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Abstract 

 Differential SAR interferometry (DInSAR) has proven to be a processing approach that is well-

suited to precisely identifying large-scale land deformation patterns.  This is useful for many 

environmental monitoring applications, but the speckle noise and temporal decorrelation present in SAR 

images presents particular challenges in processing SAR images.  This research focuses on the phase 

unwrapping problem, proposing two new approaches: Polynomial-Based Region-Growing Phase 

Unwrapping (PBRGPU), which expands upon the traditional region-growing approach to phase 

unwrapping; and Path-Based Least-Squares Phase Unwrapping (PBLSPU), which extends the least-

squares phase unwrapping models in a path-based framework.  Both algorithms were tested using 

simulated data and interferograms generated from RADARSAT-2 data.  Both approaches significantly 

reduced the root mean square error compared to the algorithms they build from, and achieved a similar 

level of performance to the commonly-used SNAPHU algorithm without the need for masking low 

coherence areas. 
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1 Introduction 

 

 Synthetic Aperture RADAR (SAR) is an active microwave remote sensing technology that gathers 

information about the scattering properties of Earth’s surface [Pepe and Calò 2017].  The scattering 

properties described by SAR images from satellite-mounted SAR systems (such as RADARSAT, the ERS-

1/2 satellites, and the Sentinel-1 constellation) are particularly useful for environmental applications 

that are linked to moisture content, including the mapping of soil moisture content [Alexakis et al 2016], 

marshlands [Cazals et al 2016], water bodies [Li and Wang 2017], and glaciers and their subsurface 

properties [Winsvold et al 2017].  These environmental monitoring applications may be addressed 

through the use of single-pass SAR images, but integrating data from multiple satellite passes allows for 

monitoring of how these quantities change through time.  Moreover, the phase differences between 

multiple-pass SAR images are related to the topography of the study area, and may be used to generate 

digital elevation models through Interferometric SAR (InSAR) analysis, as well as deformation maps 

through Differential SAR Interferometry (DInSAR).   

 Precise, large-scale land deformation analysis has important environmental applications, 

including monitoring permafrost level changes in Arctic regions and assessing land subsidence around 

regions of dense urban construction.  Such large-scale analysis is challenging and time-consuming to 

address using traditional land surveying techniques, especially for large areas of study.  Most satellite 

imagery lacks the accuracy required for this precision analysis, but applying DInSAR processing 

techniques  to SAR images makes this analysis more feasible.  DInSAR provides precise deformation 

products that have large areas of coverage without requiring extensive fieldwork. The main objective of 

this research is to improve DInSAR processing techniques with a particular focus on addressing the issue 

of phase unwrapping. 

 The DInSAR process derives deformation information from pixel-wise phase difference maps 

(interferograms) between SAR images collected over the course of several months [Pepe and Calò 

2017].  Before producing usable deformation products, there are several pre-processing tasks that must 

be performed. The DInSAR process consists of the following main procedures: 

1) SAR Image Alignment: 

• An important part of integrating information from multiple SAR images is ensuring that 

each pixel of those images refers to the same geographic area.  This requires the images to 

be aligned to a high degree of precision, usually to the sub-pixel level.  The process of SAR 
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image alignment is typically divided into a coarse alignment which aligns images to the pixel 

level (typically using keypoint matching), followed by a fine alignment which aligns images 

to the sub-pixel level (typically using oversampling and Fourier transformations to achieve 

1/20 pixel precision) [Pepe and Calò 2017]. 

2) Interferogram Generation, Correction, and Filtering: 

• Once a pair of SAR images is aligned, the pixel-wise phase differences between the SAR 

images may be calculated, forming the interferogram of the SAR image pair.  The 

interferogram may be used to derive deformation products, but local topography and 

orbital errors have systematic effects on the interferogram that must be accounted for.  

SAR interferograms are typically very noisy, and it is common practice to apply Goldstein 

filtering to the interferogram before performing phase unwrapping [Pepe and Calò 2017].  

3) Phase Unwrapping: 

• The calculated phase differences in the interferogram are restricted to have values 

between −𝜋 and 𝜋 radians, which produces discontinuous regions in the interferogram.  

This phenomenon is known as “phase wrapping,” and many algorithms have been proposed 

to “unwrap” interferograms and resolve these discontinuities [Pepe and Calò 2017]. 

4) Deformation Product Creation: 

• After an interferogram has been corrected, filtered, and unwrapped, geometric 

relationships may be used to derive deformation products for the study area [Pepe and 

Calò 2017]. 

 The issue of phase unwrapping presents a particular challenge in the DInSAR process due to the 

presence of “speckle noise” in SAR interferograms.  SAR sensors measure the backscattered microwave 

pulses, and speckle noise is produced by the backscattered signals interfering with one another [Pepe 

and Calò]. Speckle noise consists of an additive component and a multiplicative component, and has a 

significant detrimental impact on automated phase unwrapping algorithms.  For a phase unwrapping 

algorithm to be able to produce accurate results, it must account for the high noise levels in SAR 

interferograms.  Also, temporal decorrelation between SAR images can occur when there are significant 

changes to surface objects (e.g. vegetation growth, construction, etc.).  This also presents a challenge in 

the context of phase unwrapping when using multi-pass SAR images, since each SAR image is recorded 

over a different topographic surface.  SAR coherence maps provide a means of describing interferogram 

quality, with a low coherence indicating high noise levels or temporal decorrelation. 
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 Existing phase unwrapping algorithms either use path-based integration or global optimization 

to resolve discontinuities in an interferogram.  Both types of approaches have inherent limitations that 

make them quite challenging to apply to noisy SAR interferograms. 

 Path-based approaches to phase unwrapping tend to be highly susceptible to the speckle noise 

present in SAR interferograms, and individual unwrapping errors tend to propagate along the 

integration path as the algorithm progresses.  Even very successful path-based approaches, such as the 

popular SNAPHU approach, struggle in regions that have particularly high noise levels.  Some phase 

unwrapping approaches attempt to mitigate this issue by assessing the quality of the unwrapped signal, 

but the quality assurance measures these approaches use lack the robustness required for high noise 

SAR interferograms. 

 Global optimization approaches to phase unwrapping typically use L-2 norm minimization, 

which is a technique that can amplify the effects outlying pixels have on the unwrapping solution, 

particularly when there is a high proportion of outlying pixels, as is the case for SAR images.  In addition, 

current realizations of global optimization approaches rely on using discrete cosine transforms, which 

does not allow for the detection and removal of high-noise pixels.  The combination of these two issues 

makes global optimization approaches produce large unwrapping errors when applied to SAR 

interferograms. 

 The primary objectives of this research are: 

1) To build upon and modify existing phase unwrapping approaches to increase the overall 

unwrapping accuracy; 

2) To build quality assurance and removal of high-noise pixels into a global optimization phase 

unwrapping approach, overcoming one of the main limitations of traditional global optimization 

approaches; 

3) To use rigorous statistical testing to perform ongoing quality assurance as an interferogram is 

being unwrapped, improving upon currently-defined quality assurance measures; and 

4) To structure the proposed approaches around the high noise levels present in SAR 

interferograms and to produce accurate unwrapped signals in high noise environments. 

 Through this research, two novel phase unwrapping approaches are proposed, implemented 

and analysed: Polynomial-Based Region-Growing Phase Unwrapping (PBRGPU) and Path-Based Least-

Squares Phase Unwrapping (PBLSPU).  The former is structured after the Region-Growing Phase 

Unwrapping (RGPU) approach, but uses polynomial fitting for improved phase prediction and rigorous 

quality assurance.  The latter builds upon the matrix formulation of Least-Squares Phase Unwrapping 
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(LSPU) to provide statistically rigorous quality assurance and to allow for the complete removal of 

detected high-noise pixels, which are not possible to remove using the traditional LSPU approach. 

 Both approaches make significant improvements to the robustness of existing phase 

unwrapping algorithms.  In particular, the PBLSPU approach allows for high-noise pixels to be 

completely removed from the unwrapping solution, which was previously not possible when using a 

global optimization approach to phase unwrapping.  Both approaches make extensive use of statistical 

quality assurance, which has two main advantages.  Firstly, the statistical quality assurance tests are 

adaptive to local noise levels in the interferogram.  Secondly, they allow for rejection criteria to be 

defined in terms of statistical significance levels, which are much more intuitive to define than separate 

threshold parameters. 

 While the proposed algorithms were developed for SAR interferograms, they could be applied to 

unwrap any wrapped signal.  Phase unwrapping is necessary for field mapping in Magnetic Resonance 

Imaging (MRI) [Ghiglia and Romero 1996], high-accuracy x-ray profiling [Ying 2006], and the 

measurement of wavefront distortions in adaptive optics [Ying 2006]. 

 This introduction is followed by a literature review (Chapter 2) with a description of the phase 

unwrapping problem.  It also includes a discussion of each algorithm’s strengths, as well as some of the 

challenges that still need to be overcome. 

 Further, Chapter 3 proposes the following two phase unwrapping algorithms: Polynomial-Based 

Region-Growing Phase Unwrapping (PBRGPU) and Path-Based Least-Squares Phase Unwrapping 

(PBLSPU). 

 Chapter 4 compares the performance of the proposed algorithms with those commonly used in 

practice.  This is accomplished using both simulated wrapped signals (which allow for the assessment of 

the root mean square errors in the unwrapped signals) and interferograms that were generated using 

RADARSAT-2 data.  This chapter also discusses the validity of some of the assumptions that were made 

in the development of the proposed algorithms, and how this may affect the quality of the unwrapping 

solutions they produce. 

 Chapter 5 summarizes the key findings of this research, and proposes possible avenues for 

improvement to the proposed approaches.  
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2 Literature Review 

    

 The InSAR and DInSAR processes use the pixel-wise phase differences between complex-valued 

SAR images (interferograms) to produce topographic/deformation products.  There are several factors 

affecting these phase differences that must be accounted for when producing topographic/deformation 

products from an interferogram: differences in geometries between SAR images being processed (image 

misalignment); topographic effects (when producing deformation products); effects of errors in the 

satellites’ orbital parameters; and discontinuities resulting from the phenomenon of phase wrapping 

[Pepe and Calò 2017]. 

 The issue of SAR image misalignment requires the precise alignment of any SAR image pair being 

processed, typically to the sub-pixel level [August et al 2010, Li and Bethel 2008, Sun and Muller 2016].  

Once image pairs have been precisely aligned, a sufficiently accurate digital elevation model of the study 

area may be used to resolve topographic effects on the calculated phase differences [Pepe and Calò 

2017].  The errors in satellites’ orbital parameters often manifest themselves as linear fringe patterns in 

the phase differences [Bähr and Hanssen 2012], and these patterns may be removed in the spectral 

domain [Čapková 2005, Tian et al 2018].  Refer to Figure 2.1 for a complete workflow of the 

InSAR/DInSAR process. 

 Once these systematic effects are removed from a SAR interferogram, the discontinuities 

resulting from the phase wrapping phenomenon must be resolved via the process of phase unwrapping.  

While phase wrapping is simple to resolve in a one-dimensional signal, the process becomes significantly 

more complicated as the dimensionality of the problem increases [Gonzalez and Jacques 2014].  The 

problem is further complicated by the presence of discontinuous topographical features, SAR image 

noise, and temporal decorrelation between SAR images [Gonzalez and Jacques 2014].  This requires 

phase unwrapping approaches to be very robust to high noise levels, which is the main challenge to 

overcome when developing a viable phase unwrapping solution. 

 SAR images are complex-valued, and complex-valued interferograms are produced by taking the 

product of one SAR image with the complex conjugate of the other.  The phase of the complex 

interferogram describes the wrapped phase values, and the amplitude of the complex interferogram 

describes the coherence, which describes the degree of agreement between the SAR images. 
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Figure 2.1: General InSAR/DInSAR workflow [Wessels 2017] 
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 Introduction to the Phase Unwrapping Problem 

Each phase difference value in the “true”, or 

“unwrapped”, interferogram may be considered to 

have two components: an integer number of 

wavelengths, and a fractional wavelength 

component.  The calculation of the interferometric 

phase only provides information about the fractional 

component, and the integer number of wavelengths 

is ambiguous for every pixel in the interferogram 

[Pepe and Calò 2017].  This ambiguity is similar to the 

carrier phase ambiguity that arises in GPS processing, 

but there is a separate ambiguity parameter defined 

for each pixel in the interferogram.  The ambiguities 

in the calculated phase values produces sharp, 

discontinuous boundaries in the interferometric 

phase, such as those seen in Figure 2.2.  This 

phenomenon is known as “phase wrapping”, and the 

interferometric phase must be “unwrapped” to 

derive useful information from it.  The unwrapping 

process resolves discontinuities, producing a 

smoother signal such as the signal seen in Figure 2.3. 

