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Abstract

West Nile virus (WNv) is a mosquito-borne disease which adiin Canada in 2001.
It has kept spreading across the country and still remaimseat to public health. In
this dissertation, we formulate dynamical models and afiy@gry of dynamical systems
to investigate the behavior of the transmission of WNv in tresquito-bird cycle and
humans. In the first part, we propose a system of ordinargrdifitial equations to model
the role of corvids and non-corvids birds in the transmissio/V/Nv in the mosquito-bird
cycle in a single season and proved the existence of backwardation in the model. In
the second part, we consider another deterministic modgutty the impact of seasonal
variations of the mosquito population on the transmissimadhics of WNv. We prove
the existence of periodic solutions under specific conaiitioAs for the third part, the
latter model is extended to assess the impact of some anti-véNtrol measures; by
re-formulating the model as an optimal control problem. Rosquito-borne diseases, it
is essential to access and forcast the virus risk. Ther@fdre final part, we generalize

the risk index, minimum infection rate (MIR) by using a conmpagnt model for WNyv,



to define a dynamical minimum infection rate (DMIR) for asgagsisk of WNv. By
using the data from Peel region, we test and forecast thelywask of WNv which can

help identify the optimal mitigation strategies.
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1 Introduction

West Nile virus (WNv) is a mosquito-borne arbovirus beloggio the genuglavivirus
in the family Flaviviridae that can cause swelling and inflaation of the brain and
spinal cord in birds, humans and many other species of asifeal. horses, cats, bats,
and squirrels) [16]. The virus was first isolated from theuserof a febrile woman
in 1937 in the West Nile district of Uganda [77]. Prior to thedri990s, WNv disease
occurred only sporadically and was considered a minor askd@imans, until an outbreak
in Algeria in 1994, with cases of WNv-caused encephalitis{@®an cases, including 8
fatalities), Romania in 1996 (393 human cases, 17 fatglitiasisia 1997 (111 human
cases, 8 fatalities), Russia 1999 (361 human cases, 4QGiésgland Israel 2000 (326
human cases, 33 fatalities) [6,16,61, 81, 82]. WNv has be@mendemic pathogen in
Africa, Asia, Australia, the Middle East, Europe and Nortmérica.

WNV first detected in the Western Hemisphere in 1999 in New Y&itk [49]. Sub-
sequently, the virus spread across the continental USAirlgao unparalleled morbidity

and mortality rates in humans and equids, then continugdatgression northward into
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Figure 1.1: Reported human cases of WNv in Ontario and Canadla [67

Canada and southward into the Caribbean Islands and Latinig¢an@6, 94]. In the

USA, 1,263 fatal cases and 31,392 reported cases of WNv iofeotcurred between
1999 and 2011 [17]. In 2012, the USA had experienced one wfdtst epidemics; there
were 5387 cases of infections in humans. These were coadigery high numbers of
infection among humans knowing that the total number ofatié@s in humans in the
four years preceding 2012 was 3809 cases [17].

The WNv activity was first reported in Canada in 2001, when thesvwwas found

in dead birds and mosquito pools in southern Ontario [16, 18]Fig.1.1, we present
the reported WNv positive human cases in Ontario and CanadeZ®2 to 2012 [67].

From the figure, one can see that the number of WNv infected hemaCanada was re-



markably decreasing during the years of 2007-2010. Howé\sarted increasing once
again in Ontario in 2010-2012 despite the immense efforthégpecialized agencies to
control the virus. There are no indications that the spréddeovirus has stopped. This
fact reveals that the disease is evolving towards an end&taation where the infected
proportion is rather small. West Nile disease will most @olly continue to be a public
health concern because the virus has the most widespregcagéaal distribution and
the largest vector and host range of all mosquito-bornevilages. Thus, in this dis-
sertation, we formulate dynamical models and theory of dyinal systems to discuss
factors that could be involved in the changes of WNv dynammidSanada. In addition

to this, we develop a new risk assessment index.

1.1 Transmission cycle

WNVv is an arthropod-borne virus (arbovirus) with a naturahtmission cycle between
mosquito vectors and wild birds that serve as amplificatost$[16]. When an infected
mosquito bites a bird or some other mammal including a hunargnsmits the virus;
the bird may then develop sufficiently high viral titers dgrithe next three to five days to
infect another mosquito [83]. The WNv is different from otimeosquito-born diseases
since it involves a cross-infection between the host birdsraosquitoes and those birds
could travel with no natural (spatial) boundaries. Thewsiran also be passed via vertical

transmission from a mosquito to its offspring which incesaghe survival of WNv in

3



Figure 1.2: WNv transmission cycle.

nature [28, 78].

There are no documented cases from direct person-to-persanimal-to-person
contact. However, it has been found that birds from cerfaéiti®s may become infected
by WNv after ingesting it from an infected dead animal or itéecmosquitoes, both of
which are natural food items of some species [47]. Althouglsauitoes can transmit the
virus to humans and many other species of animals (e.g. harats, bats, and squirrels),

it cannot be transmitted back to mosquitoes (see Fig.1.2).

1.2 Mathematical modeling of WNv

Mathematical models for the WNv have been proposed in an pttenstudy the trans-

mission dynamics, in order to elucidate control strategié® first WNv model was pre-



sented by Thomas and Urena in 2001 [79] to determine the anebgpraying (killing
the mosquitoes) needed to eliminate the virus on New York @Git2004 another model
was presented and suggested that the most plausible metleoadacation of WNv in
a closed population would be to reduce the mosquito populair reduce the biting
rate [69]. The authors in [53] made a comparative study ofdiserete-time model
in [79] and the continuous-time model in [93] confirmed thadtiléiciding is a more ef-
fective preventive strategy for controlling WNv in compansto the use of personal
protection. Paper [40] derived sufficient conditions imrierof the frequencies and rates
of larvicides and insecticide spray. An age-structured WNodet was applied to the
WNv dynamics in Southern Europe and Western Africa in [29) @bthors in [8] deter-
mined the cost-effective strategies for combating theaspd WNv in a given popula-
tion. In [90] the authors compared four WNv compartmental ei@dnd proved that the
dynamics of vector mosquitoes itself does not guaranteextstence of the backward
bifurcation. All the above models share the feature of theraction of WNv among
mosquitoes, birds and humans.

Moreover, many other researches work on the transmissioardics of WNv among
mosquitoes and birds. Wonham et al. [92], presented a stegigon model with a system
of differential equations for WNv transmission in the mosgtbird population. Their
work, using local stability results and simulations, shdwat while mosquito control

decreases WNv outbreak threshold, controlling birds irsged. They also focused on
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how different assumptions of host-vector interactioneftee disease-transmission term
in [93]. Paper [22] presented and analyzed a mathematicdehfor the transmission
of WNv infection between mosquito and avian populations andiging experimental
and field data as well as numerical simulations, they fourdptrenomena of damped
oscillations of the infected bird population. A theoretit@mework for the analysis
of the WNv epidemic and for dealing with mosquito diffusiorddsird’s migration was
provided in [45]. In [52] the authors studied the spatiaksytof the virus, established the
existence of traveling waves and computed the spatial dprg@@peed of the infection.
The impact of directional dispersal of birds on the spafiaéading of WNv was studied
in [54]. Paper [41] obtained a subthreshold condition fer blackward bifurcation. The
authors in [23] concluded numerically that the frequencyhefnew outbreaks depends
on the relationship between the intrinsic and seasonali&egjes.

A common feature of all the previous WNv models is that theyfammulated with
constant parameters. There have been some models using-adiging rate of some
parameters like the one in [50] which estimated the proportif actual WNv-induced
dead birds by aboui.8%, 7.3% of equine andl0.7% of human cases- as reported by
the Centers for Disease Control and Prevention. Another a@septed by Abdelrazec et
al. [2] considered the model that studied the impact of se&s@riations of the mosquito
population on the dynamics of WNv; and by using the theory dineg@ control, it

confirmed that larviciding is the most effective strateggpérs [1,11,30,60] categorized



the birds into two groups and studied the effects in transiomsof the virus. Likewise,
the article [24] studied the effect of the interaction begwelifferent species of birds and

mosquitoes living in the same locality on the emergence aenbfence of the disease.

1.3 Risk assessment and control of WNv

Although studies are underway, there is no human vaccinemtly available for WNv.
The methods used to reduce the risk of WNv infection are basedasquito reduction
strategies (such as larvaciding, adulticiding, and elanon of breeding sites) and per-
sonal protection (based on the use of appropriate inseelieeps). These measures are
intensified during mosquito seasons.

Since 2002, the Public Health Agency of Canada has estaflskarveillance pro-
gram to monitor the risk of WNv transmission to humans throsgtveillance and to
reduce it through control efforts and public education. Bsientists and vector control
practitioners have considered various means of asse$srgpatiotemporal human risk
of transmission to reduce potential health threats. Soontkest have used entomological
risk of vector exposure as a key determinant of WNv diseag&enifiumans, whereas
others have focused on disease risk based on avian and equiregllance or manda-
tory human case reports. In practice, the entomologicklmeasures based on vector
mosquito abundance are considered effective means tosamsépredict human WNv

infection risk [85].



In general, risk assessment is a formalized basis for thectiog evaluation of risk
in which assumptions and uncertainties are clearly consiti@nd presented. The Public
Health Agency of Canada has utilized mosquitoes testing\tiir pooling mosquitoes
of the same species) to estimate the risk assessment intordesnitor the spread of
the virus. The risk assessment of WNv infection depends oenssurveillance factors:
seasonal temperatures, adult mosquito vector abundainas,isolation rate in vector
mosquito species, human cases of WNyv, local WNv activity @omsosquito), time of
year and WNv activity in proximal urban or suburban region][8Ehe risk assessment
of WNv, based on mosquito, can help identify areas that areeattest risk for humans

so that control and prevention measures can be taken toe¢dediuman infection.

1.4 Overview of the dissertation

The overall goal of this thesis aims at understanding theawehof the transmission of
WNyvV in the mosquito-bird cycle and humans, as well as devetppystems and pro-
cedures to reduce human risk by formulating dynamical nsdet using the optimal
control to minimize the spread of WNv. This work consists afciapters.

We begin with Chapter one as the introduction and in Chaptey weopropose a
system of ordinary differential equations (by taking cds/and non-corvids birds as the
primary reservoir hosts and mosquitoes as vectors) to nibdeble of corvids and non-

corvids birds in the transmission of WNv in the mosquito-luydle in a single season.
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The system of eight differential equations can have up to pasitive equilibria. We
find the basic reproduction number and analyze the exis@mstability of the equilib-
ria. Using normal theory and center-manifold theorem, vge grove the existence of a
backward bifurcation which gives a further sub-threshaddition beyond the basic re-
production number for the spread of the virus. The existeftee backward bifurcation
also suggests that the long term WNv activity in a given reglepends on the initial
population sizes of birds and density of mosquitoes. Theltre$this part also suggests
that even though dead corvids (American crow) may not be seamiven region, like
in the early years of the endemic of the virus, there mighttitleagpossibility of an out-
break due to the existence of the non-corvids as resenoitthis part we also suggest
that it is essential to consider the diversity of the aviaecsgs, as well as the quantity of
other mammals, when modeling WNv.

In Chapter three, we consider another deterministic modsLidy the impact of sea-
sonal variations on mosquito population and the dynamid¥Nf. Firstly, we establish
and study the model without seasonality and prove the exastef the backward bifur-
cation of the model. Secondly, we expand the model to inctbhdeseasonal variations
to study the impact of seasonal changes on the transmiskibe @irus. We prove the
existence of periodic solutions under specific conditioe. AMéo introduce and calculate
the basic reproduction number for this seasonal forced médethermore, we examine

the dynamics of the model when the seasonal variation bexstrenger.



In Chapter four, we use the optimal control theory to studysdtinategies of control
and minimize the spread of WNv. The controls represent thel levwhich pesticide
is applied to the mosquito population and the preventiooreffto minimize human-
mosquito contacts. The model formulated in chapter threexisnded to assess the
impact of some anti-WNv control measures; by re-formulatimgmodel as an optimal
control problem. This entails the use of three control fioms: adulticide, larvicide and
human protection. The numerical simulations of this optioentrol problem lead to
the following outcomes: 1) Larvicide is the most effectivategy to control an ongoing
epidemic in reducing disease cost. (2) The results emph#stzzimportance of using the
information about quantity of other animals that could Hedted and the percentage of
the non-corvids bird at any region before applying the cdrdiirategies. (3) Identifying
the ultimate time of applying the control to achieve the loesitrol strategy.

In Chapter five, we establish a criterion to access the risk ofAiiNiny region. We
utilise the dynamical models to measure the risk of WNv by m@rang the influence of
birds. This is done by developing a new index, the dynamidalmum infection rate
(DMIR) of WNv introduction into Ontario-Canada through diéet pathways. DMIR
is considered the first WNv dynamical index to test and foretbesweekly risk of WNv
by explicitly considering the temperature impact in the ot abundance, estimated

by statistical tools. This chapter is followed by conclus@nd future work.
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2 Dynamicsof West Nilevirusin mosquitoes and

corvids and non-corvids

2.1 Introduction

In North America, the WNv has been found in more than 300 spexibirds [48]. From
the study of [36], the dynamics of WNv transmission are infagghstrongly by a few
key super spreader bird species, and their results showethin WNv mosquitoes fed
predominantly (83%) on birds with a high diversity of speaised as hosts (25 species),
and WNv mosquitoes also fed on mammals (19%; 7 species witlahsimepresenting
16%). Their study indicated that approximately 66% of WNfeatious mosquitoes
became infected from feeding on just a few species of bires. as far as we know, the
past modeling effects to understand the transmission dipsash WNv have treated the
avian species as one family. The study by [36] suggested tba&ssential to consider the
impact of avian species diversity in one system to undeddiiaa transmission dynamics

of WNv.
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Figure 2.1: Percentages of WNv positive dead birds in Peemdg4].

However, it is not realistic to consider over 300 speciesiafdin one model. Note
that of those many bird species, corvids are the most subtepi infection and com-
prise an auspicious component of the mortality [66]. Thesaillance data for WNv
in southern Ontario, Canada, suggest that the corvids angorrds have different
disease-induced mortality rates. In Fig.2.1, we presenipéircentages of dead birds
from corvids and other bird species in Peel region, Ontaioonf2003 to 2005 [64].
From Fig.2.1, one can see that corvids account W% in 2003,90% in 2004 andr5%
in 2005 of total of deaths due to this disease.

In this chapter, we propose a system of ordinary differéet@ations to model the
role of corvids and non-corvids in the transmission of WNvha mosquito-bird cycle

in a single season. The system of eight differential eqnatean have up to two positive

12



equilibria. The analysis of the model including a backwaifdribation gives a further
sub-threshold condition beyond the reproduction numhehcontrol of the virus. The
existence of the backward bifurcation also suggests tledbting term WNv activity in a
given region depends on the initial population sizes of$add density of mosquitoes.
The results of this chapter also suggests that even thowghatevids (American crow)
may not be seen in a given region, like in the early years ofetieemic of the virus,
there might be still a possibility of an outbreak due to thistexice of the non-corvids as
reservoirs. This chapter also suggests that it is esseéat@nsider the diversity of the
avian species when modeling WNv.

This chapter is organized as follows: We formulate the maalith birds being clas-
sified as corvids and non-corvids, in Section 2.2; and in @ section, we find and
analyze the equilibrium points of the model. The backwafdrbation analysis is given
in Section 2.4. Our numerical simulations and discussienpaesented in Section 2.5

and 2.6 respectively.

2.2 Modd formulation

According to the transmission cycle (between mosquitodsads) of the virus, we plot
the flow chartin Fig.2.2. In the flow chait/,(t) andM;(t) are the number of susceptible
and infectious mosquitoes at timerespectively. The total number of mosquitoes is

N, (t) = M(t) + M;(t). Due to its short life span, a mosquito never recovers from

13
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Figure 2.2: Flow chart of the WNv [1].

the infection and we do not consider the recovered classamthsquitoes [28, 78].
The number of susceptible, infected and recovered corvasiat timet are denoted by
Bis(t), Byi(t) and By,.(t), respectively. Similarly, the number of susceptible, itéelc
and recovered non-corvid birds at tichare denoted bysy,(t), Bs;(t) and By, (t). Thus,
Ny1 = Bys + By + By, and Ny, = By + Bo; + Bo, are the total number of corvid
and non-corvid birds, and the total number of birds willlBe= N,; + Ny». Moreover,
the total number of infected birds at tinteis denoted byB;(t) = Bi;(t) + Bo(t).
According to [36], WNv mosquitoes also feed on mammals (hwenharses, cats, bats,
and squirrels, etc.); hence, we l¢be the total of mammals that mosquitoes will bite for
blood meals. In this chapter we assume thas constant.

Let us define the biting ratg,, of mosquitoes as the average number of bites per

14



mosquito per day. The transmission probability is the pbdlig when an infectious bite
produces a new case in a susceptible member of the otheesp@&bie probability that a

mosquito chooses a particular bird or other animal to biteteeassumed ag-~—. Thus,

a bird receives in average, (N]ZTELA) bites per unit of time. Then, the infection rate per

susceptible bird (corvids or non-corvids) is given By,, (wfl%) ]]\‘[{n = ﬁbbm%,

where, is the WNv transmission probability from mosquitoes to bir8@amilarly, the

infection rate per susceptible mosquitodsb,, B;V"bffi, where,, is the WNv trans-
mission probability from birds to mosquitoes. As was meamgid in the introduction,
mosquitoes can transmit WNv vertically [78], and the fractad progeny of infectious
mosquitoes that is infectious is denoteddhwith 0 < ¢ < 1.

For the corvid and non-corvid bird populations, we assunmsizmt recruitment rates
o1 @nd~y,, respectively due to birth and immigration. Usually the baa@pulation re-
mains unchanged over years if there are no avian diseasegimrenental changes. For
simplicity in this chapter, we assume that the natural deaih of non-corvid birds is
the same as that of corvid birds. Another assumption is that infected corvid and non-
corvid birds recover at constant ratesgfandws,, respectively. The specific death rates
associated with WNv infection in the corvid and non-corviddbipopulation ar@; and
o, respectively. The corvids family is more competent thanrtbe-corvids family of

birds, i.e, the number of secondary infections producechididuals of those species

is greater than the corresponding number produced by theoids [47]. Moreover,
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from Fig.2.1, we noticed that the disease mortality ratebefcorvids family are signif-
icantly greater than the corresponding ones for the nowg®family [47]. So we can
assume that; > .

