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Abstract 

Bin Packing Problem examines the minimum number of identical bins needed to pack a set 

of items of various sizes. Employing branch-and-bound and column generation usually 

requires designation of the problem-specific branching rules compatible with the nature of 

the pricing sub-problem of column generation, or alternatively it requires determination of 

the k-best solutions of knapsack problem at level k
th

 of the tree. Instead, we present a new 

approach to deal with the pricing sub-problem of column generation which handles two-

dimensional knapsack problems. Furthermore, a set of new upper bounds for Bin Packing 

Problem is introduced in this work which employs solutions of the continuous relaxation of 

the set-covering formulation of Bin Packing Problem. These high quality upper bounds are 

computed inexpensively and dominate the ones generated by state-of-the-art methods. 

 

Keywords: Bin Packing Problem, Branch-and-Bound, Column Generation. 
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Chapter 1 

 

Introduction 

 

1.1 Overview 

In a Bin Packing Problem (BPP), given an unlimited number of identical bins with a 

capacity 𝑐 > 0 and a set of items 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛} each of which has a weight 𝑤𝑖 (0 < 𝑤𝑖 ≤

𝑐); the goal is to pack all the items in a minimum number of bins without exceeding bins 

capacities. 

The importance of BPP stems from its numerous applications in industry and logistics such 

as loading trucks, queuing television commercials into given time slots, assigning tasks to 

machines, and placing data into memory blocks of fixed-size, to name a few. Furthermore, 

BPP often arises as a frequently called sub-problem in some practical cases in the areas of 

transportation and supply chain management, and it needs to be solved in a shortest amount 

of time. BPP has been studied by many researchers during the last few decades, and a large 

number of heuristics, meta-heuristics, and approximations, have been proposed to tackle this 

problem. 

Although there are a considerable number of methods to find solutions to BPP in a 

reasonable time, very few of them guarantee the optimality of the solutions which are 
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referred as the exact methods in the literature. It is worth mentioning that majority of the so-

called exact methods are computationally expensive, and the need for a fast and 

comprehensive exact method is felt in the area. To this end, we develop a framework based 

on branch-and-price method to obtain the optimal solutions to the BPP. This new exact 

method is a branch-and-bound tree which employs column generation as well as a set of 

newly proposed strong upper bounds to the BPP. 

Employing column generation in a branch-and-bound tree requires development of rigorous 

methods to solve the pricing sub-problem of the column generation. More specifically, 

while proceeding into the depth of the branch-and-bound tree, feasible loading patterns 

known as forbidden patterns come about and should systematically be excluded from the 

search domain of the one-dimensional knapsack problem. To address the issue of having 

polluted pricing sub-problem in column generation, two main approaches have been 

introduced according to the literature.  

The first approach determines 𝑘-best solutions of the one-dimensional knapsack problem at 

the (𝑘 − 1)th
 level of the tree to ensure that enough feasible loading patterns exist to be 

injected into the master problem of the column generation in case all the forbidden patterns 

are met during the solving procedure. Although being a simple and straightforward idea, 

determination of the k-best solutions of a knapsack problem demands expensive 

computational resources. 

In the second approach, a set of branching rules is designed to avoid emergence of the 

forbidden patterns in the pricing sub-problem of the column generation during the branch-

and-bound procedure. In other words; an implicit direction in dealing with the forbidden 

patterns is preferred in this approach. Even though the methods developed in this category 

benefited from capability of solving wide range of BPP instances, the exorbitant 

computational costs remain a concern. For, in the present methods, branching occurs on the 

pair of items whereas the dimension of the problem after exclusion of these items remains 

close to the dimension of the parent problem, and solving the residual problem is as time-

consuming as solving the parent one. Therefore, without generalizing such branching rules 

to branch on more items rather than on a pair of them, branch-and-price procedure cannot 

be performed with the desired efficiency. 
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In this research, we propose a new approach for solving the polluted pricing sub-problem of 

column generation. In a nutshell, a constraint called decrement constraint is added to the 

one-dimensional knapsack problem whenever one of the forbidden patterns is met during the 

column generation procedure. This extra constraint compels the pricing sub-problem to 

generate the next feasible solution of the one-dimensional knapsack problem, and then the 

generated column is passed to the master problem of column generation. Immature 

termination of the column generation, which might occur due to deployment of this method, 

and its consequent impacts on the branch-and-price procedure is investigated and resolved in 

this thesis. 

Our further contribution is to propose a set of new upper bounds for BPP. These upper 

bounds are constructed and developed by using the solutions of the continuous relaxation of 

the set-covering formulation of BPP, and brings about more justifications to perform a time-

consuming procedure such as column generation. For, shortly after the lower bound of the 

BPP is provided by solving the continuous relaxation of the set-covering formulation of the 

problem by column generation, a strong upper bound is derived for the BPP by utilizing the 

information of the last iteration of the column generation. In other words, affording 

additional operational costs to obtain the upper bound of the BPP by employing the well-

known, yet not well-performed, heuristics is bypassed by resorting to said bounds. 

 

1.2 Thesis outline 

Chapter 2: In this chapter, we will review the different aspects of BPP and the methods 

developed in the literature to solve this problem.  

Chapter 3: This chapter will present solving procedure of the master problem of set-

covering formulation of BPP by column generation. A new method of warm starting the 

column generation to reduce the computational time of the process will also be presented. 

Chapter 4: In this chapter we will investigate the structure of the solutions provided by 

solving the continuous relaxation of set-covering formulation of BPP to propose an upper 

bounding procedure for BPP by using these solutions.  
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Chapter 5: This chapter will be an account of the improvements on the upper bounding 

procedure developed in chapter 4. 

Chapter 6: The focus of this chapter will be employing the information provided by dual 

version of BPP to increase the efficiency and performance of the methods developed in 

chapter 5. The general scheme for deriving an upper bound for BPP to be used in branch-

and-price procedure will also be presented in this chapter. 

Chapter 7: In the final chapter of the thesis, a branch-and-price procedure is proposed to 

solve the BPP instances to optimality or prove the optimality of the obtained upper bound 

solutions. This branch-and-price procedure employs a generic branching strategy developed 

based upon the results obtained from the previous chapters as well as a new search strategy 

called batch diving. 
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Chapter 2 

 

Literature Review 

 

2.1 Definitions 

In this section, we define the most important terms that will be used throughout the thesis. 

The notations and definitions are borrowed from [1], and more details are available in the 

same reference. 

Definition 2.1 (Linear program) 

Let 𝑛,𝑚 ∈ ℕ , C ∈ ℝ𝑛 , A ∈ ℝ𝑚×𝑛 , and b ∈ ℝ𝑚 . The following optimization problem is 

called a linear program (LP). 

maxCX 

AX ≤ b                                                                      (2.1) 

𝐗 ∈ ℝ+
𝑛  

where ℝ+
𝑛  denotes non-negative real numbers. 
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Definition 2.2 (Integer program) 

Let 𝑛, 𝑚 ∈ ℕ , 𝐂 ∈ ℝ𝑛 , 𝐀 ∈ ℝ𝑚×𝑛 , and 𝐛 ∈ ℝ𝑚 . The following optimization problem is 

called an integer program (IP). 

max𝐂𝐗 

𝐀𝐗 ≤ 𝐛                                                                     (2.2) 

𝐗 ∈ ℤ+
𝑛  

where ℤ+
𝑛  denotes non-negative integer numbers. 

Definition 2.3 (Convex combination) 

Given a set 𝑆 ⊆ ℝ𝑛, the point 𝐗 ⊆ ℝ𝑛 is a convex combination of points of 𝑆 if there exists a 

finite set of 𝑡 points of 𝐗 in 𝑆 and a 𝚲 ∈ ℝ+
𝑡 with ∑ 𝜆𝑖

𝑡
𝑖=1 = 1 and  𝐗 = ∑ 𝜆𝑖

𝑡
𝑖=1 𝑥𝑖. 

Definition 2.4 (Convex hull) 

Given a set 𝑆 ⊆ ℝ𝑛, the set of all points that are convex combinations of 𝑆 is called convex 

hull of 𝑆 and is denoted by 𝑐𝑜𝑛𝑣(𝑆). 

 

  



7 
 

2.2 Problem formulation 

2.2.1 Compact formulation of BPP 

The BPP can be formulated as the following integer programming model, formulated as a 

set of equations that read: 

min∑ 𝜆𝑘

𝐾

𝑘=1
 

∑ 𝑥𝑖𝑘
𝐾
𝑘=1 = 1                  𝑖 = 1,… , 𝑛 

∑ 𝑤𝑖𝑥𝑖𝑘
𝑛
𝑖=1 ≤ 𝑐𝜆𝑘          𝑘 = 1,… , 𝐾                                     (2.3) 

𝜆𝑘 ∈ {0,1}                      𝑘 = 1,… , 𝐾 

𝑥𝑖𝑘 ∈ {0,1}                     𝑖 = 1,… , 𝑛 , 𝑘 = 1,… , 𝐾. 

 

where λ is load of a pattern and K denotes the maximum number of loading patterns. Also, 

𝑥𝑖𝑘 = 1 if item 𝑖 ∈ 𝐼 is accommodated into pattern k, otherwise it is 0. The first constraint 

ensures that all the items are assigned to the bins, and the second constraint requires that 

summation of the weights of the items in each bin does not exceed the bin capacity. 

Dropping the assumption of integrality, we get the following linearly relaxed model: 

min∑ 𝜆𝑘

𝐾

𝑘=1
 

∑ 𝑥𝑖𝑘
𝐾
𝑘=1 = 1                 𝑖 = 1,… , 𝑛 

∑ 𝑤𝑖𝑥𝑖𝑘
𝑛
𝑖=1 ≤ 𝑐𝜆𝑘          𝑘 = 1,… , 𝐾                                     (2.4) 

𝜆𝑘 ∈ [0,1]                      𝑘 = 1,… , 𝐾 

𝑥𝑖𝑘 ∈ {0,1}                     𝑖 = 1,… , 𝑛 , 𝑘 = 1,… , 𝐾. 

Model (2.4) has a trivial LP bound of: 

𝐿𝑃 =
∑ 𝑤𝑖

𝑛
𝑖=1

𝑐
 

𝜆𝑘 =
𝐿𝑃

𝐾
                          𝑘 = 1,… , 𝐾                                      

𝑥𝑖𝑘 =
1

𝐾
                          𝑖 = 1,… , 𝑛 , 𝑘 = 1,… , 𝐾. 

Not only is this straightforward derivation of the LP bound poorly conceived and its use in 

branch-and-bound procedure results in lowering the performance of the latter, but also the 

structure of the compact formulation is highly symmetrical and this is an additional reason 

why this formulation of BPP does not suit the nature of the branch-and-bound trees [2,3].   
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2.2.2 Set-covering formulation of BPP 

As a remediation to the effects of the weak LP bound provided by compact formulation of 

BPP, Dantzig-Wolfe decomposition, presented in [4], could be applied to partition the 

constraints of the model (2.3) into a set of master constraints and a set of sub-problem 

constraints [2]. These partitions break the symmetric structure of the compact formulation 

and provide the means for the model to be solved by column generation.  

Column generation is an approach to solve linear programming models where the number of 

variables compared to the number of constraints is relatively large and enumerating all of 

the patterns to be used in simplex methods is not cost-effective. Even though the expression 

“column generation” never appears in the paper by Ford and Fulkerson in [5], where the 

non-basic patterns are generated repeatedly by solving a sub-problem and then added to the 

master problem until the optimal solution is found, one could safely associate the origin of 

this method to these authors, according to Nemhauser in [2]. The details of column 

generation will be elaborated later in this chapter, but first we shall address the deficiencies 

of the compact formulation and the way to overcome them by the model introduced by 

Vance in [6]. 

In reference [6], Vance utilizes Dantzig-Wolfe decomposition and replaces the second 

constraint of the model (2.3), also known as knapsack constraint, by a convex combination 

of the extreme points (𝑥1𝑘
𝑗

, 𝑥2𝑘
𝑗

, … , 𝑥𝑛𝑘
𝑗

)𝑇 𝑗 = 1,… , 𝑃 of the set: 

𝑐𝑜𝑛𝑣{𝑥𝑘 : ∑ 𝑤𝑖𝑥𝑖𝑘
𝑛
𝑖=1 ≤ 𝑐, 𝑥𝑖𝑘 ∈ {0,1} for 𝑖 = 1,… , 𝑛}. 

The new formulation is expressed as the following equations that read: 

min∑ ∑ 𝜆𝑘
𝑗

𝑃

𝑗=1

𝐾

𝑘=1
 

∑ ∑ 𝑥𝑖𝑘
𝑗
𝜆𝑘

𝑗𝑃
𝑗=1

𝐾
𝑘=1 = 1            𝑖 = 1,… , 𝑛 

∑ 𝜆𝑘
𝑗𝑃

𝑗=1 ≤ 1                          𝑘 = 1,… , 𝐾                       (2.5) 

∑ 𝑥𝑖𝑘
𝑗
𝜆𝑘

𝑗𝑃
𝑗=1 ∈ {0,1}               𝑖 = 1,… , 𝑛, 𝑘 = 1,… , 𝐾 

𝜆𝑘
𝑗

≥ 0                                   𝑗 = 1,… , 𝑃, 𝑘 = 1,… , 𝐾. 
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Here, the first set of constraints ensures, once more, the assignment of all the items to 

patterns and the convexity constraints guarantee that the patterns are in the convex hull of 

the binary solutions of the knapsack problem. Furthermore, the integrality constraint 

demands that convex combination of the extreme points in the convex hull should result in a 

binary pattern.  

Vance simplifies the above formulation by replacing the extreme points of the convex hull 

by a subset of feasible solutions of the knapsack constraints. Assuming patterns 

(𝑥1𝑘
𝑗

, 𝑥2𝑘
𝑗

, … , 𝑥𝑛𝑘
𝑗

)𝑇 𝑗 = 1,… , 𝑃′ as representing the feasible loading patterns to: 

∑𝑤𝑖𝑥𝑖𝑘

𝑛

𝑖=1

≤ 𝑐,  𝑥𝑖𝑘 ∈ {0,1}  𝑖 = 1,… , 𝑛, 

then, it becomes possible to drop the convexity and integrality constraints requiring that 

𝜆𝑘
𝑗

∈ {0,1}. The resulting simplified model is equivalent to the model, first introduced by 

Gilmore and Gomory in [7], and is expressed by the following set of equations: 

min∑ 𝜆𝑘

𝑃′

𝑘=1
 

∑ 𝑥𝑖𝑘𝜆𝑘 = 1𝑃′

𝑘=1                    𝑖 = 1,… , 𝑛                                 (2.6) 

𝜆𝑘 ∈ {0,1}                            𝑗 = 1,… , 𝑃′. 

It is worth to note that 𝑃′ is an upper bound to the number of feasible loading patterns. The 

model of Gilmore and Gomory has a strong LP bound and is considered a cornerstone in 

most of the advances in the field of integer programming. 

An alternate set-covering formulation is derived by replacing the equality constraint of (2.6) 

by an inequality one. This second model is equivalent to its original one, but it facilitates 

implementation challenges of finding basic feasible solution (BFS) when the model is 

solved by simplex-based approaches. Initializing column generation by a high quality BFS 

has direct impacts on the total number of columns generated as prescribed by Belov and 

Scheithauer in [8], where they use a FFD-like sub-diagonal matrix to generate the BFS.  
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In the following, the alternate model is presented as: 

min∑ 𝜆𝑘

𝑃′

𝑘=1
 

∑ 𝑥𝑖𝑘𝜆𝑘 ≥ 1𝑃′

𝑘=1                    𝑖 = 1,… , 𝑛                          (2.7) 

𝜆𝑘 ∈ {0,1}                            𝑗 = 1,… , 𝑃′. 

We indicate here, that the model derived above, has a same formulation as that of, the one-

dimensional Cutting Stock Problem (CSP). In CSP, given a set of items, each of which has a 

specific weight and a demand associated to the items, one is asked to find a minimum 

number of cutting patterns so that the demands are satisfied and summation of the weights of 

the items in each pattern does not exceed the capacity. These two problems, CSP and BPP, 

share the same nature and the only difference between them is the perspective from which 

the problem is investigated. More precisely, in BPP, items are labeled; have we had several 

items with the same weights, BPP distinguishes among them and appends a label to each 

item, while CSP associates all the items of the same size a required demand. It obviously 

follows that in CSP non-repeated items have demands equal to 1. Nevertheless, either 

formulation leads to the same optimal solution and the minimum number of the patterns 

(bins) is found. 
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2.3 Column generation 

Column generation is a technique to solve huge linear and integer programming problems as 

mentioned earlier. Nemhauser presents a complete history of column generation in his paper 

[2]. Generally speaking, all column generation techniques involve establishing relations 

between linear programming models called master problems and their corresponding pricing 

sub-problems. Regardless of the structure of the master problem and its corresponding 

pricing sub-problem, the master problem always relies on its pricing sub-problem for the 

generation of new patterns, and the pricing sub-problem is called until a specific termination 

condition is filled. 

In BPP, the master problem is the same one we presented in model (2.7) and its pricing sub-

problem is a one-dimensional knapsack problem. Column generation starts by defining a 

problem called restricted master problem which includes a basic feasible solution to the 

model. Then, the restricted master problem is solved by a revised simplex method to 

optimality, and thereafter its dual variables or shadow prices are assumed as being the cost 

function of the one-dimensional knapsack problem. The constraint of the pricing sub-

problem ensures that the generated column meets the capacity constraint of the problem. 

The generated column will then be added to the restricted master problem and the 

information of the revised simplex method will be updated. The structure of the pricing sub-

problem for BPP reads: 

max∑ 𝜋𝑖

𝑛

𝑖=1
𝑥𝑖 

∑ 𝑤𝑖𝑥𝑖 ≤ 𝑐𝑛
𝑖=1                                                                   (2.8) 

𝑥𝑖 ∈ {0,1}                  𝑖 = 1,… , 𝑛 

 

where 𝚷 = (𝜋1, 𝜋2, … , 𝜋𝑛) is a vector of shadow prices and 𝐗 = (𝑥1, 𝑥2, … , 𝑥𝑛) solution to 

the knapsack problem.  

A column generated by solving the knapsack problem (2.8) will terminate column 

generation procedure in case its reduced cost (1 − 𝚷𝐗) turns negative. Were it to be the 

case, termination of column generation dictates that all the non-basic patterns with positive 

reduced costs are exhausted. It is also worthwhile to mention, that patterns can either be 
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generated or added to the master problem sequentially, or else, a pool of patterns with 

positive reduced costs could be generated and then added to the master problem. Either 

approach used, the method for solving pricing sub-problem should be capable of finding the 

exact solution responsible for terminating column generation; otherwise, column generation 

might be terminated prematurely, in which case, its objective value would not represent a 

lower bound of the problem. 

An alternative method for generating patterns might be using a two-phase method as 

presented in [9]. In the first phase, knapsack problem is solved by a fast heuristic or an 

approximation algorithm until the reduced cost of the generated column gets negative. At 

this point, the second phase is invoked in which an exact method is used to prove the 

optimality of the column generation. This approach is still subjected to scrutiny of 

researchers in the area. On the one hand, it is likely that the use of heuristics and 

approximation algorithms will increase the number of generated patterns; on the other hand, 

heuristics and approximation algorithms run faster compared to exact methods, and 

generating more patterns does not necessarily imply increasing the total computational time 

of the column generation procedure. To the best of our knowledge, there is no general rule 

of thumb governing all the instances of BPP to set a threshold to control the tradeoff 

between the number of columns generated and the overall computational time. 

The other challenging part when implementing the revised simplex method and column 

generation has to do with the update of the basis performed repeatedly. Updating the basis 

requires adding the generated column to the basis and then finding the inverse of the basis 

for subsequent use. However, it is not affordable to find the inverse of the basis at each step 

of column generation. For, success in finding the inverse of the large matrices relies heavily 

on the condition number of the matrix. Condition number of a matrix 𝐴 is denoted by 𝜅(𝐴), 

and it is a measure of how a small change in elements of the matrix 𝐴 will affect the outputs. 

More precisely, having a matrix 𝐴 with condition number 𝜅(𝐴) = 10𝑘, we might loose up to 

𝑘 digits of accuracy in the output of the inverse operation. The accumulated error when 

finding the inverse of the basis at each step of column generation directly affects the final 

results of the procedure. Even for well-conditioned matrices where the condition number is 

relatively small, the procedure of finding the inverse matrix is quite time-consuming and it 
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should be avoided in column generation where the basis is updated for thousands of times 

even for relatively small BPPs with 200 items. 