The relationship between the wrapped and 

unwrapped phase is governed by the wrapping 

function, defined as 

𝜙𝑖𝑗 = {𝜓𝑖𝑗 − 2𝜋𝑛 | 𝑛 ∈  ℤ ∧  −𝜋 < 𝜙𝑖𝑗 < 𝜋} (2.1.1) 

where 𝜙𝑖𝑗  and 𝜓𝑖𝑗  denote the wrapped and unwrapped phases, respectively, and 𝑛 describes the 

integer ambiguity parameter associated with pixel location (𝑖, 𝑗). 

The large amount of speckle noise present in SAR images complicates the phase unwrapping 

process.  One common approach applied to mitigate the effects of speckle noise is to smooth the 

interferogram to smooth it prior to the unwrapping process [Ferretti et al, 2007].  This approach reduces 

Figure 2.3: The unwrapped signal corresponding to the 
wrapped signal presented in Figure 2.2 
(colourmapped). 

Figure 2.2: Example of a wrapped signal, with noise 
(colourmapped).  Note the sharp discontinuities 
present in the signal. 
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noise levels in the interferometric phase, making the signal much easier to unwrap, but this reduced 

noise comes at the cost of spatial resolution in the unwrapped interferogram.  While this trade-off may 

be acceptable for many large-scale topography/deformation studies, it is ill-suited to the spatial 

accuracy requirements for many engineering projects.   

Multi-look SAR interferometry can further complicate the phase unwrapping process due to the 

potentially large time difference between SAR image recordings (time to revisit an area is typically about 

one month for SAR satellites).  Over this period of time, land cover in the study area may change 

significantly (accumulating snow, leaf growth, etc.).  This causes temporal decorrelation between SAR 

images, and the reduced correspondence between SAR images produces noisier interferometric phase 

values. 

In light of these issues, a phase unwrapping algorithm must be robust to high noise levels in order 

to be successful.  This is a challenging goal to achieve; integration-based algorithms are highly sensitive 

to outlying pixels, while global optimization algorithms spread the effects of outlying pixels on their 

surrounding regions. 

 

 General Approaches to Phase Unwrapping 

Most phase unwrapping algorithms impose logical constraints on the relationships between 

adjacent unwrapped pixels in the interferogram in order to resolve the integer ambiguity parameter in 

(2.1.1).  One commonly used approach is to impose a smoothness constraint on the unwrapped 

interferogram (i.e. assuming the topographic surface or deformation map to be continuous – in 

situations where this is not the case, discontinuity lines may be defined and used in the same way as in 

generating contours lines for topographic mapping).  This constraint is imposed upon the wrapped 

differences between adjacent phase values in the interferogram.  Here, the differencing operator is 

denoted Δ(𝑎)  and Δ(𝑟)  for azimuth and range, respectively, and their wrapped counterparts are 

indicated using a subscript 𝑤.  The wrapped differencing operators are then defined as 

Δ𝑤
(𝑎)

𝜙𝑖𝑗 = {

Δ(𝑎)𝜙𝑖𝑗 | − 𝜋 ≤ Δ(𝑎)𝜙𝑖𝑗 ≤ 𝜋

Δ(𝑎)𝜙𝑖𝑗 + 2𝜋 | Δ(𝑎)𝜙𝑖𝑗 < −𝜋

Δ(𝑎)𝜙𝑖𝑗 − 2𝜋 | Δ(𝑎)𝜙𝑖𝑗 > 𝜋

(2.2.1) 

for wrapped phase differences in the azimuth and 

Δ𝑤
(𝑟)

𝜙𝑖𝑗 = {

Δ(𝑟)𝜙𝑖𝑗 | − 𝜋 ≤ Δ(𝑟)𝜙𝑖𝑗 ≤ 𝜋

Δ(𝑟)𝜙𝑖𝑗 + 2𝜋 | Δ(𝑟)𝜙𝑖𝑗 < −𝜋

Δ(𝑟)𝜙𝑖𝑗 − 2𝜋 | Δ(𝑟)𝜙𝑖𝑗 > 𝜋

(2.2.2) 
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for wrapped phase differences in the range. 

Ideally, the wrapped phase differences between pixels in the interferogram are equal to the phase 

differences between the pixels once they have been unwrapped.  This leads quite naturally to the L-P 

norm cost function for the phase unwrapping process 

𝐶 = ∑𝑤𝑖𝑗
(𝑎)

|Δ(𝑎)𝜓𝑖𝑗 − Δ𝑤
(𝑎)

𝜙𝑖𝑗|
𝑝

𝑖,𝑗

+ ∑𝑤𝑖𝑗
(𝑟)

|Δ(𝑟)𝜓𝑖𝑗 − Δ𝑤
(𝑟)

𝜙𝑖𝑗|
𝑝

𝑖,𝑗

(2.2.3) 

where 𝑤𝑖𝑗 denotes the relative weights between the wrapped phase differences. 

When 𝑝 is 2, (2.2.3) becomes the cost function for a standard least-squares adjustment model.  

This forms the basis for the Least-Squares Phase Unwrapping (LSPU) method. 

When 𝑝  is 1, (2.2.3) describes the cost function used for many integration-based phase 

unwrapping algorithms, including the Branch-Cut Phase Unwrapping (BCPU) and Minimum Weighted 

Discontinuity (MWD) methods.  It is worth noting that despite these methods using an L-1 norm cost 

function, they do not actually constitute L-1 norm minimizing algorithms; rather, they use the L-1 cost 

function as a means of detecting discontinuities between neighbouring pixels/discontinuous regions in 

the interferogram because it is well known that L-1 norm minimizing algorithms are superior to the L-2 

norm minimizing algorithms for detecting high-noise measurements [Bektas and Sisman, 2010]. 

The special case that arises when 𝑝 is 0 corresponds to an L-0 norm minimization method.  

When 𝑝 is 0, the summation terms in (2.2.3) are only non-zero when there is an identified discontinuity 

in the interferogram.  An L-0 norm minimization method would therefore minimize the total number of 

discontinuities in the unwrapped interferogram [Gao et al 2017].  As a result, many consider this to be 

the ideal optimization strategy for phase unwrapping [Chen and Zebker 2000].  Unfortunately, L-0 norm 

minimization is an NP-hard problem [Chen and Zebker 2000], which makes it intractable in practice.  

There are several methods that seek to approximate the L-0 norm minimization strategy, such as the 

Minimum Spanning Tree (MST) method employed by the SNAPHU algorithm [Chen and Zebker 2000]. 

Phase unwrapping approaches can be separated into two broad categories: path-based 

integration methods and global optimization methods (see Figure 2.4 for a breakdown of phase 

unwrapping methods).  The main global optimization method in common use is the LSPU algorithm.  

Additionally, there are several methods that apply optimization strategies non-globally (such as the 

Kalman Filtering Phase Unwrapping algorithm [Xie 2016]), but these methods adhere to the general 

strategy of the path-based integration phase unwrapping methods. 

Path-based integration methods share a similar processing workflow.  The process begins by 

visiting a wrapped pixel, then using unwrapped pixels(s) in its neighbourhood to predict its unwrapped 
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phase.  The difference between the wrapped phase and its predicted value is used to unwrap the pixel 

being visited.  This pixel-by-pixel process is repeated for each wrapped pixel in the interferogram until all 

pixels along the path of integration have been unwrapped or visited by the algorithm. 

Path-based integration methods can be categorized by when the integration path is defined or 

by how phase prediction is performed.  The integration path can be determined prior to unwrapping the 

phase or it can be determined on-the-fly as the unwrapping algorithm progresses, and phase prediction 

can be done using a single unwrapped neighbouring pixel or using a function of all unwrapped pixels in 

the neighbourhood around the pixel being unwrapped. 

 

Figure 2.4: A categorization of existing phase unwrapping methods. 

 

 Integration-Based Phase Unwrapping Methods 

Integration-based phase unwrapping methods rely on identifying and resolving discontinuities 

along a path of integration that spans the whole interferogram.  This approach is quite successful for 

one-dimensional phase unwrapping, and the two-dimensional methods are formed by expanding the 

one-dimensional method.  As such, the discussion of two-dimensional integration-based phase 

unwrapping will be prefaced with a discussion of its one-dimensional analogue. 

Phase Unwrapping 
Methods

Global 
Optimization

Path-Based 
Integration

Integration Path

Pre-Defined

On-the-Fly

Phase Prediction

Pixel-Based

Patch-Based
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For a one-dimensional signal, the 

difference between adjacent wrapped phases 

may be used to determine locations of 

discontinuities.  By definition, a positive 

discontinuity occurs when a phase value is 

greater than half a cycle more than the 

preceding phase value.  Similarly, a negative 

discontinuity occurs when a phase value is 

greater than half a cycle less than the 

preceding phase value.  Figure 2.5 shows 

positive and negative discontinuities detected 

along the integration path of a simulated one-

dimensional wrapped signal. 

Discontinuities along the integration path can be resolved by determining the integer number of 

cycles that separates the phases on either side of the discontinuity.  This integer may be calculated using 

the equation 

 

𝑚 = 𝑟𝑜𝑢𝑛𝑑 (
𝜓𝑖−1 − 𝜙𝑖

2𝜋
) (2.3.1) 

 

where 𝑚 denotes the integer number of cycles separating the unwrapped phase 𝜓𝑖−1 from the wrapped 

phase 𝜙𝑖 [Xu and Cumming, 1999].  𝜙𝑖 may now be unwrapped by adding 𝑚 cycles to it. 

Figure 2.5: A wrapped one-dimensional signal, with positive 
discontinuities displayed as red points and negative 
discontinuities displayed as blue points. 
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The concept of detecting and resolving discontinuities using (2.3.1) remains consistent in two-

dimensional integration-based phase unwrapping methods.  In practice, this approach is complicated by 

the fact that many integration paths may be taken over two-dimensional signals and that values for the 

unwrapped phases are dependent upon the integration path taken.  The unwrapping results are path-

dependent due to false positive identification of discontinuities in noisy areas (the dependency of the 

unwrapping results on the integration path is illustrated in Figure 2.6).  These falsely identified 

discontinuities are then “corrected” in the unwrapping process, causing unwrapping errors to propagate 

along the path of integration.  Since unwrapping results are path-dependent, many path-based 

integration approaches to phase unwrapping are also affected by the starting point(s) of the integration. 

The path-dependency of integration-based phase unwrapping makes it challenging to identify a 

unique solution for the unwrapped signal.  To overcome the issue of non-uniqueness the unwrapping 

solution must be formed such that, given the unwrapped signal for one pixel, the unwrapped signal is 

uniquely defined everywhere else in the interferogram.  There are two common ways of approaching 

this constraint: 

a) By restricting the path of integration using pre-processing strategies.  This is the strategy used in 

residue-cut algorithms, such as the Branch-Cut Phase Unwrapping (BCPU) algorithm. 

b) By removing pixels that create inconsistencies from the integration path on-the-fly.  This is the 

strategy used in the Region-Growing Phase Unwrapping (RGPU) method. 

 Approach (a) is the more theoretically rigorous approach which, if executed carefully, will satisfy 

the uniqueness constraint.  Approach (b) lends itself more readily to techniques that adapt to local noise 

Figure 2.6: The results of unwrapping the noisy wrapped signal in Figure 1 using different pre-defined paths of integration.  The 
image on the left shows the result of using range-wise (row-wise) integration, and the image on the right shows the 
result of using azimuth-wise (column-wise) integration.  Note the horizontal streaking for range-wise integration and 
the vertical streaking for azimuth-wise integration. 
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levels in the interferogram, but its adherence to the uniqueness constraint heavily depends upon the 

selection of starting points for the integration as well as the methods used to identify inconsistencies. 

