IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 5, MAY 2005

Correspondence

689

Distributed Vector Processing of a New Local MultiScale
Fourier Transform for Medical Imaging Applications

Robert A. Brown*, Hongmei Zhu, and J. Ross Mitchell

Abstract—The recently developed S-transform (ST) combines features
of the Fourier and Wavelet transforms; it reveals frequency variation over
both space and time. It is a potentially powerful tool that can be applied
to medical image processing including texture analysis and noise filtering.
However, calculation of the ST is computationally intensive, making con-
ventional implementations too slow for many medical applications. This
problem was addressed by combining parallel and vector computations to
provide a 25-fold reduction in computation time. This approach could help
accelerate many medical image processing algorithms.

Index Terms—Biomedical image processing, discrete Fourier transforms,
distributed computing, vector processing.

1. INTRODUCTION

The S-transform (ST) [1], a generalization of the Fourier transform
(FT), is a spectral localization transform that utilizes a frequency
adapted Gaussian window to achieve optimum resolution at each
frequency. Signals may be directly translated between the Fourier
and S domains without loss of information, including preservation of
phase information. The ST was originally developed for geophysics
applications and was recently introduced for medical imaging and
signal processing [2]-[5].

The classic Fourier transform provides information about the fre-
quency content of an entire signal or image while the ST provides
a local spectrum for each signal sample. This makes the ST useful
for identifying changes in frequency content over time or space. The
one-dimensional (1-D) ST, applied to a signal [such as time course
functional magnetic resonance imaging (fMRI) data], can be used to
localize and remove noise components and artifacts [3]. The two-di-
mensional (2-D) ST has proven useful for filtering and artefact removal
in MR imaging [3], [4]. The 2-D ST also can provide local textural in-
formation that can be used to distinguish tissues and indicate disease
activity [2], [4].

Unfortunately, calculation of the ST is computationally intensive.
Currently, the time required to transform a typical MR image makes

Manuscript received September 1, 2004; revised January 21, 2005. This work
was supported in part by the Alberta Heritage Foundation for Medical Research
(AHFMR), in part by the Multiple Sclerosis Society of Canada, and in part by the
Natural Sciences and Engineering Research Council of Canada (NSERC). The
Associate Editor responsible for coordinating the review of this paper and rec-
ommending its publication was P. Thévenaz. Asterisk indicates corresponding
author.

*R. A. Brown is with the Department of Electrical and Computer Engi-
neering, University of Calgary and the Seaman Family MR Research Centre,
Foothills Medical Centre, 1403 29 St. N.W., Calgary, AB T2N 2T9, Canada
(e-mail: brownr@ucalgary.ca).

H. Zhu was with the Seaman Family MR Research Centre, Calgary, AB
T2N 259, Canada. She is now with the Department of Mathematics and
Statistics, York University, Toronto, Toronto, ON M3J 1P3, Canada (e-mail:
hzhu@yorku.ca).

J. R. Mitchell is with the Departments of Radiology and Clinical Neuro-
sciences, Electrical and Computer Engineering, University of Calgary and the
Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, AB
T2N 259, Canada (e-mail: rmitch@ucalgary.ca).

Digital Object Identifier 10.1109/TMI.2005.845320

research difficult and application in a clinical setting often impractical.
This paper describes techniques to accelerate the ST algorithm to allow
application in clinically relevant time frames (<5 min to perform a
256 x 256 ST).

II. METHODS

The ST of an image I(x,y) is defined by [1]

S(.T,7 Y, ka:: k‘!/)

oo oo

= //G(mﬁ;kr,ky)ﬂ(kz—oz,ky—ﬁ)dadﬁ ())

—oo— 00

where H (ky, ky) is the FT of the source image and G(«, 3; k., ky)
is a frequency adapted Gaussian window. This formulation of the ST
allows us to build an algorithm that utilizes the fast Fourier transform
(FFT) for more efficient computation [4].

1) Calculate the FFT of the image:
H(w,3) =FFT[I(x,y)].

FOR every frequency (k. k,) DO:
2) Calculate the localizing 2-D Gaussian window at the current fre-
quency (K, ky)

277 o —

Gla,Bika b)) =¢ M e &5

3) Shift the Fourier spectrum H (v, 3) to H(« — ko, 3 — ky).

4) Let L(cv, B3 ku, ky) = H(aw — ko, 8 — ky)G(v, B3 kuy By).

5) Inverse FT L(«, f3; ks, ky) from the a—3 plane into the z—y
plane which gives the 2-D S(x, *, ks, ky) at the current fre-
quency (k., k,). Note that S(x, %, k., k,) indicates the spatial
locations where the frequency (k., k,) occurs.

