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Abstract

West Nile virus (WNv) is a mosquito-borne disease which arrived in Canada in 2001.

It has kept spreading across the country and still remains a threat to public health. In

this dissertation, we formulate dynamical models and applytheory of dynamical systems

to investigate the behavior of the transmission of WNv in the mosquito-bird cycle and

humans. In the first part, we propose a system of ordinary differential equations to model

the role of corvids and non-corvids birds in the transmission of WNv in the mosquito-bird

cycle in a single season and proved the existence of backwardbifurcation in the model. In

the second part, we consider another deterministic model tostudy the impact of seasonal

variations of the mosquito population on the transmission dynamics of WNv. We prove

the existence of periodic solutions under specific conditions. As for the third part, the

latter model is extended to assess the impact of some anti-WNvcontrol measures; by

re-formulating the model as an optimal control problem. Formosquito-borne diseases, it

is essential to access and forcast the virus risk. Thereforein the final part, we generalize

the risk index, minimum infection rate (MIR) by using a compartment model for WNv,
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to define a dynamical minimum infection rate (DMIR) for assessing risk of WNv. By

using the data from Peel region, we test and forecast the weekly risk of WNv which can

help identify the optimal mitigation strategies.
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1 Introduction

West Nile virus (WNv) is a mosquito-borne arbovirus belonging to the genusFlavivirus

in the family Flaviviridae that can cause swelling and inflammation of the brain and

spinal cord in birds, humans and many other species of animals (e.g. horses, cats, bats,

and squirrels) [16]. The virus was first isolated from the serum of a febrile woman

in 1937 in the West Nile district of Uganda [77]. Prior to the mid-1990s, WNv disease

occurred only sporadically and was considered a minor risk for humans, until an outbreak

in Algeria in 1994, with cases of WNv-caused encephalitis (50human cases, including 8

fatalities), Romania in 1996 (393 human cases, 17 fatalities), Tunisia 1997 (111 human

cases, 8 fatalities), Russia 1999 (361 human cases, 40 fatalities), and Israel 2000 (326

human cases, 33 fatalities) [6, 16, 61, 81, 82]. WNv has becomean endemic pathogen in

Africa, Asia, Australia, the Middle East, Europe and North America.

WNv first detected in the Western Hemisphere in 1999 in New YorkCity [49]. Sub-

sequently, the virus spread across the continental USA, leading to unparalleled morbidity

and mortality rates in humans and equids, then continued itsprogression northward into

1
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Figure 1.1: Reported human cases of WNv in Ontario and Canada [67]

Canada and southward into the Caribbean Islands and Latin America [46, 94]. In the

USA, 1,263 fatal cases and 31,392 reported cases of WNv infection occurred between

1999 and 2011 [17]. In 2012, the USA had experienced one of itsworst epidemics; there

were 5387 cases of infections in humans. These were considered very high numbers of

infection among humans knowing that the total number of infections in humans in the

four years preceding 2012 was 3809 cases [17].

The WNv activity was first reported in Canada in 2001, when the virus was found

in dead birds and mosquito pools in southern Ontario [16, 18]. In Fig.1.1, we present

the reported WNv positive human cases in Ontario and Canada from 2002 to 2012 [67].

From the figure, one can see that the number of WNv infected humans in Canada was re-

2



markably decreasing during the years of 2007-2010. However, it started increasing once

again in Ontario in 2010-2012 despite the immense efforts bythe specialized agencies to

control the virus. There are no indications that the spread of the virus has stopped. This

fact reveals that the disease is evolving towards an endemicsituation where the infected

proportion is rather small. West Nile disease will most probably continue to be a public

health concern because the virus has the most widespread geographical distribution and

the largest vector and host range of all mosquito-borne flaviviruses. Thus, in this dis-

sertation, we formulate dynamical models and theory of dynamical systems to discuss

factors that could be involved in the changes of WNv dynamics in Canada. In addition

to this, we develop a new risk assessment index.

1.1 Transmission cycle

WNv is an arthropod-borne virus (arbovirus) with a natural transmission cycle between

mosquito vectors and wild birds that serve as amplification hosts [16]. When an infected

mosquito bites a bird or some other mammal including a human,it transmits the virus;

the bird may then develop sufficiently high viral titers during the next three to five days to

infect another mosquito [83]. The WNv is different from othermosquito-born diseases

since it involves a cross-infection between the host birds and mosquitoes and those birds

could travel with no natural (spatial) boundaries. The virus can also be passed via vertical

transmission from a mosquito to its offspring which increases the survival of WNv in

3



Figure 1.2: WNv transmission cycle.

nature [28,78].

There are no documented cases from direct person-to-personor animal-to-person

contact. However, it has been found that birds from certain species may become infected

by WNv after ingesting it from an infected dead animal or infected mosquitoes, both of

which are natural food items of some species [47]. Although mosquitoes can transmit the

virus to humans and many other species of animals (e.g. horses, cats, bats, and squirrels),

it cannot be transmitted back to mosquitoes (see Fig.1.2).

1.2 Mathematical modeling of WNv

Mathematical models for the WNv have been proposed in an attempt to study the trans-

mission dynamics, in order to elucidate control strategies. The first WNv model was pre-
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sented by Thomas and Urena in 2001 [79] to determine the amount of spraying (killing

the mosquitoes) needed to eliminate the virus on New York City. In 2004 another model

was presented and suggested that the most plausible method of eradication of WNv in

a closed population would be to reduce the mosquito population or reduce the biting

rate [69]. The authors in [53] made a comparative study of thediscrete-time model

in [79] and the continuous-time model in [93] confirmed that adulticiding is a more ef-

fective preventive strategy for controlling WNv in comparison to the use of personal

protection. Paper [40] derived sufficient conditions in terms of the frequencies and rates

of larvicides and insecticide spray. An age-structured WNv model was applied to the

WNv dynamics in Southern Europe and Western Africa in [29]. The authors in [8] deter-

mined the cost-effective strategies for combating the spread of WNv in a given popula-

tion. In [90] the authors compared four WNv compartmental models and proved that the

dynamics of vector mosquitoes itself does not guarantee theexistence of the backward

bifurcation. All the above models share the feature of the interaction of WNv among

mosquitoes, birds and humans.

Moreover, many other researches work on the transmission dynamics of WNv among

mosquitoes and birds. Wonham et al. [92], presented a singleseason model with a system

of differential equations for WNv transmission in the mosquito-bird population. Their

work, using local stability results and simulations, showed that while mosquito control

decreases WNv outbreak threshold, controlling birds increases it. They also focused on

5



how different assumptions of host-vector interaction affect the disease-transmission term

in [93]. Paper [22] presented and analyzed a mathematical model for the transmission

of WNv infection between mosquito and avian populations and by using experimental

and field data as well as numerical simulations, they found the phenomena of damped

oscillations of the infected bird population. A theoretical framework for the analysis

of the WNv epidemic and for dealing with mosquito diffusion and bird’s migration was

provided in [45]. In [52] the authors studied the spatial spread of the virus, established the

existence of traveling waves and computed the spatial spreading speed of the infection.

The impact of directional dispersal of birds on the spatial spreading of WNv was studied

in [54]. Paper [41] obtained a subthreshold condition for the backward bifurcation. The

authors in [23] concluded numerically that the frequency ofthe new outbreaks depends

on the relationship between the intrinsic and seasonal frequencies.

A common feature of all the previous WNv models is that they areformulated with

constant parameters. There have been some models using a time-varying rate of some

parameters like the one in [50] which estimated the proportion of actual WNv-induced

dead birds by about0.8%, 7.3% of equine and10.7% of human cases- as reported by

the Centers for Disease Control and Prevention. Another one presented by Abdelrazec et

al. [2] considered the model that studied the impact of seasonal variations of the mosquito

population on the dynamics of WNv; and by using the theory of optimal control, it

confirmed that larviciding is the most effective strategy. Papers [1,11,30,60] categorized

6



the birds into two groups and studied the effects in transmission of the virus. Likewise,

the article [24] studied the effect of the interaction between different species of birds and

mosquitoes living in the same locality on the emergence and prevalence of the disease.

1.3 Risk assessment and control of WNv

Although studies are underway, there is no human vaccine currently available for WNv.

The methods used to reduce the risk of WNv infection are based on mosquito reduction

strategies (such as larvaciding, adulticiding, and elimination of breeding sites) and per-

sonal protection (based on the use of appropriate insect repellents). These measures are

intensified during mosquito seasons.

Since 2002, the Public Health Agency of Canada has established a surveillance pro-

gram to monitor the risk of WNv transmission to humans throughsurveillance and to

reduce it through control efforts and public education. Bothscientists and vector control

practitioners have considered various means of assessing the spatiotemporal human risk

of transmission to reduce potential health threats. Some studies have used entomological

risk of vector exposure as a key determinant of WNv disease risk in humans, whereas

others have focused on disease risk based on avian and equinesurveillance or manda-

tory human case reports. In practice, the entomological risk measures based on vector

mosquito abundance are considered effective means to assess and predict human WNv

infection risk [85].
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In general, risk assessment is a formalized basis for the objective evaluation of risk

in which assumptions and uncertainties are clearly considered and presented. The Public

Health Agency of Canada has utilized mosquitoes testing (through pooling mosquitoes

of the same species) to estimate the risk assessment in orderto monitor the spread of

the virus. The risk assessment of WNv infection depends on seven surveillance factors:

seasonal temperatures, adult mosquito vector abundance, virus isolation rate in vector

mosquito species, human cases of WNv, local WNv activity (horse, mosquito), time of

year and WNv activity in proximal urban or suburban region [85]. The risk assessment

of WNv, based on mosquito, can help identify areas that are at greatest risk for humans

so that control and prevention measures can be taken to reduce the human infection.

1.4 Overview of the dissertation

The overall goal of this thesis aims at understanding the behavior of the transmission of

WNv in the mosquito-bird cycle and humans, as well as developing systems and pro-

cedures to reduce human risk by formulating dynamical models and using the optimal

control to minimize the spread of WNv. This work consists of six chapters.

We begin with Chapter one as the introduction and in Chapter two, we propose a

system of ordinary differential equations (by taking corvids and non-corvids birds as the

primary reservoir hosts and mosquitoes as vectors) to modelthe role of corvids and non-

corvids birds in the transmission of WNv in the mosquito-birdcycle in a single season.
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The system of eight differential equations can have up to twopositive equilibria. We

find the basic reproduction number and analyze the existenceand stability of the equilib-

ria. Using normal theory and center-manifold theorem, we also prove the existence of a

backward bifurcation which gives a further sub-threshold condition beyond the basic re-

production number for the spread of the virus. The existenceof the backward bifurcation

also suggests that the long term WNv activity in a given regiondepends on the initial

population sizes of birds and density of mosquitoes. The result of this part also suggests

that even though dead corvids (American crow) may not be seenin a given region, like

in the early years of the endemic of the virus, there might be still a possibility of an out-

break due to the existence of the non-corvids as reservoirs.In this part we also suggest

that it is essential to consider the diversity of the avian species, as well as the quantity of

other mammals, when modeling WNv.

In Chapter three, we consider another deterministic model tostudy the impact of sea-

sonal variations on mosquito population and the dynamics ofWNv. Firstly, we establish

and study the model without seasonality and prove the existence of the backward bifur-

cation of the model. Secondly, we expand the model to includethe seasonal variations

to study the impact of seasonal changes on the transmission of the virus. We prove the

existence of periodic solutions under specific condition. We also introduce and calculate

the basic reproduction number for this seasonal forced model. Furthermore, we examine

the dynamics of the model when the seasonal variation becomes stronger.

9



In Chapter four, we use the optimal control theory to study thestrategies of control

and minimize the spread of WNv. The controls represent the level at which pesticide

is applied to the mosquito population and the prevention efforts to minimize human-

mosquito contacts. The model formulated in chapter three isextended to assess the

impact of some anti-WNv control measures; by re-formulatingthe model as an optimal

control problem. This entails the use of three control functions: adulticide, larvicide and

human protection. The numerical simulations of this optimal control problem lead to

the following outcomes: 1) Larvicide is the most effective strategy to control an ongoing

epidemic in reducing disease cost. (2) The results emphasize the importance of using the

information about quantity of other animals that could be infected and the percentage of

the non-corvids bird at any region before applying the control strategies. (3) Identifying

the ultimate time of applying the control to achieve the bestcontrol strategy.

In Chapter five, we establish a criterion to access the risk of WNv in any region. We

utilise the dynamical models to measure the risk of WNv by considering the influence of

birds. This is done by developing a new index, the dynamical minimum infection rate

(DMIR) of WNv introduction into Ontario-Canada through different pathways. DMIR

is considered the first WNv dynamical index to test and forecast the weekly risk of WNv

by explicitly considering the temperature impact in the mosquito abundance, estimated

by statistical tools. This chapter is followed by conclusions and future work.
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2 Dynamics of West Nile virus in mosquitoes and

corvids and non-corvids

2.1 Introduction

In North America, the WNv has been found in more than 300 species of birds [48]. From

the study of [36], the dynamics of WNv transmission are influenced strongly by a few

key super spreader bird species, and their results showed that the WNv mosquitoes fed

predominantly (83%) on birds with a high diversity of species used as hosts (25 species),

and WNv mosquitoes also fed on mammals (19%; 7 species with humans representing

16%). Their study indicated that approximately 66% of WNv-infectious mosquitoes

became infected from feeding on just a few species of birds. Yet, as far as we know, the

past modeling effects to understand the transmission dynamics of WNv have treated the

avian species as one family. The study by [36] suggested thatit is essential to consider the

impact of avian species diversity in one system to understand the transmission dynamics

of WNv.

11



2003 2004 2005
0

20

40

60

80

100

Year

%
 o

f t
ot

al
 p

os
iti

ve
 d

ea
d 

bi
rd

s

 

 
Corvids

Non-corvids

Figure 2.1: Percentages of WNv positive dead birds in Peel region [64].

However, it is not realistic to consider over 300 species of birds in one model. Note

that of those many bird species, corvids are the most susceptible to infection and com-

prise an auspicious component of the mortality [66]. The surveillance data for WNv

in southern Ontario, Canada, suggest that the corvids and non-corvids have different

disease-induced mortality rates. In Fig.2.1, we present the percentages of dead birds

from corvids and other bird species in Peel region, Ontario from 2003 to 2005 [64].

From Fig.2.1, one can see that corvids account up to80% in 2003,90% in 2004 and75%

in 2005 of total of deaths due to this disease.

In this chapter, we propose a system of ordinary differential equations to model the

role of corvids and non-corvids in the transmission of WNv in the mosquito-bird cycle

in a single season. The system of eight differential equations can have up to two positive
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equilibria. The analysis of the model including a backward bifurcation gives a further

sub-threshold condition beyond the reproduction number for the control of the virus. The

existence of the backward bifurcation also suggests that the long term WNv activity in a

given region depends on the initial population sizes of birds and density of mosquitoes.

The results of this chapter also suggests that even though dead corvids (American crow)

may not be seen in a given region, like in the early years of theendemic of the virus,

there might be still a possibility of an outbreak due to the existence of the non-corvids as

reservoirs. This chapter also suggests that it is essentialto consider the diversity of the

avian species when modeling WNv.

This chapter is organized as follows: We formulate the model, with birds being clas-

sified as corvids and non-corvids, in Section 2.2; and in the next section, we find and

analyze the equilibrium points of the model. The backward bifurcation analysis is given

in Section 2.4. Our numerical simulations and discussion are presented in Section 2.5

and 2.6 respectively.

2.2 Model formulation

According to the transmission cycle (between mosquitoes and birds) of the virus, we plot

the flow chart in Fig.2.2. In the flow chart,Ms(t) andMi(t) are the number of susceptible

and infectious mosquitoes at timet, respectively. The total number of mosquitoes is

Nm(t) = Ms(t) + Mi(t). Due to its short life span, a mosquito never recovers from
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Figure 2.2: Flow chart of the WNv [1].

the infection and we do not consider the recovered class in the mosquitoes [28, 78].

The number of susceptible, infected and recovered corvid birds at timet are denoted by

B1s(t), B1i(t) andB1r(t), respectively. Similarly, the number of susceptible, infected

and recovered non-corvid birds at timet are denoted byB2s(t), B2i(t) andB2r(t). Thus,

Nb1 = B1s + B1i + B1r andNb2 = B2s + B2i + B2r are the total number of corvid

and non-corvid birds, and the total number of birds will beNb = Nb1 + Nb2. Moreover,

the total number of infected birds at timet is denoted byBi(t) = B1i(t) + B2i(t).

According to [36], WNv mosquitoes also feed on mammals (humans, horses, cats, bats,

and squirrels, etc.); hence, we letA be the total of mammals that mosquitoes will bite for

blood meals. In this chapter we assume thatA is constant.

Let us define the biting ratebm of mosquitoes as the average number of bites per
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mosquito per day. The transmission probability is the probability when an infectious bite

produces a new case in a susceptible member of the other species. The probability that a

mosquito chooses a particular bird or other animal to bite can be assumed as1
Nb+A

. Thus,

a bird receives in averagebm
(

Nm

Nb+A

)

bites per unit of time. Then, the infection rate per

susceptible bird (corvids or non-corvids) is given byβbbm

(

Nm

Nb+A

)

Mi

Nm
= βbbm

Mi

Nb+A
,

whereβb is the WNv transmission probability from mosquitoes to birds. Similarly, the

infection rate per susceptible mosquito isβmbm
B1i+B2i

Nb+A
, whereβm is the WNv trans-

mission probability from birds to mosquitoes. As was mentioned in the introduction,

mosquitoes can transmit WNv vertically [78], and the fraction of progeny of infectious

mosquitoes that is infectious is denoted byq, with 0 ≤ q < 1.

For the corvid and non-corvid bird populations, we assume constant recruitment rates

γb1 andγb2 respectively due to birth and immigration. Usually the birdpopulation re-

mains unchanged over years if there are no avian diseases or environmental changes. For

simplicity in this chapter, we assume that the natural deathrate of non-corvid birds is

the same as that of corvid birdsdb. Another assumption is that infected corvid and non-

corvid birds recover at constant rates ofν1 andν2, respectively. The specific death rates

associated with WNv infection in the corvid and non-corvid birds population areµ1 and

µ2, respectively. The corvids family is more competent than thenon-corvids family of

birds, i.e, the number of secondary infections produced by individuals of those species

is greater than the corresponding number produced by the non-corvids [47]. Moreover,
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from Fig.2.1, we noticed that the disease mortality rates ofthe corvids family are signif-

icantly greater than the corresponding ones for the non-corvids family [47]. So we can

assume thatµ1 > µ2.

Based on the above assumptions, and extending the ideas in [11,22,52,92] our WNv

model is given by


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

























dMs

dt
= (rmMs + (1− q)rmMi)

(

1− Nm

Km

)

− dmMs − βmbm
B1i+B2i
Nb+A

Ms,

dMi

dt
= qrmMi

(

1− Nm

Km

)

− dmMi + βmbm
B1i+B2i
Nb+A

Ms,

dB1s

dt
= γb1 − dbB1s − βbbm

B1s
Nb+A

Mi,

dB1i

dt
= −(db + µ1 + ν1)B1i + βbbm

B1s
Nb+A

Mi,

dB1r

dt
= −dbB1r + ν1B1i,

dB2s

dt
= γb2 − dbB2s − βbbm

B2s
Nb+A

Mi,

dB2i

dt
= −(db + µ2 + ν2)B2i + βbbm

B2s
Nb+A

Mi,

dB2r

dt
= −dbB2r + ν2B2i,

(2.2.1)

where the definitions and values of the parameters used in the model (2.2.1) are summarized

in Table 2.1.

Adding the first two equations of the model (2.2.1), the total number of mosquitoesNm

satisfies

dNm

dt
= rmNm

(

1− Nm

Km

)

− dmNm. (2.2.2)
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For any given positive initial conditionNm(0) > 0, the total number of mosquitoes approaches a

steady valueM̃ = (1− dm
rm

)Km.