 

2.3.1 Branch-Cut Phase Unwrapping (BCPU) 

Huntley [1989] developed the Branch-Cut Phase Unwrapping (BCPU) algorithm to address the 

issues resulting from the path-dependency of unwrapping results.  This algorithm effectively forms “cut 

lines” that the path of integration is not permitted to cross, and then uses flood fill-based integration to 

define paths of integration that flow around these cut lines.  This method uses a pre-defined integration 

path with pixel-based phase prediction. 

The BCPU method assumes the phase field to be conservative, and this leads directly to the 

condition that the line integral about any closed loop should be equal to zero.  The interferogram’s 

adherence to this condition may be tested by determining the net discontinuity about 2x2 loops for each 

pixel in the interferogram.  For pixel (𝑖, 𝑗), the condition is tested using pixels (𝑖, 𝑗), (𝑖, 𝑗 + 1), 

(𝑖 + 1, 𝑗 + 1), and (𝑖 + 1, 𝑗).  The net discontinuity about this loop is denoted 𝑠𝑖𝑗 and is given by the 

equation [Huntley 1989] 

𝑠𝑖𝑗 = 𝑟𝑜𝑢𝑛𝑑 (
𝜙𝑖+1,𝑗 − 𝜙𝑖𝑗

2𝜋 ) + 𝑟𝑜𝑢𝑛𝑑 (
𝜙𝑖+1,𝑗+1 − 𝜙𝑖+1,𝑗

2𝜋 ) + 

𝑟𝑜𝑢𝑛𝑑 (
𝜙𝑖,𝑗+1 − 𝜙𝑖+1,𝑗+1

2𝜋 ) + 𝑟𝑜𝑢𝑛𝑑 (
𝜙𝑖𝑗 − 𝜙𝑖,𝑗+1

2𝜋 )
(2.3.2) 

Each term in (2.3.2) describes the relationship between adjacent pixels in the 2x2 loop under 

consideration.  Each term has a value of 0 if no discontinuity exists between the pixels, +1 if there is a 

positive discontinuity, and −1 if there is a negative discontinuity.  𝑠𝑖𝑗 may therefore have a value of 0, 

+1, or −1.  When 𝑠𝑖𝑗 has a value of ±1, the 2x2 loop violates the assumption of the phase field being 

conservative and the pixel at (𝑖, 𝑗) is described as a residue with a “charge” of +1 or −1.  Refer to Figure 

2.7 for examples of positive and negative residues. 
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Figure 2.7: Examples of a positive residue (left), a pixel that is not a residue (middle), and a negative residue (right).  Positive 
discontinuities are shown with red vectors, negative discontinuities are shown with blue vectors, and connections 
with no discontinuity are shown with green vectors.  The upper-left pixel corresponds to 𝜙𝑖𝑗  in (2.3.2). 

The total discontinuity about any closed loop may be expressed as a sum of elements of 𝑠.  If 

positive and negative residues are joined such that the total charge of the joined residues is 0, then any 

closed loop containing all of the joined residues will have a net discontinuity of 0 (an example of this is 

illustrated in Figure 2.8).  Each line formed by joining residues is called a “residue cut” line, and if the 

integration path does not cross any residue cut lines, then the unwrapped signal avoids potential 

inconsistencies introduced by the residues.  A binary mask is created to identify pixels intersecting with 

residue cut lines, and these pixels will not be visited during the numerical integration.  Refer to Figure 

2.9 for an example of how residues may be distributed in an interferogram. 

Figure 2.8: An example showing the net discontinuity about 
a loop containing both a positive residue (red 
point) and negative residue (blue point). 

Figure 2.9: A portion of the wrapped signal, with positive 
residues shown as red points and negative 
residues shown as blue points. 
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Unwrapping is performed using a flood-fill 

integration and assigning an arbitrary unwrapped 

phase to the integration starting point.  This method 

uses (2.3.1) to determine the number of cycles 

separating neighbouring pixels and unwraps them 

accordingly.  Either a 4-neighbour or 8-neighbour 

flood-fill method may be used, but there is little 

practical difference between the two methods; 

residue cut lines tend to be small and do not greatly 

restrict the integration path. 

The BCPU method is firmly grounded in 

theory, but in practice it can be difficult to determine 

how residues should be connected to form residue 

cuts (this issue is illustrated in Figure 2.10).  In 

Huntley’s [1989] documentation, he suggested 

pairing each positive residue with the nearest negative residue, or with the border of the wrapped signal 

if it is nearer than the closest negative residue. 

Many alternative methods for forming residue cuts have also been proposed.  [Chen and Zebker 

2000] suggested forming residue cuts based on Minimum Spanning Trees (MST) of residue points.  

[Karout et al 2006] suggested forming residue cuts using “residue vectors” that describe the 

directionality associated with each residue.  Most popular methods for forming residue cuts seek to 

Figure 2.10: Multiple configurations of residue cuts 
corresponding to the same residue 
locations/values [Chen and Zebker 2000].  The 
residue cuts shown in the left image 
correspond to L-0 norm minimization and the 
right image shows the results of forming 
residue cuts using Huntley’s [1989] method. 

Figure 2.11: The results of applying Huntley’s BCPU algorithm to the wrapped signal in Figure 1 (left) and the results of applying 
the algorithm after additional noise has been injected into the wrapped signal (right).    Note the streaked patterns 
in the right image. 
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minimize the overall cut length [Gutmann 1999, Zheng 2011].  The formation of residue cuts is an 

ambiguous process, and many researchers have refined this process in an effort to approximate the L-0 

norm minimization of (2.2.3) [Chen and Zebker 2000]. 

Improperly formed residue cut lines can lead to unwrapping errors.  Due to the nature of the 

unwrapping process, unwrapping errors propagate through the algorithm and form distinct streaking 

patterns along the integration path.  This is clearly illustrated in Figure 2.11, where a streaky pattern 

similar to that of Figure 2.6 may be seen.  It is important to note that the streaks in Figure 2.11 may be 

traced back to single pixel origins, and that these individual points could be manually added to the 

automatically-generated residue cut lines to improve results. 

The ambiguity in the formation of branch cuts also means that the starting point of the 

integration has a significant impact on the unwrapping solution, and drastically different unwrapping 

solutions can be produced by starting the integration at different points.  These differences are 

highlighted in Figure 2.12. 

 

Figure 2.12: Comparison of unwrapping results using the same set of branch cuts but different starting points for the 
integration.  The unwrapped signal on the left used a starting point in the upper-left corner of the interferogram 
and the unwrapped signal on the right used a starting point in the centre of the interferogram. 

2.3.2 Minimum Weighted Discontinuity Phase Unwrapping 

 The Minimum Weighted Discontinuity (MWD) approach to phase unwrapping was proposed by 

Flynn [1997], and relies on iterative partitioning of an initial estimation of the unwrapped signal to 

perform phase unwrapping.  Prior to this work, edge detection was used to isolate discontinuous regions 

in the interferogram and multiples of 2𝜋 could then be added to these regions to resolve the 

discontinuities between them [Lin 1994].  The speckle noise in SAR interferograms make edge detection 
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unsuitable for resolving these discontinuous regions, and it was this issue that was addressed by the 

MWD approach [Flynn 1997]. 

 The MWD approach iteratively partitions an interferogram by extending paths along 

discontinuity curves to form closed loops in the interferogram, and then resolving the discontinuity 

between the partitioned region and the rest of the interferogram [Flynn 1997].  This process terminates 

when the paths along the discontinuity curves can no longer be extended to form a closed loop [Flynn 

1997]. 

 

2.3.3 Region-Growing Phase Unwrapping (RGPU) 

Xu [1999] proposed the Region-Growing Phase Unwrapping (RGPU) algorithm, which differs 

from the BCPU algorithm in that the algorithm starts from multiple seed points and the integration path 

is determined on-the-fly as opposed to in pre-processing.  This approach also uses  patch-based phase 

prediction, as opposed to the pixel-based phase prediction of the branch-cut method. 

The RGPU algorithm begins 

with the selection of multiple seed 

points that will yield reliable solutions 

in their respective neighbourhoods.  

Xu [1999] suggested that local 

variance or coherence may be used to 

select seed points.  Unwrapping is 

then iteratively performed at the 

edges of these seeded regions and as 

the seeded regions begin to overlap, 

discontinuities between them are 

resolved and the overlapping regions 

are merged together.  The flood-fill 

based path definition is used fairly 

commonly among integration based phase unwrapping algorithms [Huntley 1989, Li et al 2018]. 

The RGPU algorithm uses patches of unwrapped pixels to predict the phase for wrapped pixels.  

The number of cycles separating the predicted phase and the wrapped phase is then determined using 

the equation 

Figure 2.13: Example of the flood-fill based seeded region growing used 
in the RGPU method.  Seeded regions are represented with 
green cells, and yellow cells represent pixels being 
unwrapped. 
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𝑚 = 𝑟𝑜𝑢𝑛𝑑 (
𝜓𝑖𝑗

𝑃 − 𝜙𝑖𝑗

2𝜋
) (2.3.3) 

where 𝜓𝑖𝑗
𝑃  denotes the predicted phase value for 

𝜙𝑖𝑗.  (2.3.3) is similar to (2.3.1), and is used to 

unwrap pixels in exactly the same way. 

The RGPU algorithm introduced the use of 

patch-based phase estimation within an 

integration-based phase unwrapping approach.  

Patch-based phase estimation has the advantage 

of being less sensitive to interferometric noise 

than the pixel-based phase estimation used in 

the BCPU algorithm.  The predicted phase is 

calculated as the weighted mean of linear 

extrapolation along prediction lines in the eight 

directions around the pixel being unwrapped (see Figure 2.14).  In the phase prediction stage, each 

prediction line is checked to determine the number of unwrapped pixels along it.  The following cases 

are defined in Xu’s [1999] documentation: 

1) If both pixels along the prediction line have been unwrapped, the direction is assigned a weight 

of 1 and linear prediction is performed using the equation 

𝜓𝑘
𝑃 = 2𝜓𝑘 − 𝜓𝑘′ (2.3.4) 

where 𝜓𝑘
𝑃 is the phase prediction for prediction line 𝑘, 𝜓𝑘 is the unwrapped phase of the 

adjacent pixel along the prediction line, and 𝜓𝑘′  is the unwrapped phase of the second pixel 

along the prediction line. 

2) If only the adjacent pixel along the prediction line has been unwrapped, the direction is assigned 

a weight of 0.5 and zeroth-order prediction is performed using the equation 

𝜓𝑘
𝑃 = 𝜓𝑘 (2.3.5) 

3) If the adjacent pixel along the prediction line has not been unwrapped, the direction is assigned 

a weight of zero and no phase prediction is preformed for that prediction line. 

Once the phase has been predicted along each prediction line, they may be combined to form a 

composite prediction using the weighted mean of the individual predicted phase values using the 

equation 

Figure 2.14: Depiction of the prediction lines around a pixel 
being unwrapped.  The yellow cell represents the 
pixel being unwrapped, the green cells represent 
pixels in the neighbourhood that can factor into 
phase prediction, and the red cells represent pixels 
that cannot factor into phase prediction. 
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𝜓𝑃 =
∑ 𝑤𝑘𝜓𝑘

𝑃
𝑘

∑ 𝑤𝑘𝑘

(2.3.6) 

where 𝑤𝑘 denotes the weight associated with prediction line 𝑘 [Xu 1999]. 

One of the distinguishing characteristics of the RGPU method is its on-the-fly determination of the 

integration path.  This is accomplished by assessing the unwrapping quality as pixels are being 

unwrapped and excluding low-quality pixels from future iterations of the algorithm.  There are several 

metrics that Xu [1999] proposed for characterizing the quality of unwrapping: 

1) Ensuring that the difference between the predicted phase and the unwrapped phase is lower 

than a threshold value: 

|𝜓 − 𝜓𝑃| ≤ 𝑡𝑢 (2.3.7) 

2) Ensuring that the deviation between predicted phases from different prediction lines is below a 

threshold value: 

∑ 𝑤𝑘|𝜓𝑘
𝑃 − 𝜓𝑃|𝑘

∑ 𝑤𝑘𝑘
≤ 𝑡𝑝 (2.3.8) 

3) Ensuring that the local coherence of the interferogram is above a threshold value.  This is 

equivalent to masking low coherence regions in the interferogram. 

