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Abstract

There are two main problems associated with load testing research: (1) the

testing environment might not be realistic and (2) lack of empirical research. To

address the first problem, we systematically assess the performance behavior of the

system with various realistic environment changes. Results show that environment

changes can have a clear performance impact on the system. Different scenarios

react differently to the changes in the computing resources. When predicting the

performance of the system under new environment changes, our ensemble-based

models significantly out-perform the baseline models.

To address the second problem, we have empirically evaluated 23 test analy-

sis techniques. We have found all the evaluated techniques can effectively build

performance models using data from both buggy or non-buggy tests and flag the

performance deviations. It is more cost-effective to train models using two recent

previous tests collected under longer sampling intervals.
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1 Introduction

Performance is a important non-functional requirement for large-scale systems like

Google and Amazon. These systems handle concurrent requests from thousands

or even millions of users everyday. Failure to satisfy performance and scalability

requirements can have extensive impact on the success of the system and may result

in negative news coverage (e.g., the crash of online train ticket booking system in

China [1] and the botched launch of US Government’s Health Care website [2]).

Hence, in order to make sure that the system in the field is able to provide stable

service, load testing is necessary apart from functional testing.

Load testing usually uses one or more load generators mimicking the desired

number of users sending concurrent requests to the system under test (SUT) during

a period of time. When performing load testing, the runtime behavior of the SUT

is logged in order to do analysis. Generally speaking, there are two types of system

behaviour data: system logs and resource counters. System logs are logs produced

by the SUT (e.g., print(“customer login”)), while resource counters are counters
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reflecting resource usage of software resources as well as hardware resources (e.g.,

CPU queue length, disk I/O, etc.). Moreover, in order to capture the performance

of the SUT, testing environment needs to be closely mimicking the field environment

to have an accurate assessment of the expected field behaviour. In the field there

may have other processes running along with the SUT, resulting in interference

with the SUT. For example, if there is an antivirus software running on the node in

which the database is running, it might slow down the I/O of the database, hence,

increase the response time of requests which are related to the database requests.

The general process of a load test can be divided into the following phases: test

design, test setup and execution and test analysis [3]. There are many test design

techniques proposed and many test execution tools available in industry and open

source software systems. In this thesis, we focus on the test setup and test analysis,

since these two areas have not been thoroughly studied. In particular, there are

a few challenges associated with setting a test environment and analyzing a load

test:

1. Additional Tools: In the field environment, system may need to run along

with additional tools such as auto backup or antivirus software without in-

forming the performance analysts.

2. Shared Environment: Many of the current system are run in a shared

environment such as cloud environment. In this case, different systems on
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the same physical box may interfere with each other.

3. Rapid Changes: In order to make fast reactions to the needs of users,

Continuous Integration has been adopt to constantly push the changes to the

field. Hence, it’s very hard to all ways make sure that the test environment

is up-to-date.

4. Large Volume of Data: Usually a load test will last for hours or even days,

generating hundreds megabyte or gigabytes of logs, which is hard for manual

analysis.

5. Limited Time: Load testing is usually done after all functional testing has

been finished to make sure there are few functional failures confounding the

test results, so the time remains for load testing is usually very limited.

6. Lack of Test Oracle: Functional testing has clear pass and fail criteria,

such as whether a user has successfully registered or not. But the objectives

of a load test are not clear [4] and are often defined later on a case-by-case

basis [5].

These challenges can be further divided in two categories: the first three chal-

lenges are for re-creating a field-like test environment; and the remaining three chal-

lenges are for analyzing load tests. To tackle with the challenge of test vs. field en-

vironment, we take an different approach. We first conduct environment-variation-

based load testing to obtain different performance behaviour of the target system
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under realistic changes. Then we use performance modeling techniques to pre-

dict the performance behaviour of the system under the new environment changes.

To address the second challenge, researchers have proposed several automatic per-

formance analysis techniques to tackle some of these problems (e.g., [6, 7, 8, 9]).

The idea of these techniques are using different models to evaluate whether the

performance of the current tests is different from the previous tests. But none

these techniques have been compared against each other. Hence, we have proposed

an evaluation framework to empirically evaluate 23 different performance analysis

techniques.

The contributions of this thesis are:

1. This is the first study, which systematically evaluates the effectiveness of

different test analysis techniques.

2. We proposed a flexible framework that can evaluate different test analysis

techniques on a range of threshold values. In addition, it can easily be used

to evaluate other systems or techniques.

3. This is the first work which assesses the impact of the test results under the

variations in the system deployment environment. Compared to the existing

testing techniques like Chaos Monkeys [10], our environment-variation-based

load testing is more fine-grained.

4. We have proposed an ensemble-based performance model to leverage data
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from previous runs to predict the system performance under new SDE changes.

5. We put our test data used in the thesis online [11] [12] to encourage further

research on this topic.

Thesis Organization

The rest of the thesis is organized as follows: chapter 2 describes our approach

of assessing system performance under realistic environment changes . Chapter 3

introduces our framework to evaluate the effectiveness of load testing analysis tech-

niques. Chapter 4 explains the related work and chapter 5 concludes the thesis and

discusses some future work.
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2 Systematically Assessing the Impact of

Environment Variations on the Results of Load

Tests

Most of the in-house performance tests are done in a clean lab environment, whereas

most of the field environments have additional tool(s) running along with the sys-

tem. In this chapter, we will investigate whether this kind of environment variations

would impact the system and how to properly model the performance behaviour of

the SUT under these variations.

2.1 Introduction

Load testing is an important type of non-functional testing technique to ensure

the performance and the scalability of large-scale software systems like AT&T’s

telecommunication systems [13] and Microsoft’s web services [14]. These systems

are used by millions of users concurrently everyday. The failure to process high vol-
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umes of user traffic could result in catastrophic consequences and unfavorable media

coverage (e.g., the crashes of the Consensus websites for Statistics Canada [15] and

Bureau of Statistics in Australia [16]). Load testing in general refers to the pro-

cess of assessing system behavior under load in a field-like environment [13]. The

load drivers are used to generate hundreds or thousands of concurrent requests,

which mimic the realistic user behavior, to the system under test (SUT). During

the course of the load test, execution logs and performance counters are recorded

for further analysis.

Although some load tests are conducted in the field environment, it is often

very difficult and costly to access the actual production environment [17, 18]. Most

of the load testing is done in a lab environment. The computing hardware can be

purchased in-house [17] or by renting virtual machines from the cloud computing

service providers [19, 20]. However, extra care should be taken of to ensure the

lab environment closely resembles various characteristics in the deployment field.

For example, if the database and the web sever are far apart (e.g., in two different

continents), network delays should be added when deploying the SUT in the lab

to simulate cross-the-continent network latency using Network Virtualization tools

like Shunra [21].

However, re-creating the field-like environment in the lab is very challenging due

to the following three reasons: (1) Additional Tools: System operators may install
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additional tools in the field for security [22] and monitoring purposes [23] without

informing the performance analysts; and (2) Shared Environment: Many of the

systems are installed in a shared environment (e.g., public cloud or multi-tenant),

in which one or multiple resources are shared by different users [24, 20]. Both

cases can cause the instability of the performance behavior of the SUT [19, 25] and

degrading user experience [26]. (3) Rapid Changes: Nowadays, many companies

adopt the Continuous Integration/Continous Delivery process, in which software

changes and environment configuration changes are constantly pushed to the field.

Companies like Netflix are constantly updating their various components in the

field [10]. It would not be feasible to re-create an up-to-date test environment.

In this chapter, we tackle the problem of deviations in the lab/field environments

with a different approach: rather than trying to create a “realistic” lab environment,

which captures and simulates all the characteristics in the field, we want to conduct

environment-variation-based load testing to systematically assess the behavior of

the SUT under different changes in the system deployment environment (SDE).

For example, we will conduct a load test in an environment with limited computing

resources (e.g., CPU) to simulate the case of the SUT deployed in an environment

with a resource-intensive process. We also will conduct a load test in an environment

where other processes (e.g., anti-virus) are active. Our objective is to learn the

performance behavior of the SUT under these tests and to pin-point resource-
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sensitive scenarios. In addition, we also want to build performance models based

on the results of these environment-variation-based tests. These models can help

system operators to anticipate potential performance deviations in other changes

to the SDE.

The contributions of this chapter are:

1. This is the first work to systematically assess the impact of the test results

with respect to the variations in the SDE. Compared to the existing test-

ing techniques like Chaos Monkeys [10], which assess the SUT behavior by

randomly turning off some processes or machines, our environment-variation-

based load testing can assess the behavior of the SUT in a more fine-grained

manner. The results of our testing can provide useful suggestions to the sys-

tem operators (e.g., process A cannot be co-deployed with the SUT due to

high contention of the CPU resources).

2. We have proposed an ensemble-based performance model to predict the sys-

tem performance for changes to the SUT, which have not been previously

tested. Case studies show that our ensemble models out-performs the base-

line models.

3. In this chapter, we have executed over 80 hours of environment-variation-

based load tests executed on three open source systems. We have made this
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data available online [11] to support replications and to encourage further

research on this topic.

Chapter Organization

The rest of the chapter is organized as follows: Section 2.2 presents a motivation

story. Section 3.4 provides an overview of our case study setup by explaining the

target systems, the motivation and the descriptions of the proposed three research

questions. Sections 2.4, 2.5 and 2.6 study the three research questions. Section 3.8

discusses the threats to validity. Section 3.9 concludes the chapter and discusses

some future work.

2.2 Motivation

Bryan was a performance analyst working for an e-commerce startup, which adopted

the Continuous Integration/Continous Delivery development process. The new ver-

sion of the system had already been successfully load tested. However, right before

the system upgrade, the system operators informed Bryan that all the field ma-

chines had anti-virus software ABC and data backup program DEF installed due

to recent security breaches. After the installation of ABC and DEF, the system

operators had noticed some response time fluctuations on the current version of the

system. Hence, they were not sure whether these two pieces of software would have
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a large performance impact on the new version of the system. Unfortunately, it was

not feasible for Bryan to install these two additional software applications in the

lab machines due to high costs associated with the software licenses. In addition,

Bryan had also been inquired by the management team, as customers had been

expecting some of the features and bug fixes in the new version of the system for a

while.

Pressured by cost and time, Bryan built a performance model using the results

of his environment-variation-based load tests. Using this model and the perfor-

mance characteristics of software ABC and DEF, Bryan was able to predict the

performance behavior of the new version of the system in the field. Bryan analyzed

the prediction results and only found small performance deviations compared to

the existing lab testing results. After obtaining the analysis results from Bryan,

the system operators carried out the upgrade process without any issues.

2.3 Case Study Setup

In this section, we will introduce the setup of our case studies. In particular, we

will discuss about the case study systems, the motivation and the descriptions of

three research questions and the load test setup.
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Table 2.1: Case Study Systems

System Domain Category
# of Test

SLOC
Scenarios

DS2 Benchmark application JSP 4 ∼ 100

PET E-commerce Hibernate 15 > 2000

JMS Mail Server Mailet Container 6 > 4,000

2.3.1 Target Systems

In order to assess the behaviour of different types of the system under SDE changes,

we use these three open source systems to conduct our case study: Dell DVD Store

(DS2) [27], Petclinic (PET) [28] and James Mail Server (JMS) [29]. Each of them

has different types of components, configurations and uses different development

technologies. Table 3.2 shows the summary of these three systems.

