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Abstract

In this paper we propose a derivative-free optimization algorithm based on conditional moments for
finding the maximizer of an objective function. The proposed algorithm does not require calculation or
approximation of any order derivative of the objective function. The step size in iteration is determined
adaptively according to the local geometrical feature of the objective function and a pre-specified quantity
representing the desired precision. The theoretical properties including convergence of the method are pre-
sented. Numerical experiments comparing with the Newton, Quasi-Newton and trust region methods are
given to illustrate the effectiveness of the algorithm.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Optimization has been playing an important role in many branches of science and tech-
nology such as engineering, finance, probability and statistics (see, for example, [7,10,11,20],
etc.). There are many optimization algorithms that have been developed to locate the optima of
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continuous objective functions. We are concerned with the maximization problem of a smooth
function f of several variables. Formally, we seek the solution of the following problem:

max
x∈D

f (x), (1)

where D ⊂ Rn is a bounded domain.
For an optimization problem with no constraint, one widely used method is the Newton

method. For the Newton–Raphson algorithm, the iteration is defined by

xk+1 = xk − αiG
−1
i gi ,

where αi is the step size, gi is the gradient vector, and Gi is the Hessian matrix. The Newton
method converges fast in general and could be very efficient for smooth objective functions. How-
ever, the Hessian matrix is rather difficult or impossible to obtain in many practical problems. To
rectify this problem, the Quasi-Newton algorithm is proposed by Davidon [5]. The basic idea of
the Quasi-Newton algorithm is to use an iterative matrix Hi to approximate Hessian matrix G−1

i .
The BFGS Quasi-Newton method by Broyden [2]–Fletcher [6]–Goldfarb [8]–Shanno [17] has
been proved reliable and efficient for the unconstrained minimization of a smooth function. Al-
though the matrices Hi ’s are positive definite in theory, it is well known that they are often not the
case especially for high-dimensional space due to rounding errors. Also, ill-conditioned matrices
can cause serious numerical problems in practice. There are many modified versions of New-
ton method such as the Damped Newton method and the Lavenberg–Marquardt type method
(see [7,13]). A polynomial-time algorithm for linear problems has also been proposed (see [4]).
However, all these methods must require the calculation of the derivatives of objective functions.

Another well-known problem with Newton method and the modified methods based on the
Newton method is that the initial values are usually required to lie within a relatively small
neighbourhood of the true optimum to ensure any desired accuracy. For example, one of the most
widely used algorithms in statistics is the so-called Expectation–Maximization (EM) algorithm.
It has been observed that this algorithm converges slowly and is very sensitive to the initial
value. The problem lies in the maximization step of the algorithm in which the Newton or Quasi-
Newton methods are employed (see [9]). Furthermore, some objective functions encountered in
practice could be either very flat or have quite large first-order derivative near the global optima.
This creates additional challenges to the Newton or Quasi-Newton type of algorithms as the
accurate evaluation of the derivatives and the choice of step size are crucial.

On the other aspect, the derivatives of objective functions might not be available in many
applications of maximization. Therefore, there have been considerable interests in developing
effective algorithms that are of derivative-free. The trust region methods are widely studied and
successful in the literature (see, for example, [12,15,19], etc.). For example, one of very recent
trust region methods is called wedge trust region method (see Marazzi and Nocedal [12]). The
wedge trust region method employs a model which interpolates the objective function at a set
of sample points. The model is built upon the trust region framework such that the convergence
of the model is guaranteed. Therefore, the model in wedge trust region method can be in either
linear or quadratic order.

In this paper, we propose a novel derivative-free algorithm for the general optimization prob-
lem based on conditional moments. The proposed algorithm is built upon a direct evaluation of
the conditional moments of a non-negative function which represents the local centre of gravity
of a mass function. The algorithm constructs a path defined by the geometric centres of the ob-
jective function within a series small neighbourhoods so that it will travel dynamically towards
the global optimum. The proposed algorithm is free of any order derivatives of the objective
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.08.091
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functions and only depends on local integrations which are evaluated by the numerical quadra-
tures such as the composite Simpson quadratures and the composite quadratures of Gaussian
types. There are two iterative parameters in the procedure and they will be valued adaptively in
the algorithm. For the proposed method, we have further established the theoretical properties
including its convergence. Numerical experiments comparing with the Newton, Quasi-Newton
and trust region methods are taken to illustrate the performance of the algorithm. It shows that
the algorithm is very effective when the objective functions rise either very sharply or slowly
near the global optimum. It is also very effective when there exist multiple local optima with a
close proximity of global one.

The remaining part of the paper is organized as follows. In Section 2, we give a general
description of the algorithm and we also describe the method of choosing the parameters adap-
tively. Theoretical properties of the proposed method are established in Section 3. Numerical
results comparing the proposed algorithm with the Newton, Quasi-Newton and wedge trust re-
gion method are provided in Section 4. Finally, the conclusion is given in Section 5.

