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Abstract 

 Myogenic differentiation is a critical and highly regulated process that occurs during 

embryogenesis. Many studies have investigated the role of Muscle Regulatory Factor (MRF) and 

Myocyte Enhancer Factor 2 (MEF2) proteins in orchestrating myotube formation. More recently 

phosphorylation of these transcription factors has been shown to influence their ability to regulate 

muscle gene expression and hence control myogenic differentiation. One kinase that has been 

shown to prevent myogenic differentiation is GSK3β, although the precise mechanism by which 

this occurs is poorly understood. Alveolar rhabdomyosarcoma (ARMS) is a highly malignant 

mesenchymal tumor that originates from immature striated muscle tissue that does not properly 

differentiate despite the expression of MRF and MEF2 factors. The overall purpose of my 

research was to better understand how GSK3β regulates skeletal myogenesis and to explore the 

molecular basis for the lack of myogenic differentiation in ARMS. To achieve this objective, a 

variety of loss and gain of function studies were conducted in several tissue culture models, to 

assess the effect of GSK3β on MEF2 and MRF transcriptional activity as well as two MEF2 

target genes: KLF6 and Myogenin, which are involved in myoblast proliferation and cell fusion 

(and hence differentiation) respectively. 

 Although an in vitro kinase assay revealed that MEF2A was not a GSK3β substrate, 

inhibition of GSK3 resulted in enhanced MEF2 activity and that regulation of MEF2 by GSK3β 

was indirect, through p38 MAPK: a potent activator of MEF2. This first study documented that 

cross-talk between p38 MAPK and GSK3β signaling converges on MEF2 activity in skeletal and 

cardiac muscle both in vitro and in vivo. 

 A paradoxical feature of ARMS is the expression of Myogenin, a MRF that regulates cell 

fusion and hence terminal differentiation. Upon confirming that GSK3β was predominantly un-
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phosphorylated and hence de-repressed in PAX3-FOXO1 expressing ARMS cells, the second 

study revealed that Myogenin was also a GSK3β substrate in vitro. Mutation of the S160, S164 

GSK3 phosphoacceptor sites resulted in (i) a decrease in a phosphorylated form of Myogenin by 

western blot analysis, (ii) de-repression of Myogenin transcriptional activity, and (iii) reduced the 

ability of ARMS-derived Rh30 cells to proliferate and form colonies in a colony formation assay. 

 The final study identified a novel, proliferative role for MEF2D target gene and GSK3β 

substrate, KLF6 in skeletal muscle. Further analysis revealed that TGFβ signaling and not MEF2 

protein expression is required for KLF6 expression and induction of myoblast proliferation, in a 

Smad3-dependent manner. The data revealed that TGFβ signaling regulates myogenesis through 

two distinct pathways: (i) cell proliferation in a Smad3/KLF6 dependent manner and (ii) 

inhibition of myotube formation in an ERK1/2 MAPK dependent manner. 
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1.1 Overview 

 Myogenesis is the process of skeletal muscle formation during embryonic development 

and is essential to all metazoan life. This complex multi-stage process is regulated by various 

transcription factors which produce developmental, stage-specific effector products in response to 

time dependent signalling cascades. This all begins with the Pax3/7 and Myf5 induced 

commitment of embryonic precursor cells to the myogenic lineage (Tajbakhsh et al., 1997; 

Daubas and Buckingham, 2013) followed by somitic migration and proliferation. The myoblast 

determination protein, MyoD, regulates the differentiation potential of the committed muscle cells 

by interacting with myocyte enhancer factor 2 (MEF2) proteins to up-regulate Myogenin and 

drive the formation of multinucleated myotubes (Figure 1.1). As the myotube matures and 

specializes for its particular function, the cytoplasm becomes predominantly occupied by 

contractile apparatus which can further grow and hypertrophy in response to intracellular stimuli 

and muscle-specific regulatory factor 4 (MRF4). The aforementioned myogenic transcription 

factors and hence the process of skeletal myogenesis is controlled by cell signalling cascades, a 

major component of which, are protein kinases: enzymes that catalyze the reversible process of 

phosphorylation. This review will survey the involvement of key protein kinases (particularly, 

p38 and GSK3β) that participate in myogenesis as well as the consequences of their dysfunction 

during the development of alveolar rhabdomyosarcoma (ARMS). ARMS is a highly malignant 

mesenchymal tumor that originates from immature, striated muscle tissue, resulting in dense 

aggregates of poorly differentiated cells that are separated by fibrous membranes. ARMS is the 

most common pediatric, soft tissue sarcoma accounting for 50% of all cases with extremely poor 

prognosis (Barr, 1997; Paulino and Okcu, 2008) and, is most commonly associated with the 
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chromosomal translocation t(2;13)(q35;q14) which results in the expression of a potent 

transcription factor, Pax3-foxo1a fusion protein (Biegel et al., 1995; Davis et al., 1995). 

Pax3                                Pax7

MyoD                              Myf5

MEF2

Myogenin

MRF4

Uncommitted Mesodermal Cell

Muscle Progenitor Cell

Proliferating Myoblasts

Activated Myocytes

Multinucleated Myotube

Mature Muscle Fiber

 

Figure 1.1: The role of key transcription factors at various stages of myogenic 

differentiation. The expression of Pax3 and Pax7 coincides with the commitment of precursor 

mesodermal cells to the myogenic lineage and are involved with the migration of these cells to 

the dermomyotome region of the somite where they proliferate in response to growth factors. 

Pax3 and Pax7 also potentiate the myoblast determination protein MyoD, either directly or 

indirectly through Myf5. Upon cell contact, signaling cascades promote the interaction of MyoD 

and MEF2 and subsequent transcription of downstream target genes such as Myogenin. 

Myogenin regulates cell fusion, structural proteins such as Myosin heavy chain, and hence 

myotube formation. MRF4 is involved with maintaining muscle structure integrity and muscle 

fiber function. This figure has been adapted from Zammit et al., 2006. 
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1.2 Skeletal Muscle Formation During Embryogenesis 

 Once the primitive streak appears at the posterior end of the embryo to mark the beginning 

of gastrulation (E6.5 in mice; week 3 in humans), it eventually expands in an anterior direction to 

form three primary germ layers which give rise to different organs (Tam and Behringer, 1997; 

Beddington and Robertson, 1999). One of these, the mesoderm compartmentalizes into the 

intermediate mesoderm, chordamesoderm, paraxial mesoderm and lateral plate mesoderm which 

eventually form the kidney, gonads, notochord, head, somite, circulatory system and body cavity 

(Tam and Behringer, 1997). The myotome or skeletal muscle is derived from the somite which 

comes from the paraxial mesoderm. The formation of the mesodermal layer between the 

endoderm and ectoderm occurs synchronously with the neural tube formation. As the primitive 

streak regresses, the neural folds gather at the middle of the embryo causing the paraxial 

mesoderm to separate into blocks of cells called somites (Tonegawa and Takahashi, 1998). Once 

they mature, somites develop three major compartments: the sclerotome, myotome and 

dermatome. This stage is referred to as the epithelial to mesenchymal transition (EMT) and is 

characterized by increased cellular mobility (Lim and Thierry, 2012). The cells in the two lateral 

portions of the epithelium constitute the primary myotome, which form a muscle-forming region 

by producing a second, lower layer of muscle precursor cells called myoblasts. Myoblasts which 

form adjacent to the neural tube form the intercostal musculature between the ribs and also the 

deep muscle of the back whereas myoblasts that form away from the neural tube develop into the 

limbs, body wall and tongue. A third population of myoblasts delaminate from the 

dermamyotome and join the primary myotome cells to make a secondary myotome (simply 

referred to as the myotome) and proliferate to make up the majority of myoblasts cells (Gros et 

al., 2005, Relaiz et al., 2005). Whilst the vast majority of these cells eventually differentiate, 
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some undifferentiated cells become satellite cells which surround the mature muscle fibres and 

become responsible for postnatal muscle growth and repair (Biressi et al., 2013; Sirabella et al., 

2013). Signals and growth factors from the neural tube delay myoblast differentiation, hence 

allowing them to migrate away from the dorsal region to a more ventral position (Cossu et al., 

1996, Dietrich et al., 1998). Once these are properly positioned in the somite, paracrine factors 

induce the Pax transcription factors in the dermamyotome region which in turn transactivates the 

Myod gene (Relaix et al., 2013; Hu et al., 2008). In the medial region which forms epaxial 

muscles, MyoD is induced by Myf5 (Tajbakhsh et al., 1997; Borycki et al., 1999) both of which 

belong to a basic helix-loop-helix (bHLH) family of transcription factors referred to as the 

myogenic regulatory factors (MRFs) which also include MRF4 and Myogenin. The MRFs all 

form transcriptionally active heterodimers with E-proteins and bind to the CANNTG consensus 

DNA binding element, the E-box which is found in the regulatory region of most muscle specific 

genes (Olson, 1990; Olson, 1992). MyoD establishes a temporal cascade of gene activation 

during the formation of skeletal muscles by direct activation of gene expression including its own 

gene (Zingg et al., 1994) and its cofactors such as MEF2 (Penn et al.,2004). This facilitates the 

binding to a new set of enhancer regions, activating a second set of muscle specific genes (Penn 

et al., 2004). Any cell that makes MyoD or Myf5 is committed to becoming a myoblast. As long 

as growth factors are present, myoblasts will remain proliferative. Once these are depleted, 

myoblasts stop dividing and adhere to each other through extracellular matrix (ECM) proteins 

(Menko and Boetiger, 1987; Boettiger et al., 1995). The next step is cell recognition and 

subsequent alignment of the myoblasts, which is mediated by cell glycoproteins including 

cadherins (Knudsen et al., 1990). Multinucleated myotubes that are characteristic of muscle tissue 

are a result of the aligned cell’s cell membranes dissolving between them (Konigsberg 1963; 



5 
 

Mintz and Baker 1967). This cell fusion event is calcium ion dependent (Shainberg et al., 1969; 

David et al., 1981) and another bHLH protein, Myogenin, which is required to mediate 

differentiation by activating several muscle specific genes, becomes active (Bergstrom and 

Tapscott, 2001). Myogenin expression and activation is the first sign of myoblasts’ ability to fuse 

and terminally differentiate with the exception of RMS. The role of Myogenin and other key 

transcription factors that are involved in skeletal myogenesis will be discussed in more detail 

below, and the regulation of Myogenin in alveolar rhabdomyosarcoma will be the main focus of 

Chapter 4. 

1.3 Differential Gene Transcription 

 An intriguing feature in cellular biochemistry is the ability of different cell types to make 

different sets of proteins despite their genomes being identical, hence enabling for different tissue 

formation and function. There are multiple levels of regulation of gene expression such as 

selective nuclear RNA processing and translational control which are beyond the scope of this 

review, so the next few pages will focus on the role of transcription factors on differential gene 

regulation.  

 First it is important to understand that eukaryotic genes exist within a chromatin – DNA 

complex that is predominantly composed of histones. The basic unit of chromatin is the 

nucleosome which is made up of an octamer of histones that are wrapped with ~140bp DNA 

(Kornberg and Thomas, 1974). Because of this closed, compact conformation of chromatin, DNA 

is unexposed, and as a result tissue specific genes must become activated by disrupting this 

structure (Weintraub, 1985). Consequently, histone modification is a key component of regulation 

of gene expression. Histone acetyltransferases (HAT’s) are enzymes that can loosen and thus 

expose genes, hence activating transcription by adding acetyl groups to histones; a process that 
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disrupts the compactness of their structure (Sterner and Berger, 2000). Conversely, histone 

deacetylases (HDAC’s) stabilize nucleosomes by removing these acetyl groups, thus inhibiting 

transcription (Choudhary et al., 2009). Similarly, methyl transferases also enhance histone 

stability, further repressing transcription (Strahl and Allis, 2000; Cosgrove et al., 2004). These 

enzymes that affect the state of chromatin can be recruited by transcription factors to modify 

nucleosomes and affect gene expression (Zhu et al., 2011).      

 Adding to the complexity of eukaryotic gene expression, eukaryotic mRNA comes from 

noncontiguous regions on the chromosome, called exons which are separated by sequences called 

introns, which must be spliced out before translation and protein synthesis can occur. Before this 

can take place, RNA polymerases must bind to the promoter sequences on the DNA in order to 

initiate transcription of a particular gene, and synthesize mRNA. The promoter region is known 

as a TATA box which is typically flanked by GC rich regions, and is ~30bp upstream the 

transcription initiation site (Down and Hubbard, 2002). However, since RNA Polymerases cannot 

directly bind to DNA, this process is also regulated by a complex of transcription factors 

(Buratowski et al., 1989; Sopta et al., 1989). These include basal transcription factors which 

contain a TATA-binding protein (TBP), TBP-associated factors (TAF’s) as well as a mediator 

complex which modulates RNA Polymerase II activity (Myers and Kornberg, 2000; Baek et al., 

2002). Whilst most of these factors are ubiquitously expressed, cell specific transcription factors 

such as the Pax proteins activate genes by stabilizing this transcription initiation complex. In 

addition, enhancer regions on a gene regulate the rate and efficiency of transcription at a specific 

cis-linked promoter (Maniatis et al., 1987). Enhancer regions are necessary for temporal and 

tissue specific expression of genes and are bound by transcription factors (Maniatis et al., 1987). 

The ability of an enhancer to function at a distance from the promoter region ensures that multiple 
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signals determine whether a gene is transcribed or not. DNA – Protein interactions at these sites 

connect the enhancer and promoter regions resulting in direct regulation by either stabilizing the 

RNA Polymerase complex or through chromatin remodeling (Ogryzko et al., 1996). Conversely, 

transcription factors at silencer regions can inhibit transcription either by destabilizing the RNA 

Polymerase complex or by recruiting HDAC’s. 

 Transcription factors are proteins that are characterized by three major domains: (i) a 

DNA-binding domain (DBD), which recognizes a particular DNA sequence (enhancer or 

promoter regions discussed above), (ii) a trans-activating domain which regulates the 

transcription of the gene it is bound to, and (iii) a protein – protein interaction domain, which 

modulates the transcription factor’s ability to regulate the gene of interest. Protein – protein 

interactions allow for temporal and tissue specific effects of transcription factors. The same 

transcription factor might positively regulate a gene in one cell type but also inhibit this gene in 

another cell type according to its association with different co-factors in a context dependent 

manner.   

 With our current understanding of how transcription factors regulate promoter and 

enhancer regions, DNA sequences flanking a gene of interest can be cloned and fused to reporter 

genes whose products are easily identifiable and not usually made in the cells of interest. For 

instance, in the experiments described in the latter chapters of this thesis the E.coli gene for β-

galactosidase or the bioluminescence, Luciferase gene were used as reporter genes that were 

fused to a generic promoter that can be activated in any cell type and an enhancer region that 

requires muscle-specific gene activation. Similarly, known enhancer regions were fused to 

reporter genes for either green or red fluorescent proteins (GFP and dsRed2 respectively) and 

used to test activity of myogenic transcription factors by transiently transfecting these transgenes 
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into immortalized, C2C12 myoblasts. In cells that have been transfected with a MEF2 enhancer 

region that are fused to a GFP reporter gene, GFP will only be expressed when MEF2 is 

transcriptionally active. 

1.4 The Role of Key Transcription Factors in Skeletal Myogenesis 

 The myogenic differentiation program is controlled by muscle specific transcription 

factors which include members of the MRF and MEF2 protein families (Molkentin and Olson, 

1996, Olson et al., 1995). Members of the MRF, bHLH superfamily of transcription factors 

include MyoD, Myf5, MRF4 and Myogenin which are tissue specific. Early MRFs, MyoD and 

Myf5 are regulated by the Pax3 transcription factor and then in turn these can up-regulate MRF4 

and Myogenin. On the other hand the MEF2 transcription factors, MEF2A-D are also expressed 

in other cell types and are critical regulators of neurogenesis, cardiogenesis and vascular smooth 

muscle formation in addition to skeletal myogenesis. In myoblasts, MRF and MEF2 proteins 

synergize to regulate transcription of their downstream target genes (Molkentin and Olson, 1996) 

in a context-dependent, time-dependent manner by which they can recruit HATs and HDACs to 

turn transcription on or off respectively (Yuan et al., 1996, Lu et al., 2000, Mickensey et al., 

2001).   

 The studies presented in this thesis focus on regulation of MRFs and MEF2 transcription 

factors and their downstream targets by protein kinases, with particular emphasis on GSK3β and 

p38 MAPK. These analyses compare these regulatory pathways during myoblast proliferation and 

differentiation as well as alveolar rhabdomyosarcoma, a disease that arises from impaired Pax3 

transcriptional activity as a consequence of a chromosomal translocation that creates the Pax3-

Foxo1a fusion protein. 
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Pax3 regulates muscle progenitor cell function 

 The Pax family of transcription factors are crucial regulators of tissue formation and 

organogenesis, characterized by a paired-domain (PD), that binds to a specifically to a GTTCC 

(Chalepakis et al., 1994) and GTTAT sequence (Phelan and Loeken, 1998). In addition, they may 

also have an octapeptide (OP) motif for protein interactions and “ATTA” sequence homeo-box 

DNA binding domain (HD) (Chi and Epstein, 2002). Nine Pax genes are identified based on these 

shared motifs and are grouped based on tissue specificity and spatiotemporal expression 

(Buckingham and Relaix, 2007). Pax3 and Pax7 are expressed in skeletal muscle progenitor cells 

and regulate myogenic cell fate; mutations of these are associated with alveolar 

rhabdomyosarcoma (Barr et al., 1999).  Pax3 is already expressed in the presomitic paraxial 

mesoderm before segmentation and throughout the epithelial somite before being restricted 

dorsally to the dermomyotome (Buckingham, 2006). Functionally, Pax3 regulates the formation 

of hypaxial trunk muscle as well as delamination and migration of myogenic progenitor cells 

from the extremities of the dermomyotome to the underlying myotome and site of myogenesis 

(Tajbakhsh and Buckingham, 2000). Pax3 then directly binds to a regulatory sequence that 

promotes Myf5 transcription in the trunk and limbs (Bajard et al., 2006), hence initiating the 

expression of muscle specific proteins. Myf5 is the first of four members of the bHLH 

superfamily of transcription factors that are activated to promote skeletal myogenesis. The second 

is MyoD which can be activated through Myf5 or Pax3 dependent mechanisms (Tajbakhash et 

al., 1997, Kassar-Duchossoy et al., 2004). Protein expression and activation of the MRFs in a 

timely manner is an absolute requirement for the differentiation of skeletal muscle.  

 In addition to their role in muscle development, a population of proliferating Pax3/7 

positive cells was reported in developing skeletal muscle masses (Ben-Yair and Kalcheim 2005) 
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that were derived from the dermomyotome during somite maturation (Gros et al., 2005 Kassar-

Duchossy et al., 2005) which can also give rise to myogenic cells thus providing a reserve of 

muscle progenitor cells during embryonic and fetal development. Loss of Pax function in these 

reserve cells prevents MyoD activation and hence entry of this population of cells into the 

myogenic program (Relaix et al., 2005). In the developing embryo Pax3/7 positive progenitor 

cells which arise beneath the basal lamina that forms around muscle fibers give rise to the satellite 

cells of the trunk (Gros et al., 2005) where as limb muscle satellite cells are derived from Pax3-

expressing cells that migrate from the hypaxial dermomyotome (Schienda et al., 2006). Satellite 

cells are typically marked by the expression of Pax7 (Seale et al., 2000) although Pax3 can still be 

detected in these after birth. Satellite cells remain quiescent until the muscle gets injured and the 

lamina breaks down to activate their proliferation, and subsequent formation of muscle fibers 

(Montarras et al., 2005). Activation of satellite cells is accompanied by increased Myf5 and 

MyoD expression which results in downregulation of Pax7, subsequent Myogenin activation and 

hence new muscle fiber formation (Montarras et al., 2013). Asymmetric cell division allows for 

some cells to maintain high levels of Pax7 and lose MyoD, leading to self-renewal of a minority 

satellite cell population (Shinin et al., 2006).  

 Conflicting reports on the effects Pax3/7 overexpression on satellite cell differentiation 

have been reported and is probably dependent on protein levels (Buckingham and Relaix, 2007). 

On the other hand, loss of Pax3/7 function studies have resulted in repression of MyoD 

expression (Relaix et al., 2006, Zammit et al., 2006) but not prevention of myogenic 

differentiation. Instead, delayed Myogenin expression occurs in a Myf5 dependent manner since 

Myf5 is already transcribed in most quiescent cells independently of Pax3/7 (Zammit et al., 2006). 

In satellite cells that do not express Myf5, loss of Pax3/7 prevents myogenesis in a MyoD 
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dependent manner (Relaix et al., 2006). In addition to their roles in regulating myogenic cell fate 

and muscle reserve cell populations, Pax3 and Pax7 are also involved in cell survival, 

proliferation and migration. In Pax3 mutant embryos, despite the expression of MyoD in the 

hypaxial somite, cell apoptosis is prevalent but not in the adjacent Pax7 expressing somite regions 

and dorsal neural tube where Pax3 would also be normally expressed (Borycki et al., 1999). 

These data suggest that Pax3 is a co-requisite for proper MyoD function and inhibition of 

apoptosis. In double Pax3/7 mutants, muscle specification is defective and also extensive cell 

death occurs (Relaix et al., 2005). During development, Pax3 and Pax7 are both expressed in 

proliferating muscle progenitor cells as well as in dividing cells that are present in the 

dermomyotome region of the somite. Pax3 expression coincides with regulation of fibroblast 

growth factors (Lagha et al., 2008) and may be important for the proliferative state of these cells 

(Conboy and Rando, 2002), although the precise mechanism by which this occurs is poorly 

understood (Diao et al., 2013).  

 Pax3 and Pax7 are crucial for enabling the formation of skeletal muscle most notably by 

directing progenitor cells into the myogenic program and assuring their survival. Mutational 

defects in these genes are associated with Waardenburg syndrome (Baldwin et al., 1995), 

melanoma (Vachtenheim and Novotna, 1999), neuroblastoma (Barr et al., 1999) and 

rhabdomyosarcoma (Barr et al., 1993, Shapiro et al., 1993).  

 

The Muscle Regulatory Factors (MRFs) 

 The MRF superfamily of transcription factors share a highly conserved, ~70 amino acid 

basic helix loop helix (bHLH) region that is responsible for DNA binding and protein 

interactions. MRFs are key regulators of commitment to the myogenic lineage whose primary 
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role is to induce terminal cell cycle arrest during myogenic differentiation by increasing p21 

expression and transactivating muscle specific genes (Halevy et al., 1995). MRF proteins 

dimerize with E-proteins, including E12, E47 and HEB, and these heterodimers preferentially 

bind to E-box DNA motifs (CANNTG consensus sequence), which are present in almost all 

muscle specific genes (Lassar et al., 1991). Interactions with other proteins such as MEF2 (Olson 

et al., 1995), AP-1 (Andreucci et al., 2002) and Smad (Liu et al., 2001) also influence MRF 

transcriptional activity either by binding to other regulatory motifs or by affecting MRF binding 

to E-box motifs. In addition to protein interactions, other post-translational modifications such as 

phosphorylation, acetylation and ubiquitination may regulate MRF transcriptional activity (Puri 

and Sartorelli, 2000). Due to their structural similarities the MRFs: MyoD, Myf5, MRF4 and 

Myogenin have similar target genes and hence certain functional redundancies. However, because 

of differences in their expression patterns there are also some unique characteristics of each MRF. 

The next section discusses the expression patterns, function and regulation of each MRF in more 

detail. 