The equation (2.2.2) indicates that the mosquito population will die out ifdm ≥ rm, while

the mosquito population will eventually stabilize at a positive equilibriumM̃ if dm < rm. That

is why in this chapter we are assuming the latter case.

For the two species of birds, their totals satisfy

dNbj

dt
= γbj − dbNbj − µiBji, j = 1, 2, (2.2.3)

respectively. From (2.2.3), one can see that if there is no virus involved(Bji = 0), the total

populations of corvids and non-corvids will approachB̃j =
γbj
db

, j = 1, 2, respectively.

To better organize the analysis, we denoteδj = db + µj + νj , j = 1, 2. From the definition

of µj andνj we can define1
δ1

and 1
δ2

as the adjusted infectious period taking into account the

mortality rates of corvid and non-corvid birds, respectively. LetB̃ = B̃1 + B̃2 +A, which is the

total number of birds and other mammals that mosquitoes will bite for blood meals.

2.3 Equilibria and reproduction number

The model (2.2.1) has two disease free equilibrium (DFE) points,E0 = (0, 0, B̃1, 0, 0, B̃2, 0, 0)

andE1 = (M̃, 0, B̃1, 0, 0, B̃2, 0, 0). For the DFEE0, one can verify that its Jacobian matrix

has eigenvaluesλ1 = λ2 = λ3 = λ4 = −db, λ5 = −δ1, λ6 = −δ2, λ7 = (qrm − dm) and

λ8 = (rm − dm) > 0, soE0 is a hyperbolic saddle point.

The local stability ofE1 is governed by the basic reproduction numberR0 which can be

calculated from the next generation matrix for the system (2.2.1). Note that the model has five
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Par. Definition Range Ref.

rm Mosquitoes per capita birth

rate

(0.036− 42.5)/(day−1) [92]

Km Environmental carrying ca-

pacity of mosquitoes

(105 − 106) [92]

dm Natural death rate of

mosquitoes

(0.016− 0.07)/(day−1) [92]

db Natural death rate of birds (10−4 − 10−3)/(day−1) [92]

βm WNv transmission prob-

ability from birds to

mosquitoes

(0.018− 0.24) [92]

βb WNv transmission proba-

bility from mosquitoes to

birds

(0.088− 0.9) [92]

bm Biting rate of mosquitoes (0.2− 0.75) [92]

γb1 Recruitment rate of corvid

birds

(800− 1100)/(day) [47]

γb2 Recruitment rate of non-

corvid birds

(800− 1000)/(day) [47]

ν1 Recovery rate of corvid

birds

(0− 0.1)/(day−1) [47]

ν2 Recovery rate of non-

corvid birds

(0− 0.2)/(day−1) [47]

µ1 Death rate of corvid birds

due to the infection

(0.2− 0.3)/(day−1) [47]

µ2 Death rate of non-corvid

birds due to the infection

(0.01− 0.16)/(day−1) [47]

Table 2.1: Parameters used in the model (2.2.1).

infected groups, namelyMi, B1i, B1r, B2i andB2r. Using the notation of [84], the new infection

terms and the remaining transfer terms for those five groups are given below, in partitioned form.
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In the following, let

ℑ =

































qrmMi(1− Nm

Km
) + βmbm

B1i+B2i
Nb+A

Ms

βbbm
B1s

Nb+A
Mi

0

βbbm
B2s

Nb+A
Mi

0

































, υ =

































dmMi

δ1B1i

dbB1r − ν1B1i

δ2B2i

dbB2r − ν2B2i

































.

Thus, at pointE1, the Jacobian matrices ofℑ andυ with respect to the five groups leads to

F =

































qdm
βmbmM̃

B̃
0 βmbmM̃

B̃
0

βbbmB̃1

B̃
0 0 0 0

0 0 0 0 0

βbbmB̃2

B̃
0 0 0 0

0 0 0 0 0

































, V −1 =


























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



1
dm

0 0 0 0

0 1
δ1

0 0 0

0 ν1
dbδ1

1
db

0 0

0 0 0 1
δ2

0

0 0 0 ν2
dbδ2

1
db






















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
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,

whereF is a non-negative matrix andV is non-singular. It is not difficult to find the basic

reproduction number defined byR0 = ρ(FV −1), the spectral radius of the matrixFV −1. If we

denote

ℜ =

√

√

√

√βmβbb2m
M̃

dmB̃2

(

B̃1

δ1
+

B̃2

δ2

)

, (2.3.4)

then the basic reproduction number

R0 =
q

2
+

1

2

√

q2 + 4ℜ2. (2.3.5)

Note that for the WNv infection, the number of infections produced by a single corvid or non-

corvid bird during its infectious period in a completely susceptible mosquito population is given
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by βmbm
M̃

B̃2

(

B̃1
δ1

+ B̃2
δ2

)

. In the same way, the number of infections in a completely susceptible

avian population produced by a single infectious mosquito is given byβbbm
dm

. Thenℜ is the basic

reproductive number in the absence of vertical transmission.

From Theorem 2 of [84], the following proposition is obtained

Proposition 2.3.1. For system (2.2.1), the disease-free equilibriumE1 is locally asymptotically

stable ifR0 < 1 and unstable ifR0 > 1.

The epidemiological implication of Proposition 2.3.1 is that, in general, whenR0 < 1, a

small influx of infected mosquitoes into the community would not generate a large outbreak, and

the disease dies out in time. However, we show in the next subsection that thedisease may still

persist even whenR0 < 1.

2.3.1 Endemic equilibrium points (EEP)

To obtain all the endemic equilibrium points (EEP), or the positive equilibrium points, first we

set the right hand sides in equations (2.2.1) equal to zero:
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(rmMs + (1− q)rmMi)

(

1− Nm

Km

)

− dmMs − βmbm
B1i +B2i

Nb +A
Ms = 0, (2.3.6)

qrmMi

(

1− Nm

Km

)

− dmMi + βmbm
B1i +B2i

Nb +A
Ms = 0, (2.3.7)

γb − dbB1s − βbbm
B1s

Nb +A
Mi = 0, (2.3.8)

−(db + µ1)B1i − ν1B1i + βbbm
B1s

Nb +A
Mi = 0, (2.3.9)

−dbB1r + ν1B1i = 0, (2.3.10)

γb2 − dbB2s − βbbm
B2s

Nb +A
Mi = 0, (2.3.11)

−(db + µ2)B2i − ν2B2i + βbbm
B2s

Nb +A
Mi = 0, (2.3.12)

−dbB2r + ν2B2i = 0. (2.3.13)

Then we write the susceptible and recovered bird variables in terms ofB1i andB2i

B1s = B̃1 − δ1
db
B1i,

B2s = B̃2 − δ2
db
B2i,

B1r =
ν1
db
B1i,

B2r =
ν2
db
B2i.

(2.3.14)

By adding (2.3.6) and (2.3.7), we haveNm

(

Nm −Km

(

1− dm
rm

))

= 0. At any positive equi-

librium, we haveNm = Ms +Mi = Km

(

1− dm
rm

)

= M̃.

In caseMs +Mi = M̃, it follows from (2.3.9), (2.3.12) and (2.3.14) that one can verify

B2i =
δ1B̃2

δ2B̃1

B1i. (2.3.15)
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From equation (2.3.7), we have(1− q)dmMi = βmbmMs
B1i+B2i
Nb+A

, and then

Mi =
βmbmM̃(B1i +B2i)

(1− q)dm(Nb +A) + βmbm(B1i +B2i)
. (2.3.16)

Equations (2.3.9) and (2.3.12) imply that

B1i +B2i =

(

βbbmMi

Nb +A

)

(

B̃1

δ1
+

B̃2

δ2
− B1i

db
− B2i

db

)

. (2.3.17)

Eliminating Mi from equations (2.3.16) and (2.3.17), a straight forward calculation gives

that if an endemic equilibrium exists, itsBi-coordinates should satisfy the following quadratic

equation:

c20B
2
1i + c11B1iB2i + c02B

2
2i + c10B1i + c01B2i + c00 = 0, (2.3.18)

where

c20 = (1− q)dm

(

µ1

db

)2
− βmbm

µ1

db
,

c11 = 2(1− q)dm
µ1

db

µ2

db
− βmbm(µ1

db
+ µ2

db
),

c02 = (1− q)dm

(

µ2

db

)2
− βmbm

µ2

db
,

c10 = βmbmB̃ − 2(1− q)dmB̃ µ1

db
+ βmβbb

2
m

M̃
db
,

c01 = βmbmB̃ − 2(1− q)dmB̃ µ2

db
+ βmβbb

2
m

M̃
db
,

c00 = (1− q)dmB̃2 − M̃βmβbb
2
m

(

B̃1
δ1

+ B̃2
δ2

)

.

(2.3.19)

Using the expression forR0 in (2.3.5) we can write

βbβm
M̃

B̃2

(

B̃1

δ1
+

B̃2

δ2

)

= dm(R2
0 − qR0),

so we can rewritec00 in (2.3.19) as

c00 = B̃2dm (1− q +R0) (1−R0). (2.3.20)
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To obtain the positive equilibrium points, we find the intersection of the line (2.3.15) with the

quadratic curve (2.3.18).

For the curve defined by (2.3.18), letD = c02c20 − 1
4c

2
11. One can verify that

D = − β2
m

4d2b
(µ1 − µ2)

2 < 0.

Therefore, the quadratic curve (2.3.18) is a hyperbola. In order to better understand the intersec-

tion of this hyperbola with line (2.3.15), we make the following rotation ofB1i andB2i axes by

letting

x =
[

(1− q)dm
µ1

db
− βmbm

]

B1i +
[

(1− q)dm
µ2

db
− βmbm

]

B2i,

y = µ1

db
B1i +

µ2

db
B2i.

(2.3.21)

The inverse of the rotation operator is given by

B1i = 1
βmbm(µ1−µ2)

(µ2x− [(1− q)dmµ2 − βmbmdb] y) ,

B2i = 1
βmbm(µ1−µ2)

(−µ1x+ [(1− q)dmµ1 − βmbmdb] y) ,

(2.3.22)

providedµ1 6= µ2. By using this transformation we can conclude that,

Nb +A = B̃ − µ1

db
B1i −

µ2

db
B2i = B̃ − y. (2.3.23)

Using the new coordinates, it follows from (2.3.21) that the line (2.3.15) and the hyperbola

(2.3.18) become

L : y =
x

k
, (2.3.24)

C : y =

(

B̃ + βbbm
M̃

db

)

x− x0

x− x1
, (2.3.25)
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where

k = (1− q)dm −
βmbmdb

(

B̃1
δ1

+
B̃2
δ2

)

µ1
B̃1
δ1

+µ2
B̃2
δ2

,

x0 = c00

B̃+βbbm
M̃
db

,

x1 = (1− q)dm

(

B̃ − βbbm
M̃
db

)

.

(2.3.26)

Since1 > µ1 > µ2 > 0, q ∈ (0, 1), and from the Table 2.1, we have(1 − q)dmµ2 −

βmbmdb > 0, then(1−q)dmµ1−βmdb > 0, and then0 < k < 1. For the equation of a hyperbola

(2.3.25) whose (mutually orthogonal) asymptotes arex = x1 andy = B̃+βbbm
M̃
db
, respectively,

the horizontal asymptote intersects they−axis at a positive point while the intersection of the

vertical asymptote with thex−axis depends on the sign ofx1.

To obtain the intersection between the hyperbola (2.3.25) and the line (2.3.24), we have to

find the roots of the following equation:

x2 −
[

x1 +

(

B̃ + βbbm
M̃

db

)

k

]

x+ c00k = 0. (2.3.27)

The discriminant∆ for the quadratic equation (2.3.27) satisfies,

∆ =

[

((1− q)dm + k)B̃ − ((1− q)dm − k)βbbm
M̃

db

]2

− 4kc00.

Depending on the sign of∆, we can have up to two positive equilibria.

Let E = (M∗

s , M
∗

i , B
∗

1s, B
∗

1i, B
∗

1r, B
∗

2s, B
∗

2i, B
∗

2r) be any one of the arbitrary endemic

equilibrium of the model (2.2.1), represented as

B∗

1i =

db
δ1
B̃1x

k
(

µ1
B̃1
δ1

+ µ2
B̃2
δ2

) , B∗

2i =
δ1B̃2

δ2B̃1

B∗

1i, B∗

1s = B̃1 −
δ1

db
B∗

1i, B∗

2s = B̃2 −
δ2

db
B∗

2i,

B∗

1r =
ν1

db
B∗

1i, B∗

2r =
ν2

db
B∗

2i, M∗

i =
βmbmM̃(B∗

1i +B∗

2i)

(1− q)dm(B̃ − µ1

db
B∗

1i − µ2

db
B∗

2i) + βmbm(B∗

1i +B∗

2i)
.
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If R0 > 1, thenc00 < 0 and we always have only one positive root,

xE2 =

[

x1 +
(

B̃ + βbbm
M̃
db

)

k
]

+
√
∆

2
,

and we denote the corresponding equilibrium byE2.

If R0 = 1, thenc00 = 0; subsequently, we have one positive root if

x1 +

(

B̃ + βbbm
M̃

db

)

k > 0.

This condition can be written in another form as:

βbbm

db

M̃

B̃
<

(

(1− q)dm + k

(1− q)dm − k

)

. (2.3.28)

Now we consider the caseR0 < 1. Sincec00 > 0, we always have one or two positive roots

if ∆ ≥ 0.

First if x1 > x0, then

(1− q)dm
db

B̃ > βmbm

(

B̃1

δ1
+

B̃2

δ2

)

> (1− q)dmβbbm
M̃

d2b
,

which impliesB̃ > βbbm
M̃
db

. Sincec00 > 0, thenx0 > 0 andR0 < 1. Moreover, the hyperbolic

curveC will intersect thex, y axes at positive points as shown in Fig.2.3(a).

So the lineL has two positive intersection points with the hyperbolaC as shown in Fig. 2.3(a),

with one being above the liney = B̃ + βbbm
M̃
db

. Let x-coordinates ofL andC with y = B̃ be

denoted byx10 andx11, then (2.3.24) and (2.3.25) give,

x10 = kB̃ =



(1− q)dm −
βmbmdb

(

B̃1
δ1

+ B̃2
δ2

)

µ1
B̃1
δ1

+ µ2
B̃2
δ2



 B̃,
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and

x11 =

(

(1− q)dm − βmbm

db
δ1
B̃1 +

db
δ2
B̃2

B̃
)

)

B̃.

As shown in Fig.2.3(a), one can verify thatx10 < x11 which means the other intersection ofL

with C is also above the liney = B̃. Thus, from (2.3.23) that total number of birds would be

negative, so this case does not occur biologically.

C

y=B+ β
d

b
M

b

x

y

y=B
~

~
~

0 xx10 1x11

L

(a) x1 > x0 (R0 < 1), no EEP.

0

y=B+ β
d

b
M

b

x

~
~

y

(b) x1 = x0 (R0 < 1), no EEP.

Figure 2.3: Ifx1 ≥ x0, the system does not have any (EEP).

If x1 = x0, thenc00 = (1−q)dm

(

B̃2 − β2
b b

2
m

M̃2

d2
b

)

> 0, which impliesR0 < 1. Note in this

case the hyperbolaC will be reduced to a liney = B̃ + βbbm
M̃
db

, as shown in Fig. 2.3(b). Thus,

we have one positive equilibrium point that satisfiesy = B̃ + βbbm
Mi

db
. Again, from (2.3.23) the

total number of birds would be negative, and this case has no positive equilibrium. Hence there is

no positive equilibria ifx1 ≥ x0. Now we consider the casex1 < x0. Here we need to consider

the following five cases.

26



CASE 1. If x1 < 0 with x0 < 0, thenR0 > 1, and thereforec00 < 0 which leads to

∆ > 0. Consequently, the hyperbolic curveC intersects the x-axis with one negative component.

So there is one intersecting point as shown in Fig. 2.4. From the casex1 > x0 we proved that

x10 < x11 which leads to the intersection betweenL andC at point below the liney = B̃. Thus,

it follows from (2.3.23) that the total number of birds would be positive, so ifR0 > 1 there exists

a unique endemic equilibrium.

0

y=B+ β
d

b
M

b

x

~
~

x1 0

y

y=B
~

x x10 11x

Figure 2.4: CASE 1. The system always has a unique EEP.

CASE 2. If x1 < 0 with x0 = 0, thenR0 = 1. Therefore, the hyperbolic curveC passes

through the origin, and we have∆ =
(

x1 +
(

B̃ + βb
M̃
db

)

k
)2

. In this case and under condition

(2.3.28) we have one positive intersection point, otherwise we will not haveany positive intersec-

tion point. These subcases are shown in Fig. 2.5(a) and (b). Also by the same way as in CASE 1,

this intersection point is below the liney = B̃.

CASE 3. If x1 < 0 with x0 > 0, thenB̃ < βbbm
M̃
db

andR0 < 1. Therefore, under condition

(2.3.28), we can see that we do not have any positive intersection points if∆ < 0 and we have
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~
y=B+ β

d
b

M

b

x

~
~

x1 0

y

y=B

(a) No EEP.

11

y=B+ β
d

b
M

b

x

~
~

x1 0

y

y=B
~

x x10

(b) One EEP.

Figure 2.5: CASE 2. The system has at most one EEP

one or two intersection points if and only if∆ ≥ 0. Moreover, from the definition ofc00, we can

conclude thatc00 < kB̃
(

B̃ + βbbm
M̃
db

)

which means1
k
x0 < B̃ and thenx0 < x10 < x11. Then

any intersection betweenL andC occurs at a point below the liney = B̃. It is important to note

here that if∆ = 0, then we denote the basic reproduction number byR0 = R1
0. Case 3 is shown

in Fig.2.6.

CASE 4. If x1 = 0 thenB̃ = βbbm
M̃
db

and

∆ = −4kB̃βmbm

(

B̃ −
(

µ1

δ1
B̃1 +

µ2

δ2
B̃2

))

< 0.

So we do not have any real intersection points.

CASE 5. If x1 > 0 with x0 > 0, thenR0 < 1 and

βmbmdb

(1− q)dm

(

B̃1

δ1
+

B̃2

δ2

)

< βbbm
M̃

db
< B̃.
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d
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b
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x1 0
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(a) ∆ < 0 no EEP.

11

y=B+ β
d

b
M

b

x

~
~

x1 0

y

y=B
~

x x x0 10

(b) ∆ = 0 one EEP.

11

y=B+ β
d

b
M

b

x

~
~

x1 0

y

y=B
~

x x x0 10

(c) ∆ > 0 two EEP.

Figure 2.6: CASE 3. The system has at most two EEPs.

By the same way in CASE 3, we can have a maximum of two positive intersection points.

However, in the case that we have positive intersection points, we can conclude thatc00 >

kB̃
(

B̃ + βbbm
M̃
db

)

which means1
k
x0 > B̃ and thenx11 > x0. This leads to the intersec-

tion betweenL andC at a point above the liney = B̃. Hence, from (2.3.23) the total number of

birds is negative, and this case does not occur biologically. CASE 5 is shown in Fig.2.7.
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(c) ∆ > 0.

Figure 2.7: CASE 5. The system has no EEP.

Now, if we usexE2 andxE3 to define equilibrium pointsE2 andE3 we are able to state the

principal results about the existence and number of the equilibrium points.

Proposition 2.3.2. If we suppose that(1− q)dmµ2 − βmbmdb > 0, the system (2.2.1) can have

up to two positive equilibrium. More precisely,

1. If R0 > 1, there exists a unique endemic equilibriumE2.

2. If R0 < 1, then
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(a) If db
βbbm

< M̃

B̃
< db

βbbm

(

(1−q)dm+k

(1−q)dm−k

)

and∆ > 0, there exists two endemic equilibria

E2 andE3.

(b) If db
βbbm

< M̃

B̃
< db

βbbm

(

(1−q)dm+k

(1−q)dm−k

)

and∆ = 0, these two equilibria coalesce.

(c) Otherwise, there is no endemic equilibrium.

