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Abstract— In this paper, the equations of motion for a two-
dimensional (2-D) wing encountering a gust are presented. The 
wing has two degrees of freedom, i.e. pitch and plunge, and its 
motion is restrained by nonlinear translational and rotational 
springs. Two different stiffness nonlinearities are examined: (i) 
cubic and (ii) free play. For given system parameters, the 
responses of the nonlinear system to the sharp-edged and 1-
cosine gust profiles are obtained at different flow velocities and 
compared to the time response of the system with no gust input. 
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I.  INTRODUCTION  
Aeroelasticity is an interdisciplinary field of study dealing 

with interactions between inertia, aerodynamic and elastic forces. 
Classical theories in aeroelasticity assume linear aerodynamics 
and structural dynamics resulting in a set of linear equations. 
These equations can be fairly easily solved in time or frequency 
domain and used for examining the aircraft stability and 
response to external excitation. However, linear aerodynamic 
theories start to break down at high airspeed. Flow separation 
and shock oscillations may also introduce aerodynamic 
nonlinearities. Moreover, structural nonlinearities may arise 
from, for example, large deformations, material behavior, worn 
hinges of control surfaces, and loose control linkages [1, 2]. 

Woolston et al. may be the first researchers that investigated 
the effects of structural nonlinearities on the flutter of a wing [1]. 
Two different wing models were studied: a wing capable of 
bending and twisting (i.e. two-degree-of-freedom (2-DOF) 
system) and, also, a wing with a control surface (i.e. 3-DOF 
system). They considered structural nonlinearities as 
concentrated in the torsional stiffness. Three different types of 
nonlinear springs, namely flat spot (representing free play), 
hysteresis, and cubic were examined. They found that there is a 
strong connection between the stability of a nonlinear system 
and the initial conditions - in many cases the flutter speed was 
decreased as the initial disturbance was increased. 

A comprehensive review of different types of structural and 
aerodynamic nonlinearities encountered in aeronautical 
engineering was conducted by Lee et al. [2]. They discussed 
several techniques, such as finite difference and describing 
function, for solving equations with structural nonlinearities. 
They found that even a 2-DOF system with a single nonlinearity 

in the pitch degree of freedom may show a complex dynamical 
behavior. For example, they showed that a system with a free-
play nonlinearity may undergo period-1, period-2, and period-4 
limit-cycle oscillations (LCO), as well as, chaotic motion, 
depending on the airspeed. For a more recent and quite shorter 
review of nonlinear aeroelasticity, the reader is referred to [3]. 

Several researchers have studied the response of a lifting 
surface to a time-dependent external excitation. For example, 
Poirel and Price investigated the effect of longitudinal 
atmospheric turbulence on the dynamics of an airfoil with a 
hardening cubic structural nonlinearity in pitch [4]. They found 
that flutter occurred at a lower velocity for the excited case than 
the so-called non-excited one, whereas the onset of LCO 
occurred at a higher velocity. Marzocca et al. investigated the 
aeroelastic response to a time-dependent external excitation of a 
2-D rigid/elastic-lifting surface in incompressible flow field, 
featuring plunging-pitching coupled motion [5]. Haddadpour et 
al. examined the effects of the sharp-edged gust on the dynamics 
of a flexible high-aspect ratio wing [6]. In their model, they used 
linear structural dynamics and linear quasi-steady aerodynamics. 

In reality, almost all lifting surfaces involve some sort of 
structural nonlinearity, and they may also encounter with 
atmospheric turbulence during a normal flight. Nevertheless, 
very few studies on the nonlinear aeroelastic response to a time-
dependent excitation can be found in the body of the literature. 
This is, in fact, the principal objective of this paper, namely 
studying the effects of a time-dependent excitation, such as 
sharp-edge and 1-cosine gusts on the dynamics and stability of a 
2-DOF typical airfoil section with structural nonlinearities. 

