β̂cons 6=β̂ols}

)
(A.11)

+ E

(
1

n

∥∥∥Xβ̂cons −Xβ0
∥∥∥2 (

1− I{G}
)
I{β̂cons=β̂ols}

)
. (A.12)
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For (A.11), it follows that

E

(
1

n

∥∥∥Xβ̂cons −Xβ0
∥∥∥2

I{Gc}I{β̂cons 6=β̂ols}

)
≤ 25σ2P

(
β̂
cons
6= β̂

ols
)
≤ 25σ2P

(
β̂
cons
6= β̂

ora
)

+ 25σ2P
(
β̂
ora
6= β̂

ols
)

≤ 25σ2 {exp(1) + 1} exp

(
− n

10σ2

{
Cmin −

10σ2

n
(3 log p+ T̄ + K̄/2)

})
+ 25σ2 2c

n
√

log n

≤ 100σ2

n(log n)1/2
+

50σ2c

n(log n)1/2
= o

(
K0σ2

n

)
. (A.13)

For (A.12),

E

(
1

n

∥∥∥Xβ̂cons −Xβ0
∥∥∥2

I{G}I{β̂cons=β̂ols}

)
≤E

(
1

n

∥∥∥Xβ̂cons −Xβ0
∥∥∥2

I{G}

)
=o

(
K0σ2

n

)
, (A.14)

and

E

(
1

n

∥∥∥Xβ̂cons −Xβ0
∥∥∥2

I{β̂cons=β̂ols}

)
=

1

n
E

(∥∥∥Xβ̂ols −Xβ0
∥∥∥2
)

=
1

n
E

(∥∥∥PZG0c0 ε∥∥∥2
)

=
K0σ2

n
. (A.15)

By (A.11)-(A.15), T2 = n−1K0σ2(1 + o(1)). Therefore,

1

n
E

(∥∥∥Xβ̂cons −Xβ0
∥∥∥2
)

= T1 + T2 =
K0σ2

n
(1 + o(1)).

Proof of Theorem 2.2. This proof mimics the proof of Theorem 1 in (Shen

et al., 2012). By theorem 4.1 in Tseng (2001), the coordinate descent method
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converges. By Theorem 17.6 in Wright and Nocedal (1999), the augmented La-

grange method converges as well, and the convergence rate is linear. Then for

m ∈ N+, 0 ≤ S(β̂(m)) = S(m+1)(β̂(m)) ≤ S(m)(β̂(m)) ≤ S(m)(β̂(m−1)) = S(β̂(m−1)).

Hence S(β̂(m)) → c, c ≥ 0 as m → ∞, which leads to the convergence of the algo-

rithm 1.

Proof of Theorem 2.3. By the algorithm 1 presented in Section 2.3.2, there exists

a finite m∗ such that β̂ = β̂
(m∗)

. Denote the grouping of β̂ by G = (G0,G1, . . . ,GK)

with K < K∗. Then β̂ satisfies that, for grouping G ,
−(XGk1)>(y −Xβ) + n

∑
j∈Gk

∆j(β) = 0 k = 1, . . . , K

|(XA1)>(y −Xβ)− n
∑
j∈A

∆j(β)| ≤ nλ2
τ
|ε ∩ {A× (Gk \ A)}| A ⊂ Gk, |Gk| > 1

|x>(j)(y −Xβ)− n∆j(β)| ≤ nλ1
τ

j ∈ G0,

(A.16)

where

∆j(β) = λ1τ
−1sign(βj)I{|βj |≤τ}+λ2τ

−1
∑

j′:(j′,j)∈ε

sign(βj−βj′)I{|βj−βj′ |≤τ}+2λ3βjI{βj<0}.

Denote J = J11 ∩ J12 ∩ J21 ∩ J22, where J11 = {min
j /∈G00

β̂olsj > 2τ}, J12 =

{max
j∈G00
|x>(j)(y − Xβ̂

ols
)| ≤ nλ1τ

−1}, J21 = { min
1≤k<l≤K0

|α̂olsk − α̂olsl | > 2τ}, J22 =

∩k=1,...,K0:|G0k|>1{maxA⊂G0k |(XA1)>(y−Xβ̂
ols

)| ≤ nλ2τ
−1|ε∩ {A× (G0

k \A)}|}. First,

we show that β̂
ols

is a solution to (A.16) on J . Note that,
∑

j∈G0k
∆j(β̂

ols
) = 0 on

the set J11 ∩ J21. By the definition of β̂
ols

, (XG0k1)>(y −Xβ̂
ols

) = 0. Thus the
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first equation in (A.16) holds for β = β̂
ols

. Since
∑

j∈G0k
∆j(β̂

ols
) = 0 on J , one can

easily see that the second and third inequalities also hold for β = β̂
ols

.

Next, we show that (A.16) has a unique solution on J , and thus β̂ = β̂
ols

. We

provide the proof by contradiction. Assume that β̂ 6= β̂
ols

. Let H = (H1, . . . ,HL) =

Gc0 ∨ G0c
0 . Herein, we give an example to explain the sign ’∨’. Define two sets

A1 = {{1, 2, 3, 4}, {5, 6}}, and A2 = {{1, 2}, {3, 4, 5, 6}, {7}}. Then A1 ∨ A2 =

{{1, 2}, {3, 4}, {5, 6}, {7}}. Denote α̂olsH = (α̂olsH1
, . . . , α̂olsHL)>, and α̂H = (α̂H1 , . . . , α̂HL)>

the coefficients estimated by OLS and the algorithm 1, respectively. Then S(αH) =

(2n)−1‖y − ZHαH‖2 + J(αH), where

J(αH) =λ1

L∑
k=1

|Hk|min

{
|αHk |
τ

, 1

}
+ λ2

∑
1≤k<l≤L

|εkl|min

{
|αHk − αHl |

τ
, 1

}

+ λ3

L∑
k=1

|Hk|(min{αHk , 0})2

for αH = (αH1 , . . . , αHL)>, where εkl is the set of undirected edge between Hk and

Hl. We thus have

∂S(α̂H)

∂αH
− ∂S(α̂olsH )

∂αH
=

1

n
Z>HZH(α̂H − α̂olsH ) +ϕ,

where ϕ = (ϕ1, . . . , ϕL)> = ϕ1 + ϕ2, ϕ1 = (ϕ11, . . . , ϕL1)>, ϕ2 = (ϕ12, . . . , ϕL2)>.

For k = 1, . . . , L, ϕk1 = λ1τ
−1|Hk|(akI{|α̂Hk |≤τ}−a

ols
k I{|α̂olsHk |≤τ}

)+λ2τ
−1
∑
l 6=k
|εkl|(bklI{|α̂Hk−α̂Hl |≤τ}−

bolskl I{|α̂olsHk−α̂
ols
Hl
|≤τ}), ϕk2 = 2λ3(|Hk|α̂HkI{α̂Hk<0}−|Hk|α̂olsHkI{α̂olsHk<0}), where ak = sign(α̂Hk),

if α̂Hk 6= 0, ak ∈ [−1, 1] otherwise; bkl = sign(α̂Hk−α̂Hl) if α̂Hk−α̂Hl 6= 0, bkl ∈ [−1, 1]
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otherwise. Similarly, we have aolsk and bolskl . Note that ‖ϕ1‖2 ≤ 4τ−2(λ1s
∗ + λ2|N |)2.

Now, we consider two cases: (i) ‖α̂H − α̂olsH ‖ < τ/2 and (ii) ‖α̂H − α̂olsH ‖ ≥ τ/2.

For each case, we show that both α̂H and α̂olsH are the local minimizers of S(αH)

and α̂H = α̂olsH on J .

(i) ‖α̂H − α̂olsH ‖ < τ/2. On the set J , α̂Hk ≥ α̂olsHk − |α̂Hk − α̂
ols
Hk | ≥ 2τ − τ/2 > τ

if α̂olsHk > 2τ ; |α̂Hk | < |α̂olsHk | + |α̂Hk − α̂olsHk | < τ/2 if |α̂olsHk | = 0; |α̂Hk − α̂Hl | ≥

−|α̂Hk − α̂olsHk | − |α̂Hl − α̂
ols
Hl | + |α̂

ols
Hk − α̂

ols
Hl | ≥ τ if |α̂olsHk − α̂

ols
Hl | ≥ 2τ ; |α̂Hk − α̂Hl | ≤

|α̂Hk − α̂olsHk |+ |α̂Hl − α̂
ols
Hl |+ |α̂

ols
Hk − α̂

ols
Hl | < τ if |α̂olsHk − α̂

ols
Hl | = 0. It implies that both

α̂H and α̂olsH are the local minimizers of S(αH) and α̂H = α̂olsH on J .

(ii) ‖α̂H − α̂olsH ‖ ≥ τ/2. By Cauchy-Schwarz inequality,

∣∣ϕ>1 (α̂H − α̂olsH )
∣∣ ≤ 2

τ
(λ1s

∗ + λ2|N |) ‖α̂H − α̂olsH ‖.

It is easy to verify that (α̂HkI{α̂Hk<0} − α̂olsHkI{α̂olsHk<0})(α̂Hk − α̂olsHk) ≥ 0, followed by

ϕ>2 (α̂H − α̂olsH ) ≥ 0.

By the assumption (A4),(
∂S(α̂H)

∂αH
− ∂S(α̂olsH )

∂αH

)>
α̂H − α̂olsH
‖α̂H − α̂olsH ‖

≥ min
K(H)≤K∗

τ

2
λmin

(
1

n
Z>HZH

)
− 2

τ
(λ1s

∗ + λ2|N |) > 0. (A.17)

On the other hand, ∂S(α̂H)
∂αH

= 0 and
∂S(α̂olsH )

∂αH
= 0 on J if α̂H 6= α̂olsH , which contracts

to (A.17).
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Therefore, the problem (A.16) has a unique solution on J . That is β̂ = β̂
ols

on

J , which yields that

P (β̂ 6= β̂
ols

) ≤ P (J c) ≤ P (J c
11) + P (J c

12) + P (J c
21) + P (J c

12). (A.18)

Next, we show the bounds of P (J c
11), P (J c

12), P (J c
21), P (J c

12).