� DS2: DS2 is an open source e-commerce website made by Dell to do per-

formance testing on their hardware. It has 2 component: web server and

database. It is deployed on the Tomcat as web server, and uses MySQL as

database. The system has 4 different pages: login, browsing DVD, purchasing

items and registrations for new customers.
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� PET: Petclinic is a web application based on Java Spring framework and Hi-

bernate. Similar to DS2, it is also deployed on Tomcat as web server and uses

MySQL as database. While DS2 contains only 4 scenarios, Petclinic has 15

different test scenarios related to pet owners (e.g., view pet owners, edit own-

ers information), pet (e.g., view pet, add visit log to pet), and veterinarians

(e.g., view list of veterinarians).

� JMS: The Apache James Mail Server (JMS) is an open source mail server

based on Java. Different from DS2 and Petclinic, James Mail Server is a

stand-alone system, so it does not need any other components. As a mail

server, James Mail Server has two generic scenarios: send mail and receive

mail. Based on [30, 31], these two scenarios can be further divided into more

smaller scenarios. In our chapter we divided them into six scenarios: sending

or receiving emails with or without attachments, reading only mail header or

reading the whole mail.

2.3.2 Research Questions

We have proposed the following three research questions (RQs) to assess the sys-

tem’s performance behavior under different variations to the SDE.

� (RQ1) Impact Analysis: How different can the results of a load test be

13



under realistic changes to the SDE?

Although many efforts have been made to mimic the lab environment close to

the actual field, in many cases it is not possible to completely capture all the

environment characteristics in the field. For example, the system operators

might decide to install additional probes or anti-virus software in the field

for purposes like monitoring and security without informing the performance

analysts. Hence, in this research question, we want to examine the degree of

performance deviation for SUT when running under an ideal environment (no

additional software systems) and under an environment with some realistic

changes.

� (RQ2) Sensitivity Analysis: Which test scenarios are sensitive to the vari-

ations in the SDE?

The system consumes different amount of computing resources, while pro-

cessing different scenarios. For example, the scenario of compressing a file

would probably consume more CPU and disk resources, instead of memory;

whereas uploading an image would probably consume more disk and network

resources, rather than CPU. In this research question, we want to perform

a sensitivity analysis on the performance impact of different scenarios with

respect to the amount of computing resources allocated.
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� (RQ3) Model-based Analysis: Can we effectively model the performance

impact of the SUT due to the variations in the SDE?

In practice, each software application consumes various computing resources.

Furthermore, the resource consumption patterns would not be uniform through-

out the time. For example, the amount of the computing resources consumed

would be much higher when an anti-virus program is actively scanning, rather

than idle. Finally, due to the complexity of the field environment, in many

cases, it would not be feasible to exercise all the variations in the SDE. Some

enterprise systems (e.g., SAP’s ERP systems) could be deployed in thou-

sands of customers’ site, each of which has different field configurations set

by the system operators. Hence, it would be very useful to build a perfor-

mance model which can predict the anticipated performance when the SUT is

deployed in the field. In this research question, we want to research into mod-

eling techniques which can effectively predict the SUT’s performance behavior

for changes to the SDE that are not previously assessed.

2.3.3 Test Setup

We use two machines to execute our load tests. One machine is used to deploy the

SUT. Its configuration is Intel® CoreTM 2 CPU 2.40 GHz, 2 GB memory and a

160 GB 7200 RPM hard drive. The other machine is used as a load generator to
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mimic the hundreds or thousands of users using the system concurrently. The load

generator machine has Intel® CoreTM i7-4790 CPU 3.60 GHz, 16 GB memory and

a 2TB 7200 RPM hard drive. The SUT and the load generator are deployed on

separate machines, as this is the standard practice to eliminate the performance

interference caused by the load generator [3].

We use an open source tool, called Apache JMeter [32], as our load generator

and pidstat [33] to monitor and record the performance behavior during the course

of a load test. In addition, we have also recorded the response time logs from

JMeter and the access logs from Tomcat for each load test. These logs are used to

extract the workload and the response time information. After we finish each run,

we parse the data as each row representing the system state in the past one minute.

To simulate the variations of the SDE, we have used the following three tools:

� rsync: Many of the field machines perform period data backup to avoid

potential data losses due to machine failures or security breaches. In this

chapter, we use a data backup utility, called rsync [34], which is used to

perform automated remote data backup during a load test.

� ClamAV: We use an open source anti-virus program, ClamAV [35] to eval-

uate the performance impact of SUT under virus scan.

� stress-ng: The above two applications are used to simulate realistic changes
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to the SDE. However, there can be more variations to the SDE in reality.

Hence, we need to have a way to assess the SUT behavior under more varia-

tions to the SDE (e.g., a different computing resource usage pattern compared

to rsync and ClamAV). To address this problem, we use an open source appli-

cation, stress-ng [36] to control the amount of available computing resources

in a more fine-grained manner. Stress-ng can be configured to consume differ-

ent amount of computing resources like CPU, memory and disk, and hence,

constraining the SDE that SUT is running under.

For the details on the experiments, please refer to the next three sections. In

total, we run more than 80 hours of load tests and collected about 150 performance

counters and approximately 8 GB logs from three target systems.

2.4 RQ1 - Impact Analysis

In many cases, a load test is running in an ideal environment, in which only the

SUT is running. The reasons are two-fold. First, it is much easier to monitor and

analyze the performance of the SUT under load in a cleaner environment. Second,

the performance analysts are not clear about the actual characteristics of the field

environment. Hence, in this research question, we want to assess the degree of

performance deviations between load tests running in an ideal environment and in
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an realistic environment (e.g., an environment in which the anti-virus is running

together with the SUT).

2.4.1 Experiment

The same load tests are executed in various environment setup. All three subject

systems are run under the following four environment settings:

� ideal test : First, two load tests, ideal1 and ideal2 , are run in an ideal en-

vironment, where no additional applications are activated. The reasons for

executing the ideal test twice is because we want to check whether the per-

formance behavior in the ideal setting is similar to each other.

Then, we run three different load tests in the following three more realistic

settings. Collectively, we call these three types of environment-variation-

based load tests (backup test, sscan test, and dscan test) as the “realistic

runs”.

� backup test : We run one load test in an environment, in which rsync is running

along with the SUT. This setup is to simulate the field environment in which

remote data back-up is enabled.

� sscan test : We run another load test in an environment, in which the anti-

virus application ClamAV is running along with the SUT. The ClamAV is
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configured to perform anti-virus scan using only one thread. This setup is to

simulate the field environment in which the anti-virus application is installed.

� dscan test : This load test setup is the same as the sscan test, except ClamAV

is configured to perform anti-virus scan using two threads. The goal here is

to simulate the field environment in which the operators want to perform a

faster anti-virus scan.

In total, five load tests are run for each of the subject systems.

2.4.2 Result Analysis

In order to investigate the impact of variations in the SDE on model accuracy, we

perform the following two types of analyses: statistical comparison and performance

model assessment.

Statistical Comparison

We statistically compare the response time between the ideal runs and the three

realistic runs using the Wilcoxon Rank Sum test and Cliff’s Delta (WC). Wilcoxon

Rank Sum (WRS) test is a non-parametric test which compares the distributions of

the two datasets. For example, if two sets of response time are about one minute (1

minute vs. 1.0006 minute) and the WRS test shows statistical significance between
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these two datasets. However, the differences between the two sets are so small

(36 milliseconds), humans would hardly notice the differences. Hence, to quantify

the strength of the differences between the two distributions, we use Cliff’s Delta

(CD). CD is a non-parametric technique to calculate the effect size between two

distributions [37]. CD quantifies the level of the differences as follows:

effect size =



trivial if CD < 0.147

small if 0.147 ≤ CD < 0.33

medium if 0.33 ≤ CD < 0.474

large if 0.474 ≤ CD

The results are shown in Table 2.2. Table 2.2 shows the number of scenarios

which are impacted by realistic changes to the SDE: each cell indicates how many

scenarios have different performance behaviour when comparing one ideal run and

one other run. We consider the differences are significant when the WRS test shows

statistical significance and CD shows medium to large effect sizes. For example, in

DS2, when comparing the ideal1 and the backup runs, there is one out of the total

four tested scenarios which have different performance behaviour. The cell shows

an “-” when it is compared against itself (e.g., ideal1 comparing against ideal1). In

general, the performance behavior is the same for all the scenarios when comparing

two ideal runs. However, there is at least one scenario from all three subjects whose
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Table 2.2: Percentage of test scenarios which have different performance behaviour

between the ideal and the realistic runs.

Systems
Test Runs

Ideal1 Ideal2 Backup Dscan Sscan

DS2
Ideal1 - 0.00% 25.00% 50.00% 75.00%

Ideal2 0.00% - 25.00% 100.00% 100.00%

PET
Ideal1 - 0.00% 73.33% 93.33% 100.00%

Ideal2 0.00% - 73.33% 100.00% 100.00%

JMS
Ideal1 - 0.00% 100.00% 100.00% 100.00%

Ideal2 0.00% - 100.00% 100.00% 100.00%

performance behaviour different when comparing against the ideal and the realistic

runs.

Performance Model Assessment

As performance requirements are seldom available and up-to-date [38, 5], perfor-

mance analysts usually adopt the no-worse-than previous principle. In other words,

performance analysts build performance models based on the load testing data from

previous runs and predict on the current runs. There can be performance problems,
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if there is a large deviation between the actual measurements and the predicted re-

sults. Hence, we also build performance models using the load testing results from

the ideal runs and compare the prediction results on the ideal runs as well as the

realistic runs. We use the following three statistical techniques to build the perfor-

mance models:

� Generalized Linear Model (GLM): Generalized Linear Model models the

system behavior using a global function of workload mixes and resource usage

utilization [39]. Extra care is taken to ensure the assumptions associated with

the GLM model are met.

� Multivariate Adaptive Regression Splines (MARS): MARS [40] is a

model that can split data with different kinds of behaviour into different sub

models using one or more “hinge function”. Each hinge function is a function

indicating two different behaviours based on certain cut-offs. All the hinge

functions can be automatically produced by the model, modeling system in

different period rather than as a whole like GLM. We want to use MARS to

model the different phases in a load test (e.g., when anti-virus program is

active vs. idle).

� Regression Tree (RegTree): Compared to GLM, RegTree does not have

many assumptions associated with the model [41]. Similar to MARS, RegTree
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can also model the behavior of the system in different phases, but in a tree-like

manner. RegTree builds a decision tree model by splitting the data points

into certain leaves.

We build the performance models using the results from the ideal runs. Then

we either predict the performance of another ideal run or the performance of one

realistic run. Then we perform the WC analysis between the predicted values and

the actual measured results. If they are statistically significantly different by the

WRS analysis and have medium to large effect sizes, we consider this scenario have

large performance deviations between the predicted values and the actual values.