Based on the above assumptions, and extending the ideas #2[52, 92] our WNv

model is given by

dfi\;[s = (M, + (1 — g)ro M) (1 — %) — dmMs — Bmbm Bﬁ;i% M,
T oM (1)~ B B
dftls = o1 — dpBis — Bobum 2 M,
dftli = —(dy + p1 + v1)Bri + Bobm g, 1 Mi,
(2.2.1)
df;tl” = —dyBy, + 11 Bui,
D e duBos — Bibn2eg M
dft% = —(dy + p2 + v2) Bai + Bobm 25 Mi,
\ dgf" = —dyBay, + 1By,

where the definitions and values of the parameters used in the model (2&2sLinamarized
in Table 2.1.

Adding the first two equations of the model (2.2.1), the total number of mosguiNg,

satisfies
dN,, Ny,
—— =1y, Ny |1 — — | — d;, Vi, 2.2.2
a ( Km> d (2.2.2)
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For any given positive initial conditiofV,,,(0) > 0, the total number of mosquitoes approaches a
- 0
steady value\l = (1 — &) Kp,.
The equation (2.2.2) indicates that the mosquito population will die ad, i r,,, while
the mosquito population will eventually stabilize at a positive equilibriufif d,,, < r,,,. That

is why in this chapter we are assuming the latter case.

For the two species of birds, their totals satisfy

dNy;
dt

= Yj — doNp; — i Bji, j=1,2, (2.2.3)

respectively. From (2.2.3), one can see that if there is no virus invdlsed = 0), the total
populations of corvids and non-corvids will approa’_ép: Zlibj, j = 1,2, respectively.

To better organize the analysis, we denbte= dy, + i; + v, j = 1,2. From the definition
of ; andv; we can defineal—1 andé as the adjusted infectious period taking into account the

mortality rates of corvid and non-corvid birds, respectively. Bet B, + B, + A, which is the

total number of birds and other mammals that mosquitoes will bite for blood meals.

2.3 Equilibria and reproduction number

The model (2.2.1) has two disease free equilibrium (DFE) poiigs= (0,0, By, 0,0, By, 0, 0)
andF, = (M,0,By,0,0,B,0,0). For the DFEE,, one can verify that its Jacobian matrix
has eigenvalued; = Ay = A3 = \y = —dp, A5 = =1, A¢ = —d2, A7 = (¢rm — d,,) @nd
As = (rm — dp) > 0, SOE) is a hyperbolic saddle point.

The local stability ofE; is governed by the basic reproduction numigrwhich can be

calculated from the next generation matrix for the system (2.2.1). Note thamddel has five
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Par. Definition Range Ref.

r,  Mosquitoes per capita birth(0.036 — 42.5)/(day™") [92]
rate

K,, Environmental carrying ca- (10° — 10°) [92]
pacity of mosquitoes

d, Natural death rate of (0.016 —0.07)/(day™") [92]

mosquitoes

d,  Natural death rate of birds (10™* — 1073)/(day™") [92]

Bm  WNv transmission prob- (0.018 — 0.24) [92]
ability from birds to
mosquitoes

By WNv transmission proba- (0.088 — 0.9) [92]
bility from mosquitoes to
birds

b,  Biting rate of mosquitoes (0.2 — 0.75) [92]

7 Recruitment rate of corvid (800 — 1100)/(day) [47]
birds

12  Recruitment rate of non- (800 — 1000)/(day) [47]
corvid birds

v, Recovery rate of corvid (0 —0.1)/(day™") [47]
birds

v, Recovery rate of non-(0—0.2)/(day™") [47]
corvid birds

w1 Death rate of corvid birds (0.2 — 0.3)/(day ™) [47]
due to the infection

po  Death rate of non-corvid (0.01 — 0.16)/(day™")  [47]
birds due to the infection

Table 2.1: Parameters used in the model (2.2.1).

infected groups, namely/;, By;, B1,, B2; and Bs,.. Using the notation of [84], the new infection

terms and the remaining transfer terms for those five groups are givem, loelzartitioned form.
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In the following, let

qrmMi(1 = F2) + Brnbin ZE 52 M dpm M;
ﬁbbm%Mi 01B1;
3= 0 v U= | dyBir — 1By
BQS
Bobm 5, 12 Mi 02 Ba;
0 dpBar — v2By;

Thus, at point&;, the Jacobian matrices 6f andv with respect to the five groups leads to

gdy,  EmtpM o Enbpll g L 0 0 0o o0
GbaBi 9 0 0 0 0 % 0 0 0
F=| o o 0o o of V'i=lo A& L o o [
GbaBe g0 0 0 0 0 0 £ 0
0 o 0 0 0 0 0 0 % &

where F' is a non-negative matrix and is non-singular. It is not difficult to find the basic
reproduction number defined @y = p(FV 1), the spectral radius of the matrixV ~!. If we

denote

- @MM1M<&+Bﬁ, (2.3.9)

d. B2\ 6 &

then the basic reproduction number

1
Ry = g + VP AR, (2.3.5)
Note that for the WNv infection, the number of infections produced by desitayvid or non-

corvid bird during its infectious period in a completely susceptible mosquitolatpn is given
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by 5mmeM~2 (?—11 + ?—j) . In the same way, the number of infections in a completely susceptible
avian population produced by a single infectious mosquito is give%gﬁy. Then®R is the basic
reproductive number in the absence of vertical transmission.

From Theorem 2 of [84], the following proposition is obtained

Proposition 2.3.1. For system (2.2.1), the disease-free equilibriimis locally asymptotically

stable if Ry < 1 and unstable iRy > 1.

The epidemiological implication of Proposition 2.3.1 is that, in general, wRgn< 1, a
small influx of infected mosquitoes into the community would not generate a laitgesak, and
the disease dies out in time. However, we show in the next subsection tidiséase may still

persist even wheRy < 1.

2.3.1 Endemic equilibrium points (EEP)

To obtain all the endemic equilibrium points (EEP), or the positive equilibriumtpofirst we

set the right hand sides in equations (2.2.1) equal to zero:
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N By + Bo;
V. 1—q)ra,M)(1—-—) —dnMs— Bnbp———M, = 0, 2.3.
(T s+( Q)T )< Km) d Bmb N, + A s 0 (2.3.6)
N,, B1; + By; -
— dp By —M; = 0, 2.3.
dyB1s — Bybm N +A 0, (2.3.8)
—(dp + p1)B1i — v1 B1i + Bpbm, Bis —M;, = 0 (2.3.9)
b T M1)D14 1514 b N, + A = U -9,
—dpByr +11By; = 0, (2.3.10)
— dpBag —M; = 0, (2.3.11
Vb2 — dpBas — Bybm ~, +A 0, (2.3.11)
Bs,
d Ba; — 15 Bs; bp—"-—M,; = 0, (2.3.12
—(dp + p2)Ba; — v2Ba; + By "N A 0, ( )

—dpBar +15B9; = 0. (2.3.13)

Then we write the susceptible and recovered bird variables in terBs; @nd Bs;
Bis =B — %Bu,
Bas = By — %322'7
(2.3.14)
By = 3 Bu,

By = 7 Bai.

By adding (2.3.6) and (2.3.7), we halg, (Nm - Kn (1 — d—?ﬂ)) = 0. At any positive equi-

™m

librium, we haveN,, = M; + M; = K, (1 . dm) — M.

Tm

In caseM, + M; = M, it follows from (2.3.9), (2.3.12) and (2.3.14) that one can verify

By = 6IB~2 By;. (2.3.15)
0o Bq
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From equation (2.3.7), we hayé — ¢)d,, M; = B,bym M, Bj\;ia?n and then

M — Bunbm M (B1; + Ba;)
" (1= q)dm(Ny + A) + Bbm (B1i + Ba;)

(2.3.16)

Equations (2.3.9) and (2.3.12) imply that

Bobm M; By By By By
By + By = 22 2u 2 2.3.17
R (Nb+A 5 A d (2:3.17)

Eliminating M; from equations (2.3.16) and (2.3.17), a straight forward calculatioasgiv
that if an endemic equilibrium exists, if8;-coordinates should satisfy the following quadratic
equation:

c20BY; + c11.B1; By + co2 B3, + c10B1; + co1 B + coo = 0, (2.3.18)

where

= (1= Q) () Brb
€20 q4)am \ g, mOm g,

c11 = 2(1 - Q)d mq, % - mem(%; + '?Ti)a
c2 = (1—q)d (“f) 5mbm’§§
(2.3.19)
Cio = ﬁmbmé 2(1 - Q)d 1 + Bmﬁbbm dy’
cor = PmbmB—2(1—q)dyn B + B Byb2, M .
oo = (1= )dmB? — NBmBb2, (5 +22).
Using the expression faR, in (2.3.5) we can write
B B
B = (51 + 52> = dn(RG — aRo),
2
SO we can rewriteg in (2.3.19) as
coo = B?d,, (1 — g+ Ro) (1 — Ry). (2.3.20)
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To obtain the positive equilibrium points, we find the intersection of the line (2)3vth the
quadratic curve (2.3.18).

For the curve defined by (2.3.18), 1Bt = cyacop — %cfl. One can verify that

B

D=-tm
42

(p1 — p2)* < 0.

Therefore, the quadratic curve (2.3.18) is a hyperbola. In ordertterhenderstand the intersec-

tion of this hyperbola with line (2.3.15), we make the following rotatiorBaf and B,; axes by

letting
xr = (1 - Q)dmﬂ - mem Bli + (1 - Q)dm& - mem Bin
[ @ } [ @ ] (2.3.21)
y = 5B+ 2B
The inverse of the rotation operator is given by
By = m (sz - [(1 - Q)deQ - memdb] y) )
(2.3.22)
By = m (—Mlill + [(1 - Q)de1 - memdb] y) )
providedu; # uo. By using this transformation we can conclude that,
Ny+A=B-Mp, B, —B_y (2.3.23)
dy dy

Using the new coordinates, it follows from (2.3.21) that the line (2.3.15) amdhyiperbola

(2.3.18) become

, (2.3.24)

x
k
C: y= <B + 5bme> i (2.3.25)
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where
By , B
p1 %er%
coo (2.3.26)
=~ )
B+Bbbm%

xlz(Lme@—&%%)

Sincel > pu; > p2 > 0, ¢ € (0,1), and from the Table 2.1, we havé — ¢)d,,p2 —

k= (1_Q>dm

rg =

Brmbmdy > 0,then(1—q)d,, 11— Bmdy > 0,and ther) < k < 1. For the equation of a hyperbola
(2.3.25) whose (mutually orthogonal) asymptotesiare z; andy = B + 5bbmde, respectively,
the horizontal asymptote intersects theaxis at a positive point while the intersection of the
vertical asymptote with the—axis depends on the sign of.

To obtain the intersection between the hyperbola (2.3.25) and the line (2.@24ave to

find the roots of the following equation:

.1‘2—

T + cook = 0. (2327)
dy

. M
T+ (B + Bbbm> k

The discriminantA for the quadratic equation (2.3.27) satisfies,
2

A= (1= @+ BB = (1= )y~ B)fib’y |~ hcon

Depending on the sign @k, we can have up to two positive equilibria.
Let E = (M}, M}, Bf,, B}, B}, Bs,, B, B;.) be any one of the arbitrary endemic

equilibrium of the model (2.2.1), represented as

LBy 5B -8 -8
Bii= 0o By =2 2Bi, Bi,=Bi- OB, Bi,=B- By,
k (Ml(Tf + ,ugé—;) 02B1 b b
* V1l 5« * V2 o« * B b M(B*+B*)
By, = d*Bm B;, = EBZia M; = =~ Min T Mh* = N PN
b b (1 —q)dm(B — chBli - CTszi) + mem(Bli + BQi)

24



If Ry > 1, thencyg < 0 and we always have only one positive root,

o1+ (B+ Bibu il ) ] + VA

T, = 5

and we denote the corresponding equilibriumAyy

If Ry = 1, thencyy = 0; subsequently, we have one positive root if
- M
b

This condition can be written in another form as:

Bybm M. _ ((1 —q)dm+k:) '

2.3.28
& B\ q)dm & (2.3.28)

Now we consider the casg, < 1. Sincecyy > 0, we always have one or two positive roots
if A>0.

Firstif 1 > 2, then

(1—¢q)dm 5 By  Bs M
Vo dmp gy (2L 22 1 — q)dy, Byby —,

which impliesB > ﬁbbm%- Sincecyg > 0, thenzy > 0 and Ry < 1. Moreover, the hyperbolic
curveC will intersect ther, y axes at positive points as shown in Fig.2.3(a).

Sothe linel, has two positive intersection points with the hyperl@las shown in Fig. 2.3(a),
with one being above the ling = B + 5bbmdM~b' Let x-coordinates of. andC with y = B be
denoted byrig andzq1, then (2.3.24) and (2.3.25) give,

Bbmd (B2 + 22) .

rio=kB=|(1-¢q)d, - - -
M1%+M2%

)
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and
LB+ %By \ -
xr11 = ((1 - Q)dm - 6mbm611~522)> B.
B
As shown in Fig.2.3(a), one can verify thafy, < x1; which means the other intersection of

with C'is also above the ling = B. Thus, from (2.3.23) that total number of birds would be

negative, so this case does not occur biologically.

y y
: C
I L
1 i ———————————————————— y=B+ B"dib y=B+ BDT
,,,,, . (O
al :
0 %o %y % X 0
(a) xr1 > o (Ro < 1), no EEP. (b) Tr1 = g (R() < 1), no EEP.

Figure 2.3: Ifz; > x,, the system does not have any (EEP).

If 21 = 0, thencoo = (1—q)du, (é? ~ 551)271%2) > 0, which impliesR, < 1. Note in this
case the hyperbol& will be reduced to a lingg = B + 6bbmdﬂ;, as shown in Fig. 2.3(b). Thus,
we have one positive equilibrium point that satisfies B + ﬁbbmdﬂg. Again, from (2.3.23) the
total number of birds would be negative, and this case has no positildodgm. Hence there is

no positive equilibria ifxr; > x¢. Now we consider the casg < x. Here we need to consider

the following five cases.
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Case 1. If 1 < 0 with zp < 0, thenRy > 1, and thereforeqgg < 0 which leads to
A > 0. Consequently, the hyperbolic curgeintersects the x-axis with one negative component.
So there is one intersecting point as shown in Fig. 2.4. From theagase xy we proved that
10 < z11 Which leads to the intersection betwekmandC' at point below the ling = B. Thus,
it follows from (2.3.23) that the total number of birds would be positive, $&)it> 1 there exists

a unique endemic equilibrium.

Figure 2.4: QsE 1. The system always has a unique EEP.

CASE 2. If 21 < 0 with zp = 0, thenRy = 1. Therefore, the hyperbolic curvg passes
through the origin, and we have = (:cl + (B + 61,6%) k)2 . In this case and under condition
(2.3.28) we have one positive intersection point, otherwise we will not Aaygositive intersec-
tion point. These subcases are shown in Fig. 2.5(a) and (b). Also baitheway as in @Se 1,
this intersection point is below the line= B.

CASE 3. If 21 < 0 with 2y > 0, thenB < ,Bbbmdﬂb andRy < 1. Therefore, under condition

(2.3.28), we can see that we do not have any positive intersection poihtsifo and we have
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(a) No EEP. (b) One EEP.

Figure 2.5: @QsE 2. The system has at most one EEP

one or two intersection points if and onlyAf > 0. Moreover, from the definition afyy, we can
conclude thaty, < kB (B + Bbbm%) which means.zg < B and thenzy < z19 < 11. Then
any intersection betweefandC' occurs at a point below the line= B. It is important to note
here that ifA = 0, then we denote the basic reproduction numbeRpy= R}. Case 3 is shown
in Fig.2.6.

CASE 4. If z; = 0thenB = ,Bbbmde and

A= —4kBBmbm (B— (1B, + 2B,) ) <.
51 5

So we do not have any real intersection points.

CASE 5. If 1 > 0 with g > 0, thenRy < 1 and

/memdb B~1 -B~2 M 5
—— | =+ = | <Bpb— < B.
= (51 52> &
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77777777777777777777777777777777 e R
fffffffffffffffffffffffffffffff y=B
X13 0f / X X13 0| 7/0 X10 X11
(&) A < 0no EEP. (b) A =0 one EEP.
y
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ygs M
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I
X 0 ><‘o X10 X11 X

(c) A > 0two EEP.

Figure 2.6: @QsE 3. The system has at most two EEPs.

By the same way in €se 3, we can have a maximum of two positive intersection points.
However, in the case that we have positive intersection points, we caudenthatcy, >

kB (B +Bbbm%> which meansiz, > B and thenzi; > . This leads to the intersec-
tion betweenl, andC' at a point above the ling = B. Hence, from (2.3.23) the total number of

birds is negative, and this case does not occur biologicalhgES is shown in Fig.2.7.
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i

O 0 XlO 11
(@ A <. (b) A =0.
y !
g : 77777777777777 y=B+ Bni
| yB
0 X10 X)Xll §
(c) A >0.

Figure 2.7: @QsE 5. The system has no EEP.

Now, if we userg, andx g, to define equilibrium point€’, and E'3 we are able to state the

principal results about the existence and number of the equilibrium points.

Proposition 2.3.2. If we suppose thatl — q)d,,p2 — Bmbmd, > 0, the system (2.2.1) can have

up to two positive equilibrium. More precisely,

1. If Ry > 1, there exists a unique endemic equilibridsy.

2. If Ry < 1, then
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Bubm bbm (1_q)dm_k

(@) If 29— < % < g% ((1_q)dm+k> and A > 0, there exists two endemic equilibria

Es and Es.

Bybm (1_q)dm_k

(b) If 24— < % o ((1*‘1)%*’“) and A = 0, these two equilibria coalesce.

(c) Otherwise, there is no endemic equilibrium.