 

Expression Patterns of MRFs during mouse embryogenesis 

 As previously discussed, somites which give rise to myoblasts that become skeletal 

muscle of the head, trunk and limbs (Buckingham, 1992) begin to form at about day 7 p.c. in an 

anterior to posterior direction (Thelier et al., 1989). As the development program continues, 

somites undergo compartmentalization into dermomyotome and sclerotome regions (Langman 

and Nelson, 1968). The process of compartmentalization and subsequent determination of these 

cells into a myogenic lineage depends on MRF protein expression. Myf5 and MyoD transcription 

occur in parallel to each other and are the first MRFs to be expressed in myogenic cells indicating 
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their role in initiating myogenesis (Cossu et al., 1996, Rudnicki et al., 1992). Myf5 mRNA is first 

detected in somites at day 8 p.c. and is down-regulated at day 14 p.c. (Ott et al., 1991), whereas 

Myogenin transcripts aren’t detected until about day 8.5 p.c and maintained throughout fetal 

development (Sassoon et al., 1989). MyoD mRNA is first detected in somites at around day 10.5 

p.c and is expressed throughout development (Buckingham et al., 1992). Finally, Mrf4 appears 

transiently between days 10-11 p.c. and re-appears at day 16 p.c. becoming most abundant after 

birth (Bober et al., 1991). The times at which these genes are expressed vary according to the 

region of the myotome which the myoblasts are derived from, however the sequence at which 

they are expressed is more or less the same, with Myf5 and MyoD transcription preceding that of 

Myogenin, and with MRF4 predominantly expressed after fusion.  Based on the timing and 

complexity of MRF expression during embryonic development, there are likely overlapping 

phases of myogenic commitment and skeletal muscle differentiation that depend on differential 

expression of MRFs (Megeney and Rudnicki, 1995). In cultured myoblasts, Myf5 and MyoD are 

expressed before and after differentiation whereas Myogenin is only expressed upon myotube 

fusion and MRF4 mRNA only shows up days after myotube formation (Rudnicki and Jaenisch, 

1995). In addition to their expression patterns, phylogenic analysis of MRF amino acid sequences 

and their chromosomal locations suggest that MyoD and Myf5 are more similar to each other than 

either MRF4 or Myogenin and vice versa (Atchley et al., 1994). Collectively, these analyses 

suggest that the MRF family consists of two groups that reflect functional specialization. The first 

group is MyoD and Myf5 which are required for commitment of multipotent cells into the 

myogenic lineage whereas the second group consists of Myogenin and MRF4 which are involved 

in cell fusion, myotube formation and maintenance. The gene knockout studies described below 
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provide further insight to the individual function and relevance of the distinct MRF expression 

patterns.  

 

MyoD gene ablation and functional analysis 

 MyoD (-/-) mice are viable and fertile however these mice are born 30% smaller than wild 

type mice (Rudnicki et al., 1992). Myf5 is up-regulated in these mice to compensate for the lack 

of MyoD expression, implicating an overlap in their functions in terms of cell determination to 

the myogenic lineage and myotube fusion (Rudnicki et al., 1992). Myf5 is able to potentiate 

MRF4 and Myogenin in the absence of MyoD and it was observed that MRF4 plays a more 

critical role in MyoD deficient mice suggesting that MRF4 may also be involved in cell 

commitment in addition to the maintenance of multinucleated myotubes (Rawls et al., 1995, 

Rudnicki et al., 1992). Reduced satellite cell proliferation and hence defects in muscle fiber 

regeneration have been observed in MyoD (-/-) mice (Rudnicki et al., 1992). However this may be 

more due to the compensatory up-regulation of Myf5 than lack of MyoD (Yoshida et al., 1998). 

MyoD and Myf5 double knockout mice are lethal at birth and lack myoblasts and muscle fibers 

suggesting that expression of at least one of these two MRF proteins is absolutely essential for 

commitment to a myogenic lineage (Rawls et al., 1995, Rawls et al., 1998). Corroborating this 

idea, MyoD cDNA transfection alone is enough to convert fibroblasts to myoblasts in tissue 

culture (Davis et al., 1987). 

 

Myf5 gene ablation and functional analysis 

 Similarly, Myf5 (-/-) mice are also viable and fertile but with no significant loss of muscle 

mass compared to wild type mice despite delayed MyoD expression (Kaul et al., 2000). This 
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suggests that while Myf5 is clearly important in myoblast determination, its involvement in 

skeletal muscle development is probably more indirect by transcriptional activation of its 

downstream MRFs. In its absence, MyoD is up-regulated by Pax3 which compensates for the loss 

of Myf5 function in that regard (Buckingham, 2004, Tajbakhsh et al., 1997). Early suggestions 

that MRF4 was compensating for loss of Myf5 by up-regulating MyoD were not supported by 

subsequent studies which showed that Myf5/MRF4 double knockout mice had the exact same 

phenotype as Myf5 (-/-) mice (Rawls et al., 1995). Pax3/Myf5/MRF4 triple knockout mice on the 

other hand were unable to up-regulate MyoD expression (Kassar-Duchossoy et al., 2004, 

Tajbakhsh et al., 1997). Subsequent analysis revealed that Myf5 expression is downregulated in 

multinucleated myotube but maintained in a reserve cell population (Friday and Pavlath, 2001). 

Loss of Myf5 function studies revealed defects in satellite cell proliferation that were not 

compensated for by any of the other MRFs (Kaul et al., 2000). Triple MyoD/Myogenin/MRF4 

knockout mice are the only viable knockout mice despite the absence of muscle fibers suggesting 

that physiological levels of Myf5 are insufficient to activate the differentiation program (Valdez 

et al., 2000) and may suggest that Myf5 is also involved in myoblast proliferation and cell 

survival. 

 

Myogenin gene ablation and functional analysis 

 Of the four members of the MRF bHLH superfamily of transcription factors, Myogenin 

function is absolutely essential for muscle cell fusion and muscle fiber formation. Loss of 

Myogenin function cannot be compensated by any of the other MRFs (Hasty et al., 1993). 

Myogenin (-/-) mice are lethal at birth due to the absence of secondary muscle fiber formation 

despite an increase in the number of committed myoblasts (Hasty et al., 1993, Rawls et al., 1995, 
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Rawls et al., 1998). The elevated number of committed myoblasts indicated that Myogenin may 

also be involved in maintaining terminal cell cycle arrest by regulating p21
Kip2

 expression 

(Andres and Welsh, 1996). Double knockout mice which include loss of Myogenin show no 

phenotypic difference to single Myogenin (-/-) mice corroborating the idea that Myogenin 

function might be irrelevant during myoblast determination but absolutely essential for myotube 

differentiation (Rawls et al., 1995, Rawls et al., 1998). 

 

MRF4 gene ablation and functional analysis 

 MRF4 (-/-) mice showed no obvious differences to wild type mice: they are viable, fertile 

and produce committed myoblasts that can fuse to form functional secondary muscle fibers 

(Zhang et al., 1995). Although Myogenin protein expression levels are elevated in MRF4 

knockout mice this study seems to suggest that MRF4 function is redundant during skeletal 

muscle formation (Zhang et al., 1995). However in the absence of MyoD, MRF4 is required for 

viability and muscle fiber formation suggesting that MRF4 function may overlap with MyoD 

function during skeletal muscle differentiation (Rawls et al., 1995). Also, early overexpression of 

MRF4 but not Myogenin rescues skeletal myogenesis in MyoD/Myf5 double mutant zebrafish 

embryos (Schnapp et al., 2009) suggesting that it may also be able to compensate for some of 

their cell determination properties whereas Myogenin cannot. 

  

 In summary, functional analysis of the MRFs reveals that they may be divided into two 

groups. The first group consists of MyoD and Myf5 which are primarily involved in commitment 

of pluripotent cells into the myogenic lineage whereas Myogenin functions as a differentiation 

factor which is required for terminal cell cycle arrest and myoblast fusion in order to get 
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functional muscle fibers. The role of MRF4 is less obvious and seems to be redundant as long as 

the other three MRFs are functioning properly. Under different conditions, it has been shown to 

function at both the commitment and differentiation stages. According to its late expression in the 

developing embryo and its maintenance during adulthood, it is highly likely that MRF4 is 

involved in maintaining muscle structure and that this feature would have been missed by the 

studies described above. Further analysis of MRF4 (-/-) mice did not reveal any muscle fiber 

defects, but instead multiple rib abnormalities were observed (Zhang et al., 1995). However, it is 

still unclear whether this means that loss of MRF4 function is directly involved in this birth 

defect.     

 

Myocyte Enhancer Factor 2 (MEF2) proteins 

 In addition to MRFs, MEF2 transcription factors are critical regulators of myogenic 

differentiation (Black and Olson, 1998). There are four members of the MEF2 family, MEF2A-D 

in vertebrates with each gene located on different chromosomes (McDermott et al., 1993, Hobson 

et al., 1995). MEF2 protein belong to the MADS (MCM1, agamous, deficiens, serum response 

factor) superfamily of transcription factors which contain a highly conserved 57a.a MADS-box 

that is located directly N-terminal to a 29 a.a MEF2 domain (Molkentin et al., 1996). Together 

these two domains are involved in high affinity, DNA binding and protein interactions. MEF2 

proteins also possess a divergent C-terminus which may allow for functional differences and 

unique interactions (Black and Olson, 1998). Despite their different C-terminal sequences, 

MEF2A/C/D possess a highly conserved C-terminal, nuclear localization sequence (NLS) (Yu et 

al., 1992). Since it was first identified on the muscle creatine kinase (MCK) enhancer region 

bound to a highly conserved A/T rich DNA sequence (Gossett et al., 1989), MEF2 
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(C/T)TA(A/T)4TA(G/A) consensus DNA sequences have been found in the control regions of 

many striated and smooth muscle genes. Mutational analysis of these sites leads to reduced and 

even diminished loss of gene expression (Nurrish and Treisman, 1995). Interestingly, MEF2 must 

homo- or hetero- dimerize for DNA binding and these all have equivalent binding affinities with 

the exception of MEF2B (Pollock and Treisman, 1991, Yu et al., 1992, Molkentin et al., 1996). 

  

MEF2 expression during mouse embryogenesis 

 Mef2 genes are expressed in distinct but overlapping temporal and spatial patterns during 

embryogenesis, particularly in the brain, heart and striated muscle. During mouse development 

Mef2c is first expressed at day 7.5 p.c in the developing myocardium, followed by Mef2a and 

Mef2d at day 8.5 p.c (Edmondson et al., 1994). In skeletal muscle, Mef2c expression precedes 

that of the rest at day 9 p.c. lagging Myogenin expression by a few hours (McDermott et al., 1993, 

Edmondson et al., 1994). Shortly after, Mef2a and Mef2d are expressed in the developing somite 

at 9.5. d.p.c and maintained throughout myogenic differentiation (Chambers et al., 1992). After 

day 12.5, MEF2 transcripts are detected at high levels in specific regions of the brain and in a 

wide range of tissue (Lyons et al., 1995, Black and Olson, 1998). 

 The generation of a mouse that contains multiple MEF2 binding sites that drive a LacZ 

indicator gene has been utilized experimentally, to show that MEF2 activity is induced selectively 

and enriched in the heart and somites despite MEF2 expression in numerous other tissues (Naya 

et al., 1999). This observation led to a hypothesis for the potential role of posttranslational 

regulation of MEF2 proteins, and these have been studied extensively since.  

 In immortalized C2C12 myoblasts, Mef2 gene expression patterns differ to the in vivo 

gene expression patterns described above. Instead, MEF2A/D is expressed in proliferating 
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myoblasts prior to the onset of myogenic differentiation whereas MEF2C appears much later in 

the differentiation program, and only upon the formation of muscle fibers. Interestingly, despite 

the early expression of MEF2A and MEF2D in cultured myoblasts they are unable to initiate 

muscle specific gene expression in such a context further until p38 MAPK activation (Han et al., 

1997, Rampalli et al., 2007) hence corroborating the importance of posttranslational regulation of 

these transcription factors.  

 

MEF2 gene ablation and functional analysis 

 Since there is only one MEF2 gene (D-mef2) in Drosophila, analysis of this gene 

eliminates the issue of functional redundancy between the different vertebrate isoforms of MEF2. 

D-mef2 homozygous null embryos are embryonic lethal displaying a loss of somatic, cardiac and 

visceral muscle differentiation despite the presence of cells that have already been committed to 

their respective myogenic lineages (Lilly et al., 1994, Lilly et al., 1995, Bour et al., 1995). 

 Analysis of MEF2 function through gene knockout studies in mice is obviously more 

complex due to overlapping expression and function of the four MEF2 isoforms. Mef2c (-/-) 

mouse embryos die at day 9.5 p.c as a result of defective cardiovasculature (Lin et al., 1998). 

Analysis of these embryos revealed diminished cardiac gene expression and phenotypically they 

lack right ventricle formation because the heart tube fails to undergo looping morphogenesis. 

Mef2b null mice are viable without any notable skeletal or cardiac muscle defects (Black and 

Olson, 1998) and to this date the role of MEF2B is still unclear. Similarly, Mef2a null mice are 

also viable but are highly susceptible to cardiac arrest within a week after birth due to a reduction 

in the size and number of cardiac mitochondria (Naya et al., 2002). Interestingly despite the 

importance of MEF2A regulation of skeletal myogenesis and muscle specific genes, Mef2a gene 
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ablation does not cause severe myogenic abnormalities (Naya et al., 2002). It is also the case that 

Mef2d (-/-) mice are viable without any apparent abnormalities and therefore it appears that the 

other isoforms can compensate for loss of a particular MEF2 isoform under normal conditions 

(Kim et al., 2008). Tissue specific gene deletions have provided more information on the 

individual functions of MEF2C/D (Pothoff et al., 2007, Kim et al., 2008). Myofibers from mice 

with skeletal muscle deficient in MEF2C differentiate and form normally during embryogenesis, 

but rapidly deteriorate after birth due to disorganized sarcomeres and loss of muscle integrity 

(Pothoff et al., 2007). Loss of Mef2d function in the heart show an impaired response to stress 

signals that normally potentiate MEF2 transactivation of cardiac genes involved with hypertrophy 

and fibrosis (Kim et al., 2008). Thus although numerous lines of evidence point to a critical role 

for MEF2 during myogenic differentiation, redundancies in their functions and their roles in other 

developmental processes have made it difficult to pinpoint these functions in vivo. More recent 

tissue-specific gene ablation studies have proven useful, however these did not circumvent the 

compensatory effects of expressed MEF2 isoforms and therefore the generation of double and 

triple knockout mice in future studies may be more informative. 

 

MEF2 and MRF transcription factors cooperate to regulate myogenic differentiation 

 Several studies have demonstrated that MEF2 factors and MRFs cooperate to activate 

skeletal muscle gene expression through direct protein-protein interactions between their 

respective DNA-binding domains (DBDs). Although the four bHLH MRFs can each activate the 

program for skeletal muscle differentiation in non-myogenic cell types (Olson 1990, Lassar and 

Munsterberg, 1994), MEF2 proteins cannot (Molkentin et al., 1995, Black and Olson, 1998). The 

bHLH domain of the MRFs mediates dimerization with HLH E-proteins, E12, E47 and HEB 
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resulting in a heterodimer complex that can bind to the E-box consensus DNA sequence 

(CANNTG) that is present in the regulatory region of most myogenic genes, as discussed above 

(Lassar et al., 1991). In non-myogenic cells, forced expression of MyoD or Myogenin induced 

MEF2 DNA-binding activity suggesting that it is an important downstream component of the 

myogenic program (Martin et al., 1993, Lassar et al., 1991). Corroborating this idea, co-

transfection of a dominant negative version of MEF2A with MRFs in multipotent, non-myogenic 

cells prevents the initiation of the myogenic program (Ornatsky et al., 1997). Interestingly, MEF2 

proteins have been shown to potentiate the transactivation of the E-box promoter despite the 

absence of a MEF2 binding site and alternatively MRFs can increase MEF2 transcriptional 

activity despite the absence of the E-box, suggesting that they additionally act as potent cofactors 

for each other’s transcriptional activity (Molkentin et al., 1995). Even though MEF2 proteins 

cannot activate the expression of Myod, MRF4 and Myogenin on their own despite the presence 

of MEF2 DNA-binding sites on their promoter regions, MEF2 is involved in the maintenance of 

their expression and is essential for Myogenin transcription in cultured myoblasts and mouse 

embryos, by interacting with these (Yee and Rigby, 1993). There are therefore four potential 

mechanisms by which MEF2 factors and MRFs cooperate to activate the skeletal muscle 

differentiation program: (1) MEF2 proteins are recruited to an E-box as part of an MRF/E-protein 

multimer or (2) MRF/E-protein heterodimers are recruited to a MEF2 box as part of a similar 

protein complex. (3) MEF2 and MRF transcription factors independently bind to DNA at adjacent 

consensus sites and then cooperate to activate transcription either by direct or indirect 

interactions. (4) MEF2 and MRF transcription factors independently bind to DNA at non-adjacent 

consensus sites and then bend the DNA to directly interact with each other (Molkentin et al., 
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1995, Black and Olson, 1998). The mechanism by which MEF2 and MRF factors interact with 

each other varies according to the gene being activated and the context at which this occurs.  

 In addition to these modes of muscle gene activation other protein families including 

HDACs, HATs, AP-1 and Smads have also been shown to regulate myogenic differentiation 

either by directly binding to MEF2 and/or MRF proteins or by directly binding to muscle specific 

genes via their respective consensus DNA-binding sites. Adding to the complexity of an already 

complicated process, MRFs and particularly MEF2 proteins are controlled by multiple levels of 

regulation such as alternative splicing (Sebastian et al., 2013) and posttranslational modifications 

such as acetylation (Nebbioso et al., 2009), sumoylation (Gregoire et al., 2006) and 

phosphorylation (Han et al., 1997, Cox et al., 2003). While a lot of these are beyond the scope of 

this paper, the next section will focus on MRF and MEF2 phosphorylation and key signaling 

pathways that regulate MRF and MEF2 transcriptional activation with particular emphasis on two 

MEF2 target genes: Myogenin and Krüppel-like factor 6 (KLF6) which regulate myogenic 

differentiation and myoblast proliferation respectively. 

 

Regulation of MRF and MEF2 factors by protein kinases 

Overview 

 Skeletal muscle differentiation is regulated by many signaling pathways which affect the 

transcriptional activity of the MRF and MEF2 factors either positively or negatively. In both the 

developing somite and cultured myoblasts, two MRF proteins: Myf5 and MyoD as well as three 

MEF2 proteins, MEF2A/C/D are all expressed before the differentiation program in initiated 

(Rudnicki et al., 1993, Tajbakhsh and Cossu, 1997). Therefore the influence of external signals 

is critical for the spatial and temporal activation of MRF and MEF2 factors and their ability to 
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regulate processes such as irreversible cell cycle arrest and terminal differentiation through 

muscle specific target genes (Nadal-Ginard, 1978, Lassar et al., 1994). In particular, signaling 

pathways propagated by growth factors such as fibroblast growth factors (FGFs), insulin-like 

growth factor 1 (IGF1), transforming growth factor beta (TGFβ) and platelet-derived growth 

factor (PDGF) have all been shown to influence the skeletal myogenic program (Florini et al., 

1991, Husmann et al., 1996). Despite the knowledge that extracellular signals were regulating 

myogenic differentiation in somites, the intracellular mechanisms by which these signals were 

being transmitted to the transcriptional machinery in order to modulate gene expression and thus 

differentiation, were less clear. Because of their integral roles in myogenic differentiation, 

posttranslational regulation of MRF and MEF2 proteins in response to extracellular signals that 

emanate from adjacent tissues and cell-cell contact have been the focus of research over the last 

15 years. The next section profiles some of the key intracellular effectors of these signals and 

their role in regulating skeletal myogenesis through MRF and MEF2 proteins. 

  

Fibroblast growth factor receptor-1 (FGFR1) signaling and regulation of MRF and MEF2 

proteins 

 Fibroblasts growth factors are key regulators of muscle progenitor cell migration and 

proliferation that are transcribed in response to Pax3 (Webb et al., 1997, Lagha et al., 2008). 

Despite this, it is not until bFGF are down regulated that terminal differentiation can occur even 

though MRF and MEF2 proteins are expressed (Hannon et al., 1996, Itoh et al., 1994).  One 

kinase that has been shown to be activated by bFGF is protein kinase C (PKC) which can 

phosphorylate a conserved threonine in the basic region of MRF proteins (Li et al., 1992b). 

MyoD has been shown to be phosphorylated at this site in proliferating myoblasts and 
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rhabdomyosarcoma (Liu et al., 1998) resulting in reduced DNA binding and hence 

transcriptional activity. Despite the conservation of this PKC phosphoacceptor site amongst the 

MRF family of transcription factors, PKC has been shown to inhibit MRF4 transcriptional 

activity without phosphorylating it (Hardy et al., 1993) therefore the precise mechanism by 

which bFGF/PKC signaling inhibits MRF activity is still unclear. Adding to the complexity, nine 

PKC isoforms have been identified and classified into three groups: conventional, novel and 

atypical (Mellor and Parker, 1998) of which novel PKCs have been shown to phosphorylate the 

MEF2A transactivation domain (TAD), enhancing its transcriptional activity (Ornatsky et al., 

1999). More recently a bFGF has been shown to elevate intracellular cyclic AMP (cAMP) and 

protein kinase A (PKA) activity in both muscle and non-muscle cells (Motamed et al., 2003, 

Barraud et al., 2010). PKA has also been shown to phosphorylate the basic region of MRFs at a 

site different to the PKC sites previously described, however these were not essential for PKA-

mediated inhibition of MRF transcriptional activity (Li et al., 1992a). Instead, PKA inhibition of 

skeletal myogenesis was found to be via a bipartite mode of MEF2D regulation, the first is by 

direct phosphorylation at S121 and S190 and the second was by enhancing nuclear localization 

of HDAC4 and subsequent MEF2D binding (Du et al., 2008, Salma and McDermott, 2012). 

Given the importance of MRF and MEF2 factor interactions in enhancing their target gene 

expression; this would also explain PKA mediated repression of MRF activity (Figure 1.2).  
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Figure 1.2: Early stage regulation of myogenesis by extracellular signaling cascades. The 

figure illustrates how the growth factors discussed in the text regulate myoblast proliferation and 

prevent muscle differentiation. Upon receptor-mediated activation of cyclic AMP as indicated, 

cAMP binds to the regulatory subunits (R) of PKA releasing the catalytic subunits which can 

then translocate into the nucleus. Nuclear PKA inhibits MEF2 transcriptional activity directly 

through phosphorylation, and also indirectly through HDAC4 as depicted. Even though PKA 

potentiates MyoD expression, MyoD remains inactive in the presence of growth factors such as 

fibroblast growth factor (FGF) which can indirectly repress its DNA-binding properties through 

PKC. The extracellular regulated kinase (ERK1/2) is also activated by growth factors such as 

FGF and insulin-like growth factor (IGF) and represses myogenic differentiation as discussed 

later in the next section of this chapter. IGFI also activates Akt1 and stimulates cell proliferation 
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when myoblasts are sub-confluent by directly phosphorylating Foxo1 causing it to exit the 

nucleus thus blocking the expression of genes such as p21 and p27 which regulate cell cycle exit. 

This figure has been adapted from Knight and Kothary, 2011.  

 

 

 

Transforming growth factor β (TGFβ) regulation of MRF and MEF2 proteins 

 The TGFβ superfamily of cytokines mediate several cellular and physiological processes 

including epithelial-to-mesenchymal transitions (EMT), cell proliferation, differentiation and 

apoptosis (Duband et al., 1995, Pampusch et al., 1990, Massague and Xi, 2012, Rotello et al., 

1991). TGFβ ligand binding to either type I or type II receptors facilitate the formation of a 

heteromeric TGFβ ligand-receptor complex that allows a constitutively active type II receptor 

kinase to phosphorylate and activate the type I receptor (Feng and Derynck, 2005, Shi and 

Massague, 2003). In a myogenic context the active type I receptor can phosphorylate and 

activate receptor mediated Smad2/3 factors which translocate into the nucleus upon dimerizing 

with Smad4, where it regulates muscle gene expression (Figure 1.3). More commonly, Smad 

proteins affect transcription of TGFβ target genes by acting as cofactors rather than by directly 

binding to the gene itself (Derynck et al., 1998). Subsequently, Smad3 has been shown to inhibit 

MyoD transcriptional activity by binding to the bHLH region which is required for its 

dimerization with E-proteins and hence DNA (Liu et al., 2001). Furthermore Smad2 and Smad3 

have both been shown to interact with the MEF2 domain to promote or inhibit MEF2 

transcriptional activity in a context dependent manner (Quinn et al., 2001, Liu et al., 2004). A 

second pathway that is directly activated by TGFβ ligands is the Extracellular-signal regulated 

kinase (1/2) MAPK through its upstream MAPKK, MEK1/2 (Yue and Mulder, 2000). 