Before proceeding, we provide the following inequality, for x > 0, Φ(−x) ≤

(2π)−1/2x−1 exp(−x2/2). If x2 ≥ 2 log{2na/(2π)1/2}, a ≥ 1, then 2aΦ(−x) ≤

cn−1(log n)−1/2.

For J c
11, by the assumptions (A1)-(A2), β̂olsj ∼ N(β0

j , var(β̂
ols
j )), where var(β̂olsj ) ≤

n−1σ2λ−1
min(n−1Z>G0c0

ZG0c0 ). If γmin > 2τ , and {(γmin−2τ)n1/2λ
1/2
min(n−1Z>G0c0

ZG0c0 )σ−1}2 ≥

2 log{2n(p− |G0
0 |)/(2π)1/2}, then

P (J c
11) ≤

∑
j∈G0c0

P
(
β̂olsj ≤ 2τ

)
≤
∑
j∈G0c0

P (β0
j − |β̂olsj − β0

j | ≤ 2τ)

≤2
(
p− |G0

0 |
)

Φ
(
−(γmin − 2τ)n1/2λ

1/2
min(n−1Z>G0c0

ZG0c0 )σ−1
)

=O

(
1

n(log n)1/2

)
. (A.19)

For J c
12, by the assumptions (A1)-(A2), x>(j)(y − X>β̂

ols
) = x>(j)(I − PZG0c0 )ε ∼

N(0, σ2‖(I−PZG0c0 )x(j)‖2), and ‖(I−PZG0c0 )x(j)‖2 ≤ ‖x(j)‖2. If (nλ1τ
−1σ−1/max

1≤i≤p
‖x(j)‖)2 ≥
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2 log{2n|G0
0 |/(2π)1/2}, then

P (J c
12) ≤

∑
j∈G00

P

(∣∣∣x>(j)(y −Xβ̂ols)∣∣∣ > n
λ1

τ

)

≤2|G0
0 |Φ

− nλ1/τ

σ max
1≤i≤p

‖x(j)‖

 = O

(
1

n(log n)1/2

)
. (A.20)

For J c
21, by the assumptions (A1)-(A2), α̂olsk − α̂olsl ∼ N(α0

k−α0
l , var(α̂

ols
k − α̂olsl )),

where var(α̂olsk − α̂olsl ) ≤ 4n−1σ2λ−1
min(n−1Z>G0c0

ZG0c0 ). If γmin > 2τ , and {2−1σ−1(γmin−

2τ)n1/2λ
1/2
min(n−1Z>G0c0

ZG0c0 )}2 ≥ 2 log{nK0(K0 − 1)/(2π)1/2}, then

P (J c
21) ≤

∑
1≤k<l≤K0

P (|α̂k − α̂l| ≤ 2τ)

≤
∑

1≤k<l≤K0

P (|α0
k − α0

l | − |(α̂k − α̂l)− (α0
k − α0

l )| ≤ 2τ)

≤K0(K0 − 1)Φ
(
−2−1σ−1(γmin − 2τ)n1/2λ

1/2
min(n−1Z>G0c0

ZG0c0 )
)

=O

(
1

n(log n)1/2

)
. (A.21)

For J c
22, by the assumptions (A1)-(A2), (XA1)>(y − X>β̂

ols
) = (XA1)>(I −

PZG0c0
)ε ∼ N(0, σ2‖(I − PZG0c0 )XA1‖2), and ‖(I − PZG0c0 )XA1‖2 ≤ ‖XA1‖2. Denote

D = max
k,A⊂G0k

‖XA1‖/|ε ∩ {A× (G0
k \ A)}|. If (2−1nλ2τ

−1σ−1/D)2 ≥ 2 log{2n|N |/(2π)1/2},

then

P (J c
22) ≤

∑
k=1,...,K0;A⊂G0k

P

(∣∣∣(XA1)>(y −Xβ̂
ols

)
∣∣∣ > n

λ2

τ

∣∣ε ∩ {A× (G0
k \ A)}

∣∣)

≤2|N |Φ
(
−nλ2/τ

2σD

)
= O

(
1

n(log n)1/2

)
. (A.22)
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By (A.18)-(A.22), we thus have

P (β̂ 6= β̂
ols

) = O

(
1

n(log n)1/2

)
,

which, together with Lemma 2.1, yields that

P (β̂ 6= β̂
ora

) ≤ P (β̂ 6= β̂
ols

) + P (β̂
ora
6= β̂

ols
) = O

(
1

n(log n)1/2

)
.

(2) Note that, α̂ satisfies that

−Z>Gc0
(
y − ZGc0α̂

)
+ 2nλ3M0α̂+ nδ̂ = 0,

where M0 is a K × K diagonal matrix with diagonal elements |Gk|I{α̂k<0} for k =

1, . . . , K; δ̂ = (δ̂1, . . . , δ̂K)>, δ̂k =
∑

j∈Gk Υj(β̂), and Υj(β) = λ1τ
−1sign(βj)I{|βj |≤τ}+

λ2τ
−1

∑
j′:(j′,j)∈ε

sign(βj − βj′)I{|βj−βj′ |≤τ}. Note that ‖δ̂‖2 ≤ τ−2(λ1s
∗ + λ2|N |)2. We

obtain that

α̂ = (Z>Gc0ZG
c
0

+ 2nλ3M0)−1(Z>Gc0y − nδ̂),

followed by

‖Xβ̂ −Xβ0‖2

=‖ZGc0(Z
>
Gc0
ZGc0 + 2nλ3M0)−1(Z>Gc0y − nδ̂)− ZG0c0 α

0‖2

=‖{I − ZGc0(Z
>
Gc0
ZGc0 + 2nλ3M0)−1Z>Gc0}ZG0c0 α

0 − ZGc0(Z
>
Gc0
ZGc0 + 2nλ3M0)−1Z>Gc0ε

+ nZGc0(Z
>
Gc0
ZGc0 + 2nλ3M0)−1δ̂)‖2

≤‖Xβ0‖2 + ‖ε‖2 +
τ 2n

16
min

K(Gc0)≤K∗
λmin

(
1

n
Z>Gc0ZG

c
0

)
. (A.23)
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Denote T1 = n−1E(‖Xβ̂ −Xβ0‖2I{G}), and T2 = n−1E(‖Xβ̂ −Xβ0‖2I{Gc}), where

G = {n−1‖Xβ̂ −Xβ0‖2 ≥ D}. By the definition, we have

1

n
E(‖Xβ̂ −Xβ0‖2) = T1 + T2.

Next, we work on T1, T2. Let

D =
3

n
‖Xβ0‖2 + 10σ2 +

3τ 2

16
min

K(Gc0)≤K∗
λmin

(
1

n
Z>Gc0ZG

c
0

)
. (A.24)

For T1, it follows that

∫ ∞
D

P
(
n−1‖Xβ̂ −Xβ0‖2 ≥ x

)
dx ≤

∫ ∞
10σ2

P
(
3n−1‖ε‖2 ≥ x

)
dx

≤
∫ ∞

10σ2

E

{
exp

(
t‖ε‖2

σ2

)
exp

(
−ntx

3σ2

)}
dx

≤
∫ ∞

10σ2

exp
(
− n

9σ2
(x− 9σ2)

)
dx

≤9σ2

n
exp

(
−n

9

)
= o

(
K0σ2

n

)
. (A.25)

By (A.23) and (A.24), thus the first ‘≤’ follows. In view of the moment generating

function for Chi-squared distribution, taking t = 1/3, the third ‘≤’ holds. For T2,

T2 = E

(
1

n

∥∥∥Xβ̂ −Xβ0
∥∥∥2

I{Gc}I{β̂ 6=β̂ols}

)
+ E

(
1

n

∥∥∥Xβ̂ −Xβ0
∥∥∥2 (

1− I{G}
)
I{β̂=β̂

ols}

)
.

(A.26)
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For the first term in (A.26), if D = o{K0(log n)1/2}, then

E

(
1

n

∥∥∥Xβ̂ −Xβ0
∥∥∥2

I{Gc}I{β̂ 6=β̂ols}

)
≤ DP

(
β̂ 6= β̂

ols
)
≤ DP

(
β̂ 6= β̂

ora
)

+DP
(
β̂
ora
6= β̂

ols
)

= DO

(
1

n(log n)1/2

)
= o

(
K0σ2

n

)
. (A.27)

For the second term in (A.26),

E

(
1

n

∥∥∥Xβ̂ −Xβ0
∥∥∥2

I{G}I{β̂=β̂
ols}

)
≤ E

(
1

n

∥∥∥Xβ̂ −Xβ0
∥∥∥2

I{G}

)
= o

(
K0σ2

n

)
,

(A.28)

and

E

(
1

n

∥∥∥Xβ̂ −Xβ0
∥∥∥2

I{β̂=β̂
ols}

)
≤ E

(
1

n

∥∥∥Xβ̂ols −Xβ0
∥∥∥2
)

=
K0σ2

n
. (A.29)

By (A.25), (A.26)-(A.29),

1

n
E

(∥∥∥Xβ̂ −Xβ0
∥∥∥2
)

= T1 + T2 =
K0σ2

n
(1 + o(1)).
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B Appendix

B.1 Proofs of these propositions and the main results

This part contains the propositions and proofs of those theorems. If not specified,

we present the results below under the assumptions (A1)-(A5) in Chapter 3. We

remark that these proofs are mainly in light of El Karoui (2013, 2018). However, our

work overcomes the proof challenges under the vector framework of yi,ψ and the

matrix framework of Xi,∇ψ, which are not straightforward extensions of El Karoui

(2013, 2018). We also remark that if a proof can be given by simply following a

proof in El Karoui (2013, 2018), it will be omitted. These proofs are all under those

assumptions given in Chapter 3.

Propositions B.1-B.2 are needed in the proof of Theorem 3.2.