Table 2.3 shows the percentage of scenarios from each system where there large

deviations between the predicted and the measured values. For example, in DS2,

when using RegTree as the prediction model and trained on the data from the

ideal run, there are 12.50% of the test scenarios which are different when predicting

on another ideal run. However, when predicting on the realistic runs, 50% of the

scenarios have large deviations between the actual and the predicted values.

In general, the prediction results on the ideal runs are better than the realistic

runs when using MARS or RegTree as the modeling techniques. This is the opposite

when using the GLM as the modeling technique. We believe this is mainly due to

the performance of the modeling techniques, as the model performance of the GLM

is significantly worse than the other two techniques. For example, when training
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Table 2.3: Percentage of test scenarios in which there are different between the

predicted and the actual values.

Models
DS2 PET JMS

Ideal Realistic Ideal Realistic Ideal Realistic

GLM 37.50% 37.50% 43.33% 38.89% 50.00% 66.67%

MARS 12.50% 37.50% 40.00% 45.56% 16.67% 72.22%

RegTree 12.50% 50.00% 3.33% 28.89% 8.33% 94.44%

on the ideal run and predicting on another ideal run in DS2, the performance of

GLM is more than three times worse than the performance of MARS and RegTree.

For RegTree, although it can predict the performance from another ideal run with

high performance, the prediction results on the realistic runs are much worse.
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2.4.3 Summary

Findings: There is a clear performance impact when incorporating some realistic

changes to the SDE. Such changes can cause the system performance to be notice-

ably different. Consequently, the performance models built using the ideal runs

cannot be used to accurately predict the behavior of the realistic runs.

Implications: As it can be unavoidable to have variations to the SDE, there

could be large performance deviations between the load tests running in an ideal

environment and the field. It is worthwhile to conduct environment-variation-based

load testing to assess the performance impact due to changes to the SDE.

2.5 RQ2 - Sensitivity Analysis

In the previous RQ, we have demonstrated the need to conduct environment-

variation-based load testing. When the system contains abundant computing re-

sources, the SUT and the other applications can run without interfering each other.

However, when the resources are limited, the performance of the SUT can be im-

pacted if some of its scenarios are competing for the same computing resources

against another application. In this RQ, by leveraging the environment-variation-

based load tests, we want to conduct a sensitivity analysis on the performance

impact of different scenarios with respect to the amount of available computing

resources.

25



2.5.1 Experiment

If one scenario consumes much CPU, limiting the CPU resource would result in

a large increase in its response time. Otherwise, its response time would not be

impacted. Hence, in order to find out which scenario is sensitive to what kinds

of computing resources, we run the load tests with limited computing resources.

We run the load test along with stress-ng multiple times. Each time, stress-ng is

configured to consume a different amount of computing resources, which forces the

SUT to be run under different constrained conditions. For each system, we run six

additional environment-variation-based load tests apart from the two ideal tests.

The details are as follows:

� ideal test : We ran the load test under the ideal environment twice. We call

these two runs as ideal1 and ideal2 . These two runs are used as our baseline

in this RQ.

� CPUStr test : We ran the load tests with stress-ng configured to consume

different amount of CPU resources. We run two CPUStr tests in this RQ:

stress-ng configured to consume 30% and 70% of the single core CPU re-

sources. We call these two runs as CPUStr1 and CPUStr2 , respectively.

� DISKStr test : Similar to the CPUStr tests, we ran the load tests with stress-

ng configured to perform writes to the disk with one or two worker threads.
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We call these two runs as DISKStr1 and DISKStr2 , respectively.

� MEMStr test : Similar to the CPUStr and the DISKStr tests, we ran the

load tests with stress-ng configured to consume 512 MB or 1 GB of memory.

We call these two runs as MEMStr1 and MEMStr2 , respectively.

Collectively, we call the the CPUStr test, the DISKStr test and the MEMStr

test as “lab stress runs”.

2.5.2 Result Analysis

We use the WC analysis to compare the response time between the ideal runs

and a particular type of lab stress runs. For example, if WC result of the login

scenario shows a large difference when comparing the ideal run and the CPUStr

runs, the performance of the login scenario is sensitive to the amount of available

CPU resource. The overall WC results are shown in Table 2.4. Each row shows

the percentage of scenarios from that subject system which has different response

time from the ideal runs. For example, the third row in the table shows that 75%

of the scenarios in DS2 are impacted when running with lower level CPU stress

(CPUStr1).

As expected, the two ideal runs are similar to each other. Hence, no scenarios

are flagged. Generally speaking, lower level of stress will have less effect to the
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Table 2.4: Percentage of test scenarios which are different between the ideal and

the lab runs.

Systems
Ideal Runs CPU Stress Runs Disk Stress Runs Memory Stress Runs

Ideal
1

Ideal
2

CPUStr
1

CPUStr
2

DISKStr
1

DISKStr
2

MEMStr
1

MEMStr
2

DS2
Ideal1 - 0.00% 75.00% 100.00% 100.00% 100.00% 0.00% 0.00%

Ideal2 0.00% - 75.00% 100.00% 100.00% 100.00% 0.00% 0.00%

PET
Ideal1 - 0.00% 73.33% 93.33% 100.00% 100.00% 0.00% 93.33%

Ideal
2

0.00% - 66.67% 80.00% 100.00% 100.00% 0.00% 93.33%

JMS
Ideal1 - 0.00% 16.67% 50.00% 100.00% 100.00% 100.00% 100.00%

Ideal
2

0.00% - 33.33% 66.67% 100.00% 100.00% 100.00% 100.00%

scenario performance. But if the scenario heavily relies on certain type of resource,

limiting this resource will have significant a impact on this scenario. DS2 and PET

both use database for information storage, and JMS needs to access the disk to

read and write emails. Hence, both levels of disk stresses show significant impact

for all three systems. JMS consumes large amount of memory to store the users’

states and PET uses Hibernate, which caches the database information to optimize

database performance. Hence, the scenarios from these two systems are impacted by

memory stresses. DS2 is a simple benchmarking system using the JSP technology.

The scenarios from DS2, which do not consume much memory, are not impacted

by the changes in the memory resource. Compared to DS2 and PET, the impact

of the CPU stress is smaller in JMS.
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2.5.3 Summary

Findings: Varying the amount of computing resources can impact the performance

behavior of the SUT. However, there is no unified rules in terms of the amount of

available computing resources and the performance of individual scenarios. Dif-

ferent scenarios may or may not be impacted by the underlying changes to the

SDE.

Implications: There is a need to create better performance models to assess the

performance implications of different scenarios with respect to the changes in the

SDE.

2.6 RQ3 - Model-based Analysis

RQ2 shows that there is no one-size-fits-all answer to the relationship between

the performance of individual scenarios and the amount of available computing

resources. In this RQ, we will propose an ensemble-based modeling approach to

systematically assess the performance implications of different scenarios with re-

spect to the changes in SDE.

2.6.1 Ensemble Modeling

Our proposed ensemble models consist of many small performance models, built

using the data from segments of environment-variation-based load tests. These
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Figure 2.1: Our ensemble-based modeling approach.

small performance models are called sub-models. During runtime, each of these

sub-models performs the prediction. The overall ensemble model output is based on

how close the state of the current test environment and the environment enclosed in

the sub-models. The more similar the state of the two environments are, the higher

weight it should be given to the prediction results of this sub-model. Figure 2.1

illustrates the overall process of our ensemble modeling. It consists of three steps:

model building, distance calculation and model prediction.
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Step 1 - Model Building

As the available computing resources can fluctuate during the course of a load test

due the state of different application processes (e.g., anti-virus actively scanning

vs. anti-virus being idle). Hence, in order to accurately capture SUT’s behaviour

under different environment conditions, we split the load testing data with a moving

window. The window contains data within a fixed time window size i. Hence, the

first window (Training window1) contains the data from time 0 to time i − 1; the

second window (Training window2) contains the data from time 1 to time i, and so

on. For the data within that window, we built performance models using the data

from that window as the training data. One performance model is built for the

response time of each scenario. For example, the model MscenarioA,i corresponds to

the performance model built to predict the response time of scenarioA using the

training data from Training window
i
.

This process is applied on all our executed environment-variation-based load

tests (a.k.a., the ideal runs, the realistic runs, and the lab stress runs). For the

data from each window, we build three kinds of performance models: GLM-based

models, MARS-based models and RegTree-based models.
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Step 2 - Distance Calculation

In the previous step, we have built many small performance models, which captures

the performance behavior of SUT under different environment variations. The next

step is to defined how to determine the final output from the ensemble model.

When the ensemble model is used (a.k.a, during the testing stage), each of these

small performance models would give a prediction value. We need an approach,

which automatically selects the most suitable model(s) and use their prediction

result(s) as the final ensemble output. Our distance function is defined to measure

the similarity between the training environment and the testing environment. If

the SUT is running in a training environment, which is similar to the current target

environment, the performance behavior should be similar with each other. Hence,

the prediction results from these performance models should be given more trust

than the prediction results from the other models in the final ensemble output. We

will explain the calculation of our distance function with an example. Figure 2.2

shows an example of the resulting performance model built with the regression tree

technique. In this case, the model contains two independent variables: CPU and

disk. Hence, our distance function measures the degree of similarity of these two

counters between the training window and the current target environment.

Similar to the Training window, we define the Test window with a fixed time
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Figure 2.2: An example of a regression tree-based performance model.

window with a fixed time window size j. For example, at current time t, the window

(Test Windowt) consists of the data from t − j − 1 to t (a.k.a., the data from

the past j minutes). Note that the size of the training and the testing windows

are configurable and they are not necessarily the same. For each prediction, we

conduct the WC analysis on the CPU data between the current (Test Windowt)

and all the (Training Windows). For the details of the WC analysis, please refer

to Section 2.4. Similarly, the WC analysis is also applied on the disk data. Hence,

for each of the performance models, we have two WC values: one for the CPU

counter and the other one for the disk counter. The value of the distance function

for this model is just the average of the two WC values. For example, if the WC

values for the CPU and the disk counters are 0.4 and 0.6. The resulting distance

function for this performance model is 0.5 (0.4+0.6
2

). Different performance models

would have different types of performance counters. For example, if a MARS-based
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performance model contains only one independent variable: the disk. The distance

function for this model is just the WC values for the disk counter.

Step 3 - Model Prediction

Once we have calculated the distance functions of all the models, we need to have

a way to combine the prediction results from all these models into one final output

for the ensemble model. In this chapter, we have experimented with the following

three ensemble strategies:

� Mean calculates the average of the prediction results from all the perfor-

mance models. Note that in this case, the values calculated from the distance

function are not used.

� Winner-takes-all just uses the prediction results with the smallest distance

values. If there is a tie, we just use the median of the prediction results from

all the best models.

