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Abstract

Animals locomote for various reasons: to search for food, to find suitable habi-

tat, to pursue prey, to escape from predators, or to seek a mate. The grand scale of

biodiversity contributes to the great locomotory design and mode diversity. In this

dissertation, the locomotion of general biological species is referred to as bioloco-

motion. The goal of this dissertation is to develop a computational approach to

detect biolocomotion in any unprocessed video.

The ways biological entities locomote through an environment are extremely di-

verse. Various creatures make use of legs, wings, fins, and other means to move

through the world. Significantly, the motion exhibited by the body parts to navigate

through an environment can be modelled by a combination of an overall positional

advance with an overlaid asymmetric oscillatory pattern, a distinctive signature that

tends to be absent in non-biological objects in locomotion. In this dissertation, this

key trait of positional advance with asymmetric oscillation along with differences in

an object’s common motion (extrinsic motion) and localized motion of its parts (in-

trinsic motion) is exploited to detect biolocomotion. In particular, a computational

algorithm is developed to measure the presence of these traits in tracked objects to

determine if they correspond to a biological entity in locomotion. An alternative al-

gorithm, based on generic handcrafted features combined with learning is assembled

out of components from allied areas of investigation, also is presented as a basis of

ii



comparison to the main proposed algorithm.

A novel biolocomotion dataset encompassing a wide range of moving biological

and non-biological objects in natural settings is provided. Additionally, biolocomo-

tion annotations to an extant camouflage animals dataset also is provided. Quan-

titative results indicate that the proposed algorithm considerably outperforms the

alternative approach, supporting the hypothesis that biolocomotion can be detected

reliably based on its distinct signature of positional advance with asymmetric oscil-

lation and extrinsic/intrinsic motion dissimilarity.
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Chapter 1

Introduction

1.1 Motivation

Videos have become a vital component of our lives as they contain important infor-

mation about the world. This information has served humans in various domains

from security to robotics to entertainment and many more. Not only are videos

important sources of information, their sheer quantity is becoming overwhelming.

Given the potential quality of information available from videos and their vast quan-

tity, automated systems for processing and analyzing videos are of great importance.

A wide range of video analysis tasks have been considered in computer vision (e.g.,

segmentation [40, 127], tracking [20, 39, 66], and action recognition [48, 59, 64]). Cu-

riously, however, a task that appears to not have yet been addressed is the detection

of biological entities as they locomote through their environment. In this disserta-
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tion, general biological objects in locomotion will be referred to as biolocomotion

and its detection will refer to determining its spatiotemporal loci in the video.

Be it a natural or artificial intelligent system, the ability to detect biological en-

tities as they locomote would provide the system with powerful information about

what subsequent actions to take. In the realm of humans, the detection of bioloco-

motion can be used in monitoring systems to focus on regions of interest, assistive

robots to adapt its behaviour to assist its person of interest [70], sports analysis for

broadcast, coaching, or training [81, 110], and autonomous vehicle technology for safe

navigation. Similarly, its application can be extended to other animals to monitor

wildlife (e.g., to help preserve biodiversity). In addition, a concrete algorithm for

biolocomotion detection could provide the basis for a model of how natural systems

perform this task.

Biological evidence suggests that natural systems have the ability to detect biolo-

comotion on the basis of very limited visual data [57, 115]. This ability is especially

striking given the wide range of species and modes of locomotion; see Figure 1.1.

Perhaps the very wide range of intra-class variations has discouraged previous re-

searchers in artificial systems from delving into biolocomotion detection. Neverthe-

less, the ability of biological systems to detect biolocomotion from limited data raises

the possibility that there may be a distinctive signature to biolocomotion indepen-

dent of species type and mode of locomotion that could be leveraged by a computer

vision system. Given that all biological systems are governed by biomechanical prin-
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ciples, a possible basis for such a signature comes from biomechanics. Fortunately,

there is a rich literature on the biomechanics of animal locomotion from which to

draw [3, 9].

(a) Humans can locomote in various forms (e.g., climb, swim, roll, and walk).

(b) Variations in biological species (e.g., snake, turtle, terrestrial quadruped, and bird).

Figure 1.1: Variations in modes of locomotion and species. (a) Humans can locomote
in various ways (e.g., climb, swim, roll, and walk) and (b) biodiversity encompasses
a wide range of species (e.g., snake, turtle, cat, and bird).

The apparent ability of natural systems to detect biolocomotion from visual data

combined with its potential usefulness provides a strong motivation for studying

biolocomotion from a computational perspective.

1.2 Challenges

Like any image- or video-based recognition or detection task, biolocomotion detection

must be robust to variable acquisition scenarios (e.g., illumination, clutter, intrinsic

and extrinsic camera parameters). Beyond these usual concerns, two additional out-
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standing challenges must be considered in biolocomotion detection in videos. First,

there is extreme diversity in how biological entities move through the environment

(e.g., mammals use legs, birds use wings, and fish use fins); even within species,

wide variations are present (e.g., humans can walk, run, skip, or swim). Thus, a

general biolocomotion detection must be robust to such variations. Second, prior to

the work described in this dissertation, there were no extant datasets suitable for

developing and evaluating biolocomotion detection algorithms. Correspondingly, it

was necessary to construct a novel dataset for the task.

1.3 Contributions

The contributions of this dissertation are as follows.

• Biolocomotion detection in videos is introduced as a new research topic in

computer vision. Despite the strong motivation for this area of study, it appears

that no previous computer vision research has addressed this topic.

• A novel algorithm capable of spatiotemporally detecting biolocomotion in videos

is proposed. The proposed algorithm is motivated by biomechanical proper-

ties of animals in locomotion and psychophysical studies on biological motion

perception; thus, it benefits from not being required to learn the within class

variations of biological and non-biological objects in motion.

• An alternative algorithm for biolocomotion detection in videos is presented to

provide the main proposed algorithm with a basis for comparison in evaluation.
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This algorithm is assembled out of components from allied areas of investigation

(action proposals [118] and recognition [121]) and, unlike the main proposed

algorithm, relies on training rather than biomechanical modelling.

• A novel biolocomotion video dataset is introduced. The dataset is extremely

diverse in capturing terrestrial, aquatic, and aerial biological entities as well

as non-biological objects moving in various ways. Biolocomotion groundtruth

labels are provided for this dataset as well as an extant camouflage animals

dataset from allied area of motion segmentation [8]. These datasets are used

to evaluate both of the developed algorithms.

1.4 Dissertation Outline

This dissertation unfolds in five chapters. This initial chapter has served to mo-

tivate the importance of the proposed problem, biolocomotion detection in videos.

Chapter 2 covers related work from various fields ranging across biomechanics, psy-

chophysics, and computer vision. Chapter 3 provides a unified computational algo-

rithm inspired by biomechanics and psychophysics to detect biolocomotion in videos.

Chapter 4 provides empirical evaluation of the approach, including introduction of

a novel biolocomotion dataset as well as an alternative baseline algorithm. Finally,

Chapter 5 provides an overall summary of the presented research, as well as sugges-

tions for future research.
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Chapter 2

Related Research

2.1 Introduction

Animal locomotion has been studied extensively in ethology for some time. Animals

locomote for various reasons: to search for food, to find suitable habitat, to pursue

prey, to escape from predators, or to seek a mate. The grand scale of biodiversity

(ranging from mammals, lizards, birds, fish, insects, and many more) contributes

to the great locomotory design and mode diversity. Fortunately, there are com-

mon principles that underlie most of these components. Thus, understanding these

physical principles would provide a general understanding of why certain biological

structures evolved for movement. In complement, biological motion can be detected

with very limited visual data by natural visual systems [57, 115]. The goal of this dis-

sertation is to use common traits found in biomechanics of moving biological species

and biological motion perception in psychophysics to build a unified computational
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approach to detect arbitrary locomoting biological species in videos.

This chapter unfolds in five sections. This first section has served to identify

related fields for the development of a biolocomotion detection algorithm in videos.

Section 2.2 covers the biomechanical properties that underlie locomotion in biological

species. Section 2.3 describes characteristic motions that induce the perception of

biological motion. Section 2.4 describes computational work developed for biological

motion analysis. Finally, Section 2.5 provides an overall summary of the work from

various fields that are necessary to build a unified approach for the detection of

biolocomotion in videos. Note that extensive reviews of animal locomotion using

biomechanical properties can be found in [3, 9] and surveys on the perception of

biological motion in psychophysics can be found in [113, 114].

2.2 Biomechanics

While the means by which animals traverse their environment is extremely varied,

common locomotory mechanisms have emerged as a result of biomechanical con-

straints. In particular, animal locomotion is typically accompanied by the overall

positional advance with an asymmetric oscillatory trace of the body parts to provide

a propulsive force, as will be detailed in this section.

Land, air, and water constitute the type of environments animals move through.

The properties of these media, such as density and viscosity, can influence the loco-
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motory mechanisms evolved by the animals [9]. Air has lower density than water.

Thus, aerial animals must exert sufficient forces to support their weight in air, while

most aquatic animals are neutrally buoyant since their body density is nearly the

same as water [9]. Air also has lower viscosity than water. This lower viscosity

imposes less, but non-absent, drag forces on flying and terrestrial animals compared

to aquatic animals. In essence: aerial animals must generate enough force to lift

their bodies as well as thrust to overcome the aerodynamic drag forces associated

with moving forward; aquatic animals must swim strategically to reduce drag forces

induced by high viscosity of water; and terrestrial animals must overcome gravita-

tional forces as they move.

For each medium, animals can locomote in various forms. Movement in air can

be achieved by gliding or flapping, where flight by glide generates lift by keeping

the wing fixed and exploits the airflow for movement and flapping generates lift and

thrust forces simultaneously by continuous wing oscillation [3, 19]. Movement in wa-

ter can be achieved by lift-powered swimming, undulation, drag-powered swimming,

or jet propulsion. Lift-powered swimming involves flapping fins or tail to propel for-

ward, undulation refers to the oscillation of the entire body, drag-powered swimming

pushes water backwards by using fins or limbs as oars that move back and forth,

and jet-propulsion involves sequential ingestion and expulsion of finite mass of water

[3, 19]. Movement on land can be achieved by crawling, walking, running, hopping, or

jumping [3, 19]. A common trait across these different means of powered locomotion

is the activation of muscles to lengthen and shorten at constantly changing speeds
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to accelerate and decelerate moving body parts. An exception is glide, as glide is an

unpowered flight as it generates no mechanical power with its flight muscles [9, 19].

These powered actions apply forces in an oscillatory manner such that a structure

with mass (body and/or its part) oscillates in its environment [3, 9].

A generalized model to understand the dynamics of legged terrestrial locomotion

(e.g., trot, run, and hop) often builds on the bouncing spring-mass model [13, 78].

The spring-mass model consists of a massless spring attached to a point mass, where

the leg is represented by the spring and the body of an animal is represented by the

point mass. A point-mass spring has been used to model uniformly a wide range

of species (e.g., humans, dogs, kangaroos, land birds, crabs, and cockroaches) across

different locomotory designs (e.g., number, length, shape, position, and skeleton type

of legs), as the relative vertical ground-reaction force and the relative compression

of the leg are the essential, yet common, components required to move an animal’s

centre of mass [12]. Indeed, several walking [27, 76], running, and hopping [94] robots

and computational models for tracking [18] have emerged through the understand-

ing of legged locomotion via the bouncing spring-mass model [19, 76]. Overall, the

bouncing spring-mass model further underlines that oscillation can be an important

component of biological locomotion.

The use of rotating systems as a means of transport has brought tremendous

efficiency in artificial locomotory devices (e.g., wheels and propellers). However,

very few biological species have adapted rotating systems as a means for locomotion;
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notable exceptions include bacterial flagellum, rolling spiders, caterpiller-tred stom-

atopods, and pangolins [67]. The lack of rotating systems in natural systems can be

attributed to environmental constraints or the level of efficiency. That is, consider

wheel-based transportation on terrestrial surfaces. These are efficient modes on flat

rigid terrains (e.g., asphalt and concrete), but far less on irregular terrains - a very

common characteristic of natural terrains. In addition, wheel-based transportation

require corners to be wide enough and not too sharp for manoeuvrability, which

would be a severe disadvantage for species in cluttered terrains. As a result, natural

selection favours the evolution of limbs capable of travelling on irregular surfaces

and manoeuvring around obstacles [9, 67]. As another example, thrusting in aerial

or aquatic media by propellers (as done by artificial locomotory devices) is far less

energetically efficient than oscillating flexible foils (as in caudal fin of fish and bird

wings) [61]. Consequently, natural systems favour the oscillation of the body and/or

its appendages for its energetic savings [67].

Moving efficiently is a very important aspect of biological motion. In terrestrial

locomotion, specifically in walking, electromyography (EMG) data revealed that once

the leg muscles are activated to set the foot into motion during the stance phase,

its muscles are almost inactive during the swing phase, such that the foot moves

entirely under the influence of gravity [29]. In aerial locomotion, the wings rotate

to move down and in front of its body during the downstroke and move up and

slightly backwards during the upstroke to generate lift and thrust forces simultane-

ously [7, 9, 129]. In aquatic locomotion, the body and/or appendages accelerate to
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produce a propulsive force, then decelerate before initiating its subsequent propul-

sive stroke to maintain steady speed in its viscous environment [9, 42]. In general,

the effective means of locomotion in various media results in an asymmetric path

traced by body parts of animals as they traverse their environments. This asymme-

try results because a steeper slope is observed during the lift/stance phase of a walk

compared to the swing phase, downstroke compared to upstroke during flight, and

initiation compared to completion of a propulsive stroke in swimming; see Figure 2.1.

Figure 2.1: Illustration of characteristic motion patterns exhibited by locomoting
biological objects in various media (human on land, bird in air, and fish in water).
As objects move across time (indicated by varying grey levels, with lighter-to-darker
moving forward in time), the means that biological objects use to locomote (legs for
humans, wings for birds, and body/fins for fish) exhibit an asymmetric sinusoidal
pattern (marked in red).

Overall, consideration of the biomechanics of animal locomotion shows that re-

gardless of the wide range of locomotory designs of different animals in various me-

dia, animal locomotion involves the use of its body and/or appendages to generate

propulsion. Specifically, the acceleration and deceleration in an oscillatory fashion of

the body and/or its parts to move in its environment is commonly observed. More-

over, the oscillation typically unfolds in an asymmetric fashion across time. Provided

such patterns can be visually observed, there is potential for the development of a

principled approach for biolocomotion detection in videos.

11



2.3 Psychophysics

Psychophysical studies have shown that human observers are able to perceive a set

of dynamic dots as a coherent figure representative of a person or other animals in

motion, provided the dots are located near major joints and their motions are con-

sistent with their representative figures [55, 75]. These visual stimuli are referred

to as point-light displays; see Figure 2.2. Studies on point-light displays show

that biological motion can be perceived in the absence of any relevant appearance

information (e.g., body silhouette, texture, or colour). It also has been shown that

other animals can perceive biological motion in such displays (e.g., cats [11], pigeons

[35], and chicks [117]). Indeed, not only can gross motion patterns be discriminated

(e.g., walk, run, and stair climb), but more subtle differences can be perceived (e.g.,

gender [4, 65, 112] and emotion [36, 91]). It is argued that in making such inferences,

biological visual systems decompose motion in terms of common motion, referred to

as extrinsic motion, and relative motion between parts, referred to as intrinsic

motion [55]. Interestingly, neuroimaging studies have been able to localize biological

motion processing in the brain [22].

The direction discrimination task is a task that asks the observers to indi-

cate which direction (left or right) the figures depicted in point-light displays are

facing. Such experiments have shown that direction discrimination accuracies are

highly correlated with the amount the displays appeared animate when variations of

the display (coherent vs. scrambled and upright vs. inverted) were presented to the

observers [23]. Consequently, the direction discrimination task has often been used to
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Figure 2.2: Illustration of a point-light display. A set of 11 markers are used to
represent the major joints of the human body (the head, shoulder, hip, two elbows,
two wrists, two knees, and two ankles). Three frames from a sequence of such markers
animated in accord with the motion of a walking person. Human observers perceive a
temporal sequence of such frames as resulting from a walking human. Figure redrawn
from [55].

study the perception of biological motion. Further studies on the direction discrim-

ination task have indicated that the local motion, of feet in particular, play a vital

role in the accuracy of direction identification [57, 115]. Experiments comparing the

displays of naturally accelerating foot motions with those containing constant speeds

revealed that the acceleration contained in the foot motion plays a significant role

in direction discrimination accuracy [24, 49]. It has been shown that other animals

(e.g., newly hatched chicks) show similar sensitivity to vertical acceleration, as they

respond to upright point-light displays (of a hen) by aligning their bodies in the ap-

parent direction of motion but not to inverted displays [117]. These findings suggest

that biological motion perception is based on the vertical acceleration patterns the

foot exhibits as an animal moves through the environment.
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Psychophysical evidence suggests that humans can make inferences of animacy

from the trajectory that an object traces [10]. Further evidence shows that humans

can discriminate between symmetric and asymmetric trajectories [82]. Combining

these pieces of evidence with the above reviewed work on point-light displays sug-

gests that motion information similar to those found in biomechanics that indicate

locomoting biological species (e.g., asymmetric oscillatory traces) may also be ex-

ploited in biological vision systems. Moreover, they suggest the potential efficacy of

decomposing motion into intrinsic and extrinsic components in making such infer-

ences.