To this end, instead of inverting the basis at each step of column generation, the inverse 

matrix is computed at the first step when the restricted master problem is defined, and then 

as the new columns are presented to the master problem, the inverse of the basis is updated. 

Furthermore, most of the times, it is beneficial to find the LU factorization of the basis at the 

first step of column generation, and then update the LU factorization of the basis when new 

columns are presented. Elble and Sahinidis in [10] reviewed the most recent techniques for 

updating the basis for simplex methods. Employing LU factorization of basis reduces 

computational time of the column generation since triangular matrices derived from LU 

factorization can be saved as sparse matrices which in turn reduces the memory in use and 

affects the overall computational time of the procedure. 
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2.4 Round up properties of set-covering formulation of BPP 

Set-covering formulation of BPP provides a strong lower bound for the number of optimal 

bins used as mentioned before. Not only is this bound strong, it also holds interesting 

properties which are additional reasons for the vast use of set-covering formulation of BPP 

in the literature. These properties are discussed in the following sections. 

2.4.1 Round-up property (RUP) 

An instance 𝐼  is said to hold a round-up property (RUP) if its optimal value, 𝑂𝑃𝑇(𝐼) , 

equates with that of the LP relaxation, 𝑧𝑐(𝐼). In other words: 

𝑂𝑃𝑇(𝐼) =  𝑧𝑐(𝐼). 

2.4.2 Integer round up property (IRUP) 

Baum and Trotter in [11] introduced the concept of the integer round-up property (IRUP), 

and Marcotte in [12] using decomposition properties of certain knapsack polyhedral proved 

that integer round-up property (IRUP) holds true for certain classes of CSP. An instance 𝐼 is 

said to have integer round up property (IRUP) if the difference of its optimal value, 𝑂𝑃𝑇(𝐼), 

and its LP relaxation, 𝑧𝑐(𝐼), is less than one. In mathematical terms this is expressed by: 

𝑂𝑃𝑇(𝐼) =  ⌈𝑧𝑐(𝐼)⌉. 

2.4.3 Modified integer round up property (MIRUP) 

Marcotte in [13] encountered an instance of CSP for which the integer round up property 

(IRUP) does not hold true. Initiated by Marcotte, Scheithauer and Terno [14] introduced the 

concept of the modified integer round up property (MIRUP), and they proposed a conjecture 

in which all the instances of CSP feature modified integer round up property (MIRUP). An 

instance 𝐼  is said to have modified integer round up property (MIRUP) if its optimal 

value, 𝑂𝑃𝑇(𝐼), is not greater than its LP relaxation, 𝑧𝑐(𝐼), plus one. Put explicitly: 

𝑂𝑃𝑇(𝐼) ≤  ⌈𝑧𝑐(𝐼)⌉ + 1. 

They also presented a new approach to solve CSP which is predicated on this conjecture. 

Hitherto, this conjecture holds true for all the instances of BPP and CSP found in the 

literature. 
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2.5 Round up solutions 

Another interesting aspect of the continuous relaxation of set-covering formulation is that 

basic solutions are deemed near-optimal (optimal), and by this token they are useful to 

derive the optimal solution of BPP. References [15,16] are accounts of the rounding basic 

solutions procedure of LP relaxation and how the consequent residual problems are dealt 

with, using a heuristic algorithm called sequential value correction (SVC). However, these 

methods fail to establish the optimal solution for BPP for a considerable number of 

instances. With respect to the fact that basic solutions of LP relaxation of BPP are near-

optimal, Bansal et al., in [17], proposed an approximation method based on a combination 

of the randomized rounding of the near-optimal solutions. But, their approximation method 

has not been tested on the benchmark instances of BPP in order to compare its results with 

state-of-the-art methods. 
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2.6 Branch-and-price 

The term branch-and-price points to a category of branch-and-bound procedures in which 

the use of column generation is adapted. Branch-and-price starts by solving the continuous 

relaxation of the set-covering formulation of BPP at the root node by column generation, 

and then a branch-and-bound procedure is invoked in search of the optimal solution. At all 

of the other nodes of the tree, column generation is again used to find the lower bound of the 

nodes. The performance of branch-and-price procedure inherently depends on the quality of 

the upper and lower bounds found at each node, and more importantly its efficiency relies 

on the branching as well as the search strategies.  

 

2.6.1 Branching Strategies 

A standard branching scheme might branch on basic patterns of the LP relaxation of the set-

covering formulation of BBP. It is trivial to solve the left branch (also known as branch of 

Ones) since it simply requires, items of a particular pattern to be included in the solution. 

Therefore, these items could be eliminated from the original landscape of the problem, and 

then the remaining problem is solved to optimality. However, dealing with the right branch 

(also known as branch of Zeros) is a daunting task. The reason for this is the fact that this 

branch contains the pattern that should be excluded from the feasible search space of the 

knapsack problem.  

To manage the polluted search space of the knapsack problem, different directions could be 

taken. These directions could be classified in the categories listed below. 

2.6.1.1 Finding the k-best solutions of knapsack problem 

The first approach to tackle the polluted knapsack problem comes from the very nature of 

the branch-and-bound trees. Simply put, at the (𝑘  -1)
th

  level of the tree, one needs to 

generate 𝑘 patterns. This guarantees that enough patterns are available in case all of the 

forbidden patterns are met while proceeding with column generation. But, this simplistic 

approach, nonetheless, is not practical to implement, considering the scarcity of reliable 

methods of finding the k-best solutions of knapsack problems, in the literature.  
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To make a case, Leão et al., in [18], propose quite an effective branch-and-bound procedure 

to find the k-best solutions for both bounded and unbounded knapsack problems. Their 

method is based on the long- and short-backtracking techniques first introduced by Gilmore 

and Gomory in [19], and it is capable of solving large-scale knapsack problems in a 

reasonable time. Though, this method is effective, so long that the aim is to solve the integer 

knapsack problems rather than the binary ones. In the case of binary knapsack problems, the 

powerful long-backtracking tool is not utilized, rather the authors resort to the short-

backtracking ones. Solving then, reduces the branch-and-bound procedure to a complete 

enumeration of the tree. Thus, their proposed method cannot be employed cost-effectively in 

the branch-and-price method for BPP.  

Beside the attempts to find the k-best solutions of the knapsack problem by branch-and-

bound- and dynamic programming-based methods, Sarin et al., in [20], propose a method 

stemming from schedule algebra [21]. Although introducing this new perspective in solving 

knapsack problems itself, is valuable enough, the authors in [20], never compared the 

efficiency and correctness of their method with competing methods from the literature, and 

as far as we are concerned, there exists no guarantee that their method is sufficient to 

determine the k-best solutions of knapsack problem [18]. 

 

2.6.1.2 Implicit methods in exclusion of the forbidden patterns from search domain 

This category refers to a set of branching rules which are compatible with the nature of the 

polluted pricing sub-problem of column generation. The idea was pioneered by Ryan and 

Foster in [22], and it was elaborated by Vance et al., in [30] and Barnhart et al., in [23]. 

Basically, these methods attempt to find the appropriate pairs of items for branching which 

will avoid adding extra constraints to the pricing sub-problem. More specifically, for each 

fractional basic solution, there exists a fractional counterpart in the basis which 

complements its value and this leads to a pair of branching constraints. To comprehend the 

quintessence of this approach, let us assume that each column of the matrix M representing 

a basic solution of the LP relaxation of the set-covering formulation of BPP is expressed as: 
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𝐌 =

1

𝑟

𝑛 [
 
 
 
 
 
 

. . . . .

. . . . .

. . . . .

. 𝑦𝑟𝑘′ = 1 . . .

. . . . .

. . . . .

. . . . .

. . . . .]
 
 
 
 
 
 

 

where the value for pattern 𝜆𝑘′  is fractional and the rows correspond to the labels of the 

items. 

Because in pattern 𝜆𝑘′ , the item 𝑟 is present, then there must be another fractional pattern, 

namely 𝜆𝑘′′, for which the row r is 1. This is shown in the following matrix  𝐌′ : 

𝐌′ =

1

𝑟

𝑛
[
 
 
 
 
 
 

. . . . .

. . . . .

. . . . .

. 𝑦
𝑟𝑘′ = 1 . 𝑦

𝑟𝑘′′ = 1 .

. . . . .

. . . . .

. . . . .

. . . . .]
 
 
 
 
 
 

. 

Since the basis is free of the duplicated columns, Barnhart et al., in [23] concluded that there 

must be a row s such that either 𝑦𝑠𝑘′ = 1 or 𝑦𝑠𝑘′′ = 1 but not both. Different possibilities of 

such a situation can be viewed in the following matrices: 

1

𝑟

𝑠

𝑛 [
 
 
 
 
 
 

. . . . .

. . . . .

. . . . .

. 𝑦𝑟𝑘′ = 1 . 𝑦𝑟𝑘′′ = 1 .

. . . . .

. 𝑦𝑠𝑘′ = 1 . 𝑦𝑠𝑘′′ = 0 .

. . . . .

. . . . .]
 
 
 
 
 
 

 

and, 

1

𝑟

𝑠

𝑛 [
 
 
 
 
 
 

. . . . .

. . . . .

. . . . .

. 𝑦𝑟𝑘′ = 1 . 𝑦𝑟𝑘′′ = 1 .

. . . . .

. 𝑦𝑠𝑘′ = 0 . 𝑦𝑠𝑘′′ = 1 .

. . . . .

. . . . .]
 
 
 
 
 
 

. 
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The submatrix shown in figure (2.1) summarizes our discussion. 

 𝑘′ 𝑘′′ 

r 1 1 

s 0 1 

Figure 2.1 Submatrix representing branching pairs [30]. 

The pair (r,s) will then be assumed as the pair of branching constraints, having a left branch 

as ∑ 𝜆𝑘𝑘:𝑦𝑟𝑘=1,𝑦𝑠𝑘=1 = 1 and a right branch as ∑ 𝜆𝑘𝑘:𝑦𝑟𝑘=1,𝑦𝑠𝑘=1 = 0. 

Even though one might benefit from elimination of the need to add an extra constraint to the 

pricing sub-problem by following this approach, the reduction in the dimension of the 

problem after branching is not significant, since branching occurs on a pair of items and the 

consequent nodes will have dimensions close to their parent ones. The generalization of this 

method to branch on larger subsets of items is yet to be done and it is not clear how 

extension of the method to larger subsets could be solved efficiently [3]. 

 

2.6.2 Search strategies 

Another important factor in successful and efficient implementation of branch-and-price 

methods is the order the nodes of the tree are searched. In a breadth-first search strategy, 

one explores the nodes located on the same level and then moves to the other levels and 

exploration continues until a termination condition is met.  

1

2 3

4 5 6 7

Level 1

Level 2

 

Figure 2.1 Demonstration of the breadth-first search strategy in branch-and-bound tree. 
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The advantage of the breadth-first node search strategy lays in the fact that the global lower 

bound of the problem gets improved as one  proceeds in the depth of the tree, since the 

lower bound at each level is equivalent to the minimum of the lower bounds of the nodes 

included in that level. For instance, lower bound at level 1 of figure (2.1) equals to: 

min {𝐿𝐵(2), 𝐿𝐵(3)} 

where LB(.) denotes the lower bound of a specific node.  To give another example, lower 

bound at level 2 of figure (2.1) can be derived as: 

min {𝐿𝐵(4), 𝐿𝐵(5), 𝐿𝐵(6), 𝐿𝐵(7)} 

and the same premise holds for the rest of the levels. 

It is noteworthy that breadth-first search strategy will play a key role in establishing the 

efficiency of the branch-and-price method if the lower bound derived at the root node is not 

close to the optimal value of the problem. In case of set-covering formulation of BPP, 

considering that the LP bound at the root node is strong and it will not get improved 

significantly as one proceeds deep into the tree, the other search strategies might be used to 

explore the nodes. 

Another well-known and widely-used search strategy is depth-first search strategy. Unlike 

the breadth-first strategy where the focus is put on improving the global lower bound, the 

goal of the depth-first strategy is to improve the quality of the global upper bound of the 

problem. One special case of the depth-first strategy is called diving according to work 

described in [24], where the left branches (branches of Ones) are always chosen until 

reaching to an integer solution. Baladi et al., in [25], reported a high quality of the upper 

bound derived by diving in their branch-and-price method for generalized bin packing 

problems. Further comparison of the different search strategies implemented in integer 

programming software systems could be found in [24] where Atamtürk and Savelsbergh 

thoroughly investigated the impacts of using depth-first, breadth-first, best-bound, and 

worst-bound search strategies on the efficiency of the branch-and-bound procedures. 
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2.6.3. Termination conditions 

Regardless of the chosen search strategy for exploring the nodes, exploration of all of the 

exponential number of nodes is not affordable and a set of termination conditions must be 

set to terminate the branch-and-bound procedure. There are different choices for the 

termination condition in the literature among which Maximum Nodes Explored, Maximum 

Time Spent, and Relative Gap between Upper and Lower Bounds as well as Absolute Gap 

between Upper and Lower Bounds, have received more attention. Depending on the 

structure of the problem, combination of such criteria could be applied to terminate the 

branch-and-bound procedure. 

 

2.6.4 Primal approximations, heuristics, and meta-heuristics 

Primal approximations, heuristics, and meta-heuristics are attributed to algorithms which 

are able to find feasible solutions to integer programming problems in a short amount of 

time. These algorithms are used at each node of the branch-and-price tree (or depending on 

the problem only at the root node) to strengthen (or derive) the upper bound. That is, primal 

techniques attempt to find high quality solutions early in the search tree to reduce the 

number of nodes explored. For instance, if a tight upper bound is found at the root node, 

then the branch-and-price will be used only to prove the optimality of the obtained solution, 

and the procedure will be terminated if a termination condition like Maximum Nodes 

Explored is met. The use of such techniques along with a branch-and-bound procedure is 

highly recommended to reduce computational time of the procedure [24]. 

We would like to elaborate more on the threefold name of the methods capable of finding an 

upper bound for BPP. Approximations are those methods for which the proof of goodness of 

the approximate exists. In other words, one is able to prove how close the solutions of the 

approximation methods are to the optimal solution. Different design and analysis schemes 

for approximation algorithms are treated in [26].  

Heuristics, however, are attributed to the methods which lack the proof for goodness of the 

approximate. That is, there exists no prior knowledge on the closeness of the solutions 
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provided by heuristics to the optimal solution, and empirical investigation of the designed 

heuristics on benchmark instances is the only way to gain knowledge about their 

performance.  

Lastly, meta-heuristics are mainly higher-level heuristic methods. Although there is no vivid 

boundary between heuristics and meta-heuristics, what distinguishes meta-heuristic methods 

is the vast use of stochastic processes they rely upon. Usually inspired by nature, meta-

heuristics attempt to search the solution domain of the problem for an optimal solution by 

using innovative operators to escape the local optimal points and move toward the global 

one. Similarly to heuristics, the goodness of these methods could only be investigated 

empirically.  

In the following sections, we will shortly describe the most renowned of primal methods in 

the literature. 

2.6.4.1 Approximations 

One of the widely accepted analysis schemes for goodness of the approximation algorithms 

is assessing their performance by assigning them a positive real number called worst-case 

performance ratio. Considering 𝑈𝐵𝑃𝑃 to be the universal set of all BPP instances, 𝑂𝑃𝑇(𝐼) to 

be the optimal value of an instance 𝐼 for a minimization problem, and 𝐴(𝐼) to be the value of 

approximation algorithm for instance 𝐼, then worst-case performance ratio of approximation 

algorithm 𝐴, denoted by ℛ𝐴, is the minimum real number greater than 1 such that: 

𝐴(𝐼) 

𝑂𝑃𝑇(𝐼)
≤ ℛ𝐴,   ∀𝐼 ∈ 𝑈𝐵𝑃𝑃. 

Listing all the approximation algorithms proposed for BPP and investigating the different 

aspects of the worst-case performance ratio such as its asymptotic behavior, are beyond the 

scope of this research. For of this work, it only suffices to mention few approximation 

methods which might provide an insight into the upper bounding techniques, we will 

develop in the next chapters. As far as we know, Coffman et al., in [28] reviewed the most 

recent advances in approximation algorithms, and more information can be found in their 

review paper. 
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2.6.4.1.1 First fit Algorithm (FF) 

First fit algorithm (FF) packs each item in the first partially filled bin found, that has 

sufficient residual capacity to accommodate the item; otherwise the algorithm opens a new 

bin and assigns the item to it. For FF, worst-case performance ratio is derived in [29] as: 

ℛ𝐹𝐹 =
17

10
. 

2.6.4.1.2 First fit decreasing Algorithm (FFD) 

First fit decreasing algorithm (FFD) is a first fit algorithm where the items are sorted in 

decreasing order of the weights in advance. For FFD, worst-case performance ratio is 

derived in [31] as being: 

ℛ𝐹𝐹𝐷 =
3

2
. 

2.6.4.1.3 Best fit algorithm (BF) 

Best fit algorithm (BF) keeps track of the residual capacity of the open bins and assigns each 

item to a bin having the maximum fill. If the item is not packable in any of the open bins, a 

new bin will be opened to pack it. For BF, worst-case performance ratio is derived in [30] 

as: 

ℛ𝐵𝐹 =
17

10
. 

 

2.6.4.1.4 Best fit decreasing algorithm (BFD) 

Best fit decreasing algorithm is a best fit (BF) algorithm with the difference that items are 

sorted in descending order of weights in advance. For BFD, worst-case performance ratio is 

derived in [31] as being: 

ℛ𝐵𝐹𝐷 =
3

2
. 
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2.6.4.2 Heuristics and meta-heuristics 

2.6.4.2.1 First fit algorithm with 𝒏 pre-allocated-items (FF-𝒏) 

This recently proposed algorithm first opens a separate bin for each of the items having 

weights greater than half of the capacity, and then packs the rest of the items by applying 

first fit algorithm on random permutation of the remaining set of items [27].  

2.6.4.2.2 BISON 

Proposed by Scholl et al., in [32], the fast hybrid procedure for exactly solving BPP 

(BISON) employs tabu search and a branch-and-bound procedure. 

2.6.4.2.3 HI_BP 

The hybrid improvement heuristic (HI_BP) proposed by Alvim et al., in [33] is inspired by 

the BISON method of Scholl et al., in [32], and the authors bring the reduction technique of 

Martello and Toth [34] into their method to improve the quality of the solutions obtained. 

Basically, the reduction technique of Martello and Toth proposed in [34], includes a 

dominance criterion and a sufficient condition to investigate the dominance relation among 

bins, and it suits well the relatively easy BPP instances where the distribution of the weights 

is uniform and the problem contains as much as large items as the small ones. 

2.6.4.2.4 Perturbation-SAWMBS 

Fleszar and Charalambous in [35], proposed an average-weight-controlled bin oriented 

heuristic for BPP (Perturbation-SAWMBS) in which an operator is employed to avoid early 

packing of the small items which is the tendency of the majority of the heuristics for BPP 

and usually causes undesired impacts on the outcome of the procedures. 

2.6.4.2.5 Hybrid grouping genetic algorithm (HGGA) 

The evolutionary hybrid grouping genetic algorithm for BPP (HGGA) is one of the first 

successful implementation of the population-based algorithms to explore the solution space 

of BPP. Falkenauer in [36], used problem-oriented crossover, mutation, and selection 

operators along with the dominance criterion of Martello and Toth reported in [34], to derive 

an upper bound for BPP. 
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2.6.4.2.6 Grouping genetic algorithm with controlled gene transmission (GGA-

CGT) 

Proposed by Quiroz-Castellanos et al., in [27], grouping genetic algorithm with controlled 

gene transmission (GGA-CGT) advances the operators of its mother-type algorithm, HGGA, 

to improve the quality of the solutions found for BPP. The method GGA-CGT, currently 

outperforms all the other heuristic and meta-heuristic methods from the literature. Yet, it 

fails to find optimal solutions for some benchmark instances. 

2.6.4.2.7 Weight annealing heuristic (WA) 

Weight annealing heuristic (WA), for solving BPP was proposed by Loh et al., [37]. 

Basically, in the weight annealing approach, weights of the items packed in bins are inflated 

to allow more movements between the items of different bins to perform local searches with 

the aim of obtaining better solutions for the BPP. Subsequently, the inflation rate is 

decreased through execution of further iterations of the algorithm, and this resides at the 

core of the annealing process. At the final iteration of the weight annealing, the inflation rate 

becomes zero which corresponds to the original landscape of the problem.  
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2.6.5 Algorithms for solving pricing sub-problem (one-dimensional knapsack problem) 

The literature of the methods of solving one-dimensional knapsack problems is rich and this 

is due to its vast use in operational research as a constitutive model that is widely 

encountered. Different methods and reduction schemes exist to exactly solve one-

dimensional knapsack problems in most of which, dynamic programming and branch-and-

bound procedures are extensively used [1]. These simple dynamic programming and branch-

and-bound procedures could solve weakly correlated and uncorrelated instances to 

optimality, even for large numbers of items [38]. Weakly correlated instances are those for 

which the correlation between profit and weight of each item is loose. Also, for uncorrelated 

instances, there exist no correlation between profit and weight of each item. 