� Weighted Average provides a weight for each of the prediction results and

aggregates them. For example, there are three performance models, which

have WC values 0.2, 0.4, 0.6, respectively. The prediction results from these

three models are: 0.6, 0.3, and 0.4. The final ensemble output would be

1
0.2+1

1
0.2+1

+ 1
0.4+1

+ 1
0.6+1

×0.6+
1

0.4+1
1

0.2+1
+ 1

0.4+1
+ 1

0.6+1

×0.3+
1

0.6+1
1

0.2+1
+ 1

0.4+1
+ 1

0.6+1

×0.4 = 0.44. We
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take the inverse of WC values, as bigger WC values indicate larger differences.

We also added one to each of the WC values to avoid division by zero errors.

For each test window, the ensemble model is only going to predict the last point

(a.k.a., the prediction value for the current time).

2.6.2 Evaluation

We evaluate our ensemble modeling techniques by training on the results of environment-

variation-based load tests and predicting on the results of three realistic runs

(backup test, sscan test, and dscan test). In order to effectively evaluate our en-

semble modeling technique, we vary the configurations of our ensemble models in

the following three dimensions:

� The size of the training window: we use 10, 15, or 20 minutes as three

different window sizes. We fix the testing window size as 10 minutes in order

to compare the effect of the training window sizes.

� The training dataset: We evaluated our ensemble models with these three

options: (1) ideal runs only, (2) ideal runs and lab stress runs, and (3) all

runs. There are in total six different kinds of lab stress runs as described

in Section 2.5: two CPU stress runs (CPUStr1 and CPUStr2), two memory

stress runs (MEMStr1 and MEMStr2) and two disk stress runs (DISKStr1 and
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DISKStr2). For option (3), all runs refer to all the ideal runs, all the lab stress

runs and two out of the three realistic runs. For example, if we are predicting

the results of the backup test, the two realistic runs in option (3) would be

the dscan test and the sscan test.

� Ensemble strategies: We used using mean, winner-takes-all and weighted

average as three options to calculate the final ensemble results.

To demonstrate the effectiveness of our ensemble-based modeling technique, we

compare our results against the baseline technique, which is the single-model based

approach. The single-model based approach only uses the data from the ideal run

and builds just one performance model. Similar as the other two RQs, we calculate

the percentage of scenarios whose predicted values and the measured values are

different. In other words, the two sets of data are statistically different by the

WRS test and the CD results shows medium to large effect sizes. In this case, we

consider the performance model produces “bad prediction results”.

Table 2.5 shows the results of the RegTree models. The bottom row with row

name “Baseline” shows the prediction of baseline model. For example, half of

the scenarios in DS2 suffer from bad prediction results when using window size as

20, the weighted average as the ensemble strategy and only the ideal runs as the

training data.
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Overall, we can see the results from our ensemble models are the same or better

than the baseline. Among the three ensemble strategies, winner-takes-all always

outperforms the other two under the same window size and training dataset. If we

only compare within the winner-takes-all strategy, the performance is similar to the

baseline model when simply using the ideal runs as the training dataset. Except

for two cases in DS2, adding more runs into the training dataset would generally

get better the prediction results. This makes sense, as more runs will provide more

variations of the SUT under variations to the SDE. In consequence, the ensemble

model has a better chance to find similar time windows. Comparing among different

window sizes, Win15 and Win20 generally perform the same or better than Win10 .

We have also experimented the ensemble-based modeling techniques using the

GLM and the MARS as our modeling techniques. We analyze RegTree results for

the purpose of illustrating the effectiveness of ensemble modeling approach com-

pared with baseline approach. Please refer to [11], if you want the evaluation results

for the GLM and the MARS-based ensemble models.
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Table 2.5: Percentage of scenarios which are different between the predicted re-

sults and the actual measurements. To conserve space, the three model selection

techniques, mean, winner-takes-all, and weighted average, are shown as “Mean”,

“Winner” and “Weighted” in the table. Win10 , Win15 and Win20 refer to the three

different training window sizes.

Window size Ensemble DS2 PET JMS

strategy

Ideal Lab All Ideal Lab All Ideal Lab All

Win
10

Mean 58.33% 41.67% 41.67% 51.11% 33.33% 84.44% 100.00% 66.67% 66.67%

Winner 66.67% 16.67% 33.33% 55.56% 6.67% 4.44% 100.00% 33.33% 22.22%

Weighted 58.33% 41.67% 41.67% 51.11% 15.56% 66.67% 100.00% 66.67% 66.67%

Win
15

Mean 58.33% 41.67% 41.67% 51.11% 33.33% 84.44% 100.00% 66.67% 66.67%

Winner 66.67% 33.33% 16.67% 48.89% 6.67% 6.67% 100.00% 5.56% 0.00%

Weighted 58.33% 41.67% 41.67% 51.11% 22.22% 75.56% 100.00% 66.67% 66.67%

Win20

Mean 50.00% 41.67% 41.67% 44.44% 13.33% 51.11% 100.00% 66.67% 66.67%

Winner 66.67% 16.67% 25.00% 64.44% 4.44% 6.67% 100.00% 72.22% 27.78%

Weighted 50.00% 41.67% 41.67% 44.44% 11.11% 44.44% 100.00% 61.11% 66.67%

Baseline ( 50.00% ) ( 28.89% ) ( 94.44% )
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2.6.3 Summary

Findings: When predicting on realistic runs, ensemble-based performance models

perform the same or better than the single models trained only using the ideal runs.

Adding more results from the environment-variation-based tests would generally

improve the model performance. The model built using the larger window sizes

(e.g., 15 or 20 minutes window sizes) are usually better than the models using

smaller window sizes.

Implications: We can effectively model the performance behavior under realistic

changes to the SDE using the results from the environment-variation-based tests.

Adding more variety of environment-variation-based load tests would improve the

model performance. Hence, this motivates the need of further research into other

kinds of environment-variation-based load tests (e.g., stressing the database com-

ponent at various levels).

2.7 Threats To Validity

In this section, we will discuss the threats to validity.
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2.7.1 Construct Validity

Performance Monitoring

We monitor the SUT’s resource usage using an open source performance monitoring

tool, called pidstat. This tool is very low overhead (< 1% CPU, < 0.1% memory,

and very few disk writes). In addition, we also collect the logs from JMeter and

Tomcat for workload and response time information. JMeter and the SUT are run

on different machines to avoid resource contention. The access logs for Tomcat are

enabled by default.

Evaluation Method

In this chapter, we use the WC method to check whether the predicted results match

with the actual measurements. Mean Percentage Absolute Error (MAPE) is also a

popular method to evaluate the quality of the predicted results [42]. Equation 3.1

shows the formula of how MAPE can be calculated. The higher the MAPE values,

the worse the prediction models are.

MAPE =
1

n

∑n

i=1

∣∣∣∣predictedi
− actual

i

actual
i

∣∣∣∣ (2.1)

In this chapter, we use the WC method instead. We flag a prediction model to

be bad if the WRS test shows statistically significant and CD test shows medium
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Figure 2.3: Comparison of the prediction results from two performance models.

to large effect sizes between the predicted and the actual measured values. We have

originally tried both the WC and MAPE as our evaluation method and have found

in certain scenarios MAPE values cannot highlight the strength and weaknesses of

different models. Figure 2.3 shows one such example.

Prediction 1 (the model trained with the ideal runs) and prediction 2 (the

ensemble-based model trained with more tests) have MAPE values of 0.452 and

0.507, respectively. This indicates that the baseline model is better than the

ensemble-based model. However by looking at the graph, the baseline model did

not accurately capture the trend of the data. The reason of the baseline model
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has a smaller MAPE is because the baseline model always gives a small prediction

value than the ensemble model. When we use the WC analysis on these data, the

CD values for the baseline and the ensemble models are 0.435 (medium effect sizes)

and 0. This clearly shows that the prediction results from the baseline model is

worse than the ensemble model’s results.

2.7.2 Internal Validity

In order to make sure different runs of load tests do not affect each other, we cleaned

up the system environment every time after each single test was finished. There

are various configurable parameters in our ensemble-based models: the ensemble

strategy, the training window size, test window size, and the type of training data.

In RQ3 we have kept the test window size fixed (10 minutes) and systematically

assess the impact of all three other configuration parameters.

2.7.3 External Validity

In this chapter, we assess the performance impact of environment changes using

three open source systems. We picked these three open source systems because

they are from different application domains, implemented with different technol-

ogy, and have different deployment topologies. However, our findings may not

be generalizable to other systems. For example, for large-scale industrial systems
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which have hundreds of scenarios and thousands of customer deployment sites, our

existing environment-variation-based load tests may not be able to accurately cap-

ture and model the SUT behavior. In addition, although we have proposed various

kinds of environment-variation-based load tests (e.g., realistic runs and lab stress

runs), there can be more. For example, if the SUT is deployed in a multi-tenant

environment, another type of realistic load test can be running the SUT while the

database is doing additional unrelated processing tasks.

2.8 Conclusion and Future Work

In this chapter, we have evaluated the impact of the SDE variations on the results

of load tests. We ran over 80 hours test on three different target systems with

different variations of SDE. Our analysis shows that there is a clear performance

impact on the performance of the SUT due to the changes in the SDE. However,

not all scenarios react the same to the changes of the computing resources (e.g.,

CPU, memory and disk). In order to accurately predict the behaviour of SUT under

realistic SDE changes, we have proposed an ensemble-based modeling technique,

which leverages the results of existing environment-variation-based load tests. Case

studies show that our ensemble-based models out-perform the baseline models when

predicting the performance of the realistic runs.

In the future, we plan to extend this study by proposing and experimenting
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more types of environment-variation-based load tests, both in lab stress runs as

well as realistic runs. In addition, we also want to research into techniques which

dynamically adjust the test environment (e.g., adding or removing the computing

resources) based on the performance of the system.

Once the load tests are executed, performance analysts need to go through the

generated logs and counters data to find potential load-related problems. The next

chapter conducts an empirical analysis to evaluate among the various load test

analysis techniques.
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3 A Framework to Evaluate the Effectiveness of

Different Load Testing Analysis Techniques

One of the goal for performance testing is to detect performance deviations between

current version and previous version. In this chapter, we will introduce how a load

testing is done, why we need performance analysis techniques and how to compare

them.

3.1 Introduction

Many large-scale software systems (e.g., BlackBerry’s telecommunication systems [6]

and Microsoft’s web services [14]) are used by thousands and millions of users ev-

eryday. Study finds that most failures in the field are due to systems not able to

scale rather than feature bugs [43]. The failure to scale could result in catastrophic

consequences and unfavorable media coverage (e.g., the botched launch of Apple’s

MobileMe [44] and US Government’s Health Care Website [2]). Hence, to ensure

the quality of the system in the field, load testing is a required testing procedure
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in addition to the conventional functional testing (e.g., unit and system integration

testing).

Load testing is usually conducted after all the functional testing is completed [13].