2.4 Computational Vision

Some computational vision work was inspired by the ability of humans to perceive

biological structure and motion in point-light displays viewed across time. Early

work along these lines reconstructed the 3D structure and motion of animals us-

ing anatomical constraints by observing that animal limbs are (i) rigid, (ii) have a

fixed length, and (iii) typically move in a single plane for extended periods of time

[50]. While these anatomical constraints are generally true of legged terrestrial and

aerial animals, they are not true for undulating animals. Furthermore, estimating

the species-invariant animal pose in a non-intrusive way with a limited set of training

data is a challenging task that further limits the exploitation of the proposed method

from working on point-light displays.
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Other work made use of 3D periodicity constraints [132]. The goal is to recon-

struct a 3D structure from motion capture data of humans, rather than to detect

general biological species in locomotion. Nevertheless, a walking human is described

as a Fourier representation of (i) average posture, (ii) characteristic postures of the

fundamental frequency, (iii) second harmonic of a discrete Fourier expansion, (iv)

fundamental frequency, which does not explicitly model vertical acceleration that

is present. While the notion of asymmetry is mentioned, it is in the context of left

and right limb asymmetry and not within a stride as prevalent in animal locomotion.

Taking further inspiration from biology regarding how the mammalian visual sys-

tem appears to process information in two parallel streams for form and motion [46],

a corresponding algorithm was developed to infer biological shape and motion mod-

els from sparse point displays [45]. Specifically, the form pathway that analyzes the

body shapes was modelled using Gabor-like filters [58] to obtain orientation details,

max-like pooling [97] to provide position and scale-invariance, then Gaussian radial

basis functions [89] to support selectivity towards complex shapes. The motion path-

way was modelled using optical flow [44] patterns to mimic the direction sensitive

and motion sensitive patterns in our brain. While their model provided a compu-

tational demonstration that the motion (dorsal) pathway is predominantly active

(and that the form (ventral) pathway tends not to be activated) in the recognition

of the point-light displays, it did not address how the motion model can be used to

detect general biolocomotion nor the specific motion patterns that were learned for

the categorization.
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Yet another method considered decomposing motion exhibited by an animation

(e.g., a person walking or strutting, a kangaroo or a rabbit hopping) into global

and local components [103], akin to extrinsic and intrinsic motions used to describe

perceptual organization in the biological visual system [55]. The global component

is responsible for measuring the motion of the object’s centre of mass and the local

component measures the rate of dispersion of the object about its centre of mass.

Similar to other computational work to date, this algorithm did not address how a

general biological species can be detected nor how a non-biolocomoting object can

be rejected.

Periodic motion has been used in previous work to detect, track, and classify

objects in videos (e.g., humans and dogs) [1, 16, 30, 83, 90, 95, 102, 116]. Across

this research direction, various approaches have been proposed for periodic motion

detection, including time-frequency analysis [16, 30, 100, 116], period trace [102],

hypothesis testing on periodograms [95], and convolutional neural networks (CNNs)

[71]. A limitation of these approaches is that they rely on non-trivial preprocessing of

their input videos, including extraction of points corresponding to the major joints of

the human body [116], conversion to figure-centric volumes [30, 90, 95], background-

subtraction [16], require a precise slicing of a video along the XT-axis [83], or require

static cameras [71] to obtain data indicative of periodic motion. Furthermore, the

computational vision literature often has modelled a person’s walk via an inverted

pendulum [1, 107], while a spring-mass system is a more accurate representation, as

it accounts for the vertical ground-reaction force [43]. Significantly, none of these
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approaches have been applied to the challenge of general biolocomotion detection of

species on land, in air, and in water. Indeed, analysis of oscillation alone does not

suffice for detection of biolocomotion, as not all oscillating objects are locomoting

biological entities (e.g., person using a jump rope or a pendulum).

There has been growing interest in applications of computer vision to species

classification and detection for wildlife. Correspondingly, several datasets that con-

centrate on imagery of wildlife in natural habitats (e.g., CUB200 [123], NABirds700

[52], iNat2017 [51], Snapshot Serengeti [109], Missouri Camera-Trap [131], and CCT-

20 [6]) have been made available to the research community. CUB200, NABirds700,

iNat2017, and CCT-20 are image datasets; and the Snapshot Serengeti dataset con-

sists of image sequences collected from a camera trap, which are heat- or motion-

activated cameras that capture a single image or a short sequences of images (1-

5 frames with a frame rate of approximately 1 frame per second) at each trigger

[84]. The interest of the current dissertation, however, lies in common videos rather

than specialized ones, which are typically of longer duration and have higher frame

rate (typically between 25-30). Furthermore, while datasets extracted from camera

traps (e.g., Snapshot Serengeti, Missouri Camera-Trap, and CCT-20) pose various

challenges similar to those in-the-wild, such as dynamic background, illumination

changes, cluttered and dynamic scenes, they lack camera motion. Thus, some de-

tection algorithms developed to perform reasonably on camera trap data are limited

to videos with limited camera motion [6, 72]. Moreover, CUB200 and NABirds700

focus on fine-grained species classification, thus only consist of bird images, while
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the goal of the present dissertation is to detect a wide range of species in locomotion.

Thus, current algorithms developed to perform reasonably on wildlife datasets are

either constrained to images [25], images that have been manually cropped to delin-

eate the animals of interest [25, 128], species-specific [80, 125], or background-specific

[130, 131] requiring sufficient training data to model those background in the test

set [25].

Overall, while considerable computational work has addressed biological motion

analysis or detection and classification of biological species in images, none has con-

sidered the detection of general biolocomotion in videos.

2.5 Summary

Despite the diverse locomotory designs that exist in different animals, there are sig-

nificant mechanical and energetic similarities in the body and/or its parts for various

types of locomotion. These underlying biomechanical constraints have been incor-

porated into minimalist models of legged animal locomotion in terms of a bouncing

mass-spring model [13, 77, 93] that have been successfully applied to a wide range of

terrestrial animals. Significantly, the implied overall positional advance of the body

along with asymmetric oscillatory motion of its parts is present not just in terrestrial

legged locomotion, but also extends to non-legged terrestrial [74], aerial [92], and

aquatic [69, 111, 124] creatures.
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Psychophysical studies suggest that the vertical acceleration pattern induced by

gravitational and biomechanical constraints in terrestrial creatures play a significant

role in the perception of biological motion [24, 49]. Vertical acceleration exhibited

by these creatures as they push off against gravity causes their trajectories to trace

asymmetric oscillatory patterns, while non-biological objects that locomote with os-

cillation display symmetric cycloidal patterns during their advance (e.g., rolling ob-

jects). Moreover, other studies from psychophysics have revealed that the human

visual system decomposes the kinematics of an object into common translatory and

residual motion (i.e., extrinsic and intrinsic motion) to understand the mechanics

of a scene [55, 56]. The overall direction of an object (e.g., translation of a walker)

and the local cues of the body (e.g., trajectory of the feet) tend to be different in

locomoting biological entities as compared to non-biological objects.

While previous computational work has addressed animal motion analysis, none

has addressed the detection of general biolocomotion in videos. Building on work

from the biomechanics and perceptual psychophysics of biological motion, the re-

mainder of this dissertation presents the first algorithm capable of spatiotemporally

detecting biolocomotion in videos. Notably, the biomechanical and psychophysical

principles motivate the definition of species-invariant biolocomotion signatures so

that the approach benefits from not needing to model the wide range of within class

variations of biological and non-biological objects in motion.
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Chapter 3

Technical Approach

3.1 Introduction

The goal of a biolocomotion detection algorithm is to take an unprocessed video and

output the spatiotemporal coordinates of biolocomotion; see Figure 3.1. To achieve

this goal, distinctive properties of biolocomotion as seen in videos must be defined.

A key trait that can be observed from biomechanics of animal locomotion and per-

ception of biological motion is a directional trajectory modulated by asymmetric

oscillation along with differences in its overall motion and its local cues. This obser-

vation is used as the basis for biolocomotion detection. In particular, a collection of

trajectories across an image sequence that show an overall advance in spatial position

of their tracked elements (i.e., locomotion) that exhibit asymmetric oscillation and

overall motion (extrinsic motion) difference from its local cues (intrinsic motion) is

detected; e.g., Figure 3.2.
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Raw Video

e.g., Feature

Extraction

Biolocomotion

Detector

Biolocomotion Label

e.g., (x, y, h, w) = (92, 50, 205, 418)

Figure 3.1: General framework of the biolocomotion detection algorithm. The input
and output of the proposed biolocomotion algorithm are marked in blue and the in-
termediate components that are involved in obtaining the spatiotemporal coordinates
of locomoting biological objects in a video are marked in green.

This chapter unfolds in five sections. This first section has served to define the

problem under consideration and outline the components necessary for biolocomo-

tion detection. Section 3.2 describes the extraction of primitive features that can

encapsulate critical information for modelling biolocomotion in terms of image point

trajectories traced during biolocomotion. Section 3.3 presents algorithmic measures

that map the extracted features to various components of the developed biolocomo-

tion detector. Section 3.4 presents a sliding window realization of the approach for

continuous video processing. Finally, Section 3.5 provides an overall summary of the

approach.
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(a) Biological objects in locomotion (b) Non-biological objects in locomotion (c) Metronome

Figure 3.2: Illustration of characteristic motion patterns exhibited by (a) biological objects in locomotion,
(b) non-biological objects in locomotion, and (c) a non-biological object in oscillation. As objects move
across time (indicated by varying grey levels, with lighter-to-darker moving forward in time), the means
that biological objects use to locomote (e.g., legs for humans, wings for birds, body/fins for fish) exhibit an
asymmetric sinusoidal pattern (with a point in yellow generating the red trace). Non-biological objects in
locomotion, on the other hand, tend to exhibit either trajectories that lack oscillation as they move (e.g., car
and plane), trajectories with symmetric oscillation (e.g., rolling ball), or the extrinsic motion (i.e., overall
direction of motion) (blue) and its intrinsic motion (i.e., local cues) (red) tend to coincide (e.g., bouncing
ball), while an oscillating non-biological object (e.g., metronome) does not have an accompanying overall
positional advance. Note that the alignment of the extrinsic and intrinsic curves yield an alternating red and
blue traces for locomoting non-biological objects, except those where the intrinsic component traces a cycloid.
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3.2 Feature Extraction

In this dissertation, a collection of tracked point trajectories serve as inputs to the

biolocomotion detector. Thus, in this section, a definition of point trajectories and

subsequent post-processing that make the trajectories more amenable to further bi-

olocomotion processing are provided.

3.2.1 Point Trajectories

Given an input video, point trajectories provide the path in which the tracked point

travelled across time. In particular, point trajectories support quantitative measure-

ment of key components that distinguish biolocomotion: spatial advance in overall

position, asymmetric oscillatory traces, and a difference between extrinsic and in-

trinsic motions. Consequently, a collection of tracked point trajectories are used as

inputs to the biolocomotion detector. There are variety of approaches to obtain-

ing point trajectories available in the field of computer vision (e.g., KLT Trajectories

[79], SIFT Trajectories [108], and Dense Trajectories [120, 122]). In this dissertation,

the recovered trajectories are built on improved Dense Trajectories (iDTs) [121] that

previously supported state-of-the-art performance amongst handcrafted algorithms

for action recognition. This choice is made since biolocomotion detection itself can

be conceptualized as a type of an action.

The iDTs are built on Dense Trajectories (DTs), which are obtained by densely

sampling feature points on a grid space by S pixels over several spatial scales to en-
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sure that the feature points are sampled from all spatial positions and scales. While

denser sampling (e.g., S = 2 to sample every other pixel) offers better performance, it

significantly increases computational complexity. Thus, DTs extracted at a sampling

stride of S = 20 are used in present work. Since points in homogeneous areas are

difficult to track reliably, they are removed using the good-features-to-track criterion

[104], which removes points with very small eigenvalues of the auto-correlation ma-

trix. Feature points are tracked at each spatial scale separately. Each feature point

x(t) = (x(t), y(t)) at frame t is tracked to the next frame t + 1 by median filtering

on a dense optical flow field u(t) = (u(t), v(t)), where u(t) and v(t) are horizontal

and vertical components of the optical flow, respectively. Specifically, given a point

x(t), its tracked position in the next image frame is smoothed by applying a median

filter on u(t):

x(t+ 1) = x(t) + (M ∗ u(t))|x(t), (3.1)

where M is a 3× 3 median filtering kernel. Points of subsequent frames are concate-

nated to form trajectories T = [x(t) x(t+ 1) . . . x(t+L)]. To overcome the drifting

effect (i.e., points drifting from their true locations during the tracking process), the

length of the trajectories are limited to L frames. Empirically, dense trajectories

that span L = 15 − 20 frames have been found effective in the action recognition

literature [122]. Thus, trajectories of L = 15 are used in the current work.

Dense trajectories can be improved by removing the global background motion

created by camera motion. Here, camera motion is estimated by assuming that

two consecutive frames are related by a homography, where the homography is es-
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timated by finding correspondences between two frames. The correspondences can

be found by: (i) extracting SURF features [5] and matching them based on the

nearest neighbour rule, and (ii) sampling motion vectors from optical flow using the

good-features-to-track criterion. The candidates from the two approaches are used to

estimate the homography using RANSAC [41] to rectify the image to remove camera

motion. Compared to the original flow, the rectified version suppresses the back-

ground camera motion and enhances the foreground moving objects. Trajectories

generated by camera motion are removed by thresholding the displacement vectors

of the trajectories in the warped flow field. If the displacement is too small, the

trajectory is considered to be too similar to camera motion, and thus removed.

In this dissertation, a tracked point trajectory,

T k(t) =

[
xk1(t) xk2(t+ 1) · · · xk

Lk(t+ Lk − 1)

]
(3.2)

denotes trajectory k that begins at frame t with a temporal length of Lk and its lth

point for 1 ≤ l ≤ Lk is specified by

xkl (t) = (xkl (t), y
k
l (t)). (3.3)

Note T k(t) and T k as well as xkl (t), xk(t), and xkl will be used interchangeably for

simplicity throughout this dissertation, where xk(t) will be used to emphasize a point

present at frame t and xkl to emphasize the lth point of trajectory T k. Furthermore,

x and y components will be referred to as horizontal and vertical components, re-
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spectively, of the trajectory.

A displacement vector of trajectory T k at frame t from ∆t previous frames is

defined as

∆xk(t,∆t) = xk(t)− xk(t−∆t). (3.4)

For simplicity, ∆xk(t) will be used to denote ∆xk(t,1).

The arc length of trajectory T k is defined as

‖T k‖ =
Lk−1∑
l=1

√
(xkl+1 − xkl )2 + (ykl+1 − ykl )2. (3.5)

Select measurements, such as amplitude and asymmetry, are sensitive to the spa-

tial direction of the trajectory as it unfolds across time. To ensure these calculations

are robust to such situations, it is necessary to detrend trajectory T k to T̃ k. Trajec-

tory T k can be detrended by (i) determining the line of best fit using least squares,

(ii) finding the angle, θ, between the line of best fit and the positive x-axis of a 2D

Cartesian plane, (iii) rotating trajectory T k by −θ, then (iv) applying vertical trans-

lation such that its horizontal mean is 0 (i.e., mean∀l(ỹl
k) = 0). Note that proper

measurement of a trajectory’s oscillation amplitude depends on the correct ordering

of rotation and demeaning; see Figure 3.3.
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Figure 3.3: Detrending a trajectory. To obtain an accurate measurement of the tra-
jectory amplitude, the trajectory must be rotated then demeaned. Given a trajectory
representative of a sinusoid rotated θ = 45◦ counterclockwise about the origin with
an amplitude of A = 1 (red), the amplitude of its demeaned trajectory (green) is 1√

2
,

while the amplitude of a rotated then demeaned trajectory (blue) is 1.