II. NONLINEAR AEROELASTIC MODEL WITH GUST 
EXCITATION 

A. Governing Equations Including the Gust Input 
Fig. 1 shows the cross-section of a 2-D rigid wing with 

degrees of freedom in the plunge and pitch directions. The 
plunge displacement is measured from the elastic axis and is 
represented by h (positive downward); α is the pitch angle about 
the elastic axis (positive nose up). The elastic axis is located at a 
distance ab from the mid-chord, while the mass center is located 
at a distance xαb from the elastic axis, b being the semi-chord. 
The wing is supported by a translational and a rotational spring, 
attached to the elastic axis, which generally have a nonlinear 
stiffness. 
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Figure 1.  Schematic showing geometry of the wing section. 

Here, we follow formulations presented in [2, 5]. The 
dimensionless aeroelastic equations featuring coupled plunging-
pitching motion of a typical airfoil section exposed to a gust 
input are expressed as 

𝜉"" + 𝑥%𝛼"" + 2𝜁)
𝜔
𝑈∗
𝜉" +

𝜔
𝑈∗

-
𝐺 𝜉 − 𝑙1 𝜏 = 𝑙4 𝜏 , 1  

𝑥%
𝑟%

𝜉"" + 𝛼"" + 2𝜁%
1
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1
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where 𝜉 = ℎ 𝑏 is the dimensionless plunge displacement, and 
𝜁)  and 𝜁% are, respectively, viscous damping ratios in pitch and 
plunge; 𝑈∗ = 𝑈= 𝑏𝜔%  is the dimensionless velocity, and 𝜔 =
𝜔) 𝜔% is the frequency ratio, 𝑈=  being the freestream velocity, 
𝜔)  and 𝜔% also being natural frequencies in pitch and plunge, 
respectively; also, 𝑙1 𝜏  and 𝑚1 𝜏  are the aerodynamic lift and 
pitching moment about the elastic axis, respectively, while 𝑙4 𝜏  
and 𝑚4 𝜏  are the lift and moment about the elastic axis due to 
the gust; 𝐺 𝜉  and 𝑀 𝛼  represent the nonlinear plunge and 
pitch structural stiffness terms, respectively; moreover, (	)" ≡
𝜕(	) 𝜕𝜏  denotes the time derivative with respect to 
dimensionless time 𝜏.	

The	 aerodynamic	 lift	 𝑙1 𝜏 	and	 pitching	 moment	
𝑚1 𝜏 	may be expressed as 
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where 𝜇 = 𝑚 𝜋𝜌𝑏- is the mass ratio, and 𝑟% = 𝐼% 𝑚𝑏- is the 
dimensionless radius of gyration; 𝑚 , 𝜌 , and 𝐼%  being, 
respectively, mass of the wing per unit span, air density, and 
mass moment of inertia per unit span. Also, 𝜙(𝜏) is called the 
Wagner function and is given by 

𝜙 𝜏 = 1 − 𝐴`𝑒bcde − 𝐴-𝑒bcfe, 5  

where the constants are 𝐴` = 0.165, 	𝐴- = 0.335, 𝑏` =
0.0455, 𝑏- = 0.3. 

By considering 𝑤l(𝜏) as a gust variable velocity and using 
Duhamel's integral concept, the lift and pitching moment about 
the elastic axis due to the penetration into the gust, 𝑙4 𝜏  and 
𝑚4 𝜏 , respectively, may be written as 

𝑙4 𝜏 =
2
𝜇

𝜓" 𝜏 − 𝜎
𝑤l 𝜏
𝑈=

𝑑𝜎
e

X
, 6  

𝑚4 𝜏 =
1
2
+ 𝑎

2
𝑟%-𝜇

𝜓" 𝜏 − 𝜎
𝑤l 𝜏
𝑈=

𝑑𝜎
e

X
, 7  

where 𝜓 𝜏  is called the Küssner function.  

A widely-used approximation for Küssner's function is the 
following two-term exponential expression [2]: 

𝜓 𝜏 = 1 − 𝐴o𝑒bcpe − 𝐴q𝑒bcre, 8 	

where the constants are 𝐴o = 0.5, 𝐴q = 0.5, 𝑏o = 0.130  and 
	𝑏q = 1.  