3. If R0 = 1, then

(a) If M̃

B̃
< db

βbbm

(

(1−q)dm+k

(1−q)dm−k

)

, there exists a unique endemic equilibriumE2.

(b) Otherwise, there is no endemic equilibrium.

The epidemiological implication of Proposition 2.3.2 is that whenR0 < 1 the virus may

or may not become endemic (at any region) depending on the ratio between the quantity of

mosquitoes on one hand and that of birds and other mammals on the other hand.

2.3.2 Local stability

In this section, we study the local stability of the EEP in the system (2.2.1). By using the Jacobian

matrix, at any equilibrium point, the eigenvalues satisfy: the first−(rm − dm), the second−db

that is repeated four times, as well as the eigenvalues from the matrixW with

W =





















−(1− q)dm
M̃
Ms

(

(1−q)dm
µ1
db

−βmbm

)

Mi+βmbmM̃

Nb+A

(

(1−q)dm
µ2
db

−βmbm

)

Mi+βmbmM̃

Nb+A

βbbm
B1s

Nb+A
−
(

δ1 + δ1

(

βbbm
Mi
db

−
µ1
db

B1i

)

Nb+A

)

δ1

µ2
db

B1i

Nb+A

βbbm
B2s

Nb+A
δ2

µ1
db

B2i

Nb+A
−
(

δ2 + δ2

(

βbbm
Mi
db

−
µ2
db

B2i

)

Nb+A

)





















.

We can find the eigenvalues ofW by finding the roots of the cubic equation

λ3 +A2λ
2 +A1λ+A0 = 0, (2.3.29)
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where

A2 = (1− q)dm
M̃
Ms

+ (δ1 + δ2) + δ1

(

βbbmMi
db

−
µ1
db

B1i

Nb+A

)

+ δ2

(

βbbmMi
db

−
µ2
db

B2i

Nb+A

)

,

A1 = (1− q)dm
M̃
Ms

(δ1 + δ2) + δ1δ2

(

1 +
βbbmMi

db

Nb+A

)(

1 +
βbbmMi

db
−

µ1
db

B1i−
µ2
db

B2i

Nb+A

)

+ (1− q)dm
M̃
Ms

(

δ1

(

βbbmMi
db

−
µ1
db

B1i

)

+δ2

(

βbbmMi
db

−
µ2
db

B1i

)

Nb+A

)

− βmbm
M̃
Mi

δ1B1i+δ2B2i
Nb+A

−
δ1

(

(1−q)dm
µ1
db

−βmbm

)

B1i+δ2

(

(1−q)dm
µ2
db

−βmbm

)

B2i

Nb+A
,

A0 = δ1δ2(1− q)dm

(

1 +
βbbm

Mi
db

Nb+A

)

M̃
Ms

(

βbbmMi
db

−
µ1
db

B1i−
µ2
db

B2i

Nb+A

)

− δ1δ2

(

1 +
βbbm

Mi
db

Nb+A

)

(

(1−q)dm
µ1
db

−βmbm

)

B1i+
(

(1−q)dm
µ2
db

−βmbm

)

B2i

Nb+A
.

For any endemic equilibrium pointE = (M∗

s ,M
∗

i , B
∗

1s, B
∗

1i, B
∗

1r, B
∗

2s, B
∗

2i, B
∗

2r) of the sys-

tem (2.2.1), we have the following proposition to determine the sign of the eigenvalues and the

roots for the characteristic equation (2.3.29).

Proposition 2.3.3. For the system (2.2.1),E2 is stable whileE3 is unstable when they exist.

Proof. For bothE2 andE3, from equation (2.3.9) we haveβbbm
M∗

i

db
> δ1

db
B∗

1i >
µ1

db
B∗

1i. Similarly

by (2.3.12) we haveβbbm
M∗

i

db
> µ2

db
B∗

2i. Hence,A2 > 0 (in (2.3.29) ) for bothE2 andE3.

By using equations (2.3.6) and (2.3.13) we can conclude that, for any positive equilibrium

with M∗

s = M̃(1−q)dm(B̃−yE)

(1−q)dmB̃−xE
andM∗

i = M̃((1−q)dmyE−xE)

(1−q)dmB̃−xE
, we can rewriteA0 as

A0 =
δ1δ2

k(B̃ − yE)2



1 +
βbbm

M∗

i

db

B̃ − yE





(

2x2E − xE

[

((1− q)dm + k)B̃ − ((1− q)dm − k)βb
M̃

db

])

.

If R0 < 1 and case (3)(a) of Proposition 2.3.2 holds, then we have two positive equilibrium
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points denoted by(xE2 , yE2) and(xE3 , yE3). ForE3 from (2.3.27) we can see that

xE3 <
1

2

[

((1− q)dm + k)B̃ − ((1− q)dm − k)βbbm
M̃

db

]

,

thereforeA0 < 0, the roots of (2.3.29) will have different signs, andE3 is unstable. While for

E2, from (2.3.27) we havexE2 > 1
2

[

((1− q)dm + k)B̃ − ((1− q)dm − k)βbbm
M̃
db

]

. Hence,

we conclude thatA0 > 0.

In the same way, ifR0 > 1, from Proposition 2.3.2, we have one positive equilibrium point

denoted by(xE2 , yE2) and from (2.3.27),

xE2 >
1

2

[

((1− q)dm + k)B̃ − ((1− q)dm − k)βbbm
M̃

db

]

andA0 > 0.

Finally, to prove that all roots of equation (2.3.29) are negative atE2, in the two casesR0 < 1

andR0 > 1, we need to prove that ifA0 > 0 thenA1A2 −A0 > 0.

By (2.3.7) we conclude that atE2, (1− q)dmM∗

i > βmbmM∗

s
B∗

1i
N∗

b
+A

, so this leads to

(1 − q)dm
M̃
M∗

s
> βmbm

M̃
M∗

i

B∗

1i
N∗

b
+A

, and in the same way,(1 − q)dm
M̃
M∗

s
> βmbm

M̃
M∗

i

B∗

2i
N∗

b
+A

.

Therefore,

δ1

[

(1− q)dm − βmbm
B∗

1i

N∗

b +A

]

+ δ2

[

(1− q)dm − βmbm
B∗

2i

N∗

b +A

]

> 0. (2.3.30)

From (2.3.9) atE2 we can conclude thatβbbmM∗

i

db
> µ1

db
B∗

1i +
µ2

db
B∗

2i. Then we have

δ1δ2



1 +

βbbmM∗

i

db

N∗

b +A







1 +

βbbmM∗

i

db
− µ1

db
B∗

1i − µ2

db
B∗

2i

N∗

b +A



 > 0. (2.3.31)
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It follows from (2.3.30) and (2.3.31) thatA0 > 0 implies thatA1 > 0 and

A1A2 − A0

=
(

(1− q)2d2m
M̃
M∗

s
+A1

)



(δ1 + δ2) +
δ1

(

βbbmM∗

i
db

−
µ1
db

B∗

1i

)

+δ2

(

βbbmM∗

i
db

−
µ2
db

B∗

1i

)

N∗

b
+A





+ δ1δ2

[

1 +
βbbm

M∗

i
db

N∗

b
+A

]
(

(1−q)dm
µ1
db

−βmbm

)

B∗

1i+
(

(1−q)dm
µ2
db

−βmbm

)

B∗

2i

N∗

b
+A

− (1− q)dm
M̃
M∗

s

(

δ1

(

(1−q)dm
µ1
db

−βmbm

)

B∗

1i+δ2

(

(1−q)dm
µ2
db

−βmbm

)

B∗

2i

N∗

b
+A

)

.

ThusA1A2 −A0 > 0, and the proof is complete.

2.4 Backward bifurcation

To discuss the backward bifurcation, we chooseδ1 = µ1 + ν1 + db andδ2 = µ2 + ν2 + db as the

bifurcation parameters. We will express the two conditionsR0 = 1 and∆ = 0 in terms of the

parametersδ1 andδ2 (δ1 > δ2), and then present the bifurcation diagram in(δ1, δ2) plane.

First, withR0 = 1, equation (2.3.5) can be presented as follows,

δ1 = αB̃1 +
α2B̃1B̃2

δ2 − αB̃2

(2.4.32)

whereα = βbβmb2mM̃

(1−q)dmB̃2
.

The second curve can be obtained by letting∆ = 0 in equation (2.3.27). Solving∆ = 0 in

terms ofδ1 one can get

δ1 = ρB̃1 +
ρ2B̃1B̃2

δ2 − ρB̃2

, (2.4.33)
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where

ρ =
βbβmb2mM̃

(1− q)dmB̃2 − 1
4k

(

((1− q)dm + k)B̃ − ((1− q)dm − k)βbbm
M̃
db

)2 .

In the positive quadrant of the parameters plane(δ1, δ2), equation (2.4.32) is a hyperbola, whose

(mutually orthogonal) asymptotes areδ1 = αB̃1 andδ2 = αB̃2. Similarly, equation (2.4.33)

represents a hyperbola with (mutually orthogonal) asymptotes,δ1 = ρB̃1 andδ2 = ρB̃2. From

the above we can conclude that if((1 − q)dm + k)B̃ = ((1 − q)dm − k)βbbm
M̃
db
, then the

two hyperbolas (2.4.32) and (2.4.33) are the same, andx1 +
(

B̃ + βbbm
M̃
db

)

k = 0 in equation

(2.3.27). Then whenM̃
B̃

= db
βbbm

(

(1−q)dm+k

(1−q)dm−k

)

, we do not have any positive equilibrium points if

R0 ≤ 1, while if R0 > 1, we have one positive equilibrium point, whereρ > α > 0.

One can verify that the two hyperbolas (2.4.32) and (2.4.33) do not intersect in the positive

quadrant, and a region for the existence of two endemic equilibria to occur iswell defined in the

shadow area as shown in Fig.2.8.

∆<0

O

δ1

δ2

δ = δ1 2

0
R  = 1

R <1
0

R >1
0

∆=0

∆>0

Figure 2.8: In the plane(δ1, δ2), we have two EEPs in the dashed area.
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Then from the above and from Proposition 2.3.2, if the discriminant∆ is set to zero and

solved for the critical value ofR0, which we denote byR1
0, then we have

R1
0 =

q +

√

q2 + ((1−q)dm+k)2

kdm

(

4k(1−q)dm
((1−q)dm+k)2

−
(

1− (1−q)dm−k

(1−q)dm+k
βbbm
db

M̃

B̃

)2
)

2
. (2.4.34)

Thus, the backward bifurcation scenario involves the existence of a subcritical transcritical bifur-

cation atR0 = 1 and of a saddle-node bifurcation atR0 = R1
0 < 1. The qualitative bifurcation

diagrams describing two types of bifurcation atR0 = 1 are depicted in Fig.2.9(a) and (b).

1

O 1 R0

B
i

unstable

stable

0R

(a) Backward bifurcation.

i

O 1 R0

B

(b) Forward bifurcation.

Figure 2.9: Basic reproduction number and bifurcation diagram.

Theorem 2.4.1. Consider model (2.2.1) with positive parameters. If

A <

(

µ1 − (ν1 + db(1 +
βmbm

(1− q)dm
))

)

B̃1

δ1
+

(

µ2 − (ν2 + db(1 +
βmbm

(1− q)dm
))

)

B̃2

δ2
,(2.4.35)

then system (2.2.1) undergoes a backward bifurcation whenR0 = 1.
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Proof. The proof employs Theorem 2.4.2, which is adopted from [14] that is, in turn, based on

the use of the center manifold theory [13,33].

Theorem 2.4.2. [14]. Consider the following general system of ordinary differential equations

with a parameter

dx

dt
= f(x, φ), f : Rn −→ R, and f ∈ C2(R×R). (2.4.36)

Without loss of generality, it is assumed that0 is an equilibrium for system (2.4.36) for all values

of the parameterφ, (that isf(0, φ) = 0 ∀φ). Assume

1. B = Dxf(0, 0) =
(

∂fj
∂xi

(0, 0)
)

is the linearized matrix of system (2.4.36) around the equi-

librium 0 withφ evaluated at0. Zero is a simple eigenvalue ofB and all other eigenvalues

ofB have negative real parts;

2. Matrix B has a right eigenvectorw and a left eigenvectorv corresponding to the zero

eigenvalue. Letfk be thekth component off and

a =

8
∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

b =
8
∑

k,i=1

vkwi
∂2fk

∂xi∂φ
(0, 0).

The local dynamics of system (2.4.36) around0 are totally determined bya andb.

(a) In the case wherea > 0; b > 0, we have that whenφ < 0 with |φ| close to zero,0 is

locally asymptotically stable and there exists a positive unstable equilibrium; when

0 < φ << 1, 0 is unstable and there exists a negative and locally asymptotically

stable equilibrium.
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(b) In the case wherea < 0; b < 0, we have that whenφ < 0 with |φ| close to zero,0

is unstable; when0 < φ << 1, 0 is locally asymptotically stable, and there exists a

positive unstable equilibrium;

(c) In the case wherea > 0; b < 0, we have that whenφ < 0 with |φ| close to zero, 0 is

unstable and there exists a locally asymptotically stable negative equilibrium; when

0 < φ << 1, 0 is stable and a positive unstable equilibrium appears

(d) In the case wherea < 0; b > 0, we have that whenφ changes from negative to

positive,0 changes its stability from stable to unstable. Correspondingly, a negative

unstable equilibrium becomes positive and locally asymptotically stable.

To apply Theorem 2.4.2, the following simplification and change of variables are made on

the system (2.2.1). First of all, letx1 = Ms, x2 = Mi, x3 = B1s, x4 = B1i, x5 = B1r, x6 =

B2s, x7 = B2i, x8 = B2r. Further, by using the vector notation

X = (x1, x2, x3, x4, x5, x6, x7, x8)
T , the system (2.2.1) can be written in the form ofdX

dt
=
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F (x), with F = (f1, f2, f3, f4, f5, f6, f7, f8)
T , such that



























































































































































dx1

dt
= (rmx1 + (1− q)rmx2)

(

1− x1+x2
Km

)

− dmx1 − βmbm
x4+x7

∑8
j=3 xj+A

x1,

dx2

dt
= qrmx2

(

1− x1+x2
Km

)

− dmx2 + βmbm
x4+x7

∑8
j=3 xj+A

x1,

dx3

dt
= γb1 − dbx3 − βbbm

x3
∑8

j=3 xj+A
x2,

dx4

dt
= −δ1x4 + βbbm

x3
∑8

j=3 xj+A
x2,

dx5

dt
= −dbx5 + ν1x4,

dx6

dt
= γb2 − dbx6 − βbbm

x6
∑8

j=3 xj+A
x2,

dx7

dt
= −δ2x7 + βbbm

x6
∑8

j=3 xj+A
x2,

dx8

dt
= −dbx8 + ν2x7.

(2.4.37)

Assume that(1 − q)dmµ2 − βmbmdb > 0. Choose(δ1, δ2) as a bifurcation parameters. As

a result of solvingR0 = 1, backward bifurcation occurs at any point on the curve defined at

equation (2.4.32).

The Jacobian matrix of the system (2.2.1) atE1 (with (δ1, δ2) satisfying equation (2.4.32)) is

given by

39





























































−(rm − dm) dm(1− q) + (dm − rm) 0 −βmbm
M̃

B̃
0 0 −βmbm

M̃

B̃
0

0 −(1− q)dm 0 βmbm
M̃

B̃
0 0 βmbm

M̃

B̃
0

0 −βbbm
B̃1

B̃
−db 0 0 0 0 0

0 βbbm
B̃1

B̃
0 −δ1 0 0 0 0

0 0 0 ν1 −db 0 0 0

0 −βbbm
B̃2

B̃
0 0 0 −db 0 0

0 βbbm
B̃2

B̃
0 0 0 0 −δ2 0

0 0 0 0 0 0 ν2 −db.


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,

The eigenvalues of the Jacobian matrix can be obtained by the following equation:

χ(λ) = λ(λ+ db)
4(λ+ (rm − dm))(λ2 + a2λ+ a1),

wherea2 = δ1 + δ2 + (1− q)dm anda1 = δ2(δ1 + (1− q)dm).

Thus, the Jacobian matrix has a simple zero eigenvalue and all the other eigenvalues have

negative real parts for allrm > dm. Hence, Theorem 2.4.2 can be used to analyze the dynamics

of the system (2.2.1).

WhenR0 = 1, it can be shown that the Jacobian matrix has a right eigenvector (associated to

the zero eigenvalue), given byw = (w1, w2, w3, w4, w5, w6, w7, w8)
T , wherew1 = −w2, w2 =

w2, w3 = −βbbm
B̃1

dbB̃
w2, w4 = βbbm

B̃1

δ1B̃
w2, w5 = βbbm

ν1B̃1

δ1dbB̃
w2, w6 = −βbbm

B̃2

dbB̃
w2, w7 =

βbbm
B̃2

δ2B̃
w2, w8 = βbbm

ν2B̃2

δ2dbB̃
w2.

Similarly, the components of the left eigenvector of Jacobian matrix (corresponding to the

zero eigenvalue), denoted byv = (v1, v2, v3, v4, v5, v6, v7, v8)
T , are given byv1 = 0, v2 =

40



v2, v3 = 0, v4 = βmbm
M̃

B̃
v2, v5 = 0, v6 = 0, v7 = βmbm

M̃

B̃
v2, v8 = 0.

Let a andb be the coefficients defined in Theorem 2.4.2. We can calculatea as follows: for

the transformed system (2.4.37), the associated non-zero partial derivatives off (evaluated at the

DFEE1) are given by

∂2f2

∂x1∂x2
= −qrm

Km
,

∂2f2

∂x1∂xj
=

βmbm

B̃
, (j = 4, 7),

∂2f2

∂x2∂x2
= −2

qrm

Km
,

∂2f2

∂xi∂xj
= −βmbm

M̃

B̃2
, (i = 3, 4, 5, 6, 7, 8; j = 4, 7),

∂2f4

∂x2∂xj
= −βbbm

B̃1

B̃2
, (j = 4, 5, 6, 7, 8),

∂2f4

∂x2∂x3
= βbbm

B̃−B̃1

B̃2
,

∂2f7

∂x2∂xj
= −βbbm

B̃2

B̃2
, (j = 3, 4, 5, 7, 8),

∂2f7
∂x2∂x6

= βbbm
B̃−B̃2

B̃2
.

Then,

a =
8
∑

k,i,j

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

=
2βmβ2

b b
3
m

db

M̃

B̃4
v2w

2
2(B̃1 + B̃1)

(

B̃1(
ν1 + db

δ1
− 1) + B̃2(

ν2 + db

δ2
− 1)

)

+
2βmβ2

b b
3
m

db

M̃

B̃4
v2w

2
2(B̃1 + B̃1)

(

A+ B̃1(1−
µ1

δ1
) + B̃2(1−

µ2

δ2
) +

βmbmdb

(1− q)dm

(B̃1

δ1
+

B̃2

δ2

)

)

=
2βmβ2

b b
3
m

db

M̃(B̃1 + B̃2)

B̃4
v2w

2
2(A− (µ1 − ν1 − db −

dbβmbm

(1− q)dm
)
B̃1

δ1

− (µ2 − ν2 − db −
dbβmbm

(1− q)dm
)
B̃2

δ2
).

Then, from the above equation we can conclude thata is negative if and only ifA satisfies the

equation (2.4.35).

From equation (2.4.32) we can see thatδ1 ≥ αB̃1δ2
δ2−αB̃2

, if and only if R0 ≤ 1. Using the same

notation as in [14],φ = αB̃1δ2
δ2−αB̃2

− δ1, thenφ ≥ 0 if and only ifR0 ≥ 1, andφ < 0 if and only if

R0 < 1.
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We can calculateb by substituting the vectorsv andw and the respective partial derivatives

(evaluated at the DFEE1) into the expression

b =

8
∑

k,i

vkwi
∂2fk

∂xi∂φ
(0, 0),

which implies

b =
2βmβbb

2
m

db

M̃B̃1

B̃2
v2w2 > 0.