Any combination of these three measures may be used to assess the quality of unwrapping for a 

pixel.  Xu [1999] suggested jointly applying the constraints presented in (2.3.7) and (2.3.8), and 

incorporating coherence information if it is available. 

The quality measures can be applied adaptively by either modifying the threshold parameters in 

accordance with local noise levels/coherence in the interferogram or increasing the threshold 

parameters to become less stringent as the algorithm progresses [Xu 1999]. 

Unfortunately, these quality control measures cannot be tied to statistical significance levels, and 

the thresholds must therefore be determined empirically.  The appropriate thresholds can be specific to 

the noise levels/patterns in the interferogram, so the RGPU method can be unreliable if an 

inappropriate threshold is selected.  This also makes it difficult to have the RGPU algorithm adapt to 

local noise levels in the interferogram. 

Another disadvantage of the RGPU method is illustrated in Figure 2.14.  When performing phase 

prediction for a pixel being unwrapped, not all information in the neighbourhood is being used (the red 

cells in Figure 2.13 indicate pixels that do not inform the phase prediction process).  Moreover, the 

horizontal/vertical prediction lines receive the same weight as the diagonal prediction lines, despite the 

fact that the diagonal prediction lines are clearly longer (by a factor of √2). 
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2.3.4 SNAPHU 

Chen and Zebker’s [2000] work forms the basis of the commonly-used SNAPHU algorithms, 

which draw from branch-cut and MWD phase unwrapping approaches.  SNAPHU consists of two 

algorithms: one that builds upon branch-cut methods and one that builds upon Minimum Cost Flow 

(MCF) methods [Chen and Zebker 2000].  The branch-cut SNAPHU approach addresses the intractability 

of L-0 norm minimization by framing the generation of residue cut lines as a minimum rectilinear Steiner 

tree problem, and then approximating this NP-hard problem using a Minimum Spanning Tree (MST) 

[Chen and Zebker 2000].  This approach presents a significant improvement over traditional branch-cut 

approaches and produces much more consistent sets of branch cuts than other approaches, but still 

loses accuracy when residue points are densely packed [Chen and Zebker 2000]. 

The MCF phase unwrapping algorithm considers the interferogram to be comprised of a 

network of the 2 x 2 loops used to determine residue points, and then performs L-1 norm minimization 

in this network to unwrap the interferogram [Chen and Zebker 2000].  The MCF SNAPHU algorithm uses 

a similarly-defined network, but seeks to perform L-0 norm minimization with it [Chen and Zebker 

2000].  The L-1 norm minimization of the MCF algorithm causes flow costs to be linear along the path of 

integration, which means that the cost of adding flow to an integration path is independent of the total 

flow costs of that path [Chen and Zebker 2000].  This increases the likelihood that unwrapping errors will 

propagate along an integration path in this approach.  However, using an L-0 norm minimization in the 

MCF approach makes the cost of adding flow to an integration path dependent upon the total flow cost 

of that path [Chen and Zebker 2000].  This causes the approach to naturally prioritize low-cost 

integration paths, which in turn reduces the chance that unwrapping errors will propagate along any 

path of integration.  Approximating L-0 norm minimization requires an iterative application of the 

network optimization techniques of the MCF phase unwrapping algorithms, and this makes the 

approach more reliable but also more computationally-intensive [Chen and Zebker 2000]. 

 

 Least-Squares Phase Unwrapping 

The matrix equation formulation and iterative solution for the Least-Squares Phase Unwrapping 

(LSPU) method were first proposed by Hunt [1978], and were later expanded to allow for efficient 

computation using Discrete Cosine Transformations (DCT) by Ghiglia and Romero [1994].  The LSPU 

method treats the wrapped differences between adjacent wrapped phase values in the interferogram as 

observations using the model equations 
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Δ𝑤
(𝑟)

𝜙𝑖𝑗 = 𝜓𝑖,𝑗+1 − 𝜓𝑖𝑗 (2.4.1) 

and 

Δ𝑤
(𝑎)

𝜙𝑖𝑗 = 𝜓𝑖+1,𝑗 − 𝜓𝑖𝑗 (2.4.2) 

Here, Hunt’s [1978] matrix formulation of the least-squares solution is presented, since the 

resulting iterative equation forms the basis of the DCT method, and the proposed Path-Based Least-

Squares Phase Unwrapping algorithm builds upon the matrix equations developed by Hunt. 

A vector containing the wrapped phase values in the interferogram may be defined as 

𝚽 = [
𝝓𝟏

(𝒓)𝑻

⋮

𝝓𝑵
(𝒓)𝑻

] (2.4.3) 

where 𝝓𝒊
(𝒓)

 denotes the ith row of wrapped phase values in the interferogram. 

Similarly, a vector of the unwrapped phase values is defined as 

𝚿 = [
𝝍𝟏

(𝒓)𝑻

⋮

𝝍𝑵
(𝒓)𝑻

] (2.4.4) 

where 𝝍𝒊
(𝒓) denotes the ith row of unwrapped phase values in the interferogram. 

Using this new notation, the column-wise phase difference model described in (2.4.2) may now 

be rewritten as 

𝚫𝒊
(𝒂)

𝝓𝒊
(𝒓)

= [

𝜓2,𝑖 − 𝜓1,𝑖

⋮
𝜓𝑀,𝑖 − 𝜓𝑀−1,𝑖

] (2.4.5)  

(2.4.5) may be rewritten in matrix form using the matrix equation [Hunt 1978] 

𝚫𝒊
(𝒂)

𝝓𝒊
(𝒓)

=

[
 
 
 
 
1 −1 0 ⋯ 0 0 0
0 1 −1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 1 −1 0
0 0 0 ⋯ 0 1 −1]

 
 
 
 

𝝍𝒊
(𝒓)

= 𝑫𝝍𝒊
(𝒓) (2.4.6) 

If all 𝚫𝒊
(𝒂)

𝝓𝒊
(𝒓)

 are concatenated into a vertical “observation” vector, then the system of 

equations relating this vector to the unwrapped phases in 𝚿 is given by [Hunt 1978] 

𝚫(𝒂)𝚽 = [
𝚫𝟏

(𝒂)
𝝓𝟏

(𝒓)

⋮

𝚫𝑵−𝟏
(𝒂)

𝝓𝑵−𝟏
(𝒓)

] = [
𝑫 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝑫

]𝚿 (2.4.7) 

Using a similar approach as is used for the column-wise phase difference model, the row-wise 

phase difference model may be expressed as [Hunt 1978] 
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𝚫𝒊
(𝒓)

𝝓𝒊
(𝒂)

= 𝝍𝒊+𝟏
(𝒓)

− 𝝍𝒊
(𝒓)

(2.4.8) 

where 𝝓𝒊
(𝒂)

 denotes the ith column of wrapped phase values in the interferogram. 

In turn, if all 𝚫𝒊
(𝒓)

𝝓𝒊
(𝒂)

 are concatenated into a vertical “observation” vector, the system of 

equations relating this vector to the unwrapped phases in 𝚿 is given by [Hunt 1978] 

𝚫(𝒓)𝚽 = [
𝚫𝟏

(𝒓)
𝝓𝟏

(𝒂)

⋮

𝚫𝑴−𝟏
(𝒓)

𝝓𝑴−𝟏
(𝒂)

] = [
𝑰 −𝑰 ⋯ 𝟎 𝟎
⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 ⋯ 𝑰 −𝑰

]𝚿 (2.4.9) 

Bringing all of these “observations” together into a single model yields the system of equations 

[Hunt 1978] 

𝚫𝚽 = [𝚫
(𝒂)𝚽

𝚫(𝒓)𝚽
] =

[
 
 
 
 
 
𝑫 𝟎 ⋯ 𝟎 𝟎
⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 ⋯ 𝟎 𝑫
𝑰 −𝑰 ⋯ 𝟎 𝟎
⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 ⋯ 𝑰 −𝑰]

 
 
 
 
 

𝚿 = 𝑷𝚿 (2.4.10) 

The solution for a simple unweighted linear least-squares adjustment may be used to resolve 

(2.4.10) to solve for the least-squares estimate of 𝚿: 

𝑷𝑻𝑷𝚿̂ = 𝑷𝑻𝚫𝚽 (2.4.11) 

This solution is very impractical for unwrapping most interferograms – most interferograms 

contain millions of unknown unwrapped phases and the matrix form of the least-squares equation is ill-

suited to resolving such a large number of unknowns.  To counter this issue, Hunt [1978] showed that 

the matrix formulation of the least-squares solution is equivalent to the equation 

(𝜓𝑖+1,𝑗 − 2𝜓𝑖,𝑗 + 𝜓𝑖−1,𝑗) + (𝜓𝑖,𝑗+1 − 2𝜓𝑖,𝑗 + 𝜓𝑖,𝑗−1)

= Δ𝑤
(𝑎)

𝜙𝑖,𝑗 − Δ𝑤
(𝑎)

𝜙𝑖−1,𝑗 + Δ𝑤
(𝑟)

𝜙𝑖,𝑗 − Δ𝑤
(𝑟)

𝜙𝑖,𝑗−1

(2.4.12) 

(2.4.12) can be applied iteratively to refine estimates of the unwrapped phase values, but 

cannot be applied if a reasonable initial approximation for the unwrapped phase values is unavailable.  

Ghiglia and Romero [1994] noted that (2.4.12) is a discretization of Poisson’s equation, and can be 

considered an approximation of the differential equation 

𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
= 𝜌 (2.4.13) 

where 𝜌𝑖𝑗 = Δ𝑤
(𝑎)

𝜙𝑖,𝑗 − Δ𝑤
(𝑎)

𝜙𝑖−1,𝑗 + Δ𝑤
(𝑟)

𝜙𝑖,𝑗 − Δ𝑤
(𝑟)

𝜙𝑖,𝑗−1  and is defined everywhere in the 

interferogram. 

The differential equation in (2.4.13) may be solved in the spectral domain so that the 

unwrapping process can be carried out using convolution operations, which drastically reduces the 
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computational load of applying the least-squares models.  Ghiglia and Romero [1994] used the DCT to 

accomplish this.  The DCT is similar to the Fourier transformation, and is commonly used in image 

processing and compression.  The forward DCT determines the spectral characteristics of a signal 𝑓, 

denoted as 𝑓′ [Ghiglia and Romero 1994]: 

𝑓𝑚𝑛
′ = ∑∑4𝑓𝑖𝑗 cos (

𝜋

2𝑀
𝑚(2𝑖 + 1)) cos (

𝜋

2𝑁
𝑛(2𝑗 + 1))

𝑗𝑖

(2.4.14) 

The inverse DCT determines the signal 𝑓 from its spectral characteristics 𝑓′ [Ghiglia and Romero 

1994]: 

𝑓𝑖𝑗 =
1

𝑀𝑁
∑ ∑ 𝑤(𝑚)𝑤(𝑛)𝑓𝑚𝑛

′ cos (
𝜋

2𝑀
𝑚(2𝑖 + 1) ) cos (

𝜋

2𝑁
𝑛(2𝑗 + 1) )𝑛𝑚 (2.4.15)

where 𝑤(𝑥) is a weighting function that accounts for edge effects in the DCT, and is defined as 

𝑤(𝑥) =  {
1 2⁄ ,   𝑥 = 0
1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.4.16) 

Using the DCT, (2.4.13) may now be used to determine the spectral representation of 𝜓.  Ghiglia 

and Romero [1994] determined this to be 

𝜓𝑚𝑛
′ =

𝜌𝑚𝑛
′

2 (cos
𝜋𝑚
𝑀

+ cos
𝜋𝑛
𝑁

− 2)
(2.4.17) 

The unwrapped interferogram 

may then be determined by performing 

an inverse DCT on 𝜓′. 