In this paper, two different gust profiles, implying specific 
time variations of their velocity distribution, will be used. They 
are: (a) sharp-edged gust, and (b) 1-cosine gust. Their analytical 
expressions are:	

𝑠ℎ𝑎𝑟𝑝 − 𝑒𝑑𝑔𝑒𝑑	𝑔𝑢𝑠𝑡: 𝑤l 𝜏 = 𝐻 𝜏 𝑤X, 9  
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1
2
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𝜋𝜏
𝜏l

 

−𝐻 𝜏 − 2𝜏l
1
2
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𝜋𝜏
𝜏l

, 10  

where 𝑤X is the gust maximum amplitude, and 𝐻 𝜏  represents 
the Heaviside step function. 

B. State-space Equations 
In order to deal with the integral terms in (3-4) and (6-7), we 

introduce six new variables or states as 
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e
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e
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e
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𝑈=

e

X
𝑑𝜎. 11 	

Using variables in (11), the aeroelastic equations (1-2) may 
be re-written as 

𝑐X𝜉"" + 𝑐`𝛼"" + 𝑐-𝜉" + 𝑐o𝛼" + 𝑐q𝜉+𝑐�𝛼 + 𝑐�𝑤` + 𝑐�𝑤-	
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𝜔
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-
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𝑑X𝜉"" + 𝑑`𝛼"" + 𝑑-𝜉" + 𝑑o𝛼" + 𝑑q𝜉+𝑑�𝛼 + 𝑑�𝑤` + 𝑑�𝑤-	
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-
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where 𝐺 𝜉  and 𝑀 𝛼  are nonlinear functions of ξ and α, 
respectively. f (τ) and g(τ) are functions of initial conditions and 
terms in the Wagner function, which are given by: 

𝑓 𝜏 =
2
𝜇

1
2
− 𝑎 𝛼 0 + 𝜉 0 𝐴`𝑏`𝑒bcde + 𝐴-𝑏-𝑒bcfe ,	

𝑔 𝜏 = −
1 + 2𝑎 𝑓 𝜏

2𝑟%-
. 14 	
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The coefficients 𝑐�(𝑖 = 0, . .9) and 𝑑�(𝑖 = 0, . .9) in (12) and (13) 
were given in [2] and will not be repeated here for the sake of 
brevity; however,	𝑐`X,	𝑐``,	𝑑`X and 𝑑`` are given as 

𝑐`X = −
2
𝜇
𝐴o𝑏o, 𝑐`` = −

2
𝜇
𝐴q𝑏q, 

𝑑10 = −
1
2
+ 𝑎

2
𝑟%-𝜇

𝐴3𝑏3, 𝑑11 = −
1
2
+ 𝑎

2
𝑟%-𝜇

𝐴4𝑏4. 15 	

After introducing a variable vector 𝑋 = (𝑥`, 𝑥-, … , 𝑥`X)� 
defined as 

𝑥` = 𝛼, 𝑥- = 𝛼", 𝑥o = 𝜉, 𝑥q = 𝜉", 𝑥� = 𝑤`, 𝑥� = 𝑤-,	

𝑥� = 𝑤o, 𝑥� = 𝑤q, 𝑥� = 𝑤�, 𝑥`X = 𝑤�. 16 	

(12) and (13) can be written as a set of ten first-order ordinary 
differential equations. 

III. NUMERICAL EXAMPLES AND ANALYSIS 
The dimensionless parameters of the linear system used in 

this paper are: 𝑎 = −0.5, 𝜇 = 100, 𝑥% = 0.25, 𝑟% = 0.5, 𝜁% = 𝜁) =
0.0, and 𝜔 = 0.2. We set 𝛼"(0) = 𝜉"(0) = 𝜉 0 = 0, 𝛼 0 = 1 deg 
as the initial conditions. Using the eigenvalue solution method 
with the given parameters, we obtain the linear dimensionless 
flutter speed (𝑈�∗) as 6.28, which agrees well with results in [2]. 