It uses one or more load generators, which mimic hundreds or thousands of real

users accessing the system at the same time (called the load). During the course of

the load testing, there are two types of system behavior data generated: execution

logs and counters. Execution logs are generated by debug statements (e.g., printf

and System.out.println) that developers insert into the code. Counters record the

workload and the resource usage (e.g., CPU, memory and disk utilization) of system

during runtime. Since the goal of a load test is to assess the system behavior under

load, the duration of a load test can be a few hours (e.g., 8 hours for a working

day) or even weeks. Hence, the volume of the generated system behavior data can

be huge. Unfortunately, analyzing the results of a load test is challenging due to

the following three reasons:

1. Lack of Test Oracle: Unlike functional testing, which has clear pass and

fail criteria, the objectives of a load test are not clear [4] and are often defined

later on a case-by-case basis [5].

2. Large Volume of Data: A load test can generate hundred megabytes or

even terabytes of system behavior data. It would be impossible for load

testing practitioners to analyze them manually.
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3. Limited Time: Load testing is usually the last step in the already delayed

software development cycle. The time allocated for test analysis can be very

limited.

To cope with the above challenges, there have been a few techniques proposed

to automatically analyze the results of a load test (e.g., [6, 7, 8, 9]). These tech-

niques automatically derive the performance models from the previous test(s) using

various approaches (e.g., queuing theory or data mining) and check whether the be-

havior of the current test matches with the previous test(s). However, none of the

aforementioned works compared the effectiveness of their techniques against others

nor provided replication packages. We suspect this is mainly due to two reasons:

(1) most of the studies are conducted on commercial systems, whose test results

cannot be made available to the public due to confidentiality concerns; and (2)

certain details are missing. For example, many tools described in these works are

not publicity available to download. In addition, many techniques impose threshold

values. For example, the CPU utilizations in the current test maybe anomalous,

as they are 30% above the predicted values. However, the exact threshold values

are either not disclosed or should be tunable based on different systems. In this

chapter, we have re-implemented and systematically evaluated the effectiveness of

23 different test analysis techniques. The contributions of this chapter are:

1. This is the first study, which systematically evaluates the effectiveness of
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different test analysis techniques used in a load test.

2. Our evaluation framework is very flexible. It evaluates different test analysis

techniques on a range of threshold values. In addition, it can easily integrate

new test analysis techniques or new test data.

3. The test data used in this chapter is made available online [12] to encourage

further research on this topic. Our data is a collection of system behavior

data generated by load tests executed on three open source systems. For each

system, load testing is conducted both on “buggy” versions, which contain

manually injected or real-world performance bugs, and on “healthy” versions.

Such data takes a long time to prepare and is rarely available.

Chapter Organization

The rest of the chapter is organized as follows: section 3.2 provides some background

knowledge about different performance modeling and anomaly detection techniques.

Section 3.3 describes our evaluation framework. Section 3.4 explains the case study

setup and proposes three research questions. Sections 3.5, 3.6, 3.7 investigate the

three research questions and present the results. Section 3.8 discusses the threats

to validity. Section 3.9 concludes the chapter and discusses some future work.
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3.2 Background

Different from functional testing, which has clear pass and fail criteria, there is usu-

ally no test oracle available for a load test [5]. The pass/fail criteria of a load test

are usually derived based on the “no-worse-than-before” principle. This principle

states that the performance of the current version should be at least as good as

the previous version(s). In this section, we will briefly explain various test analysis

techniques used in a load test. This chapter focuses on the automated test anal-

ysis techniques using counters. For a survey on automated test techniques using

execution logs, please refer to [3].

Each test analysis technique can be further broken down in two parts: (1)

the performance modeling part (section 3.2.1, in which the system behavior from

the past test(s) is summarized into models; and (2) the anomaly detection part

(section 3.2.2), in which the anomalous behavior in the current test is flagged.

3.2.1 Performance Modeling

Table 3.1 provides an overview of eight different performance modeling methods.

We have divided them into three categories: queuing theory-based methods, data

mining-based methods and rule-based methods. For each modeling method, we

also list their assumptions and limitations, as well as the data used in the input
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Table 3.1: Performance Modeling Techniques

Category Techniques Assumptions Input Output Limitations

Queuing models LQN Model [7] System is stable

Workload mix,

topology

information

Utilization for

hardware and

software,

response time and

throughput

Needs topology

information

Data mining models

Multiple Linear

Regression [8]

Normality,

Independence,

Linearity,

Homoscedasticity

Any counters Any counters Assumptions

MARS [40] N/A Any counters Any counters N/A

Quantile Regres-

sion [45]

N/A Any counters Any counters
Needs to specify

quantile

Regression

Tree [41]

N/A Any counters Any counters N/A

Rule-based models

Control Chart [6]
Normality, Linearity,

Independence
Any counters Any counters N/A

Descriptive

Statistics [9]

N/A Any counters Any counters N/A

Load Profile [46] System is stable

Workload mix,

topology

information

Service demand for

each scenario

Needs topology

information

and output.

Queuing Theory-based Methods

Queuing models apply queuing theory [47] to model the performance behavior of

a system. Queuing models mimic system resources (e.g., CPU and memory) as

queues, predict the time that different scenarios spend on different queues and

estimates the resource utilizations and throughput information. Each scenario cor-

responds to one type of workload request (e.g., browsing a page or purchasing an

item). For each request on each resource, there are two types of timing information

that queuing theory tracks and predicts: waiting time and processing time. The

waiting time, also called the queuing time, is the time that each request waits in
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this resource queue to be serviced. The service time, also called the service demand

(SD), is the processing time that each request spends on this resource. The overall

response time for one request is the combination of the service time and queuing

time from all the resources. The resource utilizations and throughput can also be

estimated based on the SDs. Since queuing models require the knowledge of the

system internals (e.g., the deployment topology, the queues and locks involved in a

scenario, and whether the call is synchronous or asynchronous) to properly model

the performance behavior, they are also called white-box models [48].

In addition to hardware resources, there are also various software resources (e.g.,

database or middleware) in a system. The single layer queuing models can only

be used to model the performance of hardware resources. To model the perfor-

mance of both hardware and software resources, Layered Queuing Models (LQN)

are required [7].

Data Mining-based Methods

Compared to LQN, data mining models treat the system under test as a black box

and do not require the knowledge of the system internals. Hence, they are also

called black-box models [48]. Data mining models rely on various statistical-based

and AI-based techniques to model the system’s performance behavior. Most of the

data mining models used in a load test are regression-based models:
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� Multiple Linear Regression (MLR): Linear regression models the system

behavior as a linear function of workload mixes and resource usage utiliza-

tion [8]. As there are certain assumptions associated with linear regression

models, extra care is needed to verify these assumptions are met before ap-

plying the model. For example, linear regression assumes the input data is

normally distributed. If the normality assumption is not met, the input data

needs to be transformed (e.g., log transformation) before building the model.

In addition, MLR also suffers from confounding problem, which may impact

the accuracy of the model. Hence, a set of input variables, which are highly

correlated with each other, are removed. This process is called attribute se-

lection. In this chapter, we evaluate the following two attribute selection

approaches: (1) removing the independent variables which are highly corre-

lated with each other [8]; and (2) removing the independent variables which

have low correlations with dependent variables [41]. For MLR applied with

the first approach, we abbreviate this method as MLR D; and MLR V for

MLR applied with the second approach.

� Regression Tree (RegTree): Compared to MLR, in which extra care is

required to ensure the input data satisfies the assumptions of the model,

RegTree does not have such restrictions [41]. RegTree predicts the system’s

performance behavior using a tree-liked structure.
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� Multivariate Adaptive Regression Splines (MARS): In some cases, a

system can undergo different phases during a load test. For example, the

performance behavior of a system can be different when the cache is filled up.

MARS [40] is proposed to model such behavior (a.k.a., multiple phases), as

the simple MLR model cannot perform well in this case. MARS automatically

splits the data (a.k.a., phases) and builds different sub-models.

� Quantile Regression (QUANT): Similar to MARS, QUANT [45] can be

used to model different phases. Compared to MLR, which imposes equal

penalty on overestimation and underestimation, QUANT sets different penalty

on overestimation and underestimation based on the given quantiles. These

quantiles need to be specified manually in the model. For example, quantile

regression built on 25% quantile, denoted as QUANT.25, estimates the rela-

tion between input variables and an output variable, on 25% quantile of the

output data. In this chapter, we have studied the following QUANT models:

QUANT.25, QUANT.50, QUANT.75, QUANT.90, QUANT.100. The reason

for studying a range of QUANT models is to assess whether different quantiles

would impact the effectiveness of detecting performance problems.
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Rule-based Methods

Compared to the queuing theory and data mining-based methods, which predict

the performance behavior of the current test using the derived models, there are

no predictions involved in rule-based methods. Rather they analyze the system

behavior using a set of rules.

� Descriptive Statistics (DescStats): Descriptive statistics like median and

mean [9] provide a high level summary of the system performance data. They

are the easiest to implement and used widely in practice. In this chapter, we

compare the absolute relative difference between the mean of the current and

the previous test(s).

� Control Chart (CtrlChart): A control chart has three components: a con-

trol line (CL), a lower control limit (LCL) and an upper control limit (UCL).

If a point lies outside the controlled regions (above the UCL or below the

LCL), the point is counted as a violation [6]. The three components can be

defined in various ways. In this chapter, we use the median of the previ-

ous test(s) as our CL, the median ± one standard deviation of the previous

test(s) as our UCL and LCL. Similar to MLR, certain assumptions need to

be satisfied before applying the CtrlChart.

� Load Profile (LP): The main idea behind LP is that among different ver-
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sions of the system, the SDs of different requests should be the same. Oth-

erwise, there could be performance problems [46]. There are different ap-

proaches to estimate the SDs. In this chapter, we use the Kalman filter to

estimate the SDs, as it is very flexible (i.e., can work with data from any

distributions) and produces high accurate results [49].

3.2.2 Anomaly Detection

In general, the data from the current test is considered anomalous, if it “signifi-

cantly” deviates from the past test(s). The anomaly detection methods are different

based on the three categories of performance modeling methods. The anomaly de-

tection methods for the queuing and data mining-based methods are the same, as

these methods predict the outcomes based on the input values from the current

test. The predicted outcomes are compared against the actual measured values

in the current test. The anomaly detection methods for the rule-based methods

are different, as the actual values from the current test are evaluated against some

rules.

55



Anomaly Detection Methods for Queuing and Data Mining-based Meth-

ods

In this chapter, the following two statistical methods are studied. Both methods

aim to quantify the differences between the predicted and the measured values:

� Mean Percentage Absolute Error (MAPE): MAPE is one of the eval-

uation methods of model prediction [42]. The formula to calculate MAPE is

shown in Formula 3.1 below. For each predicted outcome, the absolute rela-

tive errors between each predicted and measured values are calculated. Then

all these absolute relative errors are combined to provide an average value.