Since coefficientb is always positive, it follows that the system (2.2.1) will undergo backward

bifurcation if the coefficienta is negative.

The parameterA measuring the effects of other animals bitten by mosquitoes to take blood

meals is usually ignored in many compartment models for mosquito-borne diseases. So if we

assume that all the birds as one family (corvids) andA = 0, then the condition for occurrence of

the backward bifurcation in the Theorem 2.4.1 can be simplified as

µ1 > ν1 + db

(

1 +
βmbm

(1− q)dm

)

(2.4.38)

which is consistent with the results on backward bifurcation in [41] and [90].

The epidemiological significance of the phenomenon of backward bifurcation is that ifR0 is

nearly below unity, then the disease control strongly depends on the initial sizes of the various

sub-populations of the models. On the other hand, reducingR0 below the saddle-node bifurcation

valueR1
0 may result in disease eradication.
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2.5 Simulations and discussion

In this section, we carry out numerical simulations to illustrate the effects and role of two avian

species, corvids and non-corvids, on the transmission of WNv and its dynamics. Numerical

results are obtained using values for parameters given in Table 2.1 .

2.5.1 R0 in case of corvid and non-corvid populations

Let h ∈ [0, 1] be the percentage of corvids in new recruitment of birds. Ifγb is the recruitment

rate, then in the model (2.2.1) we haveγb1 = hγb andγb2 = (1 − h)γb. If h = 0, then all birds

are non-corvid, and ifh = 1, all birds are corvids.

It follows from (2.3.5) that we can rewrite the basic reproduction number as R0 = q
2 +

1
2

√

q2 + 4ℜ2 with ℜ =

√

βmb2m
γb
db

M̃

dm(
γb
db

+A)2

(

βb1h
δ1

+ βb2(1−h)
δ2

)

.

For the case ofh = 1 andh = 0, if we denote

R0j =
q

2
+

1

2

√

√

√

√q2 + 4βmb2m
γb

db

M̃

dm(
γbj
db

+A)2

(

βbj

δj

)

, j = 1, 2, (2.5.39)

thenR01 andR02 are the basic reproduction numbers in the case that all birds are corvids (j = 1)

and non-corvids (j = 2), respectively. One can verify that we have

(R0 −
q

2
)2 = h(R01 −

q

2
)2 + (1− h)(R02 −

q

2
)2, h ∈ [0, 1]. (2.5.40)

Since corvids are more competent in transmitting the virus as the primary host for the virus

[47], therefore we haveβb1
δ1

> βb2
δ2

. So from (2.5.39), we haveR01 > R02. One can further verify

thatR02 < R0 < R01.
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For the reproduction number as a function of the percentageh ∈ [0, 1], it follows from

(2.5.40) that we have

R0 =
q

2
+

√

(R02 −
q

2
)2 + h(R01 +R02 − q)(R01 −R02), h ∈ [0, 1]. (2.5.41)

SinceR01 > R02, so for the case with a small vertical transmission rateq, as shown in Fig. 2.10,

the basic reproduction numberR0 is an increasing function ofh which defines a segment of a

parabola (2.5.41) forh ∈ [0, 1].

Another important observation is that if we do not distinguish the birds as corvids and non-

corvids, and take the bird population as only one species (using corvid parameters), just like what

have been done in available modeling for WNv, we haveR0 < R01, resulting in over estimation

of the epidemic of the virus in the birds population. This observation suggeststhat it will be

essential to further classify the birds into more species according to their responses, or death rates

due to the infection of the virus.
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Figure 2.10:R0 as a function ofh.

As shown in Fig. 2.10, one can see thatR0 is an increasing function ofh ∈ [0, 1]. This means

that in regions with high percentage of corvids, the virus becomes epidemic with higher basic
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reproduction number. This is consistent with the observation in Peel region, Ontario, Canada

in early years when the virus first arrived and caused the outbreak. It is well known that a large

number of corvid birds died due to the infection and thus, leading to the decrease of their numbers.

Yet in regions with a lower percentage, the epidemic either did not occur or was not as severe as

regions with higher percentages of corvid birds. In later years after thevirus had established in

the region, whenR0 < 1 the outbreak of the virus may still occur (inspite of the lower number of

corvid birds) due to existence of the backward bifurcation.

2.5.2 A discussion on the backward bifurcation

By Theorem 2.4.1, the backward bifurcation will occur whenR0 = 1 and the condition (2.4.35) is

satisfied. The existence of the backward bifurcation is illustrated by simulatingthe model (2.2.1)

with the values of the parameters from Table 2.1 andA = B̃1
20 . We keepµ1, µ2 as bifurcation

parameters and we plot the two curves (2.4.32) and (2.4.33) in the(µ1, µ2) planes. As shown in

Fig. 2.11, we note that the two positive equilibria exist only in a small areaS between the two

hyperbola curves.

By taking (µ1, µ2) = (0.24, 0.07) ∈ S, a time series ofBi is plotted in Fig.2.12 showing

the DFE and two endemic equilibria. Also using (2.4.34), we can findR1
0 = 0.9922 < R0 =

0.9962 < 1. Moreover, the value of the right hand side of condition (2.4.35) can be calculated as

0.2386 × B̃1; subsequently, the value ofA = B̃1
20 satisfies the condition (2.4.35). Therefore, the

backward bifurcation will occur (whenR0 is nearly below unity). We can then findB1i in the

two endemic equilibriaE2, E3 for all BE2
1i = 1779, BE3

1i = 409.
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Figure 2.11: Bifurcation curves in the plane(µ1, µ2).

Further, Fig.2.12 shows that one of the endemic equilibriaE2 is stable, the otherE3 is

unstable (saddle), and the DFE is stable. This clearly shows the co-existence of two locally-

asymptotically stable equilibria whenR0 < 1.
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Figure 2.12: The trajectories of infected corvid birds withdifferent initial values.
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2.5.3 The impact of other mammals A

From the expression in (2.3.5) and (2.5.40), we can conclude that the basic reproduction number

increases as A decreases.
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Figure 2.13: Infected bird population with different values ofA.

In Fig.2.13, we simulate and present the total number of infected birds with different sizes of

A. We compare the cases whenA = 0, B∗

s

2 , B∗

s and2B∗

s , whereB∗

s is the initial number of birds

and we also assume that all birds are of one family. One can see that the peak value of infected

bird population increases and the peak time occurs earlier whenA decreases. This is due to the

fact that some of the mosquito bites are shared by other mammals which causes the decrease of

the incidence of the birds.

2.5.4 The impact of bird species diversity

In Section 2.5.1, we see that the basic reproduction number is an increasingfunction ofh (the

percentage of corvids of the total birds population). By using the same parameters as in Table
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2.1, in Fig.2.14 we present the total number of infected birds (Bi) for h ∈ [0, 1].
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Figure 2.14: Total of all infected birds with different values ofh.

Usually, registers of WNv cases in the avian population are based on the number of dead

birds found. Thus, epidemiological reports indicate high WNv prevalencein avian species with

high disease mortality rate. In Fig.2.15, using the parameters given in Table 2.1, we present the

corvids and non-corvid birds population with initial total bird population15000. We can observe

in Fig.2.15(a) that the peak time of the infected mosquitoes appears earlier with higher percentage

of corvid birds. It suggests that if we ignore the weather and environmental factors for a region

with higher percentage of corvids, the peak time of the total infected mosquitoes (correspondingly

the risk of WNv risk) in the region arrives earlier.

From Fig.2.15(b), we can observe that the peak time of the infected non-corvid subpopulation

occurs later with the increase of its percentage that ranges between40% and80%. On the other

hand, the peak time of the infected corvid subpopulation occurs earlier with the increase of its

percentage. This observation together with the simulations in Fig. 2.15(a) suggests that for a re-
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gion with more corvids, usually one would observe a large amount of dead corvids, the virus first

causes the outbreak in the bird populations, and is followed with the peak of infected mosquitoes

which can potentially induce the outbreak in the human population. But for a region with less

corvids, it takes longer time for the epidemic of the virus to reach a peak in the birds population

which would postpone the peak of infection in mosquito population. In this caseif the cold wind

arrives earlier in the region, it can blow away the epidemic of the virus in human population. The

above observation is consistent with the endemic of the virus in regions in Southern Ontario [67].

The first year Ontario had more cases of WNv was in 2002, a total of 394 human cases reported.

Yet, if warmer weather promotes the abundance of total mosquitoes to reach a peak earlier,

it can still cause outbreak in humans even if there are fewer number of corvids in the region.

Recent outbreak of WNv in regions like Durham, Ontario verifies our observation. In 2012 the

hot summer in Southern Ontario allows mosquitoes to breed more quickly, which allows the WNv

in infected mosquitoes, and therefore in birds, to replicate faster. As in 2012, a total of 450 cases

of human infection were reported [67].

2.6 Conclusions and discussion

This Chapter presents a deterministic model for the transmission dynamics of WNv, by classi-

fying avian populations as corvids and non-corvids. A detailed analysis of the model shows the

presence of the locally stable disease free equilibrium whenever the associated reproduction num-

ber is less than unity. The model undergoes backward bifurcation wherethe stable disease free

equilibrium co-exists with a stable endemic equilibrium. The existence of the backward bifurca-
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Figure 2.15: The peak time of infected mosquitoes, and infected birds.

tion indicates that the spread of the virus whenR0 is nearly below unity could be dependent on

the initial sizes of the sub-population of the model. Moreover, in this chapter we generalizes the

results of backward bifurcation in previous work [41] and [90]. Furthermore, We analyzed the

effects of two avian populations, corvid and non-corvid family of birds withdifferent responses

to the virus, and we found that the level of incidence (measured by the peak) and the basic re-

production number are completely different when assuming one family of birdpopulation. We

also discussed the impact of other mammals on the transition of WNv. Thus, fromthe above, we

can conclude that if we do not classify the bird population into different species and if we do not

include other mammals, any epidemic calculations will be overestimated
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3 Dynamics of a West Nile virus model with seasonality

3.1 Introduction

Seasonal variations in temperature, rainfall and resource availability areubiquitous and can exert

strong pressures on density of vector mosquitoes. Three different mechanisms are responsible for

seasonality: host behavior changes, climate and environmental changes, and pathogen appearance

and disappearance [25]. Because WNv mosquitoesculexare sensitive to temperature change,

WNv shows very clear seasonal variation in any given year in SouthernOntario and other regions

in Canada. This variation would not necessarily be labeled as an outbreak. The incidence during

any part of the year should be compared to the situation in the previous years to demonstrate a

clear increase to be declared as an epidemic.

There have been some epidemiological models using a time-varying rate of someparameters.

Some models use a time varying rate of contact, between susceptible and infected individuals,

called the seasonally forced function [9, 27, 32]. Other examples of seasonally forced functions

may be found in [43, 91]. The authors in [89] proposed statistical relationships between envi-

ronmental parameters and WNv by using the mosquito surveillance data, and temperature and

precipitation records. Paper [23] is the only work that tackles the seasonal effects on new out-
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breaks in WNv starting from an endemic situation. It numerically concluded that the frequency

of the new outbreaks depends on the relationship between the intrinsic and seasonal frequencies.

By assuming that the birth rate of mosquitoes follows a periodic pattern, in this chapter we

study the impact of seasonal variations of the mosquito population on the dynamics of WNv. We

also prove the existence of periodic solutions under specific conditions. Moreover, we introduce

and calculate the basic reproduction number for this seasonal forced model. Furthermore, we

numerically study the effect of seasonality and the dynamics of the model when the seasonal

variation becomes stronger.

The current chapter is organized as follows. We formulate our model in Section 3.2. In Sec-

tion 3.3, we find and study the stability of the equilibrium points of the model and then existence

of the backward bifurcation. The impact of seasonal variation, includingproof of existence of

periodic solutions, is demonstrated in Section 3.4. The discussion are presented in Section 3.5.
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3.2 Model formulation

Based on the Chapter 2, on modeling the population of mosquitoes and hosts, and to extend the

modeling for the WNv in [1,7,52,92] we propose to study a new model:


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dLs

dt
= rm(Ms + (1− q)Mi)− (dL +mL)Ls,

dLi

dt
= qrmMi − (dL +mL)Li,

dMs

dt
= mLLs − βmbm

B1i +B2i

N
Ms − dmMs,

dMi

dt
= mLLi + βmbm

B1i +B2i

N
Ms − dmMi,
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dt
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N
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dBji

dt
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N
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

dS

dt
= γh − βhbm

S

N
Mi − dhS,

dE

dt
= βhbm

S

N
Mi − αE − dhE,

dI

dt
= αE − (γ + µl + r + dh)I,

dH

dt
= γI − (µh + τ + dh)H,

dR

dt
= τH + rI − dhR,

(3.2.1)

wherej = 1, 2, correspond to different avian populations, 1 for corvid and 2 for non-corvid. The

definitions and values of the parameters used in the model (3.2.1) are summarized in Table 2.1
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and Table 3.1.

Par. Value Meaning Ref.

rm Variable Mosquitoes per capita birth

rate

[92]

dm (0.02− 0.07) Natural death rate of adult

mosquitoes

[92]

dL (0.1− 1.5) Natural death rate of larva

mosquitoes

[92]

βm (0.018− 0.24) WNv transmission prob-

ability from birds to

mosquitoes

[92]

mL (0.07− 0.1) Mosquito maturation rate [92]

γh 0.05 The recruitment rate of hu-

mans

[8]

βh 0.01 WNv transmission proba-

bility from mosquitoes to

humans

[8]

α 0.1 The rate of development of

clinical symptoms of WNv

[8]

γ 0.0009 The hospitalization rate of

infected humans

[8]

µl 0.015 The WNv-induced death

rate of humans

[8]

µh 0.0005 The death rate of hospital-

ized humans

[8]

τ 0.05 The treatment-induced re-

covery rate

[8]

r 0.0002 The natural recovery rate [8]

dh 0.00008 The natural death rate for

humans

[8]

Table 3.1: Parameters used in the model (3.2.1).
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In the model (3.2.1) the total human population denoted byNh, is split into the populations

of susceptibleS, exposedE, infectiousI, hospitalizedH and recoveredR humans. For the

bird populations we considered the same as in Chapter 2. The parameterA denotes the number

of other living organisms that mosquitoes will bite (not include human population), andN =

Nb +Nh +A represents the total of all organisms that mosquitoes will bite. Leth ∈ [0, 1] be the

percentage of corvids in new recruitment of birds. Ifγb is the recruitment rate, then in the model

(3.2.1) we haveγb1 = hγb andγb2 = (1 − h)γb. If h = 0, then all birds are non-corvid, and if

h = 1, all birds are corvids.

As we mentioned in the Chapter 2, the female mosquitoes can transmit WNv vertically[78],

and the fraction of progeny of infectious mosquitoes that is infectious is denoted byq, with

0 ≤ q < 1. Then the larval populationL is split into the populations of susceptible larvalLs

and infectious larvalLi. Similarly the adult populationM splits into susceptible adultsMs and

infectious adultsMi. Thus,Nm = L + M = Ls + Li + Ms + Mi is the total number of

mosquitoes. Due to its short life, a mosquito never recovers from the infection, so we do not

consider the recovered class in the mosquitoes [34].

Strong pressure on population dynamics can be exerted by seasonal variations in temperature.

Field observations show that the strength and mechanisms of seasonality canalter the spread

and persistence of WNv. Hatching of the Culex mosquito eggs varies duringthe year; being

low in the winter and high in the summer [37]. Fig.3.1 shows the relation between temperature

and percentage of eggs hatching fromCulexquinquefasciatus. The figure also demonstrates the

percentage of hatching eggs fromCulexquinquefasciatus in Toronto, ON, Canada in 2011. From
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Figure 3.1: Impact of the temperature inCulexquinquefasciatus in Toronto

the data in Fig.3.1, we can assume that the birth rate of mosquitoes follows a periodic pattern.

Therefore, we propose that:

rm = r1(1− ǫ cos(ωt)), (3.2.2)

wherer1 is the mean of birth rate of mosquitoes,0 ≤ ǫ ≤ 1 is a measure of the influence of the

seasonality on the birth process andω = 2Π
365day

−1 is the frequency.

3.3 Model without seasonality

We start by studying the model (3.2.1) without seasonality (i.e.ǫ = 0). In this case each of the

total subpopulationsNm, Nb andNh is assumed to be positive fort = 0. Let us denote

B̃1 =
γb1

db
, B̃2 =

γb2

db
, S̃ =

γh

dh
, Ñ = B̃1 + B̃2 + S̃ +A. (3.3.3)
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We begin analysis by making two assumptions; the first is the parameter constraint rm =

dm
mL

(mL + dL) so as to guarantee the existence of a disease-free equilibrium. The second is that

the adult and larval mosquito populations satisfy:M(0) = M̃ andL(0) = L̃ = dm
mL

M̃. Then in

a given period of time the mosquito population has constant size equal toNm(t) = (1 + dm
mL

)M̃.

Next, we will determine the equilibrium points and assess their stability, and we willalso

prove the existence of backward bifurcation.

The model (3.2.1), withǫ = 0, has a disease-free equilibriumE0, obtained by setting the right

hand sides of (3.2.1) to zero, resulting inE0 = (L̃, 0, M̃ , 0, B̃1, 0, 0, B̃2, 0, 0, S̃, 0, 0, 0, 0). The

local stability ofE0 is governed by the basic reproduction numberR0. The basic reproduction

number is obtained by [84]:

R0 =

√

√

√

√q + βmβbb2m
M̃

dmÑ2

(

B̃1

δ1
+

B̃2

δ2

)

, (3.3.4)

whereB̃1, B̃2, Ñ are defined in (3.3.3).

Theorem 2 of [84] gives the following stability result withR0 given by (3.3.4).

Proposition 3.3.1. For system (3.2.1), (withǫ = 0) under the assumptionrm = dm
mL

(mL + dL),

the disease-free equilibriumE0 is locally asymptotically stable ifR0 < 1 and unstable ifR0 > 1.

An endemic equilibrium is given by the solution of the algebraic system obtainedby setting

the derivatives of model (3.2.1) equal to zero withMs = M̃ −Mi andLs = L̃− Li.

57



qrmMi − (dL +mL)Li = 0, (3.3.5)

mLLi + βmbm
B1i +B2i

N
(M̃ −Mi)− dmMi = 0, (3.3.6)

γbj − dbBjs − βbbm
Bjs

N
Mi = 0, (3.3.7)

−δjBji + βbbm
Bjs

Nb +A
Mi = 0, (3.3.8)

−dbBjr + ν2Bji = 0, (3.3.9)

γh − βhbm
S

N
Mi − dhS = 0, (3.3.10)

βhbm
S

N
Mi − αE − dhE = 0, (3.3.11)

αE − (γ + µl + r + dh)I = 0, (3.3.12)

γI − (µh + τ + dh)H = 0, (3.3.13)

τH + rI − dhR = 0. (3.3.14)

First we write the susceptible and recovered birds variables in terms ofB1i andB2i

Bjs = B̃j −
δj

db
Bji, Bjr =

νj

db
Bji, j = 1, 2. (3.3.15)

By combining (3.3.8) and (3.3.15) one can verify that

B2i =
δ1B̃2

δ2B̃1

B1i. (3.3.16)

From (3.3.5) we haveqdmMi = mLLi. As assumed above we know that at any positive equi-

librium, we haveM = M̃ andL = L̃. Then from equation (3.3.6), we have(1 − q)dmMi =

βmbm(M̃ −Mi)
B1i+B2i

N
. As a result we get the following:

Mi =
βmbmM̃(B1i +B2i)

(1− q)dmN + βmbm(B1i +B2i)
. (3.3.17)
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It follows from (3.3.8) that

B1i +B2i =

(

βbbmMi

N

)

(

B̃1

δ1
+

B̃2

δ2
− B1i

db
− B2i

db

)

. (3.3.18)

EliminatingMi from equation (3.3.17) and (3.3.18), a straight forward calculation yieldsthat if

an endemic equilibrium exists, itsB1i andB2i coordinates should satisfy the following quadratic

equation:

c20B
2
1i + c11B1iB2i + c02B

2
2i + c10B1i + c01B2i + c00 = 0, (3.3.19)

where

c20 = (1− q)dm

(

µ1

db

)2
− βmbm

µ1

db
,

c11 = 2(1− q)dm
µ1

db

µ2

db
− βmbm(µ1

db
+ µ2

db
),

c02 = (1− q)dm

(

µ2

db

)2
− βmbm

µ2

db
,

c10 = βmbmÑ − 2(1− q)dmÑ µ1

db
+ βmβbb

2
m

M̃
db
,

c01 = βmbmÑ − 2(1− q)dmÑ µ2

db
+ βmβbb

2
m

M̃
db
,

c00 = (1− q)dmÑ2 − M̃βmβbb
2
m

(

B̃1
δ1

+ B̃2
δ2

)

.