3. If Ry =1, then

() If % < 52 <(1*Q)dm+k) , there exists a unique endemic equilibriuy.

bbm \ (1—q)dm—k

(b) Otherwise, there is no endemic equilibrium.

The epidemiological implication of Proposition 2.3.2 is that whén < 1 the virus may

or may not become endemic (at any region) depending on the ratio betweaudintity of

mosquitoes on one hand and that of birds and other mammals on the other hand.

2.3.2 Local stability

In this section, we study the local stability of the EEP in the system (2.2.1). iBy tiee Jacobian

matrix, at any equilibrium point, the eigenvalues satisfy: the firgt,, — d,,), the second-d,

that is repeated four times, as well as the eigenvalues from the riEtviath

((1—q)dm‘;—2—,8mbm>Mi+,8mme

((1—q)dm%§—ﬁmbm) M;+Bmbm M

We can find the eigenvalues Bf by finding the roots of the cubic equation

A4 AN+ AN+ Ay =0,
31

M
—(1=q)dm M, Ny+A Ny+A
M;  pq 1)

b, —_Hlp. k2R .

Bls . <Bb m db db 17.) db 17

W = Bobm Ny+A (51 + 01 N, +A 01 Ny+A

g, My pop
6 b BQS 5 dy, BQz - 5 + 6 (Bbbrn dy, dy, B21)
bYm N, + A 2Ny +A 2T 02 Np+A

(2.3.29)



where

B ﬁbb;,LAIi_%Bli Bbb;nMi_;%BZi
Ay = (1—q)deMS+(51+52)+51 % + 92 W )

Bpbm M OpbmM; _ip  tap
A = (1—q)dm%(51+5g)+5152 1+ﬁ 1+ . Nbb-i-A .

=,

Bbbmlblﬂ_ﬂ . Bbme._Q . 5
+ (1—¢)d o1 (P LB ) o (A 2B ) — Byby AL 01 Bitb2 B
q4)am g, Nyt A mOm i T Nyt A

51 ((1_q)dm %_6mbm)31i+62 ((1_q)dm%_ﬂmbm)32i
Np+A )

M; BpbmM; _ py )
Bobm 7+ 7 [ g Bi1i— 52 Ba
_ _ b M dp, dp dp
Ao = 0102(1 —q)dm <1+ NotA ) M, Ny+A

Bbbm% ((l_q)dm%_ﬂmbm>Bli+((1—q)dm%_ﬂmbm)BQi
— 0102 ( 1+ )
1 Ny+A Ny +A

For any endemic equilibrium poit = (M}, M, B}, B};, B}, Bs,, B3;, B3,) of the sys-
tem (2.2.1), we have the following proposition to determine the sign of the eagess/and the

roots for the characteristic equation (2.3.29).

Proposition 2.3.3. For the system (2.2.1};, is stable whileFs is unstable when they exist.

Proof. For bothE, andEs3, from equation (2.3.9) we haygb,, ];[b > %Bi‘i > G4 By;. Similarly

by (2.3.12) we havébbmﬂg—f > %Bgi. Hence,A, > 0 (in (2.3.29) ) for bothF, and Fs.

By using equations (2.3.6) and (2.3.13) we can conclude that, for amtyvpasquilibrium

ith A+ — M(1=a)dm(B—yp) « _ M((1-q)dmyp—zp) i
with M} = () Fp andM; = (—Q)dnfay > WWECAN rewrited, as

B 5152 Bbbm% 2 ~ M
Ao—m 1+B—7yE 22y —rp ((1*Q)derk)B*((l*Q)dm*k)ﬁbdfb .

If Ry < 1 and case (3)(a) of Proposition 2.3.2 holds, then we have two positivibeigum
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points denoted byzg,, yg,) and(x g, , yg, ). For E5 from (2.3.27) we can see that
1 - M
Tpy < 5 [((1 - Q)dm + k)B - ((1 - Q)dm - k)ﬁbbmdb] )

thereforeAy < 0, the roots of (2.3.29) will have different signs, ahd is unstable. While for
E,, from (2.3.27) we have:g, > 1 [((1 — Q)+ k)B — (1 = q)dyn, — k:)ﬁbbmd—]‘ﬂ . Hence,
we conclude thatly > 0.

In the same way, iRy > 1, from Proposition 2.3.2, we have one positive equilibrium point

denoted by(zg,, yg,) and from (2.3.27),

TEy > % [((1 - Q)dm + k)B - ((1 - Q)dm - k)/BbbmA;W]
b

andA4y > 0.
Finally, to prove that all roots of equation (2.3.29) are negativé,ain the two case®, < 1
and Ry > 1, we need to prove that ifly > 0 thenA; 45, — Ay > 0.

By (2.3.7) we conclude that &, (1 — ¢)d,, M, > memM;%, so this leads to

N 5B - N N B3
(1-— q)de—; > ﬁmbmWNgiA’ and in the same way,l — q)dmﬁg > ,memWNb*iA.

Therefore,

*

Bli B>2kz
51 | (1= q)dm 5mmeb*+A]+52 [(1 q)dn, 5mme5+A >0.  (2.3.30)

From (2.3.9) atF; we can conclude th bji’zM; > GLBY; + 2 B3, Then we have
Bbmei* ﬁbme: _ ﬂB* _ &B*
516 [14+ | (14— 1 &2 5 2.3.31
e Ny +A N; +A (2.3.31)
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It follows from (2.3.30) and (2.3.31) that, > 0 implies that4; > 0 and

A1Ay — Ag
Y 91 (M‘%Bﬁ)‘“& (M‘%Bﬁ)
M b b b b
= (- qP@ AL+ A1) |(B1+62) + e
MF
By gt | ((1=a)dm 5 —Brnbm ) By, + (1=0)din 52~ Brbin ) B3,
+ 0102 |1+ g : NFFA :
L od 61 ((1=)dm 5L~ Brbin ) B 482 (1-0)dm 42 — b ) BS,
( - Q) mNF Ny+A

ThusA; A — Ag > 0, and the proof is complete.

2.4 Backward bifurcation

To discuss the backward bifurcation, we chobse- 111 + v + dp andde = ps + vo + dp, as the
bifurcation parameters. We will express the two conditiélgs= 1 andA = 0 in terms of the
parameters; anddy (01 > d2), and then present the bifurcation diagranidi, J2) plane.

First, with Ry = 1, equation (2.3.5) can be presented as follows,

- 2B\B
5 = aB, + 22172 (2.4.32)
0o — By
_ BoBmb2 M
wherea = (o B?

The second curve can be obtained by lettilng= 0 in equation (2.3.27). Solvings = 0 in
terms ofd; one can get

P2B~1§2

61 = pBy + =,
0o — pBa

(2.4.33)
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where

By B2, M
(1—q)dmB?— L (((1 — @) + k)B — (1 — q)dp, — k)/@bbm%>2

p:

In the positive quadrant of the parameters pléhed,), equation (2.4.32) is a hyperbola, whose
(mutually orthogonal) asymptotes afe = «B; andd, = aB,. Similarly, equation (2.4.33)
represents a hyperbola with (mutually orthogonal) asymptéies; pB; andd, = pB,. From
the above we can conclude that(ifl — ¢)d,, + k)B = ((1 — ¢)dm — k:)ﬁbbmfjv—z, then the

two hyperbolas (2.4.32) and (2.4.33) are the same aand (B + ﬂb%%) k = 0in equation

(2.3.27). Then whel% = ﬂjgm (8:3;3::2) , we do not have any positive equilibrium points if
Ry < 1, while if Ry > 1, we have one positive equilibrium point, where> o > 0.

One can verify that the two hyperbolas (2.4.32) and (2.4.33) do not éuteirs the positive
guadrant, and a region for the existence of two endemic equilibria to ocallisiefined in the
shadow area as shown in Fig.2.8.

5t R¢

R>1
0

Figure 2.8: In the plan&),, J,), we have two EEPs in the dashed area.
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Then from the above and from Proposition 2.3.2, if the discriminaris set to zero and
solved for the critical value aR, which we denote byz}, then we have
(1=0)dmtk)? 4k —q)dm (L=q)du—k Bobm 37) >
¢+ \/ e (((1—q>di+k>2 - (1_ —dnth 45 ) )
1

Rl = 5 . (2.4.34)

Thus, the backward bifurcation scenario involves the existence ofaiscdl transcritical bifur-
cation atR, = 1 and of a saddle-node bifurcation & = R} < 1. The qualitative bifurcation

diagrams describing two types of bifurcationfat = 1 are depicted in Fig.2.9(a) and (b).

A

g A B

(a) Backward bifurcation. (b) Forward bifurcation.

Figure 2.9: Basic reproduction number and bifurcation diagr

Theorem 2.4.1. Consider model (2.2.1) with positive parameters. If

mem -B~1 /mem _B~2
A < <M1 — (1/1 + db(l + (1—Q)dm))> 514—(#2 - (VQ + db(l + (1—q)dm>)> 5*2,(2.4.35)

then system (2.2.1) undergoes a backward bifurcation whea: 1.
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Proof. The proof employs Theorem 2.4.2, which is adopted from [14] that is, m txsed on

the use of the center manifold theory [13, 33].

Theorem 2.4.2. [14]. Consider the following general system of ordinary differential a&opns

with a parameter

d
dif = f(z,¢), f:R"— R, and fec C*(Rx R). (2.4.36)
Without loss of generality, it is assumed thas an equilibrium for system (2.4.36) for all values

of the parametep, (thatis f(0,¢) =0 V¢). Assume

1. B=D,f(0,0) = (g—g(o, 0)) is the linearized matrix of system (2.4.36) around the equi-
librium 0 with ¢ evaluated ab. Zero is a simple eigenvalue &fand all other eigenvalues

of B have negative real parts;

2. Matrix B has a right eigenvectow and a left eigenvector corresponding to the zero

eigenvalue. Lef;, be thek! component of and

8
a= ) wwiip, 5 (0.0
kyi,j=1 v

° 9° fi
b= kgl VpW; 95.00 (0,0).

The local dynamics of system (2.4.36) arolrate totally determined by andb.

(@) Inthe case where > 0;b > 0, we have that when < 0 with |¢| close to zero0) is
locally asymptotically stable and there exists a positive unstable equilibriunm whe
0 < ¢ << 1, 0is unstable and there exists a negative and locally asymptotically

stable equilibrium.
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(b) Inthe case where < 0;b < 0, we have that whep < 0 with |¢| close to zero()
is unstable; whefl < ¢ << 1, 0 is locally asymptotically stable, and there exists a

positive unstable equilibrium;

(c) Inthe case where > 0;b < 0, we have that when < 0 with |¢| close to zero, O is
unstable and there exists a locally asymptotically stable negative equilibriuen wh

0 < ¢ << 1, 0is stable and a positive unstable equilibrium appears

(d) In the case where < 0;b > 0, we have that whew changes from negative to
positive,0 changes its stability from stable to unstable. Correspondingly, a negative

unstable equilibrium becomes positive and locally asymptotically stable.

To apply Theorem 2.4.2, the following simplification and change of varialikeesrade on
the system (221) First of all, let; = Mg, xo = M;, x5 = Bis, x4 = Bi1;,x5 = B, 16 =
Bas, x7 = Baj, g = Bs,.. Further, by using the vector notation

X = (v1,22,23, 24, 75,76, 77, 73) ", the system (2.2.1) can be written in the formGf =

38



F(z),with F = (f1, f2, f3, f4, f5, f6, [z, fs)T, such that

T = e (1) st b P,
% = Y1 — dpr3 — Bpbm W
% = —6124 + Bpbm m
(2.4.37)
% = —dprs + V124,
% = M2 — dpxs — Bpbm W
% = —0x7 + Bpbm m
% = —dpxg + 12x7.

Assume thatl — q)dmp2 — Bmbmd, > 0. Choose(dy, d2) as a bifurcation parameters. As
a result of solvingRy = 1, backward bifurcation occurs at any point on the curve defined at
equation (2.4.32).

The Jacobian matrix of the system (2.2.1Fat(with (1, d2) satisfying equation (2.4.32)) is

given by
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~(rm—dm) A1 =)+ (= 7m) O —Bubmd 0 0 —BubniL 0
0 —(1 - q)dm 0 Bubw 0 0 Bubnid 0
0 —Bybm 2 —dy 0 0 0 0 0
0 Bobm 2 0 —5 0 0 0 0
0 0 0 v ~dy, 0 0 o |
0 —Bybm 22 0 0 0 —d, 0 0
0 Bybm 22 0 0 0 0 —5y 0
0 0 0 0 0 0 Vo —dy.

The eigenvalues of the Jacobian matrix can be obtained by the followingi@gua
X)) = AXA+dp) N+ (rm — dn)) (A2 + aoX + ay),

whereas = 01 + 02 + (1 — q)dm anda; = 52((51 + (1 — q)dm)
Thus, the Jacobian matrix has a simple zero eigenvalue and all the otheradigsnhave

negative real parts for ali,, > d,,,. Hence, Theorem 2.4.2 can be used to analyze the dynamics

of the system (2.2.1).

WhenR, = 1, it can be shown that the Jacobian matrix has a right eigenvector (aesbttia

the zero eigenvalue), given by = (wy, wo, w3, wy, ws, we, w7, ws)” , Wherew; = —wq, wy =
Vl 1 ~ —
wa, w3 = md FWwa, Wy = 5bbm5 SWa, W5 = ﬁbbm(S 5 W2 W6 = md Lwa, Wy =

B
/Bbbm5 Lwy, wg = Ppbm 2%

Sady B U2

Similarly, the components of the left eigenvector of Jacobian matrix (carnepg to the

zero eigenvalue), denoted by = (vy,vo,v3,v4, vs, v, v7,v8) 1, are given byv; = 0,vy =
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V2, U3 = = Bmbm My, 05 = 0,06 = = Bmbm My, 05 = 0.
Let a andb be the coefficients defined in Theorem 2.4.2. We can calculagefollows: for
the transformed system (2.4.37), the associated non-zero partiatdesoff (evaluated at the

DFE E,) are given by

9% f qrm 0 fa Bmbm
= - ) = ~ ) (] — 45 7)7
6m18x2 K,, 8:1:16xj B
0% fo qrm 9% fo M .
= -2 = —Bmbm—, =3,4,5,6,7,8;5 =4,7),
01902 Km7 0x;0x; Bm B2 ( J )
9% f4 3
= - bm~ ) .:4757677785
D30, Bubm =5 (7 )
82f4 B—B 82f? .
= Gpb =1 b =3,4,5,7,8
8w28x3 51) mT g2 8$Qa$] 5() mB27 (.] ) EyJdy by )7
9?2 B—B
81325;‘() Bbbm B2 T
Then,
a = vpwiw;j~—>—(0,0)
kv Oz,
Qﬂmﬂf b3, M 2,5 s v+ dy s U+ dy
4, B4vzw2( 1+ B1)  Bi 5 )+ Ba(—4 )
2BmBEb;, M - Bmbmdy, (Bi B
20m 0y bom M Bi+B)|A+B(1-")+B _PmOmy (P1 | P2
* dy, B4U2w2( 1+ By ( + Bl 01 )+ 32(1 - 52)+(1—Q)dm<51 * 52)
2BmB203, M(By + Ba) dyBnbm . B
= m = vows (A — - —dy — ———— ) —
d B 2 2(~ (1 1 b 1= q)dm’ 1
dbﬂmbm BQ
— — Uy —dp — ————— ) —).
(,uz 2 b (1 — q)dm 5y )

Then, from the above equation we can conclude dhigtnegative if and only if4 satisfies the

equation (2.4.35).

aBl62

From equation (2.4.32) we can see that> ,if and only if Ry < 1. Using the same
notation as in [14]¢ = ‘;‘B;‘SQ — d01,theng > 0ifand only if Ry > 1, and¢ < 0 if and only if

Ry < 1.
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We can calculaté by substituting the vectors andw and the respective partial derivatives

(evaluated at the DFIE,) into the expression

8

b:Zv w; 0 fi (0,0)
v k Z@wﬁqb )

which implies

_ 2BmBub%, M By
b—T BQ 'U2w2>0.

Since coefficient is always positive, it follows that the system (2.2.1) will undergo backwar
bifurcation if the coefficient is negative.

O]

The parameteA measuring the effects of other animals bitten by mosquitoes to take blood
meals is usually ignored in many compartment models for mosquito-borne diseaséf we
assume that all the birds as one family (corvids) dnet 0, then the condition for occurrence of

the backward bifurcation in the Theorem 2.4.1 can be simplified as

mbm

which is consistent with the results on backward bifurcation in [41] an{l [90

The epidemiological significance of the phenomenon of backward btfarcis that if R is
nearly below unity, then the disease control strongly depends on the iidigl of the various
sub-populations of the models. On the other hand, redugirtagelow the saddle-node bifurcation

value R} may result in disease eradication.
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2.5 Simulations and discussion

In this section, we carry out numerical simulations to illustrate the effects@adf two avian
species, corvids and non-corvids, on the transmission of WNv and itsntigs. Numerical

results are obtained using values for parameters given in Table 2.1 .

251 Ry in caseof corvid and non-corvid populations

Let b € [0, 1] be the percentage of corvids in new recruitment of birdsy, lis the recruitment
rate, then in the model (2.2.1) we hayg = hy, and,e = (1 — h)v,. If A = 0, then all birds
are non-corvid, and ik = 1, all birds are corvids.

It follows from (2.3.5) that we can rewrite the basic reproduction numbek@a = 1 +
LV/q + 4R2 with ® = \/ﬁmb%};%(%w (Bt 4 i),

For the case of = 1 andh = 0, if we denote

1 Vo M ﬂb') .
— 244802 - — = , =1,2, 2.5.39

Roj =

NS

thenRy; and Ry9 are the basic reproduction numbers in the case that all birds are coiwds)(

and non-corvids{ = 2), respectively. One can verify that we have

(Ro — %)2 = h(Ro1 — %)2 + (1= h)(Ro2 — %)2, h € [0, 1]. (2.5.40)

Since corvids are more competent in transmitting the virus as the primary mnakefairus
[47], therefore we havéll > 52 So from (2.5.39), we havB(; > Rp,. One can further verify

thatRys < Ry < Ro1.
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For the reproduction number as a function of the percentage [0, 1], it follows from

(2.5.40) that we have

Ry = g + \/(Roz - %)2 + h(Ror + Roz — q)(Ro1 — Roz), h € [0,1]. (2.5.41)

SinceRy; > Rge, so for the case with a small vertical transmission tates shown in Fig. 2.10,
the basic reproduction numbé&, is an increasing function of which defines a segment of a
parabola (2.5.41) fok € [0, 1].