2. The derivative-free conditional moment algorithm

2.1. The basic idea

The idea of our derivative-free algorithm originated from the property of conditional mo-
ments. The moments are defined in probability (see [1]), which can describe the local centre
of gravity of a mass function. For simplicity, we assume that the objective function is positive
everywhere. Then the objective function could be considered as a mass density function. Higher
value of the objective function would provide more weight in its neighbourhood. For example,
consider a symmetric objective function with the only optimum located at 0. The centre of func-
tion coincides with the centre of gravity located at 0. In this simple example, finding the optimum
is equivalent to finding the centre of gravity. However, for a non-symmetric non-negative func-
tions, these two problems are no longer equivalent as the location of the global optimum often
differs from the centre of the gravity. Thus instead of considering the centre of gravity for the
entire objective function, we consider the local centre of gravity given a small neighbourhood.
This corresponds to the first-order conditional moment if the objective function is non-negative.
Furthermore, we propose to move dynamically through a series of varying neighbourhoods and
the movement is governed by a sequence of local gravity centres of these connected small local
regions. Let x0 represent the centre and cg represent the centre of gravity in this neighbourhood.
It is defined numerically as

cg =
∫

xG(x) dx∫
G(x) dx

, (2)

where G(x) is the non-negative mass density function. The centre of gravity defined by Eq. (2)
coincides with the conditional first-order moment if the objective function is non-negative and
can be normalized to 1. It can be seen that G(cg) > G(x0) which will be proved formally in
Section 3. Then, we can “relocate” x0 to cg which occupies a higher “ground” within which the
average of objective function is bigger than that of the previous neighbourhood. This action is
repeated until the required convergence is achieved.

This motivates us to define a derivative-free optimization method for solving the optimization
problems. The detailed description of our algorithm will be given in the following subsections.
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.08.091
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Fig. 1. The local centre of gravity in a monotone neighbourhood.

2.2. The method

In general, any real function F(x) can be decomposed into F+(x) = max (F (x),0) and
F−(x) = min (F (x),0). The positive part G(x) = F+(x) is of interest for maximization prob-
lems. Thus we focus on non-negative functions in this article. If F+(x) = 0 for all x, we then set
F by F − C where C is a constant such that G(x) > 0 for some x.

Let the objective function G(x), x = (x1, x2, . . . , xn) ∈ Rn, be a non-negative continu-
ous function, where n is the dimensionality. Then, for any given α, x̄ = (x̄1, x̄2, . . . , x̄n) and
x = (x1, x2, . . . , xn) ∈ Rn, define a set

B
(
x̄,d(α)

) = {
x ∈ Rn: ‖x − x̄‖ < d(α)

} ⊂ Rn (3)

such that∫
B(x̄,d(α))

G(y)dy = α, (4)

where d of the set B(x̄, d) depends on the value of α. If α is set to 0, then B(x̄, d) is a singleton
set. To avoid this trivial case, we assume that αk is positive in the sequel. It is obvious that the
value of α is bounded by αM = ∫

Rn G(x) dx > 0.
Then, we can propose the conditional moment method as follows: From the previous approx-

imation xk with parameter αk > 0 and radius parameter dk > 0 obtained from (4) with x̄ = xk ,
the new step approximation of the optima is defined as

xk+1 = T
(
xk, dk(αk)

) = 1

αk

∫
B(xk, dk)

yG(y) dy, (5)

with initial guess x0 being given. The new position xk+1 is the ratio of the first-order moment
over the zero-order moment on the local region. It is clear that the iteration at each step k > 0
only depends on the local integration over B(xk, dk). If G(x) is a probability density function,
then xk+1 represents the conditional mean on B(xk, dk). Meanwhile, the new approximation
xk+1 also depends the choice of the parameters α and d .

2.3. The algorithm

There is only parameter αk in the proposed method which will be selected dynamically. How-
ever, the method requires integration over a local region such that Eq. (4) is satisfied. In practice,
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.08.091
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the computational cost to determine such an area for high-dimensional objective function could
be prohibitively high. One logical way of realistically handling integration on the set B(xk, dk)

is to apply Eq. (5) for each dimension individually while the rest of the coordinates are fixed.
The coordinates of the location at the kth iteration, say, xk will then be updated one at the time
in the same fashion of the well-known Gibbs sampler in physics and statistics (see [16]).

Therefore, we then seek to find rk = (rk
1 , rk

2 , . . . , rk
n), i = 1,2, . . . , n, such that

η
(
xk, rk

) =
xk

1+rk
1∫

xk
1−rk

1

· · ·
xk
n+rk

n∫
xk
n−rk

n

G(x1, x2, . . . , xn) dx1dx2 · · ·dxn − αk = 0. (6)

The rk
i determines the lower and upper limits of integration on ith dimension.

Thus, the set of parameters of our algorithms then becomes rk . Instead of finding rk
i us-

ing exhaustive search, we propose to find a reasonable estimate of rk
i using a sequence tki (l),

l = 1,2, . . ., as follows. Given an initial value tki (0), we use an iterative method to find an ap-
proximation of rk

i as follows

tki (l) = tki (l − 1) − η(xk, tki (l − 1))

βk(xk, tki (l − 1))
, l > 0, (7)

where βk = ∂η(xk, rk)/∂rk
i and l is the iterative number. For an iteration number lN , we then

approximate rk
i by tki (lN ) (and dk

i = rk
i ).