MAPE =
1

n

∑n

i=1

∣∣∣∣measuredi − actuali
actuali

∣∣∣∣ (3.1)

� Wilcoxon Rank Sum test and Cliff’s Delta (WC): Wilcoxon Rank Sum

(WRS) test is a non-parametric test which compares two distributions. How-

ever, in some cases, even if the two distributions are different, the differences

between them are small. Hence, we also need to quantify the strength of

the differences between the two distributions, called the effect size. For ex-

ample, if the response time is more than 5 minutes and the differences of

response time between the two tests are very small (e.g., 1 millisecond), the

performance deviation from the new test should not be a big concern. Cliff’s
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Delta (CD) is a non-parametric technique to calculate the effect size between

two distributions [37]. The strength of the differences and the corresponding

range of CD values are shown below:

effect size =



trivial if CD < 0.147

small if 0.147 ≤ CD < 0.33

medium if 0.33 ≤ CD < 0.474

large if 0.474 ≤ CD

Anomaly Detection Methods for Rule-based Methods

The anomaly detection methods for rule-based methods are mainly based on thresh-

old values. For example, if more than 30% of the CPU utilizations data from the

current test are violations (above UCL or below LCL), the CPU metric in the

current test is considered anomalous [6].

3.3 An Overview of Our Framework

In this section, we will introduce our framework to evaluate the effectiveness of

different test analysis techniques as illustrated in Figure 3.1. Our framework con-

sists of the following five steps: (1) load testing; (2) model building; (3) test oracle

derivation; (4) anomaly detection & result evaluation, and (5) ranking. Our frame-
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Figure 3.1: An Overview of Our Framework

work is very flexible, as it can easily accommodate new test analysis techniques,

new load testing data, and new evaluation systems.

Step 1 - Load Testing

Multiple versions of the same system are load tested. The selected versions to be

tested should be a mixture of “good” and “bad” versions. Bad versions contain

known performance problems. Good versions refer to the versions of the system

whose performance is satisfactory under load. All the selected versions of the same

system are load tested using the same load profile. A load profile is characterized

along two dimensions: workload mixes and workload intensities. The workload mix

refers to the ratios among different types of requests (e.g., 30 percent browsing,
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10 percent purchasing and 60 percent searching). The workload intensity refers

to the rate of the incoming requests (e.g., browsing, purchasing and searching), or

the number of concurrent users. During the course of each load test, while the

system is processing requests generated by the load profile, the system behavior

data (a.k.a., logs and counters) is collected. In this chapter, we use the load profile,

which generates stable request rate, to test the target systems.

This same load profile is applied on multiple versions of the system to counter

potential bias. The test plan will be updated if the system evolves. For example,

if the URL of the browsing scenario changed from “brs.jsp” to “browse.jsp” in the

next version, the test plan will be updated accordingly.

Step 2 - Model Building

Using the generated system behavior data from the previous step, different perfor-

mance modeling methods are applied to summarize the performance behavior of

the previous test(s). For descriptions of different performance modeling methods,

please refer to Section 3.2.1. Additional data processing is carried out to ensure

the data is cleaned up (e.g., removing the warm-up and cool-down period) and

transformed into the corresponding input file formats (e.g., csv or xml) required by

different modeling techniques.

In addition, extra care is taken to ensure the assumptions are met for each
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model. For example, MLR and CtrlChart require input data to be normally dis-

tributed. Hence, we first use Shapiro-Wilk test to verify the normality assumption.

If the normality assumption is not met, log transformation is performed on the

input data. For QUANT, we choose a range of different quantizes: 25%, 50%,

75%, 90% and 100%, to investigate if models built on different quantiles performed

the same . In this chapter, we use the readily available OPERA tool [50] as our

model implementation for LQN and LP methods. OPERA automatically estimates

the SD using Kalman filter based on the workload mixes, hardware resource uti-

lizations and response time for different scenarios. OPERA models and predicts

the system performance using the Mean-Value-Analysis (MVA) algorithm. All the

other methods are re-implemented using R.

Step 3 - Test Oracle Derivation

In order to evaluate the effectiveness of different test analysis techniques, a “test

oracle”, which flags the problematic counters in each run, is needed. We manually

derive the test oracle for each run based on bug reports, release notes and close

examinations on the counters. For example, if a version of a system injected with a

CPU intensive bug, the CPU utilization of this version should be flagged as “buggy”.

As another example, if the response time for the browsing scenario is much longer

in the current version than the previous version(s) and there is a response time
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issue reported in the bug report for this version, the response time for the browsing

scenario is also flagged as “buggy”. Our test oracle has been derived and verified

by the first two authors of this chapter.

Step 4 - Anomaly Detection & Model Evaluation

Using the derived performance models in the previous step, different anomaly detec-

tion techniques are applied to flag suspicious behavior from the current test. Please

refer to Section 3.2.2 for descriptions on different anomaly detection methods. All

the anomaly detection methods are re-implemented in R. Different test analysis

techniques may use different threshold values to detect anomalous counters:

� MAPE: The higher the MAPE values are, the bigger the deviations between

the predicted and the measured values in the current test. Ideally, higher

MAPE values for one counter indicate higher probability that this counter

is anomalous. However, if the MAPE cut-off value is set to be too high, we

might miss some problematic counters.

� WC: For the WC method, the threshold values are only used when there is a

statistical difference between the current and the past test(s). The strength of

the differences are quantified by the CD values. The counters with higher CD

values, indicating bigger differences, and are more likely to be problematic.
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� CtrlChart: For CtrlChart, the threshold value corresponds to the violation

ratio, which is the percentage of data points in the current test lying outside

the control limit (a.k.a., above the UCL or below the LCL). Higher violation

ratios indicate bigger differences between the current and past test(s).

� DescStats: For DescStats, the threshold value corresponds to the absolute

percentage errors between the current test and the previous test(s).

A test analysis technique corresponds to one combination of a modeling tech-

nique and an anomaly detection techniques. The predicted values from each perfor-

mance modeling method are evaluated using all the applicable anomaly detection

methods to ensure all valid test analysis techniques are studied. For example,

the predicted values from the RegTree are applied using both MAPE and WC.

There are ten different data mining and queuing methods (LQN, MLR D, MLR R,

MARS, RegTree, and 5 different QUANT methods), each of which has two different

anomaly detection methods (WC and MAPE). In addition, we have three different

rule-based performance modeling methods, each of which has one anomaly detec-

tion method. Hence, we have evaluated 23 different testing analysis techniques in

total.

We use the Receiver Operating Characteristic (ROC) curve [51] to assess the

effectiveness of different test analysis techniques under a range of threshold values.
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Once the ROC curve for each test analysis technique is built, the AUC (Area Under

the Curve) values are calculated. The AUC values are used in the ranking process

below.

Step 5 - Ranking

In this chapter, we use the Scott-Knot test [52] to rank the effectiveness of different

test analysis techniques. Scott-Knott test uses hierarchical clustering to group the

test analysis techniques. Each group contains techniques with similar performance.

The smaller the group number that one technique is assigned to, the more effective

this test analysis technique is. For example, if CtrlChart is assigned to Group 1, it

means that CtrlChart is more effective than techniques assigned in Groups 2 and 3.

Scott-Knot test has been used successfully in other software engineering tasks (e.g.,

comparing the performance of different bug prediction techniques [53]). The input

for the Scott-Knott test is the AUC values from different test analysis techniques

exercised on different tests.

There are two reasons for using Scott-Knot test and the AUC values to rank the

test analysis techniques. First of all, compared to other techniques (e.g., Nemenyi’s

test or hierarchical clustering), Scott-Knot test automatically clusters different test

analysis techniques into distinctive groups, which are non-overlapping. Second,

most test analysis techniques require threshold values, which are either not specified
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Table 3.2: Case Study Systems

System Domain Category SLOC

DS2 Benchmark application JSP 100

Petclinic E-commerce Hibernate > 2000

JMS Mail Server Mailet Container > 4,000

in the chapter, or are tunable based on different projects. AUC values enable us to

evaluate the effectiveness of different techniques under a range of threshold values.

3.4 Case Study Setup

We intentionally picked three different open source systems with different deploy-

ment setup and application domains: Dell DVD Store (DS2) [27], Petclinic [28]

and James Mail Server (JMS) [29] to demonstrate the usefulness of our framework.

Each system is developed under different technologies and has different deployment

configurations. Table 3.2 shows the details.

In total, about 60 hours of load testing were run on various versions of the three

systems. We collected over 150 counters from three target systems, containing

resource utilizations (e.g., CPU, memory and disk I/O) for various components of

the systems, request rates, throughput and response time for each scenario.
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The rest of this section is organized as follows: section 3.4.1 explains the test

scenarios as well as the rationales for selecting different versions. Section 3.4.2

describes our test execution and test monitoring process. Section 3.4.3 introduces

a few research questions that we want to answer using our framework.

3.4.1 Test Design

DS2

DS2 is an open source e-commerce website, which Dell uses to benchmark the

performance of their hardware. The system contains four different JSP pages:

login, browsing catalogs, purchasing items and registrations for new customers.

It is deployed on the top of a Tomcat web server and is connected to a MySQL

database.

The test details are shown in Table 3.3. The original version (v0) does not have

any injected or known performance bugs, so we call it “good version”. V0 was load

tested six times. We injected three performance bugs (a busy CPU bug, a database

performance bug, and a constant delay bug) into three versions of DS2 (v1, v2, and

v3), respectively. The CPU and the database bugs are from [6]. We have added the

delay bug in this study, as it represents another performance issue (a.k.a., blocking

v.s. busy waiting). These three versions are called “bad versions”. Following the
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Table 3.3: Load Testing Details for Three Systems

System # of Test Versions # of Injected/Known

Bugs

Scenarios Test Runs or Improvements

DS2 4

v0 6 Original version

v1 1 Injected a CPU inten-

sive bug in purchasing

v2 1 Removed indices in

two database tables

v3 1 Created a constant de-

lay in purchasing

PetClinic 15

v0 1 Original version

v1 1 Changed to stateless

and non-blocking I/O

to improve request

throughput

v2 6 Removed JVM locks

to further improve re-

quest throughput

JMS 6

2.3.2 1 Stable release version

3.0M1 1 Improved the efficiency

of queueing emails

3.0M4 6 Improved the effi-

ciency of handling

MIME messages
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practice of [8], in which a good version is load tested multiple times and each bad

version is tested once. If a load test is executed on a good version, we call it a

“good run”, and a “bad run” means a load test is executed on a bad version.

PetClinic

Petclinic is a web application written in Java Spring and Hibernate. There are

15 different test scenarios related to pets, pet owners, and veterinarians. Example

scenarios include scheduling visits to veterinarians and locating pet owners. Same

as DS2, Petclinic deploys on top of a Tomcat web server and connects to a MySQL

database.

Different from DS2, in which performance bugs are manually injected, we load

tested on versions of systems with known real-world performance issues for Pet-

Clinic. In the blog post by Dubois [54], he detailed a series of changes that he

has made in order to improve the performance and scalability of PetClinic. All

his changes are archived in the GitHub repository [55]. In this chapter, we picked

three versions from that GitHub repository. We called the last version as the “good

version”, as it contains all the fixes that he has performed. The other two older

versions as “bad versions”, as they contain various performance issues. The de-

scriptions for the performance issues associated with the bad versions are shown in

Table 3.3. We executed the load testing on good version 6 times and on each bad
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version once.

JMS

The Apache James Mail Server (JMS) is an open source, mail server written in Java.