(3.3.20)

Using the expression forR0 in (3.3.4) we can writeβbβmb2m
M̃

Ñ2

(

B̃1
δ1

+ B̃2
δ2

)

= dm(R2
0 − q), so

we can rewritec00 in (3.3.20) as

c00 = Ñ2dm
(

1−R2
0

)

. (3.3.21)

To obtain the positive equilibrium points, we have to find the intersection of the line (3.3.16) with

the quadratic curve (3.3.19). This is similar to the results illustrated in chapter 2.
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Theorem 3.3.2. If we set

∆ = (βmbm
k1

k2
)2

(

Ñ − βbbm
M̃

db

)2

− 4βmbm
k1

k2
((1− q)dm − βmbm

k1

k2
)βbbm

M̃

db
(Ñ − k2),

with k1 = dbB̃1
δ1

+ dbB̃2
δ2

andk2 = µ1B̃1

δ1
+ µ2B̃2

δ2
, then under assumption(1 − q)dm > βmbm

k1
k2

the system (3.2.1) (withǫ = 0) can have up to two positive equilibrium. More precisely,

1. If R0 > 1, there exists a unique positive stable equilibriumE2 = (L∗

s, L
∗

i ,M
∗

s ,M
∗

i , B
∗

1s,

B∗

1i, B
∗

1r, B
∗

2s, B
∗

2i, B
∗

2r, S
∗, E∗, I∗, H∗, R∗). Moreover,

B∗

1i =

dbB̃1
δ1

(

2(1− q)dm −
(

βmbmk1
k2

)(

βbbm
M̃
db

+ Ñ
)

+
√
∆
)

2 ((1− q)dmk2 − βmbmk1)
,

B∗

2i =
δ1B̃2

δ2B̃1

B∗

1i, B∗

1s = B̃1−
δ1

db
B∗

1i, B∗

2s = B̃2−
δ2

db
B∗

2i, B∗

1r =
ν1

db
B∗

1i, B∗

2r =
ν2

db
B∗

2i,

M∗

i =
βmbmM̃(B∗

1i +B∗

2i)

(1− q)dm(Ñ − µ1

db
B∗

1i −
µ2

db
B∗

2i) + βmbm(B∗

1i +B∗

2i)
, M∗

s = M̃ −M∗

i

L∗

i =
qdm

mL
M∗

i , L∗

s = L̃− L∗

i , S∗ = S̃
B∗

1s

B∗

1s +B∗

1i
δ1βh

dhβb

, E∗ =
dh

dh + α
(S̃ − S∗),

I∗ =
α

γ + r + dh
E∗, H∗ =

γ

τ + dh
I∗, R∗ =

1

dh
(τH∗ + rI∗).

2. If R0 < 1, then

(a) If db
βbbm

< M̃

Ñ
<
(

((1−q)dmk2−βmbmk1)
βmbmk1

)

db
βbbm

, and∆ > 0, we have two positive

equilibrium points,E1 = (L∗∗

s , L∗∗

i ,M∗∗

s ,M∗∗

i , B∗∗

1s , B
∗∗

1i , B
∗∗

1r , B
∗∗

2s , B
∗∗

2i , B
∗∗

2r ,

S∗∗, E∗∗, I∗∗, H∗∗, R∗∗) unstable point andE2 = (L∗

s, L
∗

i ,M
∗

s ,M
∗

i , B
∗

1s, B
∗

1i,

B∗

1r, B
∗

2s, B
∗

2i, B
∗

2r, S
∗, E∗, I∗, H∗, R∗) stable point. Moreover,

B∗∗

1i =

dbB̃1
δ1

(

2(1− q)dm −
(

βmbmk1
k2

)(

βbbm
M̃
db

+ Ñ
)

−
√
∆
)

2 ((1− q)dmk2 − βmbmk1)
.
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By just replacing ”*” with ”**”, we can obtain the other values of the coordinates

ofE1 by the same relations between the coordinates inE2.

These two equilibria coalesce if and only if∆ = 0.

(b) Otherwise there is no positive equilibrium.

3. If R0 = 1, then

(a) If M̃

Ñ
<
(

((1−q)dmk2−βmbmk1)
βmbmk1

)

db
βbbm

, there exists a unique endemic equilibriumE2.

(b) Otherwise, there is no endemic equilibrium.

In general from the parameter assumptions, the system (3.2.1) (withǫ = 0) has infinitely

many degenerate stationary points satisfyingL(t) = dm
mL

M(t). From 2(a) in the Theorem 3.3.2

suggests the possibility of backward bifurcation at any given initial larvaland adult mosquito

population( dm
mL

M̃, M̃) (where the locally-asymptotically stable DFE co-exists with a locally-

asymptotically stable endemic equilibrium) when near toR0 = 1. To check this, let∆ = 0 and

solve for the critical value ofR0, denoted byR1:

R1 =

√

√

√

√

1−
((2(1− q)dm− βmbm

k1
k2
)− βmbm

k1
k2
βbbm

M̃
˜dbN

)2

4dm((1− q)dm − βmbm
k1
k2
)

. (3.3.22)

Thus, the backward bifurcation scenario involves the existence of a subcritical transcritical bifur-

cation atR0 = 1 and of a saddle-node bifurcation atR0 = R1. It should be mentioned that the

proofs of stability and existence of the backward bifurcation are similar to theproofs in Chapter

2.

Similar to Theorem 2.4.1 in chapter 2 we can summarize and prove the next theorem. Note

that the proof of the next theorem is based on the center manifold theory similar to the proof in
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Chapter 2.

Theorem 3.3.3. Consider model (3.2.1) with positive parameters. If

A+ S̃ <

(

µ1 − (ν1 + db(1 +
βm

(1− q)dm
))

)

B̃1

δ1
+

(

µ2 − (ν2 + db(1 +
βm

(1− q)dm
))

)

B̃2

δ2
,

then system (3.2.1) undergoes a backward bifurcation whenR0 = 1.

From Theorem 3.3.3 we can conclude that the backward bifurcation occurs atR0 = 1. If we

assume that all the birds as one family (Corvids) then the condition of the for occurrence of the

backward bifurcation in Theorem 3.3.3 can be simplified as

µ1 >
Ñ

B̃ − (S̃ +A)

(

ν1 + db

(

1 +
βmB̃

(1− q)dmÑ

))

, (3.3.23)

and is similar to one of the conditions in [8]; it is also considered a generalization of the same

form in chapter 2 and in [90]. With reference to equation (3.3.23) we noticethat the existence of

another important condition that is required for occurrence the backward bifurcation and that is

the ratio between total number of birds and the other mammals that can be infectedby mosquitoes

is greater than unity. When forward bifurcation occurs, the conditionR0 < 1 is a necessary and

sufficient condition for disease eradication, whereas it is no longer sufficient when a backward

bifurcation occurs.

The backward bifurcation is illustrated by simulating system (3.2.1) (withǫ = 0) with the

parameters of Table 2.1 and Table 3.1.

Fig.3.2 shows convergence to both the disease free equilibrium and the endemic equilibrium

for system (3.2.1) whenβb = 0.3, βm = 0.05 and(µ1, µ2) = (0.27, 0.07), (in this caseR0 =
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Figure 3.2: Time series of model (3.2.1) whenR0 = 0.9908 > R1 = 0.9846.

0.9908 > R1 = 0.9846). The profiles can converge to either the disease free equilibrium or an

endemic equilibrium point for the trajectories of system (3.2.1), depending on the initial sizes of

the population of the model.

The epidemiological significance of these is that the usual requirement ofR0 < 1 is, although

necessary, no longer sufficient for disease elimination. In other words, for R0 < 1, a stable

disease-free equilibrium coexists with two endemic equilibria: a smaller equilibrium (i.e., with

a smaller number of infective individuals) which is unstable and a larger one(i.e., with a larger

number of infective individuals) which is stable. In such a scenario, disease elimination would

depend on the initial sizes of the sub-populations (state variables) of the model.

That is, the presence of backward bifurcation in model (3.2.1) (withǫ = 0) suggests that the

feasibility of controlling WNv whenR0 is nearly below unity, may depend on the initial sizes of

the sub-populations. On the other hand, reducingR0 below the saddle-node bifurcation valueR1,
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may result in disease eradication. It follows from (3.3.23) that one can see, in order for backward

bifurcation to occur the virus induced death rate must be high enough and the total number of

initial bird population should be greater than the sum of total number of initial other mammals.

3.4 The impact of seasonal variations

In this section, we consider the model with seasonal variations (ǫ 6= 0) to study the impact of

seasonal changes on the transmission of the virus. We prove the existence of periodic solutions,

in the seasonal model, under specific conditions. We also introduce and calculate the basic repro-

duction number for this seasonal forced model. Furthermore, we examine the dynamics of the

model when the seasonal variation becomes stronger.

3.4.1 Existence of periodic solutions

By replacingrm given in (3.2.2) into system (3.2.1), we can conclude that the total number of

larval and adult mosquitoes satisfy the following equations:






















dL

dt
= (r1(1− ǫ cos(ωt))M − (dL +mL)L,

dM

dt
= −dmM +mLL.

(3.4.24)

Using the trajectories of (3.4.24) the equation for total number of adult mosquitoesM can be

written as

d2M

dt2
+ d

dM

dt
− (δ − κ cos(ωt))M = 0, (3.4.25)
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for all d = dm + dL + mL, δ = (mLr1 − dm(dL + mL)) andκ = mLr1ǫ, whered2 + 4δ >

4κ with 0 ≤ ǫ ≤ 1. From equation (3.4.25) we can conclude that the parametric resonance

appears. Parametric resonance comes from changes in the parameters of the system as opposed

to the classical resonance which originates from external forcing. Thefundamental property

of parametric resonance is that resonance peaks are expected at integer fractions of the natural

period, once a control parameter has exceeded a certain threshold, witheach parametric resonance

peak having its own threshold value.

In general, the solutions of equation (3.4.25) are not periodic. However, for a givenδ, periodic

solutions exist for special values ofκ. The most general method to analyze equation (3.4.25)

is the classical Floquet method, which is based on the calculation of the monodromy matrix

and an analysis of its eigenvalues. However, this method requires a large number of numerical

integrations, which restricts its possibilities, especially if the coefficients of theequations depend

on some parameters. Noted that the stability analysis of differential equationswith periodic

coefficients is rather cumbersome, but it can be successfully made with computer software such

as the Maple program.

According to the general theory of linear differential equations with periodic coefficients, the

behavior of solutions of (3.4.25) is determined by its characteristic multipliersρ, which are the

eigenvalues of the monodromy matrixX(T ) for (3.4.25), whereX(t) is the principal fundamen-

tal matrix which is defined

X(t) =









M1(t) M2(t)

dM1
dt

dM2
dt









,
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with M1(t) andM2(t) are two linearly independent solutions of (3.4.25) satisfying the initial

conditionsM1(0) = 1,M2(0) = 0, dM1
dt

(0) = 0 and dM2
dt

(0) = 1.

The characteristic equationdet(X(T )− ρI2) = 0 can be rewritten as

ρ2 − 2Dρ+B = 0,

whereD = 1
2(M1(T ) +

dM2
dt

(T )) andB = M1(T ) × dM2
dt

(T ) −M2(T ) × dM1
dt

(T ). Thus, the

characteristic rootsρ1,2 are functions of two parametersD andB which are given by the formula

ρ1,2 = D ±
√

D2 −B. (3.4.26)

The parameterB can be found without solving equation (3.4.25). Indeed, since the functions

M1(t) andM2(t) satisfy (3.4.25), we can write

d2Mj

dt2
+ d

dMj

dt
− (δ − κ cos(ωt))Mj = 0, (j = 1, 2).

By solving these two equations together, we can conclude that the functiony(t) = M1(t) ×

dM2
dt

(t)−M2(t)× dM1
dt

(t) satisfies the following differential equation:

dy

dt
= −dy(t).

Thus, the parameterB is given by the formula

B = e−dT , (3.4.27)

and then0 < B < 1. Hence, the system (3.4.25) is asymptotically stable for|D| < 1
2(B + 1),

stable for|D| = 1
2(B+1), and unstable for|D| > 1

2(B+1). Next we use the Poincare-Lyapunov

theorem to calculateD.
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The general solution of (3.4.25) can be represented as a power series

M(t) =
n
∑

j=0

Nj(t)κ
j , (3.4.28)

whereNj(t) are continuous functions, and sufficiently smallκ.

In order to obtain differential equations determining the functionsNj(t), we substitute ex-

pansion (3.4.28) into (3.4.25). Next, by equating the coefficients ofκj , j = 0, 1, .. on both sides

of the equation, we obtain the following system of differential equations.

d2N0

dt2
+ d

dN0

dt
− δN0 = 0,

and

d2Nj

dt2
+ d

dNj

dt
− δNj = − cos(ωt)Nj−1(t), j = 1, 2, ...

Accordingly, we have two linearly independent solutions ofN0(t), satisfying the initial condition

of the fundamental matrix,

N0(t) = e
−d
2
t(cosh(w0t) +

d

2w0
sinh(w0t)),

N0(t) =
1

w0
e

−d
2
t sinh(w0t),

wherew0 =
√

d2

4 + δ. Then the initial conditions for the functionsNj , j = 1, 2, .... can be

written asNj(0) =
dNj

dt
(0) = 0. Using these initial conditions we can obtain the following

expression for the functionsNj(t), j = 1, 2, .... as

Nj(t) =
1

2w0

(∫ t

0
cos(ωs)Nj−1(s)e

( d
2
+w0)(s−t)ds−

∫ t

0
cos(ωs)Nj−1(s)e

( d
2
−w0)(s−t)ds

)

.(3.4.29)

It should be noted that the solutionN0(t) is increases unboundedly ast → ∞ (unstable)

whenδ > 0 (i.e r1 >
dm(dL+mL)

mL
), decreases to0 ast → ∞ (asymptotically stable) whenδ < 0
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(i.e r1 <
dm(dL+mL)

mL
), and stable whenδ = 0 (i.e r1 = dm(dL+mL)

mL
). This is achieved with

previous results whenǫ = 0 (κ = 0).

Using the recurrence relation (3.4.29), we can successively calculate the coefficientsNj in

expansion (3.4.28). However, asj grows, the calculations become more and more cumbersome.

Therefore, this method can be reasonably realized with computer software. With accuracy ofκ2,

we have found the parameterD as a power series inǫ :

D = 2d
w0

e
−d
2
T (sinh(w0T ) + ǫmLω

2 + ǫ2((4w2
0 − ω2)((w2

0 − d2) sinh(w0T )

+ 2dω cosh(w0T )) + (w2
0 − d2(3w2

0 − d4)) sinh(w0T ) + 2w0d cosh(w0T ))).

(3.4.30)

From the above, we are able to state the principal results about the existence of the periodic

solutions.

Theorem 3.4.1. Letℜ = r1
dm(dL+mL)

mL
−mLω2ǫ+((mL+ω−dm)2+dm

ω
2
)ǫ2

, and(L,M) be the solution

of system (3.4.24) through(L(0),M(0)) ∈ R2
+. Then the following statements are valid:

1. If ℜ < 1, thenlimt→∞(L(t),M(t)) = (0, 0),

2. If ℜ > 1, thenlimt→∞(L(t),M(t)) = (∞,∞),

3. The periodic solutions exists only ifℜ = 1.

Proof. By studying the dynamics of equation (3.4.25), we can conclude that the domain of sta-

bility of equation (3.4.25) is inside the triangle bounded by the linesB = 1 andB = −1 ± 2D

in theD − B plane. The points that lie on the boundary of the triangle determine the stable

behavior of its solutions, while the domain outside the triangle is the domain of instability. Thus,
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from (3.4.30) and (3.4.27) we can conclude thatD > 0 and0 < B < 1. Furthermore, the line

B = −1+ 2D is periodical condition in the(D,B) plane. The periodic condition can be written

in the form of the relation between(r1, ǫ) as shown below

r1 =
dm(dL +mL)

mL
−mLω

2ǫ+ ((mL + ω − dm)2 + dm
ω

2
)ǫ2. (3.4.31)

Biologically, we can indicate from the previous result that the mosquito population will die

out if ℜ < 1, while it grows exponentially ifℜ > 1. Whereas, it oscillate to the positive equilib-

rium if ℜ = 1.
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Figure 3.3: The stability domain of (3.4.25).

Fig.3.3, shows that the(r1, ǫ) parameter plane (with the parameters valuesdm = 0.03,mL =

0.068, anddL = 0.8,) is divided into two regions. The first one is asymptotically stable (the

amplitudeM goes to zero at long times) whereℜ < 1. The second region is unstable (the

amplitudeM grows exponentially without bound) whereℜ > 1. Between these two zones there
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Figure 3.4: Long-term behavior of the total number of adult mosquitoes.

are bounded periodic solutions whenℜ = 1.

Fig.3.4 explains these scenarios with different values ofǫ andr1. Fig.3.4(a) introduces the

total number of adult mosquitoes whenǫ = 0.8 andr1 has three different values. One of the latter

satisfies the equation (3.4.31); where we have a periodic solution. The second value ofr1 is less

than the first value; where we obtain asymptotically stable solution. Finally, we have unbounded

unstable solution ifr1 is greater than the first value. Similarly, the same thing occurs in Fig.3.4(b)

but with fixedr1 = 0.387 and three different values ofǫ.

3.4.2 Reproduction number

In what follows, we introduce the basic reproduction number for the modelwith seasonality

according to the theory developed in [88], which is a generalization of the work in [84] to the
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periodic case. It is easy to see that the system (3.2.1) (whenrm satisfy (3.2.2) andℜ = 1) has

one disease-free equilibriumEp
0 = (L̃(t), 0, M̃(t), 0, B̃1, 0, 0, B̃2, 0, 0, S̃, 0, 0, 0, 0), whereM̃(t)

is the positive periodic solution of (3.4.25). Linearizing the system at the disease-free periodic

stateEp
0 to obtain

F (t) =


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
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










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

0 qrm(t) 0 0 0 0 0 0 0 0

mL 0 βmbmM̃(t)

Ñ
0 βmbmM̃(t)

Ñ
0 0 0 0 0

0 βbbmB̃1

Ñ
0 0 0 0 0 0 0 0

0 0 ν1 0 0 0 0 0 0 0

0 βbbmB̃2

Ñ
0 0 0 0 0 0 0 0

0 0 0 0 ν2 0 0 0 0 0

0 βhbmS̃

Ñ
0 0 0 0 0 0 0 0

0 0 0 0 0 0 α 0 0 0

0 0 0 0 0 0 0 γ 0 0

0 0 0 0 0 0 0 r τ 0
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


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,
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and

V =
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


















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

dL +mL 0 0 0 0 0 0 0 0 0

0 dm 0 0 0 0 0 0 0 0

0 0 δ1 0 0 0 0 0 0 0

0 0 0 db 0 0 0 0 0 0

0 0 0 0 δ2 0 0 0 0 0

0 0 0 0 0 db 0 0 0 0

0 0 0 0 0 0 (α+ dh) 0 0 0

0 0 0 0 0 0 0 (γ + µl + r + dh) 0 0

0 0 0 0 0 0 0 0 (µh + τ + dh) 0

0 0 0 0 0 0 0 0 0 dh
















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





























.