It is important to recognize that, 

since the LSPU method is a global 

optimization method, the unwrapped 

phase values will not exactly satisfy 

(2.1.1) as they would for the BCPU and 

RGPU methods.  The random error in 

the wrapped phase gets distributed 

among neighbouring pixels by the LSPU  

process. 

When analyzing the differences 

between the LSPU solution and the simulated signal (see Figure 2.15), it is apparent that there are 

distinct, large-scale patterns to the errors in the LSPU solution.  In Figure 2.15, the errors in the LSPU 

solution has two characteristics: 

Figure 2.15: Errors in the LSPU solution for the wrapped signal presented in 
Figure 1. 
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1) Broad regions have very similar 

errors, with distinct boundaries between 

regions; and 

2) There are large, dipole-like 

positive/negative error pairings that 

cross residue cut lines (highlighted in 

Figure 2.16). 

 Both of these phenomena can 

be explained by the fact that the LSPU 

algorithm includes phase differences 

that cross residue cut lines (the residue 

cut algorithms were developed to 

counter this very issue, albeit for 

integration-based unwrapping).  These 

phase differences are artificially large due to random noise in the interferogram, and they have a 

pronounced impact on the least-squares solution. 

 While the impact of the residues is less extreme than for the BCPU algorithm, residues still 

contribute to an overall disagreement between the least-squares solution and the “ideal” solution, with 

larger errors concentrated around residues. 

 

2.4.1 The Weighted Least-Squares Approach 

 Applying weights in the LSPU approach is equivalent to solving the matrix equation [Ghiglia and 

Romero 1994] 

𝑾𝑷𝚿̂ = 𝑾𝚫𝚽 (2.4.18) 

where 𝑾 denotes a weighting matrix.  These weights may be determined using local coherence or noise 

values in an interferogram, or they  may be manually defined for certain regions in an interferogram. 

 The normal system of equations for the system of equations in (2.4.18) is then 

𝑷𝑻𝑾𝑻𝑾𝑷𝚿̂ = 𝑷𝑻𝑾𝑻𝑾𝚫𝚽 (2.4.19) 

 If 𝑸 = 𝑷𝑻𝑾𝑻𝑾𝑷 and 𝐜 = 𝑷𝑻𝑾𝑻𝑾𝚫𝚽, then (2.4.19) is rewritten as [Ghiglia and Romero 1994] 

𝑸𝚿̂ = 𝒄 (2.4.20) 

Figure 2.16: A portion of the LSPU errors shown in Figure 13, with residue 
and residue cut information superimposed.  Positive and 
negative residues are red and blue circles, respectively, and 
residue cuts are black lines connecting positive and negative 
residues. 
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The quantity 𝑸 may be considered the sum of the matrix 𝑷𝑻𝑷 and a difference matrix 𝑺 such that 𝑸 =

𝑷𝑻𝑷 + 𝑺.  Substituting this definition of 𝑸 into (2.4.20) produces the equation [Ghiglia and Romero 

1994] 

𝑷𝑻𝑷𝚿̂ = 𝒄 − 𝑺𝚿̂ (2.4.21) 

 Here, the left side of (2.4.21) is identical to the left side of the (2.4.11), which provides the 

normal equations for the unweighted case.  This suggests that the DCT-based solution to the least-

squares equations may be applicable to the weighted case as well.  This is complicated by the 

appearance of the unknown 𝚿̂ on the right side of (2.4.21).  To resolve a weighted estimate for 𝚿̂, 

(2.4.21) must be applied iteratively as [Ghiglia and Romero 1994] 

𝑷𝑻𝑷𝚿̂𝒌+𝟏 = 𝒄 −  𝑺𝚿̂𝒌 (2.4.22) 

The vector 𝒄 can be estimated as long as the weights being used are known, and remains constant from 

one iteration to the next.  The matrix 𝑺 can be used alongside the previous estimate of the unwrapped 

phase to resolve the vector on the right side of (2.4.22).  Once this is accomplished, the DCT approach to 

least-squares phase unwrapping may be directly applied to resolve an estimate for 𝚿̂𝒌+𝟏.  This process is 

applied iteratively until either a maximum number of iterations is reached or until the magnitude of 𝑺𝚿̂𝒌 

is sufficiently small. 



26 
 

3 Proposed Phase Unwrapping Methods 

 

The two proposed phase unwrapping methods are developed upon existing phase unwrapping 

algorithms, with a mind to share their strengths and mitigate their weaknesses.  Two significant 

innovations have been developed through this research: 

1) The Polynomial-Based Region-Growing Phase Unwrapping (PBRGPU) method, which is 

structured in the same manner as the Region-Growing Phase Unwrapping (RGPU) method but 

utilizes least-squares polynomial fitting for phase-prediction.  This not only results in a more 

reliable predicted phase, but also allows for rigorous on-the-fly statistical tests to assess the 

quality of the unwrapping solution for a given pixel. 

2) The Path-Based Least-Squares Phase Unwrapping (PBLSPU) method, which exploits the 

measurement model applied in Least-Squares Phase Unwrapping (LSPU), performing global 

optimization using small neighbourhoods along an integration path.  The strategic objective of 

this method is to produce a globally optimized solution, and allow for ongoing, statistically 

rigorous removal of high-noise measurements as well.  This could not be accomplished by using 

the DCT to resolve the least-squares solution. 

Both methods have been designed to share the advantages of the methods they are based on, but 

also to mitigate the disadvantages of the pre-existing methods.  In particular, the PBLSPU method seeks 

to combine the advantages of both LSPU methods and path-based integration phase unwrapping 

methods. 

 

 Polynomial-Based Region-Growing Phase Unwrapping (PBRGPU) 

The PBRGPU algorithm utilizes the same processes of integration path determination and seeded 

region merging as the RGPU method proposed by Xu and Cumming [1999].  The main difference 

between the PBRGPU and the RGPU methods lies in the phase estimation processing step.  The PBRGPU 

method utilizes a least-squares polynomial fitting to perform phase prediction, rather than defining 

phase prediction as the weighted sum of multiple linear predictions.  This allows for an estimation of the 

error associated with the predicted phase, which in turn enables rigorous statistical testing of the 

predicted/unwrapped phase for each pixel. 

Just as with the RGPU method, the PBRGPU algorithm starts from multiple seed points which are 

selected to yield reliable solutions in their respective neighbourhoods.  As in Xu [1999], local 
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interferogram variance or coherence may be used as a measure of this reliability.  Unwrapping is still 

performed at the edges of the seeded regions, and discontinuities between regions are resolved once 

they begin to overlap. 

Upon visiting a pixel at the edge of an unwrapped seeded region, the PBRGPU algorithm uses all 

unwrapped pixels in the 5 x 5 neighbourhood around the pixel being unwrapped to predict its 

unwrapped phase using a gridded bivariate least-squares polynomial fitting.  A second order model is 

preferred, but for neighbourhoods with few unwrapped pixels, a first or zeroth order model may need 

to be used instead.  The second order polynomial model is given by the equation 

𝜓𝑘𝑙 = 𝑎0 + 𝑎1𝑘 + 𝑎2𝑙 + 𝑎3𝑘
2 + 𝑎4𝑘𝑙 + 𝑎5𝑙

2 + 𝜉𝑘𝑙 (3.1.1) 

where 𝜓𝑘𝑙 denotes the unwrapped phase in the 5 x 5 neighbourhood about the pixel being unwrapped 

and both 𝑘 and 𝑙 range from −2 to 2 (defining the pixel being unwrapped as being at the centre of the 

neighbourhood).  𝜉𝑘𝑙 is a random noise term, which is assumed to follow a normal distribution with zero 

mean and a variance of 𝜎𝜙
2.  Note that this only assumes that the noise in the interferogram follows a 

normal distribution locally within each processing patch. 

Since the pixel being unwrapped is defined to be at the centre of the neighbourhood, the 

predicted value for its unwrapped phase is simply 𝑎0.  The least-squares estimate of 𝑎0 may be 

determined alongside the other polynomial coefficients from the unweighted linear parametric least-

squares solution 

𝒂̂ = (𝑨𝑻𝑨)
−𝟏

𝑨𝑻𝒍 (3.1.2) 

wherein 𝑨 is the first design matrix, defined as 

𝑨 = [
1 𝑘1 𝑙1 𝑘1

2 𝑘1𝑙1 𝑙1
2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑘𝑁 𝑙𝑁 𝑘𝑁

2 𝑘𝑁𝑙𝑁 𝑙𝑁
2
] (3.1.3) 

and 𝒍 is the vector of observations, defined as 

𝒍 = [
𝜓1

⋮
𝜓𝑁

] (3.1.4) 

The a priori covariance matrix of 𝒂̂ is given by 

𝑪𝒂̂ = (𝑨𝑻𝑨)
−𝟏

(3.1.5) 

The a posteriori covariance matrix of 𝒂̂ is 𝑪𝒂̂ in (3.1.5) scaled by the a posteriori variance factor 

𝜎̂0
2 =

(𝒍 − 𝑨𝒂̂)𝑇(𝒍 − 𝑨𝒂̂)

𝑑𝑜𝑓
(3.1.6) 

where 𝑑𝑜𝑓 denotes the degrees of freedom of the polynomial fitting, such that 



28 
 

𝑪̂𝒂̂ = 𝜎̂0
2𝑪𝒂̂ (3.1.7) 

 

Figure 3.1: Visualization of the polynomial-based phase estimation process for the pixel being unwrapped (marked by the red 
dot).  The unwrapped phase values in the neighbourhood of the pixel are retrieved (left), then a bivariate polynomial 
model is fit to the unwrapped phases (middle), and this model is used to predict the unwrapped phase for the pixel 
being unwrapped (right). 

The predicted phase is used to unwrap the pixel under consideration using (2.3.3). 

Since the predicted phase is simply the first element of 𝒂̂, the variance of the predicted phase is 

represented by the first diagonal element of 𝑪̂𝒂̂.  This allows for the construction of a test statistic to 

determine the quality of unwrapping.  Here, the null hypothesis is given as 

𝐻0: 𝜓𝑖𝑗 = 𝜓̃𝑖𝑗 (3.1.8) 

with a corresponding test statistic of 

𝑡𝑖𝑗 =
𝜓𝑖𝑗 − 𝜓𝑖𝑗

𝑃

√𝜎̂𝑎̂0

2 + 𝜎0
2 

(3.1.9)
 

where 𝑖 and 𝑗 denote the location of the pixel being unwrapped in the interferogram. 

This test statistic is very similar in form to (2.3.7), but should follow a t-distribution and 

therefore may be tied to a specific statistical significance level.  Assuming that the unwrapped phase 

values in the 5 x 5 neighbourhood are normally-distributed data, 𝑡𝑖𝑗  should follow a t-distribution with 

degrees of freedom equal to the degrees of freedom of the least-squares polynomial fitting. 

(2.3.8) used the overall fit of the phase prediction model to the unwrapped phases to 

characterize the  quality of the solution.  Similarly, the a posteriori variance factor in (3.1.6) is used to 

construct a test statistic 

𝑥𝑖𝑗
2 = 𝑑𝑜𝑓

𝜎̂0
2

𝜎0
2 (3.1.10) 

under the null hypothesis 

𝐻0: 𝜎𝜓
2 = 𝜎𝜙

2 (3.1.11) 
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The test statistic in (3.1.10) should follow a 𝜒2 distribution with 𝑑𝑜𝑓 degrees of freedom.  In the test 

statistic, 𝜎̂0
2 provides an estimate of the variance of the unwrapped phase, and 𝜎0

2 provides information 

about the variance of the wrapped phase. 

There is some ambiguity 

when it comes to defining the a priori 

value for 𝜎0
2, since it represents the 

expected noise in the interferogram.  

Noise levels can vary significantly 

over an interferogram, and this 

makes it difficult to determine the 

specific noise level expected prior to 

conducting phase unwrapping.  This 

method therefore requires a reliable 

identification of the a priori noise 

level in order to be effective. 

Two approaches to 

identifying a priori noise levels in the 

interferogram are considered here: 

determining a constant a priori noise 

level over the entire interferogram, 

and an adaptive a priori noise level 

locally over the extent of the 

interferogram.  Both approaches use 

local variances across the 

interferogram to estimate a priori 

variances. 