Since in this paper we consider nonlinearities only for the 
pitch DOF, plunging oscillations display very much expected 
features and are not worthy to be discussed here. Thus, 
throughout the paper, we only discuss the response in the 
pitching direction. 

A. Gust Response with Cubic Nonlinearity 
We consider a cubic nonlinearity in the structural stiffness 

for the pitch and a linear stiffness for the plunge degree of 
freedom. Thus, functions 𝐺 𝜉  and 𝑀 𝛼  in (12) and (13), 
respectively, can be set to 𝐺 𝜉 = 𝜉 and	𝑀 𝛼 = 	𝛽`𝛼 + 𝛽oαo. 
First, we examined a system with a weak cubic nonlinearity, 
where 𝛽` = 1 and 𝛽o = 10. Assuming a sharp-edged gust with 
𝑤X = 10 m/s, the response of the system was obtained at 	𝑈∗ =
6.27 (not shown here because of space limitation). It was found 
that the oscillations gradually decay with time, and the system 
regains its static equilibrium. Thus, even a strong excitation at 
an airspeed very close to the linear flutter speed cannot change 
the stability of the system with a weak cubic nonlinearity.  

Next, we consider a system with a strong cubic nonlinearity 
(𝛽` = 0.01 ,𝛽o = 10 ) and keep other system parameters the 
same. The linear flutter speed for this system is	𝑈�∗ = 0.91. The 
response of the system to a sharp-edged gust and also a 1-cosine 
gust with the maximum amplitude of 𝑤X = 1  m/s at 𝑈∗ =
0.84	 , 	𝑈∗ = 𝑈�∗ = 0.91  and 𝑈∗ = 2𝑈�∗ = 1.82  are shown in 
Figs. 3-5, respectively. Note that for the 1-cosine gust, τl = 20 
throughout the paper. 

As seen from Fig. 2, both the sharp-edged and 1-cosine gusts 
result into LCO with comparable amplitudes at 𝑈∗ = 0.84 < 𝑈�∗, 
while for the system without the gust input, oscillations decay 
with time. 1 This means that the nonlinear system may undergo 

                                                             
1 The time responses to the gust inputs were obtained for a longer 
time range (not shown in Fig. 2) where period-1 LCO were observed. 

a Hopf bifurcation leading to LCO at a speed below the linear 
flutter speed, provided that a sufficiently strong gust excites it. 
Fig. 3 shows the dynamic response of the system with and 
without the gust input at the linear flutter speed, 𝑈�∗. From the 
figure, one may infer that except for the transient part of the 
response, the gust does not make any significant changes to the 
dynamics of the system at 𝑈∗ = 𝑈�∗.  

Fig. 4 Shows time responses of the system with and without 
the gust input at 𝑈∗ = 2𝑈�∗ = 1.82. As seen from the figure, the 
amplitude of oscillations when the system encounters a gust is 
obviously higher than that when there is no gust. In addition, the 
system undergoes period-2 motion in response to the gust input, 
while it performs period-1 motion when there is no gust. It is 
also interesting to see that the sharp-edged gust tends to increase 
the pitch angle in the negative direction, whereas the 1-cosine 
gust does the opposite. 

 
Figure 2.  Sharp-edged (left) and 1-cosine (right) gust responses of a system 

with the strong cubic nonlinearity in pitch at 	𝑈∗ = 0.84; 𝑤X = 1 m/s. 

 

Figure 3.  Sharp-edged (left) and 1-cosine (right) gust responses of a system 
with the strong cubic nonlinearity in pitch at 	𝑈∗ = 𝑈�∗ = 0.91; 𝑤X = 1 m/s. 

 

Figure 4.  Sharp-edged (left) and 1-cosine (right) gust responses of a system 
with the strong cubic nonlinearity in pitch at 	𝑈∗ = 2𝑈�∗ = 1.82; 𝑤X = 1 m/s. 