However, for strongly correlated instances, more advanced methods should be employed to 

solve the problem to optimality. An extreme case of strongly correlated instances could be 

seen in subset-sum knapsack problems where profit and weight of each item are equal. Were 

it to be the case, branch-and-bound procedure would be completely ineffective [39]. The 

reason for this is that the majority of the upper bounding techniques for one-dimensional 

knapsack problems rely on the associated efficiencies. An efficiency of a specific item 𝑖 in 

model (2.8) is defined as: 

𝑒𝑖 =
𝜋𝑖

𝑤𝑖
. 

Since in subset-sum knapsack problems, all of the efficiencies of items take the value 1, all 

of the mentioned upper bounds give the trivial value of capacity 𝑐. Therefore, catastrophic 

behavior of the branch-and-bound procedure is not far-fetched, because with a lack of an 

upper bound, the procedure will turn into a complete enumeration of the tree. 

To this end, more advanced methods should be invoked to solve strongly correlated and 

subset-sum knapsack problems. Among such methods, the branch-and-bound scheme of 

Martello and Toth reported in [40], is notable where the authors use Lagrangian relaxations 

of the cardinality constraints generated from extended covers, to derive strong upper bounds 

for their scheme. Also, Pisinger in [41], initializes his proposed dynamic programming 

scheme by a core problem, and then the core is expanded until the optimal solution is 

obtained. The method proposed by Pisinger is able to handle strongly correlated knapsack 
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problems even for numbers of items as large as 10000. Moreover, Martello et al., in [38], 

take advantage of the concept of the core problem introduced in [41], and initialize their 

dynamic programming scheme with a more sophisticated core problem, compared to the one 

proposed in [41]. Also, the authors of [38], utilize surrogate relaxation of the cardinality 

constraints to derive strong upper bounds in each state of the dynamic programming. All in 

all, satisfying results are obtained by using the method of Martello et al., proposed in [38], 

for solving one-dimensional knapsack problems where all kinds of instances with different 

correlations could be solved in less than a second, including the case of large-scale problems 

with 10000 items. 
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2.7 Benchmark instances 

During the past twenty years, different classes of instances have been suggested to evaluate 

the performance of the methods proposed for solving BPP. Among these classes, the 

following ones have gained more attention due to the difficulties they entail. 

1) Uniform class: This class of instances was proposed by Martello and Toth in [34], where 

the weights of the items are uniformly random between [20,100], and items are to be packed 

in bins of capacity 𝑐 = 150. Later, Falkenauer in [36], used 120, 250, 500, and 1000 items, 

each of which having a weight drawn from the uniform distribution mentioned above, to test 

the performance of HGGA. These uniform classes, each of them, containing 20 instances, 

are known as u120, u250, u500, and u1000. It is worth mentioning that all the instances of 

the uniform class hold IRUP. 

2) Triplet class: In this class proposed by Falkenauer in [36], weights of items are drawn 

uniformly from the interval (0.25,0.50), and the capacity of the bins are set to 𝑐 = 1 . 

Different classes of triplets are available with 60, 120, 249, and 501 items, and are named 

t60, t120, t249, and t501, respectively. The reason these instances are called triplets is that 

the optimal solution always contains three items; one big item and two small ones where the 

big item is defined to have a weight greater than the third of the bin capacity and the small 

item is defined to have a weight less than the third. It should also be noted that all the 

instances belonging to this class hold RUP. 

3) Hard28 class: This class is a collection of the 28 most difficult instances for BPP which 

was gathered by Belov et al., in [8]. This class is composed of items having RUP, IRUP, and 

MIRUP. For this reason, it is not easy to propose a generalized method to solve all the 

instances of this class, and this is observable in performance of state-of-the-art methods 

where none of them have been able to find the optimal solution for all the 28 instances. 
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The other notable benchmark instances are listed in table (2.1): 

Table 2.1 Classes of benchmark instances for BPP 

Class Authors Reference 

Data Set 1 Scholl et al. [32] 

Data Set 2 Scholl et al. [32] 

Data Set 3 Scholl et al. [32] 

Was 1 Schwerin and Wȁscher [47] 

Was 2 Schwerin and Wȁscher [47] 

Gau 1 Wȁscher and Gau [48] 
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Chapter 3 

 

Solving the master problem by column generation 

 

Recalling that the set-covering formulation of BPP (2.7) developed by Gilmore and Gomory 

in [7], which will serve as the master problem of our column generation procedure is defined 

as: 

min∑ 𝜆𝑘

𝑃′

𝑘=1
 

∑ 𝑥𝑖𝑘𝜆𝑘 ≥ 1𝑃′

𝑘=1                    𝑖 = 1,… , 𝑛      

𝜆𝑘 ∈ {0,1}                            𝑗 = 1,… , 𝑃′. 

Where 𝜆𝑘  is a feasible loading pattern, 𝑥𝑖𝑘 = 1  if item 𝑖  is assigned to pattern 𝑘 , and 0 

otherwise, and where 𝑃′  denotes an upper bound for the number of the feasible loading 

patterns. 
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3.1 Restricted master problem (RMP) 

Column generation procedure starts with defining the restricted master problem (RMP). 

Singleton bins where each item is accommodated in a separate bin can be used to define the 

RMP. This solution is an obvious and, at the same time, the most expensive upper bound of 

BPP. To reduce the number of the generated patterns during the procedure of column 

generation, it is beneficial to employ FFD-based algorithms to define the RMP.  

FFD establishes the solutions by first sorting the items in the descending manner of their 

weights, and then a bin is opened and the first item is assigned to this bin. For the rest of the 

items, if they fit into the residual capacity of the open bins, they are accommodated, 

otherwise a new bin will be opened and this process will be continued until all the items are 

packed.  

To illustrate how FFD works, the example given by Martello in [34] is treated.  

Example 3.1 

Assume the weights 𝐖 = [99,94,79,64,50,46,43,37,32,19,18,7,6,3] are given for a set of 

𝑛 = 14 items, and the goal is to pack these items in the minimum number of the identical 

bins of capacity 𝑐 = 100.  

Following the steps of FFD, the following packing configuration of items into the bins is 

obtained: 

𝐵1 = {1}, 𝐵2 = {2,13}, 𝐵3 = {3,10}, 𝐵4 = {4,9,14}, 𝐵5 = {5,6}, 𝐵6 = {7,8,11}, 𝐵7 = {12}. 

To make use of these solutions to define RMP, solutions should be converted into a matrix 

form where the columns of the matrix account for each pattern and the rows are 

representatives of the items. The matrix illustrated below, incarnates a BFS for the RMP of 

our example. 
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BFS =

1
2
3
4
5
6
7
8
9
10
11
12
13
14 [

 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 1]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

As it is notable, this matrix is not a square one whereas the matrix used as the basis in 

revised simplex method should be a square matrix. At this point, heuristics might come in 

handy to add columns to the matrix and make it square. Here, the simplest technique would 

be to add singleton bins starting from the first item. The result of the augmentation could be 

seen in the following matrix: 

BFS =

1
2
3
4
5
6
7
8
9
10
11
12
13
14 [

 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 

. 

However, when one pays more attention to this square matrix, its rank is less than the 

dimension of the matrix since there are duplicated columns present in the matrix. That is, the 

determinant of the matrix is 0, and consequently it is not invertible to be used as the basis 

for RMP. To this end, further manipulations should be carried out to make it invertible. 

Instead of performing more operations on the matrix depicted above, we propose a simple 

heuristic based on FFD to warm start the column generation. This process starts by defining 

a lower triangular matrix where all the elements on the diagonal are unity, and then filling 

the lower triangular elements based on a FFD algorithm. Having a diagonal of ones ensures 
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the independency of the columns as well as the independency of the rows and consequently 

existence of the inverse matrix. The formal description of this algorithm is presented in table 

(3.1). 

Table 3.1 Pseudo-code for FFD-based BFS algorithm 

algorithm FFD-based BFS 

Input: number of items (n), weights of the items (𝐖1×n), bin capacity (c) 

Output: square matrix BFS 

Step 1. Define a lower triangular square matrix of dimension n called BFS with diagonal all 
ones. 

Step 2. For  j=1 to n-1 

For  i=j+1 to n 

If  (𝐖)(𝐁𝐅𝐒j) + 𝐖i ≤ c 

𝐁𝐅𝐒i,j = 1 

Else 

𝐁𝐅𝐒i,j = 0 

End of i loop 

End of j loop 

Step 3. Output is BFS. 

 

Applying FFD-based BFS algorithm to items of example (3.1), we get the following BFS 

𝐁𝐅𝐒 =

1
2
3
4
5
6
7
8
9
10
11
12
13
14 [

 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 0 1 1 1 1 1 0 0
0 1 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1]
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Although FFD-based BFS algorithm provides relatively a good starting point for the revised 

simplex method compared to singleton bins, it might be possible for basic solutions of the 

revised simplex method to take on negative values when such a BFS is used to define the 

master problem. Values of the basic solutions could be denoted by 𝐗𝐵 . However, naïve 

implementation of the revised simplex method relies upon the positive values of 𝐗𝐵  for 

determination of the leaving pattern of basis. We will discuss the details of the revised 

simplex method later in this chapter, and for the moment let us see how 𝐗𝐵 is updated 

during column generation procedure. Considering the right hand side of the constraints to be 

b=𝟏𝑛×1 in model (2.7), 𝐗𝐵 is derived as: 

(𝐁𝐅𝐒)(𝐗𝐵) = (b)                                                   (3.1) 

or, equivalently we have: 

(𝐗𝐵) = (𝐁𝐅𝐒)−1(b)                                                (3.2) 

where (𝐁𝐅𝐒)−1 denotes the inverse of 𝐁𝐅𝐒. 

Back to example (3.1), by applying Gaussian elimination to solve (3.1) we get the following 

𝐗𝐵 = [1 1 1 1 1 0 1 0 0 −1 2 0 −1 −1]𝑇. 

Vector 𝐗𝐵  derived for this example contains negative elements and special treatments 

should be applied since negative values of 𝐗𝐵reflect the infeasibility of the basic solutions. 

Typically, primal-dual simplex methods are invoked in such cases to solve the problem to 

optimality, but inasmuch as our interest is to implement the standard revised simplex 

method, a refinement step will be performed on 𝐗𝐵  to ensure the positive values of the 

elements of 𝐗𝐵. 

Definition 3.1 Function 𝐓𝐫𝐢𝐚𝐧𝐠𝐮𝐥𝐚𝐫𝐔𝐩(𝐁𝐅𝐒, 𝐤) 

Function TriangularUp(𝐁𝐅𝐒, k) returns all the elements on and above the k
th

 diagonal of the 

BFS. 

For instance, TriangularUp(𝐁𝐅𝐒, 0)  will return the same matrix as BFS, and 

TriangularUp(𝐁𝐅𝐒, 5) will return the following matrix where all the elements below the 5
th

 

diagonal are zero. 
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𝐁𝐅𝐒 =

1
2
3
4
5
6
7
8
9
10
11
12
13
14 [

 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Obviously, TriangularUp(𝐁𝐅𝐒, 0)  will have a positive 𝐗𝐵 , but we are interested in 

including as many items as possible into the bins while preserving the positive sign of the 

𝐗𝐵. The straightforward implementation of refinement process would then be starting from 

the main diagonal, increasing 𝑘 and computing the 𝐗𝐵, and continuing the process until a 

negative 𝐗𝐵 is met. However, having more items packed in the bins suggests a better warm 

start for column generation. Thus, the refinement process needs to be performed backwards. 

This means, refinement starts from the last diagonal and 𝑘 is decreased until a desired BFS 

(BFS that leads to a positive 𝐗𝐵) is encountered.  

One might argue that the latter approach for refinement has an expensive computational time 

for large matrices since in the worst case 𝑛 diagonals should be evaluated, and for each 

diagonal Gaussian elimination should be employed to solve the system of linear equations. 

This is generally true, but what makes the use of such an approach an affordable one, is the 

fact that generating a good BFS as the starting point of column generation has direct impacts 

on the computational time of the procedure. Warm starting the column generation usually 

reduces total number of the patterns generated during the procedure by a factor of several 

thousand even for BPPs with relatively small dimensions. It should also be noted that 

running time of Gaussian elimination is negligible compared to generating new patterns by 

solving one-dimensional knapsack problems. 

The pseudo-code for FFD-based BFS with refinement is presented in Table (3.2). 

𝑘 = 0 

𝑘 = 5 
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Table 3.2 Pseudo-code for FFD-based BFS with refinement algorithm 

algorithm FFD-based BFS with refinement 

Input: number of items (n), weights of the items (𝐖1×n), bin capacity (c), right hand side of the 
constraints (𝐛n×1) 

Output: square matrix BFS 

Step 1. Define a lower triangular square matrix of dimension n called BFS with diagonal all 
ones. 

Step 2. For  j=1 to n-1 

For  i=j+1 to n 

If  (𝐖)(𝐁𝐅𝐒j) + 𝐖i ≤ c 

𝐁𝐅𝐒i,j = 1 

Else 

𝐁𝐅𝐒i,j = 0 

End of i loop 

End of j loop 

Step 3. For  k= n to 0 

𝐁𝐅𝐒 ← TriangularUp(𝐁𝐅𝐒, k) 

𝐗B = (𝐁𝐅𝐒)−1(𝐛) 

If all elements of  𝐗B are non-negative 

Break 

Else 

Continue  

End of k loop 

Step 4. Output is BFS. 

 

For the instance from example (3.1), the desired BFS is found on the 6
th

 diagonal by 

applying FFD-based BFS with refinement algorithm, and the matrix is indicated in the 

following as being: 
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𝐁𝐅𝐒 =

1
2
3
4
5
6
7
8
9
10
11
12
13
14 [

 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1]

 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

Note should be made that number of the items lost from the bins due to applying refinement 

process can vary from one problem to another. For the current example, refinement process 

eliminates only %11 of the items packed in the bins. 

 

  

𝑘 = 6 
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3.2 Revised simplex method 

Having defined the RMP by the BFS we derived in the last section, the components of 

revised simplex method including values of the basic solutions, shadow prices, and inverse 

of the basis will be computed. Afterwards, a new entering pattern will be generated by 

solving the one-dimensional knapsack problem, and it will replace the leaving pattern of the 

basis. Ratio test is the tool to determine the leaving pattern. Then, the inverse of the basis 

will be updated by using information obtained from entering pattern, and this process will be 

continued until a termination condition is met. In minimization linear models, revised 

simplex method ends whenever all the non-basic patterns with positive reduced costs are 

exhausted. From a practical point of view, considering a tolerance instead of an absolute 

zero to determine the positive attribute of the reduced costs is essential to terminate the 

column generation. The details of the revised simplex method are presented in the Table 

(3.3). 

Table 3.3 Pseudo-code for revised simplex algorithm 

Algorithm revised simplex  

Input: number of items (n), weights of the items (𝐖1×n), bin capacity (c), right hand side of the 
constraints (𝐛 = 𝟏n×1), coefficients of the patterns in objective function (𝐂 = 𝟏n×1), 𝐁𝐅𝐒, 
TolCG = 10−10 

Output: Final basis of revised simplex method (B), values of the basic solutions (𝐗𝐁), optimal 
value of the problem (OPTCG) 

Step 1. 𝐁 ← use FFD-based BFS with refinement algorithm to generate BFS 

Step 2. 𝐁−1 ← Find inverse of matrix B 

Step 3. While true 

𝐗B = (𝐁−1)(𝐛) 

𝚷 = (𝐂T)(𝐁−1) 

OPT = (𝚷)(𝐛) 

// Finding the entering column 

Solve the knapsack problem {max(𝚷)(𝐗e) subject to (𝐖)(𝐗e) ≤ c, 𝐗e ∈ {0,1}}        

// Computing the reduced cost         

r = 𝚷𝐗e − 1 

If r ≤ TolCG 

Optimality is proved 

Break 
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Else 

𝐗̅e = (𝐁−1)(𝐗e) 

If  𝐗̅ei
≤ 0   ∀i = 1,2,… , n 

Problem is unbounded 

Break  

Else 

// Finding the leaving row 

l = argmini {
𝐗Bi

𝐗̅ei

}  𝐗̅ei
> 0  for  i = 1,2, … , n 

pivot = 𝐗̅el
 

// Updating the inverse matrix 

Define the identity matrix A 

𝐀i
l = −

𝐗̅ei

pivot
  for  i = 1,2,… , n, i ≠ l 

𝐀i
l =

1

pivot
 for  i = l 

𝐁−1 ← (𝐀)(𝐁−1) 

// Updating the basis 

𝐁l = 𝐗e 

End of while loop 

Step 4. Output is B, 𝐗B, OPTCG. 

 

Following example illustrates iterations of the revised simplex algorithm. 

Example 3.2 

Given 𝑛 = 4, 𝐖 = [79,64,32,19], and 𝑐 = 100 , our aim is to pack all the items in the 

minimum number of the bins used. 

First, BFS is established using FFD-based BFS with refinement algorithm and it is called 

matrix B. 

𝐁 = [

1 0 0 0
0 1 0 0
0 1 1 0
1 0 1 1

] 
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𝐁−1 = [

1 0 0 0
0 1 0 0
0 −1 1 0

−1 1 −1 1

] 

Iteration 1: 

𝐗𝐵 = (𝐁−1)(𝐛) = [

1 0 0 0
0 1 0 0
0 −1 1 0

−1 1 −1 1

] [

1
1
1
1

] = [

1
1
0
0

] 

 

𝚷 = (𝐂𝑇)(𝐁−1) = [1 1 1 1] [

1 0 0 0
0 1 0 0
0 −1 1 0

−1 1 −1 1

] = [0 1 0 1] 

OPTCG = (𝚷)(𝐛)= [0 1 0 1] [

1
1
1
1

] = 2 

𝐗𝑒 = [

0
1
0
1

] 

𝑟 = 𝚷𝐗𝑒 − 1 = [0 1 0 1] [

0
1
0
1

] − 1 = 1 

𝐗̅𝑒 = (𝐁−1)(𝐗𝑒) = [

1 0 0 0
0 1 0 0
0 −1 1 0

−1 1 −1 1

] [

0
1
0
1

] = [

0
1

−1
2

] 

𝑙 = argmin𝑖 {
𝐗𝐵𝑖

𝐗̅𝑒𝑖

}  𝑋̅𝑒𝑖
> 0  𝑓𝑜𝑟  𝑖 = 1,2,… ,4 ⇒ 𝑙 = 4 

𝑝𝑖𝑣𝑜𝑡 = 𝐗̅𝑒𝑙
= 𝐗̅𝑒4

= 2 

𝐀 = [

1 0 0 0
0 1 0 −0.5
0 0 1 0.5
0 0 0 0.5

] 

𝐁−1 ← (𝐀)(𝐁−1) = [

1 0 0 0
0 1 0 −0.5
0 0 1 0.5
0 0 0 0.5

] [

1 0 0 0
0 1 0 0
0 −1 1 0

−1 1 −1 1

] = [

1 0 0 0
0.5 0.5 0.5 −0.5

−0.5 −0.5 0.5 0.5
−0.5 0.5 −0.5 0.5

] 

𝐁𝑙 = 𝐗𝑒 ⇒ 𝐁4 = 𝐗𝑒 ⇒ 𝐁 = [

1 0 0 0
0 1 0 1
0 1 1 0
1 0 1 1

] 
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Iteration 2: 

𝐗𝐵 = (𝐁−1)(𝐛) = [

1 0 0 0
0.5 0.5 0.5 −0.5

−0.5 −0.5 0.5 0.5
−0.5 0.5 −0.5 0.5

] [

1
1
1
1

] = [

1
1
0
0

] 

𝚷 = (𝐂𝑇)(𝐁−1) = [1 1 1 1] [

1 0 0 0
0.5 0.5 0.5 −0.5

−0.5 −0.5 0.5 0.5
−0.5 0.5 −0.5 0.5

] = [0.5 0.5 0.5 0.5] 

 

OPTCG = (𝚷)(𝐛)=[0.5 0.5 0.5 0.5] [

1
1
1
1

] = 2 

𝐗𝑒 = [

0
0
1
1

] 

𝑟 = 𝚷𝐗𝑒 − 1 = [0.5 0.5 0.5 0.5] [

0
0
1
1

] − 1 = 0 ≤ 𝑇𝑜𝑙𝐶𝐺 

Algorithm is terminated, and outputs are: 

𝐁 = [

1 0 0 0
0 1 0 1
0 1 1 0
1 0 1 1

] , 𝐗𝐵 = [

1
1
0
0

] , OPTCG = 2.  
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3.3 Computational results 

In this section we depict the results of warm starting the column generation versus starting 

by singleton bins in figures (3.1) to (3.5). MATLAB 2015b was used as the main hub of 

programming for the implementation purposes. Also, to solve the one-dimensional knapsack 

problem, the dynamic programming scheme of Martello et al., presented in [38], was 

employed. The C program code of this method is available online [49]. The C program code 

was downloaded and modified to be called from MATLAB 2015b. 