Phosphorylation of MEK1/2 results in inhibition of skeletal myogenesis through two known 

mechanisms (Figure 1.3). In the first, phosphorylated MEK1/2 translocates into the nucleus 
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where it can bind to and destabilize MyoD – DNA interaction (Miyake et al., 2009). The second 

mechanism involves MEK 1/2 activation of ERK 1/2 which can activate AP-1 family members 

such as Fra1/2, c-Jun and c-Fos (Gruda et al., 1994, Alli et al., 2013). AP-1 proto-oncogenes 

promote cell proliferation and in a myogenic context repress MyoD transcriptional activity by 

direct interaction (Bengal et al., 1992). More recently, pharmacological inhibition of ERK has 

been shown to rescue Myogenin transcriptional activity and the authors speculate that ERK-

mediated inhibition of Myogenin might be by direct phosphorylation (Penna et al., 2010), 

although they do not provide any direct evidence of this. Regardless, there is strong evidence 

supporting the repressive effect of TGFβ signaling on skeletal muscle differentiation through two 

molecular pathways: Smad mediated activation of cell proliferation and ERK1/2-dependent 

repression of myogenic genes. 
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Figure 1.3: The TGFβ signaling pathway and repression of muscle-specific gene expression. 

TGFβ ligand association with the appropriate Type I / Type II receptor complex results in auto-

phosphorylation, and subsequent phosphorylation of receptor-mediated Smads 2/3. These can 

then interact with Smad4 and translocate into the nucleus to activate target gene expression either 

directly or indirectly by interacting with MEF2 and MyoD. In addition, TGFβ signaling represses 

muscle gene expression by activating MEK(1/2) signaling.  Phosphorylated MEK1/2 can 

translocate into the nucleus where it interacts with and destabilizes MyoD – DNA binding. Both 

of these mechanisms are antagonized by Smad7 which competes with the receptor-mediated 

activation of Smad2/3 and stabilizes MyoD / DNA-binding in the nucleus, as depicted. 

Subsequent activation of the downstream MEK1/2 target, ERK1/2 results in AP-1 activation 

which in turn represses differentiation by abrogating MyoD and can also promote cell 

proliferation through AP-1 target gene expression. 

 

 

 



29 
 

Insulin-like growth factors (IGFs) 

 The IGF family of growth factors can be subdivided into two subgroups, IGF-I and IGF-

II (Husmann et al., 1996). Unlike other growth factors IGFs are involved in both cell 

proliferation and differentiation (Ewton and Florini, 1980, Ewton and Florini, 1981). During the 

onset of myogenic differentiation, IGF-I levels are reduced and this is coupled with a 15-fold 

increase of IGF-II expression suggesting that IGF-I might initially delay the onset of myogenesis 

before it can act as a stimulator (Rosenthal et al., 1991, Ewton et al., 1994). In proliferating 

myoblasts there is evidence that other mitogens such as FGF might be up-regulating IGF-I 

receptors by down-regulating IGF-II protein levels supporting the idea that a subtle balance 

between FGF and IGF-II levels might be important for initiating differentiation (Rosenthal et al., 

1991). Furthermore, IGFs are secreted by satellite cells in regenerating muscle, inducing 

differentiation of myoblasts by increasing IGF-II levels implying that IGF-II may also act as a 

trophic factor during muscle regeneration (Jennische et al., 1987, Florini et al., 1991).  From 

these studies it is clear that IGFs play an important role in the onset of skeletal muscle 

differentiation depending on their interactions with other factors, whereas all other growth 

factors inhibit muscle differentiation. IGF-I receptor null mice had under-developed muscle and 

there was also a significant decrease in skeletal muscle in zebrafish that had IGF-IR knocked 

down (Liu et al., 1993, Schlueter et al., 2006). Similarly, loss of IGF-I or IGF-II function in 

myoblasts resulted in defective muscle regeneration following injury and inhibition of myogenic 

differentiation, respectively (Lefaucheur and Sebille, 1995, Carter et al., 2009).  

 Upon binding to the type I IGF receptor, IGFs activate multiple intracellular signaling 

pathways including the MEK/ERK-1/2 (Figure 1.2 and 1.3) and phosphatidylinositol 3-kinase 

(PI3-K) / Akt (PKB) cascades (Figure 1.4). The latter being required for up-regulation of IGF-II 
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upon cell contact, by creating a positive feedback loop that regulates activation of both PI3-K 

and IGF-II as well as inducing p38 MAPK (Lovett et al., 2010, Lovett et al., 2006, Wilson et al., 

2004). Since p38 MAPK and PI3-K/Akt signaling are all positive regulators of myogenesis the 

next sections will discuss their roles in promoting differentiation converging at MRF and MEF2 

transcriptional activity. 
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Figure 1.4: Kinase-mediated control of key transcription factors during myogenic 

differentiation. Differential gene expression and subsequent muscle differentiation begins with 

cell – cell contact and N-cadherin ligation which is thought to activate MKK3/6 (MAP2K) in 

conjunction with extracellular mitogens although the mechanism is poorly understood. P38 

induces cell cycle exit and promotes differentiation by phosphorylating MEF2, E47 and Ash2L 

that form part of a myogenic transcriptional complex together with MyoD. This complex does 

not become active until Akt2 phosphorylates the transcriptional co-activator and histone 

acetyltransferase, p300. Akt2 activation in response to insulin-like growth factor II is therefore 

essential in initiating differentiation, and can also promote muscle hypertrophy through several 

other mechanisms, one of which is inhibition of GSK3β at Ser 9 as illustrated above. Un-
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phoshorylated and hence active GSK3β represses its substrates such as β-catenin and NFAT3, by 

sequestering them in the cytoplasm and preventing their nuclear accumulation and activation of 

key transcription factors such as TCF/LEF. This figure has been adapted from Knight and 

Kothary, 2011. 

 

 

 

 

 

 

 

 

P38 Mitogen Activated Protein Kinase (MAPK)  

 P38 MAPK is perhaps the single most crucial kinase activator of skeletal myogenesis. 

Defect in this pathway blocks in vivo embryonic MEF2 activation as well as in somites, 

concomitantly inhibiting myogenic differentiation (de Angelis et al., 2005). P38 was originally 

found to interact with and phosphorylate MEF2C at three residues, T293, T300 and S387 with 

mutation of these sites to alanines, reducing MEF2C transcriptional activity (Han et al., 1997). 

Subsequent analysis revealed that p38 could also phosphorylate and potentiate MEF2A and 

MEF2D activity in both myoblasts and fibroblasts (Zhao et al., 1999, Penn et al., 2004, Rampalli 

et al., 2007). Deletion of a highly conserved p38 docking site located at the MEF2 TAD 

abrogates MEF2 responsiveness to p38 (Yang et al., 1999). In addition to its role in 

phosphorylating MEF2, p38 also phosphorylates E47 promoting the formation of MyoD/E-

protein complexes that are essential for muscle specific gene expression (Simone et al., 2004, 

Lluis et al., 2005). This would explain the effect of p38 activation on MyoD transcriptional 

activity without ruling out the possibility of a direct effect despite the lack of strong supporting 

evidence (Puri et al., 2000). Furthermore p38 facilitates myogenic signaling by phosphorylating 

a SWI/SNF subunit initiating chromatin remodeling by targeting the complex to myogenic loci 

(Simone et al., 2004, Rampalli et al., 2007). This process also involves MEF2D phosphorylation 
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by p38 and functional interdependence with the PI3-K/Akt pathway (Serra et al., 2007, Keren et 

al., 2006). Finally p38 activity can also regulate Myogenin transcriptional activity in 

differentiating myocytes either indirectly through MEF2 / E-proteins or by direct 

phosphorylation. Defect in this pathway is strongly associated with rhabdomyosarcoma (Puri et 

al., 2000). Despite the multiple mechanisms by which p38 directly regulates myogenic genes and 

hence differentiation, the primary stimuli responsible for activating p38 MAPK have not been 

identified, although it is believed to be through a cell contact dependent mechanism (Lovett et 

al., 2006) as illustrated in figure 1.4.  

 

Glycogen synthase kinase 3β (GSK3β) and myogenic differentiation 

 Although it was originally identified for its role in glycogen synthesis, as its name 

implies, this fails to adequately represent the many functions of GSK3 which include cell fate 

specification during embryonic development, cell proliferation, apoptosis and microtubule 

function (Cohen and Frame, 2001). The GSK3 family of serine/threonine kinases consists of two 

closely related isoforms, α and β, which are 98% identical within their kinase domains but differ 

in their N- and C-termini (Force and Woodgett, 2009). GSK3 kinases are expressed in all tissue 

types and are particularly critical in the brain, heart, liver, pancreas and skeletal muscle. Unlike 

most protein kinases, GSK3 is constitutively active in unstimulated cells and is inhibited in 

response to cell signaling (Force and Woodgett, 2009). Furthermore, GSK3 preferentially targets 

substrates that are phosphorylated by another kinase at a serine or threonine that is located four 

amino acids C-terminal to the GSK3 phosphorylation site, referred to as a “priming phosphate” 

(Doble and Woodgett, 2003). In contrast to most kinases, subsequent phosphorylation by GSK3 

usually results in their inactivation and in many cases proteasomal degradation. 
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 Recent GSK3α (-/-), GSK3β (-/-) and double knockout studies revealed a functional 

redundancy between the two isoforms, particularly as downstream regulators of Wnt/β-catenin 

signaling (Doble et al., 2007). Therefore, while most attention has focused on GSK3β due to the 

Zeste-white 3 (GSK3) mutation in Drosophila (Ruel et al., 1993, Siegfried et al., 1992) the effect 

of GSK3α on some of these studies cannot be ruled out (Force and Woodgett, 2009, Doble et al., 

2007). GSK3α and –β can both form multimeric protein complexs with axin, APC protein and β-

catenin resulting in β-catenin phosphorylation by GSK3 and its subsequent proteasome-mediated 

degradation (Cohen and Frame, 2001). Wnt signaling disrupts this complex formation resulting 

in stabilization and de-phosphorylation of β-catenin. Another mode of GSK3 regulation is by 

IGF binding to their receptors which leads to activation of PI3-K/Akt signaling (Figure 1.4). Akt 

(PKB) phosphorylates the N-terminal S9 and S21 residues of GSK3 α and β respectively 

resulting in their deactivation (Cohen and Frame, 2001).  

 Despite their similarities in function and regulation there is also evidence of tissue 

specificity between the two isoforms. GSK3β(-/-) mice are embryonic lethal with liver and heart 

defects in particular (Hoeflich et al., 2000, Kerkela et al., 2008). On the other hand, GSK3α (-/-) 

mice are viable with no notable heart defects and with increased glucose and insulin sensitivity 

accompanied by reduced fat mass (Patel et al., 2011, MacAulay et al., 2007). Interestingly these 

studies revealed no difference in glycogen synthesis in the liver or skeletal muscle and 

collectively the data suggest that GSK3β and not GSK3α might be important in skeletal and 

cardiac muscle (Patel et al., 2011). Corroborating this idea, loss of GSK3β function studies in 

cultured C2C12 myoblasts using RNAi stimulates myogenic differentiation with no evidence of 

any compensation by GSK3α (van der Velden et al., 2008). Similarly, IGF1 mediated induction 
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of muscle hypertrophy required GSK3β inactivation at S9, and pharmacological inhibition of 

GSK3 resulted in an increase in muscle specific gene expression (van der Velden et al., 2006).  

 To date there are no known GSK3β substrates that are absolutely essential for myogenic 

differentiation to occur therefore it begs the question whether GSK3β can indeed directly target 

and inactivate MEF2 or MRF factors. Interestingly, in silico analysis reveals several highly 

conserved GSK3 phosphoacceptor sites amongst MEF2 proteins, and since MEF2 is critically 

involved in various aspects of skeletal muscle development it represents a possible target for 

GSK3β mediated repression of this process particularly in ARMS where GSK3 activity is 

abnormally high (Zeng et al., 2010, Annavarapu et al., 2013). 

 

Phosphatidylinositol 3-kinase (PI3-K) / Akt (Protein kinase B (PKB)) and muscle regulation 

 The effects of PI3-K/Akt activation on myoblast proliferation and differentiation as a 

result of IGF signaling are well characterized in the literature (Figure 1.2 and 1.4). Initially, 

activation of this pathway enhances cell cycle progression by down-regulating p27
Kip1

 

(Chakravarthy et al., 2000, Machida et al., 2003) however prolonged PI3-K/Akt signaling 

resulted in myotube differentiation and induced hypertrophy (Glass, 2010.) possibly through 

GSK3β inactivation (van der Velden et al., 2007). There are multiple mechanisms by which PI3-

K/Akt signaling can regulate myogenesis, both negatively and positively in time and context 

dependent manners. More recently Akt has been shown to directly regulate MEF2 and MRF 

transcriptional activity. Whilst the effect of p38 MAPK phosphorylation on MEF2 transcriptional 

activity is well characterized, there is strong evidence that PI3-K is an important co-requisite for 

this crucial step in skeletal muscle differentiation (Rampalli et al., 2007). There is no evidence in 

the literature supporting the idea that Akt can directly phosphorylate MEF2 however there is 
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strong evidence that PI3-K/Akt signaling is required for p38 MAPK to directly phosphorylate 

MEF2 (Keren et al., 2006). Alternatively, this effect could be through inhibition of GSK3β and 

subsequent de-repression of the p38/MEF2 signaling pathway (Dionyssiou and Nowacki et al., 

2013). In addition, PI3-K/Akt activity is required for chromatin remodeling and MEF2/MRF 

binding as well as acetylation of muscle specific genes (Rampalli et al., 2007), which also offers 

an explanation for the observation that Akt can potentiate MyoD and Myogenin transcriptional 

activity (Kaneko et al., 2002, Sumitani et al., 2002). Although Akt may not directly influence 

MEF2 or MRF proteins there is evidence that a downstream target, GSK3β might be able to do 

so. Akt is able to directly phosphorylate S9 and inhibit GSK3β activity (Rommel et al., 2001) 

and GSK3β inhibition alone is able to promote myotube formation (van der Velden et al., 2006). 

Despite these reports, the mechanism by which GSK3β can inhibit skeletal myogenesis is poorly 

understood. Since GSK3β is constitutively active in proliferating myoblasts and defect in this 

pathway has been implicated in many muscle-related diseases, including alveolar 

rhabdomyosarcoma, the rest of this thesis will focus on the role of GSK3β in both skeletal 

muscle and ARMS. 

 

Rhabdomyosarcoma: Pathology and Regulation 

Overview 

 Rhabdomyosarcoma (RMS) is a highly malignant mesenchymal tumor that originates 

from immature striated muscle tissue, resulting in dense aggregates of poorly differentiated cells 

that are separated by fibrous membranes. It accounts for nearly half of all pediatric soft tissue 

sarcomas and about 5% of all pediatric cancers (Paulino and Okcu, 2008). There are two main 

subtypes: embryonal (ERMS) which accounts for roughly two thirds of all RMS cases and 
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alveolar (ARMS) which accounts for less (~30%) but has a poorer prognosis due to an extremely 

high rate of metastasis. Like neuroblastoma, Ewing’s sarcoma and lymphoma, 

immunhistochemical staining of RMS using muscle-specific markers such as myosin, desmin or 

MyoD reveal Actin/Myosin bundles by electron microscopy (Tonin et al., 1991). More recently, 

Myogenin has been implicated as a more specific RT-PCR marker for RMS because it is 

predominantly expressed in RMS but not neuroblastomas or Ewing’s sarcomas (Michelagnoli et 

al., 2003). While these protein markers link RMS to a myogenic lineage it is still possible for 

them to sometimes originate from a different lineage (Hatley et al., 2012). Corroborating this idea 

is the development of RMS tumors at non-myogenic sites such as the genitourinary tract 

(Grimsby and Ritchey, 2012) and parameninges (Wijnaendts et al., 1994).  

 While the cytogenetic characterization of ERMS is currently unclear, tumors of this 

subtype comprise a mixture of dense spindle areas and loose myxoid foci, and have also been 

associated with a loss in heterozygocity at the 11p15 chromosomal locus (Scrabble et al., 1987). 

Tumors of this histology are typically found in the head, neck and genitourinary regions. In 

addition, botryoid variants of ERMS tumors resemble clusters of grapes and form in hollow 

organs such as the vagina, nasopharynx and urinary bladder (Paulino and Okcu, 2008), and 

typically have better prognosis (Al-Daraji et al., 2009). The inability of cells of the ERMS 

subtype to undergo myogenic differentiation despite the expression of the myogenic bHLH 

superfamily of transcription factors, the MRFs and MEF2 proteins has been widely attributed to 

poor MyoD/E-protein complex stability (MacQuarrie et al., 2013, Yang et al., 2009) and lack of 

p38 MAPK activation (Puri et al, 2000). Activation of p38 MAPK by manipulation of various 

signaling pathways has been shown to rescue the myogenic program in vitro ERMS systems by 

inducing MyoD transcriptional activity (Puri et al., 2000, Rossi et al., 2011).        
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 In contrast, ARMS is typically associated with two chromosomal translocations 

t(2;13)(q35;q14) and t(1;13)(q36;q14) which fuse the Pax3 and Pax7 genes to Foxo1a resulting in 

potent transcription factors: Pax3-Foxo1a and Pax7-Foxo1a, 55% and 22% of the times 

respectively (Galili et al., 1993, Davis et al., 1994, Barr, 1997). ARMS subtypes without these 

fusion proteins do exist albeit less frequently and they exhibit characteristics that are more 

common to ERMS subtypes (Williamson et al., 2010). The rest of this chapter will focus on the 

pathology and biomolecular mechanisms associated with Pax3-Foxo1a expressing ARMS which 

have the lowest survival rate at 8% (Sorensen et al., 2002). 

 The break points that occur during the fusion at intron7 of Pax3 and intron1 of Foxo1a 

result in a chimeric protein that contains the Pax3, DNA-binding, paired-box and homeodomains 

as well as the forkhead (FKHR) transactivation domain from Foxo1a. In addition, this fusion 

results in the loss of a C-terminal, Pax3 mono-ubiquitination site that is involved in its 

degradation (Boutet et al., 2007), as well as the disruption of a Foxo1a, PKB/Akt dependent 

phosphoacceptor site which is involved in its nuclear export (Schwab et al., 2005, Brunet et al., 

1999, del Peso et al., 1999). These combined characteristics make Pax3-Foxo1a a much more 

potent transcription factor than either Pax3 or Foxo1a alone and can regulate the expression of all 

of the Pax3 target genes and many more (Zhang et al., 2009).   

 

Gene Regulation and Mechanisms that Prevent RMS from Achieving Terminal Differentiation  

 It is well documented that ectopic expression of Pax3-Foxo1a is repressive to myogenic 

differentiation in various cellular systems as well in Pax3-Foxo1a expressing transgenic mice 

(Calhabeu et al., 2013, Roeb et al., 2007). Pax3-Foxo1a is 100 fold more transcriptionally active 

than wild type Pax3 (Fredericks et al., 1995) and several studies support the transforming 
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properties of Pax3-Foxo1a including increased proliferation rates and accelerated tumor 

formation both in vitro and in vivo. Contributing to its potency, Pax3-Foxo1a is expressed in high 

quantities as it is able to regulate its own transcription via a positive feedback loop (Zeng et al., 

2010, Davis and Barr, 1997). In addition to enhancing cell proliferation, Pax3-Foxo1a regulates 

anti-apoptotic properties genes and suppressing terminal differentiation despite the expression of 

MRFs and MEF2 proteins (Bernasconi et al., 1996, Khan et al., 1999).  A central common theme 

that underlies the inability of Pax3-Foxo1a expressing and non-expressing subtypes to undergo 

terminal differentiation is the deregulation of MyoD activity despite its expression. A second 

commonality that is predominantly associated with ERMS but not ARMS, is the lack of p38 

MAPK induction, a potent activator of MEF2 and key requisite for chromatin remodeling and 

transcriptional control of muscle specific genes (Cox et al., 2003, Ramapalli et al., 2007). The 

intent of this section is to review the various mechanisms by which Pax3-Foxo1a de-regulates 

myogenic differentiation and how it cross-talks with various signaling pathways to achieve this. 

 The mechanisms by which the bHLH MRFs regulate skeletal myogenesis have been 

discussed in the previous section. With the basis that MyoD is a master switch, skeletal muscle 

specific transcription factor that controls myogenic differentiation, most studies regarding 

impaired differentiation in RMS have focused on MyoD. These studies revealed that even though 

MyoD can bind to its consensus DNA binding site, it exhibits poor transactivation in RMS 

(Tapscott et al., 1993). One mechanism by which this occurs is through inhibition of EGR1 

dependent transcription of p57
Kip2

 (Roeb et al., 2007). P57
Kip2

 plays a dual role in skeletal 

myogenesis: 1. It is a cell cycle inhibitor, 2. It stabilizes the MyoD / E-protein heterodimer 

interaction with DNA. Pax3-Foxo1a inhibits EGR1 by promoting its proteasomal degradation 

(Roeb et al., 2007). Another, Pax3-Foxo1a dependent mechanism that interferes with MyoD 
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transcriptional activity is through the up-regulation of histone methyltransferases such as KMT1A 

(Lee et al., 2011). MyoD is known to interact with histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) to regulate the temporal expression of muscle specific genes (Sartorelli 

and Puri, 2001). Pax3-Foxo1a promotes the expression of Jarid2 and KMT1A in ARMS cells 

(Walters et al., 2013, Mungamuri et al., 2012) and these target genes promote trimethylation of 

lysine 9 of histone 3 (H3K9me3) which suppresses the transcription of several MyoD target genes 

that promote skeletal myogenesis such as Myogenin and Myosin heavy chain. The effect of 

KMT1A can be reversed by p53 (Mungamuri et al., 2012) but since p53 is also defective in most 

RMS cases, most MyoD target gene promoter regions are predominantly trimethylated and hence 

repressed in Pax3-Foxo1a expressing ARMS. Despite trimethylation of the Myogenin promoter 

region, Myogenin is still highly expressed in RMS implicating a non-canonical MyoD 

independent mechanism for its transcriptional control.  

 

Cross-talk between Pax3-Foxo1a and Cell Signaling Pathways 

 In addition to its ability to deregulate MyoD transcriptional activity, genome wide studies 

in a variety of cell types have revealed both direct targets of Pax3-Foxo1a as well as a plethora of 

genes that are regulated as a consequence of the ARMS causing fusion protein. These are 

summarized and discussed in a well written review by Amy D. Marshall and Gerard C. Grosveld 

(Marshall and Grosveld, 2012). Interestingly it appears that ~95% of these genes are up-regulated 

by Pax3-Foxo1a and the few that are down-regulated are involved with cell cycle arrest or 

myotube formation. Since key transcription factors that are required for myogenic differentiation 

to occur are all expressed in RMS, it is likely that key post-translational modification of these are 
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defective. The next part of this section will discuss cross-talk between Pax3-Foxo1a expression 

and various critical signaling pathways involved in myoblast proliferation and differentiation.  

 

Pax3-Foxo1a and Tyrosine Receptor Mediated Growth Factors  

 Even though Pax3-Foxo1a down regulates Pax3 expression, it still up-regulates many 

Pax3 target genes and with greater potency (Keller et al., 2004, Kikuchi et al., 2008). One such 

target gene is fibroblast growth factor 4 (FGF4) which promotes cell proliferation (Figure 1.2), 

and tumorigenesis in both ERMS and ARMS (Cao et al., 2010). Although FGF4 is a requisite 

regulator of myoblast migration and proliferation through its tyrosine receptor kinase, during 

embryonic development (Webb et al., 1997), loss of FGF4 function is necessary for terminal 

differentiation to occur (Itoh et al., 1996). In ARMS, loss of FGF4 function reduces proliferation 

and tumorigenicity despite the expression of Pax3-Foxo1a (Cao et al., 2010). A second key 

tyrosine kinase receptor mediated growth factor that influences Pax3-Foxo1a induced 

tumorigenicity is Insulin-like growth factors 1/2 (IGF1/2), the receptors of which are direct Pax3-

Foxo1a targets (Makawita et al., 2009, Engert et al.,1996). Initially, IGF regulates myoblast 

proliferation (Figure 1.2) but subsequently promotes the expression of muscle specific genes as 

illustrated in figure 1.4 (Engert et al., 1996). Maintained IGF receptor signaling results in 

myotube hypertrophy in normal myogenic cells (Barton et al., 2010) however, in RMS the 

expression of key muscle genes that promote differentiation are not regulated through the same 

pathway despite IGF receptor activity (Xu and Wu et al., 2000), resulting in enhanced cell 

proliferation. 
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Pax3-Foxo1a and TGFβ signaling 

 TGFβ signaling inhibits skeletal myogenesis through two distinct mechanisms that 

promote cell proliferation and inhibit gene expression of key muscle regulatory factors such as 

Myogenin (Figure 1.3). It is therefore not surprising that the key effectors of TGFβ signaling 

Smad3/4 and ERK1/2 have been implicated and targeted in RMS (Wang et al., 2010, Guo et al., 

2007). Loss of Smad and ERK function studies have been shown to reduce tumorigenicity in non-

Pax3-Foxo1a ERMS cell types and promote apoptosis (Wang et al., 2010, Ye et al., 2006). 

