YorkSpace has migrated to a new version of its software. Access our Help Resources to learn how to use the refreshed site. Contact diginit@yorku.ca if you have any questions about the migration.
 

The role of actin and myosin in PtK2 spindle length changes induced by laser microbeam irradiations across the spindle

Loading...
Thumbnail Image

Date

2013-05

Authors

Forer, Arthur
Berns, Michael
Shah, Jagesh
Liaw, Lih-Huei
Gomez, Veronica
Baker, Norman
Sheykhani, Rozhan

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Abstract

This study investigates spindle biomechanical properties to better understand how spindles function. In this report, laser microbeam cutting across mitotic spindles resulted in movement of spindle poles toward the spindle equator. The pole on the cut side moved first, the other pole moved later, resulting in a shorter but symmetric spindle. Intervening spindle microtubules bent and buckled during the equatorial movement of the poles. Because of this and because there were no detectable microtubules within the ablation zone, other cytoskeletal elements would seem to be involved in the equatorial movement of the poles. One possibility is actin and myosin since pharmacological poisoning of the actin-myosin system altered the equatorial movements of both irradiated and un-irradiated poles. Immunofluorescence microscopy confirmed that actin, myosin and mono-phosphorylated myosin are associated with spindle fibres and showed that some actin and mono-phosphorylated myosin remained in the irradiated regions. Overall, our experiments suggest that actin, myosin and microtubules interact to control spindle length. We suggest that actin and myosin, possibly in conjunction with the spindle matrix, cause the irradiated pole to move toward the equator and that cross-talk between the two half spindles causes the un-irradiated pole to move toward the equator until a balanced length is obtained.

Description

Keywords

spindle organization, actomyosin, mono-phosphorylated myosin, microtubule ablation, spindle matrix

Citation

Cytoskeleton (Hoboken). 2013 May;70(5):241-59.