The x-axis in figures (3.1) to (3.5) denotes each instance of a particular class and the y-axis 

shows total number of the columns generated during column generation procedure. 

Experiments to investigate effects of warm starting column generation were performed on 

u120, u250, t60, t120, and Hard28 class of benchmark instances. 

As observed from the figures (3.1) to (3.5), FFD-based BFS with refinement algorithm 

reduces number of columns generated for the majority of the instances. However, this 

algorithm does not have a stable behavior, and for some instances starting from singleton 

bins results in a less number of columns generated. What accounts for this behavior of FFD-

based BFS with refinement algorithm, is the fact that first fit decreasing algorithm fails to 

provide a strong upper bound for BPP for instances of triplets. Therefore, the starting point 

produced by FFD-based BFS with refinement algorithm might compel column generation to 

start off searching from a more distant point from the optimal one compared to the starting 

point provided by singleton bins. 
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Figure 3.1 Comparison of number of columns generated during column generation procedure for class u120. 

 

 

 

 

Figure 3.2 Comparison of number of columns generated during column generation procedure for class u250. 
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Figure 3.3 Comparison of number of columns generated during column generation procedure for class t60. 

 

 

 

 

Figure 3.4 Comparison of number of columns generated during column generation procedure for class t120. 
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Figure 3.5 Comparison of number of columns generated during column generation procedure for class 

Hard28. 
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Chapter 4 

 

An upper bound for BPP using solutions of the 

continuous relaxation of set-covering formulation of 

BPP (SCCUB) 

 

4.1. SCCUB procedure 

In this chapter we introduce a new upper bounding procedure for BPP which uses solutions 

of the continuous relaxation of set-covering formulation presented in model (2.7). This 

bound is called SCCUB (abbreviation for Set-Covering Continuous Upper Bound).  

The rationale for the development of SCCUB is that LP solutions of BPP are near-optimal 

(optimal), and it is possible to derive a high quality bound by merely using these solutions. 

In fact, the notion that column generation procedure has decided to choose these patterns as 

the basic solutions of LP out of the exponential number of the patterns in the search space, 

asserts the near optimality of these solutions. 
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The simple, yet powerful SCCUB procedure is developed based on the following few 

premises: 

Premise 1: The process of solving LP relaxation of BPP by column generation is a time-

consuming process, and not only should the LP bound be used in further procedures like 

branch-and-price method, but also the LP solutions should be utilized to construct an upper 

bound for BPP to make the benefits of performing the column generation twofold: 1- 

Finding a strong lower bound for BPP. 2- Deriving a strong upper bound for BPP in a short 

amount of time. 

Premise 2: Any procedure involving column generation to establish the upper bound for 

BPP by using LP solutions should reduce the dimension of the problem significantly to 

ensure that the upper bound will be derived shortly after the lower bound is obtained. 

Once the basic patterns are available following the termination of the column generation, the 

procedure of constructing the upper bound using these patterns will be started. To articulate 

the premises, however, one should first investigate the structure of the LP patterns. The 

following definition will be the starting point of our investigation. 

Definition 4.1 Counterpart patterns 

The pattern(s) of basis complementing the value of a certain basic pattern 𝜆𝑘, is (are) called 

counterpart(s) of 𝜆𝑘. 

At the beginning of the upper bounding procedure, all basic patterns are placed in a 

candidate pool of upper bound solutions. Motivated by reduction of the dimension of the 

problem significantly, one might attempt to include all the members of the candidate pool 

into the upper bound solution. However, Definition (4.1) implies that inclusion of a certain 

pattern in the upper bound solution means exclusion of its counterpart(s) from the candidate 

pool. Hence, not all of the candidate patterns could be used in the upper bound solution and 

a criterion needs to be formulated to guide selection of the most desired basic patterns. 

There might be different criteria for selecting some of the basic patterns and locating them 

into the upper bound solution. The filling factor of the basic patterns, dominance relations 

among the basic patterns, values that basic patterns take on, and number of the counterparts 

for each candidate pattern are some of the possible criteria, to name a few. In this research, 
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we are motivated to know how effective the criterion that involves considering the values of 

the basic patterns is. 

We mentioned before that solutions of LP relaxation are valuable from the point of view that 

column generation process agrees on their presence in the basis. Indeed, what distinguishes 

column generation from other lower bounding techniques for BPP is its systematic approach 

towards solving LP relaxation of the problem. Therefore, the values column generation 

assigns to the basic patterns are as important as its capability to choose basic patterns among 

exponential number of the feasible loading patterns. Roughly speaking, the higher the value 

of a basic pattern is, the more importance has column generation put on this pattern. In 

summary, values of the basic solutions can provide a good criterion to include basic patterns 

in the upper bound solution.  

Proposition 4.1 Selecting combination of the patterns having values greater than 0.5 has the 

minimum operational cost for selection of the combination of the patterns from candidate 

pool. 

Proof Summation of the value of a specific basic pattern with the value(s) of its 

counterpart(s) is always 1. Thus, it is impossible for a pattern of value greater than 0.5 to 

have a counterpart of value greater than 0.5, and we can fix any combination of the basic 

patterns of value greater than 0.5 as the partial upper bound solutions without paying any 

operational cost for removing their counterparts from the candidate pool. 

Since our goal is to reduce the dimension of the problem as much as possible, the selection 

scheme could be described as selecting all the patterns having values greater than 0.5. We 

would like to point out that even though this selection scheme takes the least computational 

effort, selecting all the patterns having values greater than 0.5 as the partial solutions of the 

upper bound might not lead into the maximal reduction in the dimension of the problem. Put 

differently, there might be a combination of patterns from patterns of values greater than 0.5 

and patterns of values not greater than 0.5 that leads into the maximum elimination of the 

items of the problem. Nevertheless, our computational experiments reveal that on average 

%76  of the dimension of the problem is reduced by following this scheme which is 

remarkable in a sense that the residual problem can be solved cost-effectively thereafter. 
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In short, SCCUB procedure can be described as follows. Once the relaxation of the set-

covering formulation of BPP, presented in (2.7) is solved, all the basic patterns having 

values greater than 0.5 are fixed as the partial upper bound solutions. Then, the residual 

problem will again be solved by column generation and the same selection scheme will be 

applied to fix more patterns of the upper bound solution, and this process will be continued 

until all the items are fixed. SCCUB procedure is presented in Table (4.1). Also, it is noted 

that diving, where one always chooses the basic pattern with the highest value in order to get 

an upper bound for the problem, could be seen as a special case of SCCUB procedure. 

 

Table 4.1 Pseudo-code for procedure SCCUB 

Procedure SCCUB 

Input: number of items (n), weights of the items (𝐖1×n), bin capacity (c)  

Output: Upper bound solution (SCCUB) and optimal number of patterns (OPT(SCCUB)) 

Step1. Define SCCUB. 

Step2. While true 

Solve continuous relaxation of set-covering formulation of BPP by algorithm revised 
simplex. Return B and 𝐗B. 

Find basic patterns having values greater than 0.5. 

If no basic patterns is found with value greater than 0.5 

Add the pattern with the largest value to SCCUB. 

Else 

Add all the patterns having values greater than 0.5 to SCCUB. 

Eliminate items of SCCUB from W and update n. 

If n=0 

Break 

End of while loop 

Step 3. Outputs are SCCUB and OPT(SCCUB). 
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4.2 Computational results 

In this section, we solve LP relaxation of instances of u120, u250, u500, t60, t120, t249, 

t501, and Hard28, and we run SCCUB procedure presented in table (4.1) for each instance 

to derive the upper bound. The results are displayed in tables (4.3) to (4.10), and definition 

of the symbols used in this section and the following ones could be found in Table (4.2). 

Also, figures (4.1) to (4.8) represent a comparison of the quality of the upper bounds derived 

by using SCCUB procedure to those derived by using FF and FF-n algorithms. Furthermore, 

the known IPs for the instances are depicted in figures (4.1) to (4.8) in order to show how 

close SCCUB can approximate the known IP. Note should be made that for triplets, the 

outcome of FF-n algorithm does not differ from that of FF algorithm since in triplets, all the 

items have weights less than half of the bin capacity. Furthermore, the results shown for FF 

and FF-n are averaged over 100 replications. 

Table 4.2 Definition of the symbols 

Symbol Definition 

IP Integer programming value 

LP Linear programming relaxation value 

col0 Number of the columns generated columns at the root node, 

initializing BFS by singleton bins 

col0W Number of the columns generated at the root node, initializing 

BFS by FFD-based BFS with refinement algorithm (warm start) 

nod Average number of the nodes explored 

red0 Average number of the columns reduced at the root node 

red0% Average percentage of the columns reduced at root node 

(
red0

SCCUB
) 

t0 Average computational time at root node (seconds) 

toverall Average total computational time of the procedure (seconds) 

trelative  
𝑡𝑜𝑣𝑒𝑟𝑎𝑙𝑙

𝑡0
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As observed from the tables (4.3) to (4.10), SCCUB procedure provides a good upper bound 

for BPP. For all the uniform instances, SCCUB procedure is capable of finding the optimal 

solution, and for the rest of the instances it provides an upper bound with an only one extra 

bin from the optimal solution in case its value is not equal to the optimal solution. 

Relative time (trelative) introduced in the tables (4.3) to (4.10), measures the computational 

justifiability of SCCUB procedure. More precisely, this parameter shows how much extra 

time should be spent to find the SCCUB upper bound after the column generation procedure 

is terminated at the root node. On average, SCCUB procedure runs in %7  of the 

computational time of the column generation procedure at the root node. 

Another parameter represented in these tables is the reduction in the dimension of the 

problem by using SCCUB procedure (red0%). It is worth to note that this criterion does not 

measure reduction in the dimension of the problem item-wise; rather it only provides a 

measure of the percentage of the patterns added to the upper bound solution at the first 

iteration of SCCUB procedure. Nevertheless, on average, %76 of the patterns of the upper 

bound solutions are obtained right at the first iteration of the SCCUB procedure. 

Another important criterion which might bring insight into the performance of the SCCUB 

procedure is number of the nodes explored during SCCUB procedure which is on average 

4.9 for the instances of these three classes. 

Furthermore, as depicted in figures (4.1) to (4.8), SCCUB upper bounds dominate the ones 

obtained by applying FF algorithm, for all the instances of u120, u250, u500, t60, t120, t249, 

t501, and Hard28 classes. Also, SCCUB upper bounds dominate the FF-n ones for all the 

classes except instances of the class Hard28 where both methods manifest the same 

behavior.  

All in all, SCCUB procedure has a stable behavior, and it can be used as an upper bounding 

technique for BPP to impose a strong upper bound on the problem. 
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Table 4.3 Computational results of SCCUB for instances of U120 

Instance IP  LP col0 col0W  nod red0 red0% t0 toverall trelative SCCUB FF FF-n 

U120_00 48 47.2660 1398 1102 5 37 77 0.695 0.785 1.129 48 51.29 50.57 

U120_01 49 48.0486 1800 1479 5 42 86 0.918 0.988 1.075 49 51.67 50.93 

U120_02 46 45.2933 1416 1407 3 37 80 0.862 0.934 1.083 46 48.77 48.16 

U120_03 49 48.6260 1466 1527 4 43 88 1.006 1.058 1.051 49 52.67 52.04 

U120_04 50 49.0850 1549 1379 6 40 80 0.829 0.918 1.108 50 52.98 52.16 

U120_05 48 47.4898 1387 1445 3 38 80 0.860 0.911 1.059 48 51.34 50.16 

U120_06 48 47.5800 1454 1374 5 40 83 0.845 0.918 1.085 48 51.32 50.91 

U120_07 49 48.6599 1286 1080 4 38 78 0.680 0.746 1.096 49 52.66 51.97 

U120_08 50 49.9116 1380 1274 4 43 86 0.745 0.790 1.060 50 53.85 53.49 

U120_09 46 45.8000 1941 1552 4 39 85 0.946 0.990 1.045 46 49.23 49.01 

U120_10 52 51.2824 1358 1250 6 41 79 0.743 0.865 1.164 52 55.72 54.50 

U120_11 49 48.3929 1643 1285 4 43 88 0.766 0.832 1.085 49 52.31 51.21 

U120_12 48 47.8667 1239 1269 4 38 80 0.763 0.841 1.101 48 51.61 51.00 

U120_13 49 48.0133 1647 1548 4 36 73 0.939 1.030 1.096 49 51.85 50.91 

U120_14 50 49.1701 1418 1355 4 40 80 0.854 0.937 1.096 50 53.03 52.24 

U120_15 48 47.3841 1683 1593 5 41 85 0.960 1.013 1.055 48 51.19 50.26 

U120_16 52 51.3333 1381 1157 4 47 90 0.705 0.747 1.059 52 55.80 54.59 

U120_17 52 51.5000 1168 1006 3 46 88 0.708 0.739 1.044 52 56.01 54.60 

U120_18 49 48.3815 1473 1445 5 41 84 0.890 0.934 1.049 49 52.26 51.02 

U120_19 49 48.8639 1521 1532 3 43 88 0.918 0.959 1.043 49 52.77 51.86 

Minimum 46 45.2933 1168 1006 3 36 73 0.680 0.739 1.043 46 48.77 48.16 

Average 49.05 48.4974 1480 1352 4.2 40.6 82.9 0.831 0.896 1.079 49.05 52.41 51.57 

Maximum 52 51.5000 1941 1593 6 47 90 1.006 1.058 1.164 52 56.01 54.60 
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Table 4.4 Computational results of SCCUB for instances of U250 

Instance IP  LP col0 col0W  nod red0 red0% t0 toverall trelative SCCUB FF FF-n 

U250_00 99 98.5533 6706 5760 6 78 79 9.335 9.504 1.018 99 105.02 103.47 

U250_01 100 99.0267 6932 5581 5 85 85 9.159 9.266 1.011 100 105.70 104.08 

U250_02 102 101.4218 6643 6208 5 82 80 10.262 10.485 1.021 102 108.17 106.35 

U250_03 100 99.4267 5574 5298 6 78 78 8.928 9.099 1.019 100 105.77 104.72 

U250_04 101 100.6133 7081 5501 4 82 81 9.267 9.380 1.012 101 107.19 105.99 

U250_05 101 100.8267 5973 5723 3 80 79 9.627 9.766 1.014 101 107.61 106.39 

U250_06 102 101.0267 6469 5819 6 87 85 9.438 9.579 1.014 102 107.55 106.05 

U250_07 103 102.8852 6057 5359 3 86 84 8.887 9.033 1.016 103 110.01 108.53 

U250_08 105 104.9184 5139 4563 3 87 83 7.740 7.842 1.013 105 112.34 110.42 

U250_09 101 100.2014 6055 6054 4 85 84 10.333 10.471 1.013 101 107.02 105.94 

U250_10 105 104.3946 5377 5593 5 87 83 9.562 9.682 1.012 105 111.44 110.15 

U250_11 101 100.7133 6537 5976 4 84 83 9.970 10.069 1.010 101 107.62 106.38 

U250_12 105 104.9772 5662 5170 3 91 87 8.614 8.691 1.008 105 112.23 111.22 

U250_13 103 102.0407 4924 4724 6 86 84 7.469 7.600 1.017 103 109.15 107.01 

U250_14 100 99.1667 7401 6443 5 81 81 10.384 10.543 1.015 100 105.6 104.47 

U250_15 105 104.8611 5396 4763 3 91 87 8.146 8.212 1.008 105 112.1 110.08 

U250_16 97 96.5133 6814 6416 5 72 74 11.257 11.468 1.018 97 102.83 102 

U250_17 100 99.1667 6468 5440 6 82 82 9.196 9.365 1.018 100 105.59 104.25 

U250_18 100 99.7000 7363 5992 4 83 83 10.030 10.126 1.009 100 105.98 104.91 

U250_19 102 101.3600 5547 5383 6 84 82 8.858 8.975 1.013 102 108.21 107.4 

Minimum 97 96.5133 4924 4563 3 72 74 7.469 7.600 1.008 97 102.83 102 

Average 101.6 101.0897 6206 5588 4.6 83.5 82.2 9.323 9.458 1.013 101.6 107.85 106.49 

Maximum 105 104.9772 7401 6443 6 91 87 11.257 11.468 1.021 105 112.34 111.22 
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Table 4.5 Computational results of SCCUB for instances of U500 

Instance IP  LP col0 col0W  nod red0 red0% t0 toverall trelative SCCUB FF FF-n 

U500_00 198 197.5800 - 28231 5 160 81 210.056 210.596 1.002 198 209.38 207.15 

U500_01 201 200.8467 - 24837 5 167 83 200.846 208.834 1.039 201 212.20 209.99 

U500_02 202 201.4400 - 25785 7 159 79 196.818 197.652 1.004 202 213.20 210.36 

U500_03 204 203.8133 - 28321 5 175 86 210.582 210.911 1.001 204 215.68 213.46 

U500_04 206 205.1133 - 24228 5 172 84 175.703 176.158 1.002 206 217.32 214.41 

U500_05 206 205.0867 - 26012 6 173 84 203.465 203.907 1.002 206 217.45 215.11 

U500_06 207 206.9058 - 21242 4 184 89 149.977 150.192 1.001 207 219.89 216.37 

U500_07 204 203.9800 - 27470 4 177 87 217.750 218.033 1.001 204 215.83 213.88 

U500_08 196 195.6800 - 27734 7 158 81 201.133 201.654 1.002 196 206.89 204.96 

U500_09 202 201.0600 - 25437 6 170 84 201.060 215.984 1.074 202 212.76 210.99 

U500_10 200 199.0667 - 27786 6 157 79 200.400 201.018 1.003 200 210.74 207.33 

U500_11 200 199.4267 - 27806 6 161 81 223.483 224.369 1.004 200 211.19 209 

U500_12 199 198.6200 - 28893 7 164 82 228.878 229.263 1.001 199 209.73 207.80 

U500_13 196 195.5867 - 29987 6 153 78 223.679 224.288 1.002 196 206.41 204.86 

U500_14 204 203.0267 - 29498 6 174 85 239.334 239.788 1.001 204 214.42 212.49 

U500_15 201 200.1333 - 25527 6 159 79 242.047 242.694 1.002 201 211.81 209.97 

U500_16 202 201.0067 - 25860 8 152 75 231.250 232.780 1.006 202 212.23 210.05 

U500_17 198 197.4267 - 31398 6 158 80 304.924 305.825 1.003 198 208.62 207 

U500_18 202 201.2933 - 26035 5 173 86 211.808 212.095 1.001 202 213.12 211.10 

U500_19 196 195.6333 - 29348 7 164 84 283.622 284.212 1.002 196 207.03 205.30 

Minimum 196 195.5867 - 21242 4 152 75 149.977 150.192 1.001 196 206.41 204.86 

Average 201.2 200.6363 - 27071 5.8 165.5 82.4 217.840 219.512 1.007 201.2 212.29 210.07 

Maximum 207 206.9058 - 31398 8 184 89 304.924 305.825 1.074 207 219.89 216.37 
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Table 4.6 Computational results of SCCUB for instances of t60 