Proposition B.1 We have

‖β̂ − β̃i‖ ≤
1

τ
‖ξi‖, (B.1)
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and

‖ξi‖ = OLk

(
polylog(n)

n

)
, (B.2)

where ξi = n−1
∑

j 6=iX
>
j (∇ψ(r∗1,j)−∇ψ(r̃j,[−i]))Xjηi, r

∗
1,j ∈ (ej+Xjβ0−Xjβ̂(i), ej+

Xjβ0 −Xj(β̂(i) + ηi)), ηi = n−1(Si + τIp)
−1X>i ψ(g̃−1(r̃i,[−i])).

Proof of Proposition B.1 By Lemma B.1, ‖β̂−β̃i‖ ≤ τ−1‖φ(β̃i)‖. It is easy to see

that (B.1) and (B.2) follow, if we can prove that φ(β̃i) = ξi, and ‖ξi‖ = OLk((n)/n).

Note that yi = ei +Xiβ0, and β̃i = β̂(i) + ηi. Then

φ(β̃i) =− 1

n
X>i ψ(yi −Xiβ̃i) +

1

n

∑
j 6=i

X>j

[
ψ(yj −Xjβ̂(i))−ψ(yj −Xj(β̂(i) + ηi))

]
+ τηi

=− 1

n
X>i ψ(yi −Xiβ̃i) +

1

n

∑
j 6=i

X>j ∇ψ(r̃j,[−i])Xjηi + τηi + ξi, (B.3)

where r∗1,j ∈ (yj −Xjβ̂(i),yj −Xj(β̂(i) + ηi)). Since (n−1
∑

j 6=iX
>
j ∇ψ(r̃j,[−i])Xj +

τIp)ηi = n−1X>i ψ(g̃−1(r̃i,[−i])), by the definition of g̃, we have

yi −Xiβ̃i = yi −Xiβ̂(i) −Xiηi = r̃i,[−i] − Ciψ(g̃−1(r̃i,[−i])) = g̃−1(r̃i,[−i]).

Therefore,

− 1

n
X>i ψ(yi −Xiβ̃i) +

1

n

∑
j 6=i

X>j ∇ψ(r̃j,[−i])Xjηi + τηi = 0,

which, together with (B.3), implies that φ(β̃i) = ξi.
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It remains to show that ‖ξi‖ = OLk(polyLog(n)/n), the conclusion of which is

obviously implied by the following two results,

‖ηi‖ ≤ OLk

(
1√
n

)
, (B.4)

and

‖n−1
∑
j 6=i

X>j (∇ψ(r∗1,j)−∇ψ(r̃j,[−i]))Xj‖max ≤ OLk

(
polyLog(n)√

n

)
. (B.5)

For ηi = n−1(Si + τIp)
−1X>i ψ(g̃−1(r̃i,[−i])), we have

‖ηi‖ =‖ 1

n
(Si + τIp)

−1X>i ψ(g̃−1(r̃i,[−i]))‖

≤ 1

n
λmax((Si + τIp)

−1)‖X>i ‖max‖ψ(g̃−1(r̃i,[−i]))‖

≤ 1

nτ

√
tr(XiX>i ) sup ‖ψ‖

=OLk

(√
p

n

)
= OLk

(
1√
n

)
.

On the other hand,

‖n−1
∑
j 6=i

X>j (∇ψ(r∗1,j)−∇ψ(r̃j,[−i]))Xj‖max

≤λmax(n−1
∑
i

X>i Xi) sup
j 6=i
‖∇ψ(r∗1,j)−∇ψ(r̃j,[−i])‖max

≤cλmax(n−1
∑
i

X>i Xi) sup
j 6=i
‖r∗1,j − r̃j,[−i]‖

≤OLk(polyLog(n)) sup
j 6=i
‖Xjηi‖. (B.6)

121



The second inequality follows by the assumption (A3). The third inequality holds

because λmax(n−1
∑

iX
>
i Xi) = OLk(polyLog(n)). Now, we work on that Xjηi =

n−1Xj(Si + τIp)
−1X>i ψ(g̃−1(r̃i,[−i])), and we have

sup
j 6=i
‖Xjηi‖ ≤ sup

j 6=i
λmax(n−1Xi(Si + τIp)

−1X>j ) sup ‖ψ‖

≤c sup
j 6=i

tr(n−1Xi(Si + τIp)
−1X>j ). (B.7)

Denote Xi = (xi(1), . . . ,xi(m))>, Xj = (xj(1), . . . ,xj(m))>, where Xi are indepen-

dent of Si and Xj. Thus we have

sup
j 6=i

tr(n−1Xi(Si + τIp)
−1X>j ) ≤

m∑
t=1

sup
j 6=i

n−1x>i (t)(Si + τIp)
−1xj(t).

DefineX(−i) = {X1, . . . , Xi−1, Xi+1, . . . , Xn}, vj,(i) = (Si+τIp)
−1xj(t), and f1(xi(t)) =

x>i (t)(Si + τIp)
−1xj(t) = x>i (t)vj,(i), with the Lipschitz constant satisfying that

‖vj,(i)‖ =
√
x>j (t)(Si + τIp)−2xj(t) ≤ ‖xj(t)‖/τ . By Lemma 3.36 in El Karoui

(2018), it follows that

1

mn
sup

j 6=i,1≤t≤m
x>i (t)(Si+τIp)

−1xj(t) ≤ sup
j 6=i,1≤t≤m

‖xj(t)‖
mnτ

√
polyLog(n)/cn+sup

j
|mf1|.

Since mf1 = 0, supj,t ‖xj(t)‖ = OLk(
√
p), 1/cn = O(polyLog(n)) and m is fixed, we

have

sup
j 6=i

tr(n−1Xi(Si + τIp)
−1X>j ) = OLk(n

−1/2polyLog(n)),

which, together with (B.6) and (B.7), completes the proof of (B.5).
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Proposition B.2 (i) Denote Qi = Ci − ciIm and let q
(s,t)
i be the (s, t)-th entry of

Qi, s, t = 1, . . . ,m. Then,

sup
i,s,t
|q(s,t)
i | = OLk(n

−1/2polyLog(n)). (B.8)

(ii) Denote cτ = n−1tr((S+ τIp)
−1), Ni = Ci− cτIm. Define the (s, t)-th entry of Ni

by ν
(s,t)
i , 1 ≤ s, t ≤ m. Then,

sup
i,s,t
|ν(s,t)
i | = OLk(n

−1/2polyLog(n)). (B.9)

Proof of Proposition B.2 (i) To prove (B.8), we consider the following two cases.

Recall that Ci = n−1Xi(Si + τIp)
−1X>i , ci = tr(n−1(Si + τIp)

−1).

(a) s 6= t.

By Lemma 3.36 in El Karoui (2018),

sup
1≤i≤n,1≤s 6=t≤m

1

n
|x>i (s)(Si + τIp)

−1xi(t)| =
1√
nτ

sup
‖xi(t)‖√

n
polyLog(n)

=OLk(n
−1/2polyLog(n)).

(b) s = t.

By Lemma 3.37 in El Karoui (2018),

sup
1≤i≤n,1≤s≤m

| 1
n
x>i (s)(Si + τIp)

−1xi(s)− ci| = OLk(n
−1/2polyLog(n)).

This completes the proof of (B.8).
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We now prove (ii). Note that ν
(s,t)
i = n−1x>i (s)(Si + τIp)

−1xi(t) − n−1tr((S +

τIp)
−1). Since (B.48) and (B.49) still hold true with x>i (s), Si, Ip,x

>
i (t), S respec-

tively replacing x>i,−p(s),∆p(i), Ip−1,xi,−p(t),Λi,p, we have the desired result. One

can mimic the proofs of (B.48) and (B.49) in Lemma B.5 to show (B.9). We thus

omit the details.

Proof of Theorem 3.2

(i) The results can be obtained by simply following the proof of Theorem 3.9

given by El Karoui (2018).

(ii) By Proposition B.1 and the assumption (A4), it is easy to obtain that

sup
j 6=i
‖r̃j,[−i] − rj‖ = sup

j 6=i
‖Xj(β̂ − β̂(i))‖

≤ sup
j 6=i
‖Xj(β̂ − β̃i)‖+ sup

j 6=i
‖Xj(β̃i − β̂(i))‖

≤ sup
j 6=i

m‖xj(1)‖√
n

√
n‖(β̂ − β̃i)‖+ sup

j 6=i
‖Xjηi‖

=OLk

(
n−1/2polyLog(n)

)
+OLk

(
n−1/2polyLog(n)

)
=OLk

(
n−1/2polyLog(n)

)
.

The second ‘=’ holds in view of the bounded supports of sup1≤i≤n ‖β̂−β̃i‖, supj 6=i ‖Xjηi‖

(see the details on the proof of Proposition B.1), and ‖xj(1)‖ = OLk(
√
p).