Another important observation is that if we do not distinguish the birds asdsoand non-
corvids, and take the bird population as only one species (using comachpeers), just like what
have been done in available modeling for WNv, we h&ye< Ry, resulting in over estimation
of the epidemic of the virus in the birds population. This observation suggestst will be
essential to further classify the birds into more species according to teponses, or death rates

due to the infection of the virus.

[
o
5l

N

The basic reproduction number

0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
h

Figure 2.10:R, as a function of.

As shown in Fig. 2.10, one can see tii&gtis an increasing function df € [0, 1]. This means

that in regions with high percentage of corvids, the virus becomes epideithiciigher basic
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reproduction number. This is consistent with the observation in Peel re@iotario, Canada

in early years when the virus first arrived and caused the outbreakwell known that a large
number of corvid birds died due to the infection and thus, leading to theaexoé their numbers.
Yet in regions with a lower percentage, the epidemic either did not occuagmnat as severe as
regions with higher percentages of corvid birds. In later years afterithe had established in
the region, whery < 1 the outbreak of the virus may still occur (inspite of the lower number of

corvid birds) due to existence of the backward bifurcation.

2.5.2 A discussion on the backward bifurcation

By Theorem 2.4.1, the backward bifurcation will occur whén= 1 and the condition (2.4.35) is
satisfied. The existence of the backward bifurcation is illustrated by simulégngnodel (2.2.1)
with the values of the parameters from Table 2.1 ane- %. We keeppuy, po as bifurcation
parameters and we plot the two curves (2.4.32) and (2.4.33) ifuthe) planes. As shown in
Fig. 2.11, we note that the two positive equilibria exist only in a small &batween the two
hyperbola curves.

By taking (i1, n2) = (0.24,0.07) € S, a time series oB; is plotted in Fig.2.12 showing
the DFE and two endemic equilibria. Also using (2.4.34), we can fijd= 0.9922 < Ry =
0.9962 < 1. Moreover, the value of the right hand side of condition (2.4.35) can loeledéed as
0.2386 x Bj; subsequently, the value of = % satisfies the condition (2.4.35). Therefore, the
backward bifurcation will occur (whe® is nearly below unity). We can then fing,; in the

two endemic equilibrids, F3 for all BE?2 = 1779, BE? = 409.
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03r ——Eq.4.1[]
——Eq.42

Figure 2.11: Bifurcation curves in the plafye, j»).

Further, Fig.2.12 shows that one of the endemic equililitiais stable, the otheFs is
unstable (saddle), and the DFE is stable. This clearly shows the co-erstéiwo locally-

asymptotically stable equilibria wheRy < 1.

2000

1500 -

1000

Figure 2.12: The trajectories of infected corvid birds wdtfierent initial values.
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25.3 Theimpact of other mammals A

From the expression in (2.3.5) and (2.5.40), we can conclude that tleerépoduction number

increases as A decreases.

7000

A=0
—— A=B2
6000 N

A=B
;

5000 A=2B; ]

4000
3000

2000}
/
1000}

0 20 40 60 80 100
t-days

Figure 2.13: Infected bird population with different vausf A.

In Fig.2.13, we simulate and present the total number of infected birds witreliff sizes of

A. We compare the cases whdn= 0, % B} and2B}, whereB? is the initial number of birds
and we also assume that all birds are of one family. One can see that theahe= of infected
bird population increases and the peak time occurs earlier wihéecreases. This is due to the
fact that some of the mosquito bites are shared by other mammals which causgesitsase of

the incidence of the birds.

254 Theimpact of bird species diversity

In Section 2.5.1, we see that the basic reproduction number is an incréasatipn of 4 (the

percentage of corvids of the total birds population). By using the sansneders as in Table
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2.1, in Fig.2.14 we present the total number of infected bifg}3 for ~ € [0, 1].

t-days

Figure 2.14: Total of all infected birds with different valuofh.

Usually, registers of WNv cases in the avian population are based on thieenwf dead
birds found. Thus, epidemiological reports indicate high WNv prevalémegian species with
high disease mortality rate. In Fig.2.15, using the parameters given in Tablwedresent the
corvids and non-corvid birds population with initial total bird populati®00. We can observe
in Fig.2.15(a) that the peak time of the infected mosquitoes appears earlieigtigr percentage
of corvid birds. It suggests that if we ignore the weather and envirotahtactors for a region
with higher percentage of corvids, the peak time of the total infected mosgydoeespondingly
the risk of WNVv risk) in the region arrives earlier.

From Fig.2.15(b), we can observe that the peak time of the infected nmeittsabpopulation
occurs later with the increase of its percentage that ranges betl&eand80%. On the other
hand, the peak time of the infected corvid subpopulation occurs earlier veitmthease of its

percentage. This observation together with the simulations in Fig. 2.15(@¢stsghat for a re-
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gion with more corvids, usually one would observe a large amount of daadtls, the virus first
causes the outbreak in the bird populations, and is followed with the peateofed mosquitoes
which can potentially induce the outbreak in the human population. But fogiarrevith less
corvids, it takes longer time for the epidemic of the virus to reach a peak inriie gopulation
which would postpone the peak of infection in mosquito population. In thisit#se cold wind
arrives earlier in the region, it can blow away the epidemic of the virus in hysoaulation. The
above observation is consistent with the endemic of the virus in regions th&awOntario [67].
The first year Ontario had more cases of WNv was in 2002, a total of @8vah cases reported.
Yet, if warmer weather promotes the abundance of total mosquitoes to reactk @axlier,
it can still cause outbreak in humans even if there are fewer number witlsan the region.
Recent outbreak of WNv in regions like Durham, Ontario verifies our mlagen. In 2012 the
hot summer in Southern Ontario allows mosquitoes to breed more quickly, wiials éhe WNv
in infected mosquitoes, and therefore in birds, to replicate faster. As &, 20tbtal of 450 cases

of human infection were reported [67].

2.6 Conclusionsand discussion

This Chapter presents a deterministic model for the transmission dynamics af Wlassi-

fying avian populations as corvids and non-corvids. A detailed analysieanodel shows the
presence of the locally stable disease free equilibrium whenever th@atssireproduction num-
ber is less than unity. The model undergoes backward bifurcation vitherstable disease free

equilibrium co-exists with a stable endemic equilibrium. The existence of thenaadkifurca-
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(a) Infected mosquitoes (b) Infected corvids and non-corvids.

Figure 2.15: The peak time of infected mosquitoes, and tatebirds.

tion indicates that the spread of the virus whggis nearly below unity could be dependent on
the initial sizes of the sub-population of the model. Moreover, in this chapagemeralizes the
results of backward bifurcation in previous work [41] and [90]. Funtihere, We analyzed the
effects of two avian populations, corvid and non-corvid family of birds wlifferent responses
to the virus, and we found that the level of incidence (measured by the ped the basic re-
production number are completely different when assuming one family ofplipdilation. We
also discussed the impact of other mammals on the transition of WNv. Thusttieoabove, we
can conclude that if we do not classify the bird population into differeatigs and if we do not

include other mammals, any epidemic calculations will be overestimated
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3 Dynamics of a West Nile virus model with seasonality

3.1 Introduction

Seasonal variations in temperature, rainfall and resource availabilipagaitous and can exert
strong pressures on density of vector mosquitoes. Three differeiamisons are responsible for
seasonality: host behavior changes, climate and environmental chandemthogen appearance
and disappearance [25]. Because WNv mosquitedsx are sensitive to temperature change,
WNvV shows very clear seasonal variation in any given year in Soutbetario and other regions
in Canada. This variation would not necessarily be labeled as an outfreakncidence during
any part of the year should be compared to the situation in the previous tpedemonstrate a
clear increase to be declared as an epidemic.

There have been some epidemiological models using a time-varying rate opsoaneeters.
Some models use a time varying rate of contact, between susceptible anddinfigliveluals,
called the seasonally forced function [9, 27, 32]. Other examples sbaally forced functions
may be found in [43,91]. The authors in [89] proposed statistical relships between envi-
ronmental parameters and WNv by using the mosquito surveillance data,rapdrégure and

precipitation records. Paper [23] is the only work that tackles the sabefiacts on new out-
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breaks in WNv starting from an endemic situation. It numerically concludedhlearequency
of the new outbreaks depends on the relationship between the intrinsicaswhakfrequencies.

By assuming that the birth rate of mosquitoes follows a periodic pattern, in thjgehwe
study the impact of seasonal variations of the mosquito population on theniygyaf WNv. We
also prove the existence of periodic solutions under specific conditionsedvier, we introduce
and calculate the basic reproduction number for this seasonal forceel.mearthermore, we
numerically study the effect of seasonality and the dynamics of the modei thieeseasonal
variation becomes stronger.

The current chapter is organized as follows. We formulate our modelatidBe3.2. In Sec-
tion 3.3, we find and study the stability of the equilibrium points of the model anddkistence
of the backward bifurcation. The impact of seasonal variation, includnogf of existence of

periodic solutions, is demonstrated in Section 3.4. The discussion arefee#e Section 3.5.
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3.2 Modd formulation

Based on the Chapter 2, on modeling the population of mosquitoes and makts, extend the

modeling for the WNv in [1,7,52,92] we propose to study a new model:

dLg
dt = Tm(Ms + (1 - Q)Mz) - (dL + mL)Lsa
dL;
= qrmM; — (dr, +mrp)Ls,
dt
dM, B1; + Bo;
dt - mLLs /memTMs de87
dM; Bi1; + Ba;
- Lz mbmiMs - deza
g kit N
dB;j, B;,
- ] — B's - miJMz
dt Vbj db J /Bbb N )
dtj = —(dy +v; +,Uj)Bji+BbbmWJMz’ J=12
(3.2.1)

dB,

dtj = —dyBjr + v;Bji,
dsS S
& = Brbm M — dyS,

g = Bh N h
dFE S
O Bubm 2 M; — oF — dyE,

a = by @ h
dl
e =aE—(y+utr+dy)l,
dH
— = = (n + 7+ dn)H,

dt
dR
E :TH+7"I—th,

wherej = 1, 2, correspond to different avian populations, 1 for corvid and 2 foromnvid. The

definitions and values of the parameters used in the model (3.2.1) are suptriariiable 2.1
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and Table 3.1.

Par. Value Meaning Ref.

r.,  Variable Mosquitoes per capita birtf92]
rate

dn, (0.02—-0.07) Natural death rate of adult[92]
mosquitoes

dr (0.1 —-1.5) Natural death rate of larva[92]
mosquitoes

Bm  (0.018 —0.24) WNv transmission prob- [92]
ability from birds to
mosquitoes

my  (0.07 —0.1) Mosquito maturation rate ~ [92]

v 0.05 The recruitment rate of hu-[8]
mans

Brn 0.01 WNyv transmission proba- [8]
bility from mosquitoes to
humans

Q 0.1 The rate of development of[8]
clinical symptoms of WNv

v 0.0009 The hospitalization rate of [8]
infected humans

w 0.015 The WNv-induced death|8]
rate of humans

wr - 0.0005 The death rate of hospital-[8]
ized humans

T 0.05 The treatment-induced re-8]
covery rate

r 0.0002 The natural recovery rate [8]

dn,  0.00008 The natural death rate for[8]

humans

Table 3.1: Parameters used in the model (3.2.1).

54



In the model (3.2.1) the total human population denotedviyis split into the populations
of susceptibleS, exposedE, infectious’, hospitalizedH and recovered? humans. For the
bird populations we considered the same as in Chapter 2. The paratné¢giotes the number
of other living organisms that mosquitoes will bite (not include human populatard N =
N, + Nj, + A represents the total of all organisms that mosquitoes will bitehLef0, 1] be the
percentage of corvids in new recruitment of birdsyfis the recruitment rate, then in the model
(3.2.1) we havey,; = hy, andvye = (1 — h)y. If h = 0, then all birds are non-corvid, and if
h = 1, all birds are corvids.

As we mentioned in the Chapter 2, the female mosquitoes can transmit WNv verfiré|ly
and the fraction of progeny of infectious mosquitoes that is infectious istddrby g, with
0 < g < 1. Then the larval populatioi is split into the populations of susceptible larva)
and infectious larval;. Similarly the adult populatiod/ splits into susceptible adulf&/; and
infectious adults);. Thus, N,,, = L + M = L, + L; + M, + M; is the total number of
mosquitoes. Due to its short life, a mosquito never recovers from the infec@mwe do not
consider the recovered class in the mosquitoes [34].

Strong pressure on population dynamics can be exerted by seasoat@bua in temperature.
Field observations show that the strength and mechanisms of seasonalditeratie spread
and persistence of WNv. Hatching of the Culex mosquito eggs varies dilméngear; being
low in the winter and high in the summer [37]. Fig.3.1 shows the relation betweeretatape
and percentage of eggs hatching fr@ulexquinquefasciatus. The figure also demonstrates the

percentage of hatching eggs fr@ulexquinquefasciatus in Toronto, ON, Canada in 2011. From
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Temperature and egg hatching in Culex quinquefasciatus

% hatched
% Hatched
.

at®
350 400 10 15 20 25 30 35 40 a5
Temperatures with C

(a) Percentage egg hatching@ulexquinque-(b) Temperature and percentage egg hatch-

fasciatus during the year 2011. ing in Culexquinquefasciatus

Figure 3.1: Impact of the temperatureQulexquinquefasciatus in Toronto

the data in Fig.3.1, we can assume that the birth rate of mosquitoes follows dipgattern.

Therefore, we propose that:
rm = r1(1 — ecos(wt)), (3.2.2)

wherery is the mean of birth rate of mosquito@s< € < 1 is a measure of the influence of the

seasonality on the birth process and- %day_l is the frequency.

3.3 Model without seasonality

We start by studying the model (3.2.1) without seasonality €.e. 0). In this case each of the

total subpopulationgv,,,, N, and N}, is assumed to be positive for= 0. Let us denote

By = bt B}:?, 5‘:%, N =B+ By + S5+ A. (3.3.3)
b h
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We begin analysis by making two assumptions; the first is the parameter donstra=
i—"z(mL + d1,) so as to guarantee the existence of a disease-free equilibrium. Thel & toat
the adult and larval mosquito populations satisfy{0) = M andL(0) = L = %M. Theniin
a given period of time the mosquito population has constant size eqdg) (o) = (1 + fn—“z)]\?[.

Next, we will determine the equilibrium points and assess their stability, and weladl
prove the existence of backward bifurcation.

The model (3.2.1), witlh = 0, has a disease-free equilibriuffy, obtained by setting the right
hand sides of (3.2.1) to zero, resultingly = (L,0, M0, B1,0,0, Bs,0,0, 5,0,0,0,0). The

local stability of £y is governed by the basic reproduction numiigr The basic reproduction

number is obtained by [84]:

M (B B
Ry = \l 0+ Bt~ (511 + 5;) (3.3.4)

whereB;, By, N are defined in (3.3.3).

Theorem 2 of [84] gives the following stability result wifty given by (3.3.4).

m

Proposition 3.3.1. For system (3.2.1), (with = 0) under the assumptior),, = de (mr +dr),

the disease-free equilibriuify, is locally asymptotically stable iRy < 1 and unstable if?y > 1.

An endemic equilibrium is given by the solution of the algebraic system obtéinedtting

the derivatives of model (3.2.1) equal to zero with = M — M; andL, = L — L,.
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qrmM; — (dp +mp)L; = 0, (3.3.5)

By + By, ~

mpLi + ﬁmbm%(M _ M) —dnM; = 0, (3.3.6)
Bjs
i — dpBjs — 6bbmwMz’ = 0, (3.3.7)
6, Bji + Bobm M, = 0 (3.3.8)
151 b mNb + A [ 5 .O.
_dejr‘ + VQBJ‘Z' = 0, (3.3.9)
S

Yh — BhmeMz’ —dpS = 0, (3.3.10)

S
Brbm e M; = 0B = dpE = 0, (3.3.11)
aFE —(y+w+r+dy)l = 0, (3.3.12)
A= (up+7+d)H = 0, (3.3.13)
TH+rl—-d,R = 0. (3.3.14)

First we write the susceptible and recovered birds variables in tert8s; @nd Bs;

-5 .
Bjs=Bj ~ L Bji, Bjr = %Bﬁ, j=1,2. (3.3.15)

By combining (3.3.8) and (3.3.15) one can verify that

From (3.3.5) we haved,,M; = myL;. As assumed above we know that at any positive equi-
librium, we haveM = M andL = L. Then from equation (3.3.6), we have — ¢)d,,,M; =
Bunbm (M — M;)BritB2i . As a result we get the following:

Binbm M (By; + Ba;)
M; = . 3.3.17
(1= q)dmN + Bb(Bui + Bar) (3.3.17)
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It follows from (3.3.8) that

ﬁbbmlwi B~1 B~2 Bli B2i
BZ'JrBZ'_— —_—t - —. 3.3.18
! 2 < N (51 52 db db ( )

Eliminating M; from equation (3.3.17) and (3.3.18), a straight forward calculation yiblalsif
an endemic equilibrium exists, if$;; and By; coordinates should satisfy the following quadratic

equation:
co0B3; + c11B1iBa; + co2 B3; + c10B1i + co1Ba;i + co0 = 0, (3.3.19)

where
2
c0 = (1=q)dm (CT;) = Bmbm
e = 21— q)dn 55— Brbin (5 + 42),
ce = (1—q)dn (*2 — Bmbm B2,
" " (3.3.20)
€0 = ﬁmme - 2(1 - Q)dmNﬁTi + Bmﬂbb?’ndﬂba
cor = BmbmN —2(1 — q)dmN 82 + B 02, 2L,
o = (1 - Q)dmﬁf2 - Mﬁmﬁbbgn (% + %) .
Using the expression fak, in (3.3.4) we can write?bﬁmbfn% (% + %) = dm(Rg —q), SO

we can rewritezg in (3.3.20) as
coo = N?dy, (1 - R}). (3.3.21)

To obtain the positive equilibrium points, we have to find the intersection of tbg€3ir8.16) with

the quadratic curve (3.3.19). This is similar to the results illustrated in chapter 2.
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Theorem 3.3.2. If we set

_ Ky !