END FOR.

For reference, we implemented the above ST algorithm in the In-
teractive Data Language (IDL Version 6.0.1, Research Systems Inc.,
Boulder Co.), which is designed to allow rapid implementation of new
algorithms. Our ST implementation uses the built-in IDL FFT and per-
forms the ST of a 256 x 256 image in about 5600 s (=1.5 h) (Dual
1-GHz Apple PowerMac G4 using one processor).

Three basic tasks are performed inside the loop in algorithm 1: a shift
of H(w, 3) to H(a — ks, 3 — ky), a point-wise matrix multiplication
H(a—k,,8—ky) G(a, 8; k., k) and an inverse FT. For an N x N
image I(x,y) these tasks are O(c) (accomplished with pointer opera-
tions), O(N?) and O[N? log(V)] respectively. Steps two through five
are repeated N? times, once for each frequency (k., k). This yields
an overall complexity for the 2-D ST of O[N*log(N)]. The ST of
a 2-D image produces a four-dimensional structure: S(z, y. kz, ky).
The ST’s memory requirement grows as N*. Thus, a 256 x 256 image
requires 256* storage elements —32 GB of floating point values for
example. These memory requirements pose problems not only for ul-
timate long-term storage but also for the execution of an ST. Note that
the ST of a real-valued image is symmetric, like the FT. Thus, for
real-valued images only half of the S-domain needs to be calculated. In
this paper we have performed the entire ST calculation as our primary
interest is analysis of MR images, which are acquired in the complex
Fourier domain.

0278-0062/$20.00 © 2005 IEEE

690

It is possible that further ST research will reveal a more efficient
method of computation. However, in the absence of such an algorithm,
we propose two approaches to increase computation speed. First, the
ST algorithm can be modified to utilize vector computing hardware
available in recent desktop workstations. Second, the ST algorithm can
be parallelized and distributed over multiple processors since each loop
iteration is fully independent—each can be calculated with only the
original image as input.

The Macintosh G4 processor includes the Altivec vector processing
unit—a powerful parallel vector processor to accelerate multimedia
and signal processing tasks [6]. The Altivec processor performs
operations on a 128-bit vector that can be flexibly divided into several
elements. For example, the Altivec unit can perform an operation on
four floating-point values simultaneously, each clock cycle. Many
common signal processing operations have been optimized for the
Altivec architecture.

Apple Computer’s vecLib library includes FFT routines optimized
for Altivec [6]. We wrapped the 2-D in-place FFT function for easy use
and benchmarking in IDL and discovered the Altivec FFT is at least
five times faster than the IDL function for matrix sizes of 128 x 128
and larger. Since the FFT is the highest order operation in our ST algo-
rithm, the simple substitution of the optimized FFT function provides
immediate benefit.

Profiling of the resulting code revealed that the majority of the re-
maining processing time was due to the application of the Gaussian
window. This operation consists of simple element-wise multiplication
of two matrices and also was a candidate for Altivec optimization. Un-
fortunately, for the Altivec unit to work efficiently, the data must be
aligned on a 16-byte boundary. This is not a problem for the Gaussian
window itself, but the data to which it is being applied is shifted at each
iteration, so scalar code must be used in the case of misalignment.

Distributed algorithms may perform lengthy calculations by exe-
cuting on several computers (nodes), connected by a network to form
a computing cluster. Due to the inherently parallel nature of the ST al-
gorithm it is conceptually easy to construct a distributed form. As the
calculation for each (%, k) value is independent, each can be assigned
to a separate node.

A distributed computing system was implemented in C++ using
custom protocols built on raw socket communications. The cluster
software consists of a controller that handles scheduling of jobs, a
client application that requests jobs to be executed and a node program
that performs the actual ST calculation. Each node is given the image
and a list of %, values it is responsible for calculating. Apart from the
Altivec code, which is easily replaced by native functions on different
architectures, each of the three components of the cluster software
are portable and may be recompiled and executed on a wide range of
platforms. This flexibility allows a powerful computing cluster to be
assembled from common commodity hardware. Workstations already
in the lab can be configured to participate in cluster computation
whenever they are idle.

Results for this paper were obtained from a cluster of desktop work-
stations, all Apple PowerMac G4 machines with dual 1.0-GHz proces-
sors (only one processor per machine was used for benchmarking). The
nodes were connected through a standard switch via the built in Gigabit
Ethernet interfaces over either copper or fiber optic cable.