The constant a priori variance 

approach considers the a priori 

variance of the wrapped phases in 

the interferogram to be the weighted 

mean of the local variances across 

the interferogram.  As can be seen in Figure 3.2, there are spikes in the local variance near 

Figure 3.2: Local variance in a simulated wrapped interferogram.  Notice the 
large spikes in variance near discontinuities in the interferogram. 

Figure 3.3: Local variance in a simulated wrapped interferogram after 
thresholding is applied.  The thresholded regions are not 
considered in the estimation of the a priori variance of the 
wrapped phases. 
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discontinuities in the interferogram.  

These spikes in the local variance are 

produced artificially by the 

discontinuities in the wrapped 

interferogram and are not 

representative of the noise levels in 

the interferogram.  These values may 

be removed via thresholding.  Figure 

3.3 shows the local variances of a 

simulated signal when the values 

above 1 15⁄  of the maximum local 

variance are removed.  The a priori 

variance of the wrapped phases is 

then calculated as the mean of the remaining local variances after thresholding.  

The adaptive a priori variance approach estimates the moving-window weighted mean of local 

variances across the interferogram.  As with the constant a priori variance approach, thresholding is 

applied and the mean local variance of the remaining pixels is used to replace the values of the removed 

pixels.  The local variances use small neighbourhoods, and so do not provide reliable estimates of the a 

priori variances of the wrapped interferogram.  To overcome this issue, a low-pass Gaussian filter is 

applied to estimate the a priori variance that adapts to broader trends in local noise levels in the 

interferogram.  An example of adaptive a priori variance values is shown in Figure 3.4. 

 

Figure 3.4: A Priori variance of a simulated wrapped interferogram. 
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Figure 3.5: Flow chart of phase estimation in the Polynomial-Based Region-Growing Phase Unwrapping (PBRGPU) 
algorithm. 
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 Path-Based Least-Squares Phase Unwrapping (PBLSPU) 

Although the observation model of the PBLSPU method is identical to that of the LSPU method, this 

approach deviates from the LSPU algorithm in its path-based implementation of the least-squares 

model.  This is accomplished by expanding the solution about a single seeded region using the method 

of sequential least-squares. 

For this method, any neighbourhood size may be used, with a preference for smaller 

neighbourhoods that make a direct application of (2.4.11) more feasible, which allows for the complete 

removal of suspected high-noise measurements.  More information about the impact neighbourhood 

size has on the unwrapping solution is provided in Section 4.2.2. 

Of course, ensuring that the solution satisfies the global optimization criterion used in the LSPU 

algorithm requires that the estimates of unwrapped phases from earlier iterations of the algorithm be 

incorporated into the measurement model through a sequential least-squares processing approach.  

This may be accomplished through the inclusion of the pseudo-observations 

𝚿𝟎 = 𝐏𝟎𝚿 (3.2.1) 

with the associated observation covariance matrix of 𝑪𝚿𝟎
.  It should be noted that 𝑪𝚿𝟎

, the covariance 

matrix of the estimated unwrapped phases, should be determined through earlier iterations of the 

algorithm.  These pseudo-observations are only applied for pixels that already have an estimated 

unwrapped phase value – the 𝑷𝟎 matrix is therefore defined as an identity matrix with the rows 

corresponding to the pixels that do not have unwrapped phase estimates removed. 

In the unweighted case, the observation vector becomes 

𝒍 = [
𝚫𝚽
𝚿𝟎

] (3.2.2) 

the overall first design matrix then becomes 

𝑨 = [
𝑷
𝑷𝟎

] (3.2.3) 

with the covariance matrix of the observations 

𝑪 = [
𝑰 𝟎
𝟎 𝑪𝚿𝟎

] (3.2.4) 

The least-squares solution is given as follows 

𝚿̂ = (𝑷𝑻𝑷 + 𝑷𝟎
𝑻𝑪𝚿𝟎

−𝟏𝑷𝟎)
−𝟏

(𝑷𝑻𝚫𝚽 + 𝐏𝟎
𝑻𝑪𝚿𝟎

−𝟏𝚿𝟎) (3.2.5) 
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Figure 3.6: Example of the LSPU matrix equations being applied directly for an 11 x 11 patch in a wrapped interferogram.  It is 
important to note that the horizontal and vertical phase differences constitute different observations when applying 
the matrix equations directly, rather than them combining to form a single quantity as is the case when using DCTs 
to resolve the least-squares unwrapped phases. 

One of the main motivations of this approach is to add the capability of applying least-squares 

phase unwrapping while removing high-noise observations.  This is accomplished a posteriori after the 

variance factor 

𝜎̂0
2 =

(𝑷𝚿̂ − 𝚫𝚽)
𝑻
(𝑷𝚿̂ − 𝚫𝚽) + (𝑷𝟎𝚿̂ − 𝚿𝟎)

𝑻
𝑪𝚿𝟎

−𝟏(𝑷𝟎𝚿̂ − 𝚿𝟎)

𝑑𝑜𝑓
(3.2.6) 

where 𝑑𝑜𝑓 describes the degrees of freedom of the adjustment system.  This variance estimation could 

also be accomplished using variance component estimation to provide on-the-fly refinements to the 

weighting scheme of the observations.  Without applying variance component estimation, this method 

produces identical results to the unweighted least-squares phase unwrapping solution. 

The variance factor is used to determine a posteriori estimates of the variances of the residuals 

using the equation 

𝑪𝒗̂ = 𝜎̂0
2 (𝑪 − 𝑨(𝑨𝑻𝑪−𝟏𝑨)

−𝟏
𝑨𝑻) (3.2.7) 

Knowing the a posteriori variance of the residuals corresponding to each observation allows for 

a rigorous statistical assessment of whether or not each observation has a high noise level.  In this case, 

the null hypothesis for statistical testing would be 

𝐻0: 𝑨𝚿̃ = 𝒍̃ (3.2.8) 

with a corresponding set of test statistics defined as 
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𝑡𝑖 =
𝑣𝑖

𝜎̂𝑣̂𝑖

, 𝑖 = 1,… , 𝑛 (3.2.9) 

 where 𝑣𝑖 denotes the residual for the ith observation in the least-squares model.  Assuming data 

in the processing patch to be normally-distributed, the test statistic in (3.2.9) follows a t-distribution 

with degrees of freedom equal to that of the adjustment system. 

Since PBLSPU is a path-based approach that applies the least-squares principle in patches along 

the integration path, the unwrapped signal is more vulnerable to individual high noise pixels in the 

wrapped signal than in the standard LSPU approach (the degrees of freedom is relatively low for each 

patch).  This makes (3.2.9) insufficient on its own for assessing solution quality, and additional quality 

assurance should be employed.  The statistical test in (3.1.9) provides an intuitive and rigorous 

additional measure of solution quality.  In order to apply this test, the least-squares estimates of the 

unwrapped phase fulfill the role of 𝜓𝑖𝑗
𝑃 , while 𝜓𝑖𝑗 

is defined by (2.3.3).  It is important to note that, 

although the unwrapped phases in each patch 

are being estimated using the exact model given 

by (2.3.3), it is still the least-squares estimate of 

these unwrapped phases that are used to 

populate the unwrapped interferogram.  

An additional complication arises from 

the fact that the path-based least-squares 

method potentially flags multiple pixels as high-

noise pixels in each processing patch.  Path-

based phase unwrapping algorithms require an 

uninterrupted integration path to prevent 

artificial discontinuities from being introduced to 

the solution.  Given the nature of the path-based 

least-squares method, some pixels may be 

excluded so as to create multiple disconnected 

areas in a patch (refer to Figure 3.7).  This must 

be resolved by ensuring that only those pixels 

connected to the seed pixel are included in the 

solution at any iteration.  This can be realized by 

Figure 3.7: Illustration of why the “connectedness” of pixels in the 
solution is important.  The top image shows 
inlying/outlying pixels, and outlying pixels result in 
there being a disconnected region in the upper-left 
corner of the interferogram patch.  The bottom image 
shows the pixels that are included in the least-squares 
solution.  Note that the region in the upper left corner 
of the patch is excluded. 
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masking high-noise pixels and using flood-fill region-growing to identify all pixels that are connected to 

the seed pixel. 

If the null hypothesis for either statistical test is rejected for an individual pixel or if that pixel is 

not connected to the seed pixel by other unwrapped pixels, that pixel may be flagged as a pixel to 

exclude from the unwrapping solution.  Once all high-noise pixels in a patch have been flagged, the 

least-squares estimates of the unwrapped phases may be re-evaluated in order to exclude all high-noise 

observations.  Solution re-evaluation and the detection and removal of high-noise pixels can be applied 

iteratively until the flagged high-noise pixels remain the same from one iteration to the next, or until the 

number of iterations reaches a specified maximum.  After a final phase unwrapping solution has been 

produced for a patch, it is important to verify that all unwrapped pixels are connected to the seed pixel 

via an uninterrupted integration path. 

It is important to note that, as with the PBRGPU approach, the assumption of noise being 

normally distributed is only being made locally for a processing patch.  The least-squares models do not 

require the noise to be normally distributed (as long as there is no bias in the noise), but the statistical 

quality assurance does rely on this assumption. 
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Figure 3.8: Flowchart of phase estimation in the path-based least-squares phase unwrapping 
algorithm 
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4 Results 

 

 Simulated Data 

 The proposed algorithms were first tested using simulated interferograms.  This allowed for the 

definition of an ideal unwrapped signal, which in turn facilitated a direct comparison between the 

unwrapping quality of different phase unwrapping algorithms.  The simulated interferograms were 

generated using various levels of normally-distributed noise to verify the performance of the proposed 

algorithms under different noise conditions (definition of the different noise levels used is shown in 

Table 4.1 and the simulated wrapped signals are shown in Figure 4.1 with the corresponding ideal 

unwrapped signals in Figure 4.2).  The signals were generated by wrapping the Matlab Peaks function 

and adding normally-distributed noise.  All simulated signals were 500 x 500 pixels.  It is important to 

note that these signals are intended to test the phase unwrapping approaches under various noise 

conditions, as the simulated signals do not simulate the speckle noise present in SAR interferograms.  

Three specific measures were used to assess and describe the quality of a phase unwrapping 

solution for each simulated wrapped signal: the Root Mean Square Error (RMSE) between the 

unwrapped signal and the ideal solution; the percentage of pixels that were considered high-noise pixels 

by the phase unwrapping approach (this could not be applied to the LSPU solution, since the detection 

of high-noise pixels is not possible with this approach); and whether or not there were any observable 

discontinuities in the unwrapped signal (this also could not be applied to the LSPU solution, since it is 

defined to be a continuous surface). 

 The PBRGPU, PBLSPU, LSPU, and RGPU phase unwrapping algorithms were each used to unwrap 

the simulated wrapped signals, so that the proposed phase unwrapping algorithms could be compared 

to the approaches that they build upon.  When applying the RGPU algorithm, the strictest parameters 

put forth in Xu [1999] were used (𝑡𝑢 = 𝜋 4⁄ , 𝑡𝑝 = 𝜋 4⁄ ). 

Table 4.1: Summary of the noise characteristics of the simulated signals used to test the phase unwrapping algorithms.  The 
level of noise is characterized by the standard deviation of normally-distributed random noise that was added to the 
ideal simulated signal. 

Noise Level Standard Deviation (Percent of a Cycle) 

None 0 

Low 5 

Medium 10 

High 15 
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Figure 4.1: The simulated wrapped signals used to test the proposed phase unwrapping algorithms, in cycles.  The top-
left signal has no noise, the top-right has low noise, the bottom left has medium noise, and the bottom right 
has high noise. 
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Figure 4.2: The ideal unwrapped signals corresponding to the wrapped signals in Figure 4.1.  The top-left signal has no noise, the 

top-right has low noise, the bottom left has medium noise, and the bottom right has high noise. 

 

4.1.1 Polynomial-Based Region-Growing 

The adaptive method of a priori variance estimation was much more successful than estimating 

a constant a priori variance factor.  As a result, the adaptive a priori variance factor estimation is used 

here. 