2
~ M
N—ﬁbbm> 4B
dp

1
=

k2
with by = 81 4 4Bz and g, = 1B 4

(1= ) ﬁmbm:;)ﬁbmeW k),

K2

b
o

B ; k
= 2, then under assumptiofl — q)d,, > Brnbm it
the system (3.2.1) (with= 0) can have up to two positive equilibrium. More precisely,

dyB1
01
*
By; =

1. If Ry > 1, there exists a unique positive stable equilibriiin= (L}, L}, M, M}, B},
B;;, BY,, Bs,, B3, B>, S*, E*,I*, H*, R*). Moreover,

o1
dy
M =

i =

=t (5) () )
2((1 = q)dmka — Binbimkr)
B;, = g:ngi}a Bj, = Bi—

9
B, Bi, =B ——623* Bj, =
lis P2s 2 , 2 Pl

dT,B”’ B, = —
Bmbm M (B, + B;)
d
L=

de;iv

M1 px* K2 px* * %\ M::M_Ml*
(1 - q)dm(N - chBlz‘ B szBQz‘) + Bmb (Bli + BQi)
~ ~ B*
Mi*a L::L—L;‘) S*: * 18* 5181 ¥
mrL Bl + Biig 7
* o jo— i
2. If Ry < 1, then

I*
T+ dj, ’

= _E*7
v+ r+dy

_dn
_dh—l—Oé

(5 —5%),
1
R = —

T(TH” +rI").
h
(@) If %

M ((I_Q)dmk2_6mbmk1)
Bbbm < ﬁ < (

) s
memkl
equilibrium points,Ey = (L:*, L;*, M}*, M}*, B

Bbbm ?

and A > 0, we have two positive
15> B1i By, Bag, By By,

S, BRI H*, R*) unstable pointandey = (LY, LY, M, M}, B}, By;,
Bf,.

B3, Bs., B, S*, E*,I*, H*, R*) stable point. Moreover,
dy By
01

o (200 = @) — (Z=pes) (B dL + V) - VA)
By = 2 ((1 — q)dmks — Bmbmk1)
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By just replacing "*” with ™**”, we can obtain the other values of the coondates

of F; by the same relations between the coordinatek4n

These two equilibria coalesce if and onlyAf= 0.

(b) Otherwise there is no positive equilibrium.

3. If Ry =1, then

(@) If % < (((1_q)dﬁ’"mk5;,flmbmkl)) /Bbdgm , there exists a unique endemic equilibriugy.

(b) Otherwise, there is no endemic equilibrium.

In general from the parameter assumptions, the system (3.2.1) {withD) has infinitely
many degenerate stationary points satisfyli{g) = fn—ﬂzM(t). From 2(a) in the Theorem 3.3.2
suggests the possibility of backward bifurcation at any given initial laaval adult mosquito
population(fn—“zM , M) (where the locally-asymptotically stable DFE co-exists with a locally-
asymptotically stable endemic equilibrium) when neaRto= 1. To check this, letA = 0 and

solve for the critical value oRy, denoted byR;:
(201 = @) = P ) = B Gt 5
430 (1 = ) — Brnb )

Ri=|1- (3.3.22)

Thus, the backward bifurcation scenario involves the existence ofaitcdl transcritical bifur-
cation atRy = 1 and of a saddle-node bifurcation & = R;. It should be mentioned that the
proofs of stability and existence of the backward bifurcation are similar tprthefs in Chapter
2.

Similar to Theorem 2.4.1 in chapter 2 we can summarize and prove the nexrtheNote

that the proof of the next theorem is based on the center manifold theoryrsimitee proof in
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Chapter 2.

Theorem 3.3.3. Consider model (3.2.1) with positive parameters. If

A+ 5< (1= 0n b4 ) B (sl ) 2

then system (3.2.1) undergoes a backward bifurcation whea: 1.

From Theorem 3.3.3 we can conclude that the backward bifurcationsoati, = 1. If we
assume that all the birds as one family (Corvids) then the condition of thetori@nce of the

backward bifurcation in Theorem 3.3.3 can be simplified as

BB

and is similar to one of the conditions in [8]; it is also considered a generalizafithe same
form in chapter 2 and in [90]. With reference to equation (3.3.23) we ndi&the existence of
another important condition that is required for occurrence the badkiifurcation and that is
the ratio between total number of birds and the other mammals that can be infectedquitoes
is greater than unity. When forward bifurcation occurs, the condiligr< 1 is a necessary and
sufficient condition for disease eradication, whereas it is no longéciemt when a backward
bifurcation occurs.

The backward bifurcation is illustrated by simulating system (3.2.1) (with 0) with the
parameters of Table 2.1 and Table 3.1.

Fig.3.2 shows convergence to both the disease free equilibrium and thenierequilibrium

for system (3.2.1) wheps, = 0.3, 3,,, = 0.05 and (u1, p2) = (0.27,0.07), (in this caseR, =
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(a) Infected mosquitoes. (b) Infected humans.

Figure 3.2: Time series of model (3.2.1) whBpn = 0.9908 > R; = 0.9846.

0.9908 > R; = 0.9846). The profiles can converge to either the disease free equilibrium or an

endemic equilibrium point for the trajectories of system (3.2.1), dependinbeoinitial sizes of

the population of the model.

The epidemiological significance of these is that the usual requiremét af 1 is, although

necessary, no longer sufficient for disease elimination. In other wéods?, < 1, a stable

disease-free equilibrium coexists with two endemic equilibria: a smaller equitibfiie., with

a smaller number of infective individuals) which is unstable and a largefienewith a larger

number of infective individuals) which is stable. In such a scenarioadselimination would

depend on the initial sizes of the sub-populations (state variables) of thel.mod

That is, the presence of backward bifurcation in model (3.2.1) (with0) suggests that the

feasibility of controlling WNv whenR is nearly below unity, may depend on the initial sizes of

the sub-populations. On the other hand, redudtgdpelow the saddle-node bifurcation valie,
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may result in disease eradication. It follows from (3.3.23) that one aanirserder for backward
bifurcation to occur the virus induced death rate must be high enough artdtéi number of

initial bird population should be greater than the sum of total number of initigrottammals.

3.4 Theimpact of seasonal variations

In this section, we consider the model with seasonal variatiens () to study the impact of
seasonal changes on the transmission of the virus. We prove the egisfgreriodic solutions,
in the seasonal model, under specific conditions. We also introduce nthtathe basic repro-
duction number for this seasonal forced model. Furthermore, we exangrayttamics of the

model when the seasonal variation becomes stronger.

3.4.1 Existenceof periodic solutions

By replacingr,,, given in (3.2.2) into system (3.2.1), we can conclude that the total number of

larval and adult mosquitoes satisfy the following equations:

dL
o (ri(1 —ecos(wt))M — (dr, + mp)L,
(3.4.24)
dM
el V' L.
g d +myp,

Using the trajectories of (3.4.24) the equation for total number of adult nitoggd/ can be

written as
d*M dM
(5 — )M = 4.2
72 +d i (0 — kcos(wt)) 0, (3.4.25)
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foralld = d,, +dp +mp, § = (mpry — dp(dp +myp)) ands = mprie, whered? + 45 >

4k with 0 < e < 1. From equation (3.4.25) we can conclude that the parametric resonance
appears. Parametric resonance comes from changes in the pararm#tersystem as opposed

to the classical resonance which originates from external forcing. flingamental property

of parametric resonance is that resonance peaks are expected et fraegjons of the natural
period, once a control parameter has exceeded a certain thresholdaelitharametric resonance
peak having its own threshold value.

In general, the solutions of equation (3.4.25) are not periodic. Howlerer givens, periodic
solutions exist for special values af The most general method to analyze equation (3.4.25)
is the classical Floquet method, which is based on the calculation of the noompanatrix
and an analysis of its eigenvalues. However, this method requires a lamg@en of numerical
integrations, which restricts its possibilities, especially if the coefficients cdduations depend
on some parameters. Noted that the stability analysis of differential equatitmperiodic
coefficients is rather cumbersome, but it can be successfully made withubenspftware such
as the Maple program.

According to the general theory of linear differential equations with pigiooefficients, the
behavior of solutions of (3.4.25) is determined by its characteristic multiptienghich are the
eigenvalues of the monodromy matti(7") for (3.4.25), whereX (¢) is the principal fundamen-

tal matrix which is defined
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with M;(t) and Ms(t) are two linearly independent solutions of (3.4.25) satisfying the initial

conditionsM (0) = 1, M>(0) = 0, 441(0) = 0 and 42 (0) = 1.

The characteristic equatiafet(X (T') — pl2) = 0 can be rewritten as

p> —2Dp+ B =0,

whereD = L(M(T) + 92(T)) andB = M;(T) x 942 (T) — My(T) x 41(T). Thus, the

characteristic roots; » are functions of two parametefsand B which are given by the formula

p12=D=++/D? - B. (3.4.26)

The parameteB can be found without solving equation (3.4.25). Indeed, since the funsctio

M, (t) and My (t) satisfy (3.4.25), we can write

2M;  dM; .
72 + d? — (0 — kcos(wt)) M; =0, (1 =1,2).

By solving these two equations together, we can conclude that the fungtion= M, (t) x

4L (1) — My(t) x L (¢) satisfies the following differential equation:

dy

i —dy(t).

Thus, the parametds is given by the formula
B =T, (3.4.27)

and ther) < B < 1. Hence, the system (3.4.25) is asymptotically stabld fjr < %(B +1),
stable fof D| = 1(B+1), and unstable fofD| > 3 (B+1). Next we use the Poincare-Lyapunov

theorem to calculat®.
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The general solution of (3.4.25) can be represented as a power series

M(t) = zn: N;(t)s?, (3.4.28)
j=0

whereN;(t) are continuous functions, and sufficiently small
In order to obtain differential equations determining the functidihst), we substitute ex-
pansion (3.4.28) into (3.4.25). Next, by equating the coefficients of = 0, 1, .. on both sides

of the equation, we obtain the following system of differential equations.

d® Ny, . dNy
d—= —§Ny =0
a2 T 0=
and
d2N, dN;
! 4 d—L — 6N; = —cos(wt)N;_1(t), j=1,2,...

dt? dt
Accordingly, we have two linearly independent solutions$\gft), satisfying the initial condition

of the fundamental matrix,

- d
No(t) = ert(cosh(wgt) + —— sinh(wot)),
2wg

1 -
No(t) = w—Oertsinh(wot),

wherewy = \/%. Then the initial conditions for the function¥;,j = 1,2,.... can be

written asN;(0) = %(0) = 0. Using these initial conditions we can obtain the following

expression for the function¥;(¢),j = 1,2,.... as
t

t
N;(t) = 21100 (/0 cos(ws)Nj_l(s)e(%+w°)(s_t)ds —/0 cos(ws)Nj_l(s)e(g_wo)(s_t)ds> .(3.4.29)

It should be noted that the solutia¥i(¢) is increases unboundedly &s— oo (unstable)

%ﬁmm), decreases td ast — oo (asymptotically stable) wheh < 0

67

wheno > 0 (i.ery >



(ler) < mUetmi)y and stable whed = 0 (i.er; = “l%+mL)y  This is achieved with
previous results when= 0 (x = 0).

Using the recurrence relation (3.4.29), we can successively calcutatoéificientsV; in
expansion (3.4.28). However, agrows, the calculations become more and more cumbersome.

Therefore, this method can be reasonably realized with computer softWiheaccuracy of:2,

we have found the parametBras a power series in:

D = 2237 (sinh(woT) + empw? + (4w — w?)((wf — d?) sinh(woT)

wo

(3.4.30)
+  2dw cosh(woT)) + (wE — d?(3w? — d*)) sinh(woT') + 2wod cosh(weT))).

From the above, we are able to state the principal results about the egisteihe periodic

solutions.

Theorem 34 Letit = B « ,and (L, M) be the solution
%ﬁ—meQe+((mL+w_dm)2+dm%)62

of system (3.4.24) throug!L(0), M (0)) € R%. Then the following statements are valid:
1. If R < 1, thenlimy oo (L(t), M(t)) = (0,0),
2. IfR > 1, thenlimy_oo (L(t), M (t)) = (00, 00),
3. The periodic solutions exists onlyjitf= 1.

Proof. By studying the dynamics of equation (3.4.25), we can conclude that theinlofmsta-
bility of equation (3.4.25) is inside the triangle bounded by the liBes 1 andB = —1 + 2D
in the D — B plane. The points that lie on the boundary of the triangle determine the stable

behavior of its solutions, while the domain outside the triangle is the domain of ilitgtathus,
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from (3.4.30) and (3.4.27) we can conclude that- 0 and0 < B < 1. Furthermore, the line
B = —1+ 2D is periodical condition in théD, B) plane. The periodic condition can be written
in the form of the relation betwegn, €) as shown below

r = dm(dfnij) —mpwie+ ((mp +w — d)? + dm%)EQ- (3.4.31)

O

Biologically, we can indicate from the previous result that the mosquito ptpalwill die
out if R < 1, while it grows exponentially ift > 1. Whereas, it oscillate to the positive equilib-

riumif ® = 1.

0.8

0.6

0.4r

rl:dm(mL+dL)/mL

0.2

0 L L L L L
0.382 0.384 0.386 0.388 0.39 0.392 0.394

i

Figure 3.3: The stability domain of (3.4.25).

Fig.3.3, shows that the@-1, €) parameter plane (with the parameters valjgs= 0.03, my =
0.068, andd; = 0.8,) is divided into two regions. The first one is asymptotically stable (the
amplitude M goes to zero at long times) whe¥e < 1. The second region is unstable (the

amplitudeM grows exponentially without bound) whefRe> 1. Between these two zones there
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Figure 3.4: Long-term behavior of the total number of aduisuitoes.

are bounded periodic solutions whign= 1.

Fig.3.4 explains these scenarios with different values afidr,. Fig.3.4(a) introduces the
total number of adult mosquitoes wher= 0.8 andr; has three different values. One of the latter
satisfies the equation (3.4.31); where we have a periodic solution. Thedsealue of, is less
than the first value; where we obtain asymptotically stable solution. Finallyawe tnbounded
unstable solution if, is greater than the first value. Similarly, the same thing occurs in Fig.3.4(b)

but with fixedr; = 0.387 and three different values ef

3.4.2 Reproduction number

In what follows, we introduce the basic reproduction number for the maitel seasonality

according to the theory developed in [88], which is a generalization of tr& im [84] to the
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periodic case. It is easy to see that the system (3.2.1) (whesatisfy (3.2.2) and® = 1) has
one disease-free equilibriufy, = (L(t),0, M (t),0, By, 0,0, B2,0,0,S,0,0,0,0), whereM (t)
is the positive periodic solution of (3.4.25). Linearizing the system at thexskis&ee periodic

stateE} to obtain

0 qrm(t) O 0 0 00000
mp 0 Cmbedl g GubeNMO o9 g g 0
0 HGbubr 0 0 0 0000 0
0 0 v 0 0 00000
0 OebmBe 0 0 0 0000 0
F(t) = N ,
0 0 0O 0 w 00000
0 Lubms 0 0 0 0000 0
0 O 0 0 0a 000
0 0 O 0 0 00 ~00
0 0 o 0 0 00 r 7O
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and

dp+mrp, 0 0 0 0 0 0 0 0 0
0 dpw 0 0 0 0 0 0 0 0
0 0 & 0 0 0 0 0 0 0
0 0 0 d, 0 0 0 0 0 0
0 0 0 0 6 0 0 0 0 0
V =
0 0 0 0 0 d 0 0 0 0
0 0 0 0 0 0 (a+d) 0 0 0
0 0 0 0 0 0 0 (Y +  + 7 +dp) 0 0
0 0 0 0 0 0 0 0 (pn+7+dp) 0
0 0 0 0 0 0 0 0 0 dy,

Then we can write
dz
- = (@) = V)2(0),
wherez(t) = (L;(t), M;(t), B1;(t), Bi,(t), Bai(t), Bar(t), E(t), I(t), H(t), R(t))T. AssumeY (t, s),t >

: . . - d .
s, is the evolution operator of the linear periodic systg%n: —Vy(t). Thatis, for eacls € R,

the10 x 10 matrix Y (¢, s) satisfies

dY(t,s)
dt

=-VY(t,s) Vt>s, Y(s,s)=1I,

wherel is thel0 x 10 identity matrix.
Let Cr be the Banach space of all T-periodic functions frénio R'° equipped with the

maximum norm. Supposé(s) € Cr is the initial distribution of infectious individuals in this
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periodic environment; thel'(s)®(s) is the rate of new infections produced by the infected in-
dividuals who were introduced at time and represents the distribution of those infected indi-
viduals who were newly infected at timeand remain in the infected compartments at tinfier

t > s. Thus,

U(t) = / Y (t,s)F(s)®P(s)ds = /000 Y(t,t —a)F(t — a)®(t — a)da,

is the distribution of accumulative new infections at timproduced by all those infected indi-
viduals ®(s) introduced at the previous time. We define the linear operatorCr — Cr
by

(LD)(t) = /OOO Y(t,t —a)F(t —a)®(t —a)da Vte R, ® e Crp.
Following [88], we callL the next infection operator, and define the basic reproduction number
as R = p(L), the spectral radius of. It should be pointed out that in the special case of
Tm(t) =r1 = %(mL +dr) (e = 0) we obtainF'(t) = F for all t. By Lemma 2.2(ii) in [88]
(see also [84]), we further obtain the basic reproduction number defisen (3.3.4). In the

periodic case, we 1d#/ (¢, \) be the monodromy matrix of the linear T-periodic system:

du 1
= (= _F

with parameten\ € (0, c0). It is easy to verify that our model with seasonality satisfies assump-

tions (A1)-(A7) in [88]. Thus, from Theorem 2.1 and 2.2 in [88], weré#he following results,

which will be used in our numerical computation Bf

e If p(W (T, \)) has a positive solutioi (is an eigenvalue of the operatb), thenR{, > 1.
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If RE > 1, then) = R} is the unique solution g§(W (T, \)) = 1.

e R =1ifandonlyif p(®p_v (7)) = 1.