Next, we prove that supi ‖ri − g̃−1(r̃i,[−i])‖ = OLk

(
n−1/2polyLog(n)

)
. Since

β̃i − β̂(i) = ηi, ηi = n−1(Si + τIp)
−1X>i ψ(g̃−1(r̃i,[−i])), Ci = n−1Xi(Si + τIp)

−1X>i ,
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we have

Xiβ̃i = Xiβ̂(i) + Ciψ(g̃−1(r̃i,[−i])),

which, together with the definition of proximal mapping function g̃−1, yields that

ei +Xiβ0 −Xiβ̃i = r̃i,[−i] − Ciψ(g̃−1(r̃i,[−i])) = g̃−1(r̃i,[−i]). (B.10)

Note that

ri = ei +Xiβ0 −Xiβ̂ = ei +Xiβ0 −Xiβ̃i −Xi(β̂ − β̃i). (B.11)

By (B.10) and (B.11), it follows that ri − g̃−1(r̃i,[−i]) = −Xi(β̂ − β̃i), and

sup
i
‖ri − g̃−1(r̃i,[−i])‖ = sup

i
‖Xi(β̂ − β̃i)‖ = OLk

(
n−1/2polyLog(n)

)
. (B.12)

Finally, we show that supi ‖ri − proxci(ρ)(r̃i,[−i])‖ = OLk(n
−1/2polyLog(n)). By

(B.10), r̃i,[−i] = g̃−1(r̃i,[−i]) +Ciψ(g̃−1(r̃i,[−i])). Using the definition of prox function,

r̃i,[−i] = proxci(ρ)(r̃i,[−i]) + ciψ(proxci(ρ)(r̃i,[−i])). One can easily obtain that

g̃−1(r̃i,[−i])− proxci(ρ)(r̃i,[−i])

=ciψ(proxci(ρ)(r̃i,[−i]))− Ciψ(g̃−1(r̃i,[−i]))

=ci[ψ(proxci(ρ)(r̃i,[−i]))−ψ(g̃−1(r̃i,[−i]))] + (ciIm − Ci)ψ(g̃−1(r̃i,[−i])). (B.13)

Becauseψ(g̃−1(r̃i,[−i]))−ψ(proxci(ρ)(r̃i,[−i])) = ∇ψ(r∗g,p)(g̃
−1(r̃i,[−i])−proxci(ρ)(r̃i,[−i])),

where r∗g,p ∈ (g̃−1(r̃i,[−i]), proxci(ρ)(r̃i,[−i])), (B.13) becomes

(Im + ci∇ψ(r∗g,p))(g̃
−1(r̃i,[−i])− proxci(ρ)(r̃i,[−i])) = (ciIm − Ci)ψ(g̃−1(r̃i,[−i])).
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By (B.8) and the assumption (A3),

‖g̃−1(r̃i,[−i])− proxci(ρ)(r̃i,[−i])‖ = OLk(n
−1/2polyLog(n)). (B.14)

By (B.12) and (B.14), it holds that

sup
i
‖ri − proxci(ρ)(r̃i,[−i])‖ = OLk(n

−1/2polyLog(n)).

(iii) The proof is analogous to the proof strategy of Proposition 3.10 given in El

Karoui (2018). However, we give partial details under our model framework.

By Efron-Stein inequality, var(‖β̂ − β0‖2) = O(n−1polyLog(n)) follows, if we can

show that

E(‖β̂ − β0‖2 − ‖β̃i − β0‖2)2 = O(n−2polyLog(n)), (B.15)

E(‖β̃i − β0‖2 − ‖β̂(i) − β0‖2)2 = O(n−2polyLog(n)). (B.16)

By following the proof of Proposition 3.10 in El Karoui (2018), it is easy to show

(B.15). For (B.16), we have

‖β̃i − β0‖2 − ‖β̂(i) − β0‖2

=‖β̃i − β̂(i) + β̂(i) − β0‖2 − ‖β̂(i) − β0‖2

=
2

n
(β̂(i) − β0)>(Si + τIp)

−1X>i ψ(g̃−1(r̃i,[−i]))

+
1

n2
ψ>(g̃−1(r̃i,[−i]))Xi(Si + τIp)

−2X>i ψ(g̃−1(r̃i,[−i])).
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Since β̂(i) − β0 and Si are independent of Xi, one can show that ‖(β̂(i) − β0)>(Si +

τIp)
−1X>i ‖ = OL2(‖β̂(i)−β0‖polyLog(n)) by using the same technique as in the proof

of Proposition B.1. For the second term, λmax(n−1Xi(Si+τIp)
−2X>i ) ≤ tr(n−1Xi(Si+

τIp)
−2X>i ) = OL2(mp/n). Based on the above discussions, (B.16) thus follows. This

completes the proof.

Propositions B.3-B.5 are needed in the proof of Theorem 3.3.

Proposition B.3 We have

‖β̂ − b̃‖ ≤ 1

τ
‖ 1

n

∑
i

X>i (∇ψ(r∗2,i)−∇ψ(ři,−p))Xi(γ̂est − b̃)‖, (B.17)

where r∗2,i ∈ (ei + Xiβ0 − Xib̃, ei + Xiβ0 − Xiγ̂est), γ̂est − b̃ = (b̃p − β0,p)(((∆p +

τIp−1)−1up)
>,−1)>, and

‖(∆p + τIp−1)−1up‖2 ≤ 1

nτ

n∑
i=1

x>i,p∇ψ(ři,−p)xi,p = OLk(1). (B.18)

Proof of Proposition B.3 By (B.39), taking β2 = β̂, β1 = b̃, we obtain

‖β̂ − b̃‖ ≤ 1

τ
‖φ(b̃)‖.

(B.17) thus follows if we can show that

φ(b̃) = − 1

n

∑
i

X>i (∇ψ(r∗2,i)−∇ψ(ři,−p))Xi(γ̂est − b̃). (B.19)

Denote φ(b̃) = (φ−p(b̃)
>, φp(b̃))

>, and γ̂est = (γ̂>, β0,p)
>. Since b̃ = ((γ̂ − (b̃p −

β0,p)(∆p + τIp−1)−1up)
>, b̃p)

> = (b̃
>
−p, b̃p)

>, ∆p = n−1
∑

iX
>
i,−p∇ψ(ři,−p)Xi,−p, and
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up = n−1
∑

iX
>
i,−p∇ψ(ři,−p)xi,p, we have b̃−p − γ̂ = −(b̃p − β0,p)(∆p + τIp−1)−1up,

and γ̂est − b̃ = (b̃p − β0,p)(((∆p + τIp−1)−1up)
>,−1)>. We first prove (B.20) and

(B.21) which are needed to show (B.19). One can easily verify that

− 1

n

∑
i

X>i,−p∇ψ(ři,−p)Xi(γ̂est − b̃) + τ(b̃−p − γ̂)

=− (b̃p − β0,p)
1

n

∑
i

X>i,−p∇ψ(ři,−p)(Xi,−p,xi,p)(((∆p + τIp−1)−1up)
>,−1)>

− τ(b̃p − β0,p)(∆p + τIp−1)−1up

=(b̃p − β0,p)(−∆p(∆p + τIp−1)−1up + up − τ(∆p + τIp−1)−1up) = 0p−1. (B.20)

On the other hand, since

b̃p = β0,p
ξn

τ + ξn
+
n−1

∑
i x
>
i,pψ(ři,−p)

τ + ξn
,

we have

− 1

n

∑
i

x>i,p

[
ψ(ři,−p) +∇ψ(ři,−p)Xi(γ̂est − b̃)

]
+ τ b̃p

=− 1

n

∑
i

x>i,p

[
ψ(ři,−p) +∇ψ(ři,−p)(Xi,−p,xi,p)(b̃p − β0,p)(((∆p + τIp−1)−1up)

>,−1)>
]

+ τ b̃p

=− 1

n

∑
i

x>i,pψ(ři,−p) + τ b̃p + (b̃p − β0,p)

[
−u>p (∆p + τIp−1)−1up +

1

n

n∑
i=1

x>i,p∇ψ(ři,−p)xi,p

]

=0. (B.21)
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For the first p− 1 coordinates of φ(b̃), i.e., φ−p(b̃), we have

φ−p(b̃) =− 1

n

∑
i

X>i,−p

[
ψ(ei +Xiβ0 −Xib̃)−ψ(ei +Xi,−pβ−p −Xi,−pγ̂)

]
+ τ(b̃−p − γ̂)

=− 1

n

∑
i

X>i,−p

[
ψ(ei +Xiβ0 −Xib̃)−ψ(ei +Xiβ0 −Xiγ̂est)

]
+ τ(b̃−p − γ̂)

=− 1

n

∑
i

X>i,−p∇ψ(r∗2,i)Xi(γ̂est − b̃) + τ(b̃−p − γ̂)

=− 1

n

∑
i

X>i,−p∇ψ(ři,−p)Xi(γ̂est − b̃) + τ(b̃−p − γ̂)

− 1

n

∑
i

X>i,−p[∇ψ(r∗2,i)−∇ψ(ři,−p))]Xi(γ̂est − b̃)

=− 1

n

∑
i

X>i,−p[∇ψ(r∗2,i)−∇ψ(ři,−p)]Xi(γ̂est − b̃), (B.22)

where r∗2,i ∈ (ei + Xiβ0 −Xib̃, ei + Xiβ0 −Xiγ̂est). The last equality holds true in

view of (B.20).

For the last coordinate of φ(b̃), i.e., φp(b̃), we have

φp(b̃) =− 1

n

∑
i

x>i,pψ(ei +Xiβ0 −Xib̃) + τ b̃p

=− 1

n

∑
i

x>i,p∇ψ(r∗2,i)Xi(γ̂est − b̃) + τ b̃p

=− 1

n

∑
i

x>i,p

[
ψ(ři,−p) +∇ψ(ři,−p)Xi(γ̂est − b̃)

]
+ τ b̃p

− 1

n

∑
i

x>i,p[∇ψ(r∗2,i)−∇ψ(ři,−p)]Xi(γ̂est − b̃)

=− 1

n

∑
i

x>i,p[∇ψ(r∗2,i)−∇ψ(ři,−p))]Xi(γ̂est − b̃). (B.23)
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The last equality follows by (B.21). Putting (B.22) and (B.23) together yields (B.19).

For (B.18), we have

‖(∆p + τIp−1)−1up‖2 =
x>pD

1/2

√
n

D1/2X−p√
n

(
X>−pDX−p

n
+ τIp−1

)−2
X>−pD

1/2

√
n

D1/2xp√
n

.

Since (
X>−pDX−p

n
+ τIp−1

)−1

� 1

τ
Ip−1,

and

D1/2X−p√
n

(
X>−pDX−p

n
+ τIp−1

)−1
X>−pD

1/2

√
n

� Imn,

we obtain that

‖(∆p + τIp−1)−1up‖2 ≤ 1

nτ
x>pDxp =

1

nτ

n∑
i=1

x>i,p∇ψ(ři,−p)xi,p.

Because xi,p is independent of ři,−p, and supx λmax(∇ψ(x)) ≤ c, ‖(∆p+τIp−1)−1up‖2 =

OLk(1).

Proposition B.4 We have

|b̃p − β0,p| ≤
1

τ
|ζp|+ |β0,p| = OLk(n

−1/2 + n−α), (B.24)

where ζp = n−1
∑

i x
>
i,pψ(ři,−p).