As it can be seen, the method of finding dk
i is based on the Newton method of finding roots

of equation in one dimension. We emphasize that both functions η and βk do not involve any
evaluation of the derivative of the objective function G. The formula for the high-dimensional
case can be expressed in the same fashion.

For simplicity, we now state the algorithm using the proposed method for two-dimensional
function.

Step 1. For a given (xk
1 , xk

2 ) and αk , compute tk1 (l) by the iterative numerical method defined by
Eq. (7) for approximating dk+1

1 . Set dk+1
1 = tk1 (lN ) for a large value of l, say lN .

Step 2. Find the new value of xk+1
1 by using Eq. (5) with αk and dk+1

1 obtained in Step 1.
Step 3. Update αk+1 by using

αCor
1 =

xk
1+dk

1∫
xk

1−dk
1

xk
2+dk

2∫
xk

2−dk
2

x1 − xk+1
1 + Sign∗ (xk+1

1 − xk
1 )

xk+1
1 + Sign∗ (xk+1

1 − xk
1 )

G(x1, x2) dx1 dx2, (8)

where Sign = sign(xk+1
1 − xk

1). Set αk+1 = min (αk + αCor
1 , αk

1) if αk + αCor
1 > 0.

Step 4. Find dk+1
2 by using tk2 (l) in Eq. (7) with xk+1

1 obtained in Step 2 and αk+1 obtained in
Step 3.

Step 5. Find the new level value of xk+1 from (5) with dk+1, dk+1 and xk+1.
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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Step 6. Update αk+1 by using

αCor
2 =

xk+1
1 +dk

1∫
xk+1

1 −dk
1

xk+1
2 +dk

2∫
xk+1

2 −dk
2

x2 − xk+1
2 + Sign · (xk+1

2 − xk
2 )

xk+1
2 + Sign · (xk+1

2 − xk
2 )

G(x1, x2) dx1 dx2, (9)

where Sign = sign(xk+1
2 −xk

2 ). Set αk+1 = min (αk+1 + αCor
2 , αk+1) if αk+1 +αCor

2 > 0.
Step 7. Repeat Steps 1–6 until convergence criterion is satisfied.

Remark. In the algorithm, the local integrations in Eqs. (8) and (9) are evaluated by numerical
quadratures. For general objective functions, we can obtain accurate results by using the compos-
ite Simpson quadrature. Furthermore, the Gaussian quadratures and the composite quadratures
of Gaussian types could obtain very effective and highly accurate values for high-dimensional
functions (see [3,18]).

3. Theoretical properties of the method

In this section, we will establish the theoretical properties of the method. We prove that the
algorithm will generate a sequence xk such that G(xk) is a non-decreasing sequence. We also
establish the convergence and convergence rate for the proposed algorithm.

3.1. Non-decreasing property in monotone neighbourhoods

We first show that the size of B(x, d) is a non-decreasing function of α for any fixed position
of xk .

Lemma 3.1. For α1, α2 > 0, let
∫
B(xk,d1)

G(y) dy = α1 and
∫
B(xk,d2)

G(y) dy = α2. If α1 > α2,
then for any given x ∈ Rm, d(α1) � d(α2).

Proof. For any given α1 and α2 such that α1 > α2, let us assume that d(α2) � d(α1). By (4), it
follows that

α2 − α1 =
∫

B(xk,d2)

G(y) dy −
∫

B(xk,d1)

G(y) dy

=
∫

{y: d1�‖y−xk‖�d2}
G(y) dy � 0.

The above inequality follows because G(x) � 0. This is a contradiction. �
We can also show that the new estimate lies within the neighbourhood of xk .

Lemma 3.2. For any given α > 0 and xk , we have

xk+1 ∈ B
(
xk, d

)
.

Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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Proof. By the mean value theorem, it follows that

1

α

∫
B(xk,d)

xG(x) dx = x∗
k

1

α

∫
B(xk,d)

G(x) dx = x∗
k,

where x∗
k ∈ B(xk, d). �

Then, we establish the first important property of the algorithm. The following theorem shows
that our algorithm will generate a strictly increasing sequence G(xk), k = 1,2, . . . , n, if the deriv-
ative is monotone in a local region. This implies that algorithm will try to move up to the local
optimum. Although the derivative was not used in finding the direction, the algorithm can still
find the direction such that it moves to a “higher” ground.