B. Gust Response with Free-play Nonlinearity 
The free-play nonlinearity, in its general form, may be 

represented by the trilinear stiffness model, as shown in Fig. 5. 
In the figure, 𝑀X represents the preload, 𝑀� the stiffness in the 
free-play zone, 𝛼�  the pitch angle offset, and δ  the free-play 
range. We examine the dynamics of a system with free-play 
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parameters 𝛿 = 0.5�,𝑀X = 𝑀� = 0, 𝛼� = −0.25� for the pitch 
stiffness. As also previously mentioned, the linear flutter speed 
for this system is 𝑈�∗ = 6.28. 

Fig. 6 shows the bifurcation diagram for the free vibration 
(i.e. no gust) of a typical airfoil section with free-play type 
nonlinearity in pitch, where the peak values of the pitch angle, 
𝛼 , are plotted against the normalized dimensionless airspeed, 
𝑈∗ 𝑈�∗. In the bifurcation diagram, a single dot/point represents 
a static equilibrium position (region I); two dots represent a 
period-1 motion (regions II and IX), and four dots show a period-
2 motion (regions III and VIII); also, eight dots represent a 
period-4 motion (regions V and VII), and finally, multiple 
scattered dots show a chaotic motion (regions IV and VI). Table 
I summarizes the dynamical behavior of the system shown in the 
bifurcation diagram. It is noted that, as seen in Fig. 6, in region 
IX, the pitch amplitude increases sharply with 𝑈∗ 𝑈�∗ and goes 
to very large values for 𝑈∗ 𝑈�∗ > 1 (not shown in the figure). 
These indicate the occurrence of divergent or violent flutter in 
region IX (for more details, see [1, 2]).  

The important message of Fig. 6 is that the free-play 
nonlinearity may cause the system to lose the static equilibrium 
at a much lower flow velocity than the linear flutter speed (e.g. 
at 0.95 instead of 6.28 for the given system parameters). The 
bifurcation diagram also suggests that the route to chaos is via 
period-doubling, as also observed by Lee et al. [2]. 

Fig. 7 shows the typical phase-plane diagrams of four types 
of motion, which are period-1, period-2, period-4 and chaotic, 
respectively, at	𝑈∗ 𝑈�∗ = 0.8, 0.56, 0.45, and 0.48. 

Moment	M(α)

M0+α-αf

R1 R2 R3

M0+Mf(α-αf)

M0+α-αf+δ(Mf-1)

Displacement	α

αf αf+δ  
Figure 5.  General free-play stiffness model; 𝑀X represents the preload; 𝑀� is 
the stiffness in the free-play zone, 𝛼� is the pitch angle offset, and δ is the free-

play range. 

 
Figure 6.  Bifurcation diagram of a system with a free-play nonlinearity in 
pitch (δ = 0.5°, 𝑀X = 𝑀� = 0, 𝛼� = −0.25°), where the peak values of the 
pitch angle is plotted versus the normalized dimensionless airspeed, 𝑈∗ 𝑈�∗. 

TABLE I.  DYNAMICAL BEHAVIOUR IN DIFFERENT REGIONS OF THE 
BIFURCATION DIAGRAM SHOWN IN FIG. 6; (𝑈∗ 𝑈�∗) IS THE NORMALIZED 

DIMENSIONLESS AIRSPEED. 

Region (𝑼∗ 𝑼𝑳
∗) Type of motion 

Before I (0	0.151) Static Equilibrium 

I and VIII 0.151	0.221 	and	(0.688 1) Period-1 

II and VII 0.221	0.255 	and	 0.529	0.688  Period-2 

IV and VI 0.331	0.463 	and	 0.484	0.529  Period-4 

III and V 0.255	0.331 	and	 0.463	0.484  Chaos 

 

 
Figure 7.  Phase-plane diagrams for different regions shown in Fig. 6; where 
𝑈∗ 𝑈�∗ = 0.8, 0.56, 0.45, and 0.48 for the top-left, top-right, bottom-left, and 

botom-right subfigures, respectively. 