Instance IP  LP col0 col0W  nod red0 red0% t0 toverall trelative SCCUB FF FF-n 

t60_00 20 20.0000 399 376 1 20 100 0.199 0.215 1.080 20 22.72 - 

t60_01 20 20.0000 424 403 3 5 25 0.205 0.348 1.699 20 22.75 - 

t60_02 20 20.0000 396 462 3 16 80 0.241 0.276 1.147 20 22.97 - 

t60_03 20 20.0000 453 367 4 7 33 0.201 0.294 1.461 21 22.73 - 

t60_04 20 20.0000 432 460 4 18 86 0.226 0.282 1.247 21 22.74 - 

t60_05 20 20.0000 504 367 1 20 100 0.202 0.218 1.079 20 22.78 - 

t60_06 20 20.0000 448 371 5 16 76 0.204 0.266 1.303 21 22.68 - 

t60_07 20 20.0000 402 386 5 15 71 0.208 0.270 1.297 21 22.72 - 

t60_08 20 20.0000 388 496 5 8 40 0.251 0.381 1.520 20 22.62 - 

t60_09 20 20.0000 469 430 1 20 100 0.227 0.243 1.072 20 22.69 - 

t60_10 20 20.0000 425 454 5 14 67 0.227 0.296 1.305 21 22.77 - 

t60_11 20 20.0000 494 438 1 20 100 0.221 0.237 1.073 20 22.85 - 

t60_12 20 20.0000 431 422 5 11 52 0.218 0.297 1.362 21 22.76 - 

t60_13 20 20.0000 479 339 3 7 35 0.197 0.307 1.554 20 22.84 - 

t60_14 20 20.0000 454 425 1 20 100 0.224 0.241 1.077 20 22.84 - 

t60_15 20 20.0000 392 419 2 14 70 0.212 0.252 1.187 20 22.72 - 

t60_16 20 20.0000 443 499 1 20 100 0.252 0.268 1.061 20 22.95 - 

t60_17 20 20.0000 508 441 1 20 100 0.219 0.236 1.077 20 22.86 - 

t60_18 20 20.0000 414 391 1 20 100 0.204 0.221 1.081 20 22.78 - 

t60_19 20 20.0000 414 420 1 20 100 0.218 0.234 1.072 20 22.84 - 

Minimum 20 20.0000 388 339 1 5 25 0.197 0.215 1.061 20 22.62 - 

Average 20 20.0000 438 418 2.6 15.5 76.8 0.217 0.269 1.237 20.3 22.78 - 

Maximum 20 20.0000 508 499 5 20 100 0.252 0.381 1.699 21 22.97 - 
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Table 4.7 Computational results of SCCUB for instances of t120 

Instance IP  LP col0 col0W  nod red0 red0% t0 toverall trelative SCCUB FF FF-n 

t120_00 40 40.0000 957 998 5 29 71 0.631 0.718 1.138 41 45.06 - 

t120_01 40 40.0000 983 1116 4 32 78 0.692 0.768 1.110 41 44.88 - 

t120_02 40 40.0000 1048 969 5 28 68 0.629 0.714 1.135 41 45.12 - 

t120_03 40 40.0000 1116 1001 5 23 56 0.638 0.780 1.221 41 45.07 - 

t120_04 40 40.0000 1129 987 5 25 61 0.618 0.746 1.206 41 45.39 - 

t120_05 40 40.0000 1069 968 5 29 71 0.619 0.705 1.138 41 45.31 - 

t120_06 40 40.0000 957 1014 4 26 63 0.675 0.784 1.162 41 44.98 - 

t120_07 40 40.0000 958 988 6 30 73 0.723 0.813 1.125 41 45.15 - 

t120_08 40 40.0000 967 1077 6 27 66 0.727 0.834 1.145 41 45 - 

t120_09 40 40.0000 971 945 6 25 61 0.607 0.731 1.203 41 45.07 - 

t120_10 40 40.0000 1111 991 6 27 66 0.639 0.734 1.149 41 45.05 - 

t120_11 40 40.0000 1060 1107 5 28 68 0.734 0.821 1.119 41 45.26 - 

t120_12 40 40.0000 937 954 5 29 71 0.620 0.711 1.146 41 45.28 - 

t120_13 40 40.0000 1098 902 5 28 68 0.612 0.707 1.155 41 45.04 - 

t120_14 40 40.0000 962 1114 6 32 78 0.722 0.800 1.107 41 45.20 - 

t120_15 40 40.0000 985 957 5 25 61 0.649 0.758 1.168 41 45.06 - 

t120_16 40 40.0000 1007 1067 5 31 76 0.703 0.780 1.108 41 45.08 - 

t120_17 40 40.0000 1097 1057 5 30 73 0.664 0.745 1.121 41 45.30 - 

t120_18 40 40.0000 946 911 5 23 56 0.602 0.732 1.216 41 45.29 - 

t120_19 40 40.0000 1022 1124 5 32 78 0.734 0.814 1.108 41 45.26 - 

Minimum 40 40.0000 937 902 4 23 56 0.602 0.705 1.107 41 44.88 - 

Average 40 40.0000 1019 1012 5.1 27.9 68.1 0.661 0.759 1.149 41 45.1425 - 

Maximum 40 40.0000 1129 1124 6 32 78 0.734 0.834 1.221 41 45.39 - 
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Table 4.8 Computational results of SCCUB for instances of t249 

Instance IP  LP col0 col0W  nod red0 red0% t0 toverall trelative SCCUB FF FF-n 

t249_00 83 83.0000 - 2567 5 60 71 4.690 4.900 1.044 84 93.54 - 

t249_01 83 83.0000 - 2810 5 63 75 4.583 4.777 1.042 84 93.16 - 

t249_02 83 83.0000 - 2639 7 59 70 4.574 4.804 1.050 84 92.74 - 

t249_03 83 83.0000 - 2666 6 58 69 4.558 4.806 1.054 84 93.28 - 

t249_04 83 83.0000 - 2702 5 57 68 4.987 5.260 1.054 84 93.36 - 

t249_05 83 83.0000 - 2753 6 55 65 4.585 4.880 1.064 84 93.05 - 

t249_06 83 83.0000 - 2872 6 58 69 5.424 5.703 1.051 84 93.23 - 

t249_07 83 83.0000 - 2701 6 49 58 4.873 5.381 1.104 84 93.30 - 

t249_08 83 83.0000 - 2681 5 54 64 5.027 5.334 1.060 84 93.30 - 

t249_09 83 83.0000 - 2653 5 57 68 4.654 4.943 1.062 84 93.11 - 

t249_10 83 83.0000 - 2461 6 56 67 4.420 4.746 1.073 84 93.55 - 

t249_11 83 83.0000 - 2999 6 56 67 5.167 5.470 1.058 84 93.19 - 

t249_12 83 83.0000 - 2740 6 57 68 5.065 5.358 1.057 84 92.64 - 

t249_13 83 83.0000 - 2838 6 57 68 5.265 5.551 1.054 84 93.44 - 

t249_14 83 83.0000 - 2918 6 56 67 5.015 5.339 1.064 84 92.71 - 

t249_15 83 83.0000 - 2863 5 56 67 5.198 5.550 1.067 84 93.11 - 

t249_16 83 83.0000 - 2648 6 56 67 4.868 5.252 1.078 84 93.11 - 

t249_17 83 83.0000 - 2503 6 58 69 4.628 4.905 1.059 84 92.77 - 

t249_18 83 83.0000 - 2611 5 57 68 4.801 5.076 1.057 84 93.21 - 

t249_19 83 83.0000 - 2821 7 58 69 4.842 5.117 1.056 84 93.51 - 

Minimum 83 83.0000 - 2461 5 49 58 4.42 4.746 1.042 84 92.64 - 

Average 83 83.0000 - 2722 5.7 56.8 67.7 4.861 5.157 1.060 84 93.16 - 

Maximum 83 83.0000 - 2999 7 63 75 5.424 5.703 1.104 84 93.55 - 
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Table 4.9 Computational results of SCCUB for instances of t501 

Instance IP  LP col0 col0W  nod red0 red0% t0 toverall trelative SCCUB FF FF-n 

t501_00 167 167.0000 - 7727 7 102 61 66.437 69.126 1.040 168 187.41 - 

t501_01 167 167.0000 - 8002 6 109 65 72.544 74.507 1.027 168 187.40 - 

t501_02 167 167.0000 - 8057 8 111 66 70.569 72.484 1.027 168 186.32 - 

t501_03 167 167.0000 - 7790 5 113 67 76.333 78.034 1.022 168 186.40 - 

t501_04 167 167.0000 - 7336 7 107 64 64.056 66.019 1.030 168 186.70 - 

t501_05 167 167.0000 - 7725 5 106 63 66.357 68.324 1.029 168 187.11 - 

t501_06 167 167.0000 - 7543 6 111 66 62.456 64.085 1.026 168 186.58 - 

t501_07 167 167.0000 - 6955 6 109 65 63.195 65.338 1.033 168 186.62 - 

t501_08 167 167.0000 - 7339 6 106 63 65.143 67.660 1.038 168 186.45 - 

t501_09 167 167.0000 - 7902 6 107 64 61.868 63.783 1.030 168 186.84 - 

t501_10 167 167.0000 - 7731 6 111 66 61.457 63.041 1.025 168 186.86 - 

t501_11 167 167.0000 - 8127 5 102 61 63.171 65.124 1.030 168 186.34 - 

t501_12 167 167.0000 - 7362 6 118 70 56.929 58.090 1.020 168 187.12 - 

t501_13 167 167.0000 - 8059 6 112 67 64.075 65.424 1.021 168 186.74 - 

t501_14 167 167.0000 - 7656 7 109 65 63.349 64.982 1.025 168 187.02 - 

t501_15 167 167.0000 - 7493 7 104 62 56.923 58.949 1.035 168 186.64 - 

t501_16 167 167.0000 - 7673 6 107 64 59.282 61.070 1.030 168 186.81 - 

t501_17 167 167.0000 - 7328 6 108 64 56.973 58.785 1.031 168 186.88 - 

t501_18 167 167.0000 - 7857 7 105 63 61.315 63.418 1.034 168 186.89 - 

t501_19 167 167.0000 - 7923 6 111 66 61.907 63.480 1.025 168 187.61 - 

Minimum 167 167.0000 - 6955 5 102 61 56.923 58.090 1.02 168 186.32 - 

Average 167 167.0000 - 7679 6.2 108.4 64.6 63.716 65.586 1.02 168 186.83 - 

Maximum 167 167.0000 - 8127 8 118 70 76.333 78.034 1.04 168 187.61 - 
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Table 4.10 Computational results of SCCUB for instances of Hard28 

Instance IP  LP col0 col0W  nod red0 red0% t0 toverall trelative SCCUB FF FF-n 

BPP14 62 60.9980 12232 10232 4 50 81 7.882 7.990 1.013 62 65.86 62 

BPP832 60 59.9975 9766 8141 4 49 80 6.535 6.604 1.010 61 63.75 61 

BPP40 59 59.0091 17126 15058 6 43 72 11.602 11.806 1.017 60 63.01 60 

BPP360 62 62.0000 17051 13209 5 54 87 9.629 9.726 1.010 62 67.40 63.12 

BPP645 58 57.9990 18621 16853 5 47 80 13.005 13.106 1.007 59 61.70 59 

BPP742 64 64.0000 11753 9793 4 59 91 7.314 7.365 1.007 65 69.070 65 

BPP766 62 61.9990 13178 10310 4 55 87 8.133 8.201 1.008 63 66.24 63 

BPP60 63 62.9979 8279 6982 5 57 89 5.754 5.832 1.013 64 67.44 64.01 

BPP13 67 66.9997 19195 15637 5 51 75 13.962 14.173 1.015 68 72.38 68 

BPP195 64 63.9960 25907 22528 5 47 72 21.037 21.296 1.012 65 67.74 65 

BPP709 67 67.0000 15620 13845 4 53 78 12.803 12.953 1.011 68 71 68 

BPP785 68 67.9943 18733 16410 5 56 81 15.155 15.289 1.008 69 72.80 69 

BPP47 71 71.0000 18745 14327 5 62 86 12.219 12.317 1.008 72 76.87 72.02 

BPP181 72 71.9985 17697 16756 4 61 84 15.119 15.218 1.006 73 77.14 73 

BPP359 76 74.9983 13497 10582 5 63 83 9.753 9.841 1.009 76 80.74 76 

BPP485 71 70.9973 23993 19901 4 65 90 17.491 17.554 1.003 72 76.28 72 

BPP640 74 74.0000 15101 14594 5 63 84 12.376 12.475 1.008 75 80.37 75.01 

BPP716 76 75.0000 18542 14907 5 62 82 12.608 12.714 1.008 76 81.77 76.06 

BPP119 77 76.0000 18649 16849 5 55 71 18.902 19.153 1.013 77 80.87 77.37 

BPP144 73 73.0000 21362 19489 7 53 72 21.817 22.151 1.015 74 77.43 74 

BPP561 72 71.9960 26410 19972 5 55 75 21.996 22.205 1.009 73 75.81 73.27 

BPP781 71 70.9990 36921 31074 7 59 82 35.770 35.936 1.004 72 75.97 72 

BPP900 75 74.9961 20643 18426 5 59 78 19.607 19.775 1.008 76 80.26 76.10 
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Table 4.10 continued 

Instance IP  LP col0 col0W  nod red0 red0% t0 toverall trelative SCCUB FF FF-n 

BPP175 84 83.0000 19415 18074 5 74 88 19.224 19.317 1.004 84 90.26 84.13 

BPP178 80 79.9953 23428 20543 4 73 90 22.412 22.465 1.002 81 85.74 81 

BPP419 80 79.999 26310 21851 4 66 81 22.618 22.770 1.006 81 85.86 81 

BPP531 83 83.0000 21768 17403 5 73 87 16.432 16.521 1.005 84 90.25 84.38 

BPP814 81 81.0000 20879 18602 5 70 85 18.645 18.775 1.006 82 87.28 82.21 

Minimum 58 57.9990 8279 6982 4 43 71 5.754 5.832 1.003 59 61.7 59 

Average 67.3 67.0992 16752 14320 4.8 55.2 81.2 12.654 12.788 1.010 68.05 71.99 68.13 

Maximum 77 76.0000 25907 22528 7 65 91 21.817 22.151 1.017 77 81.77 77.37 
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Figure 4.1 Comparison of the upper bounds generated by SCCUB, FF, and FF-n with known IPs for instances 

of class u120. 

 

 

 

 

Figure 4.2 Comparison of the upper bounds generated by SCCUB, FF, and FF-n with  known IPs  for 

instances of class u250. 
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Figure 4.3 Comparison of the upper bounds generated by SCCUB, FF, and FF-n with  known IPs  for 

instances of class u500. 

 

 

 

 

Figure 4.4 Comparison of the upper bounds generated by SCCUB, FF, and FF-n with  known IPs  for 

instances of class t60. 
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Figure 4.5 Comparison of the upper bounds generated by SCCUB, FF, and FF-n with known IPs for instances 

of class t120. 

 

 

 

 

 

Figure 4.6 Comparison of the upper bounds generated by SCCUB, FF, and FF-n with known IPs for instances 

of class t249. 
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Figure 4.7 Comparison of the upper bounds generated by SCCUB, FF, and FF-n with known IPs for instances 

of class t501. 

 

 

 

 

Figure 4.8 Comparison of the upper bounds generated by SCCUB, FF, and FF-n with known IPs for instances 

of class Hard28. 
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Chapter 5 

 

Upper bounds for BPP using solutions of the 

continuous relaxation of set-covering formulation 

with an elimination operator -p (SCCUB-p) 

 

5.1. Procedure SCCUB-p 

In this chapter we improve the quality of the upper bounds obtained for BPP through 

application of SSCUB procedure, by introducing an elimination operator -p. This operator is 

simply a selection scheme for selecting a combination of the patterns from the candidate 

pool of SCCUB procedure at each of its steps. 

Observation 5.1 Excluding few patterns from the list of patterns having values greater than 

0.5 at each step of SCCUB procedure might lead to a better upper bound solution for BPP. 

In other words, although solutions of the continuous relaxation of set-covering formulation 

of BPP are near optimal, it might be the case that combination of all the basic patterns 

having values greater than 0.5 at each step of SCCUB procedure is not the best choice of 

constructing the partial upper bound solutions. To this end, some (all) of the patterns of that 
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step should not be included in the partial upper bound solution in order to get a strong upper 

bound at the end of the upper bounding procedure.   

We believe that it is possible to find a rule for exclusion of such undesired patterns based on 

information of the counterparts of the basic patterns and some dominance relations among 

them. However, our efforts for finding a general rule as the selection scheme governing all 

the instances of BPP were not successful, and it seems that combinations of different criteria 

should be employed to provide a rigorous selection scheme capable of selecting the right 

patterns having values greater than 0.5 at each step of SCCUB procedure. It is also 

emphasized that for a few instances of BPP selecting patterns having values greater than 0.5 

is not sufficient to construct a high quality partial upper bound solution. Rather, a good 

selection scheme should also consider basic patterns whose values are not greater than 0.5., 

as it should, as well find their best combination to be fixed as the partial upper bound 

solution. 

Nevertheless, in the current research, we prefer to deal with such problematic instances by 

using our branch-and-price method instead of extending the selection scheme to consider all 

the basic patterns. This is to keep the computational costs of the selection scheme in the 

minimum level. 

In this perspective, an elimination operator -p is introduced which eliminates %p of the 

patterns of each step of SCCUB procedure randomly. That is, at each step of SCCUB-p 

procedure, %p of the patterns are excluded from the list of the patterns having values greater 

than 0.5, and the remaining patterns of values greater than 0.5 will be considered as the 

partial solutions of the upper bound solution. It is worth mentioning that our traditional 

SSCUB procedure is a special case of SCCUB-p procedure where p = 0 and no pattern is 

eliminated from the list of patterns having values greater than 0.5. 

The details and pseudo-code of SCCUB-p procedure is found in table (5.1). 
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Table 5.1 Pseudo-code for procedure SCCUB-p  

Procedure SCCUB-p 

Input: number of items (n), weights of the items (𝐖1×n), bin capacity (c), percentage of 
patterns to be eliminated from list of patterns having values greater than 0.5 (p). 

Output: Upper bound solution (SCCUB-p) and number of optimal patterns (OPT(SCCUB-p)). 

Step1. Define SCCUB-p. 

Step2. While true 

Solve continuous relaxation of set-covering formulation of BPP by algorithm revised 
simplex. Return B and 𝐗B. 

Find basic patterns having values greater than 0.5. 

m ← number of patterns having values greater than 0.5  

If no basic patterns is found with value greater than 0.5 

Add the pattern with the largest value to SCCUB-p. 

Else 

e = ⌊ 
p

100
 × m ⌋ 

Randomly choose e patterns from list of the patterns with values greater than 0.5 
and eliminate them from the list. 

Add all the remaining patterns from list of the patterns with values greater than 0.5 
to SCCUB-p. 

Eliminate items of SCCUB-p from W and update n. 

If n=0 

Break 

End of while loop 

Step 3. Outputs are SCCUB-p and OPT(SCCUB-p). 
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5.2 Computational results 

In this section, experiments are carried out for the instances of triplets and Hard28 to show 

how SCCUB procedure could be improved by applying the elimination operator. Our 

previous experimental results from chapter 4, testify that optimal solution for uniform class 

of instances is found by using the simple SCCUB procedure, and employing SCCUB-p 

procedure will only increase the computational time of the procedure while providing the 

same tight upper bound. 

Designation of the proper value for the elimination operator –p requires further 

investigations on the structure of the BPP. In the present work, we only conduct our 

experiments with values of p = 0.25, 0.5, and 0.75. 

Tables (5.2) to (5.6) show the computed upper bounds by using SCCUB-p procedure for the 

instances of triplets and Hard28 with their corresponding relative times. Results for SCCUB-

25, SCCUB50, and SCCUB75 are averaged over100 replications.  

As observed from the tables, SCCUB50 and SCCUB75 find the optimal solution for 

majority of the instances of triplets and Hard28.  Specially, SCCUB75 solves some of the 

unsolved instances of Hard28 class. More exactly, SCCUB75 finds the optimal solution to 

24 instances of Hard28 class whereas the alleged state-of-the-art method only solves 16 of 

them. 