Theorem 3.1. For any given α and xk and a continuous function G(x), if ∂G(x)
∂xi

�= 0 on B(xk, d)

for i = 1, . . . , n, then

G
(
xk+1) > G

(
xk

)
. (10)

Proof. Observe that

(
xk+1

1 − xk
1

)
α

=
d∫

−d

√
d2−y2

1∫
−

√
d2−y2

1

· · ·

√
d2−y2

1−···−y2
n−1∫

−
√

d2−y2
1−···−y2

n−1

· y1
[
G

(
xk

1 + y1, x
k
2 + y2, . . . , x

k
n + yn

)]
dyn dyn−1 · · ·dy1

=
d∫

0

√
d2−y2

1∫
−

√
d2−y2

1

· · ·

√
d2−y2

1−···−y2
n−1∫

−
√

d2−y2
1−···−y2

n−1

y1
[
G

(
xk

1 + y1, x
k
2 + y2, . . . , x

k
n + yn

)

− G
(
xk

1 − y1, x
k
2 + y2, . . . , x

k
n + yn

)]
dyn dyn−1 · · ·dy1

=
( d∫

0

√
d2−y2

1∫
−

√
d2−y2

1

· · ·

√
d2−y2

1−···−y2
n−1∫

−
√

d2−y2
1−···−y2

n−1

y1 dyn dyn−1 · · ·dy1

)

· (G(
xk

1 + ξ
(1)
1 , xk

2 + ξ
(1)
2 , . . . , xk

n + ξ (1)
n

) − G
(
xk

1 − ξ
(1)
1 , xk

2 + ξ
(1)
2 , . . . , xk

n + ξ (1)
n

))
,

where ξ (1) = (ξ
(1)

, ξ
(1)

, . . . , ξ
(1)
n )′ ∈ {y ∈ Rn: ‖y‖ � d and y1 � 0}, and y = (y1, . . . , yn)

′.
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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Let

v(d) =
d∫

0

√
d2−y2

1∫
−

√
d2−y2

1

· · ·

√
d2−y2

1−···−y2
n−1∫

−
√

d2−y2
1−···−y2

n−1

y1 dyn · · ·dy1.

It is clear that v(d) is positive.
It then follows that there exists ξ (i) = (ξ

(i)
1 , ξ

(i)
2 , . . . , ξ

(i)
n )′ ∈ {y ∈ Rn: ‖y‖ � d and yi � 0},

i = 2,3, . . . , n, such that(
xk+1
i − xk

i

)
= v(d)

α
× [

G
(
xk

1 + ξ
(i)
1 , . . . , xk

i−1 + ξ
(i)
i−1, x

k
i + ξ

(i)
i , xk

i+1 + ξ
(i)
i+1, . . . , x

k
n + ξ (i)

n

)
− G

(
xk

1 + ξ
(i)
1 , . . . , xk

i−1 + ξ
(i)
i−1, x

k
i − ξ

(i)
i , xk

i+1 + ξ
(i)
i+1, . . . , x

k
n + ξ (i)

n

)]
.

Since the objective function is monotone on B(xk, dk), therefore the sign of xk+1
i − xk

i is
determined by whether the objective function is increasing or decreasing. Therefore,

∂G

∂xi

(
xk + θ

(
xk+1 − xk

))(
xk+1
i − xk

i

)
> 0, (11)

where θ ∈ [0,1], i = 1, . . . , n.
By the Taylor expansion, we know that:

G
(
xk+1) = G

(
xk

) +
n∑

i=1

∂G

∂xi

(
xk + θ

(
xk+1 − xk

))(
xk+1
i − xk

i

)
, 0 � θ � 1. (12)

It follows that G(xk+1) > G(xk). �
If the derivative is close to zero, the algorithm can still produce a strictly increasing sequence

G(xk), i = 1,2, . . . , n, for some given α. The next theorem formally establishes the result.

Theorem 3.2. Assume the following:

(i) The optimum is contained in a bounded and closed set O . For any given ε > 0, D(ε)
�=

O ∩ ⋃n
i=1{x ∈ Rn: | ∂G

∂xi
(x)| � ε} is closed;

(ii) The partial derivatives ∂G(x)
∂xi

is continuous with respect to x in Rn, i = 1,2, . . . , n.

Then, there exists ᾱ > 0, such that for any α ∈ (0, ᾱ], and xk ∈ D(ε),

G
(
xk+1(α)

)
> G

(
xk(α)

)
.

Proof. For any given ε > 0, D(ε) is bounded and closed. It follows that ∂G(x)
∂xi

is uniformly
continuous in D(ε) with respect to x, i.e. ∃δ(ε) > 0 such that, ∀x ∈ D(ε), if ‖x′ − x‖ < δ, then
| ∂G(x′)

∂xi
− ∂G(x)

∂xi
| < ε

2n
. By assumption (ii), G(x) is continuous with respect to x in Rn. Then,

∀x ∈ D(ε), we define

α(x) =
∫

G(y) dy. (13)
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.08.091
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It follows that α(x) is continuous with respect to x. We note that α(x) > 0. Otherwise, as-
sume that α(x) = 0, i.e.