3.2.2 Trajectory Post-Processing

Collections of point trajectories serve as input to the proposed biolocomotion detec-

tor. While iDTs have previously supported state-of-the-art performance in action

recognition, it is necessary to further post-process the iDT results prior to passing

them to the biolocomotion detector, as follows. First, they must be pruned to remove

unuseful trajectories for biolocomotion. Second, they need to be clustered so that

biolocomotion detection operates on sets of trajectories that are likely to correspond

to a single or similarly moving entity in the world. Third, iDTs do not have adequate

robustness to camera motion for present purposes. Correspondingly, they need to be
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further stabilized. Fourth, it is useful to elongate them to allow for more temporal

support in biolocomotion detection. In the remainder of this section, the entailed

processing steps are outlined with details provided in Appendix A.

Pruning Trajectories

Static trajectories and random trajectories are unlikely to provide meaningful infor-

mation in identifying biolocomotion. Hence, trajectories that do not contain motion

information or trajectories with sudden large displacements, which are likely to be

erroneous, are removed before they are further processed. While original iDT cal-

culations include measures to remove static and random trajectories [121], they are

deemed either insufficient or too aggressive for current purposes. In response, vari-

ants on conditions considered in iDT calculations have been defined and employed.

Clustering Trajectories

Given a set of trajectories, the trajectories are clustered into disjoint sets such that

each cluster corresponds to a single or similarly moving object in the world. A variant

on spectral trajectory clustering is employed as the original formulation [17] produced

poor results for the considered trajectories. Correspondingly, alternative measures of

positional and shape affinities are defined for trajectory pairs in spectral clustering.

The output of this processing stage are the centres as well as the horizontal and

vertical extents of ellipses that cover each cluster.
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Stabilizing Trajectories

Many videos in-the-wild have camera motion. While iDTs are designed for some

robustness to camera motion, their processing is inadequate for current purposes for

two reasons. (1) In some cases, objects do not exhibit their actual locomotion in

the captured video because it was recorded to stabilize the object of interest in the

field of view. In such cases, the tracked object would remain in the same position

(exhibiting near zero displacement) within the image, while it is in locomotion in

the real world (exhibiting non-zero displacement). By undoing the stabilization the

camera operator has imposed, the tracked object in the image would be more rep-

resentative of its locomotion, also exhibiting non-zero displacement; see Figure 3.4.

The iDTs do not model such situations. (2) In other cases, iDTs simply contain

too much residual motion arising from the camera to adequately capture signatures

representative of biolocomotion. In response, the trajectories are stabilized to reveal

the motion of the objects in the field of view with additional robustness to camera

motion.
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(a) Object-centric image sequence from operator imposed camera motion to track

object of interest.

(b) Camera motion stabilization can reestablish object motion.

Figure 3.4: Camera motion compensation via stabilization. (a) Select frames demon-
strating an object-centric stabilized video. The object of interest (dog) appears near
the centre of the frame across the image sequence even though it is locomoting in
the real-world. (b) Corresponding frames with camera motion stabilization. Camera
motion that the camera operator has imposed to centre the object of interest within
the field of view (i.e., pan) is undone, such that features extracted from the camera
motion stabilized video is more representative of biolocomotion in the real-world.
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Elongating Trajectories

To overcome the drifting effect when tracking points, it is recommended that iDTs

only span 15 − 20 frames for videos captured at 30 fps [121]. In contrast, biolo-

comotion detection benefits from longer trajectories, especially to provide sufficient

time to diagnose asymmetric oscillatory behaviour. In response, iDTs are concate-

nated across frames based on spatial proximity and appearance similarity to obtain

elongated trajectories.

3.3 Biolocomotion Detector

A collection of tracked point trajectories are used as the input to the proposed algo-

rithm to analyze motion in terms of (i) locomotion, (ii) oscillation, (iii) asymmetry,

and (iv) extrinsic motion dissimilarity1; see Figure 3.5. In this section, approaches

to quantifying these components will be defined, followed by a way to combine these

measures into a single biolocomotion detector. Throughout the section, each com-

ponent will be defined while alluding to the simple real-life example in Figure 3.6

that variously exhibits locomotion without oscillation (toy car), oscillation without

locomotion (pendulum), symmetric oscillation with locomotion (rolling ball), asym-

metric oscillation with coinciding extrinsic and intrinsic motions (bouncing ball), and

asymmetric oscillation with dissimilar extrinsic and intrinsic motions (person).

1For the sake of compactness, the dissimilarity between extrinsic and intrinsic motion will be
referred to as extrinsic motion dissimilarity in the following.
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Biolocomotion
Detector, SB

Locomotion, MΛ

• centre of mass

Oscillation, MΩ

• amplitude
Asymmetry, MΣ

• area-under-the-curve

Extrinsic Motion
Dissimilarity, ME

• extrinsic vs. intrinsic

Figure 3.5: Composition of components of the developed biolocomotion detector.
The detector consists of components that measure locomotion,MΛ, oscillation,MΩ,
asymmetry, MΣ, and extrinsic motion dissimilarity, ME. Locomotion is measured
based on the aggregate displacement of the centre of mass, oscillation and asymmetry
are calculated based on amplitude and area-under-the-curve of the trajectories, re-
spectively, and extrinsic motion dissimilarity is measured based on the dissimilarity
between extrinsic and intrinsic displacement vectors.
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(a) Select frames

(b) Tracked points and their trajectories

(c) Measure of Locomotion, MΛ (d) Measure of Oscillation, MΩ (e) Measure of Asymmetry, MΣ (f) Measure of Extrinsic Motion Dissimilarity, ME

(g) Measure of Biolocomotion, SB

Figure 3.6: A simple real-world illustration of biolocomotion analysis. (a) Select frames demonstrating non-
biological objects in locomotion (toy car at frame 145, rolling ball at frame 817, and bouncing ball at frames
917 and 941), a biological object in locomotion (person at frames 244 and 265), and a non-biological object
in oscillation (pendulum at frames 330, 355 and 441). (b) Tracked points (yellow) and their trajectories
overlaid with red, blue, green, purple, and orange indicating the toy car, person, pendulum, rolling ball, and
bouncing ball, respectively. (c-g) Recovered measures of locomotion (MΛ), oscillation (MΩ), asymmetry
(MΣ), extrinsic motion dissimilarity (ME), and biolocomotion (SB) with respect to time (in frames).
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3.3.1 Measure of Locomotion, MΛ

The amount an object displaces from one location to another in a given temporal

window is quantified using a set of trajectories by calculating the measure of lo-

comotion,MΛ; see blue curves in Figure 3.2a,b or lack thereof in Figure 3.2c. The

measure of locomotion can be evaluated by considering the norm (e.g., L1, L2, etc.)

of the average displacements of the object over some temporal window. In the fol-

lowing, a measure of locomotion is described.

(a) Original Frame (b) Recovered Trajectories (c) Centroid

Figure 3.7: Centroid of points at frame t. (a) Input video at frame t. (b) Points
present at frame t (yellow dots) can be extracted from a set of trajectories that
are present at frame t (red lines). (c) The centroid (red cross) can be obtained by
computing the trimmed mean of the points that are present at frame t (yellow dots
in (b)).

The displacement of an object is measured by considering the displacements of

the centroid of an object over some temporal window; see Figure 3.7. The centroid

of an object at frame t, x̄c(t), is calculated by considering the trimmed mean of

points that are present at frame t for 1 ≤ t ≤ T according to

x̄c(t) = (x̄c(t), ȳc(t)) =

 1

|X(t)|
∑

xk(t)∈X(t)

xk(t),
1

|Y (t)|
∑

yk(t)∈Y (t)

yk(t)

 , (3.6)
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where X(t) and Y (t) are sets of points measured along the horizontal and vertical

axes, respectively, present at frame t within 1.5 of the standard deviation from its

respective mean. That is, suppose µx(t) and σx(t) denotes the mean and the standard

deviation, respectively, of trajectory points present at frame t measured along the

horizontal axis. Then a set of points, X(t), along the horizontal axis at frame t is

defined as

X(t) = {xk(t) | µx(t)− 1.5σx(t) ≤ xk(t) ≤ µx(t) + 1.5σx(t)}. (3.7)

To ensure that reliable data contributes to the calculation of x̄c(t), only data within

1.5 of the standard deviation from the mean are considered. Discarding data that are

outside 1.5 of the standard deviation from the mean ensures the final measurement,

x̄c(t), is based on approximately 86.67% of the total data while the lowest 6.68% and

highest 6.68%, that may correspond to noise, are discarded.

Similarly, a set of points, Y (t), along the vertical axis at frame t is defined as

Y (t) = {yk(t) | µy(t)− 1.5σy(t) ≤ yk(t) ≤ µy(t) + 1.5σy(t)} (3.8)

for mean and standard deviation, µy(t) and σy(t), respectively, of trajectory points

present at frame t along the vertical axis.

Consequently, the centroid displacement vector at frame t from a previous
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frame at t−∆t is defined as

∆x̄c(t,∆t) = x̄c(t)− x̄c(t−∆t). (3.9)

Note that ∆x̄c(t,∆t) is similar to ∆x̄k(t,∆t) for trajectory T k (3.4), except ∆x̄c(t,∆t) is

specific for centroids.

Finally, the measure of locomotion is obtained by combining the overall horizontal

and vertical displacements of the centroids over a temporal window. Mathematically,

it is defined as

MΛ(t) ≡

√√√√√
 1

min {ω, t}

t∑
n=max {t−ω,1}

∆x̄c(n)

2

+

 1

min {ω, t}

t∑
n=max {t−ω,1}

∆ȳc(n)

2

,

(3.10)

for some constant ω > 0, which represents the length of the temporal window.

Empirically, ω is set to the frame rate of the video. Since the goal is to quantify

displacement rather than distance, framewise displacements are aggregated (without

considering their absolute values) before overall magnitude is calculated.

It can be observed in Figure 3.6c that as the toy car, person, and the balls make

a spatial advance, their locomotion measurements (red, blue, purple, and orange,

respectively) are large, while the pendulum (green) has a low locomotion measure

since its overall displacement is zero.
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3.3.2 Measure of Oscillation, MΩ

The amount of oscillation exhibited by an object can be quantitatively measured by

considering the behaviour of the entire trajectory (as opposed to the centroid of the

tracked points). In particular, the oscillatory behaviour induced by the motion of

a localized body part (e.g., a limb) can be captured by considering its amplitude,

where large amplitudes generally provide a stronger evidence of oscillation; cf. loco-

moting biological species and locomoting non-biological objects in Figure 3.2. Thus,

to obtain a measure of oscillation,MΩ, an aggregate of trajectory amplitudes are

considered.

To calculate the amplitude, ak, of trajectory T k, the trajectory must be detrended

to T̃ k such that the calculated amplitude is independent of the spatial direction the

trajectory unfolds over time; see Figure 3.3. Once the trajectory of interest has

been detrended, its amplitude can be computed in various ways: (i) frequencies,

(ii) integrals, or (iii) differentials [60]. Based on preliminary experimentation, a

frequency-based approach is employed; see Appendix B for further discussion of

integral- and differential-based approaches. The amplitude of a detrended trajectory,

T̃ k, can be calculated using frequencies by obtaining the maximum magnitude of the

Fourier Transformation of T̃ k. That is,

akF = max
{
F(T̃ k)

}
, (3.11)

where F(·) denotes the Fourier Transform. One maximum value is sufficient since
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considered trajectories only span a few (i.e., 15) frames to compensate for the drift-

ing effect.

With the amplitude estimated for each detrended trajectory, the overall measure

of oscillation at frame t, MΩ(t), is calculated by considering the weighted mean

of the amplitudes. That is, for a detrended trajectory T̃ k(t), the measurement of

oscillation is defined as

MΩ(t) ≡ wν(t)

|A(t)|
∑

ak(t)∈A(t)

ak(t), (3.12)

where ak is the amplitude of trajectory T̃ k, A(t) is a set of amplitudes considered

at frame t, |A(t)| is the number of amplitudes considered at frame t, and wν(t) is a

weight assigned to account for the percentage of total trajectories present in a given

frame, as follows.

To ensure that reliable data contributes to the calculation of MΩ(t), only am-

plitudes within 1.5 of the standard deviation from the mean are considered in A(t),

analogous to the computation of centroid of an object, xc(t), as in (3.6). That is,

A(t) = {ak(t) | µa(t)− 1.5σa(t) ≤ ak(t) ≤ µa(t) + 1.5σa(t)}, (3.13)

where µa(t) and σa(t) are the mean and standard deviation, respectively, of the am-

plitudes present at frame t.
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It is desirable to avoid having frames with exceptionally small number of trajec-

tories unduly bias the overall measure of oscillation, MΩ(t). Thus, MΩ is weighted

by wν(t), which is defined based on the amount of data present at frame t, |A(t)|,

relative to the typical amount of data that is available in a frame across the entire

video. A sigmoid function can be used to model a fair distribution based on the

amount of data according to

wν(t) =
1

1 + exp [−(|A(t)| − |µν − σν |)]
, (3.14)

where µν and σν are the mean and standard deviation, respectively, of the amount of

data in a given set. Thus, a unit weight is assigned when there are more trajectories

present at frame t relative to the average across the video, since it suggests that the

frame contains a reliable amount of data. On the contrary, frames with exceptionally

small number of trajectories are assigned a low weight through the sigmoid’s satura-

tion to prevent a few exceptional data points from dominating the final outcome of

the overall measure, MΩ.

It can be observed in Figure 3.6d that the oscillation measure,MΩ, captures the

amount of oscillation that is exhibited by each object in motion. Specifically, the

toy car with near linear trajectories (red) has very lowMΩ values, while the person

(blue), pendulum (green), and the rolling and bouncing balls (purple and orange,

respectively) have relatively large MΩ values. Furthermore, as the pendulum slows

down to a gradual stop, its oscillation values also approach zero.
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3.3.3 Measure of Asymmetry, MΣ

The resistive forces that species must battle as they move through an environment

can be captured through an asymmetric motion trace these species exhibit during

their path of motion (cf. locomoting biological species and rolling ball in Figure 3.2);

this amount is quantitatively measured by considering the behaviour of the entire

trajectory (similar to the measure of oscillation). In particular, the resistive force

that must be battled can be calculated by measuring the magnitude of asymmetry

of the individual trajectories, the measure of asymmetry,MΣ, where presence of

asymmetry is more indicative of biolocomotion.

A variety of approaches can be employed to measure asymmetry: (i) direct calcu-

lation of vertical acceleration, (ii) skewness [15] of the trajectory, and (iii) comparison

of the left and right areas under the trajectories from its highest peak. Preliminary

investigations showed difficulties in reliably estimating asymmetry via direct calcu-

lation of vertical acceleration, by considering the second-derivative of the vertical

components of the trajectories, as computational instability was encountered and

amplified for each considered derivative. Similar challenges appeared in estimating

asymmetry via skewness, as the third-order moment statistic was very sensitive to

the presence of noise in the trajectories. Thus, the magnitude of asymmetry, sk, of

a detrended trajectory, T̃ k, is quantified by finding its local maximum valued point

and comparing the integrals from that value to its left and right minimal valued

points.
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Since the recovered trajectories traces the path of the object from frame t to

t + Lk, the recovered trajectory is not guaranteed to contain a full cycle of the

tracked motion from the lowest point to its next lowest point (e.g., stance-swing-

stance phases of a walk). Rather, it is likely to track a cycle of the motion at random

points (e.g., latter half of swing-stance-former half of swing phases of a walk). To

increase the likelihood that the considered trajectory will always contain the desired

information when computing area-under-the-curve (e.g., stance-swing-stance), the

input trajectories are replicated. Subsequently, any part of the replicated trajectory

is representative of the stance-swing-stance cycle; therefore, it can be used to extract

asymmetry information. Furthermore, the detrended trajectory is vertically shifted

such that its vertical minimum is zero to ensure the calculated area is non-negative.