Myostatin, a member of the TGFβ superfamily that is heavily linked with muscle related diseases 

inhibits myogenic differentiation through a Smad-dependent pathway (Kollias et al., 2006) is also 

highly active in RMS (Ricaud et al., 2003, Langley et al., 2004). Prevention of Myostatin 

secretion or binding to its activin-like receptor promotes differentiation of both Pax3-Foxo1a 

expressing and non-expressing RMS subtypes, by reducing translocation of Smad proteins into 

the nucleus and by activating p38 MAPK (Ricaud et al., 2003, Rossi et al., 2011). Repression of 

myogenic differentiation in ERMS is attributed to their inability to activate P38 MAPK (Puri et 

al., 2000). In addition to being a key activator of MEF2 factors, P38 MAPK also plays a key role 

in regulating cell cycle arrest (Perdiguero et al., 2007). Subsequent studies have shown that 

indirect stimulation of p38 MAPK through competitive inhibition of Myostatin, or more recently 

through the Notch signaling pathway, promotes cell cycle exit and reduces the tumorigenicity of 

RMS derived cells (Raimondi et al., 2013). 

 

Pax3-Foxo1a, Akt and GSK3β  



43 
 

 Akt is an intriguing regulator of RMS because in functional myoblasts, Akt is absolutely 

required for activation of muscle specific genes and prolonged induction of Akt results in 

myotube hypertrophy (Barton et al., 2010). Paradoxically, Akt has been shown to promote 

tumorigenicity in RMS despite its maintained activity by enhancing cell proliferation and more 

recently by increasing apoptosis resistance in hypoxic conditions (Wan and Helman, 2003, Kilic-

Eren et al., 2013). Cross-talk between Akt and a wide range of signaling pathways seems to affect 

its role in a myogenic context. For instance, TGFβ induces cell proliferation through PI3-K/Akt 

dependent phosphorylation and hence inhibition of cell cycle regulators, p21 and p27 (Fang et al., 

2012, Suwanabol et al., 2012). Once TGFβ signaling and possibly that of other growth factors 

ceases in myoblasts, p21/p27 activate cell cycle arrest despite the maintained activity of PI3-

K/Akt implicating that the effects of Akt are context dependent and that molecular pathways 

involving kinases and their substrates are complex and interlinked. ARMS is a great model to 

demonstrate this co-dependency. In ARMS, Akt phosphorylates and activates NFκB to promote 

cell proliferation (Sizemore et al., 1999, Wang et al., 2008) whereas another substrate GSK3β, 

which is anti-myogenic remains predominantly un-phosphorylated at S9 (Zeng et al., 2010), and 

hence constitutively active. These examples indicate how Akt preferentially activates proteins 

that enhance cell proliferation and survival in ARMS while ignoring its well documented pro-

myogenic targets. 

 GSK3β has been extensively discussed in a previous section and its activity is specific to 

Pax3-Foxo1a expressing ARMS subtypes (Zeng et al., 2010). GSK3β has already been shown to 

phosphorylate the chimeric Pax3-Foxo1a oncogenic protein (Zeng et al., 2010), however it is 

unclear if this phosphorylation increases its transcriptional activity, potency or even creates a 

positive feedback loop that maintains GSK3β activity. Since pharmacological inhibition of 
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GSK3β reduced cell proliferation and tumorigenicity of RH30 cells whilst promoting the 

myogenic program, we decided to further investigate its role in both the contexts of myogenic 

differentiation and ARMS.  Both studies are documented and discussed in the next two chapters. 

 

Pax3-Foxo1a loss of function 

 In ARMS, the chimeric Pax3-Foxo1a has been shown to affect the process of skeletal 

muscle differentiation by disrupting a huge variety of signaling pathways and their downstream 

effectors, promoting malignant phenotypes such as cell proliferation, motility, and to suppress 

differentiation. Loss of Pax3-Foxo1a function studies using RNAi reduced the number of 

proliferating cells by causing them to accumulate in the G1 phase of the cell cycle, as well as 

decreased motility and hence mesenchymal-to-epithelial transition (Kikuchi et al., 2008). In 

addition, these studies also revealed increased levels of myogenic proteins involved in muscle 

differentiation and morphology, including Myogenin (Kikuchi et al., 2008). 
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Statement of Purpose 

 

 Skeletal myogenesis is a critical and highly regulated process during embryonic 

development, and is primarily orchestrated by MRF and MEF2 transcription factors. The overall 

purpose of my research has been to better understand the molecular basis for alveolar 

rhabdomyosarcoma, a highly malignant mesenchymal tumor that originates from poorly 

differentiated, immature, striated muscle tissue and occurs despite the expression of MRF and 

MEF2 proteins. Recently, cell signaling by extracellular stimuli such as growth factors have been 

shown to regulate MRF and MEF2 transcriptional activity by causing posttranslational 

modifications. Protein kinases are key effectors of these signaling cascades, and phosphorylation 

of their substrates affects their ability to bind DNA or protein cofactors, hence influencing their 

transcriptional activity.   

 Previous studies have shown that enhanced GSK3β activity inhibits myogenic 

differentiation and additionally, GSK3β activity has been strongly associated with alveolar 

rhabdomyosarcoma. Since GSK3β phosphorylation of its substrates is typically inhibitory, 

usually leading to their proteasomal degradation, I wanted to investigate whether GSK3β could 

directly phosphorylate MEF2 and/or MRF transcription factors.   

 Research in our lab has systematically focused on documenting MEF2 phosphorylation 

patterns in mammalian systems. These efforts have resulted in the discovery of a crucial 

phosphoacceptor site, S255 that regulates MEF2A stability and function (Cox et al., 2003). The 

ubiquitous phosphorylation of S255 in several cell types, coupled with its role in MEF2A 

stability, points to a role for GSK3β.  To address this hypothesis, a series of experiments were 

conducted to determine whether or not GSK3β could indeed regulate MEF2A function and 
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expression in skeletal muscle, either directly by phosphorylation or indirectly. The findings and 

implications of this study are discussed in Chapter 2. 

 A paradoxical feature of alveolar rhabdomyosarcoma is the expression of Myogenin. 

Myogenin is a downstream MEF2 and MyoD target gene, and its expression functions to promote 

cell fusion by activating structural muscle genes and hence promoting myogenic differentiation. 

Despite Myogenin expression, ARMS cell types do not undergo terminal differentiation, therefore 

we hypothesized that something was inhibiting Myogenin transcriptional activity. Since GSK3β 

has already been implicated in alveolar rhabdomyosarcoma, coupled with the presence of several 

GSK3 phosphoacceptor sites on Myogenin, we wanted to examine whether or not Myogenin was 

indeed a GSK3β substrate and if this abrogated Myogenin function. A series of experiments 

which included gain or loss of function assays as well as mutational analysis of these proteins 

were conducted to address this hypothesis. The findings and implications of this study are 

discussed in Chapter 3. 

 Finally, our lab has identified a novel MEF2 target gene, the tumor suppressor protein, 

KLF6 (Salma and McDermott, 2012) that is also a GSK3β substrate in hepatocellular carcinoma 

(Okcu et al., 2013), and that has also recently been identified in the skeletal muscle transcriptome 

(Blais et al., 2005). Since GSK3β and MEF2 have opposite effects on skeletal myogenesis and 

since the role of KLF6 in a myogenic context was unknown, we wanted to examine KLF6 

regulation and function in myoblasts using loss of function assays. The findings and implications 

of this study are discussed in Chapter 4.   

 

 

 



47 
 

 The following chapter has been published as a research article in the Journal of Molecular 

and Cellular Cardiology in a slightly modified format (Jan 2013). Contributing authors: MG 

Dionyssiou, NB Nowacki, S Hashemi, J Zhao, A Kerr, RG Tsushima, JC McDermott.  

 The experimental design, figures and data presented in this chapter are mostly of my own 

efforts with the following exceptions. NB Nowacki who is an equal co-author made the initial 

observation that MEF2A was regulated by pharmacological inhibition of GSK3 and produced the 

data in figures 2.1B, 2.2A-C. Animal husbandry was performed by S Hashemi who also provided 

the data in figures 2.4A-C, as well as J Zhao who provided the data in figure 2.5. Heart samples 

from a cardiac-specific Cre-Lox excision of exon 2 of the GSK3β gene were provided by A Kerr 

and RG Tsushima and used in figures 2.4A and 2.4C. JC McDermott assisted with experimental 

design and with editing the manuscript. Catherine Chan provided technical support throughout the 

study.   
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Cross-talk between glycogen synthase kinase 3β (GSK3β) and p38MAPK regulates myocyte 

enhancer factor 2 (MEF2) activity in skeletal and cardiac muscle 

2.1 Abstract 

 Glycogen synthase kinase 3β (GSK3β) is a known regulator of striated muscle gene 

expression suppressing both myogenesis and cardiomyocyte hypertrophy. Since myocyte 

enhancer factor 2 (MEF2) proteins are key transcriptional regulators in both systems, we assessed 

whether MEF2 is a target for GSK3β. Pharmacological inhibition of GSK3β resulted in enhanced 

MEF2A/D expression and transcriptional activity in skeletal myoblasts and cardiac myocytes. 

Even though in silico analysis revealed GSK3β consensus (S/T)XXX(S/T) sites on MEF2A, a 

subsequent in vitro kinase assay revealed that MEF2A is only a weak substrate. However, we did 

observe a posttranslational modification in MEF2A in skeletal myoblasts treated with a GSK3β 

inhibitor which coincided with increased p38MAPK phosphorylation, a potent MEF2A activator, 

indicating that GSK3β inhibition may de-repress p38MAPK. Heart specific excision of GSK3β in 

mice also resulted in up-regulation of p38MAPK activity. Interestingly, upon pharmacological 

p38MAPK inhibition (SB203580), GSK3β inhibition loses its effect on MEF2 transcriptional 

activity suggesting potent cross-talk between the two pathways. Thus we have documented that 

cross-talk between p38MAPK and GSK3β signaling converges on MEF2 activity having 

potential consequences for therapeutic modulation of cardiac and skeletal muscle gene 

expression. 
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2.2 Introduction 

 Mitogen activated protein kinase (MAPK) signaling pathways are prominently involved in 

many cellular processes including cell proliferation and growth [1], development, migration [2] 

and differentiation [3,4]. Deregulation of MAPK signaling almost invariably leads to 

developmental defects and diseases including cardiac hypertrophy, muscular atrophy and cancer 

[5]. Proper regulation of this pathway in the context of elaborate and highly complex signaling 

networks within the cell is strongly dependent on communication with other signaling molecules, 

resulting in either synergistic or antagonistic relationships that produce a spectrum of biological 

outcomes. Understanding the nature of cross-talk between signaling pathways is indeed a major 

hurdle to understanding the molecular basis of all cellular processes. In the studies described here, 

we take advantage of the convergence of several signaling pathways on the MEF2 family of 

transcriptional regulators in order to gain insight into how cross-talk between GSK3β and 

p38MAPK
 
signaling influence a single effector molecule which functions as a signaling conduit 

for the control of cardiac and skeletal muscle gene expression. 

 

MEF2 proteins belong to the MADS (MCM1, agamous, deficiens serum responsive factor) 

superfamily of transcription factors. There are four isoforms of MEF2 in vertebrates, MEF2A-D 

that contain a highly conserved 57aa MADS-box domain at their amino-termini immediately 

adjacent to their 29aa MEF2 domain. Collectively these two domains are involved with DNA-

binding, dimerization and interaction with co-factors. MEF2 factors regulate transcription as 

homo- or heterodimers by binding to the consensus DNA sequence (C/T)TA(A/T)4TA(G/A) 

found in the regulatory regions of most cardiac and muscle specific genes [9,10].  Less conserved 

amongst the MEF2 isoforms are the C-termini which are subject to alternative splicing [11,12] 
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and a variety of posttranslational modifications such as acetylation [13-15], sumoylation [16,17] 

and phosphorylation, many of which have proved important in regulating MEF2. 

 

Previous studies have identified several kinases that regulate MEF2 transactivation properties. 

Casein kinase II (CK2) phosphorylates MEF2C at serine 59 enhancing its DNA binding capacity 

and hence transcriptional activity [18]. ERK5 interacts with the N-termini of MEF2A/C/D [19] 

and can phosphorylate serine 387 in the transactivation domain [20]. Of the kinases that target 

MEF2, p38MAPK has been most extensively studied and deemed to be a key requisite for 

skeletal and cardiac muscle differentiation. Defects in this pathway have also been associated 

with muscle related diseases, such as embryonal rhabdomyosarcoma (ERMS) [21]. MEF2A has 

multiple p38MAPK phosphoacceptor sites as indicated by mass spectrometric analysis [8] and all 

four isoforms have been repeatedly demonstrated to be activated by this kinase. During 

embryogenesis, p38MAPK activation of MEF2 is necessary for proper heart development [23] 

and is also involved in cardiac hypertrophy in adult heart tissue, both in vivo and in vitro [22,23]. 

Similarly, as well as being a key regulator of skeletal myogenesis in vitro, p38MAPK critically 

interacts with and activates MEF2 in the somite myotome during development [24]. Thus MEF2 

is a key convergence point for several cellular signaling pathways in the control of striated muscle 

gene expression. 

 

Two kinases that actively repress skeletal and cardiac muscle differentiation are PKA and 

GSK3β. Whilst the effect of PKA has been shown to be mediated through repression of MEF2 

transactivation properties [25], the effect of GSK3β on this process is less clear. GSK3β is 

involved in multiple cellular processes including glycogen metabolism, embryonic development, 
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cell proliferation and apoptosis [26,27]. Several unique features distinguish GSK3 from other 

protein kinases; it is constitutively active in unstimulated cells and paradoxically, it is inhibited in 

response to cellular signals such as growth factors [28]. More importantly phosphorylation of its 

substrates often leads to their subsequent ubiquitylation followed by proteasomal degradation 

[26]. GSK3β usually targets proteins that have already been phosphorylated by another kinase at 

a serine or threonine residue located four amino acids C-terminal to a consensus (S/T)XXX(S/T)-

PO4 motif [26,27]. In addition to this canonical consensus recognition sequence, GSK3β has been 

shown to phosphorylate KSP motifs in neurofilament proteins [29] and microtubule associated 

proteins [30] leading to their inactivation.  

 

GSK3β has been studied extensively in insulin and Wnt signaling. Upon insulin binding to its 

receptor, activation of the phosphtidylinositol-3-kinase (PI3K) pathway occurs, leading to 

phosphorylation and hence inactivation of serine 9 on GSK3β via protein kinase B (PKB) [31] as 

well as C-terminal phosphorylation on serine 389 by p38MAPK [38]. In a myogenic context, 

PI3K activation has been shown to lead to cardiac and skeletal muscle hypertrophy 

[6,7,26,28,32,33] as well as being an activator of p38MAPK [34] and a co-requisite for 

p38MAPK induced chromatin remodeling [35,36]. Defects in the PI3K pathway lead to activation 

of GSK3β and consequently repression of myogenic differentiation [35]. In kidney cells induction 

of GSK3β results in the repression of JNK and p38MAPK through the inhibition of their 

upstream mitogen activated protein kinase kinase kinase (MAPKKK), MEKK4 [37]. Thus there 

is considerable circumstantial evidence suggesting an intersection between GSK3β and 

p38MAPK signaling pathways.   
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In this report, based initially on informatics analysis, we hypothesized that GSK3β is involved in 

the regulation of cardiac and skeletal muscle gene expression either by directly phosphorylating 

and hence destabilizing MEF2, or indirectly abrogating MEF2 activity through inhibition of 

p38MAPK. Whilst we report that MEF2A is a weak substrate of GSK3β in vitro we document 

that GSK3β activity represses MEF2 transactivation properties in both skeletal and cardiac 

myocytes both in vitro and in vivo. Pharmacological inhibition of GSK3β resulted in (i) increased 

MEF2 activity and (ii) de-repression of p38MAPK. Heart specific excision of GSK3β also 

resulted in up-regulation of p38MAPK activity. Gain of function assays using constitutively 

active GSK3β (S9A) repressed MEF2 activity which can be counteracted by exogenous activation 

of p38MAPK. Based on these data we propose integration of GSK3β and p38MAPK into the 

signaling network converging on the MEF2 transcription factors regulating both skeletal and 

cardiac gene expression. 

2.3 Materials and Methods 

Plasmids 

MEF2 and MCK reporter constructs (pMEF2, pMCK, pMCKΔMEF2) in pGL3 and expression 

vectors for MEF2A in pMT2 were used in reporter gene assays. The Gal4-MEF2A fusions have 

been described previously [43]. HA tagged Pax3-fkhr was cloned into pcDNA3.1 and kindly 

donated by Dr. Malkin and Adam Durbin at MaRS, Toronto. HA tagged GSK3β(S9A) was 

cloned in pcDNA3 ORF 995-2305. p38 and MKK6(EE) expression vectors were previously 

described [8]   

Antibodies 

Anti-MEF2A rabbit polyclonal antibody was produced with the assistance of the York University 

Animal Care Facility; anti-MEF2D (1:1000; BD Biosciences); β-catenin, phospho-β-catenin, p38, 
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phospho-p38, ATF2, phospho-ATF2 and GSK3β (1:1000; Cell Signaling); actin, α/β-tubulin 

(1:2000; SantaCruz) were used for immunoblotting experiments.  

Cell culture and transfection 

C2C12 and RH30 cells were maintained in DMEM supplemented with 10% fetal bovine serum 

(HyClone), 1% L-glutamine and 1% penicillin-streptomycin. Cells were maintained in a 

humidified, 37
o
C incubator with a 5% CO2 atmosphere. For transfections, cells were seeded 1 day 

prior to transfection and transfected according to the standard calcium phosphate method 

previously described by Perry et al. A mixture of 50μl 2.5M CaCl2 per 25μg DNA with an equal 

volume of 2x HeBS (2.8M NaCl, 15mM Na2HPO4, 50mM HEPES, pH=7.15) was used and the 

cells were and incubated overnight followed by washing and addition of fresh media.  (2001) 

[54]. Neonatal Cardiomyocytes were isolated from 2- to 5-day old rats. Whole hearts were 

separated and minced in a buffer solution (calcium and Bicarbonate Free Hanks with Hepes) and 

then dissociated into single cells by trypsin enzyme (Gibco) during repeated digestion with slow 

stirring. 10% FBS (Sigma) DMEM F12 (w/1% Penicillin/Streptotocin, 50 mg/L gentamycin 

sulfate) (Invitrogen) was added to the suspended cells and centrifuge for 10 mins in 1200 rpm. 

The pellet was resuspended in medium. The isolated cells were plated for 30 to 60 minutess at 

37
o
C, allowing differential attachment of non-myocardial cells. The cardiomyocyte cells were 

counted and transferred to pre-gelatin coated plates.  

 

The HL1 cardiac cell line was cultured in Claycomb Medium (Sigma Aldrich) supplemented with 

100μM norepinephrine (Sigma Aldrich), 10% FBS and 4mM L-glutamine (invitrogen). Cells 

were maintained in a humidified 37°C incubator with 5% CO2. The HL-1 cell line was originally 
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established from an AT-1 subcutaneous tumor excised from an adult female Jackson Laboratory 

inbred C57BLy6J mouse. 

Transient transfections in neonatal cardiomyocytes and HL-1 cells were performed using 

lipofectamine 2000. A 1:2.5 mixture ratio of DNA to lipofectamine in 250 µl Opti-Medium 

(Gibco) was prepared for a 4h incubation.  

Protein extractions, immunoblotting and reporter gene assays 

Cells were harvested using an NP-40 lysis buffer (0.5% NP-40, 50mM Tris-HCl [pH 8.0], 

150mM NaCl, 10mM sodium pyrophosphate, 1mM EDTA [pH 8.0], 0.1M NaF) containing 

10μg/ml leupetin and aprotinin, 5μg/ml pepstatin A, 0.2mM phenylmethylsulfonyl fluoride and 

0.5mM sodium orthovanadate. Protein concentrations were determined using the Bradford 

method (Bio-Rad) with bovine serum albumin (BSA) as a standard. 20μg of total protein extracts 

were used for immunoblotting, diluted in sample buffer containing 5% β-mercaptoethanol and 

boiled. 

  

Transcriptional assays were done using luciferase reporter plasmids. The cells were harvested for 

these assays using 20mM Tris, (pH 7.4) and 0.1% Triton-X 100 and the values obtained were 

normalized to β-galactosidase activity expressed from a constitutive SV40 driven expression 

vector and represented as relative light units (RLU) or in some cases corrected Luciferase values 

for control, reporter alone transfections were arbitrarily set to 1.0, and fold activation values were 

calculated. Bars represent the mean (n=3) and error bars represent the standard error of the mean 

(n=3).  
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Independent two sample t-tests of all quantitative data were conducted using R software. P-values 

are indicated with respect to controls where appropriate. 

In vitro kinase assay 

2.5μg of purified recombinant GST-MEF2A (1-507) was mixed with 0.5μg purified recombinant 

GST-GSK3β (1-433; Cell Signaling) and with [γ-
32

P] ATP and incubated for 30min at 37
o
C. 

Samples were denatured for 5min at 95
o
C in SDS sample buffer. Protein samples were then 

separated by 10% SDS-PAGE and exposed on X-ray film (Kodak X-Omat) for 21hrs to detect 
32

P 

incorporation.  

Animal treatment with GSK3 inhibitor in vivo 

LacZ-MEF2 Transgenic mice were used in this study. Two groups of male mice (n=4/each group) 

at 3 months old were used. The mice received i.p. injections of 0.6 M LiCl or 10mM sterile PBS 

daily for 30 days. Mice were sacrificed by cervical dislocation. The apexes of heart and 10μm 

transverse sections of the skeletal muscles were fixed with 2% paraformaldehyde in PBS for 30 

min. After being washed three times with PBS, the samples were incubated with X-Gal solution 

(5mM ferrocyanide, 5mM ferricyanide, 2mM MgCl2, and 1 mg/ml X-Gal) at 37°C.  

Embryo treatment with GSK3 inhibitor in vitro 

The MEF2-LacZ transgenic mouse embryos were dissected at 9.5 dpc from timed pregnant mice 

and cultured in a 24-well plate with 1 ml DMEM/10% FBS containing 50μM GSK3β inhibitor 

TD-8 or solvent only (served as the control) at 37°C for 24h. After incubation, the embryos were 

fixed with 2% paraformaldehyde for 30 min. The embryos were rinsed twice with PBS, and then 

immersed in X gal staining solution (5mM ferrocyanide; 5mM ferricyanide; 2mM MgCl2; 

1mg/ml X gal) at 37°C. 
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2.4 Results 

Pharmacological inhibition of GSK3β enhances MEF2 transcriptional activity in skeletal 

myoblasts 

 Given that GSK3β suppresses myogenic differentiation [39,40] and that phosphorylation 

by GSK3β is generally inhibitory to protein function, it was hypothesized that the 

pharmacological inhibition of GSK3β might regulate MEF2A transcriptional activity. To test this 

hypothesis, C2C12 myoblasts were transfected with MEF2A and were treated with increasing 

concentrations (1-50μM) of AR-A014418, a GSK3 inhibitor [41]. MEF2 activity was assessed 

using a 3x MEF2-Luciferase construct, a reporter gene containing three copies of the MEF2 cis 

element. These data illustrate enhanced transcriptional activity of both endogenous (p<0.001) and 

ectopically expressed MEF2 (supplementary data) in a dose dependent manner upon GSK3β 

inhibition. The optimum concentration of AR-A014418 treatment was determined to be 10μM 

(p<0.001) and, the effect of this treatment on MEF2A transcriptional activity is depicted in figure 

2.1a.  To further corroborate this, the effect of GSK3β on the muscle creatine kinase (MCK) 

enhancer, a physiological MEF2 target, was also analyzed (Fig. 2.1b). The MCK enhancer is 

useful in studying muscle specific gene expression as it is highly dependent on MEF2, CARG-

box and E-box cis elements during myogenesis. Therefore, myoblasts were co-transfected with 

MEF2A and either the wild type MCK-Luciferase construct or an alternate version containing 

mutated MEF2 binding sites (MCK-Luc ΔMEF) and treated with 10μM AR for 19h. Data 

revealed that GSK3β inhibition enhanced MCK-Luc activity (p<0.001) and that this effect was 

abrogated when the MEF2 sites are mutated, hence demonstrating that the effect of GSK3β is 

primarily through the MEF2 cis element (Fig. 2.1b). As a consequence it was hypothesized that 

the effects of GSK3β inhibition were mediated by modulation of MEF2A transactivation 
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properties. GSK3β is predicted to phosphorylate the first serine or threonine in the consensus 

sequence (S/T)XXX(S/T) of its substrates preferably with the +4 serine or threonine already 

primed by phosphorylation by a different kinase [26,27], although this is not absolutely required. 