∫
‖y−x‖�δ/2 G(y) dy = 0. Since G(y) � 0, then G(y) = 0 for any y such

that y ∈ {y ∈ Rn: ‖x − y‖ � δ
2 }. Thus, ∂G

∂xi
(x) = 0, i = 1,2, . . . , n, i.e. x ∈ Rn − D(ε). This is

contradiction.
Since D(ε) is bounded and closed, therefore α(x) has a minimum value in the field D(ε),

say α̃. Let
∫
‖x−y‖�d̄

G(y) dy = α̃, x ∈ D(ε), then d̄(x) � δ/2, x ∈ D(ε).
Note that

xk+1
1 − xk

1

= 1

α

d̄(xk)∫
−d̄(xk)

√
d̄(xk)2−y2

1∫
−

√
d̄(xk)2−y2

1

· · ·

√
d̄(xk)2−y2

1−···−y2
n−1∫

−
√

d̄(xk)2−y2
1−···−y2

n−1

· y1G
(
xk

1 + y1, x
k
2 + y2, . . . , x

k
n + yn

)
dyn dyn−1 · · ·dy1

= 1

α

d̄(xk)∫
−d̄(xk)

√
d̄(xk)2−y2

1∫
−

√
d̄(xk)2−y2

1

· · ·

√
d̄(xk)2−y2

1−···−y2
n−1∫

−
√

d̄(xk)2−y2
1−···−y2

n−1

y1
[
G

(
xk

1 , xk
2 + y2, . . . , x

k
n + yn

)

+ y1
∂G

∂x1

(
xk

1 + θy1, x
k
2 + y2, . . . , x

k
n + yn

)]
dyn dyn−1 · · ·dy1

= 1

α

d̄(xk)∫
−d̄(xk)

y1

√
d̄2−y2

1∫
−

√
d̄(xk)2−y2

1

· · ·

√
d̄(xk)2−y2

1−···−y2
n−1∫

−
√

d̄(xk)2−y2
1−···−y2

n−1

· G(
xk

1 , xk
2 + y2, . . . , x

k
n + yn

)
dyn dyn−1 · · ·dy1

+ 1

α

d̄(xk)∫
−d̄(xk)

√
d̄(xk)2−y2

1∫
−

√
d̄(xk)2−y2

1

· · ·

√
d̄(xk)2−y2

1−···−y2
n−1∫

−
√

d̄(xk)2−y2
1−···−y2

n−1

· y2
1

∂G

∂x1

(
xk

1 + θ(y1)y1, x
k
2 + y2, . . . , x

k
n + yn

)
dyn · · ·dy1,

where θ(y1) ∈ [0,1].
Let

h(y1) = y1

√
d̄(xk)2−y2

1∫
−

√
d̄(xk)2−y2

1

· · ·

√
d̄(xk)2−y2

1−···−y2
n−1∫

−
√

d̄(xk)2−y2
1−···−y2

n−1

· G(
xk

1 , xk
2 + y2, . . . , x

k
n + yn

)
dyn dyn−1 · · ·dy2.

Since h is odd function, thus
∫ d̄(xk)

¯ k h(y1) dy1 = 0. It then follows that
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.08.091
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xk+1
1 − xk

1 = 1

α

d̄(xk)∫
−d̄(xk)

√
d̄(xk)2−y2

1∫
−

√
d̄(xk)2−y2

1

· · ·

√
d̄(xk)2−y2

1−···−y2
n−1∫

−
√

d̄(xk)2−y2
1−···−y2

n−1

· y2
1

∂G

∂x1

(
xk

1 + θ(y1)y1, x
k
2 + y2, . . . , x

k
n + yn

)
dyn dyn−1 · · ·dy1,

where θ(y1) ∈ [0,1].
In general, we have

xk+1
i − xk

i = 1

α

d̄(xk)∫
−d̄(xk)

√
d̄(xk)2−y2

1∫
−

√
d̄(xk)2−y2

1

· · ·

√
d̄(xk)2−y2

1−···−y2
n−1∫

−
√

d̄(xk)2−y2
1−···−y2

n−1

· y2
i · ∂G

∂xi

(
xk

1 + y1, x
k
2 + y2, . . . , x

k
i−1 + yk

i−1, x
k
i + θ(yi)yi, x

k
i+1 + yk

i+1, . . . , x
k
n + yn

)
· dyn dyn−1 · · ·dy1,

where θ(yi) ∈ [0,1].
For any i, we define

C
(
d̄
(
xk

)) =
d̄(xk)∫

−d̄(xk)

√
d̄(xk)2−y2

1∫
−

√
d̄(xk)2−y2

1

· · ·

√
d̄(xk)2−y2

1−···−y2
n−1∫

−
√

d̄(xk)2−y2
1−···−y2

n−1

y2
i dyn · · ·dy1. (14)

(a) First, consider the case in which it satisfies⋃
i

(
B

(
xk, d̄

) ∩
{

x ∈ R:
∂G

∂xi

(
xk

) = 0

})
�= φ. (15)

Without loss of generality, we assume that

B
(
xk, d̄

) ∩
{

x ∈ R :
∂G

∂x1

(
xk

) = 0

}
�= φ.

It suffices to only consider the following case in which

∂G

∂x1

(
xk

)
� ε. (16)

Since when y ∈ B(xk, d̄), | ∂G
∂x1

(y) − ∂G
∂x1

(xk)| < 1
2n

ε, therefore

∂G

∂x1
(y) >

2n − 1

2n
ε. (17)

We then have

xk+1
1 − xk

1 >
1

α
· 2n − 1

2n
ε

d̄(xk)∫
−d̄(xk)

√
d̄(xk)2−y2

1∫
−

√
d̄(xk)2−y2

· · ·

√
d̄(xk)2−y2

1−···−y2
n−1∫

−
√

d̄(xk)2−y2
1−···−y2

n−1

y2
1 dyn dyn−1 · · ·dy1.
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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It then follows that

xk+1
1 − xk

1 >
1

α
· 2n − 1

2n
· ε · C(

d̄
(
xk

))
. (18)

By (15), there exists x(p) ∈ B(ᾱ, xk), such that ∂G
∂xp

(x(p)) = 0.