 The PBRGPU algorithm consistently performed better than the RGPU algorithm (refer to Table 

4.2 for a summary of testing results).  In low noise environments, the PBRGPU algorithm performs 

similarly to the standard RGPU algorithm, but there is a significant improvement over the RGPU 

algorithm in high noise environments.  The improvement to the RMSE of the solution might be expected 

to come with a higher proportion of identified high-noise pixels.  However, with the simulated data, the 

PBRGPU algorithm does not exhibit this problem, excluding a similar proportion of pixels to the RGPU 

algorithm. 

 This suggests that the patch-based polynomial regression provides a more robust phase 

prediction than the “prediction lines” approach employed by the RGPU algorithm.  This is expected, 

given that the polynomial regression includes all unwrapped phase values in the neighbourhood around 
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the pixel being unwrapped, and also accounts for non-linear local variations in the unwrapped phase 

function. 

 In addition, the definition of the test statistics in the PBRGPU algorithm allows for more rigorous 

detection of high-noise pixels than in the standard RGPU algorithm.  Choosing a statistical significance 

level for the detection of high-noise pixels can be a bit counter-intuitive, since false negatives have a 

significant impact on path-based solutions.  This requires a very strict statistical test, with a small 

confidence interval.  When running the PBRGPU algorithm, a confidence interval of 50 % was used. 

 

Table 4.2: Comparison of Region-Growing Phase Unwrapping (RGPU) and Polynomial-Based Region-Growing Phase Unwrapping 
(PBRGPU) results for the simulated data. 

Noise 

Level 

Root Mean Square Error (Radians) 
Percent of Excluded 

Pixels 

Observable 

Discontinuities 

PBRGPU RGPU PBRGPU RGPU PBRGPU RGPU 

None 0.000 0.000 0.0 0.0 No No 

Low 0.006 0.000 0.3 0.0 No No 

Medium 0.094 0.905 3.8 4.0 No Yes 

High 2.224 9.318 21.7 25.6 Yes Yes 

 

Figure 4.3: The differences between the PBRGPU unwrapped signal and the ideal unwrapped signal (left) and the 
differences between the RGPU unwrapped signal and the ideal unwrapped signal (right) for the high noise level 
simulated interferogram. 
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Even though there are discontinuities introduced by the PBRGPU method under high noise 

levels, the resulting discontinuous regions are much smaller and more contained than the discontinuous 

regions produced by the RGPU algorithm.  Figure 4.3 highlights the differences between the unwrapped 

signals and their ideal unwrapped value.  Looking at the differences between the PBRGPU unwrapped 

signal and the ideal signal, it is clear that most of the discontinuous regions form closed areas within the 

interferogram, and that the size of these regions is smaller than the size of the discontinuous regions 

produced by the RGPU algorithm. 

 

4.1.2 Path-Based Least-Squares Phase Unwrapping 

 Since the PBLSPU approach is both a global optimization and a path-based approach, the 

PBLSPU unwrapping results were compared with those from both the LSPU approach (global 

optimization) and the RGPU approach (path-based integration). 

 The PBLSPU approach compares favourably to both the LSPU and RGPU approaches, with a 

significantly lower RMSE.  At a high noise level, the PBLSPU algorithm performs particularly well 

compared to the other approaches (including the PBRGPU approach).  However, it is important to 

recognize that the simulated wrapped signals were generated using normally-distributed noise, and SAR 

interferograms typically contain speckle noise. 

 As with the PBRGPU approach, the introduction of the rigorous detection of high-noise pixels 

through statistical testing greatly benefits the unwrapping quality.  The path-based structure of the 

PBLSPU approach allows for the complete removal of high-noise pixels, which was not possible under 

the traditional unweighted/weighted LSPU approaches. 

Table 4.3: Comparison of Path-Based Least-Squares Phase Unwrapping (PBLSPU) to standard Least-Squares Phase Unwrapping 
(LSPU) and Region-Growing Phase Unwrapping (RGPU) results for the simulated data. 

Noise 

Level 

Root Mean Square Error (Radians) 
Percent of Excluded 

Pixels 

Observable 

Discontinuities 

PBLSPU LSPU RGPU PBLSPU RGPU PBLSPU RGPU 

None 0.006 0.000 0.000 0.0 0.0 No No 

Low 0.000 0.000 0.006 0.0 0.0 No No 

Medium 0.013 0.264 0.094 1.4 4.0 No Yes 

High 0.559 3.217 2.224 24.9 25.6 Yes Yes 
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 Given that the proposed least-squares approach is path-based, any individual high-noise pixel 

that is included in the solution will have a larger impact than it would have for the standard LSPU 

approach.  This issue can manifest itself by producing discontinuous regions when applying the PBLSPU 

approach, which is a problem shared by any path-based algorithm.  While the LSPU solution does not 

have this issue, (it is constrained to be a smooth surface) the overall effect of outlying pixels is much 

larger than for the PBLSPU approach.  Figure 4.4 clearly shows the improved accuracy of the PBLSPU 

approach for high noise levels, despite the introduction of discontinuous regions in the unwrapped 

interferogram. 

 As with the PBRGPU algorithm, the PBLSPU algorithm requires a small confidence interval for 

the detection of high-noise pixels due to the prevalence of outlying pixels.  When running the PBLSPU 

algorithm, a confidence interval of 50 % was used. 

 

 RADARSAT-2 Data 

 The proposed algorithms were also tested using RADARSAT-2 data collected over Polar Bear 

Provincial Park in Northern Ontario in 2011.  The interferograms that were used were all approximately 

6000 x 3000 pixels (each pixel represents a 6m x 6m area on Earth’s surface), and were produced using 

PCI’s Geomatica software.  To determine the algorithms’ performance for a variety of signal qualities, 

three representative SAR image pairs were used for testing: an overall low coherence interferogram 

(with images collected on June 23, 2011 and September 3, 2011 – average coherence of 38.3 %), an 

overall high coherence interferogram (with images collected on June 23, 2011 and July 17, 2011 – 

Figure 4.4: The differences between the PBLSPU unwrapped signal and the ideal unwrapped signal (left)and the 
differences between the LSPU unwrapped signal and the ideal unwrapped signal (right) for the high 
noise level simulated interferogram. 
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average coherence of 41.3 %), and an interferogram with coherence that varies significantly over its 

extent (with images collected on June 23, 2011 and August 10, 2011 – average coherence of 38.6 %).  

Figures 4.5, 4.6, and 4.7 show the coherence maps and the wrapped interferometric phases of the three 

interferograms used to test the proposed algorithms. 

 Colour scales for the unwrapped signals are provided, but are not directly comparable, since 

signals are unwrapped relative to the seeded pixels.  Despite this, the range of the data defined by the 

colour scales provides information about whether there were any serious issues in the unwrapping 

process (an extremely large range indicates that discontinuities were introduced through the 

unwrapping process). 

 

Figure 4.5: High coherence interferogram.  The coherence values for the interferogram are shown in the left image, 
and the wrapped phase values are shown in the right image.  Images were collected on June 23 and July 
17, 2011. 
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Figure 4.7: Varied coherence interferogram.  The coherence values for the interferogram are shown in the left image, 
and the wrapped phase values are shown in the right image.  Images were collected on June 23 and 
August 10, 2011. 

Figure 4.6: Low coherence interferogram.  The coherence values for the interferogram are shown in the left 
image, and the wrapped phase values are shown in the right image.  Images were collected on June 
23 and September 3, 2011. 
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4.2.1 Polynomial-Based Region-Growing Phase Unwrapping 

As with the simulated data, the PBRGPU algorithm consistently performs better than the RGPU 

algorithm for the sample SAR interferograms (see Figures 4.8, 4.9, and 4.10 for a visual comparison).  

Even with the strictest parameters put forth in Xu’s [1999] documentation of the RGPU algorithm, there 

are many discontinuities introduced.   

While the RGPU algorithm excludes far fewer pixels, the excluded pixels appear to form 

unnatural shapes (e.g. straight horizontal/vertical lines).  The excluded pixels for the PBRGPU algorithm, 

however, appear to align quite well with low coherence regions in the interferogram.  This reduces the 

need for masking low coherence regions prior to the unwrapping process. 

Looking at the colour scale for the unwrapped signals in Figure 4.8, 4.9, and 4.10, the RGPU 

unwrapped signal has a range that is unreasonable when compared to the wrapped signals.  The range 

of the unwrapped signal produced by the PBRGPU approach is much more feasible for this data. 

With the high coherence signal, the PBRGPU algorithm did introduce observable discontinuities.  

It is worth noting, though, that the very small discontinuous region (found in the upper-left corner of the 

PBRGPU-unwrapped signal in Figure 4.8) is a much less severe issue than the major discontinuities 

introduced in the RGPU-unwrapped signal. 

As with other path-based approaches, if there are any unwrapping errors, then the unwrapped 

signal is dependent upon the selected seed pixels.  Since the relationship between the seed pixels and 

the unwrapped signal is non-deterministic, it is not possible to determine an optimal set of seed pixels 

that minimizes the overall unwrapping error.  To mitigate this issue, seed pixels are selected at random 

from a set of candidate pixels that all have a low variance in their neighbourhood. 

Table 4.4: Comparison of PBLSPU and RGPU results for the interferograms derived from RADARSAT-2 data for Polar Bear 
Provincial Park. 

Coherence Level 
Percent of Excluded Pixels Observable Discontinuities 

PBRGPU RGPU PBRGPU RGPU 

High 19.1 6.7 Yes Yes 

Low 39.4 9.8 No Yes 

Varied 41.3 12.6 No Yes 
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Figure 4.8: Unwrapped phase determined for the high coherence interferogram using PBRGPU (left) and RGPU (right), in 
radians.  Excluded pixels are shown in white.  Note that the colourbars are not directly comparable, but provide 
information about the range of the unwrapped data. 

 
Figure 4.9: Unwrapped phase determined for the low coherence interferogram using PBRGPU (left) and RGPU (right), in radians.  

Excluded pixels are shown in white. Note that the colourbars are not directly comparable, but provide information 
about the range of the unwrapped data. 
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Figure 4.10: Unwrapped phase determined for the varied coherence interferogram using PBRGPU (left) and RGPU (right), in 

radians.  Excluded pixels are shown in white. Note that the colourbars are not directly comparable, but provide 
information about the range of the unwrapped data. 

 

4.2.2 Path-Based Least-Squares Phase Unwrapping 

The PBLSPU algorithm also performs quite well for the sample SAR interferograms.  The PBLSPU 

and PBRGPU unwrapped signals agree very well with one another, although the PBLSPU approach 

appears to exclude a significantly larger portion of the interferogram in the unwrapping process. 

Given that the PBLSPU algorithm is a path-based approach, it can introduce discontinuities in 

the unwrapping process.  This can be seen in the low coherence and varied coherence interferograms, 

shown in Figures 4.12 and 4.13, respectively.  The standard LSPU algorithm, however, will always 

provide a smooth unwrapped signal, but the prevalence of residue points in the interferogram produces 

inaccuracies in the standard LSPU unwrapped signal. 

One way of mitigating the issue of discontinuous regions in the PBLSPU approach is to use a 

larger patch size when applying the least-squares matrix equations in order to allow for a higher 

redundancy in the matrix equations, and in turn to allow for better quality control.  This, of course, 

comes with a longer processing time, but can also increase the likelihood of a Type II error in the 

detection of high-noise pixels, because the wrapped pixels are revisited whenever they are within the 

processing patch surrounding a seed pixel.  For example, for a 3 x 3 patch size, each pixel is visited a 
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maximum of 9 times, but for an 11 x 11 patch size, each pixel is visited a maximum of 121 times.  For the 

sample interferograms, PBLSPU performed best when using a 7 x 7 patch. 

As an additional test of the unwrapping accuracy, both the PBLSPU and LSPU unwrapped signals 

were used to simulate the vertical and horizontal phase difference observations used in the least-

squares models.  The differences between these simulated values and the wrapped phase difference 

values from the wrapped interferograms were then used to estimate the a posteriori standard deviation 

of the wrapped phase difference values for each method.  The a posteriori standard deviation 

determined by for the PBLSPU unwrapped signal ranges from being ten to seventy times smaller than 

the a posteriori standard deviation determined for the LSPU unwrapped signal.  This indicates a 

significant improvement in the quality of the unwrapped signal. 