R < lifandonly if p(®p_y(T)) < 1.

RE > 1ifandonlyif p(®p_y (7)) > 1.

Thus, the disease-free equilibriufj is locally asymptotically stable iRf, < 1, and unstable if

Rj > 1.

2.4

2.2+

181 ’

P
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A

161 -
141 -
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Figure 3.5: The graph aR} versus with respect ta

By numerical computation, we get the curve of the basic reproduction nujbéwhen
R = 1) with respect ta. In Fig.3.5, we can see that the basic reproduction numifjéncreases

with the increase of.

3.4.3 Simulationsof the seasonal impact

Depending on the values ef and without changing the values of the other parameters, the basic

reproduction number could remain abaver it could drop belowl. To see what could happen,
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we plotted in Fig.3.6; choosing the value of the parameters whef, 0.1 and0.3.
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(a) Infected mosquitoes. (b) Infected humans.

Figure 3.6: Time series of model (3.2.1).

Fig.3.6 shows three different cases. The first one, while ignoring thecimpaeasonality (i.e
e = 0), we see the solutions are convergent to both the disease free equildnaithe endemic
equilibrium, depending on the initial sizes of the population. In the secorelwhsne = 0.1,
we note that the solutions oscillate with small amplitude to both the disease free eguilénd
the endemic equilibrium, depending on the initial sizes of the population. While thititestate
whene = 0.3, the solutions oscillate to only the endemic equilibrium point at any initial size of
the population. Thus, we can conclude that the dynamic behavior of thevaet bifurcation
state changes when the influence of the seasonal variation becomeggstidoreover, Fig.3.6
shows that whem = 0, the infected populations are almost constant to endemic point (as it is
expected because the equilibrium is stable), while whercreases, the peaks and valleys time

series appeatr.
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Figure 3.7: Time series and peak time of model (3.2.1).

Furthermore, the amplitude of infected populations increasesnaseases. This is reflected
in Fig.3.7 which shows one season with two different values 06.25 and0.5. We note that
when the seasonal variation has high force, it increases the infectesl. @sso the highest peak
number of infected populations wher= 0.25 comes later than when= 0.5. This means that
the time of applying the control could depend on the seasonal impact. Fimaly,Fig.3.7(a),
and (b) we can see thét;, t) (t; andt, are the difference in time between highest peaks of
infected mosquitoes, and highest peaks of infected birds and humapsctigely) decreases
from (18, 35) whene = 0.25 to (11, 27) whene = 0.5 days.

We deduce from numerical analysis that the strength of seasonality sesréfae number
of infections. This agrees with the studies carried out that show thatr$awatoich influence
mosquito dynamics such as mean values of temperature and rainfall agedtive predictors

of increased annual WNv incidence.
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3.5 Conclusionsand discussion

This chapter presented a comprehensive and continuous deterministit forotlee transmis-
sion dynamics of WNv with and without seasonality. We started by analyzingtfael without
seasonality and verified the existence of backward bifurcation whestahke disease free equi-
librium co-exists with a stable endemic equilibrium. The existence of the badkuifurcation
indicated that the spread of the virus wh&g is nearly below unity could depend on the initial
sizes of the sub-population of the model. After that, we considered the mithedeasonal vari-
ations - by assuming that the birth rate of mosquitoes follows a periodic patterstudy the
impact of seasonal variations of the mosquito population on the dynamics of Whkhis latter
model, we proved the existence of periodic solutions under specific camdgiog the classical
Floquet method, which is based on the calculation of the monodromy matrix asaedysis of
its eigenvalues. Moreover, we introduced and calculated the basidtepian number for this
seasonal forced model. Furthermore, we deduced from numeridgsesnénat the strength of

seasonality increases the number of infections.
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4 Optimal control of West Nilevirus

4.1 Introduction

Control efforts are carried out to limit the spread of the disease, andiile sases, to prevent
the emergence of drug resistance. Optimal control theory may be usedtetibally solve a
minimization problem of the disease models. In {90 L.S. Pontryagin and his co-workers
developed a formula of the maximum principle for optimal control of ordinéffeintial equa-
tions [68].

Consider the following general system of ordinary differential equat@DE) with a pa-
rameter

dx
i g(t,z(t),u(t)), =(to) = zo, (4.1.2)
wherez(t) is state variable, is the solution of the state differential equation (4.4i%)a con-
tinuously differentiable function and is the control function. It is assumed that an objective

functional with an integrand (¢, z(¢), u(t)) and the state equation are both influenced by the

control functionu(t). The objective function may be written as:

t1
min ft,x(t),u(t))dt (4.1.2)

to
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with « is a Lebesgue measurable control functionstgr |.
For this simple optimal control problem, withandg continuously differentiable im andu,

Pontryagins Maximum Principle [51] can be stated as:

Theorem 4.1.1. If w*(¢) andz*(t) are optimal for (4.1.2), then there exists a piecewise differ-
entiable adjoint variable\(¢) such thatH (¢, z*(t), u(t), A\(t)) > H(t, z*(t), u*(t), A(t)), where

the HamiltonianH is

H(t,2(t), u(t), A1) = [t x(t), u(t)) — AB)g(t, 2(1), u(t)),

and adjoint equations

dA(t) _ OH(t,z*(t),u*(t),\(t)) _
- - . A(t) =0.

Solving the state and adjoint ODEs together with the optimal control repréisentaquires
an iterative scheme. This involves use of an algorithm such as Rungeafuttaer four. In
the Runge-Kutta method of order four, the interféal ¢1] is partitioned intoN subdivisions of
equal length N > 1. First, we may solve the state equation (4.1.1), according to the following
difference equation:
Wjr1 = W5 + é(/ﬁ + 2kg + 2k3 + ky)

such thatwy = z(0), k1 = hg(t;, wi, u;), ka = hg(t; + %,wi + %,%(uz + uit1)), ks =

hg(ti + B wi + %2, L(w; + wi1)), ks = hg(tiv1, wi + ks, i), for eachi = 1,2, ..., N — 1,
whereN >> 1 andh = “1=" andt; is the grid point [51].

One may use the same step technique to approxim@ie However, since its value at the
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final time is known instead of at the initial time, we se{, = 0, with the difference equation:

1
WN—j—1 = WN—; — g(lﬁ + 2ko + 2k3 + ky)

suchthaty = 0, k1 = hG(tn—i, WN_i, UN—is TN—i), k2 = hG(tn—i— %, wn_i— 5L, S (un_i+

UN—i-1), 3(@N—i + TN_i—1)), k3 = hG(tn—i — %, wn_; — B2, S(un—i +un—ic1), $(an—i +

TN—i-1)), ka = hG(tn_i—1,wN—; — k3, un—_j—1,ZN—i—1), Wherei = 1,2,.... N — 1, and
G=-2

Starting with an initial condition for the state variable and an initial guess for dinéra,
forward sweep with the Runge-Kutta scheme may be used to obtain an apat®xsolution
for the state equation. Using this estimate, the solution of the adjoint equatioprisxapated
using backward sweep from the final time condition. The control is updatersing an average
of its previous values and its values from the control characterizatioratitias continue until
successive values of all variables from current and previous itesatite sufficiently close.

Optimal control theory can be applied to models of many infectious diseasesauthors
in [7] used a time dependent model to study the effects of prevention anochémzon malaria.
Similarly, the authors in [62] used a time dependent model to study the impacpa$sible
vaccination with treatment strategies in controlling the spread of malaria in a thad&cludes
treatment and vaccination with waning immunity. Optimal control theory has haglied to
models with vector-borne diseases [7, 20,59, 71]. Time dependetrbtetrategies have been
applied for the studies of HIV/AIDS, Tuberculosis, Influenza and SARS$5, 42, 95].

In this chapter we use the optimal control theory to study the strategies twbtand min-

imizing the spread of WNv. The controls represent the level at which [mestic applied to the

80



mosquito population and the prevention efforts to minimize human-mosquito contacts

4.2 Existence of optimal control

The goal of this part is to show that it is possible to implement anti-WNv contobinigues
while minimizing the cost of implementation of such measures. So we formulate an bptima
control problem for the transmission dynamics of WNv by extending the m@d2I1) in two
cases. One model without impact of seasonality and the other one is the chodfieematical
model with the effect of seasonal variation (by assuming that the birth ratesguitoes satisfies
the equation (3.2.2)).

In both cases, for the optimal control problem of the system (3.2.1), wsider the control
variable in the sel’ = {(u1,ug,u3) : [0,T] — R?,s.t.0 <u; <Uj,j =1,2,3}, where all
control variables are bounded and Lebesgue measurabl&and= 1,2, 3 denote the upper
bounds of the control variables.

In our controlsu, () (representing the level of larvicide which means killing mosquito larva)
andus(t) (representing the level of adulticide which means killing adult mosquitoesjsaefor
mosquito control administered at mosquito breeding sites. Consequentlgptioeuction rate of
the mosquito population is reduced by the two factars w;(¢)) and(1 — wua(t)). Furthermore,
additional mortality rates of larval and adult mosquitoes (susceptible arxténfiedue to control
represented byyuq (t) anddyus(t), whered, > 0 is a rate constant. In the human population,
the associated force of infection is reduced by the factor us(t)) whereus(t) measures the

level of successful prevention (personal protection) efforts.
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We seek to minimize the human exposed and infected populations and minimize the total
mosquito population. So we suppose that the costs of the control strategiesndinear and take

guadratic form [7]. Thus, the objective (cost) functional is given by

T 1 3
J= / (a1 B0+ () +as Non (6) e L(t) erua M (1) - equsS(0)+5 S bjud)d(4.2.3)
0 -
J=1

subject to
( dL,

prai rm(Ms + (1 —q)M;)(1 —u2) — (dr, + mp(1 —w1))Ls — doui L,
dL;

- qrmM;(1 —ug) — (dr, +mp(1 —uy))L; — doui Ly,

dM, By + Ba;

= 1— LS— m miMs_ mMS_ MS;
o mr (1 —u) Bmb N d dous
= mL(l - Ul)Lz + memng - dez - dOUZMia

dt N

dB;, Bjs

= '*dB‘s* bmijMu
7 Yoj — dpBjs — By N
dtj = —(db+Vj +,U'j)Bji+6bbmW]Mi j=12
(4.2.4)

dB,

dtj = _dejr + Viji7

(dS S(1 —ug)
& = Bubm M, — S,
g = Bh N h
dFE S(l — U3)
& B 2 M, — aF — dyE,
dt 6hb N (6 dh
dl
o =B = (v + 4 dp),
dH
=1 — (un + 7 +dp)H,

dt
d
7? :TH+TI—th.

82



Here,a;, i = 1,2, 3 are positive constants that represent, respectively, the weight ntsfahe
exposed, infected human and the total mosquito populations. Simigrly= 1,2,3 are also
positive constants that represent, the weight constants for the quatrsttiof mosquito control
(adult and larval) and personal protection (prevention of mosquito-hwmatacts), respectively.
Also ¢;, i = 1,2, 3 are positive constants. The linear part of the cost of each type ofatasitr
proportional to the affected populatianu; L(t)+coua M (t)+c3u3S(t). For technical purposes,
it is assumed that the cost of larvicide, adulticide and personal protecBagiveen in quadratic
form in the cost function (4.2.3). Using the control variahlgsus andug, our main goal here is
to minimize the exposed and infected human populations, the total number ofitoescnd the
cost of implementing the control. So the tertg?, bou3 andbsu? describe the costs associated
with mosquito control and prevention of mosquito-human contacts, resglgctdur purpose is

to find an optimal control valueg:;, u3, u%) such that
J(ul,uy,u3) = min{J(ug, ug,us) : (u1,us,uz) € I'}.

The existence of optimal control can be proved by using the results in e jo& [31].
It is clear that system of equations given by (4.2.4) is bounded aboVmdgr system. The
boundedness of solution of system (4.2.4) for finite interval is used tepre existence of an
optimal control. Moreover, since the state system and the adjoint systerthés@ppendix) are
bounded and satisfy Lipschitz condition, the uniqueness of the optimalot@ain obtained by
using the results in the paper of [51].

In order to find an optimal solution, first we should find the Hamiltonian of thigrgd control

problem (4.2.4) by defining the Hamiltoni&ras follows:
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LetQ = (LS7Li7M87Mi7BIS7BliaBlraBQSaBQ’i;BQT?S7 E7 Iv H7 R)! u = (U1,’LL2,’LL3) and

A= (N),i=1,..,15to obtain:

1
h=a1E(t) 4+ a2l (t) + agNp,(t) + crui L(t) + coua M (t) + csusS(t) + 5 Z bju]' + Z >‘jfj7

wheref; is the right side of the differential equation of the j-th state variable of (4.Bd$ed on

that, we can demonstrate the next theory.

Theorem 4.2.1. Consider the objective functiondl The unique optimal contref* = (uj, u3, u3) €

I" exists such thaf (uj, u3, u3) = Min(y; u,us)er/, SUbject to the control system (4.2.4).

Proof. In this minimizing problem, the necessary convexity of the objective functionaf, v
andus is satisfied. The set of contralsis also convex and closed by definition. The solutions
of the state system and the adjoint system are bounded and satisfy Lipsminitition, which
together with the structure of the system gives the compactness needled éxistence and the
uniqueness of the optimal control. In addition, the integrand of the objecinaional is given

by (4.2.3) on the control sét, which completes the existence of an optimal control [31]. [

The adjoint differential equations and final time conditions and the chaizatiens of opti-
mal controls can be found using Pontryagin’s Maximum Principle [68],thadletails are in the
Appendix.

Next, we discuss the numerical solutions of the optimality system for the mode#)4
the corresponding optimal control functions, the parameter choiceghanterpretations from

various cases.
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4.3 Numerical results of the control without the seasonality

In this part we start with an iterative method to obtain results of an optimal dgoioblem
for model (4.2.4) without the effect of the seasonal variation. We usg&utta fourth order
procedure here to solve the optimality system consisting0obrdinary differential equations
having15 state equations as well &5 adjoint equations and boundary conditions. With an initial
guess we start for the control variables, 3, u3) and use Runge-Kutta fourth order forward in
time for the state variables,, L;, Mg, M;, B1s, B1;, B1y, Bas, Bo;, Bor, S, E,I, H, R. Then
using the results from the state equations in the adjoint equations, we agBlydrd Runge-
Kutta fourth order scheme due to transversality conditions. Then the t@trpdated and we
iterate to find new state and adjoint variables [51].

The parameters values used in the simulations are tabulated in Table 2.1 &@.Takn
choosing upper bounds for the controls, since the control would nad®# effective, so we
chose the upper bound of;, us to be0.8 andug to be0.5 [8]. Since reducing the number of
exposed and infected humans is important in our goal compared with rgdheiotal number
of mosquitoes, then the weights in the objective functional are taken as 1,a2 = 1,a3 =
10~ [8]. The cost associated withy andu, mainly includes ways of eradicating the mosquito
breeding (larvicide) and a little labor to spray it (adulticide), whileessentially involves the
cost of missing work during the infectious time, educating the public and headfbgsionals.
This means the cost of lowering the infectivity is higher than the cost ofcieduhe mosquito
population, so we choslgg = 10 > b, = b; = 1. Since we assume that the total number of

larval and adult population is constant, and the change in the human popusasimall then we
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suppose that; =0, = 1,2, 3.
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(a) Infected humans. (b) Infected Adult mosquitoes.

Figure 4.1: Time series of model (4.2.4) showing impactof

(a.) ui. (b) Uo. (C) us.

Figure 4.2: Control functions with different values 4f

The importance of the parametér(representing the number of other living organisms that
mosquitoes will bite) on the control is considered. Fig.4.1 illustrates the optinjattoaes
of the infectious adult mosquitoes and infectious humans for three ditfeadmes of A while
keeping the other parameters unchanged. Fig.4.2 shows the three optirral functions at

those values ofA. These optimal control functions are designed in such a way that they minimize
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, 55 and

the cost functional/. We can see that whed = 0 107

u; decreases a little ands
decreases more while, does not change. Moreover, the objective functional value is reluce
J = 8290, 7620 and6750 respectively. Thus, we can conclude that, if we do not include other

mammals, any control impact and objective functional value will be over estimate
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(a) Infected humans. (b) Infected Adult mosquitoes.

Figure 4.3: Time series of model (4.2.4) under differentropt control strategies.

We investigate the use of one control at a time. Fig.4.3 illustrates the numbereotddf
mosquitoes and humans under different optimal control strategiesj,((ue = ug = 0); (II)
ug, (up = uz = 0); () us, (u3 = uy = 0). The J value for implementing strategy (1) is much
less than that for others strategies (ll) or (lll). In details, thealue of strategies (l), (Il) and
(1) are 5282, 5814, and6700 respectively. Moreover, the total number of infected mosquitoes
using strategy (I) is the smallest while those with strategy (lll) is the largegtile\mhe total
number of infected humans using strategy (lll) is the smallest; on the otinel, tizose with

strategy (Il) is the largest. Thus, we can conclude that, the most effesttiategy to control
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the WNv with only one control is by using larvicide during an ongoing epidemiorder to
decrease the infected mosquitoes and humans with low cost. This concludloar Concurs the
current control strategy used on Ontario: larviciding and not adulticigingilized to eradicate

mosquitoes.

Control functions
o
»

0 10 20 30 40 50
t-days

Figure 4.4: Control functions;, u, andus.

4.4 Optimal control with effect of the seasonal variations

Building on Section 4.2, and using numerical simulations, we carry out nuahexperiment
to study the impact of seasonal variations on control of WNv. We consligesame objective
function (4.2.3), by assuming that = c; = 1 andcs = 10 and use the same values of the other
weight factors (similar to the previous section).

From the available information on the schedule time of control in Ontario-Gaiitad worth
mentioning that the control is usually applied for 50 to 60 days between Mayagust. Using

these above fact, we performed different simulations using various ing@llgtions. We will
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explore the best time and strategy to apply the control.