Then we can write

dz

dt
= (F (t)− V )z(t),

wherez(t) = (Li(t),Mi(t), B1i(t), B1r(t), B2i(t), B2r(t), E(t), I(t), H(t), R(t))T .AssumeY (t, s), t ≥

s, is the evolution operator of the linear periodic system
dy

dt
= −V y(t). That is, for eachs ∈ R,

the10× 10 matrixY (t, s) satisfies

dY (t, s)

dt
= −V Y (t, s) ∀t ≥ s, Y (s, s) = I,

whereI is the10× 10 identity matrix.

Let CT be the Banach space of all T-periodic functions fromR to R10 equipped with the

maximum norm. SupposeΦ(s) ∈ CT is the initial distribution of infectious individuals in this
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periodic environment; thenF (s)Φ(s) is the rate of new infections produced by the infected in-

dividuals who were introduced at times, and represents the distribution of those infected indi-

viduals who were newly infected at times and remain in the infected compartments at timet for

t ≥ s. Thus,

Ψ(t) =

∫ t

−∞

Y (t, s)F (s)Φ(s)ds =

∫

∞

0
Y (t, t− a)F (t− a)Φ(t− a)da,

is the distribution of accumulative new infections at timet produced by all those infected indi-

vidualsΦ(s) introduced at the previous time. We define the linear operatorL : CT −→ CT

by

(LΦ)(t) =

∫

∞

0
Y (t, t− a)F (t− a)Φ(t− a)da ∀t ∈ R, Φ ∈ CT .

Following [88], we callL the next infection operator, and define the basic reproduction number

asRp
0 = ρ(L), the spectral radius ofL. It should be pointed out that in the special case of

rm(t) = r1 = dm
mL

(mL + dL) (ǫ = 0) we obtainF (t) = F for all t. By Lemma 2.2(ii) in [88]

(see also [84]), we further obtain the basic reproduction number defined as in (3.3.4). In the

periodic case, we letW (t, λ) be the monodromy matrix of the linear T-periodic system:

du

dt
= (−V +

1

λ
F (t))u,

with parameterλ ∈ (0,∞). It is easy to verify that our model with seasonality satisfies assump-

tions (A1)-(A7) in [88]. Thus, from Theorem 2.1 and 2.2 in [88], we have the following results,

which will be used in our numerical computation ofR
p
0

• If ρ(W (T, λ)) has a positive solutionλ0 (is an eigenvalue of the operatorL), thenRp
0 > 1.

73



• If Rp
0 > 1, thenλ = R

p
0 is the unique solution ofρ(W (T, λ)) = 1.

• R
p
0 = 1 if and only if ρ(ΦF−V (T )) = 1.

• R
p
0 < 1 if and only if ρ(ΦF−V (T )) < 1.

• R
p
0 > 1 if and only if ρ(ΦF−V (T )) > 1.

Thus, the disease-free equilibriumEp
0 is locally asymptotically stable ifRp

0 < 1, and unstable if

R
p
0 > 1.
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Figure 3.5: The graph ofRp
0 versus with respect toǫ.

By numerical computation, we get the curve of the basic reproduction number R
p
0 (when

ℜ = 1) with respect toǫ. In Fig.3.5, we can see that the basic reproduction numberR
p
0 increases

with the increase ofǫ.

3.4.3 Simulations of the seasonal impact

Depending on the values ofǫ, and without changing the values of the other parameters, the basic

reproduction number could remain above1 or it could drop below1. To see what could happen,
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we plotted in Fig.3.6; choosing the value of the parameters whenǫ = 0, 0.1 and0.3.
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Figure 3.6: Time series of model (3.2.1).

Fig.3.6 shows three different cases. The first one, while ignoring the impact of seasonality (i.e

ǫ = 0), we see the solutions are convergent to both the disease free equilibriumand the endemic

equilibrium, depending on the initial sizes of the population. In the second case whenǫ = 0.1,

we note that the solutions oscillate with small amplitude to both the disease free equilibrium and

the endemic equilibrium, depending on the initial sizes of the population. While in thethird state

whenǫ = 0.3, the solutions oscillate to only the endemic equilibrium point at any initial size of

the population. Thus, we can conclude that the dynamic behavior of the backward bifurcation

state changes when the influence of the seasonal variation becomes stronger. Moreover, Fig.3.6

shows that whenǫ = 0, the infected populations are almost constant to endemic point (as it is

expected because the equilibrium is stable), while whenǫ increases, the peaks and valleys time

series appear.
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(a) ǫ = 0.25.
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(b) ǫ = 0.5.

Figure 3.7: Time series and peak time of model (3.2.1).

Furthermore, the amplitude of infected populations increases asǫ increases. This is reflected

in Fig.3.7 which shows one season with two different values ofǫ : 0.25 and0.5. We note that

when the seasonal variation has high force, it increases the infected cases. Also the highest peak

number of infected populations whenǫ = 0.25 comes later than whenǫ = 0.5. This means that

the time of applying the control could depend on the seasonal impact. Finally, from Fig.3.7(a),

and (b) we can see that(t1, t2) (t1 and t2 are the difference in time between highest peaks of

infected mosquitoes, and highest peaks of infected birds and humans, respectively) decreases

from (18, 35) whenǫ = 0.25 to (11, 27) whenǫ = 0.5 days.

We deduce from numerical analysis that the strength of seasonality increases the number

of infections. This agrees with the studies carried out that show that factors which influence

mosquito dynamics such as mean values of temperature and rainfall are strong positive predictors

of increased annual WNv incidence.
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3.5 Conclusions and discussion

This chapter presented a comprehensive and continuous deterministic model for the transmis-

sion dynamics of WNv with and without seasonality. We started by analyzing themodel without

seasonality and verified the existence of backward bifurcation where thestable disease free equi-

librium co-exists with a stable endemic equilibrium. The existence of the backward bifurcation

indicated that the spread of the virus whenR0 is nearly below unity could depend on the initial

sizes of the sub-population of the model. After that, we considered the modelwith seasonal vari-

ations - by assuming that the birth rate of mosquitoes follows a periodic pattern -to study the

impact of seasonal variations of the mosquito population on the dynamics of WNv. In this latter

model, we proved the existence of periodic solutions under specific condition using the classical

Floquet method, which is based on the calculation of the monodromy matrix and ananalysis of

its eigenvalues. Moreover, we introduced and calculated the basic reproduction number for this

seasonal forced model. Furthermore, we deduced from numerical analysis that the strength of

seasonality increases the number of infections.
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4 Optimal control of West Nile virus

4.1 Introduction

Control efforts are carried out to limit the spread of the disease, and in some cases, to prevent

the emergence of drug resistance. Optimal control theory may be used to theoretically solve a

minimization problem of the disease models. In the1950 L.S. Pontryagin and his co-workers

developed a formula of the maximum principle for optimal control of ordinary differential equa-

tions [68].

Consider the following general system of ordinary differential equations (ODE) with a pa-

rameter

dx

dt
= g(t, x(t), u(t)), x(t0) = x0, (4.1.1)

wherex(t) is state variable, is the solution of the state differential equation (4.1.1),g is a con-

tinuously differentiable function andu is the control function. It is assumed that an objective

functional with an integrandf(t, x(t), u(t)) and the state equation are both influenced by the

control functionu(t). The objective function may be written as:

min

∫ t1

t0

f(t, x(t), u(t))dt (4.1.2)
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with u is a Lebesgue measurable control functions on[t0, t1].

For this simple optimal control problem, withf andg continuously differentiable inx andu,

Pontryagins Maximum Principle [51] can be stated as:

Theorem 4.1.1. If u∗(t) andx∗(t) are optimal for (4.1.2), then there exists a piecewise differ-

entiable adjoint variableλ(t) such thatH(t, x∗(t), u(t), λ(t)) ≥ H(t, x∗(t), u∗(t), λ(t)), where

the HamiltonianH is

H(t, x(t), u(t), λ(t)) = f(t, x(t), u(t))− λ(t)g(t, x(t), u(t)),

and adjoint equations

dλ(t)

dt
= −∂H(t, x∗(t), u∗(t), λ(t))

∂x
, λ(t1) = 0.

Solving the state and adjoint ODEs together with the optimal control representation requires

an iterative scheme. This involves use of an algorithm such as Runge-Kuttaof order four. In

the Runge-Kutta method of order four, the interval[t0, t1] is partitioned intoN subdivisions of

equal length,N > 1. First, we may solve the state equation (4.1.1), according to the following

difference equation:

wj+1 = wj +
1

6
(k1 + 2k2 + 2k3 + k4)

such thatw0 = x(0), k1 = hg(ti, wi, ui), k2 = hg(ti +
h
2 , wi +

k1
2 ,

1
2(ui + ui+1)), k3 =

hg(ti +
h
2 , wi +

k2
2 ,

1
2(ui + ui+1)), k4 = hg(ti+1, wi + k3, ui+1), for eachi = 1, 2, ..., N − 1,

whereN >> 1 andh = ti+1−ti
N

andti is the grid point [51].

One may use the same step technique to approximateλ(t). However, since its value at the
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final time is known instead of at the initial time, we setwN = 0, with the difference equation:

wN−i−1 = wN−i −
1

6
(k1 + 2k2 + 2k3 + k4)

such thatwN = 0, k1 = hG(tN−i, wN−i, uN−i, xN−i), k2 = hG(tN−i−h
2 , wN−i−k1

2 ,
1
2(uN−i+

uN−i−1),
1
2(xN−i + xN−i−1)), k3 = hG(tN−i − h

2 , wN−i − k2
2 ,

1
2(uN−i + uN−i−1),

1
2(xN−i +

xN−i−1)), k4 = hG(tN−i−1, wN−i − k3, uN−i−1, xN−i−1), wherei = 1, 2, ..., N − 1, and

G = −∂H
∂t

.

Starting with an initial condition for the state variable and an initial guess for the control,

forward sweep with the Runge-Kutta scheme may be used to obtain an approximate solution

for the state equation. Using this estimate, the solution of the adjoint equation is approximated

using backward sweep from the final time condition. The control is updatedby using an average

of its previous values and its values from the control characterization. Iterations continue until

successive values of all variables from current and previous iterations are sufficiently close.

Optimal control theory can be applied to models of many infectious diseases. The authors

in [7] used a time dependent model to study the effects of prevention and treatment on malaria.

Similarly, the authors in [62] used a time dependent model to study the impact of apossible

vaccination with treatment strategies in controlling the spread of malaria in a modelthat includes

treatment and vaccination with waning immunity. Optimal control theory has been applied to

models with vector-borne diseases [7, 20, 59, 71]. Time dependent control strategies have been

applied for the studies of HIV/AIDS, Tuberculosis, Influenza and SARS[3,15,42,95].

In this chapter we use the optimal control theory to study the strategies of control and min-

imizing the spread of WNv. The controls represent the level at which pesticide is applied to the
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mosquito population and the prevention efforts to minimize human-mosquito contacts.

4.2 Existence of optimal control

The goal of this part is to show that it is possible to implement anti-WNv control techniques

while minimizing the cost of implementation of such measures. So we formulate an optimal

control problem for the transmission dynamics of WNv by extending the model(3.2.1) in two

cases. One model without impact of seasonality and the other one is the modified mathematical

model with the effect of seasonal variation (by assuming that the birth rate of mosquitoes satisfies

the equation (3.2.2)).

In both cases, for the optimal control problem of the system (3.2.1), we consider the control

variable in the setΓ =
{

(u1, u2, u3) : [0, T ] −→ R3, s.t.0 ≤ uj ≤ Uj , j = 1, 2, 3
}

, where all

control variables are bounded and Lebesgue measurable andUj , j = 1, 2, 3 denote the upper

bounds of the control variables.

In our controlsu1(t) (representing the level of larvicide which means killing mosquito larva)

andu2(t) (representing the level of adulticide which means killing adult mosquitoes) areused for

mosquito control administered at mosquito breeding sites. Consequently, the reproduction rate of

the mosquito population is reduced by the two factors(1− u1(t)) and(1− u2(t)). Furthermore,

additional mortality rates of larval and adult mosquitoes (susceptible and infected) due to control

represented byd0u1(t) andd0u2(t), whered0 > 0 is a rate constant. In the human population,

the associated force of infection is reduced by the factor(1 − u3(t)) whereu3(t) measures the

level of successful prevention (personal protection) efforts.
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We seek to minimize the human exposed and infected populations and minimize the total

mosquito population. So we suppose that the costs of the control strategies are nonlinear and take

quadratic form [7]. Thus, the objective (cost) functional is given by

J =

∫ T

0
(a1E(t)+a2I(t)+a3Nm(t)+c1u1L(t)+c2u2M(t)+c3u3S(t)+

1

2

3
∑

j=1

bju
2
j )dt,(4.2.3)

subject to



















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




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







































dLs

dt
= rm(Ms + (1− q)Mi)(1− u2)− (dL +mL(1− u1))Ls − d0u1Ls,

dLi

dt
= qrmMi(1− u2)− (dL +mL(1− u1))Li − d0u1Li,

dMs

dt
= mL(1− u1)Ls − βmbm

B1i +B2i

N
Ms − dmMs − d0u2Ms,

dMi

dt
= mL(1− u1)Li + βmbm

B1i +B2i

N
Ms − dmMi − d0u2Mi,



















































dBjs

dt
= γbj − dbBjs − βbbm

Bjs

N
Mi,

dBji

dt
= −(db + νj + µj)Bji + βbbm

Bjs

N
Mi, j = 1, 2

dBjr

dt
= −dbBjr + νjBji,






















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













































dS

dt
= γh − βhbm

S(1− u3)

N
Mi − dhS,

dE

dt
= βhbm

S(1− u3)

N
Mi − αE − dhE,

dI

dt
= αE − (γ + µl + r + dh)I,

dH

dt
= γI − (µh + τ + dh)H,

dR

dt
= τH + rI − dhR.

(4.2.4)
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Here,ai, i = 1, 2, 3 are positive constants that represent, respectively, the weight constants of the

exposed, infected human and the total mosquito populations. Similarly,bi, i = 1, 2, 3 are also

positive constants that represent, the weight constants for the quadraticcost of mosquito control

(adult and larval) and personal protection (prevention of mosquito-human contacts), respectively.

Also ci, i = 1, 2, 3 are positive constants. The linear part of the cost of each type of control is

proportional to the affected population,c1u1L(t)+c2u2M(t)+c3u3S(t). For technical purposes,

it is assumed that the cost of larvicide, adulticide and personal protection are given in quadratic

form in the cost function (4.2.3). Using the control variablesu1, u2 andu3, our main goal here is

to minimize the exposed and infected human populations, the total number of mosquitoes and the

cost of implementing the control. So the termsb1u
2
1, b2u

2
2 andb3u23 describe the costs associated

with mosquito control and prevention of mosquito-human contacts, respectively. Our purpose is

to find an optimal control values(u∗1, u
∗

2, u
∗

3) such that

J(u∗1, u
∗

2, u
∗

3) = min {J(u1, u2, u3) : (u1, u2, u3) ∈ Γ} .

The existence of optimal control can be proved by using the results in the paper of [31].

It is clear that system of equations given by (4.2.4) is bounded above bylinear system. The

boundedness of solution of system (4.2.4) for finite interval is used to prove the existence of an

optimal control. Moreover, since the state system and the adjoint system (see the Appendix) are

bounded and satisfy Lipschitz condition, the uniqueness of the optimal control can obtained by

using the results in the paper of [51].

In order to find an optimal solution, first we should find the Hamiltonian of the optimal control

problem (4.2.4) by defining the Hamiltonian~ as follows:
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Let Q = (Ls, Li,Ms,Mi, B1s, B1i, B1r, B2s, B2i, B2r, S, E, I,H,R), u = (u1, u2, u3) and

λ = (λi), i = 1, .., 15 to obtain:

~ = a1E(t) + a2I(t) + a3Nm(t) + c1u1L(t) + c2u2M(t) + c3u3S(t) +
1

2

3
∑

j=1

bjuj +

15
∑

j=1

λjfj ,

wherefj is the right side of the differential equation of the j-th state variable of (4.2.4). Based on

that, we can demonstrate the next theory.

Theorem 4.2.1. Consider the objective functionalJ . The unique optimal controlu∗ = (u∗1, u
∗

2, u
∗

3) ∈

Γ exists such thatJ(u∗1, u
∗

2, u
∗

3) = min(uj ,u2,u3)∈ΓJ , subject to the control system (4.2.4).

Proof. In this minimizing problem, the necessary convexity of the objective functionalin u1, u2

andu3 is satisfied. The set of controlsΓ is also convex and closed by definition. The solutions

of the state system and the adjoint system are bounded and satisfy Lipschitzcondition, which

together with the structure of the system gives the compactness needed forthe existence and the

uniqueness of the optimal control. In addition, the integrand of the objectivefunctional is given

by (4.2.3) on the control setΓ, which completes the existence of an optimal control [31].

The adjoint differential equations and final time conditions and the characterizations of opti-

mal controls can be found using Pontryagin’s Maximum Principle [68], andthe details are in the

Appendix.

Next, we discuss the numerical solutions of the optimality system for the model (4.2.4),

the corresponding optimal control functions, the parameter choices, andthe interpretations from

various cases.

84



4.3 Numerical results of the control without the seasonality

In this part we start with an iterative method to obtain results of an optimal control problem

for model (4.2.4) without the effect of the seasonal variation. We use Runge-Kutta fourth order

procedure here to solve the optimality system consisting of30 ordinary differential equations

having15 state equations as well as15 adjoint equations and boundary conditions. With an initial

guess we start for the control variables(u∗1, u
∗

2, u
∗

3) and use Runge-Kutta fourth order forward in

time for the state variablesLs, Li,Ms,Mi, B1s, B1i, B1r, B2s, B2i, B2r, S,E, I,H,R. Then

using the results from the state equations in the adjoint equations, we apply backward Runge-

Kutta fourth order scheme due to transversality conditions. Then the control is updated and we

iterate to find new state and adjoint variables [51].

The parameters values used in the simulations are tabulated in Table 2.1 and Table 3.1. In

choosing upper bounds for the controls, since the control would not be100% effective, so we

chose the upper bound ofu1, u2 to be0.8 andu3 to be0.5 [8]. Since reducing the number of

exposed and infected humans is important in our goal compared with reducing the total number

of mosquitoes, then the weights in the objective functional are taken asa1 = 1, a2 = 1, a3 =

10−4 [8]. The cost associated withu1 andu2 mainly includes ways of eradicating the mosquito

breeding (larvicide) and a little labor to spray it (adulticide), whileu3 essentially involves the

cost of missing work during the infectious time, educating the public and health professionals.

This means the cost of lowering the infectivity is higher than the cost of reducing the mosquito

population, so we choseb3 = 10 > b2 = b1 = 1. Since we assume that the total number of

larval and adult population is constant, and the change in the human population is small then we
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suppose thatcj = 0, j = 1, 2, 3.
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Figure 4.1: Time series of model (4.2.4) showing impact ofA.
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Figure 4.2: Control functions with different values ofA.

The importance of the parameterA (representing the number of other living organisms that

mosquitoes will bite) on the control is considered. Fig.4.1 illustrates the optimal trajectories

of the infectious adult mosquitoes and infectious humans for three different values ofA while

keeping the other parameters unchanged. Fig.4.2 shows the three optimal control functions at

those values ofA. These optimal control functions are designed in such a way that they minimize
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the cost functionalJ. We can see that whenA = 0, B̃
20 and B̃

10 , u1 decreases a little andu3

decreases more whileu2 does not change. Moreover, the objective functional value is reduced;

J = 8290, 7620 and6750 respectively. Thus, we can conclude that, if we do not include other

mammals, any control impact and objective functional value will be over estimated.
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Figure 4.3: Time series of model (4.2.4) under different optimal control strategies.