Proposition B.5 We have

sup
i
‖∇ψ(r∗2,i)−∇ψ(ři,−p)‖max = OLk

(
polyLog(n)

min{n1/2, nα}

)
.
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Proof of proposition B.5 By the assumption (A3),

sup
i
‖∇ψ(r∗2,i)−∇ψ(ři,−p)‖max ≤ c sup

i
‖Xi(γ̂est − b̃)‖.

It remains to show that

sup
i
‖Xi(γ̂est − b̃)‖ = OLk

(
polyLog(n)

min{n1/2, nα}

)
.

Since γ̂est − b̃ = (b̃p − β0,p)(((∆p + τIp−1)−1up)
>,−1)> and up = n−1X>−pDxp, we

have

Xi(γ̂est − b̃) = (b̃p − β0,p)[n
−1Xi,−p(∆p + τIp−1)−1X>−pDxp − xi,p]. (B.25)

By Lemma 3.36 in El Karoui (2018), for s = 1, . . . ,m, it follows that

sup
i
|n−1x>i,−p(s)(∆p + τIp−1)−1X>−pDxp|

= OLk(polyLog(n) sup
i
‖n−1x>i,−p(s)(∆p + τIp−1)−1X>−pD‖). (B.26)

Since

‖n−1x>i,−p(s)(∆p + τIp−1)−1X>−pD‖2

=
1

n
x>i,−p(s)(∆p + τIp−1)−1

X>−pD
2X−p

n
(∆p + τIp−1)−1xi,−p(s)

≤ 1

n
λmax(D)x>i,−p(s)(∆p + τIp−1)−1

(
X>−pDX−p

n
(∆p + τIp−1)−1

)
xi,−p(s)

≤‖xi,−p(s)‖
2

nτ
λmax(D) ≤ ‖xi,−p(s)‖

2

nτ
sup

1≤i≤n
λmax(∇ψ(ři,−p)) = OLk(1),
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(B.26) becomes supi |n−1x>i,−p(s)(∆p + τIp−1)−1X>−pDxp| = OLk(polyLog(n)). We

thus have

sup
i
‖n−1Xi,−p(∆p + τIp−1)−1Dxp‖ = OLk(polyLog(n)),

which, jointly with (B.25), ‖xi,p‖ = OLk(1) and |b̃p − β0,p| = OLk(n
−1/2 + n−α) (see

Proposition B.4), implies that

sup
i
‖Xi(γ̂est − b̃)‖ = OLk

(
polyLog(n)

min{n1/2, nα}

)
.

The proof is completed.

Proof of Theorem 3.3 (i) By Propositions B.3-B.5, we have

‖β̂ − b̃‖ ≤λmax

(
1

n

∑
i

X>i Xi

)
sup
i
‖∇ψ(r∗2,i)−∇ψ(ři,−p))‖max|b̃p − β0,p|

×
√
‖(∆p + τIp−1)−1up‖2 + 1

=OLk

(
polyLog(n)

1

min{n1/2, nα}
polyLog(n)

min{n1/2, nα}

)
=OLk

(
polyLog(n)

(min{n1/2, nα})2

)
. (B.27)

Furthermore,
√
n|β̂p − b̃p| ≤

√
n‖β̂ − b̃‖ = OLk

(
n1/2polyLog(n)

(min{n1/2,nα})2

)
.

(ii) By (B.27),

sup
i
‖Xi(β̂ − b̃)‖ ≤

m∑
s=1

sup
i
|x>i (s)(β̂ − b̃)| = OLk

(
n1/2polyLog(n)

(min{n1/2, nα})2

)
.

132



(iii) Since ri − ři,−p = Xi(γ̂est − β̂) = Xi(γ̂est − b̃) +Xi(b̃− β̂), we obtain that

sup
i
‖ri − ři,−p‖ ≤ sup

i
‖Xi(γ̂est − b̃)‖+ sup

i
‖Xi(b̃− β̂)‖

=OLk

(
polyLog(n)

min{n1/2, nα}

)
+OLk

(
n1/2polyLog(n)

(min{n1/2, nα})2

)
=OLk

(
n1/2polyLog(n)

min{n, n2α}

)
.

Propositions B.6-B.8 are needed in the proof of Theorem 3.1.

Proposition B.6 Define cτ,t = n−1tr((∆t+τIp−1)−1), where ∆t = n−1
∑

iX
>
i,−t∇ψ(ři,−t)Xi,−t,

1 ≤ t ≤ p. We have

(i)

|cτ − cτ,t| = OLk

(
n1/2polyLog(n)

min{n, n2α}

)
. (B.28)

(ii)

(p
n

)2

E‖β̂ − β0‖2 =
p

n

1

n

n∑
i=1

E‖r̃i,[−i] − proxcτ (ρ)(r̃i,[−i])‖2 + τ 2‖β0‖2E(c2
τ ) + o(1).

(B.29)

Proposition B.7 We have

r̃i,[−i]
D−→ ei +

√
E‖β̂ − β0‖2z̃i, (B.30)

as n, p → ∞ with p/n → κ, where z̃i ∼ N(0, Im), and z̃i is independent of ei.

Furthermore, r̃i,[−i] and r̃j,[−j] are asymptotically independent for i 6= j.
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Proof of Proposition B.7 The proof in Theorem 3.2(iii) imply that E(‖β̂−β0‖2−

‖β̂(i) − β0‖2)2 = O(n−2polyLog(n)), which reduces to

E|‖β̂ − β0‖2 − ‖β̂(i) − β0‖2| = O(n−1polyLog(n)). (B.31)

Since E‖β̂ − β0‖2 is uniformly bounded (taking k = 1 in (B.42)), by (B.31), we

obtain that E‖β̂(i) − β0‖2 is uniformly bounded. Without loss of generality, we

assume that ‖β̂(i)−β0‖ is bounded away from zero. Otherwise, E‖Xi(β̂(i)−β0)‖2 =

mE‖β̂(i) − β0‖2 → 0. Hence Xi(β̂(i) − β0)
D−→ 0. By Theorem 3.3(i) and (B.24), it

is easy to see that

|β̂p − β0,p| ≤|β̂p − b̃p|+ |b̃p − β0,p|

=OLk

(
polyLog(n)

min{n, n2α}

)
+OLk

(
1

min{n1/2, nα}

)
= OLk

(
1

min{n1/2, nα}

)
.

Denote β̂(i) = (β̂(i),1, . . . , β̂(i),p)
>. By Theorem 3.2(i),

|β̂(i),p − β̂p| ≤ ‖β̂(i) − β̂‖ = OLk(n
−1/2).

We thus have

|β̂(i),p − β0,p| = OLk

(
1

min{n1/2, nα}

)
,

and

E(|β̂(i),p − β0,p|3) = O

(
1

(min{n1/2, nα})3

)
.
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It follows that, for α > 1/3,

E

(
p∑

k=1

|β̂(i),k − β0,k|3
)

= O

(
n

(min{n1/2, nα})3

)
= o(1).

In light of the proof of Lemma 3.23 in El Karoui (2018), by the assumption (A4),

Xi(β̂(i) − β0) =

p∑
k=1

xi,k(β̂(i),k − β0,k)
D−→ ‖β̂(i) − β0‖z̃i, (B.32)

where z̃i ∼ N(0, Im). In view that var(‖β̂ − β0‖2) = o(1) (see Theorem 2.2(iii)),

we can similarly obtain that var(‖β̂(i) − β0‖2) = o(1), which yields that ‖β̂(i) −

β0‖2 p−→ E‖β̂(i) − β0‖2. By Slutsky’s theorem, (B.32) and (B.31), Xi(β̂(i) − β0)
D−→√

E‖β̂ − β0‖2z̃i.

For the asymptotic independence of r̃i,[−i] and r̃j,[−j], its proof mimics the proof

of Lemma 3.23 (second part) given in El Karoui (2018).

Proposition B.8 Denote the random function δn(x) = p/n−τx−m+n−1
∑n

i=1 tr([Im+

x∇ψ(proxx(ρ)(r̃i,[−i]))]
−1). Under the assumptions (A1)-(A5) and (F1), we have,

δn(cτ ) = oLk(1), (B.33)

and cτ is asymptotically deterministic.

Proof of Proposition B.8 Recall that

Pii = Im −
(
Im + n−1∇ψ1/2(ři,−p)Xi,−p(∆p(i) + τIp−1)−1X>i,−p∇ψ1/2(ři,−p)

)−1

.

135



We obtain that

1

n
tr(P ) = m− 1

n

n∑
i=1

tr([Im + n−1∇ψ1/2(ři,−p)Xi,−p(∆p(i) + τIp−1)−1X>i,−p∇ψ1/2(ři,−p)]
−1).

(B.34)

It is easy to see that

|tr([Im + n−1∇ψ1/2(ři,−p)Xi,−p(∆p(i) + τIp−1)−1X>i,−p∇ψ1/2(ři,−p)]
−1)

− tr([Im + cτ,p∇ψ(ři,−p)]
−1)|

≤|tr(cτ,p∇ψ(ři,−p)− n−1∇ψ1/2(ři,−p)Xi,−p(∆p(i) + τIp−1)−1X>i,−p∇ψ1/2(ři,−p))|

=|tr([cτ,pIm −
1

n
Xi,−p(∆p(i) + τIp−1)−1X>i,−p]∇ψ(ři,−p))|

=|tr(−Ωi∇ψ(ři,−p))| = OLk

(
polyLog(n)√

n

)
. (B.35)

The last equality follows by (B.45). (B.34), together with (B.44) and (B.35), becomes

p

n
− τcτ,p −m+

1

n

n∑
i=1

tr([Im + cτ,p∇ψ(ři,−p)]
−1) = OLk

(
polyLog(n)√

n

)
. (B.36)

Similarly, (B.36) still holds if we replace cτ,p, ři,−p with cτ , ri, respectively. That is

p

n
− τcτ −m+

1

n

n∑
i=1

tr([Im + cτ∇ψ(ri)]
−1) = OLk

(
polyLog(n)√

n

)
. (B.37)

By Theorem 3.2(ii), and the assumption (A3), it follows that

sup
i
‖∇ψ(ri)−∇ψ(proxci(ρ)(r̃i,[−i]))‖max ≤ sup

i
c‖ri − proxci(ρ)(r̃i,[−i])‖

=OLk(n
−1/2polyLog(n)).
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Since ‖proxci(ρ)(r̃i,[−i])−proxcτ (ρ)(r̃i,[−i])‖ = OLk(n
−1/2polyLog(n)) (proved in Propo-

sition B.6(ii)), by the assumption (A3), we have

‖∇ψ(proxci(ρ)(r̃i,[−i]))−∇ψ(proxcτ (ρ)(r̃i,[−i]))‖max = OLk(n
−1/2polyLog(n)).