Then the integrals from the (local) maximum valued point is compared to its left

and right minimal valued points. More precisely, let

lL = arg min ỹk and lR = arg min ỹk (3.15)

be the left and right minimal points of T̃ k, respectively, for

lmax = arg max ỹk (3.16)

such that lL < lmax < lR; see Figure 3.8. Then, the asymmetry magnitude of T̃ k

is computed by comparing the discrete approximation of the integrals from the left
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and right of the highest peak as

sk =

∣∣∣∣∣
lmax∑
l=lL

[
ỹkl + min ỹk

]
−

lR∑
l=lmax

[
ỹkl + min ỹk

]∣∣∣∣∣ , (3.17)

where min ỹk is the vertical minimum of T̃ k and serves to shift vertically the ỹk, so

that the calculated values are non-negative. A large asymmetric magnitude, sk, is

indicative of biolocomotion.

T̃ k + min ỹk

xlL xlmax xlR

max(ỹk) + min(ỹk)

Figure 3.8: Calculation of magnitude of asymmetry. The magnitude of asymmetry of
a detrended trajectory T̃ k can be computed by comparing the discrete approximation
of integrals from the left of the highest peak (orange) and right of the highest peak
(green) of a vertically shifted detrended trajectory such that its vertical minimum is
0.

To ensure that the measure of asymmetry is invariant to the stride length of the

object, sk is normalized by the arc length of T̃ k, ‖T̃ k‖ as in (3.5), as

s̃k =
sk

‖T̃ k‖
. (3.18)

While normalizing the amplitude by the arc length could also make the measure of
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oscillation, (3.12), invariant to the stride length of the object’s motion, such normal-

ization retracts informative data. Loss of information when normalizing amplitude

by arc length can be understood through an analogy to various parts of a circle.

That is, suppose the radius of a circle is to the amplitude of a detrended trajectory

as circumference is to arc length, and area is to area-under-the-curve. Furthermore,

let the radius of a circle be r such that its circumference is 2πr and area is πr2. Then

normalizing the radius (or amplitude) by the circumference (or arc length) yields

r

2πr
=

1

2π
, (3.19)

where informative data, r, is lost. Normalizing the area (or area-under-the-curve)

by the circumference (or arc length), however, yields

πr2

2πr
=
r

2
, (3.20)

where informative data r is multiplied with a constant.

Similar to the measure of oscillation, the measure of asymmetry at frame t,

MΣ(t), is obtained by aggregating the asymmetry magnitudes. Specifically, it is

calculated by considering the weighted mean of the asymmetry magnitudes accord-

ing to

MΣ(t) ≡ wν(t)

|S(t)|
∑

s̃k∈S(t)

s̃k, (3.21)

where s̃k is the normalized magnitude of asymmetry of T̃ k, S(t) is a trimmed set
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of asymmetric values that are present at frame t analogous to (3.13), |S(t)| is its

cardinality, and wν is a weight that accounts for the percent of total asymmetry

values considered in a given frame exactly analogous to the weights applied to the

aggregation of oscillation measures as in (3.14).

It can be observed in Figure 3.6e that the person (blue) and bouncing ball (or-

ange) exhibit large asymmetry measures, MΣ, as they have to fight against gravity

during its lift phase, while the car (red), pendulum (green), and rolling ball (purple)

do not. As a result, MΣ is lower for the toy car, pendulum, and rolling ball.

3.3.4 Measure of Extrinsic Motion Dissimilarity, ME

The biolocomotion detector can benefit from emphasizing the dissimilarity between

the overall path of the object (extrinsic motion) and the trace exhibited by the indi-

vidual body parts (intrinsic motion)2; cf. locomoting biological objects and bouncing

ball in Figure 3.2.

The amount of deviation between extrinsic and intrinsic motion exhibited by

an object, the measure of extrinsic motion dissimilarity, ME, is measured by

comparing the dissimilarity between the overall path of the object (i.e., centroid) and

the individual trajectory shape. In particular, the angle between the displacement

vectors of a (non-detrended) trajectory T k and the centroid are compared. Suppose

2In the psychophysical literature, intrinsic motion is obtained by removing common (extrinsic)
motion from the observed motion, via subtraction [24]. However, such subtraction limits the ability
to compare common and relative motion. Thus, the individual traces exhibited by the body parts are
used without the subtraction of common (extrinsic) motion for such comparison in this dissertation.
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∆xk(text,∆text) denotes a displacement vector of trajectory T k between frames text −

∆text and text as in (3.4), while ∆xc(text,∆text) denotes a displacement vector of the

centroid between frames text − ∆text and text as in (3.9), where text is a frame at

which a vertical extremum is reached by T k and ∆text is the temporal separation

between vertical extrema; see Figure 3.9. Then the extrinsic motion dissimilarity

at frame text is calculated using the normalized inner product between extrinsic and

intrinsic displacement vectors from frame text −∆text to text according to

ek(text,∆text) = 1− 1

2

(
〈∆xk(text,∆text),∆xc(text,∆text)〉
‖∆xk(text,∆text)‖‖∆xc(text,∆text)‖

+ 1

)

=
1

2

(
1−

〈∆xk(text,∆text),∆xc(text,∆text)〉
‖∆xk(text,∆text)‖‖∆xc(text,∆text)‖

)
.

(3.22)

The normalized inner product in (3.22) is increased by 1 then multiplied by a

factor of 1
2

to ensure the considered inner product ranges between 0 and 1 instead

of [−1, 1]. The range is altered via shift followed by a multiplicative constant in-

stead of considering the absolute of the normalized inner product for the following

reason. To reduce angular momentum of the body during locomotion, animals of-

ten accompany their (extrinsic) overall positional advance with (intrinsic) motion of

body parts in the opposite direction (e.g., backward swing of arms during walking).

Correspondingly, for present purposes, it is beneficial that antiparallel extrinsic vs.

intrinsic motion be distinguished from parallel. Simply taking the absolute value

of the normalized inner product fails to make this distinction, while formula (3.22)

does. Further, the normalized inner product is subtracted from 1 to ensure a large

corresponding value is indicative of biolocomotion, similar to other computed mea-
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sures for biolocomotion (e.g., large amplitude values are indicative of biolocomotion).

Finally, the measure of extrinsic motion dissimilarity for trajectory T k is obtained by

considering the weighted combination of all normalized inner products of extrinsic

and intrinsic displacement vectors according to

ek =

∑
text

∆text e
k
(text,∆text)∑

text
∆text

. (3.23)

The temporal separation between two extreme points, ∆text, is used as a weight,

such that the difference between the considered extrinsic and intrinsic displacements

are maximized. For example, comparing the extrinsic and intrinsic displacement

vectors with ∆t = 1 is likely to be more alike than vectors with ∆t = 15 since the

centroid is calculated from the motion of the object. This manipulation is analogous

to discrete approximation for estimating the derivative of a mathematical function.

A more accurate estimation of the slope is obtained when the discretization (∆t)

approaches zero. Similarly, extrinsic and intrinsic displacement vectors will be more

alike as ∆t→ 0, while the goal is to determine how different they are.

Similar to the measurement of oscillation and asymmetry, the measure of extrinsic

motion dissimilarity, ME, is obtained by aggregating the dissimilarities of extrinsic

and intrinsic values, ek, via a weighted mean. That is, the measurement of extrinsic

motion dissimilarity at frame t, ME(t), is defined as

ME(t) ≡ wν
|E(t)|

∑
ek∈E(t)

ek, (3.24)
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∆xc(t3,t3−t2)

∆xk(t3,t3−t2)

xc(t1) xc(t2) xc(t3)
xc(t4)

xk(t1)

xk(t2)

xk(t3)

xk(t4)

Figure 3.9: Calculation of extrinsic and intrinsic motion dissimilarity. Given tra-
jectory T k (light red curve) from frame t1 to t4, where vertical extreme points,
x(t1), . . . ,x(t4) (red dots), are achieved at frames t1, . . . , t4, the coordinates of the
centroid at its respective frames are given by xc(t1), . . . ,xc(t4) (blue dots). Corre-
spondingly, the displacement vector of trajectory T k between extreme points xk(t2)
and xk(t3) is given by ∆xk(t3,t3−t2) (red solid arrow) and the displacement vector of

the centroid at its corresponding frames is given by ∆xc(t3,t3−t2) (blue solid arrow).

The extrinsic motion dissimilarity at frame t2, ek(t3,t3−t2), is obtained by computing

the normalized inner product of ∆xk(t3,t3−t2) and ∆xc(t3,t3−t2). Finally, the measure of

extrinsic motion for trajectory T k, ek, is obtained by computing the weighted sum of
the normalized inner products between extrinsic and intrinsic displacement vectors
at all extreme points t1, . . . , t4 (i.e., ek(t2,t2−t1), e

k
(t3,t3−t2), and ek(t4,t4−t3)).

where ek is the measurement of dissimilarity between extrinsic and intrinsic motion

of trajectory T k, E(t) is a trimmed set of dissimilarity calculations of trajectories

present at frame t analogous to (3.13), |E(t)| is its cardinality, and wν is a weight

that accounts for the percent of total trajectories present in a given frame analogous

to (3.14).

It can be observed in Figure 3.6f that the measurement of extrinsic motion dissim-

ilarity is relatively large when the person, pendulum, and rolling ball are in motion
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(blue, green, and purple, respectively), while the car and bouncing ball (red and

orange, respectively) have low measures since their extrinsic and intrinsic motions

coincide.

3.3.5 Biolocomotion Detector, SB

Once the raw measurements for each of the biolocomotion components have been

computed, they must be normalized into a common range such that each component

has equal contribution to the overall measure of biolocomotion. Then they must be

combined into a single measure.

Each raw measurement,Mχ for χ ∈ {Λ,Ω,Σ, E}, is normalized to range between

[0, 1]. This conversion allows each measure to be treated as a confidence score. The

raw measurement is converted into a confidence score using a sigmoidal function

according to

Sχ(t) = S(Mχ(t); τχ, kχ) ≡ 1

1 + exp [−kχ(Mχ(t)− τχ)]
(3.25)

for some values τχ and kχ. The sigmoid function restricts the range to the desired

interval [0, 1], with a smooth asymptotic behaviour as the extreme values are ap-

proached.

Treating the scores of locomotion, oscillation, asymmetry, and extrinsic motion

akin to independent probabilities, the overall biolocomotion confidence score is ob-
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tained by taking the product of each component’s confidence scores

SB(t) =
∏

χ∈X(t)

S(Mχ(t); τχ, kχ), (3.26)

where X(t) is a set of measurements to be considered in the final biolocomotion

calculation.

Since asymmetric motion trace is most applicable when objects move orthogonal

to a resistive force (e.g., gravity), the measurement of asymmetry,MΣ, is constrained

to situations when objects move in the orthogonal direction. For example, as the

foot pushes off against gravity for terrestrial animals, it results in a rapid rising

trajectory, which is followed by a swing phase that moves entirely under the influence

of gravity to yield a more elongated trace; e.g., see [24, 55]. This phenomenon

is less apparent when motion is parallel to gravity and similar pattern holds for

other animals; e.g., see [7, 9, 42]. Assuming the resistive forces are aligned with

the image vertical, motion orthogonal to that direction, r = (1, 0), should show an

asymmetric trace. To capture the motion direction, the normalized inner product

of the centroid displacement vector, ∆x̄c(t,∆t) as in (3.9), and a reference vector, r,

is used to determine if the general direction of the object motion is perpendicular

to gravity. More specifically, the average absolute value of the normalized inner

products within a temporal window is calculated as

w⊥(t) =
1

k

k∑
∆t=1

{∣∣∣∣∣ 〈∆xc(t,∆t), r〉
‖∆xc(t,∆t)‖‖r‖

∣∣∣∣∣
}

, (3.27)
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where the absolute value of the normalized inner product maintains invariance to

the direction of motion (left vs. right or toward vs. against gravity). Since we want

to evaluate the general path of the object, displacement vectors comparing centroid

at frame t to numerous centroids in previous frames are compared (i.e., ∆t = [1, k],

where k is empirically set to the frame rate of the video); see Figure 3.10. Thus,

X(t) =


{Λ,Ω,Γ}, if w⊥(t) < τ⊥

{Λ,Ω,Σ,Γ}, if w⊥(t) ≥ τ⊥

, (3.28)

where τ⊥ is empirically set to 0.9.

xc(t1)

xc(t2)

xc(t3)

xc(t4)

∆xc
(t4,t4−t2)

∆xc(t4,t4−t3)

∆xc(t4,t4−t1) r

Figure 3.10: Computing displacement vectors for various temporal windows. To
determine the direction of the object, displacement vectors (blue arrows) across k +
1 = 4 time steps, t1, . . . , t4, are considered along the path of the object (light blue
curve). Each displacement vector, ∆xc(t4,t4−t1), . . . ,∆xc(t4,t4−t3), is compared with a

reference vector, r = (1, 0) (black arrow), via a normalized inner product. The
absolute value of these differences are averaged to determine the overall direction of
the object at frame t4, w⊥(t4).

By construction, SB(t) is in the range of [0, 1] with large values more indicative

of biolocomotion. As the product of the confidence scores for each component are

taken, objects that lack locomotion, oscillation, asymmetry, or difference in extrinsic

and intrinsic motion (e.g., pendulum, car, rolling ball, and bouncing ball) possess
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low SB values, while objects that exhibit locomotion, asymmetric oscillation, and

difference in extrinsic and intrinsic motion (e.g., walking person) retain large SB

values; see Figure 3.6g. Hence, SB (3.26) is highly indicative of biolocomotion.

3.4 Adaptive Sliding Temporal Window

Since the input to the biolocomotion detector is a cluster of trajectories, it is not

necessary to process an entire video at once. Instead, an adaptively defined sliding

temporal window is used to allow for incremental video processing. More specifically,

the video is temporally segmented into disjoint sets of frames and each segment is

processed successively. The segment lengths are defined adaptively to break the video

into temporal extents, where the overall frame-to-frame image motion maintains the

same coarse direction. Such subdivision provides a natural way to break the video

into segments dominated by a single direction of camera motion (or in the absence

of camera motion) with a single overall direction of object motion, e.g., the overall

locomotion (3.10). The overall direction of motion for frame t is determined by using

displacement vectors that are present at that frame. Specifically, for displacement

vector ∆xk(t) of trajectory T k at frame t as in (3.4), the direction of the displacement

for T k is defined as

θk(t) = arctan

(
∆yk(t)

∆xk(t)

)
, 0◦ ≤ θk(t) ≤ 360◦. (3.29)
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Then, the overall displacement direction is calculated by taking the average of θk(t)

according to

Θ(t) =
1

N(t)

∑
k

θk(t), (3.30)

where N(t) is the number of trajectories. The adaptive Sliding Temporal Win-

dows (aSTW) are then defined to partition the video at times where Θ(t) and Θ(t+1)

differ significantly (i.e., if |Θ(t) − Θ(t + 1)| > τθ, then segment). Empirically, τθ is

set to 3
2
f for frame rate f .

3.5 Algorithmic Summary

Algorithm 3.1 provides a summary of the overall approach to biolocomotion detec-

tion. Note that the approach both localizes and labels regions of biolocomotion of

an input video.
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Input : Video, V

Output: (i) Biolocomotion confidence score, SB (3.26), for each recovered

trajectory cluster,

(ii) the spatiotemporal location of the centre of each cluster, and

(iii) the horizontal and vertical extents of the cluster at each frame

1 Extract and prune iDTs (§3.2.2 and A.1);

2 Estimate average direction of motion for a crude division of temporal

windows, aSTW (§3.4);

3 for aSTW ∈ V do

4 Cluster (A.2), stabilize (A.3), and elongate trajectories (A.4);

5 for cluster do

6 Measure locomotion, MΛ (§3.3.1);

7 Measure oscillation, MΩ (§3.3.2);

8 Measure asymmetry, MΣ (§3.3.3);

9 Measure extrinsic motion dissimilarity, ME (§3.3.4);

10 Measure biolocomotion, SB (§3.3.5) ;

11 end

12 end

Algorithm 3.1: Summary of the proposed biolocomotion detector algorithm
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Chapter 4

Empirical Evaluation

4.1 Introduction

Quantitative analysis of an algorithm can assist in the development and understand-

ing of its strengths and weaknesses. A benchmark dataset can provide a way for com-

parative analysis with other algorithms or identification of important/unimportant

components within an algorithm. To provide a benchmark for biolocomotion detec-

tion in videos, an extant dataset from a related field is exploited and a new dataset

is also constructed to further test the robustness of the algorithm of interest.