Therefore, if y ∈ B(ᾱ, xk), it then follows that∣∣∣∣ ∂G

∂xp

(y)

∣∣∣∣ =
∣∣∣∣ ∂G

∂xp

(y) − ∂G

∂xp

(
xk

) + ∂G

∂xp

(
xk

) − ∂G

∂xp

(
x(p)

)∣∣∣∣
�

∣∣∣∣ ∂G

∂xp

(y) − ∂G

∂xi

(
xk

)∣∣∣∣ +
∣∣∣∣ ∂G

∂xp

(
xk

) − ∂G

∂xp

(
x(p)

)∣∣∣∣ <
ε

2n
+ ε

2n
= ε

n
.

Since | ∂G
∂xp

(y)| < 1
n
ε for y ∈ B(xk, d̄), therefore,

∣∣xk+1
p − xk

p

∣∣ � 1

α

d̄(xk)∫
−d̄(xk)

√
d̄(xk)2−y2

1∫
−

√
d̄(xk)2−y2

1

· · ·

√
d̄(xk)2−y2

1−···−y2
n−1∫

−
√

d̄(xk)2−y2
1−···−y2

n−1

y2
p

·
∣∣∣∣ ∂G

∂xp

(
xk

1 + y1, x
k
2 + y2, . . . , x

k
p−1 + yk

p−1, x
k
p

+ θ(yp)yp, xk
p+1 + yk

p+1, . . . , x
k
n + yn

)∣∣∣∣dyn dyn−1 · · ·dy1

<
1

α

1

n
ε

d̄(xk)∫
−d̄(xk)

√
d̄(xk)2−y2

1∫
−

√
d̄(xk)2−y2

1

· · ·

√
d̄(xk)2−y2

1−···−y2
n−1∫

−
√

d̄(xk)2−y2
1−···−y2

n−1

y2
p dyn dyn−1 · · ·dy1

= 1

α

1

n
εC

(
d̄
(
xk

))
.

Let E = {p | ∂G
∂xp

(xk) = 0}. By Taylor expansion and (11),

G
(
xk+1) − G

(
xk

)
= ∂G

∂x1

(
xk + θ

(
xk+1 − xk

))(
xk+1

1 − xk
1

) +
n∑

i=2

∂G

∂xi

(
xk + θ

(
xk+1 − xk

))(
xk+1
i − xk

i

)

>
1

α
· 2n − 1

2n
ε · 2n − 1

2n
ε · C(

d̄
(
xk

)) −
∑
p∈E

∣∣∣∣ ∂G

∂xp

(
xk + θ

(
xk+1 − xk

))∣∣∣∣ · ∣∣xk+1
p − xk

p

∣∣

>
1

α
·
(

2n − 1

2n

)2

· ε2C
(
d̄
(
xk

)) − 1

α
· 1

n
ε · C(

d̄
(
xk

)) · 1

n
ε · (n − 1)

= 1

α
· ε2 · C(

d̄
(
xk

)) ·
(

4n2 − 8n + 5

4n2

)
.

Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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(b) Second, if B(xk, d̄) ∪ ⋂n
i=1{x ∈ Rn: ∂G

∂xi
(xk) = 0} = φ, since ∂G

∂xi
is continuous, therefore,

∂G
∂xi

(y) > 0 (or < 0), where y ∈ B(xk, d̄). By (11) and the Taylor expansion of G(xk+1), we then
have

G
(
xk+1) − G

(
xk

) =
n∑

i=1

∂G

∂xi

(
xk + θ

(
xk+1 − xk

))(
xk+1
i − xk

i

)

>
1

α
· ε2 · C(

d̄
(
xk

)) ·
(

4n2 − 8n + 5

4n2

)
.

Since C(d̄(xk)) is positive and 4n2 − 8n + 5 > 0 when n � 1. It then follows that

G
(
xk+1) − G

(
xk

)
> 0. �

The above theorem only characterizes the behaviour of the algorithm when the derivative is
not zero or its absolute value is bounded from below. However, it does not provide any assurance
that the algorithm will enter into a small neighbourhood of the optima. The following theorem
in the next subsection shows that at least some of the estimates to the optima generated by the
algorithm will have the first-order derivative that is close to zero.

3.2. Convergence of the method

In this part we will discuss the convergence theorems for our method. Basically, we prove that
there exists a path of convergence to the true global optimum.

Theorem 3.3. Under the assumptions of Theorem 3.2, there exists a sub-sequence {xmk (α)},
where α ∈ (0, ᾱ], which satisfies: Any ε > 0, ∃K(ε) > 0, when k > K(ε), xmk ∈ D(ε)c , where
D(ε)c = Rn − D(ε).

Proof. Assume that no such sub-sequence exists, then there must exist M > 0 such that when
m > M , we have xm ∈ D(ε). Denote G(xm) by ym. By Theorem 3.4, when m > M , {ym} is
increasing.