Fig. 8 shows time responses of the system in the pitch 
direction to a sharp-edged (left) and a 1-cosine (right) gust at 
	𝑈∗ = 0.93 . For comparison purposes, the gust response is 
plotted over the time response in the absence of the gust. As seen, 
the system undergoes LCO under the gust input, while in the 
absence of the gust it regains static stability. In other words, the 
gust input causes the system to lose its static stability at a lower 
airspeed, i.e. at 	𝑈∗ = 0.87 instead of 0.95. 

Fig. 9 shows the time responses at 	𝑈∗ = 1.30 which lies in 
region II in the bifurcation diagram in Fig. 6. As discussed, 
within this region, the airfoil section undergoes period-1 LCO in 
the absence of a gust. However, this changes to period-2 LCO 
when the airfoil encounters a sharp-edged or 1-cosine gust. Thus, 
the gust may change the type of the oscillatory motion. In 
addition, it increases the amplitude of oscillation, especially in 
the transient part of the response. 

Fig. 10 shows time responses at 𝑈∗ = 3.06. Here also, the 
period-4 motion, which occurs in the gust absence, changes to a 
chaotic type motion due to the gust input. This is more evident 
from Fig. 11 which shows the phase-plane plots at the same 
airspeed without (left) and with (right) a sharp-edged gust input. 
Fig. 12 shows time responses at 𝑈∗ = 6.00 . Very large 
amplitudes due to gust effects are noticeable in the transient part 
of the responses. As seen from Fig. 13, when 𝑈∗ approaches	𝑈�∗, 
the amplitude of LCO due to the gust input increases rapidly to 
very large values (of the order of 35 deg). When	𝑈∗is greater 
than	𝑈�∗, namely in the supercritical region, the time responses 
increase exponentially, indicating divergent flutter (see Fig. 14). 
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As seen from the figure, the gust response amplitude is always 
greater than the one in the absence of the gust.  

 
Figure 8.  Sharp-edged (left) and 1-cosine (right) gust responses of a system 

with the free-play nonlinearity in pitch at 	𝑈∗ = 0.93; 𝑤X = 1 m/s. 

 
Figure 9.  Sharp-edged (left) and 1-cosine (right) gust responses of a system 

with the free-play nonlinearity in pitch at 	𝑈∗ = 1.30; 𝑤X = 1 m/s. 

 
Figure 10.  Sharp-edged (left) and 1-cosine (right) gust responses of a system 

with the free-play nonlinearity in pitch at 	𝑈∗ = 3.06; 𝑤X = 1 m/s. 

 
Figure 11.  Phase-plane diagrams with gust and without gust (sharp-edged) at 
	𝑈∗ = 3.06; without (left) and with (right) a sharp-edged gust, featuring 

period-4 and chaotic motions, respectively; 𝑤X = 1 m/s. 

 
Figure 12.  Sharp-edged (left) and 1-cosine (right) gust responses of a system 

with the free-play nonlinearity in pitch at 	𝑈∗ = 6.00; 𝑤X = 1 m/s. 

 
Figure 13.  Sharp-edged (left) and 1-cosine (right) gust responses of a system 

with the free-play nonlinearity in pitch at 	𝑈∗ = 6.27; 𝑤X = 1 m/s. 

 
Figure 14.  Sharp-edged (left) and 1-cosine (right) gust responses of a system 

with the free-play nonlinearity in pitch at 	𝑈∗ = 6.29; 𝑤X = 1 m/s. 
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IV. CONCLUDING REMARKS 
The numerical results presented in this paper show that a 

sharp-edged or a 1-cosine gust input may influence the dynamics 
and stability of a two-dimensional wing with a strong cubic or 
free-play stiffness nonlinearity in three different ways: (1) it may 
alter (strictly speaking, lower) the onset of instability, (2) it may 
change the mode of oscillatory motion (e.g. from period-1 to 
period-2 motion), and (3) it may increase the amplitude of 
vibrations. Thus, studying the effects of time-dependent 
excitation on the dynamics and stability of lifting surfaces seems 
essential for their design. These studies are particularly crucial 
for the new generation of aircraft which are likely to be lighter, 
faster, more flexible, and more agile. 
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