We investigate the use of one control at a time. Fig.4.3 illustrates the number of infected

mosquitoes and humans under different optimal control strategies: (I)u1, (u2 = u3 = 0); (II)

u2, (u1 = u3 = 0); (III) u3, (u1 = u2 = 0). TheJ value for implementing strategy (I) is much

less than that for others strategies (II) or (III). In details, theJ value of strategies (I), (II) and

(III) are 5282, 5814, and6700 respectively. Moreover, the total number of infected mosquitoes

using strategy (I) is the smallest while those with strategy (III) is the largest. While, the total

number of infected humans using strategy (III) is the smallest; on the other hand, those with

strategy (II) is the largest. Thus, we can conclude that, the most effective strategy to control
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the WNv with only one control is by using larvicide during an ongoing epidemic inorder to

decrease the infected mosquitoes and humans with low cost. This conclusion further concurs the

current control strategy used on Ontario: larviciding and not adulticidingis utilized to eradicate

mosquitoes.
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Figure 4.4: Control functionsu1, u2 andu3.

4.4 Optimal control with effect of the seasonal variations

Building on Section 4.2, and using numerical simulations, we carry out numerical experiment

to study the impact of seasonal variations on control of WNv. We considerthe same objective

function (4.2.3), by assuming thatc1 = c2 = 1 andc3 = 10 and use the same values of the other

weight factors (similar to the previous section).

From the available information on the schedule time of control in Ontario-Canada, it is worth

mentioning that the control is usually applied for 50 to 60 days between May and August. Using

these above fact, we performed different simulations using various initial populations. We will
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explore the best time and strategy to apply the control.
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Figure 4.5: Time series of model (4.2.4) with seasonal impact.

In Fig.4.5, we investigated and compared numerical results of control for 50 days at different

times of starting the control: case 1 (middle of May); case 2 (very early in July) and case 3

(middle of August). We perceived that, whenǫ = 0.5 (see Fig.4.5(a) and (b)), if we start the

control in July (case 2), the number of infected mosquitoes and humans andtheir highest peaks

are lower than that of the other cases. It is worth-noting here that theJ value of cases (1), (2)

and (3) are15282, 20814, and24700 respectively. However, ifǫ = 0.25 (see Fig.4.5(c) and (d)),

case 3 (start the control on August) is the best time of starting the control. Itis worth-noting here
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that theJ value whenǫ = 0.5 will slightly increase than the cost of control whenǫ = 0.25.

Thus, when we focus the control in the course of 50 consecutive days, the optimal period to

start depends on change in the temperatures. Whenever seasonal variations become stronger, our

results recommend starting the control earlier.

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

t−days

I

 

 

(a) Infected humans.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

t−days

M
i

W/o control 

W control (I)

W control (II)

W control (III)

(b) Infected Adult mosquitoes.

Figure 4.6: Time series of model (4.2.4) with seasonal impact (in case ofǫ = 0.5).

In Fig.4.6, we used the same values of parameters and the same initial populationas for

Fig.4.5 (whenǫ = 0.5) to compare the results of different optimal control strategies: (I) applying

the control at three different times, each for 17 consecutive days (early in May, June and July);

(II) applying the control at three different times, each for 17 consecutive days (end of May, June

and July); (III) applying the control during 50 consecutive days in July. We can conclude that the

best strategy of control depends on occurrence of infected cases of mosquitoes at a higher rate

during May. If this takes place, then the best strategy is to apply the controlat three different

times (each time 17 days). Otherwise, it is best to apply the control one time for 50 days. Also

theJ values in cases (I) and (II) are almost the same but they are a little higher than the cost in

case (III).
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4.5 Conclusions and discussion

In this chapter we use the optimal control theory to study the strategies of control and minimizing

the spread of WNv. The model formulated in Chapter 3 is extended to assessthe impact of some

anti-WNv control measures; by re-formulating the model as an optimal control problem in two

cases with and without seasonality. The two models have been extended to assess the impact of

some anti-WNv control measures, by re-formulating the models as an optimal control problem.

This entails the use of three control functions: adulticide, larvicide and human protection. The re-

sults were analysed to determine the necessary conditions for the existenceof an optimal control,

using Pontrayagins maximum principle. From our numerical results, we found that Larvicide

is the most effective strategy to control an ongoing epidemic in reducing disease cost when we

apply only one control. The outcomes further stressed the importance of considering the other

animals that could be infected in any region and its effect regarding the cost of control. Finally,

the numerical results identified the time of applying the control to achieve the best control strat-

egy. This work strongly justifies the importance of carefully taking into account the impact of the

seasonal variation when applying the control.
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5 West Nile virus risk assessment and forecasting using

dynamical model

5.1 Introduction

There are different ways to estimate the risk of WNv in a area where virus isactive. The two

most commonly used risk assessment tools, or indices are the minimum infection rate (MIR) and

the maximum likelihood estimation (MLE) [35].

The first index is MIR, is used as an indicator of the prevalence of WNv transmission intensity

and therefore the risk for human disease. MIR is calculated using the equation below, which

is the number of positive batches of mosquitoes of a given vector species divided by the total

number of mosquitoes of the same species that were tested for the presenceof the virus, expressed

per 1,000 [35]. Therefore, ifn is the number of positive pools andM is the total number of

mosquitoes that tested, then the MIR is defined as:

MIR =
n

M
× 1000.

The MIR is based on the assumption that infection rates are generally low andthat only one

mosquito is positive in a positive pool. The MIR can be expressed as a proportion or percent of
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Figure 5.1: MIR of positive mosquito pools, 2011. Data from [85].

the sample that is WNv positive, but is commonly expressed as the number infected/1000 tested

because infection rates are usually a small number. Fig.5.1, shows annualMIR in all health

regions of Ontario in 2011 [85], and Fig.5.2, shows the incidence rate of WNv per 100,000 human

population and number of confirmed and probable cases by health unit: Ontario, 2011 [85].

Fig.5.3, shows the weekly MIR and the number of infected cases of human atPeel region from

2002 to 2012 [86]. From Fig.5.1 and Fig.5.2, one can see that MIR is a effective tool to measure

the risk of infection of WNv in Ontario.
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Figure 5.2: Incidence Rate of WNv per 100,000 human populationand number of con-

firmed and probable cases by health unit: Ontario, 2011. Datafrom [85].
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Figure 5.3: Reported human cases of WNv and MIR in Peel region; Ontario; Canada,

from 2002 to 2012. Data from [86].

The second index to measure the WNv risk is MLE. The MLE is a statistical methodused in

the calculation of the proportion of infected mosquitoes, that maximizes the likelihood ofk pools

of sizem to be virus positive [35], which is calculated using the following equation,

MLE = (1− (k − n

k
)

1
m )× 1000.

MLE does not require the assumption of one positive mosquito per positive pool, and provides a

more accurate estimate when infection rates are high

The work of [21] evaluated both MIR and MLE to estimate WNv infection rates,and com-

pared them for two mosquito species (Culexpipiens andCulex restuans) collected from three

health units in Southern Ontario (Halton, Peel, and Toronto), from July to September 2002. They

found good match between MIR and MLE using the pool size of 5. In general, MIR and MLE

are similar when infection rates are low. Both MIR and MLE can provide a useful, quantitative
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basis for comparison, allowing evaluation of changes in infection rate overtime and space. These

two indices also permit use of variable pool numbers and pool sizes while retaining comparabil-

ity [5,19].

Even though MIR and MLE provided useful information for the risk assessment for WNv, yet

they still have some shortcomings. For instance, the calculation of MIR and MLE depends on the

number of traps and number of species tested from established surveillance program. In addition

to that both MIR and MLE are static numbers measuring the risk of the virus forthe period of

the week when the data were collected, so weather conditions (temperaturesand perturbations)

as important drivers for mosquito abundance and activities were ignored. Moreover, they also

disregard the number of amplification host birds in the region. Therefore,it is essential and

important to improve the indices of MIR and MLE to include the impact of the temperature and

precipitation as well as the dynamical interaction of mosquitoes and birds by developing a new

index.

In [89], a model for mosquitoes abundance incorporating the impact of thetemperature and

precipitation was developed to model and predict the average abundanceof mosquitoes in Peel

region. In this chapter, we will improve the MIR taking into account the impact of the weather

(daily temperature and precipitation). We will utilise the dynamical models to measure the risk

of WNv by considering the influence of birds. This is done by developing anew index, the

dynamical minimum infection rate (DMIR) of WNv introduction into Ontario-Canada through

different pathways. DMIR is the first WNv dynamical index to test and forecast the weekly risk

of WNv by explicitly considering the temperature impact in the mosquito abundance, estimated
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by statistical tools, and then comparing this new index with MIR, and with documented data

available in Peel region-Ontario in order to justify our formula.

The current chapter is organized as follows. First, we demonstrate the statistical model for

total mosquitoes abundance including the impact of the temperature and precipitation [89] in

Section 5.2. Then in Section 5.3, based on one type of compartmental models for WNv, and

combining with a weather impact model for total mosquitoes abundance, we will define the novel

dynamical minimum infection rate (DMIR). The mosquitoes surveillance data andrisk assess-

ment data of MIR in the Peel region will then be used for model calibration andsimulation in

Section 5.4.

5.2 Statistical model for mosquito abundance of WNv

Mosquito abundance is crucial to the outbreak of mosquito-borne diseases [4,38,39,65,70,72,75,

87]. The intensity of WNv transmission is determined primarily by the abundanceof competent

mosquitoes and the prevalence of infection in mosquitoes. Therefore, understanding the dynamics

of mosquito abundances is extremely helpful for efficient implementation of control measure and

modeling of WNv.

Biologically, mosquitoes undergo complete metamorphosis going through four distinct stages

of development, egg, pupa, larva, and adult, during a lifetime. After biting, adult females lay a

raft of 40 to 400 tiny white eggs in standing water. Within a week, the eggs hatch into larvae

that breathe air through tubes which they poke above the surface of the water. Larvae eat bits

of floating organic matter and each other. Larvae molt four times as they grow; after the fourth
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molt, they are called pupae. Pupae also live near the surface of the water,breathing through two

horn-like tubes (called siphons) on their back. When the skin splits after a few days from a pupa,

an adult emerges. The adult lives for only a few weeks and the full life-cycle of a mosquito takes

about a month [57].

Mosquito populations such asCulex pipiensandCulex restuans(primary WNv vectors in

southern Ontario [86]) are sensitive to long-term variations in climate and short-term variations

in weather [74, 76, 89]. Combining the mosquito count and the related weather conditions, pa-

per [63] concluded that the hot and dry conditions just before sampling were positively related

to increased counts ofCulex pipiensandCulex restuans. Also, high rainfall several weeks be-

fore sampling was positively related toCulex pipiensandCulex restuanscounts under normal

temperature conditions, because rainfall provided surface water for gravid females to lay eggs

and larvae to develop [63]. These two types of extraordinary weather conditions can be used as

indicators for taking action on mosquito control to prevent a disease outbreak by reducing the

vector abundance.

The importance of the forecasting methods lies in its ability to warn of high-risk periods

for WNv and this have been used with some success elsewhere in the world for vector borne

diseases [55,58,83]. Recent efforts regarding forecasting arbovirus risk in North America include

those of [26], who used a multiple linear regression model to build a biometeorological model for

Culexpopulations on a monthly time scale, and [80] who used time series analysis techniques to

forecastCulexpipiens -restuanspopulations on a weekly time scale. A weekly forecast model

was also built by multiple linear regression techniques forCulex tarsalis, a vector for western
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equine encephalitis virus, developed by [70]. These early studies showed that it is helpful for

forecasting the mosquito abundance by understanding how weather conditions affect the count of

vector mosquitoes.

In [89] used the average mosquito counts from 30 traps locations to represent the mosquito

population at regional level and reached the conclusion that mosquito counts in Peel region, On-

tario could be modeled by a gamma distribution. Then they used degree-days above9oC(dd),

below which immatureCulexmosquito development is effectively arrested, calculated as follows:

dd =















0oC Tm ≤ 9oC,

Tm − 9oC Tm > 9oC.

(5.2.1)

The arithmetic means of daily dd(ddm) from 1 to 60 day before each collection was explored

as explanatory variables for mosquito abundance at the time of collection. The arithmetic means

of daily precipitation(ppm) from 1 to 60 d before surveillance also was explored as explanatory

variables for mosquito abundance at the time of collection. By using the surveillance data for

mosquitoes and weather data in the Peel region, the authors in [89] discovered that the tempera-

ture from 1 to 34 d before mosquito capture was a significant predictor of mosquito abundance,

with the highest test statistic being achieved when ddm11. Also, at ppm35, the test statistic

reached its highest value, suggesting that the daily mean precipitation duringthe continuous 35

d before the mosquito capture had the most significant impact on the mosquito count. Using the

most significant temperature (ddm11) and precipitation (ppm35) the model simulations match

well with the data in the region. In Section 5.4, we will use the model in [89] (illustrated above)

in order to update our model by the total number of mosquitoes (weekly) to predict the risk of
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WNv using DMIR.

5.3 Risk assessment of WNv using the dynamical model

Compartmental models played an important role in gaining some insights into the transmission

dynamics of WNv [1, 2, 10, 22, 56, 92]. In all of those models, due to various considerations of

the factors related to the transmission of the virus, some models assumed that thetotal number of

mosquito vectors remain constant [2, 22], others considered that the mosquito population satisfy

the logistic growth [1]. While some models incorporated vertical transmission ofthe virus among

vector mosquitoes [1, 2, 22], others did not [10, 54, 92]. Some models incorporated the aquatic

life stage of the mosquitoes (eggs, larval and pupal stages) [2, 52] as well as seasonal effects

in [2, 9, 23]. For the avian population, most of the models included a recovered class. Thus, one

can see that all of the above models considered different aspects of transmission of WNv and that

they determined the threshold conditions. The basic reproduction ratio werealso calculated or

estimated which serves as crucial control threshold for the reduction of the WNv. The dynamics

from the above compartmental models make it possible to develop a quantity to measure the risk.

5.3.1 DMIR model

Our goal of this part is to develop an index to assess the risk of WNv. This isdone by determining

the dynamical minimum infection rate (DMIR) of WNv introduction into Ontario-Canada to test

and forecast the weekly risk of WNv in the following weeks of the season and then identify

possible mitigation strategies.
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In the next model,Ms andMi are the number of susceptible and infectious mosquitoes re-

spectively. Due to its short life span, a mosquito never recovers from theinfection and we do

not consider the recovered class in the mosquitoes [34]. The total numberof mosquitoes is

M = Ms +Mi. The number of susceptible, infected and recovered birds are denotedby Bs, Bi

andBr respectively. Thus,B = Bs+Bi+Br is the total number of birds. The total human pop-

ulation denoted byH, is split into the populations of susceptibleHs, infectiousHi and recovered

Hr humans.

According to the transmission cycle of the WNv and by extending the modeling for the WNv

[1,2,10,22,52,93], we propose to study the next compartment model:







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



















dMs

dt
= rm(Ms + (1− q)Mi)− βmb

Bi

B +H
Ms − dmMs,

dMi

dt
= qrmMi + βmb

Bi

B +H
Ms − dmMi,

dBs

dt
= Λb − βbb

Bs

B +H
Mi − dbBs,

dBi

dt
= −(db + νb + µb)Bi + βbb

Bs

B +H
Mi,

dBr

dt
= νbBi − dbBr,

dHs

dt
= Λh − βhb

Hs

B +H
Mi − dhHs,

dHi

dt
= −(dh + νh + µh)Hi + βhb

Hs

B +H
Mi,

dHr

dt
= νhHi − dhHr.

(5.3.2)

The definitions of the parameters used in the model (5.3.2) are summarized in Tables 2.1 and 3.1.

By considering the total number of mosquitoes is constantM̃ (i.e, rm = dm) the model
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(5.3.2) has a disease-free equilibriumE0 = (M̃, 0, B̃, 0, 0, H̃, 0, 0), whereB̃ = Λb

db
, andH̃ =

Λh

dh
.

The basic reproduction number is obtained by using the second generatingmethod [84]:

R0 =

√

q +
4βmβbb2mB̃M̃

dm(db + νb + µb)(B̃ + H̃)2
. (5.3.3)

An endemic equilibrium is identified by the solution of the algebraic system obtained by

setting the derivatives of model (5.3.2) equal to zero, then we can conclude the following results:

1. If R0 > 1, there exists a unique positive stable endemic equilibrium

2. If R0 < 1, there is no endemic equilibrium.

Which means ifR0 < 1, the disease dies out, whereas ifR0 > 1, the disease persists.

The formula of DMIR, derived from the method of calculating the MIR is as follows: Let

k(t)M(t) is the amount of mosquitoes collected which will be tested at any timet, for all k(t)

is the percentage of mosquitoes collected. Those mosquitoes will be placed in pools where each

pool includesm mosquitoes. Then we can assume that the number of infected pools arek(t)Mi(t)
m

.

From the definition of MIR, we can conclude the formula of DMIR:

DMIR(t) = U
Mi(t)

M(t)
, (5.3.4)

where the parameterU indicates the maximum value of DMIR which can be determined from

the previous MIR data available at the region under study.

By considering this new variable, we can rewrite the model (5.3.2) to include the new index
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as follows:

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dMi

dt
= qrmMi + βmb

Bi

B +H
Ms − dmMi,

dBs

dt
= Λb − βbb

Bs

B +H
Mi − dbBs,

dBi

dt
= −(db + νb + µb)Bi + βbb

Bs

B +H
Mi,

dBr

dt
= νbBi − dbBr,

dHs

dt
= Λh − βhb

Hs

B +H
Mi − dhHs,

dHi

dt
= −(dh + νh + µh)Hi + βhb

Hs

B +H
Mi,

dHr

dt
= νhHi − dhHr,

DMIR(t) = U
Mi(t)

M(t)
,

(5.3.5)

where the susceptible mosquitoes can be obtained from the next equationMs = M −Mi, where

M (the total number of mosquitoes) is updated weekly using the statistical model developed

in [89] (and demonstrated in Section 5.2) in order to explain the dynamics of WNv infections

with the impact of temperature in the mosquito abundance.

Note thatU values are changed from weekti to weekti+1 but are considered constant in the

intervals[ti, ti+1). Thus, in the intervals[ti, ti+1) the change of DMIR can be identified by the

next form

dDMIR(t)

dt
= a(t)U − (a(t) + b(t))DMIR, (5.3.6)

wherea(t) = βm
Bi

B+H
, is the infection rate per susceptible mosquito andb(t) = (1 − q)rm, is

the rate of new susceptible mosquito.
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From equation (5.3.6), we can conclude that the values ofDMIR(t) depends on the infection

rate per susceptible mosquitoa(t) as well as the rate of new susceptible mosquitob(t). However,

the values ofa(t) andb(t) are mutually dependant. This explains that in some regions of Ontario

there is low risk of WNv where there are large number of birds.

5.3.2 The initial conditions in DMIR index

The model (5.3.5) is implemented with MATLAB program with a time step of 1 day. Oursimula-

tion starts from week 24 to week 39 in the summer. We considered that all the parameters value in

the model (5.3.5) are constant (summarized in Tables 2.1 and 3.1). The initial value of mosquito

population is set and updated weekly using the statistical model developed in [89]; hypothesizing

that this number is1% from the exact number of mosquitoes. The initial number of susceptible

birds is set to the maximum bird population siz [44]. The initial human population can be speci-

fied from the information about the area under study. We will use the MIR data available at the

region under study as a guide to consider the initial conditions for DMIR value by starting our

simulation with the week where the MIR value is6= 0 (i.eDMIR(t0) = MIR(t0) > 0). We can

calculate the values ofU by using the previous data of MIR at that region. Also we considered

the initials of infected bird and human populations are zeros.

Once initialized with some infectious mosquitoes in the week where theMIR(t0) 6= 0, we

can calculate the value ofU and then simulate our model for the entire period using 1-day time

step for one week. This is repeated weekly while updating the total number ofmosquitoes by

using the statistical models developed in [89].
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5.3.3 R0 and DMIR

In [90], the authors listedR0 calculated in the models [10,22,56,92] and concluded that different

models may induce differentR0 but all of these basic reproduction ratios are related to the ratio

of the number of mosquitoes and hosts at the disease-free equilibrium, whichimplies that a

reduction in mosquito density would help control the epidemic. The magnitude ofR0 is used

to gauge the risk of an epidemic in emerging infectious disease. The author in [73] noted two

fundamental properties commonly attributed toR0, that an endemic infection can persist only if

R0 > 1 and provides a direct measure of the control effort required to eliminate the infection.