In human MEF2A, in silico analysis revealed several potential GSK3β phosphoacceptor sites. To 

begin to determine whether MEF2A is indeed a substrate for GSK3β, an in vitro kinase assay was 

performed using GST-MEF2A 1-507, purified GST-GSK3β and γ-
32

P ATP. Bands were resolved 

using SDS-PAGE and revealed radio-labeled bands for autophosphorylated GSK3β and MyBP (a 

positive control). A very weak radio-labeled band for MEF2A was detected compared to the 

positive control (MyBP) and we therefore concluded that MEF2A was at best a weak GSK3β 

substrate in vitro. We subsequently hypothesized that any effects caused by manipulation of 

GSK3β on MEF2A activity were indirect.  
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Figure 2.1: Pharmacological GSK3β inhibition enhances (a) MEF2-Luc and (b) MEF2A 

transactivation of the MCK enhancer. C2C12 myoblasts were maintained in GM and 

transiently transfected with either pMT2 or pMT2-MEF2A and MCK-Luc with or without the 

MEF2 binding sites mutated. Luciferase activity was assessed using the respective reporter genes 

mentioned above and normalized to β-galactosidase activity. Cells were either treated with 10μM 

AR-A014418 (unless otherwise depicted) or solvent (DMSO) for 19h prior to harvesting. Data 

are the mean + S.E. (n=3). ** indicates a significant difference with respect to the control 

(p<0.001) and # indicates no significant change.  
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GSK3β inhibition causes a post translational modification in MEF2A and this correlates with 

increased p38MAPK phosphorylation in skeletal myoblasts. 

 Since a common mode of GSK3β regulatory activity is through modification of protein 

stability (e.g. β-catenin) [42], we also tested the effect of GSK3β on MEF2A protein expression 

levels. If GSK3β can indeed directly phosphorylate MEF2A, then GSK3β inhibition should either 

result in an increase in MEF2A expression or enhanced stability. To test this hypothesis, skeletal 

myoblasts were cultured and treated with increasing concentrations (0.1-50mM) AR-A014418 for 

4h. Western immunoblotting revealed increasing MEF2A expression levels with increasing 

concentration of GSK3β inhibition, 0-50μM AR-A014418 and that also corresponded with an 

obvious change in MEF2A gel migration (Fig. 2.2a). A lower mobility, high molecular weight 

form of MEF2A that is post-translationally modified has already been identified [43] and at 

50μM AR-A014418, the faster migrating band shifted and merged with this slower migrating 

band forming a single, high molecular weight MEF2A band. This strongly suggests that MEF2A 

underwent a post-translational modification [8,43]. Modification of MEF2A was obviously not 

due to GSK3β phosphorylation (since it was inhibited) and was reminiscent of effects that we 

have observed and documented before with p38MAPK [8]. Therefore we went on to test the 

possibility that GSK3β inhibition might cause p38MAPK phosphorylation using 50μM AR-

A014418 as well as a second GSK3β inhibitor, TDZD-8 [44]. The results are depicted in figure 

2.2(b) and illustrate that the MEF2A band shift observed at 50μM AR-A014418 corresponds with 

increased levels of phospho-p38MAPK. Similarly increasing concentrations (1-10μM) of TDZD-

8 resulted in increased phospho-p38MAPK protein levels as well a MEF2A band shift (Fig. 2.2b). 

Finally, we conducted a time course experiment with 50μM AR-A014418 treatment for 0-24h 

and looked at the effect of GSK3β inhibition on (i) p38MAPK activity (ii) ATF (a known 
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p38MAPK substrate) and, (iii) β-catenin (a known GSK3β substrate, Fig. 2.2c). The results show 

activation of p38MAPK within 30min of GSK3β inhibition and subsequent phosphorylation of its 

substrate, ATF which also coincided with the observed MEF2A band shift. These effects become 

increasingly prominent with time. De-phosphorylation of the GSK3β target, β-catenin was also 

observed at 2-24h indicating that the drug treatment worked.  
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Figure 2.2: GSK3β inhibition results in a (a) posttranslational modification of MEF2A in 

skeletal myoblasts which coincides with (b) the activation of p38MAPK and (c) activation of 

p38MAPK substrates. C2C12 myoblasts were maintained in growth conditions for 48h and 

subsequently treated with GSK3β inhibitors, AR-A014418 (0.1-50μM), TDZD-8 (1-10μM) or 

solvent (DMSO) as indicated above. Following drug treatment, cells were lysed and equal 

amounts of protein (20μg) were used for Western Blot analysis. The levels of the indicated 

proteins were assessed by a standard immunoblotting technique using specific primary antibodies 

for each. α-Actin and α/β-Tubulin were used as loading controls for figures 2.2(a) and 2.2(b) 

respectively. The arrows in figure 2.2(a) indicate MEF2A; the arrow with an asterisk points to a 

low mobility, high molecular weight form of MEF2A that has undergone a posttranslational 

modification. Figure 2.2(b) shows that this posttranslational modification occurs upon treatment 

with either AR-A014418 or TDZD-8 and that this coincides with enhanced p38 phosphorylation. 

(c) Total and phosphorylated protein levels of GSK3β and p38MAPK substrates were compared 

0-24h upon 50μM treatment of AR-A014418. Activation of p38MAPK coincides with subsequent 

activation of its substrate, ATF as well as the observed MEF2A band shift. Similarly, GSK3β 

repression causes de-phosphorylation of its substrate, β-catenin.  
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Pharmacological inhibition of p38MAPK antagonizes the enhancement of MEF2 transcriptional 

activity caused by GSK3β inhibition in myoblasts. 

 Based on our observations we next tested the possibility that GSK3β inhibition indirectly 

activates MEF2 through a corresponding de-repression of p38MAPK. To test this idea, we 

transfected C2C12 myoblasts with MEF2A, using 3xMEF2-Luc to assess MEF2 transcriptional 

activity and β-galactosidase activity as a control for transfection efficiency. We then treated the 

transfected cells with or without 10μM AR-A014418 with either 5μM p38MAPK specific 

inhibitor, (SB203580) or its negative control, (SB202474) for 6h prior to harvesting.  We 

hypothesized that if GSK3β indeed enhances MEF2 transcriptional activity through p38MAPK, 

then AR-A014418 would lose its effect when p38MAPK is inhibited. The results show that a 6h 

treatment with 10μM AR-A014418 enhances exogenous MEF2A transcriptional activity 

(p<0.001) and that effect is reduced in the presence of 5μM SB203580 (Fig. 2.3a). This effect is 

clear considering that in the presence of 5μM SB202474 (which was used as a negative control) 

10μM AR-A014418 still enhanced MEF2 transcriptional activity (p>0.01). To confirm that 

indeed this effect was caused by MEF2 transactivation and not an increase in protein levels, 

western blot analysis was included and revealed no enhanced MEF2A/D protein expression 

levels.   

Constitutively active GSK3β(S9A) mutation reduces MEF2 transcriptional activity and this effect 

is rescued by p38MAPK 

 Since MEF2 activation by GSK3β inhibition was determined to be dependent on 

p38MAPK activity, we wanted to determine whether p38MAPK could rescue MEF2 inhibition by 

GSK3β. Myoblasts were therefore co-transfected with either pMT3 or p38/MKK6(EE) and 

pcDNA3.1 or GSK3β(S9A). Endogenous MEF2 activity was assessed using MEF2-Luc as 
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described above. The data revealed that MEF2 transcriptional activity was potentiated by 

p38/MKK6(EE) (p<0.01) and repressed by GSK3β(S9A) (p<0.01, fig. 2.3b). Interestingly, the 

combination of the two activated kinases resulted in neither activation nor repression of MEF2 

compared to the control. This could mean one of two things: either activation of p38MAPK 

partially rescues MEF2 repression by GSK3β or that GSK3β represses p38MAPK induced 

activation of MEF2. Regardless, cross-talk between these two signaling pathways converges at 

MEF2 activity.  However to address this question, p38MAPK protein expression and 

phosphorylation levels were analyzed under these conditions (Fig. 2.3c). MKK6(EE) increased 

phosphorylation of p38 as expected (lane 2), however in the presence of active GSK3β(S9A), 

MKK6(EE) lost its ability to phosphorylate p38 (lane 3). This effect was only rescued upon 4h 

treatment with 50μM AR-A014418 (lane 4). GFP was used as a control for transfection efficiency 

and actin was used as a loading control. If GSK3β inhibited the p38MAPK pathway upstream of 

MAP2K as suggested in the literature [37] then ectopically expressed activated MKK6(EE) 

should have rescued p38 phosphorylation. However based on these data, this was not the case and 

therefore we conclude that regulation of p38 phosphorylation by GSK3β is at the MAPK level. 
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Figure 2.3: MEF2-Luc assays: (a) Inhibition of p38MAPK reduces MEF2A transcriptional 

activity mediated by GSK3β inhibitor. C2C12 myoblasts were treated with different 

combinations of 10μM AR-A014418 or solvent DMSO with or without 5μM of p38 inhibitor, 

SB203580 or its negative control, SB202474 for 6h prior to harvesting. The data is coupled with 

western blot analysis of MEF2A and D protein expression levels under the same conditions with 

actin used as a loading control. (b) MEF2 activity is repressed by constitutively active 

GSK3β(S9A) and enhanced by activated p38MAPK. Myoblasts were co-transfected with 

either pMT3 or p38/MKK6(EE) and pcDNA3.1 or GSK3β(S9A) and subsequently treated with 

either 10μM AR-A014418 or DMSO as indicated, 19h prior to harvesting. Data are the mean + 

S.E. (n=3). ** indicates a significant difference with respect to the control (p<0.001), *indicates a 

significant difference with respect to the control (p<0.05) and, # indicates no significant change. 

(c) Activated GSK3β(S9A) de-phosphorylates MKK6(EE) activated p38. Myoblasts were 

transfected with different combinations of active MKK6(EE), GSK3β(S9A) or both and treated 

with or without 50μM AR-A014418 and 5μM SB203580 as indicated.  
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GSK3β inhibition enhances endogenous MEF2 activity in primary neonatal cardiomyocytes and 

HL-1 cells. 

 Since MEF2 proteins are crucial regulators of cardiac morphogenesis [45], vascular 

development [46], cardiac remodeling [47,48] and cardiac hypertrophy [49] we hypothesized that 

GSK3β might regulate the effect of MEF2 in the heart as well. To test this idea we used two in 

vitro models. In the first, neonatal cardiomyocytes were extracted, isolated and cultured before 

being transfected with pGL4-3xMEF2 Luciferase to assess MEF2 transcriptional activity upon 

19h treatment with increasing concentrations (0-10μM) of AR-A014418 (data not shown). In the 

second model, endogenous MEF2 activity was measured in HL-1 immortalized cardiac cells 

treated with either solvent (DMSO) or 10μM AR-A014418 (data not shown). In both cell culture 

models, MEF2 transcriptional activity is enhanced by GSK3β inhibition in a dose dependent 

manner similar to the data observed in our skeletal myoblast model.  

Pharmacological GSK3β inhibition or CreLox mediated GSK3β excision in the heart causes 

increased p38MAPK activity in cardiac myocytes both in vitro and in vivo. 

 To assess whether GSK3β suppression of MEF2 in cardiomyogenesis is through the 

regulation of MEF2A/D protein expression or indirectly through p38MAPK, we analyzed 

endogenous protein levels by a standard western immunoblotting technique upon 4h treatment 

with increasing concentrations (0-20μM) of AR-A014418 in primary neonatal cardiomyocytes. 

The data clearly depicts enhanced phosphorylation of p38MAPK in a dose dependent manner up 

to the 10μM drug treatment but no further elevation at 20μM (data not shown). In vivo analysis of 

GSK3β effects on p38MAPK activity in cardiac tissue was achieved by analyzing cardiac specific 

Cre-Lox excision of exon 2 of the GSK3β gene. The Cre recombinase was flanked by a 

tamoxifen-inducible mutated estrogen receptor under the control of an α-MyHC promoter to 
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render it cardiac specific and Cre expression was activated at 10-12 weeks by treating the mice 

with 20mg/kg tamoxifen citrate for four consecutive days. Heart tissue from these mice was then 

isolated and lysed for protein analysis by western immunoblotting and protein levels were 

quantified using quantitative western blotting (LiCor odyssey system). Data analysis revealed a 

substantial decrease in GSK3β in three independent floxed tamoxifen treated mice; residual 

GSK3β likely emanates from non-cardiac cells such as fibroblasts (in which Cre would not be 

activated). This cardiomyocyte excision of GSK3β resulted in a 2.5-3 fold increase in 

phosphorylated p38 (Fig. 2.4a).  

GSK3β inhibition enhances MEF2 transcriptional activity through p38MAPK in cardiomyocytes 

as well as downstream target, ANF promoter activity and expression. 

 Primary neonatal cardiomyocytes and HL-1 cells were treated with 10μM AR-A014418 

and either 5μM p38MAPK specific inhibitor, SB203580 or SB202474 (an inactive analog) as 

described above, for 6h before measuring MEF2 transcriptional activity. P38MAPK inhibition 

reduces the enhancement of MEF2 activity by 7-fold (p<0.001) in primary cardiomyocytes (fig. 

2.4b) resulting from GSK3β inhibition. Furthermore, we assessed that GSK3β inhibition 

enhanced ANF-Luc promoter activity (p<0.01) but not an alternate version containing mutated 

MEF2 sites (ANF-Luc ΔMEF2). Protein samples from GSK3β floxed mice revealed enhanced 

ANF protein levels but no change in MEF2A/D protein expression levels, supporting the idea that 

GSK3β regulates MEF2 transactivation properties and not protein expression levels (Fig. 2.4c). 
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Figure 2.4: (a) In vivo, phospho-p38 protein levels are elevated 3-fold in GSK3β knockout 

mice. Cardiomyocytes from GSK3β (-/-) mice were lysed and equal amounts of protein (20μg) 

were used for Western Blot analysis. The levels of the indicated proteins were assessed by a 

standard immunoblotting technique using specific primary antibodies for each as indicated and 

quantified using the Odyssey system (n=3). (b) Inhibition of p38MAPK reduces MEF2A 

transcriptional activity mediated by GSK3β inhibitor. Primary neonatal cardiomyocytes were 

treated with different combinations of 10μM AR-A014418 or solvent DMSO with or without 

5μM of p38 inhibitor, SB203580 or its negative control, SB202474 for 6h prior to harvesting. 

Data are the mean + S.E. (n=3). ** indicates a significant difference with respect to the control 

(p<0.001), *indicates a significant difference with respect to the control (p<0.05) and, # indicates 

no significant change. (c) GSK3β inhibition enhances (i) transactivation of ANF promoter 

through MEF2 and (ii) ANF protein expression levels. The effect of 10μM AR-A014418 or 

solvent DMSO was assessed on ANF-Luc and an analog with the MEF2 site mutated (ANF-Luc 

ΔMEF2) together with ANF and MEF2A/D expression levels in cardiomyocytes from GSK3β (-/-

) mice.  

   

In vivo inhibition of GSK3β enhances MEF2 activity in the hearts of MEF2-LacZ transgenic 

mice.  

 To further investigate this possible cross-talk between GSK3β and p38MAPK we used a 

third known GSK3β inhibitor, lithium chloride (LiCl) and administered either 0.6M LiCl or 

solvent (PBS) intraperitoneal daily for 30 days to MEF2 LacZ sensor mice [53, 24]. Mice were 

sacrificed 1h after the last treatment before (i) the apexes of heart (Fig. 2.5a) and, (ii) 10μm 

transverse sections of the skeletal muscles (Fig. 2.5b) were fixed with 2% paraformaldehyde for 

30 minutes. The tissue samples were then stained with X-Gal overnight and visualized for MEF2 

activity. The data depicts a small qualitative enhancement of MEF2 activity in the hearts and 

skeletal muscles, illustrated by the dark blue stains in both sets of tissue samples. Lithium is 

already used to treat psychiatric disorders such as depression [54] and Alzheimer’s [55] but our 

data implies that lithium treatment may also influence gene expression in cardiac and skeletal 

muscle. Since MEF2 is also a key player in neuronal function, lithium treatment could also 

influence these disorders through MEF2 activity. 
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Figure 2.5: Animal treatment with GSK3β inhibitor in vivo. Two groups (n=4/group) of male 

LacZ-MEF2 transgenic mice were used in this study. The mice received i.p. injections of either 

0.6 M LiCl (10μl/g) or sterile 10mM PBS daily for 30 days. Mice were sacrificed 1h after 

treatment and (a) the apexes of heart and (b) 10μm transverse sections of the skeletal muscles 

were fixed with 2% paraformaldehyde in PBS for 30 minutes. The samples were then incubated 

with X-Gal solution overnight and visualized for MEF2 activity. The dark blue stain indicates 

MEF2 activity which is enhanced with GSK3β inhibition in both the heart and skeletal muscle 

tissue samples. 

 

2.5 Discussion 

 In this report, we document GSK3β as a negative regulator of MEF2 transcriptional 

activity in skeletal and cardiac muscle. This effect is mediated indirectly through repression of the 

p38MAPK pathway, a known positive regulator of MEF2 activity. A variety of loss of function 

approaches have revealed that abrogation of GSK3β signaling leads to enhanced MEF2 

transcriptional activity, both in vitro and in vivo in skeletal myoblasts and cardiac myocytes. 

Furthermore, inhibition of GSK3β enhances p38MAPK phosphorylation in vitro in skeletal 

myoblasts, HL-1 and neonatal primary cardiomyocytes as well as in vivo, in heart restricted 

GSK3β excised mice. Thus, several lines of evidence reveal cross-talk between GSK3β and 
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p38MAPK in the control of MEF2 activity in cardiac and skeletal muscle. Our conclusions are 

summarized in figure 2.6, adding a further level of complexity regarding the modulation of 

p38MAPK activation for the control of striated muscle gene expression through the MEF2 cis 

element. Numerous previous studies have documented a profound role of pharmacological 

inhibition of p38MAPK for gene expression in these cell types and it is unequivocal that a major 

target for p38MAPK is MEF2 [8,22-24,35,36]. Interestingly GSK3β has long been known to be 

an important regulator of cardiac [45-46] and skeletal muscle gene expression although its targets 

are much less clear. Studies reported here indicate a reciprocal relationship between GSK3β and 

p38MAPK at the MEF2 cis element that in many cases explains the phenotypic impact of 

modulation of GSK3β signaling in these tissues. In skeletal myogenesis p38MAPK activation is 

required for differentiation and inhibition abrogates myogenesis. Consistent with this, constitutive 

GSK3β activation inhibits myogenesis and pharmacological inhibition potentiates myogenesis. 

Likewise, effects of GSK3β in the heart are consistent with the modulation of p38MAPK 

signaling to MEF2. Constitutive activation of GSK3β in the heart protects against cardiac 

hypertrophy [50-51] and p38MAPK regulation of MEF2 has been strongly implicated in the 

hypertrophic program [22]. Thus, the idea of reciprocal antagonism between GSK3β and 

p38MAPK at the MEF2 cis element is supported by a variety of experimental strategies in both 

cardiac and skeletal muscle. Cardiac infarction caused by myocardial ischemia and reduced 

oxygen supply has been shown to be reduced in dnGSK3β hearts and that preconditioning loses 

its protective effect in when GSK3β is constitutively active [52]. It is highly likely based on our 

data that during oxygen deprivation GSK3β is antagonizing p38MAPK signaling in response and 

that upon inhibition of GSK3β, p38MAPK can carry out its stress response.  
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Figure 2.6: Summary. Our data demonstrates that MKK6 phosphorylates p38MAPK which 

subsequently activates MEF2 and hence downstream cardiac genes such as ANF in 

cardiomyocytes and, MCK in skeletal myoblasts, hence promoting differentiation. This pathway 

is antagonized by GSK3β which suppresses p38MAPK activity. Pharmacological treatment with 

(a) SB203580 and (b) AR-A014418 results in inhibition of p38MAPK and GSK3β respectively. 

The latter, resulted in increased p38 phosphorylation and enhanced MEF2 activity.     

  

  

 Collectively our findings display an important level of reciprocal antagonism between 

GSK3β and p38MAPK signaling in cardiac and skeletal muscle. In view of the central role of 

both signaling pathways in a variety of developmental, physiological and pathological processes 

in both tissue types, these findings will have important therapeutic implication for the treatment 

of striated muscle pathology.
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 The following chapter has been published as a research article in the Journal of Cell Death 

and Disease in a slightly modified format (Feb 2014). Contributing authors: MG Dionyssiou, S 

Ehyai, E Avrutin, MK Connor, JC McDermott.  

 The experimental design, figures and data presented in this chapter are mostly of my own 

efforts with the following exceptions. S Ehyai assisted with the cloning and purification of 

Myogenin and mutated versions of Myogenin which were used throughout the chapter. E Avrutin 

and MK Connor made the initial observation that electrical stimulation of C2C12 myoblasts and 

alveolar RMS derived RH30 cells altered Akt activity and performed the experiments presented 

in figures 3.7A-E. JC McDermott assisted with experimental design and with editing the 

manuscript. Catherine Chan provided technical support throughout the study.   
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Glycogen synthase kinase 3β represses Myogenin function in Alveolar Rhabdomyosarcoma 

3.1 Abstract 

 Myogenin is a member of the muscle regulatory factor family that orchestrates an 

obligatory step in myogenesis, the terminal differentiation of skeletal muscle cells. A paradoxical 

feature of alveolar rhabdomyosarcoma (ARMS), a prevalent soft tissue sarcoma in children 

arising from cells with a myogenic phenotype, is the inability of these cells to undergo terminal 

differentiation despite the expression of Myogenin. The chimeric Pax3-foxo1 fusion protein 

which results from a chromosomal translocation in ARMS has been implicated in blocking cell 

cycle arrest, preventing myogenesis from occurring. We report here that Pax3-foxo1 enhances 

glycogen synthase kinase 3β (GSK3β) activity which in turn represses Myogenin activity. 

Myogenin is a GSK3β substrate in vitro based on in vitro kinase assays and Myogenin is 

phosphorylated in ARMS-derived RH30 cells. Constitutively active GSK3β(S9A) increased the 

level of a phosphorylated form of Myogenin based on western blot analysis and this effect was 

reversed by neutralization of the single consensus GSK3β phosphoacceptor site by mutation 

(S160/164A). Congruently, GSK3β inhibited the trans-activation of an E-box reporter gene by 

wild type Myogenin, but not Myogenin with the S160/164A mutations. Functionally, GSK3β 

repressed muscle creatine kinase (MCK) promoter activity, an effect which was reversed by the 

S160/164A mutated Myogenin. Importantly, GSK3β inhibition or exogenous expression of the 

S160/164A mutated Myogenin in ARMS reduced the tumorigenic potential of RH30 cells in 

colony formation assays. Thus, sustained GSK3β activity represses a critical regulatory step in 

the myogenic cascade, contributing to the undifferentiated, proliferative phenotype in alveolar 

rhabdomyosarcoma (ARMS). 
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3.2 Introduction 

 Rhabdomyosarcoma (RMS) is the most common pediatric solid tumor accounting for 5% 

of all pediatric cancers and approximately 50% of soft tissue sarcomas [1-3]. There are two main 

subtypes: embryonal and alveolar RMS and while embryonal RMS is more common, alveolar 

RMS is considered to carry a worse prognosis. A somatic mutation resulting in the 

t(2;13)(q35;q14) chromosomal translocation fuses PAX3 and FOXO1 to create a potent 

transcription factor (Pax3-foxo1) which is a predominant causative genetic lesion for the 

development of alveolar rhabdomyosarcoma (ARMS) [1]. ARMS is a highly malignant 

mesenchymal tumor that has properties of immature striated muscle tissue resulting in dense 

aggregates of poorly differentiated cells that are separated by fibrous membranes resulting in a 

loss in cellular cohesion [2,3]. Pax3 is a key determinant of somatic myogenesis and, is involved 

in the migration of progenitor cells to the dermomyotome region of the somite where they grow 

and divide in the presence of growth factors [4]. Pax3 is also required to activate the myogenic 

determination gene, MyoD [5]. MyoD is one of four myogenic regulatory factors (MRFs, which 

include Myf5, MRF4 and Myogenin) from the basic helix-loop-helix superfamily of transcription 

factors which interact with myocyte enhancer factor 2 (MEF2) proteins in the hierarchical control 

of muscle specific gene expression [6]. Two kinases that potently exert effects on this myogenic 

regulatory cascade are p38 mitogen activated protein kinase (MAPK) and glycogen synthase 

kinase 3β (GSK3β). p38 MAPK is a key regulator of skeletal myogenesis that critically interacts 

with and activates MEF2 in the somite myotome during development [21-23]. Conversly, GSK3β 

activation leads to a repression in skeletal and cardiac muscle differentiation, in part by 

antagonizing p38 MAPK mediated activation of MEF2 [25,39]. GSK3β usually targets proteins 

that have already been phosphorylated by another kinase at a “priming” serine or threonine 
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residue located four amino acids C-terminal to a consensus (S/T)XXX(S/T)-PO4 motif [26,27]. 