This chapter unfolds in six sections. This section has served to motivate the

need for empirical evaluation. Section 4.2 describes the datasets considered for the

task of biolocomotion. Section 4.3 describes the performance metrics used to quan-

titatively compare different components within an algorithm and across algorithms.
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Section 4.4 describes how the set of parameters used for the presented algorithm is

determined. Section 4.5 presents an alternative approach to biolocomotion detection

that is based on generic handcrafted features combined with learning. Since it ap-

pears that no previous algorithms for biolocomotion detection have been developed,

this alternative approach provides a basis of comparison for the main approach pre-

sented in Chapter 3. Section 4.6 provides qualitative and quantitative results along

with discussions comparing individual components of the proposed and alternative

approaches as well as more general comparisons between the two approaches. Finally,

Section 4.7 provides an overall summary of the evaluations.

4.2 Datasets

While there are many benchmark datasets in the field of computer vision that can

be used for quantitative evaluation of various detection algorithms in the context

of humans (e.g., CMU Crowded Videos [62], UCF Sports [98, 105], UCF101 [106],

ActivityNet [48], J-HMDB [53], etc.), there are none available for biolocomotion de-

tection. Consequently, a novel dataset, Biological Object in Locomotion Detection

(BOLD) dataset, is developed and biolocomotion annotations for an extant camou-

flaged animals dataset (CAD) [8] are provided. This section contains a description

of the considered datasets as well as biolocomotion annotation.
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4.2.1 Biological Objects in Locomotion Detection (BOLD)

Dataset

The Biological Objects in Locomotion Detection (BOLD) dataset builds on an ex-

tant dataset, A2D [126]. A2D is taken as a starting point as it provides diversity of

objects in motion (i.e., more than humans) and also includes labelled regions where

they are present. However, it lacks generality to validate biolocomotion detection.

Specifically, A2D does not consider undulation nor swim as one of its actions and its

species diversity remains too limited for present purposes. Thus, a richer set that

contains more variety of objects and locomotion types to provide stronger justifi-

cation of a biolocomotion detection algorithm is needed. Consequently, the BOLD

dataset is constructed to provide greater diversity in terms of object type and modes

of locomotion. BOLD builds on a subset of videos from A2D and is substantially

augmented with various videos from YouTube. It expands the diversity of objects

by including: reptiles, cetaceans, seals, fish, stingray, eel, sea snakes, snakes, insects,

spiders, scorpions, lobsters, trains, motorbikes, submarines, airplanes, helicopters,

rockets, metronomes, and pendulums and modes of locomotion by adding: swim,

undulate, and oscillate; a comparison of A2D and BOLD is visualized in Figure 4.1

and a detailed breakdown is provided in Table 4.1.

BOLD contains 1,348 videos split into 1,078 training and 270 test videos. Videos

range between 22 − 504 frames and on average span 143.98 frames. Bounding box

annotations are provided for at least a frame per video, up to 18 frames in longer

videos; see Figure 4.2.
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Figure 4.1: Venn diagram of motions and species that are contained in A2D and
BOLD. The wordle in each component of the Venn diagram illustrates a set of actions
(red), biological objects (purple), and non-biological objects (blue) that are contained
in A2D \ BOLD, A2D ∩ BOLD, and BOLD \ A2D.

Object Type
Motion Type

climb crawl fly jump roll run swim undulate walk locomotion swing

B
io

lo
gi

ca
l

S
p

ec
ie

s

human (adult, baby) 33 27 - 36 33 33 20 - 31 - -
terrestrial quadruped mammal (cat, dog) 40 25 - 37 18 67 - - 35 - -

bird (incl. penguin) 35 - 100 33 10 - - - 26 + 8 - -
reptile (alligator, chameleon, crocodile, lizard, turtle) - 25 - - - - 15 - - - -

cetacean (dolphin, shark, whale) - - - - - - 23 - - - -
seal - - - - - - 18 - - - -
fish - - - - - - 20 - - - -

stingray - - - - - - 20 - - - -
eel - - - - - - - 20 - - -

sea snake - - - - - - - 20 - - -
snake - - - - - - - 63 - - -

insects, spiders, scorpions, lobster - 25 - - - - - - - - -
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s ball - - 25 50 50 - - - - - -
car - - - 50 50 - - - - 25 -

train - - - - - - - - - 33 -
motorbike - - - - - - - - - 33 -
submarine - - - - - - 25 - - - -

airplane - - 27 - - - - - - 9 -
helicopter - - 25 - - - - - - - -

rocket - - 25 - - - - - - - -
oscillating stuff (metronome, pendulum, boat) - - - - - - - - - - 25

Total (Biological) 108+0 52 + 50 100 + 0 106 + 0 61 + 0 100 + 0 0 + 116 0 + 103 92 + 8 - - 619 + 277
Total (Non-biological) - - 25 + 77 100 + 0 100 + 0 - 0 + 25 - - 25 + 75 25 250 + 202

Table 4.1: Summary of the number of videos in each motion and object class for the
BOLD dataset. The numbers indicate the number of videos in each object-motion
class, hyphen (-) indicates lack of videos in the respective categories. Numbers in
orange indicate videos extracted from A2D, and green indicates new videos that were
obtained from YouTube.
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(a) Humans locomoting in various forms (e.g., climb, swim, roll, and walk).

(b) Variations in biological species (e.g., snake, turtle, terrestrial quadruped, and
bird).

(c) Various non-biological objects in locomotion (e.g., airplane, motorcycle, ball,
and submarine).

Figure 4.2: Illustration of videos (top) in BOLD and its biolocomotion annotations
indicated with overlaid red boxes (bottom). Select frames of videos from BOLD
demonstrating variation in modes of locomotion exhibited by (a) humans, (b) other
biological species, and (c) non-biological objects.
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4.2.2 Camouflage Animals Dataset (CAD)

The Camouflage Animals Dataset (CAD) [8] was created for motion segmentation

with the challenge of detecting camouflaging animals in motion. It contains nine

videos of animals in motion: chameleon, frog, glowworm beetle, 4 scorpions, snail,

and stick insect. All videos in CAD are test videos. As CAD lacks training data,

transfer learning is applied, where training data from BOLD is used to test videos

in CAD. Videos on average span 92.89 frames and range between 30 − 218 frames.

Dense-pixel level annotations are provided for at least 12 frames; see Figure 4.3.

Figure 4.3: Illustration of select videos (top) in CAD [8] and its fine-grained biolo-
comotion annotations overlaid in red on its respective raw image frames (bottom).

4.2.3 Biolocomotion Annotations

To determine how well a proposed algorithm performs in the task of biolocomotion

detection, each annotated region is supplied with a biolocomotion label. Thus, each

object is spatially identified, via bounding boxes (i.e., BOLD) or fine-grained seg-

mentation (i.e., CAD), for select frames and categorized into its appropriate class
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(i.e., biolocomotion or non-biolocomotion). The annotated regions serve as the set

of positives (or negatives) for ensuing experiments. While the main focus is placed

on biolocomotion, finer grained annotations are provided for more general use. In

particular, all labelled objects are identified as being in one of six categories:

(i) biological objects in locomotion (i.e., biolocomotion),

(ii) biological objects that are oscillating but not locomoting,

(iii) biological objects that are neither locomoting nor oscillating,

(iv) non-biological objects that are only locomoting,

(v) non-biological objects that are only oscillating, and

(vi) non-biological objects that are neither locomoting nor oscillating.

Visualization of these classes can be seen in Figure 4.4.
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(a) biolocomotion (red) and biological objects not in locomotion nor oscillation
(blue).

(b) biological object in oscillation.

(c) non-biological object in locomotion (purple) and non-biological object neither in
locomotion nor oscillation (yellow).

(d) non-biological object in oscillation (orange).

Figure 4.4: Biolocomotion annotation illustrations. Select videos demonstrating the
provided annotations with overlaid boxes: biolocomotion (red), biological objects
in oscillation (green), biological objects not in locomotion nor oscillation (blue),
non-biological objects in locomotion (purple), non-biological objects in oscillation
(orange) and non-biological objects in neither locomotion nor oscillation (yellow).
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Here, locomotion corresponds to non-zero displacement exhibited by the object

in the real-world. For example, a cat (biological object) walking (action related to

locomotion) on a treadmill results in zero displacement in the real-world, thus is

classified as non-biolocomotion.

In addition to the six object-action labels, each video also has an associated label

for camera motion according to five categories:

(i) translation,

(ii) rotation,

(iii) zoom,

(iv) more than one of the above, and

(v) no camera motion.

These labels could be used in future work to study algorithm performance as a

function of camera motion.

4.2.4 Summary

Table 4.2 provides a summary of the key features of the considered datasets for the

task of biolocomotion detection. Also, for the sake of size consistency, all videos are

resized to a fixed height of 320 pixels and the widths are adjusted accordingly to

maintain the original aspect ratio.
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Dataset BOLD CAD [8]
Task biolocomotion detection causal motion segmentation
Source YouTube

Objects

human, terrestrial quadruped, bird, reptile,
cetacean, seal, fish, stingray, eel, sea snake,
insects, spiders, scorpion, lobster, ball, car,
train, motorbike, submarine, airplane, heli-
copter, rocket, oscillating stuff

chameleon, frog, glowworm beetle, scorpion,
snail, stick insect

Number of videos

1, 348 videos
• 1, 078 training
• 270 test

9 videos
• 0 training
• 9 test

Duration
• 22− 504 frames
• avg. 143.98 frames

• 30− 218 frames
• avg. 92.89 frames

Number of videos
with
biolocomotion

882 9

Challenges Variations in viewpoint, camera motion present, background and foreground clutter present

Groundtruth
labelling

• bounding boxes
• 1− 18 frames
• avg. 4.03 frames

• fine-grained
• 12− 43 frames
• avg. 21.22 frames

Table 4.2: Summary of the datasets.
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4.3 Evaluation Metrics

To quantitatively evaluate the algorithms of interest, two standard detection met-

rics are applied to the test sets. To evaluate the value of each component of an

algorithm, detection results are plotted as precision-recall (PR) curves. To compare

between opposing algorithms, average precision (AP) scores are reported. In the

following, detection results (e.g., cluster outputs with biolocomotion score SB from

Algorithm 3.1) are referred to as biolocomotion proposals, which are regions likely to

contain biolocomotion, associated with confidence scores.

Precision-recall (PR) curves are obtained by calculating precision and recall val-

ues at various confidence thresholds. Precision is the percentage of correctly assigned

pixels, which is defined as

precision =
TP

TP + FP
, (4.1)

where TP denotes the number of correctly predicted pixels with respect to the

groundtruth (i.e., true positive) and FP denotes the number of incorrectly predicted

pixels with respect to the groundtruth (i.e., false positive). Recall is the percentage

of detected pixels with respect to the labelled groundtruth pixels, which is defined

as

recall =
TP

TP + FN
, (4.2)

where FN denotes the number of incorrectly missed pixels (i.e., false negative). A set

of pixels within the proposal are considered a positive, which outputs a mask, MP ,
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if the biolocomotion score SB is greater than or equal to some threshold τB ∈ [0, 1].

PR curves are generated by computing the precision and recall values at various

detection thresholds, τB, for each annotated frame with precision and recall plotted

along the ordinate and abscissa, respectively.

Average precision (AP) is a standard evaluation methodology used in action

detection (e.g., [48, 54]) that evaluates how well an action proposal (i.e., region

likely to contain an action) is ranked for the specified action class. Similarly, AP

can be used for biolocomotion detection to determine how well each biolocomotion

proposal is ranked. AP is defined as

AP =

∑n
k=1 (P (k)× rel(k))∑n

k=1 rel(k)
, (4.3)

where n is the total number of proposals, P (k) is the precision at cutoff k of the

list of proposals, and rel(k) is an indicator function which equals 1 if the kth ranked

proposal is a true positive and 0 otherwise. The denominator in (4.3) represents the

total number of true positives in the list. To determine whether the proposal should

be considered a true or false positive, the Intersection over Union (IoU) between the

predicted mask and the groundtruth is considered, which is defined as

IoU(MP ,MGT ) =
MP ∩MGT

MP ∪MGT

, (4.4)

where MP denotes the predicted mask and MGT denotes the groundtruth mask. A

predicted mask is considered correct if IoU(MP ,MGT ) is greater than or equal to
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some constant, ι ∈ [0, 1]. AP scores are calculated as ι varies. Note that a typical

action detection problem considers mean AP (mAP) scores as there are multiple

classes to be considered, but the problem of interest considers AP as there is only

one class (i.e., biolocomotion).

The AP metric evaluates the quality of biolocomotion detection results by ranking

the proposals using biolocomotion scores. However, its consideration of positives only

disregards missed regions, limiting a thorough investigation of an algorithm. The PR

curve, on the other hand, considers both positives and negatives of a detection al-

gorithm. The recall value in a PR curve, however, is often given less importance in

detection work [14, 26, 73, 86], since a perfect recall value (i.e., recall = 1) is at-

tained if the predicted mask is larger than the groundtruth (i.e., MGT ⊆MP ), which

can be easily achieved by simply selecting the whole image. This often comes at a

cost of a reduced precision value, while a good detection algorithm should be able

to (spatiotemporally) locate the biolocomoting object as accurately as possible (i.e.,

with high precision) [73, 86]. Thus, PR curves become insufficient for comparison,

especially if the recall values of the results reside in very little overlapping ranges.

Consequently, AP values and PR curves are used in tandem for the evaluation of

biolocomotion algorithms, where PR curves serve as a reliable measure for compar-

ing various components of an algorithm and AP values serve as a good metric for

comparing the quality of biolocomotion proposals output by different algorithms.
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4.4 Algorithm Parameter Values

The parameters, τχ and kχ, necessary for normalizing the raw measurements, Mχ,

into confidence scores, Sχ in (3.25), are determined via 1D grid search. The 1D grid

search is performed by obtaining PR curves for each component on the BOLD train-

ing data for numerous thresholds. The locomotion, Λ, component is compared with

annotations labelled as (biological or non-biological) locomotion; the oscillation, Ω,

component is compared with annotations labelled as biolocomotion or (biological or

non-biological) oscillation; the asymmetry, Σ, and extrinsic motion dissimilarity, E,

components are compared with annotations labelled as biolocomotion. The values

that optimize the area under the PR curve are chosen. Since CAD lacks training

data, the same set of parameters as in BOLD are used in CAD. Table 4.3 provides

a summary of the empirically set parameters for evaluation.

Measure (χ) τχ kχ
Locomotion (Λ) 51/10 = 5.1 (10/51) ln 99
Oscillation (Ω) 27/10 = 2.7 (10/27) ln 99
Asymmetry (Σ) 3/2 = 1.5 (2/3) ln 99

Extrinsic Motion Dissimilarity (E) 21/200 = 0.105 (200/21) ln 99

Table 4.3: Parameters used to obtain confidence score, Sχ, for measure Mχ for
χ ∈ {Λ,Ω,Σ, E}.

To ensure the predicted masks and groundtruth masks are compared fairly, a

tight bounding box fit around the ellipse is used as predicted masks for BOLD since

its annotations are bounding boxes.
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4.5 Alternative Algorithm

Since biolocomotion detection in videos is a new field of research in computer vision,

there are no previous algorithms for comparison. Nevertheless, it remains of inter-

est to have some basis for comparison in evaluating the approach to biolocomotion

detection presented in Chapter 3. In response, an alternative algorithm has been as-

sembled from components of extant algorithms from the related-field of video-based

action analysis. In particular, an extant algorithm representative of state-of-the-art

in handcrafted approaches to action proposals [118] and action recognition [121] is

considered and adapted to biolocomotion detection. Along with their reliance on

generic handcrafted features, these approaches also make use of learning to derive

mid-level feature encodings and final classification; see Figure 4.5. Beyond their doc-

umented strong performance in action analysis [118, 121], these approaches have the

added comparative benefit in that their input are also dense trajectories, similar to

the proposed algorithm.

An algorithm based on a ConvNet with deep-learning is not considered as it is

not feasible for biolocomotion detection given the relatively small amounts of train-

ing data available (cf. action recognition training on UCF101 [106] and kinetics [21],

where the datasets are 1-2 orders of magnitude greater). Therefore, the proposed

approach is compared to a handcrafted approach with learned mid-level feature en-

coding and classification.