(a) Infected humansg,= 0.5.

0 100 200 300 400 500 600
t-days

(c) Infected humans, = 0.25. (d) Infected Adult mosquitoes,= 0.25.

Figure 4.5: Time series of model (4.2.4) with seasonal impac

In Fig.4.5, we investigated and compared numerical results of controdfdas at different
times of starting the control: case 1 (middle of May); case 2 (very early in) dulg case 3
(middle of August). We perceived that, when= 0.5 (see Fig.4.5(a) and (b)), if we start the
control in July (case 2), the number of infected mosquitoes and humartbeintlighest peaks
are lower than that of the other cases. It is worth-noting here thaf tedue of cases (1), (2)
and (3) arel 5282, 20814, and24700 respectively. However, if = 0.25 (see Fig.4.5(c) and (d)),

case 3 (start the control on August) is the best time of starting the conti®lvtirth-noting here

89



that theJ value whene = 0.5 will slightly increase than the cost of control when= 0.25.
Thus, when we focus the control in the course of 50 consecutive, dagoptimal period to
start depends on change in the temperatures. Whenever seas@iainabecome stronger, our

results recommend starting the control earlier.
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(a) Infected humans. (b) Infected Adult mosquitoes.

Figure 4.6: Time series of model (4.2.4) with seasonal imfiacase of = 0.5).

In Fig.4.6, we used the same values of parameters and the same initial popatfion
Fig.4.5 (where = 0.5) to compare the results of different optimal control strategies: (I) applyin
the control at three different times, each for 17 consecutive dayly {gaMay, June and July);
(I) applying the control at three different times, each for 17 conbezdays (end of May, June
and July); (1ll) applying the control during 50 consecutive days Ig.JWe can conclude that the
best strategy of control depends on occurrence of infected csesspjuitoes at a higher rate
during May. If this takes place, then the best strategy is to apply the caitthtee different
times (each time 17 days). Otherwise, it is best to apply the control one tim@ fhays. Also
the J values in cases (l) and (ll) are almost the same but they are a little highveththa@ost in

case (lll).
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45 Conclusionsand discussion

In this chapter we use the optimal control theory to study the strategiestobtand minimizing
the spread of WNv. The model formulated in Chapter 3 is extended to dhsdagpact of some
anti-WNv control measures; by re-formulating the model as an optimal dgroblem in two
cases with and without seasonality. The two models have been extendegss #ee impact of
some anti-WNv control measures, by re-formulating the models as an optimtabicproblem.
This entails the use of three control functions: adulticide, larvicide and hyomwection. The re-
sults were analysed to determine the necessary conditions for the existemceptimal control,
using Pontrayagins maximum principle. From our numerical results, wedfthat Larvicide
is the most effective strategy to control an ongoing epidemic in reducings#iseost when we
apply only one control. The outcomes further stressed the importancensidesing the other
animals that could be infected in any region and its effect regarding the@tosntrol. Finally,
the numerical results identified the time of applying the control to achieve thedeisol strat-
egy. This work strongly justifies the importance of carefully taking into antthe impact of the

seasonal variation when applying the control.
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5 West Nilevirusrisk assessment and forecasting using

dynamical model

5.1 Introduction

There are different ways to estimate the risk of WNv in a area where virastige. The two
most commonly used risk assessment tools, or indices are the minimum infetti¢MMBR) and
the maximum likelihood estimation (MLE) [35].

The firstindex is MIR, is used as an indicator of the prevalence of WNhsiméssion intensity
and therefore the risk for human disease. MIR is calculated using thei@gielow, which
is the number of positive batches of mosquitoes of a given vector specidediby the total
number of mosquitoes of the same species that were tested for the presimecarus, expressed
per 1,000 [35]. Therefore, i is the number of positive pools and is the total number of

mosquitoes that tested, then the MIR is defined as:
MIR =" x 1000
= .

The MIR is based on the assumption that infection rates are generally lokhandnly one

mosquito is positive in a positive pool. The MIR can be expressed as antimpor percent of
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Figure 5.1: MIR of positive mosquito pools, 2011. Data fr@b]|

the sample that is WNv positive, but is commonly expressed as the numbeedifi€00 tested
because infection rates are usually a small number. Fig.5.1, shows avitiziah all health
regions of Ontario in 2011 [85], and Fig.5.2, shows the incidence rate\of gér 100,000 human
population and number of confirmed and probable cases by health unitrid@rz@11 [85].
Fig.5.3, shows the weekly MIR and the number of infected cases of hunieehtegion from

2002 to 2012 [86]. From Fig.5.1 and Fig.5.2, one can see that MIR is etigf¢ool to measure

the risk of infection of WNv in Ontario.
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Figure 5.2: Incidence Rate of WNv per 100,000 human populam@hnumber of con-

firmed and probable cases by health unit: Ontario, 2011. fbata [85].
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Figure 5.3: Reported human cases of WNv and MIR in Peel regiomar®; Canada,

from 2002 to 2012. Data from [86].

The second index to measure the WNv risk is MLE. The MLE is a statistical meihedi in
the calculation of the proportion of infected mosquitoes, that maximizes the likelibick pools

of sizem to be virus positive [35], which is calculated using the following equation,
n.,1i
MLE =(1- (k- E)E) x 1000.

MLE does not require the assumption of one positive mosquito per pos@tle and provides a
more accurate estimate when infection rates are high

The work of [21] evaluated both MIR and MLE to estimate WNv infection rades] com-
pared them for two mosquito specigsulex pipiens andCulexrestuans) collected from three
health units in Southern Ontario (Halton, Peel, and Toronto), from JulypteS8der 2002. They
found good match between MIR and MLE using the pool size of 5. In géngiiR and MLE

are similar when infection rates are low. Both MIR and MLE can provide &ulysguantitative
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basis for comparison, allowing evaluation of changes in infection ratetioverand space. These
two indices also permit use of variable pool numbers and pool sizes wtdiairey comparabil-
ity [5, 19].

Even though MIR and MLE provided useful information for the risk assemnt for WNv, yet
they still have some shortcomings. For instance, the calculation of MIR artel d¢pends on the
number of traps and number of species tested from established suneflegram. In addition
to that both MIR and MLE are static numbers measuring the risk of the viruthéoperiod of
the week when the data were collected, so weather conditions (tempetatdresrturbations)
as important drivers for mosquito abundance and activities were igndfiedeover, they also
disregard the number of amplification host birds in the region. Thereibre,essential and
important to improve the indices of MIR and MLE to include the impact of the teniperand
precipitation as well as the dynamical interaction of mosquitoes and birdsvayogéng a new
index.

In [89], a model for mosquitoes abundance incorporating the impact @géthperature and
precipitation was developed to model and predict the average abunofamuesquitoes in Peel
region. In this chapter, we will improve the MIR taking into account the impath® weather
(daily temperature and precipitation). We will utilise the dynamical models to measerisk
of WNv by considering the influence of birds. This is done by developimgw index, the
dynamical minimum infection rate (DMIR) of WNv introduction into Ontario-Caadkrough
different pathways. DMIR is the first WNv dynamical index to test an@dast the weekly risk

of WNv by explicitly considering the temperature impact in the mosquito abungdastimated
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by statistical tools, and then comparing this new index with MIR, and with doctedestata
available in Peel region-Ontario in order to justify our formula.

The current chapter is organized as follows. First, we demonstrate tisticah model for
total mosquitoes abundance including the impact of the temperature anditptemip[89] in
Section 5.2. Then in Section 5.3, based on one type of compartmental modgNig and
combining with a weather impact model for total mosquitoes abundance, wesfiiledhe novel
dynamical minimum infection rate (DMIR). The mosquitoes surveillance dataiakdissess-
ment data of MIR in the Peel region will then be used for model calibrationsandlation in

Section 5.4.

5.2 Statistical model for mosquito abundance of WNv

Mosquito abundance is crucial to the outbreak of mosquito-borne dsph88,39,65,70,72,75,
87]. The intensity of WNv transmission is determined primarily by the abundaihcempetent
mosquitoes and the prevalence of infection in mosquitoes. Thereforeratadding the dynamics
of mosquito abundances is extremely helpful for efficient implementationrif@aneasure and
modeling of WNv.

Biologically, mosquitoes undergo complete metamorphosis going through foinctsages
of development, egg, pupa, larva, and adult, during a lifetime. After bitidglt &emales lay a
raft of 40 to 400 tiny white eggs in standing water. Within a week, the egg#$ hatic larvae
that breathe air through tubes which they poke above the surface ofatiee. iiarvae eat bits

of floating organic matter and each other. Larvae molt four times as they, gftav the fourth
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molt, they are called pupae. Pupae also live near the surface of the ratthing through two
horn-like tubes (called siphons) on their back. When the skin splits afeav ddys from a pupa,
an adult emerges. The adult lives for only a few weeks and the fullyifdeaf a mosquito takes
about a month [57].

Mosquito populations such d@ulex pipiensand Culex restuangprimary WNv vectors in
southern Ontario [86]) are sensitive to long-term variations in climate aod-sgrm variations
in weather [74,76,89]. Combining the mosquito count and the related weaghditions, pa-
per [63] concluded that the hot and dry conditions just before samplerg positively related
to increased counts @ulex pipiensand Culex restuans Also, high rainfall several weeks be-
fore sampling was positively related @ulex pipiensand Culex restuangounts under normal
temperature conditions, because rainfall provided surface waterdgidgfemales to lay eggs
and larvae to develop [63]. These two types of extraordinary weatlitions can be used as
indicators for taking action on mosquito control to prevent a disease aithxe reducing the
vector abundance.

The importance of the forecasting methods lies in its ability to warn of high-risioge
for WNv and this have been used with some success elsewhere in the woxdctor borne
diseases [55,58,83]. Recent efforts regarding forecastingianlsaisk in North America include
those of [26], who used a multiple linear regression model to build a biomédgaral model for
Culexpopulations on a monthly time scale, and [80] who used time series analysigsehto
forecastCulexpipiens -restuangpopulations on a weekly time scale. A weekly forecast model

was also built by multiple linear regression techniquesQGatex tarsalis a vector for western
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equine encephalitis virus, developed by [70]. These early studieseshthat it is helpful for
forecasting the mosquito abundance by understanding how weathéti@amndffect the count of
vector mosquitoes.

In [89] used the average mosquito counts from 30 traps locations to espith® mosquito
population at regional level and reached the conclusion that mosquitdsciouPeel region, On-
tario could be modeled by a gamma distribution. Then they used degreeutayes9aC (dd),

below which immatur€ulexmosquito development is effectively arrested, calculated as follows:

0°C T,, < 9°C,
dd = (5.2.1)
T —9°C T, > 9°C.
The arithmetic means of daily dddm) from 1 to 60 day before each collection was explored
as explanatory variables for mosquito abundance at the time of collectienarithmetic means
of daily precipitation(ppm) from 1 to 60 d before surveillance also was explored as explanatory
variables for mosquito abundance at the time of collection. By using theikamnee data for
mosquitoes and weather data in the Peel region, the authors in [89] disddkat the tempera-
ture from 1 to 34 d before mosquito capture was a significant predictor sfjuito abundance,
with the highest test statistic being achieved when ddm11l. Also, at ppm35,sthstdéstic
reached its highest value, suggesting that the daily mean precipitation dogicgntinuous 35
d before the mosquito capture had the most significant impact on the mosquiitb tising the
most significant temperature (ddm11) and precipitation (ppm35) the model sionslanatch

well with the data in the region. In Section 5.4, we will use the model in [89] (illtsttabove)

in order to update our model by the total number of mosquitoes (weekly) thcptée risk of
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WNVv using DMIR.

5.3 Risk assessment of WNv using the dynamical model

Compartmental models played an important role in gaining some insights into thenisaits
dynamics of WNv [1, 2,10, 22,56, 92]. In all of those models, due toouarconsiderations of
the factors related to the transmission of the virus, some models assumed thgdlthember of
mosquito vectors remain constant [2, 22], others considered that theuittopgpulation satisfy
the logistic growth [1]. While some models incorporated vertical transmissitreafirus among
vector mosquitoes [1, 2, 22], others did not [10, 54, 92]. Some modelspoaied the aquatic
life stage of the mosquitoes (eggs, larval and pupal stages) [2, 52¢lhssvseasonal effects
in [2,9, 23]. For the avian population, most of the models included a reedvdass. Thus, one
can see that all of the above models considered different aspectaghission of WNv and that
they determined the threshold conditions. The basic reproduction ratioalsrealculated or
estimated which serves as crucial control threshold for the reductior &Vtkv. The dynamics

from the above compartmental models make it possible to develop a quantity toregeesrisk.

531 DMIR model

Our goal of this part is to develop an index to assess the risk of WNv. Tt@nie by determining
the dynamical minimum infection rate (DMIR) of WNv introduction into Ontario-@da to test
and forecast the weekly risk of WNv in the following weeks of the seaswhthen identify

possible mitigation strategies.
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In the next model M, and M; are the number of susceptible and infectious mosquitoes re-
spectively. Due to its short life span, a mosquito never recovers frormteetion and we do
not consider the recovered class in the mosquitoes [34]. The total nurhlmeosquitoes is
M = M + M;. The number of susceptible, infected and recovered birds are ddmofed B;
and B, respectively. ThusB = B, + B; + B, is the total number of birds. The total human pop-
ulation denoted by, is split into the populations of susceptildig, infectiousH; and recovered
H, humans.

According to the transmission cycle of the WNv and by extending the modelinbdd/VNv

[1,2,10,22,52,93], we propose to study the next compartment model:

d;‘t@ = (M + (1 — q) M;) — 5mbBTHMS -
dé‘fi = qromM; + me;ﬁHMs — dn M,
dﬁs =Ap — BbbB]_%HMi — dyBs,
dﬁi = —(dp + vy + ) Bi + 5bbBBj:HM“
(5.3.2)
djr = u,B; — dyB,,
dZs =An— /Bhbl;j-sHMi — dpH,
dgi = —(dp + vy + pn)Hi + 5thiI_sHMi
er — v H; — dy H,.

The definitions of the parameters used in the model (5.3.2) are summarizdales Zal and 3.1.

By considering the total number of mosquitoes is consf&n(z’.e,rm = d,,) the model
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(5.3.2) has a disease-free equilibrittp = (1,0, B,0,0, H,0,0), where B = ‘C}—l’:, andH =

Ap
dy,

The basic reproduction number is obtained by using the second genernatihgd [84]:

4B Bpb2. BM
Ry=1/q+ OmPbin BM (5.3.3)
dm(db+vb+ﬂb)(B+H)Q

An endemic equilibrium is identified by the solution of the algebraic system olotdige

setting the derivatives of model (5.3.2) equal to zero, then we can amthe following results:
1. If Ry > 1, there exists a unique positive stable endemic equilibrium
2. If Ry < 1, there is no endemic equilibrium.

Which means ifRy < 1, the disease dies out, wherea®if > 1, the disease persists.

The formula of DMIR, derived from the method of calculating the MIR is dko¥es: Let
k(t)M(t) is the amount of mosquitoes collected which will be tested at any tjrfer all k()
is the percentage of mosquitoes collected. Those mosquitoes will be placedlsnyhere each
pool includesn mosquitoes. Then we can assume that the number of infected po )48

From the definition of MIR, we can conclude the formula of DMIR:

M;(t)
M(t)’

DMIR(t)=U (5.3.4)

where the parametédr indicates the maximum value of DMIR which can be determined from
the previous MIR data available at the region under study.

By considering this new variable, we can rewrite the model (5.3.2) to inclueadtv index
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as follows:

dfl‘fi = grmM; + ﬁmbBiiHMs — dmds,
= A= B M — B,
dji = —(dy + v+ ju)B; + BbbB'j—SHMi’
dgr — ,B; — dyB,
(5.3.5)
dg‘s = Ay — BthI{_:PIMi —dpHs,
dgi = —(dn +vp + pp)H; + ﬁthisHMi’
dgr = vpH; — dpH,,
DMIR(t) = U]J\é((f))

where the susceptible mosquitoes can be obtained from the next equiatienV — M;, where
M (the total number of mosquitoes) is updated weekly using the statistical modsbged
in [89] (and demonstrated in Section 5.2) in order to explain the dynamics of Widctions
with the impact of temperature in the mosquito abundance.

Note thatU values are changed from wegko weekt;,; but are considered constant in the
intervals[t;, t;+1). Thus, in the interval&;, t;;1) the change of DMIR can be identified by the

next form

dDMIR(t)

= = a(t)lU — (alt) + b(t)) DMIR, (5.3.6)

wherea(t) = BmB’i—iH, is the infection rate per susceptible mosquito &g = (1 — q)r,, IS

the rate of new susceptible mosquito.
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From equation (5.3.6), we can conclude that the valué3/af/ R(t) depends on the infection
rate per susceptible mosquii¢t) as well as the rate of new susceptible mosqulto. However,
the values ofi(¢) andb(t) are mutually dependant. This explains that in some regions of Ontario

there is low risk of WNv where there are large number of birds.

5.3.2 Theinitial conditionsin DMIR index

The model (5.3.5) is implemented with MATLAB program with a time step of 1 day.<tnula-
tion starts from week 24 to week 39 in the summer. We considered that alltdmmeizrs value in
the model (5.3.5) are constant (summarized in Tables 2.1 and 3.1). The ialtialaf mosquito
population is set and updated weekly using the statistical model develo®®);ihypothesizing
that this number ig§% from the exact number of mosquitoes. The initial number of susceptible
birds is set to the maximum bird population siz [44]. The initial human populatiorbeaspeci-
fied from the information about the area under study. We will use the MiR alailable at the
region under study as a guide to consider the initial conditions for DMIRevajustarting our
simulation with the week where the MIR valueAs0 (i.e DM 1R(ty) = MIR(ty) > 0). We can
calculate the values df by using the previous data of MIR at that region. Also we considered
the initials of infected bird and human populations are zeros.