Therefore,

‖∇ψ(ri)−∇ψ(proxcτ (ρ)(r̃i,[−i]))‖max = OLk(n
−1/2polyLog(n)). (B.38)

By (B.37) and (B.38), (B.33) follows.

Note that cτ is asymptotically deterministic if one can show that cτ converges to

a constant in probability. By the assumption (F1), for a given u0 ∈ Rm, tr((Im +

x∇ψ(proxx(ρ)(u0)))−1) is a decreasing function for x ≥ 0. Thus for any random

vector u ∈ Rm, E(tr((Im + x∇ψ(proxx(ρ)(u)))−1)) is decreasing for x ≥ 0. Given

τ > 0, E(δn(x)) is strictly decreasing for x ≥ 0. Since E(δn(0)) = p/n > 0 and

E(δn(x))→ −∞ as x→ +∞, there exists a unique root of E(δn(x)) = 0 for x > 0.

We denote the unique root by µ.

Define S = {x : δn(x) = oLk(1)}, and Fn,ε = {x : |E(δn(x))| ≤ ε} for any given

ε. Note that Fn,ε ⊆ (0, p/(nτ) + ε/τ ] and Fn,ε is compact. Using the technique as

in the proof of Lemma 3.26 in El Karoui (2018), and by (B.33) and the result in

Lemma B.8, one can easily obtain that, for any ε > 0, cτ belongs to Fn,ε with high

probability. Let µ1 be the limit of cτ as n→∞. Since Fn,ε is compact, we conclude
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that µ1 ∈ Fn,ε with high probability. On the other hand, if ε = 0, then Fn,ε reduces

to a single point, µ, as n → ∞. It follows that µ = µ1 with high probability. Thus

cτ → µ with high probability as n→∞. We remark that an event occurs with high

probability can be made as close as desired to 1 by making n large enough. This

completes the proof.

Proof of Theorem 3.1 Let µ be the limit of cτ as n, p→∞ with p/n→ κ(> 0).

By (B.33), cτ is asymptotically arbitrarily close to the solution of E(δn(x)) = 0.

Together with ∇proxµ(ρ)(z) = (Im + µ∇ψ(z))−1, the first equality in (3.7) holds.

By (B.29) and (B.31), the second equation in (3.7) follows.

Proof of Corollary 3.1 By simply following the proof of Theorem 6.1 in El Karoui

(2013) in the beginning,

‖β̂M − β̂‖ ≤
√

2τ

cλmin(n−1
∑n

i=1X
>
i Xi)

√√√√ 1

n

n∑
i=1

ρ(ei +Xiβ0).

By the mean value theorem, it follows that ρ(ei + Xiβ0) = ρ(0) + ψ>(r∗i,e)(ei +

Xiβ0) = ψ>(r∗i,e)(ei + Xiβ0), where r∗i,e ∈ (0, ei + Xiβ0). It is easy to see that

‖Xiβ0‖ = Op(1) because, by the assumptions (A2) and (A4), E‖Xiβ0‖2 = m‖β0‖2 =

O(1). By the assumptions (A5), we conclude that ‖ei‖ = Op(1). Together with

that sup ‖ψ‖ ≤ c, it follows that ρ(ei + Xiβ0) = ψ>(r∗i,e)(ei + Xiβ0) = Op(1).

By Theorem 2.16 in Bai (1999), λmin(n−1
∑n

i=1 X
>
i Xi) →

(√
m−

√
p/n
)2

in prob-

ability and almost surely. Thus ‖β̂M − β̂‖ → 0 as τ → 0, and it follows that
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∣∣∣‖β̂M − β0‖ − lim
τ→0
‖β̂ − β0‖

∣∣∣ ≤ lim
τ→0
‖β̂M − β̂‖ = 0. This completes the proof.

B.2 Proofs of lemmas

This part contains the proofs of these lemmas that are used to prove those propo-

sitions and theorems. If not specified, we present the results below under the assump-

tions (A1)-(A5) in Chapter 3.

Lemma B.1 For any two vectors β1,β2 ∈ Rp, we have

‖β1 − β2‖ ≤
1

τ
‖φ(β1)− φ(β2)‖. (B.39)

The lemma can be easily proved by following the same procedure as the proof of

Proposition 2.1 in El Karoui (2013).

Lemma B.2 Denote wn = n−1
∑

iX
>
i ψ(ei). Then

‖β̂ − β0‖ ≤ ‖β0‖+
1

τ
‖wn‖, (B.40)

and

E‖β̂ − β0‖2 ≤ 2

(
‖β0‖2 +

1

τ 2

mp

n

1

n

∑
i

E‖ψ(ei)‖2

)
. (B.41)

Furthermore, as p, n → ∞ with p/n tending to a constant, for any positive integer

k ≥ 1, there exists a constant c > 0 such that

E‖β̂ − β0‖2k ≤ c(‖β0‖2k + τ−2kc) = O(1). (B.42)

139



Proof of Lemma B.2 For the proof of this lemma, one can refer to the proof line

of Lemma 2.2 in El Karoui (2013) . E‖wn‖2 ≤ n−2mp
∑n

i=1E‖ψ(ei)‖2. Because ei

and Xi are independent, EXi = 0 (see the assumption (A4)) and supx ‖ψ(x)‖ <∞

(see the assumption (A3)), and thus

E‖wn‖2 ≤ 1

n2

n∑
i=1

Eλmax(XiX
>
i )E‖ψ(ei)‖2

≤ 1

n2

n∑
i=1

Etr(XiX
>
i )E‖ψ(ei)‖2

=
mp

n2

n∑
i=1

E‖ψ(ei)‖2. (B.43)

The ‘=’ follows by the fact that Etr(XiX
>
i ) = tr(E(XiX

>
i )) = mp. Hence (B.41)

holds.

Lemma B.3 We have ξn ≥ 0, and

|ξn − n−1tr(D1/2(Imn − P )D1/2)| = OLk

(
polyLog(n)√

n

)
.

The lemma can be easily proved by following the proof of Lemma 3.13 in El Karoui

(2018).

Lemma B.4 Denote cτ,p = n−1tr((∆p+τIp−1)−1), Ωi = n−1Xi,−p(∆p(i)+τIp−1)−1X>i,−p−

cτ,pIm. Therefore, we have∣∣∣∣ 1ntr(P )− 1

n
tr(D1/2(Imn − P )D1/2)cτ,p

∣∣∣∣ ≤ 1

n

∑
i

tr(∇ψ(ři,−p)Ωi),
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and

1

n
tr(P ) =

p− 1

n
− τcτ,p. (B.44)

Proof of Lemma B.4 Using the fact that Im = A−1A withA = Im+∇ψ1/2(ři,−p)(cτ,pIm+

Ωi)∇ψ1/2(ři,−p), we have

Pii = (Im − Pii)(∇ψ1/2(ři,−p)(cτ,pIm + Ωi)∇ψ1/2(ři,−p))

= (Im − Pii)∇ψ(ři,−p)cτ,p + (Im − Pii)∇ψ1/2(ři,−p)Ωi∇ψ1/2(ři,−p),

which entails that ∣∣∣∣ 1ntr(P )− 1

n
tr(D1/2(Imn − P )D1/2)cτ,p

∣∣∣∣
=

1

n

∑
i

tr((Im − Pii)∇ψ1/2(ři,−p)Ωi∇ψ1/2(ři,−p))

≤ 1

n

∑
i

tr(∇ψ(ři,−p)Ωi).

Since B = n−1/2D1/2X−p, P = B(B>B + τIp−1)−1B>, ∆p = B>B, we have

tr(P ) = tr((∆p + τIp−1)−1∆p) = tr(Ip−1)− τtr((∆p + τIp−1)−1) = p− 1− nτcτ,p.

Lemma B.5 Denote the (s, t)-th entry of Ωi by ω
(s,t)
i . Then

sup
i,s,t
|ω(s,t)
i | = OLk

(
polyLog(n)√

n

)
. (B.45)

Proof of Lemma B.5 Let ř
(i)
j,−p be the residuals obtained by leaving the p-th

predictor and i-th observation out. By Theorem 3.2 (Lemma B.5 is not required
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for the proof of Theorem 3.2), we have

sup
j 6=i
|ř(i)
j,−p − ři,−p| = OLk

(
polyLog(n)√

n

)
,

which, jointly with the assumption (A3), implies that

sup
i

sup
j 6=i
‖∇ψ(ř

(i)
j,−p)−∇ψ(ři,−p)‖max = OLk

(
polyLog(n)√

n

)
. (B.46)

Define Λi,p = n−1
∑

j 6=iX
>
j,−p∇ψ(ř

(i)
j,−p)Xj,−p. We have

‖(∆p(i) + τIp−1)−1 − (Λi,p + τIp−1)−1‖max

=‖(∆p(i) + τIp−1)−1(Λi,p −∆p(i))(Λi,p + τIp−1)−1)‖max

≤‖n−1
∑
j 6=i

X>j,−p∇ψ(ř
(i)
j,−p)Xj,−p − n−1

∑
j 6=i

X>j,−p∇ψ(ři,−p)Xj,−p‖max

≤ 1

τ 2
λmax(n−1

∑
i

X>i Xi) sup
i

sup
j 6=i
‖∇ψ(ř

(i)
j,−p)−∇ψ(ři,−p)‖max

=OLk

(
polyLog(n)√

n

)
.

