YorkSpace has migrated to a new version of its software. Access our Help Resources to learn how to use the refreshed site. Contact diginit@yorku.ca if you have any questions about the migration.
 

Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity

Loading...
Thumbnail Image

Date

1997

Authors

Schuh, G.
Heiden, A.C.
Hoffmann, T.H.
Kahl, J.
Rockel, P.
Rudolph, J.
Wildt, J.

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Verlag

Abstract

Emissions of volatile organic compounds (VOCs) from sunflower (Helianthus annuus L. cv. giganteus) were measured in a continuously stirred tank reactor. The compounds predominantly emitted from sunflower were: isoprene, the monoterpenes -pinene, -pinene, sabinene, 3-carene and limonene, an oxygenated terpene, not positively identified so far and the sesquiterpene -caryophyllene. Emission rates ranged from 0.8 x 10–16 to 4.3 x 10 –15 mol cm–2 s–1 at a temperature of 25°C and at a light intensity of 820 µEm–2 s–1. A dependence of the emission rates on temperature as well as on light intensity was observed. The emission rates of -pinene, sabinene and thujene from beech (Fagus sylvatica L.) were also affected by temperature as well as by light intensity. Our results suggest that an emission algorithm for all compounds emitted from sunflower and beech has to consider temperature and light intensity simultaneously. The observations strongly indicate that the emissions of VOCs from sunflower and beech are in part closely coupled to the rate of biosynthesis and in part originate from diffusion out of pools. The emission rates can be described by an algorithm that combines the model given by Tingey and coworkers with the algorithm given by Guenther and coworkers after slight modification.

Description

Keywords

emission algorithm, isoprene, monoterpene, sesquiterpene, sunflower, beech

Citation

J. Atmos. Chem, 27, 297-318