Regulation of MEF2 and the MRFs leads to morphological changes including epithelial to 

mesenchymal transition, cell alignment and fusion to form multinucleated myotubes that 

eventually develop into functional, contractile muscle fibers. In particular, cells that express 

MyoD and Myogenin are typically fusion competent [7,8] with the exception of ARMS cell 

types. To date, lack of myogenic differentiation of Pax3-foxo1 expressing ARMS cells has been 

attributed to their inability to up-regulate p57
Kip2

 activity, hence destabilizing the DNA binding 

affinity of MyoD transcription complexes [9]. Dysfunctional MyoD/E-protein complex 

association and transcriptional control is a common feature between ARMS and the non Pax3-

foxo1 expressing embryonal rhabdomyosarcoma (ERMS). Subsequent restoration of the 

MyoD/E12 complex has been shown to switch ERMS cells from an arrested myofibroblast phase 

to a more differentiated state [10]. Similarly p38 MAPK activity can potentiate myogenic 

differentiation in ERMS cells by enhancing MyoD transactivation properties [11]. Therefore, it is 

fairly clear that in both rhabdomyosarcoma subtypes the ability of MyoD to potentiate 

transcription is compromised. However, the role of Myogenin in RMS is more equivocal. For 

normal myogenesis to occur, both in vitro and in vivo, an absolute requirement for Myogenin is 

evident, Thus, Myogenin activity constitutes a pivot point for irreversible commitment to terminal 

differentiation [18,19]. The combination of data from gene targeting studies of the MRFs [12,13] 

supports the prevailing consensus that while the other three MRFs can compensate each other’s 

functional roles [14-17], Myogenin is absolutely essential for skeletal muscle fiber formation 

[19]. Despite its expression in RMS, the paradox as to why Myogenin cannot mediate 

competence for differentiation is unknown. 

 



85 
 

 Here, we examined the post-translational regulation of Myogenin in ARMS. Based on the 

in silico prediction of a single consensus phosphorylation site for GSK3β on the Myogenin 

protein and also high levels of GSK3β activity in these cells, we determined that Myogenin 

function is potently repressed by GSK3β activity in ARMS. Moreover, pharmacological 

inhibition of GSK3β results in a profound decrease in size and, to a certain extent, number of 

RMS colonies in a colony formation assay. This effect is mimicked by introduction of Myogenin 

bearing neutralizing mutations in the GSK3β consensus site. In combination, these data reveal 

Myogenin as a key target of GSK3β activity in ARMS, indicating that pharmacologic 

manipulation of this signaling axis may provide an opportunity for therapeutic intervention.     

 

3.3 Materials and Methods 

Plasmids 

E-box, Myogenin and MCK reporter constructs in pGL3 and expression vectors for Myogenin in 

EMSV were used in reporter gene assays. HA tagged Pax3-foxo1 was cloned into pcDNA3.1 and 

kindly donated by Dr. Malkin at MaRS, Toronto. HA tagged GSK3β(S9A) was cloned in 

pcDNA3 ORF 995-2305.  

Antibodies 

Anti-Myogenin and anti-HA mouse monoclonal antibodies as well as anti-MEF2A rabbit 

polyclonal antibody were produced with the assistance of the York University Animal Care 

Facility; anti-Pax3 (1:250; Cell Signaling) GSK3β, phospho-GSK3β (1:1000; Cell Signaling); 

actin, MyoD, Myf-5, GFP, dsRed2 (1:2000; SantaCruz) were used for immunoblotting 

experiments.  
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Cell culture and transfection 

C2C12, Cos7 and RH30 cells were maintained in DMEM supplemented with 10% fetal bovine 

serum (HyClone), 1% L-glutamine and 1% penicillin-streptomycin. Cells were maintained in a 

humidified, 37
o
C incubator with a 5% CO2 atmosphere. For transfections, cells were seeded 1 day 

prior to transfection and transfected according to the standard calcium phosphate method 

previously described by Perry et al. A mixture of 50μl 2.5M CaCl2 per 25μg DNA with an equal 

volume of 2x HeBS (2.8M NaCl, 15mM Na2HPO4, 50mM HEPES, pH=7.15) was used and the 

cells were and incubated overnight followed by washing and addition of fresh media.  The cells 

were counted and transferred to pre-gelatin coated plates.  

Protein extractions, immunoblotting and reporter gene assays 

Cells were harvested using an NP-40 lysis buffer (0.5% NP-40, 50mM Tris-HCl [pH 8.0], 

150mM NaCl, 10mM sodium pyrophosphate, 1mM EDTA [pH 8.0], 0.1M NaF) containing 

10μg/ml leupetin and aprotinin, 5μg/ml pepstatin A, 0.2mM phenylmethylsulfonyl fluoride and 

0.5mM sodium orthovanadate. Protein concentrations were determined using the Bradford 

method (Bio-Rad) with bovine serum albumin (BSA) as a standard. 20μg of total protein extracts 

were used for immunoblotting, diluted in sample buffer containing 5% β-mercaptoethanol and 

boiled.  

 

Transcriptional assays were done using luciferase reporter plasmids. The cells were harvested for 

these assays using 20mM Tris, (pH 7.4) and 0.1% Triton-X 100 and the values obtained were 

normalized to β-galactosidase activity expressed from a constitutive SV40 driven expression 

vector and represented as relative light units (RLU) or in some cases corrected Luciferase values 
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for control, reporter alone transfections were arbitrarily set to 1.0, and fold activation values were 

calculated. Bars represent the mean (n=3) and error bars represent the standard error of the mean 

(n=3). Independent two sample t-tests of all quantitative data were conducted using R software. 

P-values are indicated with respect to controls where appropriate. 

In vitro kinase assay 

3μg of purified recombinant GST-Myogenin was mixed with either 0.5μg purified recombinant 

GST-GSK3β (1-433; Cell Signaling) and with [γ-
32

P] ATP and incubated for 30min at 30
o
C. 

Samples were denatured for 5min at 95
o
C in SDS sample buffer. Protein samples were then 

separated by 10% SDS-PAGE and exposed on X-ray film (Kodak X-Omat) for 21hrs to detect 
32

P 

incorporation. The lanes containing GST-Myogenin are elongated because 2 lanes were pooled to 

fit a higher total reaction volume, in order to accommodate for the low concentration of purified 

GST-Myogenin (0.06μg/μl). All lanes contain equal total amounts of proteins (3μg)  

Electrical Stimulation 

Cells were plated onto 0.1% gelatin coated 6 well plates. The lids of the plates were fitted with 

two parallel platinum wire electrodes, placed at the opposite ends of each well and extending into 

the media. The wires from all wells were arranged in parallel and connected to an electrical 

stimulator (Harvard Apparatus Canada, Saint-Laurent, Quebec, Canada). Cells were stimulated at 

5V and a frequency of 5Hz for 4 hours/day and allowed a subsequent 20 hour recovery period. 

Cells were harvested following the recovery period throughout the 4 days of the protocol.  

Soft Agarose Colony Formation Assay 

Materials: 0.7% (w/v) DNA grade Agarose, 1% (w/v) DNA grade Agar, 0.005% Crystal Violet 

(Sigma-Aldrich), 2X Media + 20% (v/v) FBS. After 48h of transfection with Myogenin 

containing the S160/164A mutations or empty vector, RH30 cells were assayed for their capacity 
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to form colonies as previouslt described [41]. A total of 1 x 10
4
 cells were suspended on a layer of 

0.35% Agarose in DMEM (10% FBS) with or without 10μM AR-A014418, in 6-well plates. 

Medium was refreshed every 3-5 days as needed and on the 22
nd

 day the amount of colonies were 

counted using a contrast phase microscope. The relative colony sizes were calculated using 

ImageJ software. Four independent experiments were carried out in triplicate. 

 

3.4 Results 

Myogenin is expressed in Pax3-foxo1 expressing RH30 cells. 

 Serum (10% FBS) contains growth factors that repress the transcriptional activity of 

MRFs and also stimulate cell cycle progression hence rendering C2C12 myoblasts proliferative. 

In tissue culture, serum withdrawal (2% HS) results in activation of MEF2 and MRFs causing cell 

alignment and fusion to form multinucleated myotubes. Initially, in order to investigate the effect 

of Pax3-foxo1 on this differentiation program, proliferating C2C12 myoblasts were transiently 

transfected with CMV-dsRed2, MCK-eGFP, and either HA-Pax3-foxo1 or pcDNA3.1 control 

vector. Growth media (GM) was replaced with differentiation media (DM) 19h after transfection 

and cells were allowed to differentiate for 96h. SDS PAGE samples were prepared from 

populations of myoblasts that either expressed or did not express Pax3-foxo1, (a) before serum 

withdrawal (time = 0; GM = 10% FBS) and (b) at 24 hour increments upon serum withdrawal 

(days 1-4; DM = 2% HS). Protein expression levels of these samples were then compared with 

protein samples from Pax3-foxo1 expressing RH30 cells in GM and DM, by western blotting. 

These data indicate that despite the expression of Pax3-foxo1, Myogenin protein expression is 

maintained in human ARMS derived, RH30 cells (Figure 3.1a). In addition, Pax3-foxo1 repressed 

myotube formation in C2C12 myoblasts (Figure 3.1a, 3.1b). Detection of myogenic 
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differentiation using an MCK promoter driving GFP expression [20] revealed GFP expressing, 

multinucleated, myotubes in the controls but not in cells expressing Pax3-foxo1 (Fig. 3.1b).  

 It is well documented that MRFs and MEF2 proteins are highly sensitive to pro-myogenic 

kinases such as p38 MAPK [23,31-33] and also kinases such as GSK3β which are repressive to 

myogenesis [25,34]. Therefore we tested for GSK3β activity under conditions when myogenesis 

is suppressed. Since GSK3β is constitutively active until it is repressed by phosphorylation at 

serine 9 (by PKB), we assessed both total GSK3β protein expression levels and S9 

phosphorylation levels using appropriate antibodies as indicated. We document that GSK3β is 

expressed in proliferative C2C12 myoblasts, Pax3-foxo1 expressing ARMS cells (RH30) and, 

non-Pax3-foxo1 ERMS cells (RD). However only in Pax3-foxo1 expressing RH30 cells, is 

GSK3β predominantly in its un-phosphorylated form (at serine 9) and, hence fully active state 

(Figure 3.1c). In addition, ectopic expression of Pax3-foxo1 increased GSK3β activity in C2C12 

myoblasts by reducing GSK3β phosphorylation at serine 9 (Figure 3.1d).    
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Figure 3.1. Myogenin protein expression and GSK3β activity are both maintained in ARMS: (a) 
C2C12 myoblasts were transfected with HA-Pax3-foxo1 or pcDNA3.1 control plasmid for 1 day 
before extraction or serum withdrawal and then extraction at 1 day increments for up to 4 days 
as indicated. Protein levels were compared to protein extracts from Pax3-foxo1 expressing Rh30 
cells 1 day in growth media (GM) and 4 days in differentiation media (DM). The results show 
that despite the expression of Pax3-foxo1, Rh30 cells also express myogenin. On the other hand, 
HA-Pax3-foxo1 overexpression in C2C12 inhibits myogenin expression and subsequent myogenic 
differentiation. (b) C2C12 myoblasts were transfected with CMV-dsRed2, MCK-eGFP and, either 
HA-Pax3-foxo1 or pcDNA3.1 control plasmid. HA-Pax3-foxo1 overexpression repressed the 
formation of multi-nucleated myotubes. (c) Endogenous GSK3β protein levels and 
phosphorylation at serine 9 were compared in C2C12 myoblasts, Rh30 and, ERMS RD cells. 
Whilst GSK3β is expressed in all three cell types, it is predominantly phosphorylated and hence 
inactive in C2C12 myoblasts and RD cells but not Pax3-foxo1 expressing Rh30 cells. (d) C2C12 
myoblasts were transfected with HA-Pax3-foxo1 or pcDNA3.1 control plasmid for 1 day before 
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extraction. Overexpression of HA-Pax3-foxo1 resulted in decreased phosphorylation of GSK3β at 
serine 9 indicating its activation. 
 

Myogenin transactivation function is repressed by GSK3β 

 To assess the effect of GSK3β activity on Myogenin function, trans-activation of a 4x E-

box Luciferase construct was measured in proliferating C2C12 myoblasts that were transfected 

with different combinations of constitutively active GSK3β(S9A) and Myogenin as indicated in 

figure 3.2a. The data indicate that Myogenin potentiates the 4x E-box Luc reporter gene and that 

GSK3β(S9A) abrogates this effect (p<0.001) indicating repression of Myogenin by active 

GSK3β. 

 

GSK3β directly phosphorylates Myogenin in vitro 

 In order to determine whether Myogenin is a substrate for GSK3β, an in vitro kinase assay 

was performed using GST-Myogenin (1-225), purified GST-GSK3β and γ-
32

P ATP. Bands were 

resolved using SDS-PAGE and subsequent autoradiography showed 
32

P labelled bands for 

Myogenin, autophosphorylated GSK3β and MyBP (positive control, Figure 3.2b). In addition, 

Coomassie Blue staining revealed a lower mobility band indicative of phosphorylation (Figure 

3.2b). To further test the idea that the lower mobility band is hyperphosphorylated we used calf 

intestinal phosphatases on RH30 cell lysates and found that the low mobility band was eradicated 

(Figure 3.2c). Collectively these data suggest that Myogenin is a GSK3β substrate in vitro.  
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Figure 3.2. Overexpressed, constitutively active GSK3β (S9A) represses myogenin 
transactivation of E-box. (a) C2C12 myoblasts were transfected with 4x E-box-Luc reporter and 
different combinations of HA-GSK3β(S9A) and myogenin or pcDNA3.1 control plasmid as 
indicated. Overexpressed HA-GSK3β(S9A) repressed myogenin transcriptional activity (p<0.001). 
(b) GSK3β directly phosphorylates myogenin in vitro: Purified GST-Myogenin was incubated in 
vitro with GST-GSK3β and [γ-32P]ATP. GST and MBP proteins were used as negative and positive 
control respectively as indicated. Bands were resolved using SDS-PAGE and visualized by 
Coomassie Blue staining (top panel). Gels were dried and exposed to X-ray film for 21h after the 
assay (bottom panel). (c) Calf-intestinal phosphatase (CIP) treatment of immunoprecipitated 
Myogenin that was obtained from 1000μg of Rh30 protein extract. The data shows that CIP 
treatment causes a loss of a high-molecular weight, phosphorylated form of Myogenin. 
 

 

Pharmacologic manipulation of GSK3β activity alters Myogenin properties  

 To further investigate the effect of GSK3β on Myogenin, Cos7 cells were co-transfected 

with Myogenin and GSK3β(S9A) and, then treated with or without 10μM GSK3β inhibitor, AR-

A014418, as indicated in figures 3.3a and 3.3b. Western blot analysis revealed two predominant 

forms of Myogenin, a low mobility hyper-phosphorylated isoform and a high mobility, hypo-

phosphorylated isoform (Figure 3.3a, lane 2). The lower mobility, hyper-phosphorylated band is 

reduced upon pharmacological treatment with AR-A014418 as indicated (Figure 3.3a, lane 3). 

This corresponded with a significant increase in trans-activation of an E-box cis element driven 

reporter gene (p<0.001, Figure 3.3b). In contrast, constitutively active GSK3β(S9A) without 

pharmacological inhibition resulted in an increase in the low mobility, hyper-phosphorylated 

band (Figure 3.3a, lane 4) which corresponded to a decrease in E-box luciferase activity in 

reporter gene assays (p<0.05, Figure 3.3b).  
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Figure 3.3. GSK3β increases myogenin protein, possibly through phosphorylation and this 
corresponds with decreased transcriptional activity. (a) Cos7 cells were transiently transfected 
with or without Myogenin and/or GSK3β(S9A) and then treated for 19h with either 10μM GSK3β 



95 
 

inhibitor or DMSO 24h after transfection as indicated. Protein samples were extracted and 
western blot analysis revealed an increase in a slower migrating, hyper-phosphorylated 
myogenin band (lane 4) in the presence of overexpressed HA-GSK3β(S9A) which, was reduced in 
the presence of GSK3β inhibitor (lane 3). (b) E-box-Luc reporter gene was co-transfected in Cos7 
cells using the same conditions that were described above. Overexpressed myogenin 
significantly enhanced transcriptional activity of the E-box promoter (p<0.001) and, this effect 
was further increased in the presence of GSK3β inhibitor despite overexpression of GSK3β(S9A) 
(p<0.001). Overexpression of GSK3β(S9A) repressed myogenin transcriptional activity (p<0.05). 
 

 

Mutation of a consensus GSK3β phoshoacceptor site on Myogenin (S160/164A) prevents GSK3β 

mediated repression 

 By in silico analysis, Myogenin contains a highly conserved putative GSK3β consensus 

phosphoacceptor site (Table 1), which we targeted by neutralizing site-directed mutagenesis. We 

observed that while wild type Myogenin is sensitive to the repressive effects of constitutively 

active GSK3β(S9A), Myogenin (S160/164A) was not (Figure 3.4a). Western blot analysis 

revealed that Myogenin (S160/164A) mutations correspond with a decrease in the low mobility, 

hyper-phosphorylated upper band (Figure 3.4b, lane 2) and that this effect was not altered by 

ectopically expressed HA-GSK3β(S9A) Together these data indicate that S160/164A mutations 

in Myogenin render it insensitive to the repressive effect of GSK3β.  GSK3β(S9A) expression 

resulted in an increase in the low mobility, hyper-phosphorylated form of wild type Myogenin 

(Figure 3.4b, lane 3) and this corresponded with decreased E-box luciferase activity (p<0.001, 

Figure 3.4a). Although trans-activation of the skeletal muscle gene E-box cis-element by mutated 

Myogenin (S160/164A) is marginally less potent than wild type Myogenin (p<0.05, Figure 3.4c); 

it is resistant to inhibition by activated GSK3β (p<0.001, Figure 3.4c). 
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Figure 3.4.  Myogenin neutralizing phosphomutant (S160/164A) is resistant to GSK3β 
repression of transcription activity as well as an increased slower migrating, hyper-
phosphorylated myogenin band. (a) 4x E-box-Luc activity was assessed in C2C12 myoblasts that 
were transfected with either wild-type myogenin or myogenin (S160/164A) and, co-transfected 
with HA-GSK3β(S9A) or pcDNA3.1 control plasmid as indicated. HA-GSK3β(S9A) repressed 
myogenin trans-activation of the 4x E-box promoter region (p<0.001) but had no effect on 
mutated myogenin (S160/164A) transcriptional activity. (b) Western blot analysis of the same 
samples revealed a decrease in a slower migrating, hyper-phosphorylated band for 
overexpressed myogenin (S160/164A, lane 2) with respect to  overexpressed wild-type 
myogenin (lane 1). Co-transfected HA-GSK3β(S9A) caused an increase in the slow migrating, 
hyper-phosphorylated myogenin band (lane 3) but not with overexpressed mutated myogenin 
(S160/164A, lane 4). (c) Independent analysis of E-box Luc activity in C2C12 myoblasts with 
different combinations of overexpressed myogenin, mutated myogenin (S160/164A), HA-
GSK3β(S9A) or pcDNA3.1 control plasmid as indicated.  
 

Pax3-foxo1 activation of GSK3β antagonizes muscle creatine kinase promoter activation 

 To further examine the functional significance of our findings, we used MCK promoter 

activity, as a key indicator of the activation of myogenic differentiation, in C2C12 myoblasts that 

were transfected with or without the Pax3-foxo1 oncogene (Figure 3.5a). These data depict that 

Pax3-foxo1 represses MCK promoter activation in myoblasts that have been co-transfected with 

Myogenin (p<0.01) and this effect is not only abrogated by pharmacological inhibition of 

GSK3β, but further activated (p<0.001, Figure 3.5a). Interestingly, in Pax3-foxo1 expressing, 

human ARMS derived RH30 cells, ectopically expressed Myogenin had no effect on MCK 

promoter activity unless it was coupled with pharmacological inhibition of GSK3β using AR-

A014418 (p<0.001, Figure 3.5b). Conversely, mutated Myogenin (S160/164A) was able to 

potentiate MCK promoter activity regardless of GSK3β inhibition (p<0.05, Figure 3.5b). Taken 

together, these data provide evidence that S160/164 on Myogenin are likely key targets of GSK3β 

signaling in alveolar rhabdomyosarcoma resulting in a diminution of the critical E box dependent 

gene activation that is necessary and sufficient for differentiation. 
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Figure 3.5. Pharmacological inhibition of GSK3β rescues Pax3-foxo1 repression of myogenin’s 
transcriptional activation of MCK promoter in both C2C12 myoblasts and RH30 human ARMS 
cells. (a) MCK-Luc promoter activity was assessed in C2C12 myoblasts that were transfected 
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with different combinations of myogenin, Pax3-foxo1 and pcDNA3.1 control plasmid as 
indicated and then treated with either 10μM AR-A014418 or DMSO solvent. Myogenin 
enhanced MCK-Luc activity as expected (p<0.001) and this effect was repressed by co-
expression of Pax3-foxo1 (p<0.01). Pharmacological inhibition of GSK3β not only reversed the 
effect of Pax3-foxo1 but resulted in a super-activation (p<0.001). (b) To assess the importance of 
these findings human derived ARMS, RH30 cells were transfected with either myogenin or 
mutated myogenin(S160/164A) and MCK-Luc promoter activity was assessed. The data shows 
that wild type myogenin could not trans-activate the MCK promoter region unless it was 
coupled with pharmacological inhibition of GSK3β (p<0.001). This was in contrast to mutated 
myogenin (S160/164A) which could potentiate MCK promoter activity (p<0.001) regardless of 
GSK3β inhibition. 
 

 

Manipulation of GSK3β and Myogenin activity reduces colony forming properties of ARMS 

derived, RH30 cells 

 Colony formation assays were performed as previously described using RH30 cells [35] 

which can grow in an anchorage independent manner. Equal numbers of RH30 cells that have 

been transiently transfected with or without Myogenin containing the S160/164A mutations were 

seeded in growth media with or without 10μM AR-A014418 (GSK3β inhibitor) and allowed to 

form colonies for 21 days (Figure 3.6). The addition of 10μM AR-A014418 significantly 

impaired the ability of RH30 cells to form colonies (p<0.05) and remarkably reduced the size of 

the colonies (p<0.0001). A similar reduction in colony numbers and size were also evident in 

RH30 cells that were transfected with Myogenin (S160/164A) mutations (Figures 3.6a, 3.6b). In 

addition, we confirmed that pharmacological inhibition of GSK3β significantly reduced cell 

proliferation of Pax3-foxo1 expressing cells (Figure 3.6c). Collectively these findings strongly 

indicate that GSK3β activity promotes colony formation of RH30 cells, and that this effect is 

neutralized by expression of Myogenin bearing mutations that render it insensitive to GSK3β.  
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Figure 3.6. Soft-Agarose Colony Formation and MTT Cell Proliferation Assays: (a) Equal 
numbers of RH30 cells were seeded under different conditions as depicted, and allowed to form 
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colonies for 21 days. On the 22nd day the colonies were stained with 0.005% Crystal Violet 
overnight. Colonies were counted at different planes (n=10) in 4 independent experiments done 
in triplicate. The total number of colonies was reduced by (i) 10μM AR-A014418, p<0.05 (ii) 
Transient transfection of Myogenin containing the S160/164A neutralizing mutations, p<0.01 
and (iii) both, p<0.001. Also see supplementary figure for visual representation of the data. (b) 
We searched for the three largest colonies in each of the 12 plates for each condition and 
calculated the area using ImageJ software. The data revealed that the control colonies could 
grow up to 9x bigger than any of the experimental conditions, p<0.001. (c) MTT cell proliferation 
assays were performed in PAX3/FOXO1A expressing cells with and without 10μM AR-A014418 
treatment. The experiment revealed that GSK3β inhibition reduces cell proliferation by ~2-fold, 
p<0.001. 
 