Once initialized with some infectious mosquitoes in the week wherdtii& (¢y) # 0, we
can calculate the value éf and then simulate our model for the entire period using 1-day time
step for one week. This is repeated weekly while updating the total numbeosduitoes by

using the statistical models developed in [89].
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533 Ryand DMIR

In [90], the authors liste®, calculated in the models [10,22,56,92] and concluded that different
models may induce differer, but all of these basic reproduction ratios are related to the ratio
of the number of mosquitoes and hosts at the disease-free equilibrium, imffdies that a
reduction in mosquito density would help control the epidemic. The magnitudg i used

to gauge the risk of an epidemic in emerging infectious disease. The auth@3]indted two
fundamental properties commonly attributedig, that an endemic infection can persist only if
Ry > 1 and provides a direct measure of the control effort required to eliminatenfction.

He demonstrated that this statement can be false. The first property, le/ev@oted, can fail
due to the presence of backward bifurcations. The second oneitaéa control efforts are
applied unevenly across different host types (such as a high-risk sow-risk group) sincez

is determined by averaging over all host types and does not directlyndetethe control effort
required to eliminate infection. Thus, as we mentioned in almost every aspeatalfters Ry is
flawed.

In Fig.5.4 and Fig.5.5 we introduce the infected human and the DMIR (coirgidérat
total number of mosquitoes is constant) in three cases. From Fig.5.4, wésarve that the
number of infected human are consistent with the DMIR values in three géseslifferent
values ofRy = 0.8537,1.1997, 1.515. However in Fig.5.5, we can note the same thing but with
different initial values of birds and humans but with same valugoin all cases. Thus, we can
conclude that the DMIR is a good method to test and forecast the weeklgfrishv than R,

and subsequently, we can provide a direct measure of the contrdlreffuired to eliminate the
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(@) H.. (b) DMIR.

Figure 5.4: Comparison between the human infectigiand DMIR in the model (5.3.2)

in three cases wheR, = 0.8537,1.1997 and1.515.

infection.

5.4 Forecasting WNv risk in Peel region, Ontario using real data

Peel region is a municipality in Southern Ontario on the north shore of LakariOnbetween

the City of Toronto and York region extending from latitud&.35° N to 43.52° N and from
longitude79.37°TV to 80.00°W. The region comprises the cities of Mississauga and Brampton
and the Town of Caledon [86]. Mosquito data were obtained from a #lanee program of the
Ontario Ministry of Health and Long-Term Care. The Peel region healittrused the Centers for
Disease Control Miniature light trap with both @@nd light to attract host-seeking adult female

mosquitoes [86].
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— B,=H_=10000
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H, infected human

(@) H.. (b) DMIR.

Figure 5.5: Comparison between the human infectigmnd DMIR in the model (5.3.2)

in three cases wheB;(t,) = H(ty) = 5000, 10000, 15000. In all three case&, = 1.23

5.4.1 Mosquito abundance

The Peel region has initiated a mosquito forecasting program started ina2@ldontinued in
2012. Every week in mosquito season (from middle of June to earlier Qgtdbe mosquito
traps were set up on Monday and Tuesday by the mosquito surveillangeapr in Peel region.
The traps were collected the following morning and the mosquito data wouldaialze on
Wednesday. The previous weather data were collected through [86hanweather data for
the following two weeks were obtained through [86]. The mosquito predictiwdel developed
by [89] has been used to provide tBalexmosquito abundance data for the next two weeks by
using the mosquito surveillance and weather data collected. The forecastirlty were posted
and updated weekly on [86] and a weekly report was sent to Peehrpghiic health department,
Public Health of Ontario (PHO) and Environmental Issues Division of Puidialth Agency of
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Canada (PHAC).

5.4.2 WNyv risk forecasting

The testing of mosquito pools gives an indication of which mosquito specibsh@fNv and,
if sufficient numbers are tested, infection rates can be calculated. teowle actual number
of individual WNv positive mosquitoes in a pool is unknown. And then théregion of the
proportion of infected mosquitoes in a specific area can be calculatedM#id-rom the data
available at Peel region on MIR and the number of infected cases of hasngttown in Fig.5.3,
we can confirm that MIR is an good tool to identify the risk of infection of WiN\Peel region.
Nevertheless, the method of identifying the MIR cannot predict what migppén in the fol-
lowing weeks. Consequently, we believe that our formula of DMIR is amapjate method of
predicting the risks of WNv in the following weeks through using the data aleilend some of

the previously used dynamical models.

5.4.3 Numerical ssmulations

Because our simulation starts early in the summer, the initial values of infectmdnid humans
are set to zero. The initial number of susceptible birds is set to the maximurpdgrdation size
By = 75000. From [12], we specify the initial number of humans liviag05 — 2012 in the Peel
area. By starting with some infectious mosquitoes, our model simulates from #iefyvesuch
that DM IR(ty) = MIR(ty) > 0, to weekt; using 1-day time step. The susceptible mosquito

population is updated weekly using the foth, = M — M; for all M is the total number of
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Culex pipiensaandCulex restuanmosquitoes. For the years 2005, 2006, 2008, 2010 and 2011, we
try to verify our index so we update our model using the total number of nito&gupreviously
collectedM. As for the year 2012, we try to predict the risk of WNv using our indexveo
updatedM using the statistical model developed in [89]. In all those years we caowsidbe

total number of mosquitoes to represéfit from the exact number of mosquitoes.

30 T T T T T T T 20 T T
3 Cases 181 2 cases 3 MlR—)lj
1 Ml

251

20

MIR and DMIR
=
5}

MIR and DMIR

o v 2 oo

I S . . . . 1
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t-weeks

(a) 2005 (b) 2006

Figure 5.6: Compare MIR and DMIR in Peel region; Ontario; Can2005 and 2006.

The time series of our formula DMIR were compared with the MIR data availathe 2005
to 2012 as shown in Fig.5.6, 5.7 and 5.8. It is worth noting that it was difficulieatify the
DMIR values accurately in 2007 and 2009 (where the infection rate wgda in the first few
weeks) since the first value of tlid I R > 0 occurred in later weeks than the previous years.

For the validation period of 2005, 2006, 2008, 2010 and 2011 and #wkgbion in 2012, it
was noticed that the DMIR values are directly proportional with the numblenwfan cases. The
magnitude of the peak values in DMIR was also close to the MIR peaks. Menebe rate of

infection typically peaked in the middle of the season (in August) - a patternstttainsistent
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Figure 5.7: Compare MIR and DMIR in Peel region; Ontario; Can2@08 and 2010.

across most of the years in our simulations. It is important to point out hatéd DMIR index
is more accurate in the years which are characterised by high level ofiorfgas in 2012, for
instance) due to high fluctuations in temperatures in these years. Condgghés has its direct

impact on mosquitoes abundance.

55 Conclusions

The risk assessment tool uses information gathered through the suieili@chanisms de-
scribed to ascertain the level of risk for human transmission of WNv withinrea. aln this
chapter we developed a new index to test and forecast the weekly ristNefnamed DMIR.
The DMIR is the first index that employs the dynamical models while considénagemper-
ature impact in the mosquito abundance for estimating the risk of WNv. And &r d¢odverify
our formula, we compared it with the data available at Peel region. The DiMi& would be

useful than the other methods (MIR and MLE) for estimating the risk of WNoabse DMIR
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Figure 5.8: Compare MIR and DMIR in Peel region; Ontario; Can2@11 and 2012.

considered the impact of quantity of the bird population as well as the linketyeebn mosquito
abundance and preceding weather conditions (temperature and ptegipitd his raises opti-
mism for forecasting the risk of WNv with more accuracy.

During a WNv season, the DMIR predictive model would be useful to hesmlits in identi-
fying the relative risk of human infection within their jurisdiction. The DMIR tgoluld assist in
guiding appropriate prevention and reduction activities such the needéagepublic education
(personal protection measures), expand larval control activitidgree mosquito surveillance
programs and assist in the decision making process to reduce the nunaloeittohosquitoes in
areas of elevated risk to human health from WNv through the judicious ugestitides. The
application of pesticides to kill adult mosquitoes by ground or aerial applic&iocalled adul-
ticiding. The timing of adulticiding is important as it should be undertaken priauoing the
period of highest risk of human transmission. The DMIR could assist ilegtiag the high risk

period in WNv season which would guide the timing of adulticiding spray events.
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6 Conclusionsand futurework

Although discovering the transmission mechanism led to new insights into hovitén bentrol,
WNV continue to pose a significant burden worldwide. The developmevecibr resistance to
insecticides, changes in public health programs, seasonal climate chidmegesreased mobility
of humans, migration of birds and urban growth are all factors that caierio the difficulty in
controlling and eliminating WNv. Thus, in this thesis we tried to understand thavixetof the
transmission of WNv in the mosquito-bird cycle and humans, as well as develdf systems
and procedures to reduce human risk by formulating dynamical modelssamgl the optimal
control to minimize the spread of WNv.

The first part of this work studied the impact of coexistence two avian lptipos in the
transmission dynamics of WNv. We formulated a system of ordinary diffedeequations to
model a single season of the transmission dynamics of WNv in the mosquitoyble] by clas-
sifying avian populations as corvids and non-corvids. A detailed anadj$iee model showed
the existence of the backward bifurcation which indicates that the spfelae wirus whenR is
nearly below unity could be dependent on the initial sizes of the sub-gigulaf the model. In

this part we also generalized the results of backward bifurcation in previork [41, 90], ana-
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lyzed the effects of considering different amounts of corvid birds ceethto noncorvid birds,

and we concluded that the level of incidence (measured by the peatfyereproduction number
are completely different. For this reason, a field study is necessary tonile¢e in each region,

the effectiveness of the avian and mosquito populations to transmit WNv én twréstimate the
risk of the disease. In places where more effective avian populatiengrasent, the infected
level are high, having implications on the adopted mosquito reduction stratddiegesults of

this part suggest that even though dead corvids may not be seen irrarggion, like in the

early years of the endemic of the virus, there might be still a possibility of dreak due to

the existence of the non-corvids as reservoirs. Furthermore, thenoescalso propose that it is
essential to consider the diversity of the avian species, as well as thétgaé other mammals,

when modeling WNv.

In the second part of this dissertation, we formulated a model to study theno#wf sea-
sonal variations of mosquito population on the transmission of WNv disease poaéd the
guestion of how seasonal changes generate large outbreaks frendemic equilibrium. De-
velopment, behavior and survival of mosquitoes are strongly influebgeslimatic factors. In
some places, the end of summer is the time where mosquito population notablgéwréaus,
it is expected that such increase will increment the disease transmissioee,Hee presented
a comprehensive and continuous deterministic model for the transmissiamaymof WNv in
the mosquito-bird cycle and human with and without seasonality. We startedabyzang the
model without seasonality and verified the existence of backward bifonca/Vith reference to

equation (3.3.23), we noticed that the existence of two important conditioharéheequired for
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the occurrence of backward bifurcation: one is similar to one condition]ifwBich is consid-

ered a generalization of the same form in [1, 90]), and the other one vgtble ratio between
total number of birds and the other mammals that can be infected by mosquitoeatsr ghan
unity. After that, we considered the model with seasonal variations (lwrasg that the birth
rate of mosquitoes follows a periodic pattern) to study the impact of seagariations of the
mosquito population on the dynamics of WNv. In this latter model, we proved tisteage of
periodic solutions under specific conditions using the classical Floquebhettich is based
on the calculation of the monodromy matrix and an analysis of its eigenvaluegsoiw, we in-

troduced and calculated the basic reproduction number for this sedsiaea model. Numerical
simulations of the model indicated that a sudden recrudescence frondemiersituation could
have its origin in the interplay between intrinsic and extrinsic oscillations. Torereit is not

just a simple consequence of the vector population growth that could beiassl with climatic
changes.

In the third part, we adopt the optimal control theory to study the strategiesntfol and
minimiz the spread of WNv. The model formulated in Chapter 3 is extended tesatbmeimpact
of some anti-WNv control measures; by re-formulating the model as an optongibl problem
in two cases with and without seasonality. This necessitates the use of tmteal functions:
adulticide, larvicide and human protection. The results were analysed tonileeethe necessary
conditions for the existence of an optimal control, using Pontrayagins maxipninciple. The
resulting non-autonomous system was examined to determine the necessiitipas for exis-

tence of an optimal control, using Pontrayagins maximum principle. Numeimcalations of the
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model suggested that the Larvicide is the most effective strategy to cantigoing epidemic
in reducing disease cost when we apply only one control. But we notednitv@ knowledge
about the actual effectiveness and costs of these intervention measwsgecific applications
would give more realistic parameters and results. The outcomes furthesestréhe importance
of considering the other animals that could be infected in any region andfétst eégarding
the cost of control. Finally, the numerical results identified the time of applyiagémtrol to
achieve the best control strategy. This work strongly justified the impatahcarefully taking
into account the impact of the seasonal variation when applying the control.

In the last part, we presented new methods to measure and forecask thievkslv. This is
done by determining the dynamical minimum infection rate (DMIR) of WNv intraduncinto
Ontario-Canada through different pathways. DMIR could be regkaidé¢he first WNv dynamical
model to test and forecast the weekly risk of WNv by being updated wexdlhe total number
of mosquitoes using the statistical models [89]. Finally, we compared our famwith the data
available at Peel region to verify our formula.

As discused earlier in Chapters two and three, it is noticed that backwardations have
recently received much attention due to the adaptation, continual evolutiofeofious agents
and the reemergence of disease (The epidemiological significance c&t¢kevdrd bifurcation
is that the usual requirement & < 1 is, although necessary, no longer sufficient for disease
elimination). However, backward bifurcation occurs for certain raruféte parameters. Thus,
in future work we plan to find answers for the following questions as extémdawk for this

dissertation:
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What is the biological interpretation (mechanism) of the occurrence of thedevard

bifurcations?.

How will seasonal change affect the disease development as well egutibrium points
in case of backward bifurcation and how this improves our understanflthg economics

of WNv disease control?

How to introduce WNv model presence of the oscillations without recourseéonal sea-
sonal forcing and then study the impact of the seasonal variations oétih@rpopulations

on the dynamics of the transmission of the disease in that model.

How do we test the DMIR model with the occur of backward bifurcationsnhe esti-

mate the risk assessment?
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A Appendices

In the following theorem, we present the adjoint system amdrol characterization.

Theorem A.0.1. For an optimal control variabléw}, u5, u}) and optimal corresponding

state solutions)*, then there exist adjoint variables, j = 1, ...., 15, satisfying,

XN = —asz —cywy + M (dp + douy) + (A — Ag)mp (1 — uy),

Xo = —az — cyuy + Ao(dp, + dowr) + (A — A)my (1 — wy),

X3 = —ag— Colly — A (T (1 — ug) — A3(dy + doug) + (A3 — )u;)W,
i = —as— oty — (1 — up) Ay 4 Ma(dpm + doia) + (A — A2)qrm (1 — uy)

+ (A5 — No) 2bmBre 4 (g — Ag)BebmBas (N — \p)BrbmS (] — qp),
)\/ — A d )\ _ )\ /B7nbm(Bli+B2i) M )\ _ )\ /Bbbm(N_Bls) M
5 sdy + (Mg — A3) ( P22 M ) + (A5 — Ag) | 5> M

+ (Ao — As) (BP0 + (M2 — Aur) (22250 (1 — ug))

Xo = Aedi— Avn + (A3 — M) (mem(N;éf“Jer))Ms) + (A6 — As) (%Mz)
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Ar

Ao

)\12

(Ag — Ag) (BbbNLzBQMZ) + (A2 — A1) (BhbmSMz‘(l —ug)),

N2

Ardy + (A1 = As) <WMS> + (A6 — As) (2= ;)

(Ao — Ag) (%Mz) + (M2 — A1) (Bhbmst’(l - Us)) )

N2

Aedy + (A — Az) <WMS> + (X6 — As) (BbbNLzBle)

(s = Do) (2220P2000) + (Miz = Aur) (201 — ug))

N2

Agby — Aot + (A3 — A\y) <mem(N;ézB“+B2i))Ms> + (X6 — As) (%Mz)

(Ag — Ag) (%MJ + (A2 — An) (BhbmSMz‘(l — u3)),

N2

—C3usz + )\10db + ()\2 - )\1) (MMS> + ()\6 - )\5) (%MZ)

N2

(Ao — As) (B22B2e MY + (Mg — Aur) (22250 (1 — ug))

Ny + (A = A) (B2 0 ) 4 (A = As) (2 1)
(Ao — As) (2mP2e MY + (Mg — Apo) (WMZU - U3)> )
o+ Aadn + (g = Ag) (2B L) o (A — g) (25200

(Ao — As) (B2222e M) + (Mo — Air) (2225 M(1 — wy))

()\12 - )\13)04,
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Az = —az+ (v 4+ + 7+ dp)Ais(Ag — A3) <—mem(ﬁ§i+32i)Ms>
+ (Mg —Ag) (%Mz) + (A0 — Ao) (%—?SMz(l - U3)) — 7, Aa —TA15

Na = (7 da)Ais = mAss + (A = g) (2t )

N2

+ (Mg —Ag) (%Mz) + (A2 — A1) (BhbmsMi(l - Us)) )
+ (Ao — As) (BlmPreng)

N = didis + (= dg) (22BN 4 (0 — ) (Befe )

N2

+ (Ao = Ag) (BB M) + (Mg — Anr) (22222 MG (1 — ),

N2

with transversality conditions (or final time conditions)
MN(T)=0, i=1,...,15. (A.0.1)
Furthermore, optimal control functions are given as follows

1
UT = Imax (0, min <U1, b—((>\3 — Al)mLLs + ()\4 — )\g)mLLl- + doLs>\1 + doLi)\g — ClL)>) s

1

1
us = max (0, min <U2, b—(rmMAl + (Ao — M) groM; + Asdo M + Aydo M; — QM))) ,
2

'LL; = max (0, min (Ug, bl(()\lz — All)ﬁh?\;lSMl — C35)>) .

3
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Proof. The adjoint system results from Pontryagin’s Principle][68

Oh . oh . Oh
)\1:—— QT T, e )\15:_ﬁ'

The optimality conditions (characterization of the optirmantrol) given by

oh
oh _,  Oh _, B

—_—= — = — =0
8U1 ’ aUQ ’ 8U3 '

on the interior of the control set. Using the bounds on therots) we obtain the desired

characterization. ]
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