The action proposal [118] and recognition [121] algorithms are combined as fol-
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Raw Video
Generate
Proposals

Extract Descriptors
e.g., trajectory shape,

HOG, HOF, MBH

Encode Descriptors
e.g., iFV

Biolocomotion Scores
e.g., Platt scaling

Train Classifier
e.g., SVM

Figure 4.5: General framework of the alternative algorithm [118]. For each video,
a set of proposals [118] are generated and a generic set of descriptors that typically
appear with iDTs (e.g., trajectory shape [121], HOG [31], HOF [68], and MBH
[32]) are extracted. The descriptors are encoded (e.g., via iFV [87]) into a learned
representation specific to biolocomotion detection. The encoded descriptors that
result from a set of training videos are used to train a classifier (e.g., SVM [28]),
which is used to obtain a biolocomotion score (e.g., via Platt scaling [88]) for encoded
descriptors from a test video. The input (raw video) and output (biolocomotion
score) are marked in blue and the intermediate steps are marked in green.

lows. A biolocomotion score is associated to each generated action proposal based on

trajectories (APT) [118] by (i) recovering a set of descriptors that typically appear

with (improved) dense trajectories (i.e., trajectory shape [120], HOG [31], HOF [68],

and MBH [32]), (ii) encoding them using improved Fisher Vectors (iFVs) [87], and

(iii) obtaining a biolocomotion score from a classifier (i.e., analogous to the iDT ap-

proach to action detection [121]).

Trajectory shape, HOG, HOF, and MBH are standard descriptors used in video

analysis tasks, especially action recognition (e.g., [38, 120]). Trajectory shape fea-

tures are obtained by concatenating the normalized displacement vectors of tracked

trajectories [120]. Histogram of Oriented Gradients (HOG) [31] are descriptors that

store spatially oriented gradients of image intensity along a discrete set of directions

to capture appearance information. Histogram of Optical Flow (HOF) [68] captures

local motion of the pattern by quantizing the orientation of the optical flow vec-
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tors. Motion Boundary Histogram (MBH) [32] captures spatial change of motion

and is obtained by computing spatial derivatives along a discrete set of directions for

both the horizontal and vertical components of the optical flow field. The employed

trajectory shape, HOG, HOF, and MBH parameter values (e.g., discretization sam-

pling) are the same as used in their previous applications to action recognition (e.g.,

[38, 120]).

The iFVs are computed by (i) reducing the dimension of the features by a factor

of two via Principal Component Analysis (PCA), (ii) estimating a Gaussian Mixture

Model (GMM) with K = 128 components, representing each proposal by a 2DK

FV, where D is the dimension of the descriptor after PCA has been applied, and (iii)

converting to iFVs by applying power and L2 normalization to the FVs, cf. [121].

The feature types are combined by concatenating their iFVs. Finally, given such a

test feature vector, a linear SVM [28] (previously built on the training data with loss

trade-off parameter set to C = 1) assigns a biolocomotion probability score based on

Platt scaling [88].

4.6 Results

This section provides results and discussions on the proposed and alternative biolo-

comotion algorithm as evaluated on the BOLD dataset and CAD. First, quantitative

results, using AP scores, comparing the proposed to the alternative approach are

provided. Second, results that evaluate the performance of each component of the
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proposed and alternative approaches using PR curves are provided. Third, qualita-

tive results from the proposed biolocomotion detection algorithm are provided.

4.6.1 Proposed Algorithm vs. Alternative Algorithm

Table 4.4 shows AP scores as Intersection over Union (IoU), ι, varies. The proposed

algorithm maintains its superior performance over the alternative by a relatively

large margin in the majority of the cases (i.e., difference of at least 0.1209 for BOLD

at ι ∈ [0.1, 0.5] and CAD at ι ∈ {0.1, 0.2}), a small superiority in two cases (i.e.,

difference of 0.0028 and 0.0401 for CAD at ι = 0.4 and ι = 0.5, respectively) and

performs slightly worse in a single case (i.e., difference of 0.0079 for CAD at ι = 0.3).

More typically, the performance margin is in favour of the proposed approach (i.e.,

in nine of the ten cases) demonstrating the superiority of the proposed approach over

the alternative algorithm.

Dataset
Algorithm

ι
0.1 0.2 0.3 0.4 0.5

BOLD
Proposed 0.6391 0.5362 0.4404 0.3362 0.2239

Alternative [118] 0.4566 0.3242 0.2294 0.1535 0.1030

CAD [8]
Proposed 0.8014 0.5166 0.2458 0.1551 0.1275

Alternative [118] 0.4183 0.3262 0.2537 0.1523 0.0874

Table 4.4: Average Precision (AP) scores as a function of Intersection over Union
(IoU), ι, for the BOLD dataset and CAD.
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4.6.2 Component Analysis

Proposed Algorithm

The effect of each component in the biolocomotion algorithm (i.e., Λ, Ω, Σ, and

E) can be assessed through an ablation study; see Figure 4.6. Here, the ablation

study is designed to examine the effect of adding each component of the presented

algorithm in sequence (Λ, Λ + Ω, Λ + Ω + Σ, and Λ + Ω + Σ +E). A complete study

that contains all 24 − 1 combinations can be found in Appendix C. The ablation

study is conducted only on the BOLD dataset, as it contains a better balanced set

of biological and non-biological object videos as well as objects in locomotion and

non-locomotion (as opposed to CAD).

It can be observed in Figure 4.6a that the recall values of the proposed method

tend to be skewed to the left (i.e., ranging between [0, 0.4]). This fact is largely due

to the condition that labels a cluster that occupies the majority of the field of view as

a cluster corresponding to camera motion; see Section 3.2.2 and Appendix A.3. As a

result, the number of missed pixels would increase, especially if the object occupies

the majority of the frame, which in turn reduces the recall rate.

It can be seen in Figure 4.6b that adding each component increases the precision

value with a slight decrease in recall for a specified τB. Specifically, adding oscillation

to locomotion (cf. navy and blue) improves the average of the precision differences

by +0.0383; adding asymmetry to locomotion and oscillation (cf. blue and black) by

+0.0243; and adding extrinsic motion dissimilarity to locomotion, oscillation, and
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asymmetry (cf. black and red) by +0.0186. The benefit of each component can be

observed through the vertical shift upwards and is confirmed via positive average

precision differences. The relatively low rate of improvement by adding the extrinsic

motion dissimilarity component can be attributed to the low thresholds that were

used (i.e., τE = 0.105 and kE = 43.76). This choice ensures that a relatively small

number of FN is introduced. Nevertheless, this study confirms the benefits of each

component in the proposed biomechanics and psychophysics driven algorithm.
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(a) PR curve in full scale.

(b) PR curve for recall ∈ [0, 0.4] and precision ∈ [0.4, 0.7].

Figure 4.6: Precision-Recall (PR) curves of the proposed algorithm. ‘1’ and ‘0’
indicate the enabled and disabled components, respectively. (a) a full PR curve is
provided with both precision and recall in the ranges [0, 1] and (b) the same PR
curve, as (a), restricted to recall values within [0, 0.4] and precision within [0.4, 0.7]
as the majority of the points are focused in that select region of the PR curve.
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Alternative Algorithm

Figure 4.7 provides an evaluation of the alternative algorithm to gauge the role

of appearance, motion, and its combination by considering iFV-encodings of HOG

(green), trajectory shape + HOF + MBH (blue), and trajectory shape + HOG +

HOF + MBH (red), respectively. It can be observed that considering appearance in-

formation alone (i.e., HOG) yields the most inferior result in detecting biolocomotion

across both datasets. This result is potentially due to two possibilities: (1) There are

so many in-class variations in appearance (e.g., humans, birds, fish, cars, and planes)

that the considered training data does not suffice to capture all variations. (2) The

detected biological object is not guaranteed to be locomoting. Moreover, augmenting

motion information with appearance information adds no apparent benefit. These

results confirm that eschewing appearance information and obtaining results strictly

based on motion information is the desirable path to take when detecting bioloco-

motion in videos.
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Figure 4.7: Precision-Recall (PR) curves for alternative algorithm.
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4.6.3 Qualitative Results

Figure 4.8 provides qualitative detection results on a set of seven example frames

from the BOLD dataset for the proposed algorithm. Various examples of locomoting

biological objects are shown in Figure 4.8a. While the species type varies (e.g., dog,

bird, fish, and human), the way in which these species make a positional advance

in the world (i.e., by running, flying, swimming, or climbing) all include oscillatory

behaviour with extrinsic motion dissimilarity and an added asymmetry in its oscil-

lation if moving orthogonal to the resistive force (i.e., running dog, flying bird, and

swimming fish). As a result, they project oscillatory trajectories as they locomote

inducing signs of biolocomotion. On the contrary, a non-biological object (e.g., ball)

locomoting is shown in Figure 4.8b. While this object is making a spatial advance

(i.e., by rolling) and even includes oscillation (in its cycloidal trajectory trace), since

it does not exhibit asymmetric oscillatory behaviour, it does not yield large SB val-

ues to indicate biolocomotion. Conversely, an example of a biological object (bird)

not locomoting is also shown in Figure 4.8c. Even though the bird exhibits some

oscillatory behaviour (i.e., jumping up and down), it does not locomote and hence is

correctly not detected as biolocomotion. While the measure of locomotion, MΛ, is

able to capture locomotion of (biological or non-biological) objects in the majority

of the cases, it fails to capture objects primarily moving along the optical axis (i.e.,

towards (or away) from the camera); as depicted in Figure 4.8d. As a result, a low

signal for locomotion is obtained, resulting in a false negative biolocomotion detec-

tion. Future research can address this limitation by considering measurements that

are indicative of change in the depth of an object within a temporal window.
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(a) Biological objects in locomotion

(b) Non-biological object in locomotion

(c) Biological object not in locomotion

(d) Biological object in locomotion not detected as locomoting

Figure 4.8: Example results from the proposed biolocomotion detection algorithm.
(a) Illustration of true detection results on different types of biological objects (dog,
bird, fish, and human) locomoting in various ways (run, fly, swim, and climb). (b)
Illustration of correctly undetected non-biological object (ball) in locomotion. (c)
Illustration of correctly undetected biological object (bird) not in locomotion. (d)
Illustration of a falsely undetected biological object (cat) in locomotion. Detected
regions are indicated by red bounding boxes that cover the trajectory clusters that
led to the detection.
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4.7 Summary

This chapter has provided qualitative and quantitative results to validate the pro-

posed algorithm’s ability to detect biolocomotion and its superiority over an al-

ternative approach that combines handcrafted features with learning. The results

confirmed that biolocomotion can be modelled by measuring spatial advance of an ob-

ject (locomotion) in conjunction with asymmetric oscillatory patterns and extrinsic

motion dissimilarity. Furthermore, the results indicate that eschewing appearance

information and relying solely on motion information in detecting biolocomotion

yields superior performance. These studies were enabled by the introduction of the

first dataset built for biolocomotion detection, BOLD.
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Chapter 5

Conclusion

5.1 Summary

This dissertation has shed light on a new research topic in the field of computer vi-

sion: biolocomotion detection in videos. While previously not considered in computer

vision, biolocomotion detection is an important topic not only because it presents an

interesting and a well-defined challenge, but also for its wide spread applicability as

a precursor for subsequent analysis (e.g., tracking and action recognition). Morever,

research here has the potential to provide a computational model for the apparent

ability of biological systems to detect biolocomotion from visual data.

Inspired by biomechanical properties of animals in locomotion and the perception

of biological motion in psychophysics, a unified computational algorithm to detect

biolocomotion in videos has been developed. In particular, the developed approach
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exploits the distinctive signature of asymmetric oscillatory pattern as biological en-

tities make a positional advance, which also tends to yield dissimilar extrinsic and

intrinsic motions. Since the developed algorithm is based on distinctive motion

patterns of locomoting biological objects, it enjoys the benefit of not needing to

model the wide range of variations that exist between and within biological and non-

biological objects.

A novel dataset, BOLD, has been assembled and biolocomotion annotations on

BOLD as well as on an extant camouflage animals dataset have been supplied to

provide evaluation benchmarks for the developed and future biolocomotion detec-

tion algorithms. To demonstrate the efficacy of the developed approach, an alter-

native approach based on generic handcrafted features with learning also has been

developed and compared. Quantitative results indicate that the proposed algorithm

considerably outperforms the alternative approach. These results support the hy-

pothesis that biolocomotion can be detected reliably based on the biomechanically

and psychophysically motivated signature of positional advance with asymmetric

oscillation and extrinsic motion dissimilarity.

5.2 Future Work

In light of the work presented in this dissertation, several directions for future work

can be considered.
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While the proposed approach has demonstrated its ability to detect a wide range

of locomoting biological species in videos, it has also revealed its limitations in de-

tecting objects that move parallel to the optical axis (i.e., towards (or away) from

the camera, as in Figure 4.8d). An algorithm that can estimate the change in depth

of such locomoting species could provide a solution to such scenarios. A poten-

tial approach could be based on measuring motion along the optical axis based on

the relative rate of the visually apparent expansion (or contraction) of an object

across time, as evidenced in biological systems (e.g., [96]) and employed in collision

avoidance systems for autonomous vehicles (e.g., [63]). Combining the result with

the currently proposed measurement of locomotion could better encompass the full

three-dimensional displacement of biological species in motion.

One of the motivations for the computational study of biolocomotion detection

is that it can serve as a precursor for many related tasks. Once a living creature

has been detected, it can be recognized (e.g., human, cat, bird), its action can be

classified (e.g., running, flying, jumping), or even more subtle distinctions can be

made (e.g., gender, age, emotional state, personality trait) [113]. Correspondingly,

an interesting direction for future research is to couple the biolocomotion detector

with such subsequent processes.

Another source of motivation for the computational study of biolocomotion de-

tection is that it might yield a computational theory of how biological systems solve

this problem. Toward that end, one shortcoming of the current algorithm is that it is
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not subject to the inversion effect, whereby inverted biolocomotion displays are not

easily recognized by animals [115, 117]. An interesting direction for future research

is to consider how this constraint could be incorporated into the detector and what

advantages it might provide. Further, the specific mechanisms that are incorporated

in the current detector could provide the basis for psychophysical experiments to

further probe how biological systems operate.

Finally, various combinations of the components introduced in this dissertation

might be combined in different ways to detect more general types of motion, not

restricted to locomotion. For example, studies have shown that animacy can be per-

ceived from the motion of simple rigid geometric shapes, such as triangles, circles,

and squares [47]; see Figure 5.1. Therefore, future research can consider how the

biolocomotion detection components defined in this dissertation can be leveraged to

detect more general animacy.
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Figure 5.1: Illustration of perception of animacy. Select frames of rigid geometric
shapes in motion displaying perception of animacy. The way geometric figures move
provides sufficient information to give observers the perception of animacy. For
example, an observer can interpret the display as the red triangle chasing after the
blue triangle and the green circle moving around an obstacle (black opened box).
Figure redrawn from [101].

84



Appendix A

Trajectory Processing

Motivated by its state-of-the-art performance amongst handcrafted algorithms for

action recognition, improved Dense Trajectories (iDTs) [121] are used as input to

the proposed biolocomotion detector. For the best performance, trajectories had to

be further processed prior to passing them to the biolocomotion detector, as fol-

lows. First, trajectories must be pruned to remove unuseful trajectories. Second,

trajectories need to be clustered such that biolocomotion detection operates on sets

of trajectories that are likely to correspond to a single or similarly moving entity

in the world. Third, while iDTs are claimed to be robust to camera motion, tra-

jectories need to be stabilized to (i) remove object-centric stabilization induced by

the camera operator or (ii) remove residual motion arising from camera motion that

contain corrupted data for measurement. Finally, select trajectories in a video can

be elongated, without increasing its chance for drifting, to allow for more temporal

support in biolocomotion detection. In this appendix, the details of each trajectory
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processing step is described.

A.1 Pruning Trajectories

To ensure that a meaningful set of trajectories are obtained, static trajectories that

do not contain motion information and random trajectories are removed in the post-

processing stage. While the need and conditions to remove static and random tra-

jectories are addressed in the original iDT work [121], their solution was insufficient

for present purposes. In particular, the removal of static trajectories via standard

deviation and the removal of random trajectories via arc length was insufficient.

In addition, the removal of trajectories if the trajectory exceeded some pre-defined

threshold was too aggressive in that they removed trajectories that corresponded

to objects moving quickly (e.g., cars). Thus, more variations and less aggressive

measures to prune static and random trajectories that would yield meaningful infor-

mation in identifying biolocomotion are considered in this section.

A.1.1 Removing Static Trajectories

Static trajectories can be removed using (i) standard deviation, (ii) arc length, and

(iii) removing trajectories with m relatively static points. Given a trajectory T k, its

mean and standard deviation are defined as

(µkx, µ
k
y) =

 1

Lk

Lk∑
l=1

xkl ,
1

Lk

Lk∑
l=1

ykl

 (A.1)
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and

(σkx, σ
k
y) =


√√√√ 1

Lk

Lk∑
l=1

|xkl − µkx|2,

√√√√ 1

Lk

Lk∑
l=1

|ykl − µky|2

 , (A.2)

respectively. A trajectory is considered static if the standard deviation in the hor-

izontal and vertical directions are below some threshold, τx and τy (i.e., if (σkx <

τx) ∧ (σky < τy), then T k is static). The thresholds can be set to some pre-defined

values like τx = τy =
√

3, which were empirically found to yield acceptable results.