Note that G is continuous since it is differentiable. Since D(ε) is closed and bounded, thus
G is bounded in D(ε). It then follows that the sequence {ym} is convergent. Denote the limit
by ỹ, we must have yk � ỹ when k > M . Since D(ε) is bounded, therefore {xm} has a convergent
sub-sequence. Assume it is {xkl }. Denote the limit by x̃. D(ε) is closed, so x̃ ∈ D(ε).

Since G is continuous, we have

G(x̃) = G
(

lim
l→∞ xkl

)
= lim

l→∞G
(
xkl

) = lim
l→∞ ykl = ỹ.

By Theorem 3.4, G(T (x̃, d(ᾱ))) > G(x̃), where T is defined in (5).
Observe that G ◦ T is continuous with respect to x since G and T are continuous. Let

ε = G(T (x̃, d(ᾱ))) − G(x̃). Thus, ∃L > 0, s.t. l > L, |G(T (x̃, ᾱ)) − G(T (xml , d(ᾱ)))| < ε, i.e.
G(xml+1) = G(T (xml , d(ᾱ))) > G(T (x̃, d(ᾱ))) − ε = G(x̃).
Therefore, yml+1 > ỹ when l > L. It is a contradiction. �

We then can establish the convergence rate of the proposed algorithm.
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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Theorem 3.4. Under the assumptions of Theorem 3.2, if xk ∈ D(ε) where D(ε) is defined as in
Theorem 3.2, then there exists a constant r ∈ (0,1) such that

G(x∗) − G
(
xk+1) < r · (G(x∗) − G

(
xk

))
, (19)

where G achieves its maximum value at the point x∗.

Proof. From the proof of Theorem 3.2, we know that:

G
(
xk+1) − G

(
xk

)
>

1

α
· ε2 · C(

d
(
xk

)) ·
(

4n2 − 8n + 5

4n2

)
.

When α fixed, then by the Theorem of Implicit Function, it follows that d is continuous with
respect to x, x ∈ D(ε). Since D(ε) is closed and bounded, therefore d has minimum value when

x ∈ D(ε), denoted by d0. Let C0 = 1
α

· ε2 · C(d0) · ( 4n2−8n+5
4n2 ). Thus, G(xk+1) − G(xk) > C0.

Note that G(xk+1) � G(x∗), so 0 < C0 < G(x∗) − G(xk). Thus there exists c ∈ (0,1), s.t. C0 =
c · (G(x∗) − G(xk)). Therefore,

0 � G(x∗) − G
(
xk+1) < G(x∗) − G

(
xk

) − C0 = r · (G(x∗) − G
(
xk

))
,

where r = 1 − c. �
Lemma 3.3. Let x∗ be the maximizer of G and ∇G(x∗) = 0. If the function G(·) is twice contin-
uously differentiable and there exist constants 0 < m � M < ∞ such that for all x,y ∈ Rn,

−M‖y‖2 �
〈
y,Gxx(x)y

〉
� −m‖y‖2, (20)

then, we must have

m

2
‖x∗ − x‖2 � G(x∗) − G(x) � M

2
‖x∗ − x‖2, (21)

where x∗ is the maximizer of G(x).

Proof. Note that

G(x) − G(x∗) = 〈∇G(x∗), (x − x∗)
〉 + 1

2

〈
x − x∗,Gxx

(
x + θ(x − x∗)

)
(x − x∗)

〉
for some θ ∈ [0,1]. �

Finally, we can prove that the algorithm converges R-linearly before entering Dc(ε). Detailed
discussions on different rate of convergence for algorithms can be found in Polak [14].

Theorem 3.5. Suppose the assumptions in Theorem 3.2 and Lemma 3.3 hold. Let ε̄ and D(ε)

be the same as defined in Theorem 3.2. Let {xk(α)} be a sequence defined by our algorithm,
where α ∈ (0, ᾱ]. If xk ∈ D(ε) for k � K , then there exists c ∈ (0,1), s.t. ‖x∗ − xk‖ <

ck[ 2
m

(G(x∗) − G(x0))]1/2, where x∗ is the maximizer of the function G(x).

Proof. From Theorem 3.4, we know that ∃r ∈ (0,1), s.t. G(x∗)−G(xk+1) < r ·(G(x∗)−G(xk)).
By Lemma 3.3, it follows that m

2 ‖x∗ − xk+1‖2 � G(x∗)−G(xk+1) < r · (G(x∗)−G(xk)). It fol-
lows by recursion that, for k � K ,

m

2

∥∥x∗ − xk+1
∥∥2

< rk+1 · (G(x∗) − G
(
x0)). �
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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3.3. Results for unimodal functions

In this subsection, we now consider functions that are unimodal. Let x∗ be the maximum for
a unimodal function and define

E(ε) =
{

x ∈ Rn:

∣∣∣∣∂G

∂xi

(x)

∣∣∣∣ � 2n + 1

2n
ε, i = 1, . . . , n

}
. (22)

We also define a family of sets: N(x∗, ε) = {B ⊂ Ē(ε): x∗ ∈ B and B is connected}. Obviously,⋃
N(x∗, ε) is connected and closed, denoted by U(x∗, ε). Therefore, Ē(ε) = U(x∗, ε)∪ (Ē(ε)−

U(x∗, ε)) and U(x∗, ε) is the maximum connected sub-set of Ē(ε) which includes the point x∗.
Define

ME/U(ε) = sup
x∈E( 2n

2n+1 ε)−U(x∗, 2n
2n+1 ε)

G(x),

mU(ε) = inf
x∈U(x∗,ε)

G(x).