It contains two generic scenarios: sending emails and receiving emails. The two

generic scenarios can be further divided into many smaller scenarios, like sending

and receiving emails with or without attachments, reading only the mail header

or loading the whole mail, etc. In total, 6 scenarios are tested for JMS. Different

from DS2 and PetClinic, JMS is a stand-alone system, which does not have any

additional supporting components.

Unlike Petclinic, we could not find two or more continuous revisions, which

contain performance fixes. Hence, we picked three different release versions in our

study. Apart from the latest stable version 2.3.2, there were three MR releases

for version 3.0. Since 3.0M3 was not available to download in the official web-

site, the other two MRs, 3.0M1 and 3.0M4, are used in this study. The selected

three versions have many bug fixes and performance improvements. Between these

versions, numerous modules have been upgraded, such as updating to more effi-

cient JavaMail [56] and ActiveMQ versions [57]. Table 3.3 summarizes the various

performance bug fixes and improvements from the two released versions. This in-

formation is extracted from JMS’s bug reports and release notes. Similar to DS2
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and PetClinic, since 3.0M4 (the “good version”) is the last version containing most

performance fixes, it was load tested 6 times. The other two versions (the “bad

versions”) were tested once.

3.4.2 Test Execution and Monitoring

All three systems are deployed on the same machine, which has the following hard-

ware configurations: Intel® CoreTM 2 CPU 2.40 GHz, 2 GB memory and a 160

GB 7200 RPM hard drive. We use JMeter [32] as our load generator. JMeter is

deployed on a separate machine with the following hardware specifications: Intel®

CoreTM i7-4790 CPU 3.60 GHz, 16 GB memory and a 2TB 7200 RPM hard drive.

The reason for the separate deployment of JMeter and the case study systems is

to ensure no overhead caused by the load generator to the case study systems. We

executed the load for each system and collected the data. For DS2, the overall

request rate is around 35 request per second; for PET, it’s around 230 requests per

second; for JMS, it’s around 10 requests per second. Notice that the request rate

may vary among good versions and bad versions, as the performance is impacted

in bad versions.

The resource utilizations for the systems during load testing are monitored and

recorded using pidstat [33]. In addition, we also archived the logs from JMeter,

MySQL and Tomcat at the end of each load test. These logs can be used to extract
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the workload and response time information.

3.4.3 Research Questions

We propose the following three research questions to evaluate the effectiveness of

different test analysis techniques:

� RQ1 (Build Dependency): Can we use data from a bad run to analyze the

results of other tests?

In some cases, there could be no “good versions” available for a system, as

the system is constantly being fixed and improved until release. Hence, most

of the load testing runs could be “bad runs”. In this research question, we

seek to answer whether we can still leverage the data from the bad runs to

effectively analyze the results of a load test. RQ1 is discussed in Section 3.5.

� RQ2 (History Dependency): Would more historical data help improve the

performance of different test analysis techniques?

Since all the test analysis techniques compare the current test data against

the historical data (a.k.a., past runs). This research question aims to answer

whether more historical data would help improve the effectiveness of different

test analysis techniques. RQ2 is discussed in Section 3.6.
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� RQ3 (Sampling Interval Dependency): What’s the impact of different

sampling intervals on detecting performance problems?

During the course of a load test, the behavior of the system is monitored.

There can be different monitoring granularities. For example, the average

CPU utilizations can be sampled at every 5 seconds interval or every 60

seconds interval. Different sampling intervals generate different levels of de-

tails and different sizes of data to be analyzed. This research question aims to

answer whether more fine-grained sampling intervals would improve the effec-

tiveness of different test analysis techniques. RQ3 is discussed in Section 3.7.

3.5 RQ1 - Build Dependency

In practice, it can be hard to obtain one version of a system which is “bug free”

due to the following two main reasons: (1) constant evolution of the system due

to bug fixes and feature improvements; and (2) undetected performance bugs due

to the challenging nature of analyzing the results of a load test [3]. Hence, in this

RQ, we want to investigate whether we can still leverage the data from “bad runs”

to effectively analyze the results of current load test.
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Approach

We built a set of performance models, which use the data from one good run or one

bad run. These performance models are used to evaluate the test results from other

test runs. For example, eight LQN techniques are built using the test runs from

PetClinic. Among them, four techniques are built using the data from bad versions

(v0 and v1 of PetClinic) and the rest four techniques are built using the data from

good versions (v2 of PetClinic). Each model is used to predict the results of all the

other test runs from PetClinic. Similar process is applied on other techniques and

on other systems. The prediction results from different test runs of the same test

analysis techniques are grouped. The overall results across all systems are ranked

using the Scott-Knot test.

Analysis

Table 3.4 shows the ranking results for different test analysis techniques. The

second column shows the list of performance modeling methods. Each cell corre-

sponds to the ranking of one particular test analysis technique, as technique corre-

sponds to one unique combination of a modeling method and an anomaly detection

method. The columns marked with “B” and “G” correspond to the techniques

built with training data from the good and bad runs, respectively. All the queu-
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Table 3.4: Aggregated Scott-Knot Ranking for RQ1

Category Techniques Rankings

G B

Rule-based Models

CtlChart 1 1

DescStats 1 1

LP 2 2

M B M G W B W G

Data Mining Models

MLR D 2 2 2 2

MLR V 2 2 2 2

MARS 2 2 2 2

QUANT.25 2 2 2 2

QUANT.50 2 2 2 2

QUANT.75 2 2 2 2

QUANT.90 2 2 2 2

QUANT.100 2 2 2 2

RegTree 1 1 1 1

Queuing Models LQN 2 2 2 2
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ing and data mining methods are evaluated under two anomaly detection methods:

MAPE (marked as “M” in the table) and WC (marked as “W”). Hence, the column

“M B” refers to the modeling techniques trained with data from the bad run and

use MAPE as its anomaly detection method.

There are two groups generated by the Scott-Knott test. Among all the test

analysis techniques, DescStats, CtrlChart, both RegTree techniques perform better

than the other techniques. Among all the test analysis techniques, their rankings

are the same regardless of using data from the good or the bad runs. We want

to note that some performance models do not summarize the training well. For

example, when we apply the LQN model built from the bad runs (e.g., v3 from

DS2) to predict the values from the same run (v3), the accuracy is low. However,

when the LQN model built from the good runs (e.g., v0 from DS2) to predict the

values from the same run (v0), the accuracy is high. However, in general, the

accuracy of the modeling methods does not seem to impact the effectiveness of

different test analysis techniques. We believe this is because each technique can

effectively detect the performance deviations between the good and the bad runs.
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Findings: In general, the effectiveness of different test analysis techniques are not

impacted by its training data.

Implications: Load testing practitioners can use the test analysis techniques as

an effective “diffing” tool to check if there are any performance deviations between

the current and the past test(s).

3.6 RQ2 - History Dependency

All the studied load testing analysis techniques compare the data from the current

test against the historical data (a.k.a., past runs) to ensure the performance of the

current test is not worse-than the past test(s). As there can be many past test(s),

the time required for load testing analysis can be increased due to the number of

past test(s) that need to be compared. If adding more past tests could provide

a significant boost for the effectiveness of detecting performance bugs, we need to

know the number of past test(s) required. However, if we can achieve the same

effectiveness by analyzing fewer past test(s), we can save the limited test analysis

time. The goal of this RQ is to investigate whether more historical data could help

improve the effectiveness of different test analysis techniques.
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Approach

The previous RQ shows that all the test analysis techniques are effective regardless

of building performance models using good or bad runs. In this RQ, we built a set

of performance models with varying number of good runs as their training data for

each test analysis technique. For example, we combined two different good runs

as training data. This process was repeated six times to ensure each good run can

appear at least once in one of the six training datasets. The same approach is

repeated for combining 3–5 good runs. In the end, there are 30 different training

sets for each modeling technique. These models are used to detect performance

problems for the other test runs. For example, if the model is built using data from

three good runs in JMS, the anomaly detection methods would be applied on the

other 3 good runs and 2 bad runs. The same process is applied on all three systems.

Analysis

Table 3.5 shows the ranking results for different test analysis techniques based on

varying number of previous tests as their training data. Similar to the previous

RQ, we compared 23 different test analysis techniques based on their performance

modeling and anomaly detection techniques. The second column corresponds to

different performance modeling techniques. The capital letter “R” refers to the

76



number of good runs used in the training data. For example, “1R” means 1 good

run is used to build the model, and “2R” means 2 good runs are used to build the

model, and so on. Each cell stores the ranking for each test analysis technique. “M”

and “W” refer to the MAPE and WC anomaly techniques, respectively. “M 1R”

refers to using 1 good run as the training data and MAPE as its anomaly detection

method.

As we can see in Table 3.5, there are total five groups. Among all the test

analysis techniques, CtrlChart, DescStats and (RegTree + WC) are ranked the

top. All the test analysis techniques share similar trends based on the amount of

training data: (1) each technique performs at least the same or better giving more

previous test(s) as their training data; and (2) the effectiveness of the test analysis

techniques seems to be stabilizing after 2R.

Findings: The test analysis techniques perform better by providing more previous

tests as their training data. Based on our load testing data, the effectiveness of the

test analysis techniques seems to stabilize after using two previous test run(s) as

their training data.

Implications: Comparing the current test against multiple previous test runs is

time-consuming and might not improve the effectiveness of detecting performance

bugs. More research is required to investigate the optimal amount of data required

for training the performance models.
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Table 3.5: Aggregated Scott-Knot Ranking Results for RQ2

Category Techniques Rankings

1R 2R 3R 4R 5R

Rule-based Models

CtlChart 1 1 1 1 1

DescStats 1 1 1 1 1

LP 5 5 5 5 5

M 1R M 2R M 3R M 4R M 5R W 1R W 2R W 3R W 4R W 5R

Data Mining Models

MLR D 3 3 3 3 3 3 3 2 2 2

MLR V 3 3 3 3 3 3 3 3 3 3

MARS 3 3 3 3 3 3 3 2 2 2

QUANT.25 3 3 3 3 3 4 3 3 3 3

QUANT.50 4 3 3 3 3 4 3 3 3 3

QUANT.75 4 3 3 3 3 4 3 3 3 3

QUANT.90 4 3 3 3 3 4 3 3 3 3

QUANT.100 3 3 3 3 3 3 3 3 3 3

RegTree 2 2 2 2 2 1 1 1 1 1

Queuing Models LQN 3 3 3 3 3 3 3 3 3 3

3.7 RQ3 - Sampling Interval Dependency

During the course of the load test, the system behavior is monitored and recorded

periodically. For example, the average CPU and memory utilization can be sampled

at every 5 seconds, 30 seconds, 60 seconds or more. The sampling interval affects

the resulting test data in terms of size and granularity. As the test duration is fixed

for one load test, the amount of recorded data decreases when the sampling interval

is large. However, it might lose some details. For example, a sudden spike in the

CPU could be visible using the 5 seconds sampling interval but might not be visible

using the 180 seconds sampling interval. However, using a smaller sampling interval

generates larger volumes of data to be analyzed and could slow down the system
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execution. For example, it is usually not recommended to set the sampling interval

for pidstat to be less than 5 seconds [58], as the monitoring overhead is too high

and significantly slows down the test execution. Such slow-down could impact the

validity of the collected testing data, as the system’s performance no longer reflects

the actual behavior in the field. In this section, we want to examine the impact of

different sampling intervals on the effectiveness of test analysis techniques.