Furthermore, figures (5.1) to (5.10) compare the quality of the solutions found using 

SCCUB-p procedure for different values of p, and compare the average relative times of the 

procedure obtained for different values of p. These figures indicate a dramatic growth in the 

relative time of SCCUB75 procedure. On the one hand, quality of the solutions derived by 

SCCUB75 is high. On the other hand, on average as much as computational time spent to 

solve the root node by column generation, time needs to be spent on running each iteration 

of the SCCUB75 procedure. Therefore, an intelligent combination of the SCCUB-p upper 

bounding procedures should be designed to make the computational costs of our upper 

bounding technique affordable. Such a design will be presented in the next chapter. 
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Table 5.2 Computational results of SCCUB-p for instances of t60 

Instance IP  SCCUB-0 SCCUB-25 SCCUB-50 SCCUB-75 
trelative
SCCUB-0

 trelative
SCCUB-25

 trelative
SCCUB-50

 trelative
SCCUB-75

 

t60_00 20 20 20 20 20 1.080 1.080 1.080 1.080 

t60_01 20 20 20.79 20.63 20.82 1.699 1.565 1.877 2.218 

t60_02 20 20 20 20 20 1.147 1.098 1.235 1.553 

t60_03 20 21 20.87 20.67 20.37 1.461 1.337 1.501 2.138 

t60_04 20 21 20.95 20.60 20.18 1.247 1.069 1.213 1.444 

t60_05 20 20 20 20 20 1.079 1.079 1.079 1.079 

t60_06 20 21 21 21 20.85 1.303 1.117 1.312 1.865 

t60_07 20 21 20.96 20.83 20.27 1.297 1.110 1.292 1.523 

t60_08 20 20 20 20 20 1.520 1.301 1.391 1.589 

t60_09 20 20 20 20 20 1.072 1.072 1.072 1.072 

t60_10 20 21 21 21 20.86 1.305 1.130 1.310 1.830 

t60_11 20 20 20 20 20 1.073 1.073 1.073 1.073 

t60_12 20 21 20.86 20.55 20.42 1.362 1.189 1.371 1.867 

t60_13 20 20 20.22 20.35 20.18 1.554 1.547 1.704 2.120 

t60_14 20 20 20 20 20 1.077 1.077 1.077 1.077 

t60_15 20 20 20 20 20.03 1.187 1.120 1.205 1.470 

t60_16 20 20 20 20 20 1.061 1.061 1.061 1.061 

t60_17 20 20 20 20 20 1.077 1.077 1.077 1.077 

t60_18 20 20 20 20 20 1.081 1.081 1.081 1.081 

t60_19 20 20 20 20 20 1.072 1.072 1.072 1.072 

Minimum 20 20 20 20 20 1.061 1.061 1.061 1.061 

Average 20 20.30 20.33 20.28 20.19 1.237 1.162 1.254 1.464 

Maximum 20 21 21 21 20.86 1.699 1.565 1.877 2.218 
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Table 5.3 Computational results of SCCUB-p for instances of t120 

Instance IP  SCCUB-0 SCCUB-25 SCCUB-50 SCCUB-75 
trelative
SCCUB-0

 trelative
SCCUB-25

 trelative
SCCUB-50

 trelative
SCCUB-75

 

t120_00 40 41 40.79 40.88 40.62 1.138 1.187 1.466 2.306 

t120_01 40 41 40.99 40.9 40.66 1.110 1.146 1.497 2.421 

t120_02 40 41 40.89 40.82 40.66 1.135 1.235 1.628 2.488 

t120_03 40 41 40.96 40.75 40.6 1.221 1.345 1.792 2.872 

t120_04 40 41 40.91 40.8 40.66 1.206 1.302 1.677 2.778 

t120_05 40 41 40.95 40.84 40.64 1.138 1.195 1.613 2.626 

t120_06 40 41 40.79 40.85 40.66 1.162 1.260 1.62 2.573 

t120_07 40 41 40.98 40.84 40.71 1.125 1.191 1.578 2.426 

t120_08 40 41 40.97 40.83 40.63 1.145 1.182 1.549 2.531 

t120_09 40 41 40.89 40.89 40.7 1.203 1.320 1.673 2.711 

t120_10 40 41 41 40.9 40.76 1.149 1.229 1.612 2.736 

t120_11 40 41 40.96 40.88 40.64 1.119 1.190 1.554 2.508 

t120_12 40 41 40.88 40.83 40.54 1.146 1.223 1.590 2.445 

t120_13 40 41 40.85 40.79 40.57 1.155 1.259 1.657 2.741 

t120_14 40 41 40.91 40.89 40.72 1.107 1.145 1.456 2.364 

t120_15 40 41 40.76 40.82 40.59 1.168 1.297 1.654 2.646 

t120_16 40 41 40.94 40.85 40.6 1.108 1.152 1.442 2.459 

t120_17 40 41 40.98 40.87 40.66 1.121 1.174 1.576 2.538 

t120_18 40 41 40.92 40.81 40.63 1.216 1.381 1.781 2.925 

t120_19 40 41 40.99 40.8 40.71 1.108 1.138 1.424 2.410 

Minimum 40 41 40.76 40.75 40.54 1.107 1.138 1.424 2.306 

Average 40 41 40.9155 40.842 40.648 1.149 1.22755 1.59195 2.5752 

Maximum 40 41 41 40.9 40.76 1.221 1.381 1.792 2.925 



71 
 

Table 5.4 Computational results of SCCUB-p for instances of t249 

Instance IP  SCCUB-0 SCCUB-25 SCCUB-50 SCCUB-75 
trelative
SCCUB-0

 trelative
SCCUB-25

 trelative
SCCUB-50

 trelative
SCCUB-75

 

t249_00 83 84 83.87 83.79 83.59 1.044 1.134 1.392 2.260 

t249_01 83 84 83.95 83.85 83.61 1.042 1.112 1.367 2.249 

t249_02 83 84 83.88 83.79 83.64 1.050 1.137 1.404 2.244 

t249_03 83 84 83.93 83.85 83.57 1.054 1.155 1.441 2.350 

t249_04 83 84 83.93 83.8 83.53 1.054 1.153 1.410 2.250 

t249_05 83 84 83.92 83.78 83.66 1.064 1.151 1.434 2.225 

t249_06 83 84 83.89 83.83 83.64 1.051 1.136 1.393 2.133 

t249_07 83 84 83.87 83.75 83.64 1.104 1.233 1.519 2.290 

t249_08 83 84 83.92 83.81 83.64 1.060 1.175 1.475 2.332 

t249_09 83 84 83.88 83.80 83.60 1.062 1.157 1.427 2.256 

t249_10 83 84 83.88 83.80 83.60 1.073 1.177 1.465 2.393 

t249_11 83 84 83.85 83.74 83.58 1.058 1.157 1.412 2.218 

t249_12 83 84 83.92 83.77 83.53 1.057 1.153 1.399 2.163 

t249_13 83 84 83.9 83.84 83.60 1.054 1.139 1.383 2.072 

t249_14 83 84 83.96 83.82 83.65 1.064 1.160 1.435 2.194 

t249_15 83 84 83.91 83.86 83.60 1.067 1.160 1.440 2.236 

t249_16 83 84 83.91 83.79 83.61 1.078 1.176 1.480 2.393 

t249_17 83 84 83.87 83.81 83.60 1.059 1.147 1.425 2.222 

t249_18 83 84 83.90 83.84 83.64 1.057 1.154 1.408 2.235 

t249_19 83 84 83.86 83.73 83.45 1.056 1.141 1.397 2.170 

Minimum 83 84 83.85 83.73 83.45 1.042 1.112 1.367 2.072 

Average 83 84 83.90 83.80 83.59 1.060 1.155 1.425 2.244 

Maximum 83 84 83.96 83.86 83.66 1.104 1.233 1.519 2.393 
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Table 5.5 Computational results of SCCUB-p for instances of t501 

Instance IP  SCCUB-0 SCCUB-25 SCCUB-50 SCCUB-75 
trelative
SCCUB-0

 trelative
SCCUB-25

 trelative
SCCUB-50

 trelative
SCCUB-75

 

t501_00 167 168 167.89 167.80 167.60 1.040 1.128 1.369 2.180 

t501_01 167 168 167.89 167.73 167.50 1.027 1.106 1.323 2.064 

t501_02 167 168 167.89 167.73 167.66 1.027 1.106 1.323 2.053 

t501_03 167 168 167.91 167.75 167.58 1.022 1.094 1.291 2.003 

t501_04 167 168 167.94 167.80 167.70 1.030 1.130 1.376 2.230 

t501_05 167 168 167.91 167.75 167.66 1.029 1.126 1.363 2.175 

t501_06 167 168 167.93 167.75 167.75 1.026 1.084 1.298 2.037 

t501_07 167 168 167.93 167.82 167.64 1.033 1.123 1.374 2.195 

t501_08 167 168 167.88 167.82 167.66 1.038 1.135 1.383 2.231 

t501_09 167 168 167.91 167.82 167.63 1.030 1.114 1.340 2.143 

t501_10 167 168 167.92 167.85 167.61 1.025 1.106 1.330 2.091 

t501_11 167 168 167.87 167.66 167.69 1.030 1.132 1.374 2.133 

t501_12 167 168 167.84 167.82 167.66 1.020 1.090 1.317 2.087 

t501_13 167 168 167.89 167.83 167.64 1.021 1.101 1.315 2.079 

t501_14 167 168 167.86 167.78 167.57 1.025 1.109 1.324 2.078 

t501_15 167 168 167.88 167.69 167.59 1.035 1.134 1.394 2.251 

t501_16 167 168 167.87 167.82 167.51 1.030 1.118 1.358 2.187 

t501_17 167 168 167.91 167.80 167.51 1.031 1.125 1.374 2.1872 

t501_18 167 168 167.88 167.80 167.65 1.034 1.120 1.374 2.0899 

t501_19 167 168 167.86 167.83 167.56 1.025 1.106 1.334 2.1432 

Minimum 167 168 167.84 167.66 167.50 1.020 1.084 1.291 2.003 

Average 167 168 167.89 167.78 167.61 1.028 1.114 1.346 2.131 

Maximum 167 168 167.94 167.85 167.75 1.040 1.135 1.394 2.251 
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Table 5.6 Computational results of SCCUB-p for instances of Hard28 

Instance IP  SCCUB-0 SCCUB-25 SCCUB-50 SCCUB-75 
trelative
SCCUB-0

 trelative
SCCUB-25

 trelative
SCCUB-50

 trelative
SCCUB-75

 

BPP14 62 62 62 62 62 1.013 1.022 1.180 1.792 

BPP832 60 61 60.94 60.99 60.88 1.010 1.016 1.257 1.644 

BPP40 59 60 60 60 60 1.017 1.105 1.122 1.666 

BPP360 62 62 62.99 62.92 62.6 1.010 1.030 1.150 1.746 

BPP645 58 59 59 59 58.93 1.007 1.027 1.186 1.708 

BPP742 64 65 65 64.98 64.94 1.007 1.016 1.130 1.863 

BPP766 62 63 63 63 62.98 1.008 1.021 1.124 1.648 

BPP60 63 64 64 64 64 1.013 1.027 1.133 1.682 

BPP13 67 68 68 68 67.97 1.015 1.053 1.223 9.409 

BPP195 64 65 65 64.89 64.71 1.012 1.042 1.194 1.742 

BPP709 67 68 68 68 67.97 1.011 1.038 1.191 1.664 

BPP785 68 69 68.97 68.91 68.64 1.008 1.037 1.168 1.726 

BPP47 71 72 71.8 71.63 71.35 1.008 1.032 1.170 1.654 

BPP181 72 73 73 73 72.98 1.006 1.028 1.148 1.727 

BPP359 76 76 76 76 76 1.009 1.031 1.175 1.837 

BPP485 71 72 72 71.97 71.8 1.003 1.013 1.110 1.062 

BPP640 74 75 74.95 74.81 74.6 1.008 1.028 2.555 1.058 

BPP716 76 76 76 76 76 1.008 1.046 1.207 1.735 

BPP119 77 77 77 77 77 1.013 1.048 1.201 1.732 

BPP144 73 74 75 74 74 1.015 1.059 1.203 1.707 

BPP561 72 73 72.9 72.7 72.61 1.009 1.038 1.190 1.707 

BPP781 71 72 71.97 71.78 71.7 1.004 1.020 1.144 1.640 

BPP900 75 76 75.99 75.9 75.85 1.008 1.037 1.175 1.729 
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Table 5.6 continued 

Instance IP  SCCUB-0 SCCUB-25 SCCUB-50 SCCUB-75 
trelative
SCCUB-0

 trelative
SCCUB-25

 trelative
SCCUB-50

 trelative
SCCUB-75

 

BPP175 84 84 84 84 84 1.004 1.019 1.134 1.580 

BPP178 80 81 80.99 80.83 80.63 1.002 1.015 1.115 2.254 

BPP419 80 81 81 81 81 1.006 1.029 1.167 1.712 

BPP531 83 84 83.80 83.56 83.25 1.005 1.028 1.519 1.640 

BPP814 81 82 81.71 81.41 81.30 1.006 1.029 1.157 1.542 

Minimum 58 59 59 59 58.93 1.002 1.013 1.11 1.058 

Average 70.42 71.21 71.25 71.15 71.06 1.008 1.033 1.229 1.950 

Maximum 84 84 84 84 84 1.017 1.105 2.555 9.409 

 



75 
 

Figure 5.1 Comparison of the upper bounds generated by SCCUB-0, SCCUB-25, SCCUB-50, SCCUB-75 

with known IPs for instances of class t60. 

 

 

 

 

Figure 5.2 Comparison of the relative time of SCCUB-0, SCCUB-25, SCCUB-50, and SCCUB-75 for 

instances of class t60. 
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Figure 5.3 Comparison of the upper bounds generated by SCCUB-0, SCCUB-25, SCCUB-50, SCCUB-75 

with known IPs for instances of class t120. 

 

 

 

 

Figure 5.4 Comparison of the relative time of SCCUB-0, SCCUB-25, SCCUB-50, and SCCUB-75 for 

instances of class t120. 
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Figure 5.5 Comparison of the upper bounds generated by SCCUB-0, SCCUB-25, SCCUB-50, SCCUB-75 

with known IPs for instances of class t249. 

 

 

 

 

Figure 5.6 Comparison of the relative time of SCCUB-0, SCCUB-25, SCCUB-50, and SCCUB-75 for 

instances of class t249. 
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Figure 5.7 Comparison of the upper bounds generated by SCCUB-0, SCCUB-25, SCCUB-50, SCCUB-75 

with known IPs for instances of class t501. 

 

 

 

 

Figure 5.8 Comparison of the relative time of SCCUB-0, SCCUB-25, SCCUB-50, and SCCUB-75 for 

instances of class t501. 
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Figure 5.9 Comparison of the upper bounds generated by SCCUB-0, SCCUB-25, SCCUB-50, SCCUB-75 

with known IPs for instances of class Hard28. 

 

 

 

 

Figure 5.10 Comparison of the relative time of SCCUB-0, SCCUB-25, SCCUB-50, and SCCUB-75 for 

instances of class Hard28. 
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Chapter 6 

 

Upper bounding technique for BPP using solutions 

of the continuous relaxation of set-covering 

formulation with an elimination operator- p and a 

dual BPP approach (SCCUB-p-d) 

 

In this chapter we will design an efficient upper bounding technique for BPP based on the 

SCCUB-p procedure introduced previously. Bringing intelligent algorithms into a procedure 

like SCCUB-p, however, requires prior knowledge of the Maximum Cardinality Bin Packing 

Problem (also known as the dual bin packing problem). To this end, details of the dual BPP 

are presented and the way the latter is combined to the SCCUB-p procedure in order to 

construct a rigorous upper bounding technique for BPP will be described. 
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6.1 Maximum cardinality bin packing problem 

In the following, we investigate the relation between the bin packing problem and its dual 

problem and show how information provided by a dual bin packing problem could be useful 

in reducing the computational time of the SCCUB-p procedure.  

Maximum cardinality bin packing problem (CBP) accounts for the case where; 𝑚  bins 

having each of them a capacity 𝑐 > 0  are identical and where a set of items 𝐼 =

{𝑖1, 𝑖2, … , 𝑖𝑛} each one of them with a weight 0 < 𝑤𝑖 ≤ 𝑐 are to be packed optimally into the 

said bins.  

This problem which is sometimes known as the dual version of the bin packing problem 

could be formulated using the following set of expressions: 

max∑ ∑ 𝑥𝑖𝑘

𝑚

𝑘=1

𝑛

𝑖=1
 

∑ 𝑤𝑖𝑥𝑖𝑘 ≤ 𝑐𝑛
𝑖=1                       𝑘 = 1,2,… ,𝑚 

∑ 𝑥𝑖𝑘
𝑚
𝑘=1 ≤ 1                         𝑖 = 1,2,… . , 𝑛               (6.1) 

𝑥𝑖𝑘 ∈ {0,1}                          𝑖 = 1,… , 𝑛 , 𝑘 = 1,… ,𝑚. 

Labbé et al., in [50], first sorted the items in the ascending order of weights, and then 

proposed the following upper bounds for MKP. 

Upper bound 𝑼̅𝟎 

The first upper bound on MKP is given by: 

𝑈̅0 = max1≤𝑘≤𝑛{𝑘: ∑ 𝑤𝑖 ≤ 𝑚𝑐𝑘
𝑖=1 }. 

This is a valid upper bound on MKP since it packs the first 𝑈̅0 smallest items into 𝑚 bins. 

Upper bound 𝑼̅𝟏 

To derive the second upper bound on MKP, an entity 𝑄(𝑗) is introduced as being: 

𝑄(𝑗) = max{𝑘: 𝑗 ≤ 𝑘 ≤ 𝑛,∑ 𝑤𝑖 ≤ 𝑗𝑐𝑘
𝑖=1 } , 𝑗 = 1,… , 𝑚. 
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In which case, 𝑈1(𝑗) could be considered as an upper bound of the MKP and reads: 

𝑈1(𝑗) = 𝑄(𝑗) + ⌊
𝑄(𝑗)

𝑗
⌋ (𝑚 − 𝑗) 

In fact, given a specific value to 𝑗, this upper bound packs as many items as possible into 𝑗 

bins after choosing the ones with smallest weights among all the items. Then, the rest of the 

bins (𝑚 − 𝑗) are filled, each one by at most ⌊
𝑄(𝑗)

𝑗
⌋ items. Because, the items are sorted in 

the ascending order of the weights, and this fill, is as if the larger items are treated as 

the packed (smaller) ones.  

To derive a stronger upper bound on MKP, 𝑈̅1 should then be computed using: 

𝑈̅1 = min𝑗=1,…,𝑚𝑈1(𝑗). 

Upper bound 𝑼̅𝟑 

A valid upper bound for 𝑖 = 1,… , 𝑛 could be obtained from the following expression: 

𝑈2(𝑖) = (𝑖 − 1) + 𝑚 ⌊
𝑐

𝑤𝑖
⌋. 

This upper bound is derived again based on the fact that the items are sorted well in 

advance. For a certain item 𝑖, ⌊
𝑐

𝑤𝑖
⌋ is an upper bound on the number of the items having 

weights larger than item 𝑖 and that are potentially packable into a bin, and the term 

(𝑖 − 1) implies that all the items having weights less than item 𝑖 are packed into (𝑖 − 1) 

bins.  

Then, a valid upper bound on MKP denoted 𝑈̅ is expressed as being:  

𝑈̅ = min{ 𝑈̅1,  𝑈̅2,  𝑈̅3}. 
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6.2 Procedure SCCUB-p-d 

In this section, we will describe how it is possible to reduce computational time of the 

SCCUB-p procedure by utilizing information of the upper bound of MKP obtained a-priory.  

If one supposes at the first step of the SCCUB-p procedure that 𝑚 bins (patterns) are chosen 

to be included in the SCCUB-p solution as the partial upper bound solutions, and that the 

chosen bins in total contain 𝑛  itmes, then, the sufficient condition for 𝑚  bins to be the 

optimal number of bins to accommodate these 𝑛 items is that the upper bound of MKP with 

𝑛 items and (𝑚 − 1) bins should be less than 𝑛. In other words, were it to be the case that 

the upper bound placed on the number of the items to be packed in (𝑚 − 1) is not less than 

𝑛 , the configuration of the 𝑛  items into 𝑚  bins derived at the first step of SCCUB-p 

procedure might not represent the optimal configuration of bins eligible to harbor the 𝑛 

items. The same premise holds for the rest of the steps of the SCCUB-p procedure. 

Proposition 6.1 Given the configuration of 𝑛  items packed into 𝑚  bins, the sufficient 

condition for 𝑚 to be the optimal number of bins to pack 𝑛 items is that the upper bound 

placed on the number of the items packed into (𝑚 − 1)  should be less than 𝑛 . In 

mathematical terms, we have: 

𝑈̅𝑚−1
𝑛 < 𝑛 ⇒ (𝑚, 𝑛) is optimal                                             (6.2) 

where 𝑈̅𝑚−1
𝑛  shows an upper bound to the number of items packed into (𝑚 − 1) bins, and 

the pair of integers (𝑚, 𝑛) is the packing configuration of 𝑛 items into 𝑚 bins. 

Proof Suppose 𝑈̅𝑚−1
𝑛 < 𝑛 but (𝑚, 𝑛) is not optimal. Then, the optimal number of bins to 

pack 𝑛 items should be less than 𝑚. In other words, the optimal configuration of items into 

bins, is (𝑚′, 𝑛) where 𝑚′ < 𝑚. But, we know that not all of the items could be packed into 

𝑚′ bins since:  

𝑈̅𝑚′
𝑛 ≤ 𝑈̅𝑚−1

𝑛 < 𝑛. 

This is a contradiction since we assumed that all of the items are packable into 𝑚′ bins. 

Therefore, the couple (𝑚, 𝑛) is the optimal configuration of items into bins. 