He demonstrated that this statement can be false. The first property, as wehave noted, can fail

due to the presence of backward bifurcations. The second one can fail when control efforts are

applied unevenly across different host types (such as a high-risk and a low-risk group) sinceR0

is determined by averaging over all host types and does not directly determine the control effort

required to eliminate infection. Thus, as we mentioned in almost every aspect that matters,R0 is

flawed.

In Fig.5.4 and Fig.5.5 we introduce the infected human and the DMIR (considering that

total number of mosquitoes is constant) in three cases. From Fig.5.4, we can observe that the

number of infected human are consistent with the DMIR values in three caseswith different

values ofR0 = 0.8537, 1.1997, 1.515. However in Fig.5.5, we can note the same thing but with

different initial values of birds and humans but with same value ofR0 in all cases. Thus, we can

conclude that the DMIR is a good method to test and forecast the weekly riskof WNv thanR0

and subsequently, we can provide a direct measure of the control effort required to eliminate the
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Figure 5.4: Comparison between the human infectionHi and DMIR in the model (5.3.2)

in three cases whenR0 = 0.8537, 1.1997 and1.515.

infection.

5.4 Forecasting WNv risk in Peel region, Ontario using real data

Peel region is a municipality in Southern Ontario on the north shore of Lake Ontario, between

the City of Toronto and York region extending from latitude43.35oN to 43.52oN and from

longitude79.37oW to 80.00oW . The region comprises the cities of Mississauga and Brampton

and the Town of Caledon [86]. Mosquito data were obtained from a surveillance program of the

Ontario Ministry of Health and Long-Term Care. The Peel region health unit used the Centers for

Disease Control Miniature light trap with both CO2 and light to attract host-seeking adult female

mosquitoes [86].
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Figure 5.5: Comparison between the human infectionHi and DMIR in the model (5.3.2)

in three cases whenBs(t0) = Hs(t0) = 5000, 10000, 15000. In all three casesR0 = 1.23

5.4.1 Mosquito abundance

The Peel region has initiated a mosquito forecasting program started in 2011and continued in

2012. Every week in mosquito season (from middle of June to earlier October), the mosquito

traps were set up on Monday and Tuesday by the mosquito surveillance program in Peel region.

The traps were collected the following morning and the mosquito data would be available on

Wednesday. The previous weather data were collected through [86] and the weather data for

the following two weeks were obtained through [86]. The mosquito predictive model developed

by [89] has been used to provide theCulexmosquito abundance data for the next two weeks by

using the mosquito surveillance and weather data collected. The forecastingresults were posted

and updated weekly on [86] and a weekly report was sent to Peel region public health department,

Public Health of Ontario (PHO) and Environmental Issues Division of PublicHealth Agency of
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Canada (PHAC).

5.4.2 WNv risk forecasting

The testing of mosquito pools gives an indication of which mosquito species harbor WNv and,

if sufficient numbers are tested, infection rates can be calculated. However, the actual number

of individual WNv positive mosquitoes in a pool is unknown. And then the estimation of the

proportion of infected mosquitoes in a specific area can be calculated usingMIR. From the data

available at Peel region on MIR and the number of infected cases of humanas shown in Fig.5.3,

we can confirm that MIR is an good tool to identify the risk of infection of WNvin Peel region.

Nevertheless, the method of identifying the MIR cannot predict what might happen in the fol-

lowing weeks. Consequently, we believe that our formula of DMIR is an appropriate method of

predicting the risks of WNv in the following weeks through using the data available and some of

the previously used dynamical models.

5.4.3 Numerical simulations

Because our simulation starts early in the summer, the initial values of infection birds and humans

are set to zero. The initial number of susceptible birds is set to the maximum birdpopulation size

Bs = 75000. From [12], we specify the initial number of humans living2005− 2012 in the Peel

area. By starting with some infectious mosquitoes, our model simulates from the week t0, such

thatDMIR(t0) = MIR(t0) > 0, to weekt1 using 1-day time step. The susceptible mosquito

population is updated weekly using the formMs = M − Mi for all M is the total number of
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Culex pipiensandCulex restuansmosquitoes. For the years 2005, 2006, 2008, 2010 and 2011, we

try to verify our index so we update our model using the total number of mosquitoes previously

collectedM . As for the year 2012, we try to predict the risk of WNv using our index sowe

updatedM using the statistical model developed in [89]. In all those years we considered the

total number of mosquitoes to represent1% from the exact number of mosquitoes.
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Figure 5.6: Compare MIR and DMIR in Peel region; Ontario; Canada 2005 and 2006.

The time series of our formula DMIR were compared with the MIR data available from 2005

to 2012 as shown in Fig.5.6, 5.7 and 5.8. It is worth noting that it was difficult toidentify the

DMIR values accurately in 2007 and 2009 (where the infection rate was very low in the first few

weeks) since the first value of theMIR > 0 occurred in later weeks than the previous years.

For the validation period of 2005, 2006, 2008, 2010 and 2011 and the prediction in 2012, it

was noticed that the DMIR values are directly proportional with the number ofhuman cases. The

magnitude of the peak values in DMIR was also close to the MIR peaks. Moreover, the rate of

infection typically peaked in the middle of the season (in August) - a pattern thatis consistent

109



24 26 28 30 32 34 36 38 40
0

1

2

3

4

5

6

t−week

M
IR

 a
nd

 D
M

IR
 

MIR

DMIR

0 cases

(a) 2008

24 26 28 30 32 34 36 38 40
0

2

4

6

8

10

12

14

t−week

M
IR

 a
nd

 D
M

IR

MIR

DMIR

1 case

(b) 2010

Figure 5.7: Compare MIR and DMIR in Peel region; Ontario; Canada 2008 and 2010.

across most of the years in our simulations. It is important to point out here that the DMIR index

is more accurate in the years which are characterised by high level of infection (as in 2012, for

instance) due to high fluctuations in temperatures in these years. Consequently, this has its direct

impact on mosquitoes abundance.

5.5 Conclusions

The risk assessment tool uses information gathered through the surveillance mechanisms de-

scribed to ascertain the level of risk for human transmission of WNv within an area. In this

chapter we developed a new index to test and forecast the weekly risk ofWNv named DMIR.

The DMIR is the first index that employs the dynamical models while consideringthe temper-

ature impact in the mosquito abundance for estimating the risk of WNv. And in order to verify

our formula, we compared it with the data available at Peel region. The DMIRindex would be

useful than the other methods (MIR and MLE) for estimating the risk of WNv because DMIR
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Figure 5.8: Compare MIR and DMIR in Peel region; Ontario; Canada 2011 and 2012.

considered the impact of quantity of the bird population as well as the linkage between mosquito

abundance and preceding weather conditions (temperature and precipitation). This raises opti-

mism for forecasting the risk of WNv with more accuracy.

During a WNv season, the DMIR predictive model would be useful to healthunits in identi-

fying the relative risk of human infection within their jurisdiction. The DMIR toolcould assist in

guiding appropriate prevention and reduction activities such the need to increase public education

(personal protection measures), expand larval control activities, enhance mosquito surveillance

programs and assist in the decision making process to reduce the number ofadult mosquitoes in

areas of elevated risk to human health from WNv through the judicious use ofpesticides. The

application of pesticides to kill adult mosquitoes by ground or aerial application is called adul-

ticiding. The timing of adulticiding is important as it should be undertaken prior orduring the

period of highest risk of human transmission. The DMIR could assist in projecting the high risk

period in WNv season which would guide the timing of adulticiding spray events.
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6 Conclusions and future work

Although discovering the transmission mechanism led to new insights into how to better control,

WNv continue to pose a significant burden worldwide. The development ofvector resistance to

insecticides, changes in public health programs, seasonal climate changes, the increased mobility

of humans, migration of birds and urban growth are all factors that contribute to the difficulty in

controlling and eliminating WNv. Thus, in this thesis we tried to understand the behavior of the

transmission of WNv in the mosquito-bird cycle and humans, as well as development of systems

and procedures to reduce human risk by formulating dynamical models and using the optimal

control to minimize the spread of WNv.

The first part of this work studied the impact of coexistence two avian populations in the

transmission dynamics of WNv. We formulated a system of ordinary differential equations to

model a single season of the transmission dynamics of WNv in the mosquito-bird cycle, by clas-

sifying avian populations as corvids and non-corvids. A detailed analysisof the model showed

the existence of the backward bifurcation which indicates that the spread of the virus whenR0 is

nearly below unity could be dependent on the initial sizes of the sub-population of the model. In

this part we also generalized the results of backward bifurcation in previous work [41, 90], ana-
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lyzed the effects of considering different amounts of corvid birds compared to noncorvid birds,

and we concluded that the level of incidence (measured by the peak) andthe reproduction number

are completely different. For this reason, a field study is necessary to determine, in each region,

the effectiveness of the avian and mosquito populations to transmit WNv in order to estimate the

risk of the disease. In places where more effective avian populations are present, the infected

level are high, having implications on the adopted mosquito reduction strategies. The results of

this part suggest that even though dead corvids may not be seen in a given region, like in the

early years of the endemic of the virus, there might be still a possibility of an outbreak due to

the existence of the non-corvids as reservoirs. Furthermore, the outcomes also propose that it is

essential to consider the diversity of the avian species, as well as the quantity of other mammals,

when modeling WNv.

In the second part of this dissertation, we formulated a model to study the influence of sea-

sonal variations of mosquito population on the transmission of WNv disease. We posed the

question of how seasonal changes generate large outbreaks from anendemic equilibrium. De-

velopment, behavior and survival of mosquitoes are strongly influencedby climatic factors. In

some places, the end of summer is the time where mosquito population notably increases. Thus,

it is expected that such increase will increment the disease transmission. Hence, we presented

a comprehensive and continuous deterministic model for the transmission dynamics of WNv in

the mosquito-bird cycle and human with and without seasonality. We started by analyzing the

model without seasonality and verified the existence of backward bifurcation. With reference to

equation (3.3.23), we noticed that the existence of two important conditions that are required for
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the occurrence of backward bifurcation: one is similar to one condition in [8] (which is consid-

ered a generalization of the same form in [1, 90]), and the other one whichis the ratio between

total number of birds and the other mammals that can be infected by mosquitoes is greater than

unity. After that, we considered the model with seasonal variations (by assuming that the birth

rate of mosquitoes follows a periodic pattern) to study the impact of seasonalvariations of the

mosquito population on the dynamics of WNv. In this latter model, we proved the existence of

periodic solutions under specific conditions using the classical Floquet method, which is based

on the calculation of the monodromy matrix and an analysis of its eigenvalues. Moreover, we in-

troduced and calculated the basic reproduction number for this seasonalforced model. Numerical

simulations of the model indicated that a sudden recrudescence from an endemic situation could

have its origin in the interplay between intrinsic and extrinsic oscillations. Therefore, it is not

just a simple consequence of the vector population growth that could be associated with climatic

changes.

In the third part, we adopt the optimal control theory to study the strategies ofcontrol and

minimiz the spread of WNv. The model formulated in Chapter 3 is extended to assess the impact

of some anti-WNv control measures; by re-formulating the model as an optimalcontrol problem

in two cases with and without seasonality. This necessitates the use of three control functions:

adulticide, larvicide and human protection. The results were analysed to determine the necessary

conditions for the existence of an optimal control, using Pontrayagins maximumprinciple. The

resulting non-autonomous system was examined to determine the necessary conditions for exis-

tence of an optimal control, using Pontrayagins maximum principle. Numerical simulations of the
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model suggested that the Larvicide is the most effective strategy to controlan ongoing epidemic

in reducing disease cost when we apply only one control. But we noted that more knowledge

about the actual effectiveness and costs of these intervention measures in specific applications

would give more realistic parameters and results. The outcomes further stressed the importance

of considering the other animals that could be infected in any region and its effect regarding

the cost of control. Finally, the numerical results identified the time of applying the control to

achieve the best control strategy. This work strongly justified the importance of carefully taking

into account the impact of the seasonal variation when applying the control.

In the last part, we presented new methods to measure and forecast the risk of WNv. This is

done by determining the dynamical minimum infection rate (DMIR) of WNv introduction into

Ontario-Canada through different pathways. DMIR could be regarded as the first WNv dynamical

model to test and forecast the weekly risk of WNv by being updated weeklyof the total number

of mosquitoes using the statistical models [89]. Finally, we compared our formula with the data

available at Peel region to verify our formula.

As discused earlier in Chapters two and three, it is noticed that backward bifurcations have

recently received much attention due to the adaptation, continual evolution ofinfectious agents

and the reemergence of disease (The epidemiological significance of the backward bifurcation

is that the usual requirement ofR0 < 1 is, although necessary, no longer sufficient for disease

elimination). However, backward bifurcation occurs for certain rangesof the parameters. Thus,

in future work we plan to find answers for the following questions as extended work for this

dissertation:
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• What is the biological interpretation (mechanism) of the occurrence of thesebackward

bifurcations?.

• How will seasonal change affect the disease development as well as theequilibrium points

in case of backward bifurcation and how this improves our understandingof the economics

of WNv disease control?

• How to introduce WNv model presence of the oscillations without recourse toexternal sea-

sonal forcing and then study the impact of the seasonal variations of the vector populations

on the dynamics of the transmission of the disease in that model.

• How do we test the DMIR model with the occur of backward bifurcations when we esti-

mate the risk assessment?
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A Appendices

In the following theorem, we present the adjoint system and control characterization.

Theorem A.0.1. For an optimal control variable(u∗

1, u
∗

2, u
∗

3) and optimal corresponding

state solutionsQ∗, then there exist adjoint variablesλj, j = 1, ...., 15, satisfying,

λ́1 = −a3 − c1w1 + λ1(dL + d0u1) + (λ1 − λ3)mL(1− u1),

λ́2 = −a3 − c1u1 + λ2(dL + d0u1) + (λ2 − λ4)mL(1− u1),

λ́3 = −a3 − c2u2 − λ1(rm(1− u2)− λ3(dm + d0u2) + (λ3 − λ4)
βmbm(B1i+B2i)

N
,

λ́4 = −a3 − c2u2 − rm(1− u2)λ1 + λ4(dm + d0u2) + (λ1 − λ2)qrm(1− u2)

+ (λ5 − λ6)
βbbmB1s

N
+ (λ8 − λ9)

βbbmB2s

N
+ (λ11 − λ12)

βhbmS

N
(1− u2),

λ́5 = λ5db + (λ4 − λ3)
(

βmbm(B1i+B2i)
N2 Ms

)

+ (λ5 − λ6)
(

βbbm(N−B1s)
N2 Mi

)

+ (λ9 − λ8)
(

βbbmB2s

N2 Mi

)

+ (λ12 − λ11)
(

βhbmS

N2 Mi(1− u3)
)

,

λ́6 = λ6δ1 − λ7ν1 + (λ3 − λ4)
(

βmbm(N−(B1i+B2i))
N2 Ms

)

+ (λ6 − λ5)
(

βbbmB1s

N2 Mi

)
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+ (λ9 − λ8)
(

βbbmB2s

N2 Mi

)

+ (λ12 − λ11)
(

βhbmS

N2 Mi(1− u3)
)

,

λ́7 = λ7db + (λ4 − λ3)
(

βmbm(B1i+B2i)
N2 Ms

)

+ (λ6 − λ5)
(

βbbmB1s

N2 Mi

)

+ (λ9 − λ8)
(

βbbmB2s

N2 Mi

)

+ (λ12 − λ11)
(

βhbmS

N2 Mi(1− u3)
)

,

λ́8 = λ6db + (λ4 − λ3)
(

βmbm(B1i+B2i)
N2 Ms

)

+ (λ6 − λ5)
(

βbbmB1s

N2 Mi

)

+ (λ8 − λ9)
(

βbbm(N−B2s)
N2 Mi

)

+ (λ12 − λ11)
(

βhbmS

N2 Mi(1− u3)
)

,

λ́9 = λ9δ2 − λ10ν2 + (λ3 − λ4)
(

βmbm(N−(B1i+B2i))
N2 Ms

)

+ (λ6 − λ5)
(

βbbmB1s

N2 Mi

)

+ (λ9 − λ8)
(

βbbmB2s

N2 Mi

)

+ (λ12 − λ11)
(

βhbmS

N2 Mi(1− u3)
)

,

λ́10 = −c3u3 + λ10db + (λ2 − λ1)
(

βmbm(B1i+B2i)
N2 Ms

)

+ (λ6 − λ5)
(

βbbmB1s

N2 Mi

)

+ (λ9 − λ8)
(

βbbmB2s

N2 Mi

)

+ (λ12 − λ11)
(

βhbmS

N2 Mi(1− u3)
)

,

λ́11 = λ11dh + (λ4 − λ3)
(

βmbm(B1i+B2i)
N2 Ms

)

+ (λ6 − λ5)
(

βbbmB1s

N2 Mi

)

+ (λ9 − λ8)
(

βbbmB2s

N2 Mi

)

+ (λ11 − λ12)
(

βhbm(N−S)
N2 Mi(1− u3)

)

,

λ́12 = −a1 + λ12dh + (λ4 − λ3)
(

βmbm(B1i+B2i)
N2 Ms

)

+ (λ6 − λ5)
(

βbbmB1s

N2 Mi

)

+ (λ9 − λ8)
(

βbbmB2s

N2 Mi

)

+ (λ12 − λ11)
(

βhbmS

N2 Mi(1− w3)
)

+ (λ12 − λ13)α,
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λ́13 = −a2 + (γ + µl + r + dh)λ13(λ4 − λ3)
(

βmbm(B1i+B2i)
N2 Ms

)

+ (λ9 − λ8)
(

βbbmB2s

N2 Mi

)

+ (λ10 − λ9)
(

βhbmS

N2 Mi(1− u3)
)

− γ, λ14 − rλ15

+ (λ6 − λ5)
(

βbbmB1s

N2 Mi

)

,

λ́14 = (µh + τ + dh)λ14 − τλ15 + (λ4 − λ3)
(

βmbm(B1i+B2i)
N2 Ms

)

+ (λ9 − λ8)
(

βbbmB2s

N2 Mi

)

+ (λ12 − λ11)
(

βhbmS

N2 Mi(1− u3)
)

,

+ (λ6 − λ5)
(

βbbmB1s

N2 Mi

)

,

λ́15 = dhλ15 + (λ4 − λ3)
(

βmbm(B1i+B2i)
N2 Ms

)

+ (λ6 − λ5)
(

βbbmB1s

N2 Mi

)

+ (λ9 − λ8)
(

βbbmB2s

N2 Mi

)

+ (λ12 − λ11)
(

βhbmS

N2 Mi(1− u3)
)

,

with transversality conditions (or final time conditions)

λi(T ) = 0, i = 1, ....., 15. (A.0.1)

Furthermore, optimal control functions are given as follows:

u∗

1 = max

(

0,min

(

U1,
1

b1
((λ3 − λ1)mLLs + (λ4 − λ2)mLLi + d0Lsλ1 + d0Liλ2 − c1L)

))

,

u∗

2 = max

(

0,min

(

U2,
1

b2
(rmMλ1 + (λ2 − λ1)qrmMi + λ3d0Ms + λ4d0Mi − c2M)

))

,

u∗

3 = max

(

0,min

(

U3,
1

b3
((λ12 − λ11)

βhbmS

N
Mi − c3S)

))

.
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Proof. The adjoint system results from Pontryagin’s Principle [68],

λ́1 = − ∂~

∂Ls

, λ́2 = − ∂~

∂Li

, ............ λ́15 = − ∂~

∂R
.

The optimality conditions (characterization of the optimal control) given by

∂~

∂u1

= 0,
∂~

∂u2

= 0,
∂~

∂u3

= 0,

on the interior of the control set. Using the bounds on the controls, we obtain the desired

characterization.
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