The first equality follows by the fact that A−1 − B−1 = A−1(B − A)B−1 for invert-

ible matrix A and B, and the second equality holds in view of (B.46) and because

λmax(n−1
∑

iX
>
i Xi) = OLk(polyLog(n)), a straightforward result of Lemma B-5 in
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El Karoui (2013). Similarly, we have,

∣∣∣∣ 1ntr((∆p(i) + τIp−1)−1)− 1

n
tr((Λi,p + τIp−1)−1)

∣∣∣∣
≤ 1

n
sup
i

sup
j 6=i
‖∇ψ(ř

(i)
j,−p)−∇ψ(ři,−p)‖maxtr(n−1

∑
i

X>i Xi)

=OLk

(
p

n

polyLog(n)√
n

polyLog(n)

)
= OLk

(
polyLog(n)√

n

)
. (B.47)

Next, we show that (B.45) holds true for s = t and s 6= t. Firstly, we work on

the case where s = t. Denote ω
(s,s)
i = n−1x>i,−p(s)(∆p(i) + τIp−1)−1xi,−p(s) − cτ,p,

where xi,−p(s) is the s-th row of Xi,−p. It is easy to see that the conclusion (B.45) is

implied by (B.47) and the following results (B.48)-(B.50).

∣∣∣∣ 1nx>i,−p(s)(∆p(i) + τIp−1)−1xi,−p(s)−
1

n
x>i,−p(s)(Λi,p + τIp−1)−1xi,−p(s)

∣∣∣∣
≤‖xi,−p(s)‖

2

n
OLk

(
polyLog(n)√

n

)
= OLk

(
polyLog(n)√

n

)
, (B.48)

and in light of Lemma 3.37 in El Karoui (2013),

sup
i,s

∣∣∣∣ 1nx>i,−p(s)(Λi,p + τIp−1)−1xi,−p(s)−
1

n
tr((Λi,p + τIp−1)−1)

∣∣∣∣ = OLk

(
polyLog(n)√

n

)
,

(B.49)

where Λi,p is independent of Xi,−p. Since A−1 − B−1 = A−1(B − A)B−1, we obtain
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that

1

n
tr((∆p(i) + τIp−1)−1 − (∆p + τIp−1)−1)

≤ 1

nτ 2
tr(n−1X>i,−p∇ψ(ři,−p)Xi,−p)

=
1

nτ 2

1

n

p−1∑
s=1

x>i,s∇ψ(ři,−p)xi,s = OLk(n
−1). (B.50)

Secondly, we show that (B.45) still holds for s 6= t, where ω
(s,t)
i = n−1x>i,−p(s)(∆p(i)+

τIp−1)−1xi,−p(t). We thus have∣∣∣∣ 1nx>i,−p(s)(∆p(i) + τIp−1)−1xi,−p(t)−
1

n
x>i,−p(s)(Λi,p + τIp−1)−1xi,−p(t)

∣∣∣∣
≤‖xi,−p(s)‖‖xi,−p(t)‖

n
OLk

(
polyLog(n)√

n

)
= OLk

(
polyLog(n)√

n

)
. (B.51)

On the other hand, since n−1x>i,−p(s)(Λi,p + τIp−1)−1xi,−p(t) = x>i,−p(s)v, where v =

n−1(Λi,p + τIp−1)−1xi,−p(t) and v is independent of xi,−p(s), by Lemma 3.36 in El

Karoui (2018), we have

1

n
sup

1≤i≤n,1≤s 6=t≤m
|x>i,−p(s)(Λi,p + τIp−1)−1xi,−p(t)|

≤ 1√
n

sup
‖xi,−p(t)‖√

n
polyLog(n) = OLk

(
polyLog(n)√

n

)
. (B.52)

Then, (B.51)-(B.52) imply that

sup
1≤i≤n,1≤s 6=t≤m

| 1
n
x>i,−p(s)(∆p(i) + τIp−1)−1xi,−p(t)| = OLk

(
polyLog(n)√

n

)
. (B.53)

We complete the proof.
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Lemma B.6 We have

∣∣∣∣cτ,p(ξn + τ)− p− 1

n

∣∣∣∣ = OLk(n
−1/2polyLog(n)), (B.54)

and

p2

n2
nE(b̃p − β0,p)

2 =
1

n

n∑
i=1

E‖cτ,pψ(ři,−p)‖2 + nτ 2β2
0,pE(c2

τ,p) + o(1). (B.55)

The lemma can be easily proved by following the proof of Proposition 3.18 in El

Karoui (2018).

Lemma B.7 Denote the random function gn(x) = n−1
∑n

i=1 tr([Im+x∇ψ(proxx(ρ)(r̃i,[−i]))]
−1),

x ≥ 0. For any (x, y) ∈ R2, and 0 ≤ x ≤ b, 0 ≤ y ≤ b, where 0 < b <∞ and b ∈ R,

there exists a constant c such that

sup
(x,y):|x−y|≤η,0≤x,y≤b

|gn(x)− gn(y)| ≤ η(1 + b)c.

Proof of Lemma B.7 Define hu(x) = tr([Im+x∇ψ(proxx(ρ)(u))]−1) = tr (∇proxx(ρ)(u)) ,

where x ≥ 0, u ∈ Rm. We have

hu(x)− hu(y) =tr([Im + x∇ψ(proxx(ρ)(u))]−1)− tr([Im + y∇ψ(proxy(ρ)(u))]−1)

≤tr(y∇ψ(proxy(ρ)(u))− x∇ψ(proxx(ρ)(u))) (B.56)

=tr((y − x)∇ψ(proxx(ρ)(u))− y[∇ψ(proxx(ρ)(u))−∇ψ(proxy(ρ)(u))])

=(y − x)tr(∇ψ(proxx(ρ)(u)))− ytr(∇ψ(proxx(ρ)(u))−∇ψ(proxy(ρ)(u))).
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Since A−1 − B−1 = A−1(B − A)B−1 , tr(A−1 − B−1) ≤ tr(B − A) upon taking

A = Im + x∇ψ(proxx(ρ)(u)), B = Im + y∇ψ(proxy(ρ)(u)). The inequality (B.56)

thus follows. By the mean value theorem, proxx(ρ)(u) − proxy(ρ)(u) = −(Im +

z∇ψ(proxz(ρ)(u)))−1ψ(proxz(ρ)(u))(x − y), where z ∈ (min{x, y},max{x, y}). It

thus follows that

‖∇ψ(proxx(ρ)(u))−∇ψ(proxy(ρ)(u))‖max

≤c‖proxx(ρ)(u)− proxy(ρ)(u)‖

=c‖ − [Im + z∇ψ(proxz(ρ)(u))]−1ψ(proxz(ρ)(u))(x− y)‖

≤c|x− y|‖ψ(proxz(ρ)(u))‖.

For all u ∈ Rm, we obtain

sup
(x,y):|x−y|≤η,0≤x≤b,0≤y≤b

|hu(x)− hu(y)|

≤|x− y|tr(∇ψ(proxx(ρ)(u))) + ytr(c|x− y|‖ψ(proxx(ρ)(u))‖Im)

≤mη supλmax(∇ψ(proxx(ρ)(u))) + ηmbc sup ‖ψ(proxz(ρ)(u))‖

≤mη(1 + b)c.

Therefore, we have

sup
(x,y):|x−y|≤η,0≤x≤b,0≤y≤b

|gn(x)− gn(y)| ≤ 1

n

n∑
i=1

sup
x,y
|hui(x)− hui(y)| ≤ η(1 + b)c.
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Lemma B.8 For any given x0 ≤ b <∞, we have, gn(x0)−E(gn(x0)) = oL2(1), and

E(sup0≤x≤b |gn(x)− E(gn(x))|) = o(1).

The lemma can be proved by following the proof of Lemma 3.25 in El Karoui (2018).

We omit the details.
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C Appendix

This part contains the proofs of lemmas and theorems in Chapter 4. We remark

that the proofs of Theorem 4.1 and Theorems 4.3-4.4 mimic the proofs of Sgouropou-

los et al. (2015). These proofs are all under those assumptions given in Chapter 4.

Proof of Lemma 4.1 We use the mathematical induction method to prove (4.16).

When n = 2, denote e(i) = |a(i)− b(i)|, and ei = |ai− bi|, i = 1, 2. By the assumption

(A1), we need to show that

ρ(e(1)) + ρ(e(2)) ≤ ρ(e1) + ρ(e2). (C.1)

Without loss of generality, suppose that e1 ≥ e2. Then e1 ≥ max{e(1), e(2)}, and e2 ∈

[0,min{e(1), e(2)}] or e2 ∈ (min{e(1), e(2)},max{e(1), e(2)}] or e2 ∈ (max{e(1), e(2)}, e1].

By the convexity of ρ(·), (C.1) holds for any setting of e2.

Next, assume that (4.16) is true for all k < n. Let

k∑
i=1

ρ(a(i) − b(i)) ≤
k∑
i=1

ρ(ai − bi). (C.2)
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Then we need to show that (4.16) still holds for k + 1,

k+1∑
i=1

ρ(a(i) − b(i)) ≤
k+1∑
i=1

ρ(ai − bi). (C.3)

Without loss of generality, we assume that

a(k+1) = ak+1 and b(k+1) = bl, l = 1, 2, . . . , k + 1. (C.4)

(1) If l = k + 1, then

k+1∑
i=1

ρ(ai − bi) =
k∑
i=1

ρ(ai − bi) + ρ(ak+1 − bk+1)

≥
k∑
i=1

ρ(a(i) − b(i)) + ρ(ak+1 − bk+1)

=
k+1∑
i=1

ρ(a(i) − b(i)).

The first inequality can be obtained by (C.2). The second equality is guaranteed by

(C.4).

(2) If l 6= k + 1,

k+1∑
i=1

ρ(ai − bi) =
k∑

i=1,i 6=l

ρ(ai − bi) + ρ(al − bl) + ρ(ak+1 − bk+1)

≥
k∑

i=1,i 6=l

ρ(ai − bi) + ρ(al − bk+1) + ρ(ak+1 − bl)

≥
k∑
i=1

ρ(a(i) − b(i)) + ρ(ak+1 − bl)

=
k+1∑
i=1

ρ(a(i) − b(i)).
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By (C.4), the first inequality can be obtained by following the proof for n = 2. The

second inequality is guaranteed by (C.2). And the second equality is implied by

(C.4). Based on the above discussion, (C.3) holds. Hence the result (4.16) follows.