Trajectory T k is considered static if its arc length, ‖T k‖ as in (3.5), is shorter

than some threshold (i.e., if ‖T k‖ < τ , then T k is static). Again, τ can be set with

some pre-defined value, like τ = 10, which has shown to yield good results.

Lastly, a trajectory is considered static if it contains m relatively static points.

A point is considered static if its position has not changed in the next frame (i.e.,

(|xkl+1−xkl | ≈ 0)∧ (|ykl+1− ykl | ≈ 0)). In practice, a small threshold, τs, is assigned to

determine if a point is relatively static (i.e., (|xkl+1 − xkl | < τs) ∧ (|ykl+1 − ykl | < τs)).

The number of relatively static points that a trajectory contains can be determined

by summing the number of points that satisfy the relatively static condition. That

is, if
Lk−1∑
l=1

[
(|xkl+1 − xkn| < τ) ∧ (|ykl+1 − ykl | < τ)

]
> m, (A.3)

then T k is considered static. Empirically, τ = 1 and m = 2
3
Lk has shown to prune

static trajectories well.
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A.1.2 Removing Random Trajectories

Trajectories with sudden large displacements are likely to be erroneous. Thus, it

would be helpful to remove them before further processing the data. Random tra-

jectories can be removed using (i) standard deviation, (ii) arc length, and (iii) the

‘68-95-99.7’ rule [119].

Using the standard deviation as defined in equation (A.2), a trajectory is likely

to be erroneous if (σx > τx) ∨ (σy > τy), since it implies that T k has a sudden large

displacement in either the horizontal or vertical direction. Empirically, τx = τy = 75

has shown to prune random trajectories, while retaining non-random ones.

Random trajectories are pruned using arc length as done in the original evalu-

ation [121]. More specifically, if the displacement vector between two consecutive

frames is larger than 70% of the overall displacement, then it indicates a sud-

den large displacement, which is likely to be a random trajectory. Formally, if√
(xkl+1 − xkl )2 + (ykl+1 − ykl )2 > 0.7‖T k‖ ∀ k, then T k is likely to be a random tra-

jectory.

Finally, the standard deviation of the trajectories is used more adaptively via the

‘68-95-99.7’ rule. That is, if (µx − τσσx < xkl < µx + τσσx) ∧ (µy − τσσy < ykl <

µy + τσσy) for 1 ≤ l ≤ Lk, it means that all the points of the trajectory lie within

68%, 95%, or 99.7% of the data if τσ = 1, 2, or 3, respectively. Otherwise, a point

is considered “random” within the trajectory. Empirically, τσ = 3 retained useful
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trajectories while removing random ones.

A.2 Clustering Trajectories

To ensure that the developed algorithm is applicable in the real world, it should be

robust to various factors that could occur in videos from the wild, such as objects

occuring simultaneously in a single frame (see Figure A.1), presence of camera mo-

tion, etc. One of the ways in which these factors can be dealt with is to cluster them

and subsequently handle them separately. Thus, in this section, a method to cluster

trajectories is introduced followed by a way to identify and remove camera motion

in videos.

(a) Single Object Per Frame (b) Multiple Objects in a Frame

Figure A.1: Comparison of single object per frame vs. multiple objects per frame.

Given a set of trajectories T = {T 1, . . . , T N}, the goal is to cluster them into

disjoint sets that correspond to similarly moving objects in the world. A variant on

spectral trajectory clustering is to be employed since the original formulation [17]

produced poor results with iDTs for the biolocomotion detection task. This short-

coming is likely due to the fact that the original intent of the algorithm was to cluster
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trajectories that were mostly linear, while the current goal is to cluster oscillatory

trajectories. Correspondingly, novel measures of positional and shape affinity, dp and

ds, respectively, for trajectory pairs are defined to perform spectral clustering. The

output of this processing stage are the centres as well as the horizontal and vertical

extents of ellipses that cover each cluster.

Let T i and T j represent two trajectories that span the same temporal length L

(i.e., L = Li = Lj) in T . Then the proximity of two trajectories can be measured

by considering a weighted Euclidean distance between the average spatiotemporal

coordinates of the trajectories,

dp(T i, T j) = α

[
(x̄i − x̄j)2

w
+

(ȳi − ȳj)2

h

]
+ (1− α)

[
(t̄i − t̄j)2

f

]
, (A.4)

where x̄k, ȳk, and t̄k denote spatial and temporal averages, respectively, of trajectory

T k for k ∈ {i, j}. That is, x̄k = (x̄k, ȳk, t̄k) = ( 1
L

∑L
l=1 x

k
l ,

1
L

∑L
l=1 y

k
l ,

1
L

∑L
l=1 t

k
l ) with

xkl = (xkl , y
k
l , t

k
l ) the spacetime coordinates of the lth point in trajectory k at frame tl.

To account for variations in resolution and frame rate of videos, the spatial distances

are divided by the width, w, or height, h, and the temporal distance is divided by the

frame rate, f . Greater emphasis on spatial distance over temporal distance (or vice

versa) can be applied by the use of a constant term, α ∈ R, where 0 ≤ α ≤ 1; α = 0.5

is used in practice. The formulation in (A.4) ensures for a pair of spatiotemporally

close trajectories dp(T i, T j)→ 0, while those that are far tend to ∞.

To compare the shape of a pair of trajectories, T i and T j, subsections of trajec-
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tories (or trajectory displacements) can be compared by considering either (i) the

squared L2-norm or (ii) the angle of the normalized inner product. While both are

valid methods of comparison, considering the angle ensures that the overall shape of

the trajectory is compared while being minimally affected by the length of the trajec-

tory displacements. Abstracting away the magnitude of the displacements between

frames would ensure robustness to a potentially varying amount of displacement ex-

hibited by different limbs of a biological object. That is, for displacement vector

∆xkl of trajectory T k at the lth point for 1 ≤ l ≤ Lk and k ∈ {i, j}, its angle of the

normalized inner product of two vectors is defined as

Θ(∆xil,∆xjl ) = arccos

(
〈∆xil,∆xjl 〉
‖∆xil‖‖∆xjl ‖

)
. (A.5)

The angle of the normalized inner product to consider is bound between [0, 180],

where similar vectors tend to 0 while very different vectors tend to 180, instead of a

bound between [−1, 1], where two alike vectors tend to 1 and two dissimilar vectors

tend to −1.

While the individual angular based difference between vectors could be combined

across trajectories by simply taking their mean or maximum, taking a weighted sum

according to the percentage of the overall trajectory length of the displacements is

advantageous as longer portions of the trajectory will count more heavily. Corre-
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spondingly, a weight can be defined as

w(∆xil,∆xjl ) =
‖∆xil‖∑
l ‖∆xil‖

‖∆xjl ‖∑
l ‖∆xjl ‖

. (A.6)

Finally, while the overall shape difference between a pair of trajectories can be

compared by taking the weighted sum of the individual similarities between vectors

as

ds(T i, T j) =
L−1∑
n=1

w(∆xil,∆xil) Θ(∆xil,∆xjl ), (A.7)

the phase shifts that could occur between opposing limbs (e.g., left and right arms of

a human walker) must be accounted for. To obtain a phase invariant shape measure,

the minimum of all phase shifts of T j with respect to T i are considered

ds′(T i, T j) =
L−2

min
ι=0

{
L−1∑
l=1

w
(
∆xil,∆xjl−ι

)
Θ
(
∆xil,∆xjl−ι

)}
, (A.8)

which is used as the shape similarity between two trajectories.

The two traits that distinguish trajectories from another, dp and ds′ , can be

transformed into affinities for spectral clustering via

W (T i, T j) = exp
(
−κs · dp(T i, T j)− ds′(T i, T j)

)
, (A.9)

where κs ∈ R is some constant, which is emprically set to κs = 0.01.

Once the affinity matrix has been defined, spectral clustering can be employed.

92



To compensate for potential noise in the defined affinity matrix, eigendecomposition

is performed on a normalized Laplacian

V >ΛV = D−
1
2 (D −W )D−

1
2 , (A.10)

where D is the degree matrix of W , and V and Λ correspond to matrices containing

the eigenvector and eigenvalues, respectively [17]. Then k-means clustering is per-

formed on the eigenvectors that correspond to k smallest nonzero eigenvalues.

To allow spectral clustering to be as automated as possible, that is to limit the

process of manually selecting the number of clusters for the k-means clustering step,

a cluster validity index is employed. A cluster validity index is a measure that com-

pares the compactness of a cluster (or the intra-class relationship between features

within a cluster) and the separatedness of clusters (or the inter-class relationship of

features between clusters). There are various cluster validity indices (e.g., Dunn [37]

and Davies-Bouldin [33]) that can be used to identify the ideal number of clusters

[34]. Here, silhouette value [99] is employed.

For simplicity, suppose T i is a trajectory that belongs to cluster Ci and none

other (i.e., T i ∈ Ci and T i /∈ Cki , where Cki denotes any cluster that is not Ci

and ∩iCki = ∅); see Figure A.2. Then the within similarity of T i to all the other

trajectories in Ci can be calculated by taking the average similarity of T i to all other
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trajectories in Ci according to

a(T i) =
1

|Ci|
∑
T j

W (T i, T j) ∀ T j ∈ Ci, (A.11)

where W (T i, T j) is the similarity score between T i and T j as in (A.9). The between

similarity of T i to any other cluster Cki is calculated in a similar manner,

d(T i, Cki) =
1

|Cki |
∑
T j

W (T i, T j) ∀ T j ∈ Cki . (A.12)

Once the between similarity of T i to all other clusters, Cki ∀i, have been computed,

the second best cluster for T i is chosen by taking the maximum of the between

clusters according to

b(T i) = max
Cki ∀i

{d(T i, Cki)}. (A.13)

The silhouette of T i is obtained by combining a(T i) and b(T i) according to

s(T i) =


1− a(T i)

b(T i)
, if a(T i) < b(T i)

0, if a(T i) = b(T i)

b(T i)
a(T i)

− 1, if a(T i) > b(T i)

, (A.14)
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Ci

T i Ck1

Ck2

Figure A.2: Silhouettes [99]. The quality of the clusters is quantified using silhouette
values. The within similarity of T i ∈ Ci, denoted a(T i), is taken as the average
similarity of T i to all other trajectories in Ci (orange lines). The between similarity
of T i to other clusters Cki (blue lines), denoted d(T i, Cki), is calculated by taking
the average similarity of T i to all objects in cluster Cki . The second most suitable
cluster for T i is chosen by selecting the cluster with the largest between similarity
(e.g., b(T i) = max {d(T i, Ck1), d(T i, Ck2)}). The within, a(T i), and between, b(T i),
values are summarized into a single value using a silhouette value s(T i).
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which can be summarized into a single formula as

s(T i) =
a(T i)− b(T i)

max {a(T i), b(T i)}
. (A.15)

Since it is unclear how a(T i) should be defined if there is only one trajectory in

cluster Ci, by convention, s(T i) is set to 0.

It is worth noting that s(T i) is defined in a way such that −1 ≤ s(T i) ≤ 1.

s(T i)→ 1 if a(T i) is large and b(T i) is small, which implies that the within similar-

ity, a(T i), is greater than the between similarity, b(T i), implying that T i has been

well-clustered. s(T i) → 0 if a(T i) ≈ b(T i), which implies it is unclear whether T i

should have been clustered into Ci or Ck. s(T i)→ −1 if a(T i) is small and b(T i) is

large, which implies that the within similarity, a(T i), is less than the between simi-

larity, b(T i), implying that it would have been better to classify T i into cluster Cki

rather than Ci. Hence, T i has been misclassified.

The quality of the final clustering result is evaluated by computing the overall

average silhouette, Sk, for k clusters as follows

Sk =
1

N

N∑
i=1

s(T i) ∀T i, (A.16)

where N is the number of trajectories in cluster Ck. The cluster that yields the

largest overall average silhouette, Sk, is indicative of the most optimal number of

partitions. Silhouettes offer a quantitative analysis of the final outcome of a cluster-
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ing algorithm without the knowledge of which clustering algorithm was actually used

to acquire such result [99]. Since the most computationally expensive step of spectral

clustering lies in the construction of the affinity matrix, W , numerous clusters can

be evaluated, and the optimal number of clusters can be identified, rather efficiently,

by selecting the cluster with the largest average silhouette width, S.

Finally, to recover the extent of each cluster, GMMs are used to model the shape

of the clusters at frame t. Specifically, the points that are present at frame t are

represented by GMMs with varying number of components (e.g., two to five compo-

nents) to yield a candidate of shapes for the cluster. Among the candidate of GMMs,

the GMM with the smallest Akaike Information Criterion (AIC) value [2] is selected

to represent the cluster of points at frame t. To ensure temporal smoothness of the

estimated GMM-based masks, each frame is weighted according to its neighbouring

frames. That is, suppose Bk
t represents a binary mask of cluster k at frame t. Then

its smoothed map is a weighted sum of its neighbouring frames

B̃k
t =

T∑
t=1

w(t, t′) Bk
t (A.17)

for 1 ≤ t′ ≤ T , where w(t, t′) = exp (−λ(t− t′)2) for constant λ, which controls the

amount of contribution the neighbouring frames have on frame t. Empirically, λ

is set to 0.1. The weighted sum of the binary masks results in a real-valued map.
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Therefore, the final binary mask, Bkt , is defined as

Bkt (x) =


1, if B̃k

t (x) > τd

0, otherwise

, (A.18)

at some spatial coordinate x, where τd is empirically set to 0.7.

A.3 Stabilizing Trajectories

While iDTs are designed to have a certain level of robustness to camera motion,

the wide range of pans and zooms present in videos in-the-wild makes the entailed

processing inadequate. Other recent approaches to image-based camera motion es-

timation and cancellation [85] have also been inadequate. Thus, an approach to

camera stabilization that corrects the overall global shift between frames (approxi-

mation to pan and tilt), linear expansion/contraction about a centre (approximation

to zoom) as well as estimation of frames without camera motion is needed. In this

section, a method to camera stabilization using trajectories is described.

Estimating Global Shift

Trajectories that arise as a result of overall global translation (e.g., horizontal, verti-

cal, and/or its combination) between frames should have similar shapes and therefore

be grouped into a single cluster according to processing described in §A.2. Un-

der the assumption that the field of view is not dominated by the object of inter-
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est (e.g., human, car), trajectories corresponding to camera motion would be well-

dispersed throughout the field of view. Thus, the cluster whose trajectories occupy a

widespread area of the frame can be taken as the cluster indicative of camera motion

manifest as global shift. That is, cluster Ck containing a set of trajectories correspond

to global shift if (w
2
− vx(t) < τcx

)
∨
(
h

2
− vy(t) < τcy

)
, (A.19)

where (vx(t), vy(t)) correspond to horizontal and vertical extents of cluster Ck at

frame t, while w and h correspond to the width and height of the image, respec-

tively. The thresholds, (τcx, τcy), to determine if the trajectories occupy the majority

of the frame is defined as a ratio with respect to the resolution of the image (e.g.,

(τcx, τcy) = ( w
15
, h

15
)).

Once the cluster of trajectories corresponding to camera motion has been iden-

tified, global shift can be estimated by calculating the median displacement of the

trajectories on a frame-by-frame basis. That is, for displacement vector ∆xk(t,∆t) of

trajectory T k between frames t and t−∆t, global shift at frame t is defined as

(xc(t), yc(t)) =
(
medxk(t){∆xk(t)},medyk(t){∆yk(t)}

)
. (A.20)

Finally, with the global shift estimated, motion caused by camera motion can be

removed by subtracting the estimated shift from each trajectory.
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Estimating Global Expansion/Contraction

The displacement vectors in frames with global expansion (or contraction) motion

(i.e., arising from camera zoom in (or zoom out)) exhibit unique patterns; see Fig-

ure A.3. To handle frames with global expansion (or contraction), pattern of ex-

pansion (or contraction) must be detected, the scale of expansion (or contraction)

imposed by the camera operator must be removed, then shifted to match the focus

of expansion (or contraction). In the following, each of the steps necessary to remove

global expansion (or contraction) will be detailed by describing the case where the

focus of expansion (or contraction) is at the centre of image first, followed by an

arbitrary focus of expansion (or contraction) location.