 

 

Electrical stimulation of ARMS derived, RH30 cells reduces GSK3β activity through Akt 

 Electrical stimulation of skeletal muscle cells in cell culture has been shown to induce 

phenotype alterations and differentiation[36]. Given that rhabdomyosarcoma shares properties of 

the skeletal muscle lineage, we electrically stimulated cultured RH30 cells for 4 hrs/day (5 Hz) 

for up to 4 days with the idea that it might promote differentiation.  Stimulation of these cells 

resulted in an increase in pAktT308 to levels that were 3.00±0.72 fold higher than those in non-

stimulated cells after 4 days of stimulation (Figure 3.7a,b). Concomitantly, pGSKβS9 was also 

increased 2.25±0.37 fold following 4 days of stimulation (Figure 3.7a,c).  These increases in 

pAktT308 and pGSKβS9 were not a result of increases in total protein (Figure 3.7a) as indicated 

by the 3.76±1.32 and 2.05±0.55 increases in relative phosphorylation, respectively (Figure 

3.7d,e). These changes in kinase activity corresponded with increased E-box promoter activity in 

stimulated cells compared to controls (Figure 3.7f). Collectively, these data indicate that electrical 

stimulation suppresses GSK3β activity and correspondingly activates MRF activity supporting 

our previous findings and also highlighting the possibility of using electrical stimulation as a 

therapeutic intervention in ARMS patients. 
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Figure 3.7. In vitro electrical stimulation of Rh30 cells. (a) Western blot analysis revealed that 
electrical stimulation increased PKB/Akt activity and that this corresponded with inhibition of 
GSK3β at S9. Relative increase of phosphorylation at: (b) Akt at T308 and (c) GSK3β at S9, over 
time. Graphical depiction of phosphorylated to total amounts of: (d) Akt and (e) GSK3β. (f) E-box 
promoter activity decreased with electrical stimulation and this also corresponded with 
inhibition of GSK3β at S9.   
 

3.5 Discussion 

 ARMS, unlike ERMS, has a well characterized cytogenetic basis in the majority of 

patients resulting from chromosomal translocations between chromosomes 1 and 13 and also 2 

and 13 that result in fusion of the DNA binding domains of either Pax7 or Pax3 with the 

transactivation domain of the Forkhead (FKHR) transcription factor family member Foxo1 

[1,2,42]. In view of the well substantiated crucial role of Pax3 and 7 in the development of 

skeletal muscle [4,5] it is therefore not surprising that the signature of ARMS tumor cells is a 

muscle like phenotype and the expression of a variety of structural muscle marker genes such as 

myosin heavy chain and desmin [43]. What is surprising is the sustained expression of MyoD and 

Myogenin in ARMS [44,45], which are transcription factors that are intimately associated with 

the terminally differentiated, non- proliferative phenotype of normal myogenic cells, begging the 

question as to why they cannot exert this effect in ARMS.  In particular, the function of 

Myogenin in the myogenic regulatory hierarchy places it at a pivotal and required step in the 

terminal commitment of myogenic progenitors to the differentiation program [18,19,47]. Thus, 

our observations reported here, that Myogenin function in ARMS is repressed by inappropriate 

sustained signaling by the kinase GSK3β, may be of considerable significance for understanding 

the etiology of this disease. Moreover, since repression of kinase activity is, in many cases, a 

tractable pharmacologic approach, we now propose targeting GSK3β activity as a tangible 

therapeutic strategy for ARMS.  
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 In support of the above, a recent study showed that ARMS-associated Pax3/7-Foxo1 

fusion proteins inhibit MyoD target genes [38]. It was also reported that forced MyoD/E-protein 

dimer expression could not rescue Pax3/7-Foxo1 repression of myogenic factors [38]. Here, we 

also report that ectopically expressed Pax3-Foxo1 represses the induction of muscle genes, even 

when MRFs are expressed. We propose that the post-translational repression of Myogenin 

activity is due to sustained GSK3β activity and, through a cross-talk mechanism, subsequent 

repression of p38 MAPK as previously described [25]. p38 MAPK and PKB/Akt are both 

required for activation of MEF2/MyoD transcriptional control and chromatin remodeling events 

at crucial myogenic loci for the differentiation program [39,40].  

 

 In other systems, GSK3β phosphorylation of its protein substrates results in subsequent 

targeting for proteasomal degradation [26,27]. However, GSK3β does not appear to affect 

Myogenin protein stability in our experiments since we observe an increase in a slow migrating, 

hyper-phosphorylated form of Myogenin in response to GSK3β signaling that is not reduced in 

terms of its level of expression suggesting that proteasomal degradation of Myogenin is not 

enhanced by GSK3β. Conversely, neutralizing mutations of the GSK3β consensus enhanced 

Myogenin trans-activation of the muscle creatine kinase promoter, and also reduced the 

tumorigenic properties of ARMS cells (RH30) in a colony formation assay. These findings 

suggest that GSK3β-mediated inhibition of Myogenin transactivation properties impairs 

Myogenin’s ability to promote terminal differentiation in tumorigenic RH30 cells. 
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 Cell cycle control is an essential component of normal growth control and development 

which goes awry in tumorigenesis. To date several growth-promoting Pax3-Foxo1 target genes 

have been implicated in RMS such as the IGF-R and c-Met although, while their contribution to 

proliferation is likely, the extent of their precise involvement in ARMS is still not clear [reviewed 

in 24].  During normal skeletal myogenesis, up-regulation of a cyclin-dependent kinase inhibitor, 

p21, stalls myoblasts in the G2/M phase of the cell cycle thus priming them for differentiation by 

promoting cell cycle exit which is a requirement for subsequent muscle specific gene expression 

[29]. Consistent with the idea that GSK3β activation may contribute to the oncogenic properties 

resulting from Pax3-Foxo1 expression in ARMS, we observed that the number of proliferative 

RH30 cells is approximately halved by pharmacological inhibition of GSK3β.  So far, the exact 

mechanism by which GSK3β regulates cell proliferation in ARMS is unknown. However, GSK3β 

has recently been shown to activate KLF6 [30] and we recently identified that KLF6 enhances 

cell proliferation in myogenic cells through a TGFβ/Smad3 dependent pathway [37]. We 

therefore speculate that Pax3-Foxo1/GSK3β enhancement of cell proliferation may involve KLF6 

as a downstream effector since it is also highly expressed in various RMS cell types. 

 

In summary, Myogenin normally activates genes that regulate cell fusion and terminal 

differentiation of skeletal muscle. In Pax3-Foxo1 expressing ARMS cells, our data indicate that 

sustained GSK3β activity represses Myogenin function, contributing to the transformed, 

proliferative phenotype of these cells. Based on this evidence we propose that pharmacologic 

targeting of GSK3β kinase activity may constitute a tractable therapeutic strategy for ARMS.  
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Krüppel-like factor 6 (KLF6) promotes cell proliferation in skeletal myoblasts in response 

to TGFβ/Smad3 signaling 

4.1 Abstract 

BACKGROUND: Krüppel-like factor 6 (KLF6) has been recently identified as a MEF2D target 

gene involved in neuronal cell survival. In addition, KLF6 and TGFβ have been shown to 

regulate each other’s expression in non-myogenic cell types. Since MEF2D and TGFβ also fulfill 

crucial roles in skeletal myogenesis, we wanted to identify whether KLF6 functions in a 

myogenic context. 

METHODS: KLF6 protein expression levels and promoter activity were analyzed using standard 

cellular and molecular techniques in cell culture.  

RESULTS: We found that KLF6 and MEF2D are co-localized in the nuclei of mononucleated 

but not multinucleated myogenic cells and, that the MEF2 cis element is a key component of the 

KLF6 promoter region. In addition, TGFβ potently enhanced KLF6 protein levels and this effect 

was repressed by pharmacological inhibition of Smad3. Interestingly, pharmacological inhibition 

of MEK/ERK(1/2) signaling  resulted in re-activation of the differentiation program in myoblasts 

treated with TGFβ, which is  ordinarily repressed by TGFβ  treatment. Conversely, MEK/ERK 

(1/2) inhibition had no effect on TGFβ induced KLF6 expression whereas Smad3 inhibition 

negated this effect, together supporting the existence of two separable “arms” of TGFβ signaling 

in myogenic cells. Loss of function analysis using siRNA mediated KLF6 depletion resulted in 

enhanced myogenic differentiation whereas TGFβ stimulation of myoblast proliferation was 

reduced in KLF6 depleted cells.  
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CONCLUSION: Collectively these data implicate KLF6 in myoblast proliferation and survival 

in response to TGFβ with consequences for our understanding of muscle development and a 

variety of muscle pathologies.  

 

4.2 Introduction 

 KLF6 is a member of the Krüppel-like Factors (KLF) gene family which are a group of 

transcription factors that contain three highly conserved Cys2-His2 type zinc fingers located in the 

C-terminus [1,2]. Subsequently, these proteins regulate a vast range of target genes by 

preferentially binding to cognate GC-boxes or CACCC elements. KLF6 was originally identified 

due to its ability to regulate TATA-less gene promoters that can regulate glycoproteins in 

placental cells [3]. Since then, KLF6 has been found to be expressed in most tissues including 

neuronal, hindgut, heart and limb buds [4] and is localized in the nucleus [5]. Interestingly, 

homozygous null KLF6 mice resulted in failure in the development of the liver and yolk sac 

vasculature, resulting in early lethality at (E)12.5 [4]. To date, the most well established target 

gene of KLF6 is TGFβ and its receptors [6] and, subsequent studies have shown a positive 

feedback loop by which TGFβ activation enhances KLF6 transactivation properties through the 

formation of a Smad3-Sp1-KLF6 protein complex [7]. TGFβ and KLF6 cooperatively regulate a 

wide range of cellular processes such as cell differentiation, proliferation and epithelial-to-

mesenchymal transitions (EMT) [8-13]. Recently KLF6 was identified as a MEF2 target gene that 

is involved in neuronal cell survival [14]. Since TGFβ and MEF2 are two key regulators of 

skeletal myogenesis and since KLF6 was identified in the myogenic transcriptome [15], we 

wanted to investigate the role of KLF6 in skeletal muscle cells.  
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 Regulation of skeletal myogenesis is a complex process. Initially paracrine factors 

instigate the migration of designated myotome progenitor cells to the dermomyotome region of 

the somite. These proliferating cells grow and divide until cell contact triggers differential gene 

expression and activation of the myocyte enhancer factor 2 (MEF2) proteins and muscle 

regulatory factors (MRFs). This cascade of events causes morphological changes in the 

progenitor cells that allow them to align and fuse to form multinucleated myotubes that can 

eventually spontaneously contract as functional muscle fibers. Transforming growth factor β 

(TGFβ) antagonizes this process by preventing cells from exiting the cell cycle hence maintaining 

myoblasts in a proliferative state. TGFβ ligands bind to a type II receptor which becomes 

activated and autophosphorylated [16]. The activated type II receptor can then phosphorylate and 

activate a type I receptor which in turn phosphorylates receptor mediated Smads(2/3) enabling 

them to dimerize with Smad4 and translocate into the nucleus where they can bind to other 

transcription factors and DNA to repress essential muscle genes and the expression of their 

downstream targets [17,18]. In addition, TGFβ also regulates the mitogen-activated protein kinase 

(MAPK) pathway, which involves a cascade of protein kinases (MAPKKK, MAPKK, MAPK) 

which become activated in sequence by G-proteins in response to TGFβ binding its receptors [19-

21)]. Upon TGFβ activation, MEK1/2 (MAPKK) can phosphorylate and activate ERK1/2 MAPK 

at conserved TEY sites, causing it to translocate into the nucleus to regulate gene expression. 

These two TGFβ regulated pathways converge to inhibit the function of MEF2 and hence muscle 

specific genes [22] and, ultimately result in cell proliferation [23,24]. Not surprisingly inhibition 

of either or both of these pathways, (either pharmacologically or through ectopically expressed 

Smad7, which can antagonize the canonical Smad-pathway), enhances myotube formation 
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[25,26]. Cross-talk between these pathways is further supported by Smad7 antagonizing the 

repressive effects of MEK1 on MyoD [26,27].   

 

 In this report, our goal was to assess the role of KLF6 in myogenic cells based on its 

regulation by both MEF2D and TGFβ. We report that TGFβ up-regulates KLF6 specifically 

through a Smad3-dependent pathway which enhances proliferation in myoblasts. In addition, we 

observed that (i) TGFβ enhanced KLF6 promoter activation and, (ii) that MEF2 is recruited to the 

KLF6 promoter region but is not required for KLF6 activation by TGFβ. Pharmacological 

inhibition of Smad3 repressed KLF6 expression by TGFβ and cell proliferation but, importantly 

did not re-activate the differentiation program which is potently repressed by TGFβ signaling. 

Conversely, TGFβ treatment coupled with pharmacological inhibition of MEK1/2, enhanced 

myotube formation but had no effect on KLF6 expression and function. Loss of function assays 

using siRNA targeting KLF6 revealed that KLF6 is required for cell proliferation. These 

experiments tease apart two independent functions of TGFβ signaling in myogenic cells. One is a 

repressive effect on differentiation which is mediated by ERK activation; the other being an 

enhancement of proliferation which is dependent on Smad3 and KLF6.   

 

4.3 Methods 

Plasmids 

Expression plasmids for pcDNA3-MEF2D, pCMV β-galactosidase [28,29] and, reporter gene 

constructs for 3TP-lux [30] MCK-Luc [31] MEF2-Luc [32] have been previously described. 

KLF6 reporter constructs pRMO6 and pROM6 ΔMEF2 were generously provided by Dr. Nicolas 



117 
 

P. Koritschoner (Faculty of Bioquimica y Ciencias Biologicas, Universidad Nacional del Litoral, 

Santa Fe, Argentina). 

Antibodies 

Anti-MEF2A rabbit polyclonal, anti-Myosin heavy chain mouse monoclonal and anti-Myogenin 

mouse monoclonal antibodies were produced with the assistance of the York University Animal 

Care Facility; anti-MEF2D (1:1000; BD Biosciences); Smad3, phospho-Smad3 and phospho-

ERK1/2 (1:1000; Cell Signaling); KLF6, actin, ERK1/2 (1:1000; SantaCruz) were used for 

immunoblotting experiments. IgGs were also purchased from Santacruz Biotechnologies. 

Cell culture, transfections and drug treatments 

C2C12 cells were maintained in DMEM supplemented with 10% fetal bovine serum (HyClone), 

1% L-glutamine and 1% penicillin-streptomycin. Cells were maintained in a humidified, 37
o
C 

incubator with a 5% CO2 atmosphere. For transfections, cells were seeded on pre-gelatin coated 

plates 1 day prior to transfection and transfected according to the standard calcium phosphate 

method previously described by Perry et al., 2001. A mixture of 50μl 2.5M CaCl2 per 25μg DNA 

with an equal volume of 2x HeBS (2.8M NaCl, 15mM Na2HPO4, 50mM HEPES, pH=7.15) was 

used and the cells were and incubated overnight followed by washing and addition of fresh 

media. Drugs treatments were used at the following concentrations: 2ng/ml TGFβ, 5μM Sis3 and 

10μM U0126 as indicated. 

siRNA gene silencing 

Small interfering RNAs (siRNA) targeting KLF6, MEF2D and non-specific scramble RNA were 

purchased from Sigma. Transient transfections were performed using TurboFect Transfection 

Reagent (#R0531, Fermentas) according to the manufacturer’s instructions. Turbofect 
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(Fermentas): A 1:2 mixture ratio of DNA to turbofect reagent (including 4ng/ml siRNA) in 200µl 

serum-free DMEM was prepared for a 19h incubation.  

Immunocytochemistry 

C2C12 cells were treated as previously described by Salma and McDermott, 2012 [14] and, 

incubated overnight with at 4
o
C with primary MEF2D and KLF6 antibodies (1:100) diluted in 

1.5% goat serum. Cells were washed 3X with PBS for 10min and incubated with the appropriate 

TRITC/FITC-conjugated secondary antibodies (1:500) in 1.5% goat serum (PBS) for 2h at RT 

following DAPI (4’,6-diaminidino-2-phenylindole) staining for 15min at RT. Cells were washed 

3X with PBS and cover slips were mounted with DAKO mounting media (Dako) on glass slides. 

The fluorescence images were captured using Fluoview 300 (Olympus).    

Protein extractions, immunoblotting and reporter gene assays 

Cells were harvested using an NP-40 lysis buffer (0.5% NP-40, 50mM Tris-HCl [pH 8.0], 

150mM NaCl, 10mM sodium pyrophosphate, 1mM EDTA [pH 8.0], 0.1M NaF) containing 

10μg/ml leupetin and aprotinin, 5μg/ml pepstatin A, 0.2mM phenylmethylsulfonyl fluoride and 

0.5mM sodium orthovanadate. Protein concentrations were determined using the Bradford 

method (Bio-Rad) with bovine serum albumin (BSA) as a standard. 20μg of total protein extracts 

were used for immunoblotting, diluted in sample buffer containing 5% β-mercaptoethanol and 

boiled. Transcriptional assays were done using luciferase reporter plasmids. The cells were 

harvested for these assays using 20mM Tris, (pH 7.4) and 0.1% Triton-X 100 and the values 

obtained were normalized to β-galactosidase activity expressed from a constitutive SV40 driven 

expression vector and represented as relative light units (RLU) or in some cases corrected 

Luciferase values for control, reporter alone transfections were arbitrarily set to 1.0, and fold 
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activation values were calculated. Bars represent the mean (n=3) and error bars represent the 

standard error of the mean (n=3).  

Co-immunoprecipitation assays 

Protein extracts were prepared as described above. Immunoprecipitation was performed using the 

ExactaCruz kit (SantaCruz Biotechnology), as per manufacturer’s instructions. Precipitated 

proteins were separated by SDS PAGE and immunoblotting of proteins was performed as 

described above  

Chromatin Immunoprecipitation (ChIP) 

ChIP experiments followed the guidelines set by EZ ChIP™ (Upsate) with minor modifications. 

Approximately 1x 10
7
 C2C12 cells were fixed with 1% formaldehyde (Sigma) for 15 minutes at 

37
o
C. Fixing was quenched by Glycine (Bioshop) at a final concentration of 0.125M. Cells were 

collected in PBS containing PMSF (Sigma) and protease inhibitor cocktail (Roche). Cells were 

collected at 5000 rpm for 5 min at 4
o
C. Cells were lysed using Wash Buffer I (10mM HEPES pH 

6.5, 0.5M EGTA, 10mM EDTA, 0.25% Triton X-100, protease inhibitor cocktail, PMSF) for 5 

minutes on ice. Nuclei were collected and resuspended in Wash Buffer II (10mM HEPES pH 6.5, 

0.5 mM EGTA, 1 mM EDTA, 200 mM NaCl, protease inhibitor cocktail, PMSF) for 10 min on 

ice. Nuclei were again collected and then treated with nuclear lysis buffer (50mM Tris-HCl pH 

8.1, 10 mM EDTA, 1% SDS). Chromatin was sheared using a Misonix sonicator to produce 500 

bp fragments. Crosslinked sheared chromatin was collected following a 15 minute spin at 

maximum speed.  Twenty percent of total chromatin was set aside as input. Sheared crosslinked 

chromatin was diluted 1:10 with IP dilution buffer (0.01% SDS, 1.1% Triton-X 100, 1.2 mM 

EDTA, 16.7 mM Tris-HCL pH 8.1, 167 mM NaCl) and incubated with antibody overnight at 4
o
C 

with rocking. Protein G Dynabeads (Invitrogen) were blocked with 20 µg salmon sperm DNA in 
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IP dilution buffer (15 µl beads + 135 µl IP dilution buffer + 20 µg salmon sperm DNA per IP) 

overnight at 4
o
C with rocking. 152 µl of pre-blocked beads were incubated with the IP reaction at 

4
o
C for 1 hr. Dynabead-bound antibody:chromatin complexes were washed using IP Wash Buffer 

I (20 mM Tris pH 8.1, 2mM EDTA, 150 mM NaCl, 1% Triton-X 100, 0.1% SDS) and II (20 mM 

Tris pH 8.1, 2 mM EDTA, 500 mM NaCl, 1% Triton X-100, 0.1% SDS), each incubated for 10 

minutes at 4
o
C, and followed with two washes in TE buffer at 4

o
C. Protein:DNA complexes were 

freed from Dynabeads through the addition of elution buffer (0.1 M NaHCO3, 1% SDS) for 30 

minutes at room temperature. To separate protein from DNA samples were treated with 12 µl of 5 

M NaCl (BioShop) at 65
o
C for 4 hours to overnight. Protein was further degraded by the addition 

of Proteinase K (Sigma), EDTA, Tris pH 6.5 for 1 hr at 45
o
C. DNA samples were then purified 

using a PCR clean up kit (Qiagen).  

qPCR 

ChIP-qPCR analysis on the KLF6 promoter was done using BioRad Sybr Green as per the user 

manual with a final primer concentration of 0.5 µM. Antibody used in ChIP: 5 µg αMEF2 (sc-

313X; Santa Cruz Biotechnology, Inc.).  The equivalent amount of rabbit IgG (12-370, Millipore) 

was used as a control in each ChIP. Sequences of the primers flanking the ME2 site on the KLF6 

promoter were: 5’-CTGCAACGTTGGGCTGTA-3’ and 5’-TTGGAAAGACGTCTCACAGG-3’. 

Each sample was run in triplicate and then analyzed using percent input or fold enrichment. 
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4.4 Results and Discussion 

MEF2D and KLF6 expression and co-localization in the nucleus, in skeletal myoblasts. 