84 
 

Proposition 6.2 Given a configuration of 𝑛  items packed into 𝑚  bins, the necessary 

condition for 𝑚 not to be the optimal number of bins for packing 𝑛 items is that the upper 

bound of the number of the items packed into (𝑚 − 1)  should not be less than 𝑛 . In 

mathematical terms, we have: 

(𝑚, 𝑛) is not optimal ⇒  𝑈̅𝑚−1
𝑛 ≥ 𝑛                                      (6.3) 

Proof This deduction is immediate from relation (6.2).  

Let us again consider the first step of the SCCUB-p procedure where 𝑚 bins are produced to 

accommodate 𝑛  items. Having considered the proposition (6.1), if the upper bound 

computed for the 𝑛 items destined to be packed into (𝑚 − 1) is not less than 𝑛, then the 

SCCUB-p procedure could be terminated since the tight upper bound is not likely to be 

attained at the end of the procedure. The same premise holds true for all of the other steps of 

the SCCUB-p procedure. It is essential to point out that the above-mentioned premise 

heavily relies on the quality of the upper bound provided by 𝑈̅. Meaning that, the following 

expression is not generally true:  

𝑈̅𝑚−1
𝑛 ≥ 𝑛 ⇒ (𝑚, 𝑛) is not optimal.                                 (6.4) 

Our observations on the performance of 𝑈̅ on BPP instances show the high quality of this 

bound. Therefore, this bound could be useful in reducing the computational resources 

needed by the SCCUB procedure.  

We would like to elaborate more on the mentioned premise by putting it into decomposition 

terminology where each step of the SCCUB-p procedure might be viewed as a block of an 

optimization problem. 

Definition 6.1 Blocks of the SCCUB-p procedure 

A block of the SCCUB-p procedure at iteration 𝑘 is defined as being the partial upper bound 

solution fixed until the k
th

 iteration. 

For instance, if 𝑛′ items are packed into 𝑚′ bins at the first iteration of the SCCUB-p, then 

the first block of the optimization problem could be regarded as the optimization problem of 

having 𝑛′ items and 𝑚′ as the optimal number of bins to pack the items. 
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Let us now move on to the second iteration of the SCCUB-p where 𝑛′′ items are packed into 

𝑚′′ bins. The second block can be viewed as an optimization problem where the (𝑛′ + 𝑛′′) 

items are packed into  (𝑚′ + 𝑚′′) bins, and so on. It is obvious that definition (6.1) implies 

that the very last block of the procedure corresponds to our original BPP where 𝑛 = 𝑛′ +

𝑛′′ + ⋯𝑛𝑒𝑛𝑑 items are packed into 𝑚 = 𝑚′ + 𝑚′′ + ⋯𝑚𝑒𝑛𝑑 bins. 

Now, for each block of the SCCUB-p procedure, if the sufficient condition given in 

proposition (6.1) does not hold, we might terminate the procedure knowing that the optimal 

solution is not likely to be obtained by executing the remaining steps. However, it is vital to 

point out that if each block of the SCCUB-p procedure holds the sufficient condition of 

proposition (6.1), this does not guarantee the achievement of the optimal solution at the end 

of the procedure. For, each block could be viewed as an on-line Bin Packing Problem where 

some of the items are yet to arrive in future steps. Therefore, optimality of each block is not 

a guaranty for optimality of the upper bound solution found at the end of the procedure, 

except for the very last iteration where all the items are present and no more items will be 

expected to arrive in the future.  

Table (6.1) presents the pseudo-code for the SCCUB-p procedure with dual BPP approach 

(SCCUB-p-d). As noticed, the valuable root node basic solutions are saved after the revised 

simplex algorithm is terminated at the first iteration of SCCUB-p-d. This will reduce the 

total computational time of the procedure since the need for solving the LP relaxation from 

the scratch for the future iterations is eliminated.  

Following the termination of revised simplex algorithm, SCCUB-0 is invoked to find an 

upper bound solution for the problem. If the gap between upper and lower bounds is less 

than 1, then SCCUB-p-d will be terminated knowing that optimality of the upper bound 

solution obtained is proved. Otherwise, SCCUB-50, for which our previous experiments 

testify its high performance, will be run in aim of finding a tight upper bound solution. If the 

latter procedure fails to close the gap and prove the optimality of the upper bound solutions, 

after 30 iterations, our most computationally expensive procedure, SSCUB-75, will be 

executed for 20 iterations. Finally, the SCCUB-p-d procedure is terminated by reaching the 

maximum iterations (50 iterations). 
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Table 6.1 Pseudo-code for procedure SCCUB-p-d 

Procedure SCCUB-p-d 

Input: number of items (n), weights of the items (𝐖1×n), bin capacity (c), maxit = 50 

Output: Upper bound solution (SCCUB-p-d), maximum GAP between upper and lower bound 
(GAP) 

Step 1. Define SCCUB-p-d. 

Step 2. Solve continuous relaxation of set-covering formulation of BPP by algorithm revised 
simplex method. Return B, 𝐗B, and OPTCG. 

Step 3. Run SCCUB-0. Return SCCUB-0 and OPT(SCCUB-0). 

Step 4. GAP ⟵ OPT(SCCUB-0) – ⌈OPTCG⌉ 

Step 5. n′ ← n 

𝐖′ ← 𝐖 

Step 6. If GAP < 1 

SCCUB-0 is the optimal solution for BPP. 

Terminate Procedure SCCUB-p-d. 

Else 

SavedB ← B 

Saved𝐗B ← 𝐗B 

Define SCCUB-p-d-2 

Flag = 0 

it = 1 

While  true 

If  it > maxit 

break 

If  it ≤ 30 

p = 50 

Else 

p = 75 

If  Flag ≠ 0 

Solve continuous relaxation of set-covering formulation of BPP by 
algorithm revised simplex method. Return B and 𝐗B (Inputs: n′, 𝐖′, c). 

Find basic patterns having values greater than 0.5. 

m ← number of patterns having values greater than 0.5  

If  no basic pattern is found with value greater than 0.5 

Add the pattern with the largest value to SCCUB-p-d-2. 
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Else 

e = ⌊ 
p

100
 × m ⌋ 

Randomly choose e patterns from list of the patterns with values greater 
than 0.5 and eliminate them from the list. 

Add all the remaining patterns from list of the patterns with values 
greater than 0.5 to SCCUB-p-d-2. 

U̅  ← Find the upper bound on number of the items of SCCUB-p-d-2 to be 
packed in OPT(SCCUB-p-d-2) – 1 bins. 

If  U̅  ≥ number of the items of SCCUB-p-d-2 

n′ ← n 

𝐖′ ← 𝐖 

B ← SavedB 

𝐗B ← Saved𝐗B 

it = it + 1 

Flag = 0 

Eliminate items of SCCUB-p-d-2 from 𝐖′ and update n′. 

If  n′ = 0 

If  OPT(SCCUB-p-d-2) < OPT(SCCUB-p-d) 

SCCUB-p-d ← SCCUB-p-d-2 

If  it = 30 or it=50 

GAP ⟵ OPT(SCCUB-p-d) – ⌈OPTCG⌉ 

If  GAP < 1 

SCCUB-p-d is the optimal solution for BPP. 

Break 

n′ ← n 

𝐖′ ← 𝐖 

B ← SavedB 

𝐗B ← Saved𝐗B 

it = it + 1 

Flag = 0 

Flag = 1 

End of while loop 

Step 7. Outputs are SCCUB-p-d and GAP. 
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6.3 Computational results 

In this section, the results of running SCCUB-p-d procedure for u120, u250, u500, t60, t120, 

t249, t501, and Hard28 class of instances are presented. We compare our results with results 

retrieved from [27,33,35,36,37].  

Table (6.2) displays comparison of the upper bounds obtained by applying SCCUB-p-d 

procedure with those derived by using state-of-the-art methods. In this table, total number of 

the instances in each class, and number of the instances in each class for which the methods 

fail to provide the optimal solution are reported. As observed, SCCUB-p-d dominates all the 

other methods for the given instances. More specifically, SCCUB-p-d procedure reduces 

number of the unsolved instances for class Hard28 from 12 to 4, which testifies its high 

performance. 

Another superiority of this upper bounding technique over the other methods is that it 

provides the gap between upper and lower bound of the problem. Maximum of the gap 

between upper and lower bounds of the instances in each class is also reported in table (6.2) 

and is denoted by GAP. Entities of the column GAP in table (6.2) come with two associated 

numbers. For instance, X(Y) means that for Y instances of a specific class, maximum gap of 

X is derived. 

As observed from this table, optimality of the upper bounds derived by using SCCUB-p-d 

procedure is proved for all the instances of u120, u250, u500, t60, t120, t249, and t501. 

Also, for 19 instances of Hard28 class, optimality of the solutions is proved, and for the 

other 9 instances, maximum gap of 1 between upper and lower bound of each instance is 

obtained. It is worth mentioning that 5 instances out of the ones for which the optimality is 

not proved, hold MIRUP. That is, the gap between the upper and lower bounds of these 

instances is larger than 1. Therefore, the only way to prove optimality of these instances is to 

perform a branch-and-price procedure with a termination condition of Maximum Nodes 

Explored. The typical termination condition of branch-and-price algorithms which relies on 

improvement of the gap between upper and lower bound of the problem is completely 

ineffective for these instances since it is not possible to close the gap anymore.  
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However, for the remaining unsolved instances (4 instances) of Hard28 class, an 

appropriately designed branch-and-price could be invoked to find the optimal solutions. 

Developing such a branch-and-price procedure is concern of the next chapter. 

Besides, average computational time (in seconds) of the SCCUB-p-d procedure is compared 

with other methods in table (6.3). This table also contains information about the processors 

by which each of the methods was tested for the benchmark instances. 

Table 6.2 Comparison of performance of SCCUB-p-d with state-of-the art methods 

Class Instance WA HGGA Pert-SAWMBS HI_BP GGA-CGT SCCUB-p-d GAP 

 Total 
Opt not 

found 

Opt not 

found 

Opt not  

found 

Opt not 

found 

Opt not 

found 

Opt not 

found 
 

U120 20 2 2 0 0 0 0 0(20) 

U250 20 4 3 1 0 0 0 0(20) 

U500 20 2 0 0 0 0 0 0(20) 

t60 20 20 2 0 0 0 0 0(20) 

t120 20 20 0 0 0 0 0 0(20) 

t249 20 20 0 0 0 0 0 0(20) 

t501 20 20 0 0 0 0 0 0(20) 

Hard28 28 - - 23 23 12 4 1(9), 0(19) 

 

Table 6.3 Comparison of computational time of SCCUB-p-d with state-of-the art methods 

Class Instance WA HGGA Pert-SAWMBS HI_BP GGA-CGT SCCUB-p-d 

 Total tavg tavg tavg tavg tavg tavg 

U120 20 0.01 381 0.00 0.00 0.00 0.89 

U250 20 0.05 1337 0.01 0.12 0.30 9.45 

U500 20 0.21 1015 0.00 0.00 0.16 219.51 

t60 20 0.01 47 0.00 0.37 0.05 1.23 

t120 20 0.02 79 0.00 0.85 0.15 33.11 

t249 20 0.11 728 0.00 0.22 0.39 186.66 

t501 20 0.48 1663 0.01 2.49 1.30 2153.60 

Hard28 28 - - 0.24 - 2.40 156.97 

Processor  
Core2 

2.33GHz 

R4000 

50GHz 

Core2 

2.33GHz 

P4 

1.7GHz 

Core2  

1.86GHz 

Core3 

2.10GHz 
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Chapter 7 

 

A branch-and-price procedure for BPP with a 

generic branching strategy 

 

This chapter presents a branch-and-price procedure for solving BPP where a decrement 

constraint is used in its pricing sub-problem to address the issue of having forbidden 

patterns in the search space of the one-dimensional knapsack problem. Also, a generic 

branching strategy, inspired by results from previous chapters is presented for this branch-

and-price procedure. 

 

7.1 Pricing sub-problem of column generation  

As mentioned earlier, the main concern in developing branch-and-price procedures is the 

difficulty in the way, the issue of having forbidden patterns in the search space of the pricing 

sub-problem is resolved. Our approach in solving the polluted pricing sub-problem of 

column generation is simple and straightforward. Whenever one of the forbidden patterns is 

encountered while proceeding with column generation, one has to solve a two-dimensional 
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knapsack problem to derive the next feasible solution to the pricing sub-problem of column 

generation. 

Recall that the one-dimensional knapsack problem presented in model (2.8) has the 

following structure: 

max∑ 𝜋𝑖

𝑛

𝑖=1
𝑥𝑖 

∑ 𝑤𝑖𝑥𝑖 ≤ 𝑐𝑛
𝑖=1     

𝑥𝑖 ∈ {0,1}                  𝑖 = 1,… , 𝑛 

where the vector 𝚷 = (𝜋1, 𝜋2, … , 𝜋𝑛) represents shadow prices and 𝐗 = (𝑥1, 𝑥2, … , 𝑥𝑛), the 

solution to the one-dimensional knapsack problem.  

Now, let us assume that at the k
th

 iteration of column generation, a pattern is generated by 

solving the above model and that happens to be one of the forbidden patterns. Also, let us 

name the objective value of the generated pattern, 𝑧𝑘, where 𝑧𝑘 is derived as follows: 

𝑧𝑘 = (𝚷)(𝐗). 

Then, the next feasible solution to the one-dimensional knapsack problem could be obtained 

by solving the following model which reads: 

max∑ 𝜋𝑖

𝑛

𝑖=1
𝑥𝑖 

∑ 𝑤𝑖𝑥𝑖 ≤ 𝑐𝑛
𝑖=1     

∑ 𝜋𝑖
𝑛
𝑖=1 𝑥𝑖 ≤ 𝑧𝑘 − 𝐷                                                       (7.1) 

𝑥𝑖 ∈ {0,1}                  𝑖 = 1,… , 𝑛 

 

where D denotes the value of the decrement. This value could be considered as being the 

minimum value of shadow prices. The second constraint in model (7.1) ensures that the 

generated pattern will have an objective value less than 𝑧𝑘. In other words, this approach 

guarantees that the generated pattern will have a different composition of items than the 

ones found in the forbidden pattern. It is noted that one could continue using the same 

approach in case; the newly generated pattern is still one of the forbidden patterns.  

An important aspect of model (7.1) that affects the efficiency of the column generation 

process in a direct way is the value which is assigned to the decrement. For large values of 
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D, there might be a possibility of skipping some of the high-quality solutions of one-

dimensional knapsack problem. Additionally, the worst case scenario is that where the 

pattern generated by this model is responsible for termination of column generation process. 

In such a case, since model (7.1) does not guarantee achievement of the second best solution 

of the knapsack problem, column generation might get terminated prematurely. That is, 

there exist some patterns with positive reduced costs that have been omitted from being 

added to the master problem, though the column generation process is still potent. To 

alleviate this problem, we could make use of a minimal decrement, MD, in the second 

constraint of mode (7.1). The new model is derived as follows: 

max∑ 𝜋𝑖

𝑛

𝑖=1
𝑥𝑖 

∑ 𝑤𝑖𝑥𝑖 ≤ 𝑐𝑛
𝑖=1     

∑ 𝜋𝑖
𝑛
𝑖=1 𝑥𝑖 ≤ 𝑧𝑘 − 𝑀𝐷                                                    (7.2) 

𝑥𝑖 ∈ {0,1}                  𝑖 = 1,… , 𝑛 

 

Even though model (7.2) generates higher quality patterns compared to model (7.1), it still 

does not guarantee achievement of the second best solution for the one-dimensional 

knapsack problem, and the immature termination of column generation still remains a 

concern. At this point, if the pattern responsible for terminating column generation is the 

very same pattern generated by model (7.2), the corresponding node of the branch-and-

bound tree should not be pruned by bounds. For, the value derived at the end of the column 

generation process as, being the lower bound of the node, is not representing the true lower 

bound for it. In fact, we could not even call such a value a lower bound on the node since the 

term “bound” is only allowed to be employed if the set-covering formulation of BPP for a 

specific node is solved to optimality, which obviously is not the case in immature 

termination of column generation. 

We mentioned earlier that model (7.2) generates better patterns in quality compared to the 

ones generated by model (7.1), however, determination of the minimal decrement value 

itself is a daunting procedure. This is because, different combinations of shadow prices 

should be considered to find the true value of MD. To keep the computational efforts at a 

minimum level, we could employ model (7.1) in our branch-and-bound procedure, with the 
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difference of a small numeric being used as D instead of considering it to be the minimum 

value of shadow prices. Our experiments reveal that the model (7.1), with 𝐷 = 10−7 

generates relatively high-quality patterns to be passed on, to the master problem. 

 

7.2 Branching and search strategies 

As to the branching and search strategies, we are inspired by the results obtained in the 

previous chapters by employing SCCUB-p procedure. On the one hand, SCCUB-0, where 

all the patterns having values greater than 0.5 are included in the solution, reduces the 

dimension of the problem significantly and an integer solution to the problem is found 

quickly. On the other hand, optimal solution is obtained for the majority of the BPP 

instances by employing more time-consuming procedures like SCCUB-75, where only %25 

of the patterns having values greater than 0.5 are included in the solution. The mentioned 

random processes are arguably amenable to deterministic versions of them, which 

subsequently, we propose as novel branching and search strategies.  

Following the termination of column generation at the root node of the branch-and-bound 

tree, an initial core of patterns is created and that contains the most promising scenarios of 

the combination of the basic patterns that could lead to the optimal solution of BPP. The first 

element of the initial core is constituted of %25 of the best patterns having values greater 

than 0.5. The second scenario added to the initial core, would be that where one excludes the 

worst pattern out of the elite group (%25 of the best patterns having values greater than 0.5) 

and considers the remaining patterns as being the second element of the initial core. This 

elimination process continues until the pattern with the highest value is added as a single 

pattern to the initial core. At this point, to ensure the capability of the branch-and-bound 

procedure in exploring the whole search space of the problem, a scenario will be added to 

the core in which, the pattern with the highest value is considered as a forbidden pattern. 

To understand how the initial core is constructed, let us assume that the following basic 

patterns having values greater than 0.5, are obtained through, solving the continuous 

relaxation of the set-covering formulation of BPP at the root node. 
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Pattern A B C D E F G H I J 

Value 1 0.9 0.85 0.85 0.7 0.65 0.65 0.6 0.55 0.55 

 

Firstly, the number of the patterns to be eliminated is computed as: 

e = ⌊ 
75

100
 × 10 ⌋ = 7 

So that patterns A, B, and C are left after the elimination process. 

The first element of the initial core will then be constructed as: 

𝐶𝑜𝑟𝑒𝐼  = {
𝑀𝑈𝑃1 = {𝐴, 𝐵, 𝐶}

𝐹𝑃1 =  ∅
} 

where MUP denotes the Must Used Patterns, 𝐹𝑃 the forbidden ones, and 𝐶𝑜𝑟𝑒𝐼 the initial 

core. 

The second scenario will be eliminating the last pattern of the 𝑀𝑈𝑃1 and considering the rest 

of the patterns as 𝑀𝑈𝑃2 and adding it to the initial core. The core will then become: 

𝐶𝑜𝑟𝑒𝐼  = {{
𝑀𝑈𝑃1 = {𝐴, 𝐵, 𝐶}

𝐹𝑃1 =  ∅
} , {

𝑀𝑈𝑃2 = {𝐴, 𝐵}

𝐹𝑃2 =  ∅
}}. 

Following the same method, the core will be expanded as: 

𝐶𝑜𝑟𝑒𝐼  = {{
𝑀𝑈𝑃1 = {𝐴, 𝐵, 𝐶}

𝐹𝑃1 =  ∅
} , {

𝑀𝑈𝑃2 = {𝐴, 𝐵}

𝐹𝑃2 =  ∅
} , {

𝑀𝑈𝑃3 = {𝐴}

𝐹𝑃3 =  ∅
}}. 

Since the last pattern added to the core is a single one, its forbidden version should also be 

considered, and this will complete the process of building the initial core, and the resulting 

initial core will be: 

𝐶𝑜𝑟𝑒𝐼  = {{
𝑀𝑈𝑃1 = {𝐴, 𝐵, 𝐶}

𝐹𝑃1 =  ∅
} , {

𝑀𝑈𝑃2 = {𝐴, 𝐵}

𝐹𝑃2 =  ∅
} , {

𝑀𝑈𝑃3 = {𝐴}

𝐹𝑃3 =  ∅
} , {

𝑀𝑈𝑃4 = ∅
𝐹𝑃4 = {𝐴}

}}. 

Following the completion of the initial core, each element of the core starting from the first 

one will be considered as the branching constraints, and in all of the subsequent nodes, the 

same process will be employed to expand the core until all the nodes are explored and 
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pruned by either integrality or infeasibility or bound. We call this strategy of searching the 

solution space, a batch diving strategy. 