(a) Expansion (b) Contraction (c) Expansion - off centre

Figure A.3: Illustration of trajectories in presence of linear expansion or contraction.
The displacement vectors of each trajectory are grouped based on the quadrant that
it belongs to (red for displacement vectors in quadrant QI , blue for QII , orange for
QIII and green for QIV ). A frame that contains expansion (i.e., zoom in) exhibits
the following characteristic: QII is to the left of QI , QIII is to the left of QIV , QII

is above QIII and QI is above QIV . Conversely, a frame that contains contraction
(i.e., zoom out) exhibits the following pattern: QIV is to the left of QIII , QI is to
the left of QII , QIV is above QI and QIII is above QII .

To identify the pattern indicative of expansion (or contraction), all displacement
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vectors present at frame t must be assigned to a quadrant based on its orientation

then subsequently consider the spatial arrangements of the assigned vectors. A

displacement vector, ∆xk(t,∆t), for trajectory T k present at frame t with a temporal

difference of ∆t is assigned to a quadrant according to

∆xk(t) ∈



QI , if 0◦ ≤ arctan

(
∆yk

(t,∆t)

∆xk
(t,∆t)

)
< 90◦

QII , if 90◦ ≤ arctan

(
∆yk

(t,∆t)

∆xk
(t,∆t)

)
< 180◦

QIII , if 180◦ ≤ arctan

(
∆yk

(t,∆t)

∆xk
(t,∆t)

)
< 270◦

QIV , if 270◦ ≤ arctan

(
∆yk

(t,∆t)

∆xk
(t,∆t)

)
< 360◦

. (A.21)

The centre of each quadrant is calculated according to

(xq(t), yq(t)) =

 1

|q|
∑

∀∆xk
(t,∆t)

∈q

∆xk(t),
1

|q|
∑

∀∆yk
(t,∆t)

∈q

∆yk(t)

 (A.22)

for q ∈ {QI , QII , QIII , QIV }. The pattern indicative of expansion (or contraction) is

classified using the relative positions of the quadrant centres. A frame is considered

to contain expansion if QII is to the left of QI , QIII is to the left of QIV , QII is

above QIII and QI is above QIV ; see Figure A.3a. Conversely, a frame is considered

to contain contraction if QIV is to the left of QIII , QI is to the left of QII , QIV

is above QI and QIII is above QII ; see Figure A.3b. The state of expansion (or
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contraction) at frame t can be determined according to

ts =



1, if
(xQII

(t) < xQI
(t)) ∧ (xQIII

(t) < xQIV
(t))

∧ (yQIII
(t) < yQII

(t)) ∧ (yQIV
(t) < yQI

(t))

−1, if
(xQIV

(t) < xQIII
(t)) ∧ (xQI

(t) < xQII
(t))

∧ (yQIV
(t) < yQI

(t)) ∧ (yQIII
(t) < yQII

(t))

0, otherwise

, (A.23)

where

ts =


1 implies expansion

−1 implies contraction

0 neither expansion nor contraction

. (A.24)

The scale of expansion (or contraction), ρt, is determined by considering the

magnitude of the displacement vector,

ρt = max
∀k|t

{
‖∆xk(t,∆t)‖

}
. (A.25)

The largest magnitude is considered since it provides the most computationally stable

measure of scale change between frames. For example, the error in an estimated scale

change of 5 when the actual scale change is 5.1 is relatively small compared to an

estimated scale change of 1 when the actual scale change is 0.9, even though the error

is 0.1 in both cases. Here, reliance on a single (maximal) value is reasonable, because
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unreliable trajectories should already have been removed by the pruning in Section

A.1. Consequently, the scale of expansion (or contraction) at frame t is determined

by comparing the ratio of the widths between frames (cf. Figure A.4),

st =
wt
w′t+1

=



wt

wt+2
√
ρt
, if ts = 1

wt

wt−2
√
ρt
, if ts = −1

1, if ts = 0

, (A.26)

where wt is the width at frame t and w′t+1 is the estimated width at frame t + 1.

Note that the calculation for computing the scale of expansion (or contraction) is

not limited to widths, but can be found in a similar manner using heights. Finally,

the scale of expansion (or contraction), st, is used to remove the expansion (or

contraction) imposed by the camera operator by scaling each of the tracked point,

xk, of trajectory T k at frame t according to

x̂k(t) = stx
k(t). (A.27)

In the general case, where the focus of expansion (or contraction) is not at the

centre of the image, as shown in Figure A.3c, multiplying each frame by st will

incorrectly remove the expansion (or contraction) and further distort the imagery.

Thus, the centre of the expansion (or contraction), xz(t) = (xz(t), yz(t)), must be

taken into account, which is computed using the median of the quadrant centres,
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(a) Expansion (b) Contraction

Figure A.4: Scale factor. The scale factor between frames can be determined using
the width and the maximum magnitude of the displacement vectors by comparing
the width of the old frame (solid rectangle) to the new frame (dashed rectangle).

(A.22), according to

xz(t) = (med∀q{xq(t)},med∀q{yq(t)}) . (A.28)

Finally, once the scale change and the shift in zoom centre has been determined,

expansion (or contraction) is reverted from the recovered trajectories by multiplying

the recovered iDTs by the scale change, then shifting by the centre,

x̂k(t) = stx
k(t)− xz(t). (A.29)
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Frames without Camera Motion

Presence of camera motion can be identified by detecting trajectories that are likely to

correspond to camera motion. Conversely, absence of camera motion can be identified

by detecting trajectories that are likely to correspond to static motion. Frames that

are predominantly occupied by static trajectories (see Section A.1.1) are likely to

correspond to frames without camera motion. That is, suppose {(x́k(t), ýk(t))|T́ k}

denotes a set of points present at frame t that belong to static trajectory T́ k. Frame

t does not contain camera motion if

(w
2
− v́x(t) < τ́x

)
∧
(
h

2
− v́y < τ́y

)
, (A.30)

where (τ́x, τ́y) correspond to horizontal and vertical vertices of the static trajectories

that occupy the frame at frame t. The vertices of the static trajectories is estimated

by taking the standard deviation, (v́x(t), v́y(t)) = (2σ́x(t), 2σ́y(t)), of the points that

are present at frame t. The thresholds, (τ́x, τ́y), are defined in terms of the resolution

of the video (e.g., (τ́x, τ́y) =
(
w
15
, h

15

)
). The AND condition is used in (A.30) instead

of OR as in (A.19), because (A.30) will null frames that were originally identified

to contain camera motion. Thus, a stronger condition, ∧, is applied to ensure that

frames with camera motion are not incorrectly identified as a static frame. These

frames are further confirmed as static if the absolute of the average displacement of

the static trajectories are less than some threshold. That is, if

∣∣∣∣∣∣ 1

N(t)

N(t)∑
k=1

∆x́k(t,1)

∣∣∣∣∣∣ < τ́x

 ∧
∣∣∣∣∣∣ 1

N(t)

N(t)∑
k=1

∆ýk(t,1)

∣∣∣∣∣∣ < τ́y

 , (A.31)
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where N(t) is the number of static trajectories that are present at frame t, and

(τ́x, τ́y) = (0.1, 0.1) is some small pre-defined value, then frame t is a static frame.

Integrated Trajectory Stabilization

To stabilize a general set of input trajectories that may contain global shift (pan/tilt),

linear expansion/contraction (zoom in/out), its combination or neither, a way to inte-

grate global shift, expansion/contraction estimations and cancellations is considered,

as follows. First, all frames are checked for absence of camera motion. Frames that

meet the diagnostics of no camera motion are not processed further for trajectory

stabilization. Second, all remaining frames are processed to stabilize the trajecto-

ries against global shift (pan/tilt). Third, the frames are processed to stabilize the

trajectories against expansion/contraction (zoom in/out).

A.4 Elongating Trajectories

To overcome the drifting effect when tracking points, trajectories estimated as iDTs

are recommended to span L = 15 or 20 frames for videos with a frame rate of 30

fps [121]. This limitation yields short-term trajectories, which are often insufficient

to obtain a reliable measurement of trajectory characteristics, such as oscillation

amplitude. Thus, a more reliable set of trajectories for the biolocomotion detector

are obtained by concatenating iDTs across frames to gain elongated trajectories. In

particular, a set of trajectories that span a fixed number of frames is concatenated

by considering (i) the spatiotemporal proximities and (ii) the appearance alikeness
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of the trajectories. That is, for trajectory T k(t) that begins at frame t and spans

Lk frames, the proximity criterion is considered by seeking trajectories that begin at

frame s ∈ [t+ Lk, t+ Lk + δt] for some constant δt, whose spatial distance between

the estimated point of T k at frame s and the first point of T j is less than some

pre-defined constant, τsp, according to

dsp
(
x̂kLk+dt,x

j
1

)
< τsp, (A.32)

where x̂k
Lk+dt

is an estimated point of T k at frame s = t + Lk + dt for 0 ≤ dt ≤ δt.

The spatial distance between two points, xji and xkl , is defined using the L2-norm

according to

dsp(x
j
i ,x

k
l ) = dsp

(
(xji , y

j
i ), (x

k
l , y

k
l )
)

=

√
(xkl − x

j
i )

2 + (ykl − y
j
i )

2. (A.33)

The appearance similarity between two trajectories can be considered using HOGs

[31]. That is, if the distance between the corresponding HOGs, Hk and Hj for

trajectories T k and T j, respectively, is less than some pre-defined constant, τH :

d
(
Hk, Hj

)
< τH , (A.34)

then trajectories T k and T j are likely to correspond to the same point of an object.

The distance between HOGs, d(Hk, Hj), is defined using the L2-norm according to

d(Hk, Hj) =

√∑
i

(Hj(i)−Hk(i))2, (A.35)
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where Hk = [Hk(i)] ∈ Rn. Trajectory T j that satisfies both (A.32) and (A.34) is

concatenated with trajectory T k.

Trajectory concatenation is not limited to the connection of two constant length

trajectories, but can be applied iteratively to concatenate arbitrarily many trajecto-

ries provided (A.32) and (A.34) are satisfied. Once two trajectories are concatenated,

HOG is updated to the trajectory that occurred (temporally) later. That is, if T kj

denotes the concatenation of trajectories T k and T j, where T k occurred earlier than

T j, then Hkj = Hj.

Currently, constant value of δt = f
6

for frame rate f is used as the temporal

threshold, τsp = 2.5∗S for sampling width S as the threshold for the spatial distance,

τH = 0.75 as the threshold for appearance alikeness, and n = 96 = 8× 2× 2× 3 for

the dimension of the HOG descriptor.
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Appendix B

Alternative Oscillation Measures

In addition to the frequency-based calculation presented in the main dissertation

(Section 3.3.2) to obtain the oscillation measure,MΩ, the amplitude of a detrended

trajectory can also be calculated using integrals and differentials.

The amplitude of a trajectory can be computed via integrals by considering the

average of the maximum value and the absolute of the minimum value of the de-

trended trajectory if the overall integral is close to zero; see Figure B.1a. That is, for

a detrended trajectory T̃ k, its amplitude is defined as the average of the maximum

and minimum values of T̃ k, according to

akΣ = exp

(
−
(∑

l ỹ
k
l

)2

2

)(
maxl ỹ

k
l + |minl ỹ

k
l |

2

)
. (B.1)

The exponential function in (B.1) ensures that the amplitude is more recognized as

the overall sum is close to zero, hence the use of an exponential weighting function.
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Alternatively, the amplitude of a trajectory can be evaluated using differentials

by considering the average of vertical values where its slope is horizontal; see Fig-

ure B.1b. That is, the amplitude of a detrended trajectory T̃ k is defined as a weighted

sum of vertical values whose first-order derivative is near zero according to

ak∆ = wc

∑
l wsỹ

k
l∑

l ws
, (B.2)

where ws is a weight that accounts for the slope and wc is a weight that accounts

for the periodicity of T̃ k. These weights are defined using Gaussian-like functions,

as follows.

To ensure a larger weight is assigned to values with near horizontal slopes (i.e.,

(T̃ k)′ ≈ 0), a Gaussian-like function centred at 0 with a height of 1 is used to define

ws according to

ws = exp

(
− [(ỹkl )′]2

2(0.1)2

)
. (B.3)

ws assigns a value close to 1 if the slope of T̃ k is near zero. Empirically, a width of

0.1 was found effective for accepting how horizontal T̃ k is.

To ensure periodicity of T̃ k, wc is a function defined to favour even number

of concavities. Thus, wc is defined as the sum of second-derivative of T̃ k using a
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(a) Integral-based (b) Differential-based

Figure B.1: Alternative measures of amplitude. See accompanying text in this ap-
pendix for details.

Gaussian-like function centred at 0 with a height of 1 according to

wc = exp

(
− [
∑

l ws(ỹ
k
l )′′)]2

2

)
. (B.4)

wc assigns a value close to 1 when there are even number of concavities (i.e., the sum

of the second derivative of T̃ k is approximately 0). Empirically, a width of 1 was

found effective for determining the concavity evenness of T̃ k.

Based on preliminary experiments, the frequency-based approach was selected

over the integral- and differential-based approaches for the work considered in this

dissertation.
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Appendix C

Additional Empirical Results

In addition to the quantitative results presented in the main dissertation for the

proposed biolocomotion detection algorithm (Section 4.6.2), this appendix presents

more detailed results on the performance of individual algorithm components and

their combinations on the BOLD dataset. Figure C.1 presents PR curves for all

algorithm component combinations. Table C.1 shows precision values as detection

threshold varies for all algorithm component combinations.

112



(a) PR curve in full scale.

(b) PR curve for recall ∈ [0, 0.4] and precision ∈ [0.4, 0.7].

Figure C.1: Precision-Recall (PR) curves of the proposed algorithm. ‘1’ indicates
enabled and ‘0’ indicates disabled components of locomotion (Λ), oscillation (Ω),
asymmetry (Σ), and extrinsic motion dissimilarity (E). (a) a full PR curve is pro-
vided with both precision and recall in the ranges [0, 1] and (b) the same PR curve,
as (a), restricted to recall values within [0, 0.4] and precision within [0.4, 0.7] as the
majority of the points are focused in a select region of the PR curve.
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Components τB
Λ Ω Σ E 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 0 0 0 0.1123 0.5125 0.5214 0.5109 0.5130 0.5227 0.5231 0.5017 0.4886 0.4797
0 1 0 0 0.1121 0.4650 0.4816 0.4942 0.5113 0.5154 0.5199 0.5171 0.5285 0.5322
0 0 1 0 0.1123 0.5218 0.5402 0.5953 0.5682 0.5769 0.5743 0.5959 0.6180 0.5220
0 0 0 1 0.1123 0.4412 0.4410 0.4401 0.4355 0.4355 0.4376 0.4384 0.4382 0.4444
1 1 0 0 0.1123 0.5571 0.5793 0.5647 0.5559 0.5652 0.5758 0.5297 0.5131 0.5157
1 0 1 0 0.1123 0.5222 0.5473 0.5184 0.5133 0.5467 0.5226 0.5320 0.5297 0.5537
1 0 0 1 0.1123 0.5203 0.5209 0.4840 0.4753 0.4904 0.4665 0.4314 0.4277 0.4672
0 1 1 0 0.1123 0.4518 0.4609 0.4673 0.4710 0.4751 0.4846 0.4792 0.4757 0.4810
0 1 0 1 0.1123 0.4517 0.4624 0.4664 0.4784 0.4880 0.4963 0.4924 0.4839 0.4921
0 0 1 1 0.1123 0.4394 0.4381 0.4358 0.4329 0.4326 0.4338 0.4283 0.4353 0.4425
1 1 1 0 0.1123 0.5601 0.5785 0.5680 0.5640 0.5884 0.5791 0.5724 0.5743 0.6143
1 1 0 1 0.1123 0.5566 0.5678 0.5296 0.5332 0.5575 0.5362 0.5006 0.5177 0.5279
1 0 1 1 0.1123 0.5183 0.5497 0.5243 0.5408 0.5547 0.5167 0.5130 0.5660 0.6207
0 1 1 1 0.1123 0.4509 0.4557 0.4697 0.4738 0.4909 0.4977 0.4874 0.4851 0.5002
1 1 1 1 0.1123 0.5566 0.5791 0.5770 0.5973 0.6103 0.5775 0.5858 0.6240 0.6770

Table C.1: Precision values at specified threshold τB for components: locomotion
(Λ), oscillation (Ω), asymmetry (Σ), and extrinsic motion dissimilarity (E).
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