 Since KLF6 was identified in the skeletal muscle transcriptome [15] and has also been 

shown to be a MEF2D target gene that is involved in the cell survival pathway in primary 

embryonal hippocampal neurons [14] and, since MEF2D is also a crucial regulator of skeletal 

myogenesis, we wanted to investigate the role of KLF6 in skeletal myoblasts. We determined that 

KLF6 and MEF2D are indeed both co-expressed in C2C12 myoblasts and, co-localized in the 

nucleus using western blot analysis and immunocytochemistry respectively (Figures 4.1a and 

4.1b). Endogenous expression of KLF6 is detected in C2C12 myoblasts in growth conditions and 

sustained upon serum withdrawal and throughout the course of myogenic differentiation up to 

120h. Interestingly, we observed that KLF6 protein expression is down regulated at 48h, up 

regulated at 72h, down regulated at 96h and up-regulated again at 120h in a reproducible manner 

that, at this point is not easily explainable (Fig. 4.1a). Immunofluorescence labeling was 

conducted in order to observe the cellular localization of KLF6 with respect to MEF2D in 

proliferating myoblasts and then in differentiated myotubes. The data indicated strong nuclear 

localization of both KLF6 (red) and MEF2D (green) in conjunction with nuclear (blue) 4’,6-

diaminidino-2-phenylindole (DAPI) staining in myoblasts and, less so in differentiated myotubes 

(Fig. 4.1b). Since TGFβ has also been shown to regulate KLF6 expression, we tested the effect of 

TGFβ on previously characterized KLF6 reporter gene constructs (pROM6-Luc and pROM6-Luc 

ΔMEF2). Serum was withdrawn 24h after transfection and treatment with 2ng/ml TGFβ for 24h 

was carried out as indicated in the figure. The data illustrates a 4-fold increase in transcriptional 

activity of pROM6-Luc in response to TGFβ treatment, but no effect on pROM6-Luc ΔMEF2, 
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indicating that TGFβ regulates the KLF6 promoter which requires that the MEF2 cis element is 

intact (Fig. 4.1c). 
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Figure 4.1: (a) Western blot analysis reveals that KLF6 and MEF2D are co-expressed in C2C12 

myoblasts. Myoblasts were cultured in growth medium (10% serum), followed by serum 

withdrawal (2%) for 144h and harvested at 24h time intervals. Cells were then lysed and equal 

amounts of protein (20μg) were used for western blot analysis. The levels of the indicated 

proteins were assessed by a standard immunoblotting technique using specific primary antibodies 

for each. Actin was used as a loading control. (b) Immunocytochemistry reveals that KLF6 and 

MEF2D are co-localized in the nucleus at the myoblast stage but to a lesser extent in 

differentiated myotubes. C2C12 cells were treated as previously described by Salma and 

McDermott, 2012 [14]. DAPI staining was used for nuclear staining, green and red were used for 

MEF2D and KLF6 respectively and then merged. (c) TGFβ treatment potentiates KLF6 

promoter region through MEF2. KLF6 promoter constructs (pROM6 Luc and pROM6 ΔMEF2 

Luc) were used, and luciferase activities were analyzed upon serum withdrawal, with and without 

2ng/ml TGFβ treatment as indicated. 
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MEF2A/D expression is not required for KLF6 protein expression in skeletal myoblasts 

 Since we had already observed that TGFβ regulates the KLF6 promoter through MEF2 we 

wanted to assess the effect of MEF2A/D knock down using RNA silencing (Fig. 4.2a). Although 

siRNA2 for MEF2A appears to affect KLF6 expression slightly, this observation did not indicate 

a strong and consistent effect. On the other hand, siMEF2D appears to de-repress KLF6 

expression. Since MEF2D is a potent HDAC4 co-factor, siMEF2D might be preventing the 

recruitment of HDAC4 to the promoter and hence de-repressing KLF6. Contrary to our initial 

hypothesis, these data indicate that MEF2 is not necessarily required for KLF6 expression or that 

its requirement is only at the myoblast stage when the cells are responsive to TGFβ signaling. To 

further analyze this observation, we assessed MEF2 recruitment on the KLF6 promoter with or 

without TGFβ treatment (Fig. 4.2b). These data indicate that while MEF2 is indeed recruited to 

the KLF6 promoter in C2C12 myoblasts, there is no change in MEF2 recruitment upon TGFβ 

treatment compared to the control, implicating a different mechanism for TGFβ activation of 

KLF6. 



125 
 

 

 

Figure 4.2: (a) MEF2A/D RNA silencing reveals that MEF2A/D expression is not required for 

endogenous KLF6 protein expression. In contrast siMEF2D appears to de-repress endogenous 

KLF6 protein levels. (b) Chromatin immunoprecipitation analysis of MEF2 recruitment onto 

the KLF6 promoter revealed no change upon TGFβ treatment. 
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TGFβ regulates KLF6 through a Smad3 specific pathway and inhibits skeletal myogenesis 

through MEK/ERK specific pathway 

 Since Smad3 is activated in proliferating myoblasts and is also regulated by TGFβ, we 

observed that Smad3, along with MEF2 and KLF6 are co-expressed in skeletal myoblasts (Fig. 

4.3a). To further investigate the effect of TGFβ on KLF6 we used well documented 

pharmacological inhibitors of the Smad and ERK1/2 MAPK pathways . We tested the effect of 

TGFβ on KLF6 protein expression in C2C12 myoblasts in the presence and absence of a Smad3 

inhibitor, Sis3 (Fig. 4.3b). The data in Fig. 4.3b reveal that indeed TGFβ treatment increases 

KLF6 protein levels and this corresponded with a decrease in myogenin as an indicator of 

myogenic differentiation. Interestingly, pharmacological inhibition of Smad3 with 5μM Sis3 

reduced TGFβ induced KLF6 protein expression but had no effect on myogenin. This indicates 

that TGFβ regulates KLF6 and myogenin through two distinct pathways. Smad2/3 and phospho-

Smad2/3 antibodies were used as positive controls for Sis3 treatment since Sis3 inhibits Smad3 

phosphorylation and hence its translocation into the nucleus [33]. Since TGFβ also regulates the 

MEK/ERK(1/2) MAPK pathway we wanted to test the effect of pharmacological inhibition of 

that pathway on KLF6 using 10μM U0126. The data summarized in Fig. 4.3c, confirms that 

TGFβ induces KLF6 protein expression while inhibiting myotube formation (using sarcomeric 

myosin heavy chain expression as an indicator). In this experiment Smad3 inhibition repressed 

TGFβ induction of KLF6 but did not reverse the effects on MyHC (Fig. 4.3c). Strikingly, 

pharmacological inhibition of ERK1/2 had no effect on KLF6 levels but instead rescued myotube 

formation and MyHC expression, thus supporting the idea that TGFβ regulates KLF6 and 

myogenic differentiation through Smad3 and ERK1/2 distinctively.   
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Figure 4.3: (a) Western blot analysis revealed that Smad3 and KLF6 are co-expressed in C2C12 

myoblasts. Myogenin was used as a protein marker for differentiation and actin was used as a 

loading control. Pharmacological manipulation of TGFβ signaling pathway reveals that TGFβ 

regulates KLF6 protein expression through Smad3 but not MEK/ERK MAPK. (b) Western blot 

analysis indicates that 2ng/ml TGFβ treatment elevates KLF6 protein expression and that this 

effect is abrogated in the presence of 5μM specific inhibitor of Samd3, Sis3. TGFβ treatment also 
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inhibited myogenic differentiation marker, myogenin protein expression levels and, this effect 

was not abrogated by Sis3. (c) Western blot analysis revealed that TGFβ treatment enhances 

KLF6 expression through Smad3 but not ERK1/2 MAPK and that TGFβ treatment repressed 

myogenic differentiation through ERK1/2 MAPK but not Smad3. 10μM U0126 was used as an 

inhibitor of the MEK/ERK MAPK pathway, 5μM Sis3 was used for Smad3 inhibition and 2ng/ml 

TGFβ were all used as indicated. Actin was used as a loading control. 

 

 

 

TGFβ induces cell proliferation in C2C12 myoblasts through KLF6 

 Since TGFβ represses skeletal myogenesis by retaining cells in a proliferative state, we 

wanted to test the effect of KLF6 mRNA silencing using siRNA mediated gene silencing. 

siRNA3 was chosen as the most efficient in depleting KLF6 expression as shown in Fig. 4.4a. 

Subsequent KLF6 silencing resulted in increased MyoD and myogenin protein expression (fig. 

4.4b; upper panel) and this corresponded with a 2.5 fold increase in muscle creatine kinase 

(MCK) promoter (Fig. 4.4b; lower panel).  Furthermore, an MTT cell proliferation assay was 

performed, and the data showed that at 24h, 2ng/ml TGFβ treatment doubles the number of 

proliferating cells (Fig. 4.4c). This effect is largely negated following KLF6 gene silencing thus 

implicating KLF6 in the proliferative response to TGFβ signaling. In support of this, siKLF6 on 

its own reduced the number of proliferating cells indicating a functional role in proliferation of 

skeletal myoblasts (Fig. 4.4c).   
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Figure 4.4: KLF6 RNA silencing reveals that (a) KLF6 protein expression was successfully 

repressed, particularly by siRNA3 which was used in subsequent experiments. (b) KLF6 RNA 

silencing resulted in (i) increased MyoD and myogenin protein levels, (ii) enhanced MCK 

Luciferase activity and, (iii) reduced TGFβ induced cell proliferation. (c) Cell proliferation was 

measured using the MTT cell proliferation assay kit. The number of proliferating cells is directly 

proportional to the absorbance at 570nm. TGFβ treatment doubled the number of proliferating 

cells and this effect was repressed with KLF6 silencing. (d) A schematic summary of the data 

presented, in which TGFβ/ERK signaling represses myogenic differentiation while TGFβ/Smad 

signaling regulates KLF6 gene expression and myoblast proliferation. 

 

 

4.5 Conclusions 

 In this study we report a novel role for KLF6 in skeletal myoblasts. Based on our data we 

propose that KLF6 is a downstream effector of the TGFβ/Smad3 pathway that regulates cell 

proliferation in skeletal myoblasts. We identify Smad3 as a key regulator of KLF6 expression, 

through TGFβ. In addition we were able to functionally distinguish between the TGFβ/Smad and 

TGFβ/MAPK pathways in that TGFβ inhibits skeletal myogenesis through the MEK/ERK (1/2) 

MAPK pathway and concomitantly enhances cell proliferation through Smad3 mediated 

induction of KLF6 expression. Our findings are summarized in figure 4.4d. Many myopathies and 

muscle loss disorders have been linked with increased TGFβ signaling [34] and hence, our 

findings identify KLF6 as a potential therapeutic target for such pathological conditions as well as 

for cancers such as embryonal rhabdomyosarcoma where TGFβ promotes cell proliferation [35]. 
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Summary 

 GSK3β signaling suppresses skeletal muscle differentiation, although the precise 

molecular mechanism has not yet been defined. The studies presented in this report integrate 

GSK3β and p38 (MAPK) into the signaling network converging on MEF2 transcription factors 

and downstream skeletal and cardiac target gene expression. Functionally, GSK3 inhibition 

potentiates MEF2 transcriptional activity and this corresponded with an upward MEF2A band 

shift that was indicative of phosphorylation. These effects were reversed by pharmacological 

inhibition of p38 (MAPK) indicating that the effect of GSK3 on MEF2 was p38 dependent. On 

the other hand, ectopically expressed constitutively active p38/MKK6(EE) could not rescue 

GSK3β-mediated repression of MEF2. Previous studies have shown that p38 and JNK are 

negatively regulated by GSK3β via MEKK4 (MAP3K) in COS-7 cells (Abell et al., 2007). Based 

on our data, this did not seem to be the case in C2C12 myoblasts. Instead, repression of p38 was 

determined to be at the MAPK-level and this could either be by direct phosphorylation (Thornton 

et al., 2008) or indirectly through activation of phosphatases that can de-phosphorylate MAPKs 

(Wang et al., 2009). Nevertheless our studies show that GSK3 inhibition leads to de-repression of 

p38 which results in MEF2A phosphorylation and hence transactivation of its skeletal and cardiac 

target genes.  

 As with skeletal muscle differentiation, several studies have identified GSK3β as a 

negative regulator of cardiac muscle hypertrophy (Haq et al., 2000). In contrast, MEF2 has been 

shown to mediate stress-dependent pathological cardiac hypertrophy, which is characterized by 

cardiomyocyte growth, assembly of additional sarcomeres, enhanced contractility and activation 

of a fetal cardiac gene program (Kim et al., 2008). Our data show that GSK3β is a negative 

regulator of p38/MEF2 signaling and downstream markers of cardiac hypertrophy such as ANF 
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therefore elevation of GSK3β in the heart could potentially circumvent the chain of events that 

leads to pathological cardiac remodeling.  

 The second study which investigated the molecular basis for a lack of myogenic 

differentiation in Pax3-foxo1a expressing rhabdomyosarcoma cells revealed that GSK3β activity 

represses myogenesis not only through p38/MEF2 signaling but also by direct phosphorylation 

and hence inhibition of a key target downstream effector protein, Myogenin. Since Myogenin is a 

key regulator of cell fusion and hence terminal differentiation as discussed in Chapter 1, the 

presence of Myogenin in ARMS is extremely paradoxical. Although elevated GSK3β activity has 

been previously reported in Pax3-foxo1a expressing ARMS (Zeng et al., 2010), our studies have 

provided an answer to its role in maintaining an undifferentiated state in these cells. Neutralizing 

mutations of the S160/164 GSK3 phosphoacceptor sites resulted in a decrease in a low mobility 

upper band which coincided with increased Myogenin transcriptional activity. Additionally, 

colony formation assays revealed that transient transfection of Myogenin (S160/164A) decreased 

the tumorigenicity of Pax3-foxo1a expressing RH30 cells. Based on our studies, pharmacological 

inhibition of GSK3 significantly reduced cell proliferation and tumorigenicity in vitro. Currently, 

lithium based drugs are used to treat psychiatric and other brain-related diseases in both adults 

and children (Nunes et al., 2013) and since lithium is known to inhibit GSK3 activity (albeit non-

specifically) our studies support the idea of repurposing such pharmacological agents for treating 

children that suffer from alveolar rhabdomyosarcoma.  

 Given the opposite roles of MEF2 and GSK3β in the regulation of skeletal myogenesis, 

and given that MEF2 and GSK3β have both been shown to potentiate KLF6 expression (Salma 

and McDermott, 2012) and transcriptional activity (Okcu et al., 2013) respectively, in different 

tissue types and cancers, the third study described in Chapter 5 investigated the role of KLF6 in a 
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myogenic context. For the first time, these studies revealed an anti-myogenic role for KLF6 by 

enhancing cell proliferation despite having tumor-suppressor properties in other tissue types 

(Okcu et al., 2013). The data presented illustrate that TGFβ/Smad3 signaling and not MEF2 

regulates KLF6 protein expression, in myoblasts. Through these studies we were also able to 

document that TGFβ signaling regulates myogenesis through two distinct pathways: (1) by 

promoting cell proliferation in a Smad3/KLF6 dependent manner and (2) by inhibiting 

differentiation through ERK1/2 (MAPK) activation. 

 Collectively these studies demonstrate cross-talk between various signaling pathways and 

the importance of proper maintenance of these, in regulating physiological conditions such as 

proliferation and differentiation. Upsetting the equilibrium of growth factors and other 

extracellular stimuli that influence intracellular kinase activity can result in regulation of non-

canonical substrates and their downstream target genes, which is apparent in alveolar RMS.  

Future Direction 

 Perhaps the most significant finding from these studies is that pharmacological inhibition 

of GSK3β significantly reduces cell proliferation and tumorigenicity of the alveolar RMS cells, 

by repressing the p38/MEF2/Myogenin pathway, and possibly also through activation of KLF6. It 

would be important to confirm enhanced GSK3β activity and Myogenin phosphorylation in 

human alveolar RMS tissue samples by western blot analysis and RT-PCR. Furthermore, I 

propose utilizing an existing in vivo alveolar RMS mouse model (Gen & Dev., 2006) and then 

either (1) treating these with GSK3 inhibitor or solvent or (2) surgically insert electrodes into the 

tumors to test whether or not low voltage stimulates Akt activation and hence repression of 

GSK3β and tumor progression, as described in Chapter 3 and Figure 3.7.  
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 From a biomolecular aspect, having confirmed that KLF6 promotes cell proliferation in 

skeletal muscle cells (Chapter 4), and since KLF6 is expressed in RMS (Dionyssiou et al., 2013) 

and has also already been shown to be activated by direct phosphorylation, by GSK3β (Okcu et 

al., 2013), I propose confirming this relationship in an RMS model both in vivo and in vitro using 

the same methods that have already been successfully utilized in identifying Myogenin as a novel 

GSK3β target (Chapter 3). Since GSK3β is important in cardiac survival, glucose/glycogen 

metabolism as well as being a key regulator of Wnt signaling and protector against other cancers, 

it may be unrealistic to suggest that pharmacological inhibition of GSK3 could be used to treat 

RMS patients. However, if we can better understand the specific effects of GSK3β and identify 

unique substrates in RMS tissue, then it might be worthwhile for scientists and biomolecular 

engineers to collaborate on creating new technologies or small molecules that can target these 

substrates making them resistant to regulation by GSK3β. 
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APPENDIX 
 

 

Molecular techniques; 
 

 

Cell Culture 
Reagents: 1x Dulbecco's PBS, Versene (0.2g of EDTA in 1L 1x PBS), 0.125% Trypsin-EDTA 

(Gibco) diluted in Versene, DMEM (supplemented with Penicillin-Streptomycin (Gibco) and L-

glutamine (Gibco) added as required), Freezing medium ((Growth media (GM) supplemented 

with 10% DMSO); sterilize the freezing medium by passing through a 0.2um filter), FBS( heat 

inactivated at 56 C for 30 min), HS (heat inactivated at 56 C for 30 min). 

 

 

Cell passaging 

 

1. Remove media. 

2. Rinse the cell monolayer with 4 ml of Versene.  

3. Add 2.0ml of 0.125% Trypsin-EDTA solution to 100mm dish. 

4. Remove the Trypsin-EDTA solution. 

5. Add 10 ml of GM. 

6. Pipette the cells up and down with the GM.  

7. Plate cells accordingly. 

 
Inducing Muscle Cell Differentiation 
      1.   At 60-80% confluence, wash cells with PBS and re-feed with 2% HS in DMEM  

(differentiation medium (DM)). 

2.   Incubate cells for desired time at 37 C with 5% CO2 

 
 
 
 

Transfection of Mammalian Cells with DNA 
Reagents: 2x HEBS (2.8 M NaCl, 15mM Na2HPO4, 50mM HEPES)(adjust pH to 7.15, filter 

sterilize, store at -20 °C),  2.5 M CaCl2 (filter sterilize, store at -20 °C). 

 
Calcium-phosphate transfection 

1. Plate cells day before transfection for 30-50% confluent. 

2. Re-feed cell cultures with GM 2-3 h prior to addition of DNA. 

3. Label sterile tubes and add 0.5 ml of 2x HEBS to each tube. 

4. Prepare DNA-CaCl2 solution as follows, add 25 g DNA, bring up volume to 450 l, 

mix, add 50 l 2.5 M CaCl2, mix. 
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5. Add DNA-CaCl2 solution drop-wise to the HEBS. 

6. Add DNA mix drop-wise to cell cultures. 

7. 16 h after addition of DNA, wash cells with 1XPBS and re-feed with GM. 

 

 

 

 

 

Luciferase Assay 

 
Reagents: Luciferase assay Lysis buffer (20 mM Tris, pH 7.4, 0.1% Triton-X 100), Luciferase substrate 
(Promega). 

1. Wash adherent cells with 1XPBS. 

2. Add 300 l of lysis buffer per well/dish (35mm). 

3. Harvest cells and spin-down cell debris at 15000rmp for 10min. 

4. Transfer cell lysate into new tubes. 

5. Transfer 30 l to Luciferase assay tube. 

 

 

 

β-Galactosidase Assay 
 
Reagents: ONPG (4 mg/ml in ddH2O), Z buffer (60 mM Na2HPO4,  40mM NaH2PO4, 10mM KCl, 1mM 
MgSO4), 1 M Na2CO3 

1.  Prepare reaction mixture (per sample (500 µl Z buffer, 100 µl ONPG, 2.74 µl β-  

mercaptoethanol)). 

2.  Incubate tubes at 37 °C until a color change is apparent (yellow). 

3.  Add 400 µl of 1M Na2CO3 to each tube to stop reaction. 

4.  Measure absorbance of samples at 420 nm. 

 

 
 
 
 

Protein Extracts 

 
Reagents: ice-cold 1XPBS, Lysis buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1 mM Sodium vanadate, 1 mM 
PMSF (add fresh), Protease inhibitor cocktail (add fresh, Sigma, P-8340), 2X SDS sample buffer (BioRad) 
(supplemented with β-mercaptoethanol) 

1. Wash cells with ice-cold 1XPBS twice. 

2. Scrape cells and transfer to a new tube. 

3. Centrifuge at 1500XG for 2min. 

4. Remove PBS, and re-suspend the pellet with five times (vol/vol) lysis buffer. 

5. Vortex cells briefly every 10 min for 30 min on ice. 

6. Centrifuge cell lysate at 10 000XG for 15 min, and transfer supernatant to new tube. 



165 
 

7. Determine protein concentration by Bradford assay. 

 

SDS-PAGE 

 
Reagents: 1.5M Tris pH 8.8, 30% acrylamide mix, 10% SDS, 10% APS, TEMED, Laemmli buffer. 

1. Prepare resolving gel and then top with stacking gel. 

2. Fill bottom and centre well of mini-gel apparatus with 1X Laemmli buffer. 

3. Load samples on a gel. 

4. Run a gel at 100-150 V. 

 

 

Western blotting 
1. Transfer protein from a gel to Immobilon-P (Millipore) membrane by wet- transfer at 20 

V for 16 hrs. 

2. Block membrane with 5 % (w/v) skim milk powder in 1XPBS/TBS (blocking solution). 

3. Incubate membrane with primary antibody in blocking solution for 1-16 hrs at 4 °C. 

4. Wash membrane with 1XPBS/TBST (3 X 5 min each). 

5. Incubate membrane with secondary antibody in blocking solution for 1-2 hrs at room 

temperature (RT). 

6. Wash membrane with PBS/TBST (3 X 5 min each). 

7. Apply chemiluminescence reagent, and expose blot to film. 

 

 

 

Co-Immunoprecipitation 
 

1. Prepare cell lysates as described in protein extracts section. 

2. Dilute protein sample in lysis buffer. 

3. To 1 ml of cell lysate (250-1000µg total protein) add 1-5 µg of primary antibody and 

incubate at 4 °C for 1 h with gently agitation. 

4. Add 30-50 µl of Protein G-Agarose, and nutate 16 hrs at 4 °C. 

5. Pellet immuno-complex by centrifugation at 1000XG for 30 sec. 

6. Wash pellet with 1 ml of lysis buffer. 

7. Repeat steps 5 and 6 twice more. 

8. Re-suspend pellet in 40 µl of 2 X SDS sample buffer and boil for 3 min, and transfer 

supernatant to new tube. 

9. Sample ready for immuno-blotting. 

 

Immunochemistry  
Reagents: Fixative (90% ice-cold methanol), Blocking reagent (5 % skim-milk in 1XPBS). 

1. Wash cells and fix and permeabilize with 90 % methanol for 10 min at -20°C. 
2. Block with 5 % skim-milk in 1XPBS at 37 °C for 30 min. 
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3. Incubate cells with primary antibody for 1 hr in 5 % skim-milk. 
4. Incubate cells with Horseradish peroxidase (HRP)-conjugated secondary antibody, 1 hr in 5 % 

skim-milk 1XPBS. 
5. Wash cells three times with 1XPBS and incubated in developer (0.6 mg/ml DAB, 0.1 % H2O2 in 

1XPBS).  
6. Counter-stain nuclei with haematoxylin.  
7. Wash several times in ddH20. 
8. Mounting cells with mounting media and cover-slip 

 

Immunofluorescence 
 

1. Wash cells 3X with cold PBS. 
2. Fix cells with 4 % paraformaldehyde in PBS for 10 min at RT. 
3. Wash cells 3X with PBS. 
4. Permeabilize cells with 0.3 % Triton-X in PBS. 
5. Block cells with 10 % goat serum in PBS at 37 °C for 30 min 
6. Incubate cells with primary antibody (1:100 – 1:500) at 4 °C for O/N. 
7. Wash cells 3X with PBS. 
8. Incubate cells with appropriate TRITC/FITC-conjugated secondary antibody (1:500) directed 

against IgG from species the primary antibody was raised in, for 2 hours at RT. 
9. DAPI (4, 6-diamidino-2-phenylindole) staining for 15 min at RT.  
10. Wash cells 3X with PBS, add a drop of appropriate mounting media (DAKO), and cover slip. The 

fluorescence images are captured using a Fluoview 300 (Olympus) 
 
In vitro Kinase Assay:  Phosphorylation of GST-Myogenin by GSK3β 
 
GSK3β (Cell Signaling) 
GSK3β kinase reaction buffer (10X)             50mM Tris-HCl 
      10mM MgCl2  
      2mM DDT 
      1mM EGTA 
      0.01% Brij 35 (non-ionic detergent) 
      pH 7.5  
ATP (10mM) 

[ 32-P]ATP 
Myelin Basic Protein (0.5mg/ml) – positive control 
GST – negative control 
GST–Myogenin (Abcam) 
 
 

1. Dilute 10x kinase reaction buffer to 1x 
 

2.  Supplement 1x kinase reaction buffer with 200 M ATP and [ -32P]ATP to a final specific activity 

of 100-500 Ci/ mol 
 

3. Add 2 l (20ng) of purified activated GSK3β kinase to 3 g of protein 
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4. Add 10 l of ATP to reaction 
 
5. Incubate for 30 min at 30˚C (water bath) 
 
6. Add 2x sample buffer and boil for 5 min 
 
7. Resolve on a 10% SDS-PAGE gel 
 
8. Coomassie stain gel 
 
9. Dry gel, expose and develop 

 

 

 

 

 

 

 

 

 

 