However, for more difficult instances of BPP, it might be possible that the initial core 

constructed this way, is not the best combination of patterns for finding the optimal solution 

in the shortest amount of time. 

To this end, if the number of the nodes explored by using the initial core, exceeds a specific 

threshold, a different core will be fed into the branch-and-bound procedure. 

For the new core, all the patterns having values greater than 0.5, will be considered. But, 

only every other pattern starting from the pattern with the highest value will be used to build 

the core. 

The core established by using the method described hereby, for our example, will be derived 

as being: 

𝐶𝑜𝑟𝑒′ = {{
𝑀𝑈𝑃1 = {𝐴, 𝐶, 𝐸, 𝐺, 𝐼}

𝐹𝑃1 =  ∅
} , {

𝑀𝑈𝑃2 = {𝐴, 𝐶, 𝐸, 𝐺}

𝐹𝑃2 =  ∅
} , {

𝑀𝑈𝑃3 = {𝐴, 𝐶, 𝐸}

𝐹𝑃3 =  ∅
} , {

𝑀𝑈𝑃4 = {𝐴, 𝐶}

𝐹𝑃4 =  ∅
}}. 

Again, branch-and-bound procedure will start searching for the optimal solution, but this 

time, special focus is geared toward branching on patterns of the 𝐶𝑜𝑟𝑒′. If the branch-and-

bound procedure fails to find the optimal solution after exhausting a limit number of nodes, 

another core will be inputted. 

This new core is built by considering all the patterns having values greater than 0.5, but only 

every other third pattern will be selected for inclusion into the core. For the current example, 

𝐶𝑜𝑟𝑒′′ could be viewed as being: 

𝐶𝑜𝑟𝑒′′ = {{
𝑀𝑈𝑃1 = {𝐴, 𝐷, 𝐺, 𝐽}

𝐹𝑃1 =  ∅
} , {

𝑀𝑈𝑃2 = {𝐴, 𝐷, 𝐺}

𝐹𝑃2 =  ∅
} , {

𝑀𝑈𝑃3 = {𝐴, 𝐷}

𝐹𝑃3 =  ∅
}}. 

Similarly, 𝐶𝑜𝑟𝑒′′′and 𝐶𝑜𝑟𝑒′′′′ will be constructed by considering every other fourth and 

every other fifth patterns, respectively. 

𝐶𝑜𝑟𝑒′′′ = {{
𝑀𝑈𝑃1 = {𝐴, 𝐸, 𝐼}

𝐹𝑃1 =  ∅
} , {

𝑀𝑈𝑃2 = {𝐴, 𝐸}

𝐹𝑃2 =  ∅
}}. 

𝐶𝑜𝑟𝑒′′′′ = {{
𝑀𝑈𝑃1 = {𝐴, 𝐹}

𝐹𝑃1 =  ∅
}}. 
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Such choices for the cores of the patterns in the branch-and-bound procedure, allow for the 

exploration of various and at the same time, promising regions of the solution space. 

 

7.3 Pruning the nodes by bound 

There is a common trend among researchers when it comes to pruning the nodes by bounds 

in the branch-and-bound procedures, and the common approach has been widely presented 

in the operational research text books. Simply put, a specific node is pruned by bound if the 

lower bound derived for that very node, exceeds the global upper bound of BPP.  Now, any 

of the nodes in the branch-and-bound tree will be pruned by bound if the following 

condition holds true: 

𝐿𝐵(. ) − 𝐺𝑙𝑜𝑏𝑈𝐵 > 0 

where 𝐿𝐵(. ) denotes the lower bound derived for a specific node, and 𝐺𝑙𝑜𝑏𝑈𝐵 is, the global 

upper bound of BPP. 

However, our experiments on BPP instances revealed that, the pruning by bound rule is 

effective inasmuch as the obtained global upper bound is tight. In other words, even when a 

relatively good upper bound with only one extra bin compared to the optimal solution is 

employed, this leads the branch-and-price method to a catastrophic behavior. Because, for 

only a few of the nodes, the lower bounds of the nodes, do exceed the global upper bound 

mentioned above. 

Therefore, in order to increase the efficiency of the procedure, a tight upper bound should be 

employed. Practically, this could be carried out through use of the information provided by 

the dual version of the BPP we presented in the previous chapter. More precisely, let us 

assume that given 𝑛 items, the upper bound obtained on the objective value of the BPP is 𝑚 

bins. Then, an upper bound on the number of items to be packed in (𝑚 − 1)  bins is 

computed. If this upper bound is less than 𝑛, we would know that (𝑚 − 1) could not be a 

candidate for being an optimal number of bins, and the branch-and-price procedure will use 

𝑚 bins as the global upper bound to prune the nodes. However, if the upper bound on the 

number of items destined to be packed in (𝑚 − 1) bins was not less than 𝑛, then (𝑚 − 1) 
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bins will be regarded as the global upper bound of the procedure to be used in pruning the 

nodes. 

The details of such a pruning scheme and the generic branching and search strategies 

proposed could be found in table (7.1) where we present the pseudo-code for branch-and-

price procedure. 

Table 7.1 Pseudo-code for procedure branch-and-price 

Procedure branch-and-price 

Input: number of items (n), weights of the items (𝐖1×n), bin capacity (c), maxnodes = 10000, 
maxtime = 7200 (s) 

Output: GlobUB and GlobUBSol 

Step 1. Find the upper bound for BPP by performing procedure SCCUB. Return SCCUB, 
OPT(SCCUB), B, 𝐗B,  and OPTCG. 

Step 2.  GlobUB=OPT(SCCUB) 

GlobUBSol=SCCUB 

Step 3. Diff = GlobUBSol – OPTCG 

Step 5. If  Diff < 1 

GlobUBSol is optimal. Return GlobUBSol and GlobUB. 

Terminate procedure branch-and-price. 

Step 6. Compute U̅GlobUBSol−1
n  

Step 7. If  U̅GlobUBSol−1
n ≥ n 

CandidateOPT ←  U̅GlobUBSol−1
n  

Else 

CandidateOPT ← GlobUB 

Step 8. Find 𝐗B
i  > 0.5 for i=1,…,n and sort {𝐗B

i ∶  𝐗B
i > 0.5 for i=1,…,n} in descending order. 

Step 9.  Sort {𝐁𝑖 : 𝐗B
i > 0.5 for i=1,…,n} according to {𝐗B

i ∶  𝐗B
i > 0.5 for i=1,…,n}. 

Step 10. B ← {𝐁𝑖 : 𝐗B
i > 0.5 for i=1,…,n} 

Step 11. Define Core, CoreI, MUP, FP 

Step 12.  For  i = ⌈0.25 × n(𝐁) ⌉ to 1 

MUP = 𝐁1 to i 

FP = ∅ 

Add (MUP,FP) to CoreI 

MUP = ∅ 

FP = 𝐁1 
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Add (MUP,FP) to CoreI 

Step 13. Counter = 0 

Step 14. While true 

If Counter = 0 

Add CoreI to the beginning of Core 

ElseIf Counter = 500 

Add Core1 to the beginning of Core 

ElseIf Counter = 1000 

Add Core2 to the beginning of Core 

ElseIf Counter = 1500 

Add Core3 to the beginning of Core 

ElseIf Counter = 2000 

Add Core4 to the beginning of Core 

If Counter ≥ maxnodes  or  time ≥ maxtime  or  n(Core) = 0 

Break 

Parent ← Choose the first element of Core 

Perform Algorithm revised simplex method for Parent. Return B, 𝐗B,  and 
OPTCG. 

If  𝐗B
i  integer ∀i=1,…,n 

If  OPTCG = CandidateOPT 

GlobUB = OPTCG 

GlobUBSol = B 

Break 

Eliminate the first element of the core 

Continue 

If OPTCG > CandidateOPT  and the pattern responsible for terminating the 
column generation is not generated by two-dimensional knapsack problem 

Eliminate the first element of the core 

Continue 

Eliminate the first element of the core 

/ Batch diving 

Find 𝐗B
i  > 0.5 for i=1,…,n and sort {𝐗B

i ∶  𝐗B
i > 0.5 for i=1,…,n} in descending 

order. 

Sort {𝐁𝑖 : 𝐗B
i > 0.5 for i=1,…,n} according to {𝐗B

i ∶  𝐗B
i > 0.5 for i=1,…,n}. 
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B ← {𝐁𝑖 : 𝐗B
i > 0.5 for i=1,…,n} 

For  i = ⌈0.25 × n(𝐁) ⌉ to 1 

MUP = 𝐁1 to i 

FP = ∅ 

Add (MUP,FP) to Core 

If Counter = 0 

Define Core1 

For  i = n(𝐁) to 1 with decrement = 2 

MUP = 𝐁1 to i with increment=2  

FP = ∅ 

Add (MUP,FP) to Core1 

Define Core2 

For  i = n(𝐁) to 1 with decrement = 3 

MUP = 𝐁1 to i with increment=3  

FP = ∅ 

Add (MUP,FP) to Core2 

Define Core3 

For  i = n(𝐁) to 1 with decrement = 4 

MUP = 𝐁1 to i with increment=4  

FP = ∅ 

Add (MUP,FP) to Core3 

Define Core4 

For  i = n(𝐁) to 1 with decrement = 5 

MUP = 𝐁1 to i with increment=5 

FP = ∅ 

Add (MUP,FP) to Core4 

Counter = Counter +1 

End of while loop 

Step 15. Outputs are GlobUB and GlobUBSol. 
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7.4 Computational results 

In this section, computational results of performing branch-and-price procedure for instances 

of u120, u250, u500, t60, t120, t249, t501, and Hard 28 are presented. To solve the two-

dimensional knapsack problem presented in model (7.1), the method of Martello and Toth, 

developed in reference [51], was adapted. 

As observed from tables (7.2) to (7.9), optimal solution for all of the instances of BPP is 

obtained by using branch-and-price procedure except two instances of the Hard28 class. The 

reason for failing to derive the optimal solution to BPP40 is that, our implementation of 

revised simplex method is not capable of solving the continuous relaxation of the set-

covering formulation to optimality. More precisely, the known LP for this instance is 

58.999, as derived in [15], whereas the LP provided by our implementation of revised 

simplex method provides the value 59.009. Therefore, the branch-and-price procedure gets 

terminated at the root node and no branching occurs to search for the optimal solution.  

Another instance which remains unsolved by using our developed branch-and-price scheme 

is BPP60. The most plausible explanation for failure of the procedure to find the optimal 

solution to this instance is that, the different choices of cores of patterns, fed into the 

procedure were not sufficient to lead to obtaining the optimal solution for this instance. 

Furthermore, the class of Hard28 contains 5 instances, BPP14, BPP359, BPP716, BPP119, 

and BPP175 which hold MIRUP. That is, the optimal solution is found at the root node 

whereas the procedure does not get terminated by bound since the difference of optimal 

value and LP relaxation of the problem is greater than one. Hence, one of the conditions like 

maximum of nodes explored or maximum time spent should be met to prove the optimality 

of the upper bound solution. For all of the MIRUP instances, the procedure got terminated 

by filling the latter termination condition which is maximum time spent. 

All in all, satisfactory results are obtained by employing the proposed branch-and-price 

procedure to solve instances of BPP, and this procedure could be a better alternative to the 

state-of-the-art methods. 
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Table 7.2 Computational results of procedure branch-and-price for instances of u120 

Instance IP OPT nod topt 

U120_00 48 48 5 0.785 

U120_01 49 49 5 0.988 

U120_02 46 46 3 0.934 

U120_03 49 49 4 1.058 

U120_04 50 50 6 0.918 

U120_05 48 48 3 0.911 

U120_06 48 48 5 0.918 

U120_07 49 49 4 0.746 

U120_08 50 50 4 0.790 

U120_09 46 46 4 0.990 

U120_10 52 52 6 0.865 

U120_11 49 49 4 0.832 

U120_12 48 48 4 0.841 

U120_13 49 49 4 1.030 

U120_14 50 50 4 0.937 

U120_15 48 48 5 1.013 

U120_16 52 52 4 0.747 

U120_17 52 52 3 0.739 

U120_18 49 49 5 0.934 

U120_19 49 49 3 0.959 

Total 981 981 85 17.935 

Average 49.05 49.05 4.25 0.896 
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Table 7.3 Computational results of procedure branch-and-price for instances of u250 

Instance IP OPT nod topt 

U250_00 99 99 6 9.504 

U250_01 100 100 5 9.266 

U250_02 102 102 5 10.485 

U250_03 100 100 6 9.099 

U250_04 101 101 4 9.380 

U250_05 101 101 3 9.766 

U250_06 102 102 6 9.579 

U250_07 103 103 3 9.033 

U250_08 105 105 3 7.842 

U250_09 101 101 4 10.471 

U250_10 105 105 5 9.682 

U250_11 101 101 4 10.069 

U250_12 105 105 3 8.691 

U250_13 103 103 6 7.600 

U250_14 100 100 5 10.543 

U250_15 105 105 3 8.212 

U250_16 97 97 5 11.468 

U250_17 100 100 6 9.365 

U250_18 100 100 4 10.126 

U250_19 102 102 6 8.975 

Total 2032 2032 92 189.156 

Average 101.60 101.60 4.6 9.457 
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Table 7.4 Computational results of procedure branch-and-price for instances of u500 

Instance IP OPT nod topt 

U500_00 198 198 5 210.596 

U500_01 201 201 5 208.834 

U500_02 202 202 7 197.652 

U500_03 204 204 5 210.911 

U500_04 206 206 5 176.158 

U500_05 206 206 6 203.907 

U500_06 207 207 4 150.192 

U500_07 204 204 4 218.033 

U500_08 196 196 7 201.654 

U500_09 202 202 6 215.984 

U500_10 200 200 6 201.018 

U500_11 200 200 6 224.369 

U500_12 199 199 7 229.263 

U500_13 196 196 6 224.288 

U500_14 204 204 6 239.788 

U500_15 201 201 6 242.694 

U500_16 202 202 8 232.780 

U500_17 198 198 6 305.825 

U500_18 202 202 5 212.095 

U500_19 196 196 7 284.212 

Total 4024 4024 117 4390.253 

Average 201.2 201.2 5.85 219.512 
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Table 7.5 Computational results of procedure branch-and-price for instances of t60 

Instance IP OPT nod topt 

t60_00 20 20 1 0.215 

t60_01 20 20 3 0.348 

t60_02 20 20 3 0.276 

t60_03 20 20 7 0.547 

t60_04 20 20 9 0.451 

t60_05 20 20 1 0.218 

t60_06 20 20 17 0.805 

t60_07 20 20 12 0.636 

t60_08 20 20 5 0.381 

t60_09 20 20 1 0.243 

t60_10 20 20 38 1.891 

t60_11 20 20 1 0.237 

t60_12 20 20 5 0.297 

t60_13 20 20 3 0.307 

t60_14 20 20 1 0.241 

t60_15 20 20 2 0.252 

t60_16 20 20 1 0.268 

t60_17 20 20 1 0.236 

t60_18 20 20 1 0.221 

t60_19 20 20 1 0.234 

Total 400 400 113 8.304 

Average 20 20 5.6 0.415 
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Table 7.6 Computational results of procedure branch-and-price for instances of t120 

Instance IP OPT nod topt 

t120_00 40 40 9 1.182 

t120_01 40 40 14 1.494 

t120_02 40 40 217 9.049 

t120_03 40 40 8 1.074 

t120_04 40 40 12 1.183 

t120_05 40 40 6 0.881 

t120_06 40 40 208 11.409 

t120_07 40 40 7 0.921 

t120_08 40 40 7 1.865 

t120_09 40 40 15 1.551 

t120_10 40 40 14 1.904 

t120_11 40 40 95 6.146 

t120_12 40 40 7 0.973 

t120_13 40 40 6 0.964 

t120_14 40 40 65 5.900 

t120_15 40 40 77 3.974 

t120_16 40 40 9 1.395 

t120_17 40 40 61 3.847 

t120_18 40 40 69 4.22 

t120_19 40 40 17 1.590 

Total 800 800 923 61.522 

Average 40 40 46.1 3.076 
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Table 7.7 Computational results of procedure branch-and-price for instances of t249 

Instance IP OPT nod topt 

t249_00 83 83 91 9.108 

t249_01 83 83 16 6.662 

t249_02 83 83 117 10.676 

t249_03 83 83 8 6.565 

t249_04 83 83 48 8.511 

t249_05 83 83 12 6.988 

t249_06 83 83 10 7.270 

t249_07 83 83 73 9.921 

t249_08 83 83 11 6.868 

t249_09 83 83 17 6.927 

t249_10 83 83 14 7 

t249_11 83 83 15 7.299 

t249_12 83 83 81 8.627 

t249_13 83 83 41 8.802 

t249_14 83 83 11 7.395 

t249_15 83 83 13 7.202 

t249_16 83 83 11 7.050 

t249_17 83 83 31 7.040 

t249_18 83 83 12 6.972 

t249_19 83 83 65 9.502 

Total 1660 1660 697 156.385 

Average 83 83 34.8 7.819 
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Table 7.8 Computational results of procedure branch-and-price for instances of t501 

Instance IP OPT nod topt 

t501_00 167 167 14 83.360 

t501_01 167 167 26 84.004 

t501_02 167 167 1304 138.896 

t501_03 167 167 38 84.530 

t501_04 167 167 15 75.016 

t501_05 167 167 94 81.515 

t501_06 167 167 37 80.585 

t501_07 167 167 17 79.714 

t501_08 167 167 731 124.688 

t501_09 167 167 17 99.924 

t501_10 167 167 101 102.307 

t501_11 167 167 11 103.661 

t501_12 167 167 15 91.061 

t501_13 167 167 11 102.221 

t501_14 167 167 166 111.395 

t501_15 167 167 18 97.506 

t501_16 167 167 13 98.645 

t501_17 167 167 61 97.624 

t501_18 167 167 63 106.466 

t501_19 167 167 16 96.478 

Total 3340 3340 2768 1939.596 

Average 167 167 138.4 96.979 
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Table 7.9 Computational results of procedure branch-and-price for instances of Hard28 

Instance IP OPT nod topt 

BPP14 62 62 3519 7200 

BPP832 60 60 171 66.970 

BPP40 59 60 7 11.806 

BPP360 62 62 1 9.823 

BPP645 58 58 571 411.029 

BPP742 64 64 124 50.031 

BPP766 62 62 590 374.303 

BPP60 63 64 2696 7200 

BPP13 67 67 312 409.105 

BPP195 64 64 12 52.879 

BPP709 67 67 43 71.221 

BPP785 68 68 15 43.116 

BPP47 71 71 22 36.759 

BPP181 72 72 4693 3982.410 

BPP359 76 76 3993 7200 

BPP485 71 71 49 52.510 

BPP640 74 74 17 41.755 

BPP716 76 76 2630 7200 

BPP119 77 77 7734 7200 

BPP144 73 73 531 370.963 

BPP561 72 72 14 58.668 

BPP781 71 71 16 116.238 

BPP900 75 75 117 70.810 

BPP175 84 84 3371 7200 

BPP178 80 80 12 72.437 

BPP419 80 80 362 286.721 

BPP531 83 83 17 52.880 

BPP814 81 81 15 51.458 

Total 1972 1974 31654 49893.890 

Average 70.42 70.50 1130.5 1781.925 
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Conclusion and future research 

In this research, a branch-and-price procedure was proposed to solve instances of BPP to 

optimality. The proposed procedure was developed based upon our observations and 

investigations on the set-covering formulation of BPP and its different aspects. A few 

stochastic schemes were designed to investigate the structure of the basic solutions of 

continuous relaxation of the mentioned formulation. The results of performing these 

stochastic schemes on the benchmark instances of BPP confirmed that such solutions could 

be employed to derive tight upper bound solutions on BPP instances. Inspired by the results 

of stochastic schemes, a generic branching rule and a new search strategy named batch 

diving were proposed to be used in the branch-and-price procedure that enabled the 

procedure to solve majority of the benchmark instances of BPP to optimality. 

Furthermore, a new approach in dealing with the forbidden patterns of the branch-and-bound 

tree was proposed which is different from the schemes developed in the literature and 

handles two-dimensional knapsack problems. Moreover, we showed, in this work, the 

relation between BPP and the maximum cardinality BPP, and that how the information 

provided by the latter could be used in solving procedure of the BPP. 

Further research could be done to thoroughly investigate the relation between BPP and its 

dual version problem, in order to increase the efficiency of the branch-and-price procedure 

to solve BPP instances. Moreover, generalizations of the proposed branching and search 

strategies require more research in order to find the optimal solution to the instances that 

remained unsolved in this thesis.  
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