III. RESULTS

As the FFT is the highest order operation in the ST algorithm,
FFT performance is very important to the ST as a whole, especially
with larger images. The IDL ST using the Altivec FFT was about 3.5
times faster than the pure IDL implementation for a 256 X 256 image.
When combined with Altivec optimization of the code that applies the

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 5, MAY 2005

256x256 Distributed ST Execution Time
1800

1600 AN
—e— Marshaling
—-=—-Non-Marshaling
1400
Local=823 s
b IDL=5561s

1200

1000 < \\
N\
\,
N\
800

Execution Time (s)

Number of Nodes

Fig. 1. Computing the ST using a cluster of 1-GHz G4 Powermacs with
gigabit Ethernet interconnections. Distributing calculation introduces some
overhead, but a 2-node cluster is almost as fast as an entirely local calculation.
If additional analysis (such as texture analysis) can be done in a distributed
fashion and the full ST results do not need to be transmitted to one machine
(nonmarshalling mode), a 2-node cluster is faster than the local ST. The
distributed ST performance continues to scale to all cluster sizes tested (up to
6-node).

Gaussian window (the second highest order operation), implementa-
tion in C and hand tuning, performance increases of almost 7 times
were obtained for the ST of 256 x 256 images. This brings calculation
of the ST for this image size to less than 14 minutes, compared to over
90 minutes for the native IDL implementation.

We tested two configurations of the distributed ST. In the first, re-
sults from each node are returned to a receiver node (marshaled) and
merged into one data structure. This approach is required for analysis
that requires the full ST and cannot itself be distributed. In the second
case, individual nodes do not return their results to a common node
(nonmarshalled). This configuration eliminates a significant amount of
network transmission and is useful for analysis algorithms that can be
at least partially distributed along with the ST calculation (texture anal-
ysis for example [2]).

Fig. 1 shows the performance of the two distributed versions of the
ST and the local ST for comparison. The distributed ST runs more
slowly on one node than the local version due to overhead associated
with scheduling and network communications, but a 2-node cluster that
does not marshal its results outperforms the local ST by a factor of 1.4.
A 4-node cluster is faster than the local ST for both marshaling and
nonmarshaling configurations. The nonmarshalling version using four
nodes calculates the ST of a 256 x 256 image in less than five minutes,
a speed that is potentially clinically acceptable.

IV. CONCLUSION

The ST has been shown to be useful in a variety of medical image
processing tasks. Unfortunately, research is difficult, and clinical rele-
vance of techniques is limited because of the long processing times.
We have demonstrated a method for vector computation of the ST,
resulting in a speed improvement of 6.8 times for a 256 x 256 pixel
image, and a method for distributed computation of the ST that scales
acceptably with increasing cluster size. Both techniques were imple-
mented using standard desktop computers and networking hardware.
While our single processor, unoptimzed reference implementation took
over an hour and a half (5561 s) to calculate the ST of a 256 x 256 pixel
image, using a four node vector-computing cluster we were able to per-
form the same transform in less than four minutes (221 s), over 25 times
faster. Future research will focus on investigating how the ST might be

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 5, MAY 2005

accelerated further by leveraging redundancy in the S-domain. Ulti-
mately, calculation of the ST in minutes instead of hours makes tech-
niques for filtering, image enhancement and feature detection based on
the ST practical for acute clinical applications.

REFERENCES

[1] L. Mansinha, R. G. Stockwell, and R. P. Lowe, “Pattern analysis with
two-dimensional spectral localization: Applications of two-dimensional
S transforms,” Physica A, vol. 239, pp. 286-295, 1997.

[2]

[3]

[4]

[3]

H. Zhu, G. Mayer, L. Mansinha, L. A. Law, C. J. Archibald, M. Luanne,
and J. R. Mitchell, “Space-local spectral texture map based on MR im-
ages of MS patients,” MS: Clin. Lab. Res., 2001.

B. G. Goodyear, H. Zhu, R. A. Brown, and J. R. Mitchell, “Removal
of phase artifacts from fMRI data using a stockwell transform filter im-
proves brain activity detection,” Magn. Reson. Med., vol. 51, pp. 16-21,
2004.

H. Zhu, B. G. Goodyear, R. A. Brown, G. Mayer, A. G. Law, L.
Mansinha, and J. R. Mitchell, “A new local multiscale Fourier analysis
for medical imaging,” Med. Phys., vol. 30, pp. 1134-1141, 2003.

R. Crandall and J. Klivington. (2000) Supercomputer-style FFT li-
brary for Apple G4. [Online]. Available: http://images.apple.com/acg/
pdf/gafft.pdf