Approach

The load tests conducted for the three systems were monitored using 5 seconds

as its sampling interval. For all the systems, we aggregate the testing data into

four additional granularities: 30, 60, 180 and 300 seconds to represent the data

collected at 30, 60, 180 and 300 seconds sampling intervals. For each sampling

interval, multiple performance models, which use the data from one good run, are

built. The resulting models are used to analyze the rest of test runs.

Analysis

Table 3.6 shows the ranking results for different test analysis techniques based on

the test runs monitored under different sampling intervals. Similar to the previous

two RQs, the second column shows different performance modeling techniques.

The numbers after the letter “i” indicate the sampling intervals. For example, “i5”
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Table 3.6: Aggregated Scott-Knot Ranking Results for RQ3

Category Technique Rankings

i5 i30 i60 i180 i300

Rule-based Models

CtlChart 2 1 1 1 1

DescStats 1 1 1 1 1

LP 4 4 4 4 4

M i5 M i30 M i60 M i180 M i300 W i5 W i30 W i60 W i180 W i300

Data Mining Models

MLR D 3 2 2 2 2 2 2 2 2 2

MLR V 3 2 2 2 2 2 2 2 2 2

MARS 3 2 2 2 2 2 2 2 2 2

QUANT.25 3 2 3 2 2 3 3 3 2 2

QUANT.50 3 2 3 2 2 2 3 3 2 2

QUANT.75 3 3 3 2 2 3 3 3 2 2

QUANT.90 3 3 3 2 2 3 3 3 2 2

QUANT.100 3 3 2 2 2 3 3 2 2 2

RegTree 2 2 1 1 1 3 1 1 1 1

Queuing Model LQN 3 2 2 2 2 3 2 2 2 2

means data collected using 5 seconds as its sampling interval, “i30” means data

collected using 30 seconds as its sampling interval, and so on. “M i5” refers to

using the data collected at 5 seconds sampling interval as the training data and

MAPE as its anomaly detection method.

As we can see in Table 3.6, there are four groups outputted by the Scott-Knott

tests. Similar to the previous two RQs, CtrlChart, DescStat and two RegTree

techniques rank the best. For each technique, surprisingly, using data from smaller

sampling intervals usually performs the same or worse than using data from larger

sampling intervals. In general, the test analysis techniques perform the best when

using data sampled at every 180 seconds or more. We suspect this is because the

data trend is smoother under larger sampling intervals.
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Findings: For most of the analysis techniques, using the data collected at smaller

sampling intervals yields worse performance than larger sampling intervals. The

techniques perform the best when using data sampled at ≥ 180 seconds.

Implications: Fine-grained monitoring could bring overhead to the system exe-

cution and does not necessarily improve the effectiveness of different test analysis

techniques. Larger sampling interval may miss some of the runtime behavior. More

research is required to investigate the optimal sampling interval for load testing

analysis.

3.8 Threats To Validity

In this section, we will discuss the threats to validity.

3.8.1 Construct Validity

Sampling interval

In this chapter, we evaluated different test analysis techniques under different sam-

pling intervals. All the test runs are monitored using pidstat under the 5 seconds

sampling interval. We aggregated the pidstat values in RQ3 to simulate the pidstat

data generated under the 30, 60, 180, and 300 seconds interval. We also ran one

load test using the 30 seconds sampling interval and compared the resulting data

against our aggregated data. The differences are negligible.
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The accuracy of the performance data

Each load test was run for a few hours to avoid measurement bias and errors [59].

The resource utilizations are collected using pidstat. The throughput and the

response time data from each scenario are extracted either from the JMeter or

Tomcat access logs. We cross-checked the data extracted from JMeter and Tomcat

and found they would agree most of the time. Hence, we used the data extracted

from access logs for DS2 and PetClinic, and used JMeter logs for JMS as JMS

doesn’t use Tomcat.

3.8.2 Internal Validity

In order to avoid interfere among different load tests, we cleaned up the system

environment every time. For MLR and CtrlChart, we performed log transformation

to ensure the model assumptions are met before building the model. In addition, to

avoid the confounding problem, we also applied two variable section techniques [8,

41] for MLR to reduce the number of input variables. We used the Kalman filter

to estimate the SD for different scenarios. The values of SD are used in the LQN

and LP models. Compared to other SD estimation techniques, studies show that

Kalman filter is the least restrictive (a.k.a., works on data from any distributions)

and produces high accurate results [49].

For each RQ, we keep all two of the three factors (good or bad runs, number
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of past tests, sampling intervals) the same while investigating the impact of one

factor in order to avoid the risk of confounding. For example, in RQ1, we keep the

number of past tests and the sampling intervals the same, while varying the types

of training data (good run or bad run).

3.8.3 External Validity

Most of the previous load testing research is usually conducted on industry systems.

Hence, the testing data from such systems are rarely available to download due to

confidentiality concerns. In this chapter, we have evaluated different test analysis

techniques on multiple versions of three open source systems. These three systems

are from different domains (e.g., benchmarking, e-commerce and mail servers) and

are implemented using different technologies. In addition, when selecting the ver-

sions of the systems to be load tested on, we have used two approaches: (1) for

DS2, we manually injected a few performance bugs, which are also used in previ-

ous studies (e.g., [6, 8]); (2) for PetClinic and JMS, we have selected the versions

which contain real-world performance bugs. Our findings are basically focused on

the e-commerce systems and mailing systems under stable load, but we still need

to verify if it also applied on the other types of system or other load types. For

example, we have applied the stable load profiles for one system. Other systems

may be load tested using bursty load profiles. In this case, some test analysis tech-
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niques may not perform well. However, our proposed evaluation framework is very

flexible, new test data (from the same or different load profiles or systems) can be

easily incorporated and compared in the framework.

3.9 Conclusion and Future Work

In this chapter, we have proposed an evaluation framework which systematically

compares the effectiveness of different load testing analysis techniques. To demon-

strate the usefulness of our framework, we have applied it on the load testing data

exercised on 25 runs of three open source systems (DS2, PetClinic and JMS). We

have found that all the techniques perform well regardless of training on good or

bad test runs. Using more than two runs of previous tests as the training data

takes longer time to analyze and may or may not yield better performance. The

test analysis techniques are more accurate in terms of detecting performance de-

viations when building and analyzing data from higher sampling intervals (≥ 180

seconds). Among all the techniques, CtrlChart, DescStats, and RegTree are the

most effective ones.

In the future, we plan to extend our evaluation study using load testing data

from additional systems as well as incorporating new test analysis techniques. In

addition, we also plan to evaluate the test analysis techniques along other dimen-

sions (e.g., usefulness to practitioners).
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4 Related Work

Here we discuss the prior research related to the thesis.

4.1 Chaos Engineering

Recently, large companies like Amazon [60], Netflix [10] and Microsoft [61] adopt

a type of field testing technique called “Chaos Engineering”. In the actual testing,

there are system operators or programs (Chaos Monkeys) which randomly turns off

some processes or even machines in the production environment. The goal of Chaos

Engineering is to assess the system behavior under extreme conditions. As these

systems are used by millions of people worldwide, they have very high requirements

in terms of reliability and robustness. The system is expected to be still available

for service even when some of its processes got terminated or even some machines

are crashed.

Our environment-variation-based load testing is different from chaos engineering

as they have different goals. Our new load testing technique in chapter 2 tries to
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assess the system’s performance behavior under various realistic changes to the

SDE. The goal of chaos engineering is not performance assessment, but rather

assessing the reliability or robustness of the SUT.

4.2 Load Testing

In general, a load test can be broken down into three phases: test design, test

execution and test analysis. For a survey on various techniques used in a load test,

please refer to [3].

In general, there are two types of load profiles that can be used in a load test:

realistic testing loads and fault-inducing testing loads. Realistic testing loads aim

to generate load profiles which mimic the actual request rates in the field [9]. This

type of load profiles are usually derived from past usage data (e.g., Tomcat access

logs). Compared to realistic testing loads, which require repeatedly executing the

same scenarios for a long duration of time (hours or days), the fault-inducing load

profiles aim to generate load profiles, which likely lead to performance problems. For

example, Grechanik et al. [62] propose an iterative technique which automatically

learns the system behavior using randomly selected inputs. Then machine learning

techniques are applied to generate inputs which lead to performance problems.

Zhang et al. [63] use Java PathFinder to automatically generate load profiles, which

cause performance problems. They assign a time value for each step along the code
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path. By summing up the costs for each code path, they can identify the paths

that lead to the longest response time. The values that satisfy the path constraints

form the load profiles. In chapter 3, we focus on evaluating different test analysis

techniques, which analyze the data generated from realistic testing loads.

4.3 Evaluation

Although chapter 3 is the first work which systematically evaluates different load

testing analysis techniques, there have been a few prior works which compare the

techniques used to solve other software engineering problems. For example, Lutel-

lier et al. [64] compare the accuracy of different architecture recovery techniques.

Ghotra et al. [53, 65] compare the performance of different bug prediction tech-

niques. Bellon et al. [66, 67] compare the accuracy of different clone detection tech-

niques. Parnin and Orso [68] empirically evaluate different automated debugging

techniques. Lo et al. [69] compare the effectiveness of different fault-localization

techniques.
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5 Conclusion and Future Work

In this thesis, we have explore the following two areas associated with load testing

research: the impact of environment changes in the test environment; and the

effectiveness of different test analysis techniques.

In order to evaluate the impact of the SDE changes to the results of load tests,

we did over 80 hours tests on three SUT with different variations of SDE. Our

analysis shows the difference between SUT with SDE changes and SUT without

SDE changes are significant, but different scenarios react differently to the changes

of certain computing resources (e.g., CPU, disk and memory). In order to leverage

the previous tests to predict the SUT under new SDE changes, we have proposed

an ensemble-based modeling technique, and case studies shows that our technique

is better than the baseline models. In the future, we want to propose more types of

environment-variation-based load tests (e.g., more types of SDE changes). We also

want to look into techniques which can dynamically adjust the system environment

based on the runtime behavior of the SUT.
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To evaluate the effectiveness of different test analysis techniques, we have pro-

posed a framework to compare different load testing analysis techniques under

different circumstances. In order to evaluate our framework, we have run 25 load

testing runs on three open source systems (DS2, PET and JMS) with different

versions. We have found that there is no significant performance difference of tech-

niques built on good test runs and bad test runs. Using two runs data is the best

because the performance of the techniques are stable after adding more than two

runs of data, while using more data means more time to run tests as well as train-

ing the model. Using higher sampling intervals (≥ 180 seconds) to build models

yields better results. Generally, CtrlChart, DescStats, and RegTree perform best

among all the technique. In the future, we also plan to add additional dimensions

to evaluate different test analysis techniques (e.g., model solving time, usefulness

to practitioners, etc.). We also want to extend our case study systems in order to

verify the generalizability of our current conclusions.
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