Proof of Theorem 4.1. Since Sn(β) ≥ 0, by Monotone Convergence Theorem, we

only need to show Sk+1
n (β̂(k+1)) ≤ Skn(β̂(k)) , k = 1, 2, . . ..

Skn(β) =
1

n

n∑
i=1

ρ(Y(i) − β>X(k−1)
(i) ) + λ

p∑
j=1

ωj|βj|. (C.5)

For k + 1, it follows from that

Sk+1
n (β̂(k+1)) =

1

n

n∑
i=1

ρ(Y(i) − (β̂(k+1))>X
(k)
(i) ) + λ

p∑
j=1

ωj|β̂(k+1)
j |

≤ 1

n

n∑
i=1

ρ(Y(i) − (β̂(k))>X
(k)
(i) ) + λ

p∑
j=1

ωj|β̂(k)
j |

≤ 1

n

n∑
i=1

ρ(Y(i) − (β̂(k))>X
(k−1)
(i) ) + λ

p∑
j=1

ωj|β̂(k)
j |

= Skn(β̂(k)),

where {X(k)
(i) } is a permutation of {Xi} at the kth iteration such that (β̂(k))>X

(k)
(1) ≤

(β̂(k))>X
(k)
(2) ≤ · · · ≤ (β̂(k))>X

(k)
(n). The first inequality follows from the definition of

β̂(k+1). The second inequality is guaranteed by Lemma 4.1. Hence limk→+∞ S
k
n(β̂(k))

exists, which leads to the convergence of the algorithm.

Proof of Lemma 4.2 Put W = β>X, Qn(α) = Qn,Y (α) − Qn,W (α), Q(α) =

QY (α) − QW (α), α ∈ Ωn = [an, bn]. By (A2), S(β) = S(β; an, bn) + op(n
−τ0),
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Sn(β) = Sn(β;n1, n2) + op(n
−τ0). Then nτ0{Sn(β) − S(β)} = nτ0{Sn(β;n1, n2) −

S(β; an, bn)}+ op(1). If the following

nτ0

{∣∣∣∣∣ 1n
n∑
i=1

ρ(Qn(i/n))− 1

n

n2∑
i=n1+1

ρ(Q(i/n))

∣∣∣∣∣
}

= op(1), (C.6)

and

1

n

n2∑
i=n1+1

ρ(Q(i/n)) =

∫ bn

an

ρ(Q(α))dα + o(1/n), (C.7)

hold, then (4.18) follows. Note that an, bn, n1, n2 are already defined in Remark 4.1.

First, we show that (C.6) hold under the assumptions.

nτ0

∣∣∣∣∣ 1n
n2∑

i=n1+1

ρ(Qn(i/n))− 1

n

n2∑
i=n1+1

ρ(Q(i/n))

∣∣∣∣∣
≤nτ0M 1

n

n2∑
i=n1+1

|{Qn,Y (i/n)−QY (i/n)} − {Qn,W (i/n)−QW (i/n)}| (C.8)

≤nτ0M 1

n

n2∑
i=n1+1

(
|Fn,Y (QY (i/n))− i/n|

fY (QY (i/n))
+
|Fn,W (QW (i/n))− i/n|

fW (QW (i/n))

)
(C.9)

+ nτ0M
1

n

n2∑
i=n1+1

(
Rn(i/n)/

√
n

fY (QY (i/n))
+

Rn(i/n)/
√
n

fW (QW (i/n))

)
. (C.10)

(C.8) follows from the Lipschitz continuity of ρ on Ωn (see (A1)). By (4.14), we obtain

(C.9) and (C.10). By the Dvoretzky-Kiefer-Wolfowitz inequality, for any constant

ε > 0 and any integer n > 0 it holds that

P

{
sup

0≤α≤1
|Fn,Y (QY (α))− α| > ε

}
≤ 2e−2nε2 ,

P

{
sup

0≤α≤1
|Fn,W (QW (α))− α| > ε

}
≤ 2e−2nε2 .
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Let ε = n−τ2 for some τ2 ∈ (τ1, 1/2), and put

An =

{
sup

0≤α≤1
|Fn,Y (QY (α))− α| ≤ ε

}
∩
{

sup
0≤α≤1

|Fn,W (QW (α))− α| ≤ ε

}
.

Then P (An) ≥ 1−4e−2nε2 → 1 as n→∞. Let αi = i/n. Since infQξ(α)∈Ωn fξ(Qξ(α)) =

n−(τ1−τ0) (by (A2)), (C.9)
p−→ 0, and (C.10)

a.s.−−→ 0. Thus (C.6) follows.

Second, by the assumptions (A1) and (A2), ρ(·) is a continuous convex dis-

crepancy function, and QY (α) and QW (α) are continuous on Ωn, which guarantees

that the existence of
∫ bn
an
ρ(Q(α))dα. By Taylor expansion, |Qξ(α) − Qξ(i/n)| =

n−1{fξ(Qξ(i/n))}−1(1 + o(1)) for any |α − i/n| ≤ 1/n. Hence, (C.7) holds. This

completes the proof.

Proof of Theorem 4.2. Since B is a compact set, there exists a finite number of

points β1, . . . ,βH in B such that

b1(β1, r1) ∪ · · · ∪ bH(βH , rH) ⊇ B,

where bh(βh, rh) denotes the sphere with center βh and radius rh, h = 1, 2, . . . , H.

We thus have

sup
β∈B
|Sn(β)− S(β)| ≤

H∑
h=1

sup
β∈Rh

|Sn(β)− S(β)|,

where Rh = bh(βh, rh) ∩ B, h = 1, 2, . . . , H. Then (4.17) can be obtained from the

following result

sup
β∈Rh

|Sn(β)− S(β)| p−→ 0, as n→∞, (C.11)
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for any h such that rh → 0. As rh → 0, β → βh.

Next, we show that (C.11) holds true. For ∀ β ∈ Rh,

|Sn(β)− S(β)| ≤ |Sn(β)− Sn(βh)|︸ ︷︷ ︸
I

+ |Sn(βh)− S(βh)|︸ ︷︷ ︸
II

+ |S(βh)− S(β)|︸ ︷︷ ︸
III

.

We first consider (III). Since S(β) is continuous, by the continuous mapping theorem,

it follows that

|S(βh)− S(β)| → 0 as rh → 0. (C.12)

We next evaluate (II). By Lemma 4.2 with τ = 0, we have

|Sn(βh)− S(βh)|
p−→ 0 , as n→∞. (C.13)

To study (I), we put W = β>X, Wh = β>hX. Then we have

|Sn(β)− Sn(βh)|

=

∣∣∣∣∣ 1n
n2∑

i=n1+1

{ρ(Qn,Y (i/n)−Qn,W (i/n))− ρ(Qn,Y (i/n)−Qn,Wh
(i/n))}+ λ(‖ω>β‖1 − ‖ω

>βh‖1)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n2∑

i=n1+1

{ρ(QY (i/n)−QW (i/n))− ρ(QY (i/n)−QWh
(i/n))}

∣∣∣∣∣+ op(1) + λ‖ω‖1‖β − βh‖1

≤
∣∣∣∣∫ bn

an

{ρ(QY (α)−QW (α))− ρ(QY (α)−QWh
(α))} dα

∣∣∣∣+ op(1) + rn + λ‖ω‖1‖β − βh‖1

≤M

∫ bn

an

|QW (α)−QWh
(α)|dα + λ‖ω‖1‖β − βh‖1 + op(1) + rn

≤Mε+ λ‖ω‖1ε+ op(1) + rn.

By (C.6), there exists a set An with P (An)→ 1 such that the first inequality follows.

The second inequality can be obtained by (C.7), where rn → 0. In view of the
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Lipschitz continuity of ρ, the third inequality holds. Since β → βh, the distribution

of W approximates to the distribution of Wh. For any ε > 0, |QW (α)−QWh
(α)| ≤ ε,

which guarantees the last inequality. We thus obtain that

|Sn(β)− Sn(βh)|
p−→ 0, as n→∞. (C.14)

By (C.12), (C.13) and (C.14), (C.11) holds. This completes the proof.

Proof of Theorem 4.3. As X, Y are bounded, then the matching quantiles M-

estimate β̂n is also bounded. Let B be a compact set that contains β0 and β̂n with

probability 1. Then it follows that

Sn(β0)− S(β0) ≥ Sn(β̂n)− S(β0) ≥ Sn(β̂n)− S(β̂n).

The first and second inequalities follow from the definition of β̂n and β0, respectively.

By Lemma 4.2, both Sn(β0)−S(β0) and Sn(β̂n)−S(β̂n) converge to 0 in probability.

Hence Sn(β̂n)− S(β0)
p−→ 0.

Proof of Theorem 4.4. We use the contraction method to prove the theorem.

Suppose there exists an ε0 > 0, such that

lim sup
n→∞

P{d(β̂n,B0) ≥ ε0} > 0.

Then ∃ δ1 > 0 and an integer subsequence {nk} ⊂ {n} such that limk→∞ P (Ak) =

δ1 > 0, where Ak = {β̂nk : d(β̂nk ,B0) ≥ ε0}. Define a subset D1 which is ε0-distance
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from B0. Let D1 = {β ∈ B : d(β,B0) ≥ ε0}. Then D1 is also a compact set, and

Ak ⊂ D1.

By the definition of B0, for ∀ β0 ∈ B0, there exists a δ2 > 0 such that infβ∈D1 S(β) =

δ2 + S(β0). Next define Bk = {β̂nk : |Snk(β̂nk) − S(β̂nk)| < δ2/2}, then P (Bk) → 1

(by Lemma 4.2).

Then on the set Ak ∩ Bk( 6= ∅), we have

Snk(β̂nk) ≥ S(β̂nk)− δ2/2 ≥ inf
β∈D1

S(β)− δ2/2 = S(β0) + δ2/2 > S(β0).

It contradicts to the fact that Sn(β̂n)→ S(β0) in probability (by Theorem 4.3).

We complete the proof.
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