 
Table 4.5: Comparison of PBLSPU, RGPU, and LSPU results for the interferograms derived from RADARSAT-2 data for Polar Bear 

Provincial Park 

Coherence 

Level 

Percent of Excluded 

Pixels 

Observable 

Discontinuities 

A Posteriori Standard 

Deviation (Radians) 

PBLSPU RGPU PBLSPU RGPU PBLSPU LSPU 

High 40.4 6.7 No Yes 0.019 1.319 

Low 39.2 9.8 Yes Yes 0.031 0.729 

Varied 55.2 12.6 Yes Yes 0.056 0.609 

Figure 4.11: Unwrapped phase determined for high coherence interferogram using the PBLSPU (left) 
and LSPU (right) methods, in radians.  Excluded pixels are shown in white. Note that the 
colourbars are not directly comparable, but provide information about the range of the 
unwrapped data. 
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Figure 4.12: Unwrapped phase determined for low coherence interferogram using the PBLSPU (left) 
and LSPU (right) methods, in radians.  Excluded pixels are shown in white. Note that the 
colourbars are not directly comparable, but provide information about the range of the 
unwrapped data. 

Figure 4.13: Unwrapped phase determined for varied coherence interferogram using the PBLSPU (left) and LSPU 
(right) methods, in radians.  Excluded pixels are shown in white. Note that the colourbars are not 
directly comparable, but provide information about the range of the unwrapped data. 
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4.2.3 Comparison to SNAPHU Algorithm 

 To determine how well the proposed algorithms perform, a comparison with the widely applied 

SNAPHU algorithm was conducted.  The sample interferograms were unwrapped with the SNAPHU 

algorithm using PCI’s Geomatica InSAR processing tools.  SNAPHU performed quite well overall, and for 

the most part produced a smooth unwrapped phase function.  The algorithm did struggle in low 

coherence areas, as was apparent in the rightmost side of the unwrapped interferograms presented in 

Figures 4.14, 4.15, and 4.16.  In these regions, discontinuities were commonly introduced by the 

SNAPHU algorithm, but tended to be very restricted in size. 

 A more concerning issue that arises when one is unwrapping the varied coherence 

interferogram, is that broad discontinuous regions are introduced by the SNAPHU algorithm for this 

signal.  This is likely due to branch cuts being formed such that these broad regions are completely 

disconnected from one another.  The PBLSPU approach also encountered this issue, although to a lesser 

extent.  The PBRGPU algorithm appears to resolve this issue entirely for the sample data and, in the 

event of multiple seeded regions not being able to be merged, the algorithm is well-suited to identifying 

disconnected regions and allowing for these regions to be processed separately. 

 Masking low coherence regions in the interferogram would improve the SNAPHU unwrapping 

results, but the PBRGPU and PBLSPU algorithms achieve high-accuracy results without masking.  

Unwrapping without masking allows for the unwrapping process to penetrate through low coherence 

regions, and ensures that potentially valuable data are not being thrown out. 
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Figure 4.14: SNAPHU unwrapped phase values for the high coherence interferogram, in 
radians. Note that the colourbars are not directly comparable, but provide 
information about the range of the unwrapped data. 

Figure 4.15: SNAPHU unwrapped phase values for the varied coherence interferogram, in radians. 
Note that the colourbars are not directly comparable, but provide information about the 
range of the unwrapped data. 
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4.2.4 Comparison Between Proposed Approaches 

 Both of the proposed phase unwrapping approaches share many of the same strengths, since 

they were constructed using the same set of guiding principles.  Both approaches improve upon the 

detection and removal of high-noise pixels, to the point that neither algorithm requires low-coherence 

thresholding, even for low-quality interferograms. 

 The biggest differences between the two approaches lie in the domain of the unwrapped signal 

and in the prevalence of discontinuities in the unwrapped signal. 

 Both approaches remove high-noise pixels that have been identified as the phase unwrapping 

process progresses.  The PBLSPU approach excludes broader regions of pixels from the unwrapping 

solution than the PBRGPU approach does (compare Figure 4.8 with Figure 4.11, Figure 4.9 with Figure 

4.12, and Figure 4.10 with Figure 4.13), which suggests that the PBRGPU approach penetrates into low-

coherence regions better than the PBLSPU approach does.  Another notable difference in the domain of 

the unwrapped signal is that the PBLSPU approach has fewer “gaps” in the unwrapped signal than the 

PBRGPU approach.  Looking at the PBRGPU unwrapped signals (Figures 4.8 to 4.10), a speckling pattern 

of excluded pixels is noticeable (in Figures 4.8 to 4.10, this is shown as a white speckling pattern).  This 

Figure 4.16: SNAPHU unwrapped phase values for the low coherence interferogram, in radians. 
Note that the colourbars are not directly comparable, but provide information 
about the range of the unwrapped data. 
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pattern is mostly absent from the PBLSPU unwrapped signals (Figures 4.11 to 4.13), which indicates that 

the PBLSPU approach handles isolated high-noise pixels better than the PBRGPU approach does. 

 The PBLSPU approach tends to introduce more discontinuities than the PBRGPU approach does.  

This makes the PBLSPU approach less reliable for unwrapping SAR interferograms than the PBRGPU 

approach in its current state.  It is worth noting, however, that for the normally-distributed simulated 

wrapped signals, the PBLSPU unwrapped signal has a much higher accuracy than the PBRGPU 

unwrapped signal (comparing the root mean square errors in Tables 4.2 and 4.3). 

 

4.2.5 On Local Normality of the Interferometric Phase 

 Both proposed algorithms rely on the interferometric phase following a normal distribution in 

the processing patch surrounding each seed pixel.  The parameters defining these normal distributions 

can change throughout the interferogram, but this condition must be satisfied locally for the quality 

assurance used in the phase unwrapping process to be statistically rigorous. 

 To test this assumption for the PBRGPU algorithm, differences between the unwrapped phase 

values and their predicted values were recorded for every iteration of the algorithm.  These values were 

standardized by their standard deviations in order to create the histogram shown in Figure 4.17.  Note 

that these values should follow a t-distribution, since they are standardized by their sample standard 

deviations.  Note that none of these standardized differences exceed ± 0.5.  This is due to the fact that 

any values outside of this range were considered high-noise pixels in the phase unwrapping process. 

 Assuming that the interferometric phase in the neighbourhood of each seed pixel follows a 

normal distribution, these normalized differences should each follow a t-distribution with degrees of 

freedom equal to the degrees of freedom of the polynomial fitting. 
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 The degrees of freedom mostly varied from 

one to five, with the average degrees of freedom of 

the polynomial fitting process being three (see Figure 

4.18).  To test the assumption of normality of the data, 

a Chi-square goodness of fit test (Pearson distribution 

test) was conducted against the theoretical 

distribution of the data defined by a t-distribution with 

three degrees of freedom.  From Figure 4.17, it is clear 

that the posited distribution (shown as a dotted red 

line) follows the data (shown as the bars of the 

histogram) closely, but it was found to statistically 

deviate from the histogram of the data. 

 From this, it can be concluded that the inlying 

interferometric phases for each interferogram patch 

do not follow a normal distribution.  The quality 

assurance measures used in the proposed algorithms 

assume that the interferometric phase follows a 

normal distribution, and this assumption falls short in describing the probability distribution of the SAR 

data.  It is important to note that while a normal distribution model is insufficient for describing the SAR 

data, it serves as a reasonable approximation to its statistical distribution.   

Figure 4.18: The degrees of freedom of the polynomial 
fitting process for interferogram patches in 
the high coherency interferogram. 

Figure 4.17: Comparison between the histogram of differences between predicted and unwrapped phase values 
for the high coherency interferogram and a t-distribution with 3 degrees of freedom for the PBRGPU 
algorithm. 
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5 Conclusion and Remarks 
 

 Both of the proposed algorithms performed well for both the simulated data and the real data 

from Polar Bear Provincial Park, providing accuracy improvements in the unwrapped signal while they 

function as efficiently as the algorithms they are based on (the PBLSPU algorithm takes significantly 

longer to run than the LSPU algorithm, but runs almost as quickly as the region-growing approaches).   

 The accuracy of the phase unwrapping solutions from the proposed methods appears to be 

much higher for the simulated data than for the real SAR data.  This can be attributed to the fact that 

both proposed algorithms were developed to accommodate high levels of normally-distributed noise, 

and the SAR data contains speckle noise.  Although this presents a drawback for both algorithms and 

requires the use of very low confidence intervals when performing statistical tests, the algorithms still 

present an improvement over the existing solutions. 

 The proposed phase unwrapping solutions also seemed to have higher accuracies for the high- 

and low-coherence interferograms than for the varied coherence interferogram.  Since both proposed 

phase unwrapping algorithms adapt to local noise levels in the interferogram, this suggests that more 

drastic variations in the coherence values interferes with the algorithms’ abilities to accurately identify 

local noise levels in the interferogram. 

 It is worth noting that the accuracy of the proposed algorithms is comparable to that of the 

SNAPHU algorithm, and even surpasses the accuracy of the SNAPHU algorithm in some cases (refer to 

Section 4.2.3).  None of the proposed algorithms requires masking low coherence regions in the 

interferogram, in contrast to the SNAPHU algorithm, which produces unreliable results in low coherence 

regions if they are not masked prior to unwrapping. 

 Both of the proposed algorithms have all thresholds for the detection of high-noise pixels 

defined in terms of statistical significance levels, which no other phase unwrapping algorithm generally 

allows for.  Ultimately, these rigorously-defined statistical tests make the selection of these thresholds 

much more intuitive for an end user and definitely improve the detection of high-noise pixels. 

 One unique contribution of the PBLSPU approach is that it allows for the complete removal of 

outlying pixels in a least-squares model, which was not possible using the standard least-squares phase 

unwrapping approaches presented in Section 2.4.  This fully addresses the effects of residue points on 

the least-squares solution, and effectively restricts the impact of residue points to very small regions 

surrounding the residues. 
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 Choosing a patch size to use for the PBLSPU algorithm is challenging due to the competing 

demands of wanting higher redundancy in the least-squares equations for more reliable 

detection/removal of high-noise pixels but also wanting to reduce the number of times each pixel is 

visited by the algorithm to reduce the chance of a Type II error.  A patch size of 7 x 7 pixels appears to be 

a reasonable compromise between these demands, but there is unfortunately no way to avoid the ideal 

patch size being an ad hoc parameter. 

 Unfortunately, the statistical testing employed by the proposed methods assumes the SAR data 

to follow a normal distribution in each interferogram patch.  This assumption is incorrect, although it 

provides a reasonable approximation to the distribution of the data.  This and the low degrees of 

freedom for the phase unwrapping process in any given interferogram patch are the biggest obstacles to 

the success of the proposed algorithms. 

 The methods developed through this research could be generalized for multiple-polarization 

interferograms, which would allow for the incorporation of multiple interferograms to produce a single 

unwrapped signal.  This would increase the degrees of freedom of phase prediction, which would in turn 

improve the reliability of the process of detecting and removing high-noise pixels.  This development 

would address the main weaknesses of both proposed phase unwrapping approaches and make them 

more robust to high-noise levels in the wrapped interferograms. 

 The PBLSPU method could be implemented using a weighted least-squares model, and could 

make use of variance component estimation to separately define a posteriori variance factors for the 

estimated unwrapped phases and the wrapped phase differences.  Both of these modifications to the 

PBLSPU method would provide more in-depth information regarding the quality of the adjustment 

process, thereby allowing the detection of high-noise pixels to be a more informed process. 

 The results of this research show a significant improvement in unwrapping quality over other 

phase unwrapping approaches, and introduces rigorous statistical testing into the phase unwrapping 

process.  The restructured least-squares approach, in particular, resolves many of the limitations of the 

standard least-squares phase unwrapping approach.  The proposed phase unwrapping algorithms 

produce accurate unwrapping results, and the rationale that informed these algorithms’ development 

could be applied to improve/develop new phase unwrapping approaches. 
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