Furthermore, we define

A(x∗, ε) = {
t : mU(ε) < t < G(x∗)

}
, (23)

B(x∗, ε) = {
t : ME/U(ε) < t < G(x∗)

}
. (24)

Theorem 3.6. Under the assumptions of Theorem 3.2, if the function G is unimodal and
∃ε∗ > 0, s.t. G(x) > 0 where x ∈ U(x∗, 2n

2n+1ε∗), then given 0 < ε < ε∗ and any initial point

x0 ∈ G−1(B(x∗, ε)), there exists ᾱ, ∀α ∈ (0, ᾱ], such that there exists K(ε,x0) > 0, when
k > K(ε,x0), G(xk) � mU(ε).

Proof. Since G is unimodal, we then have ∃ε0 > 0, U(x∗, 2n
2n+1ε) is bounded when ε < ε0.

Let ε̄ = min{ε0, ε
∗}. Since U(x∗, 2n

2n+1 ε̄) is closed and bounded, therefore D(ε̄) ∪
U(x∗, 2n

2n+1 ε̄) is bounded and closed where d̄ and D(ε̄) are defined in Theorem 3.2.
We can find ᾱ > 0 and d̄ as described in Theorem 3.2. It follows that, for any α ∈ (0, ᾱ], and

for all x ∈ D(ε̄) ∪ U(x∗, 2n
2n+1 ε̄), if ‖x′ − x‖ < d̄ , then∣∣∣∣∂G(x′)

∂xi

− ∂G(x)

∂xi

∣∣∣∣ <
ε̄

2n
(25)

for i = 1,2, . . . , n.
Observe that x0 ∈ U(x∗, 2n

2n+1 ε̄) ∪ D(ε̄) since x0 ∈ G−1(B(x∗, ε̄)).

(1) We first consider x0 ∈ D(ε̄). By Theorem 3.2, it follows that {xk} is an increasing sequence
on D(ε̄). This implies that G(xk) > mU(ε̄) before the sequence enters Ē(ε̄). Therefore, by
Theorem 3.5, ∃K > 0, s.t. xK ∈ U(x∗, 2n

2n+1ε).
(2) Next we consider xK+1.

(i) If xK+1 ∈ U(x∗, 2n
2n+1 ε̄), we then have G(xK+1) � F(ε).

(ii) If xK+1 ∈ D(ε̄), therefore | ∂G
∂xi

(xK+1)| < 2n+1
2n

ε̄ since | ∂G
∂xi

(xK) − ∂G
∂xi

(xK+1)| < ε̄
2n

and

| ∂G
∂xi

(xK)| < ε̄. Then it follows that G(xK+1) � mU(ε̄). Note that G(xk+1) > G(xk) if

xk ∈ D(ε̄).

Then it follows that, for any ε < ε̄, and k > K , we have G(xk) � F(ε). �
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For any sequence {αk}, we can define a new sequence {xk}, where xk is defined as:

xk(αk) = 1

αk

∫
y∈B(dk)

yG(y) dy. (26)

If the function G is unimodal and the optima is unique, the next theorem proves that there is
a sequence that converges to the maximizer.

Theorem 3.7. If the conditions in Theorem 3.6 hold, and if ∃ε(1) > 0, only x∗ satisfies ∂G
∂xi

(x) = 0,

i = 1, . . . , n, in U(x∗, ε(1)), then ∃ε(2) > 0, any initial point x0, where x0 ∈ G−1(B(x∗, ε(2))),
for any ε ∈ (0, ε(2)], we can find a sequence {αk} s.t. the sequence {xk(αk)} converges to x∗.

Proof. Since G is unimodal, therefore ∃ε(3) > 0, s.t. mU(ε) � ME/U(ε), when ε < ε(3). Let
ε̄ = min{ε(1), ε(2), ε(3), ε∗}, where ε∗ is defined in Theorem 3.6.

Note that ME/U(ε) is non-increasing with respect to ε if G is unimodal. It then follows
that ∃K > 0, s.t. 1

K
< ε, where ε � ε̄. By Theorem 3.6, we know that, for any given x0 ∈

G−1(B(x∗, ε)), ε ∈ (0, ε̄], there ∃α(1) > 0 and ∃k1 > 0, s.t. when k > k1, xk(α(1)) � mU( 1
K

).
Since ME/U( 1

K+1 ) � ME/U( 1
K

) � mU( 1
K

), therefore xk1 ∈ G−1(B(x∗, 1
K

)). It follows that

∃α(2) > 0 and ∃k2 > 0, s.t. when k > k2 + k1, xk(α(2)) � mU( 1
K+1 ). In general, it follows that

there exists α(m) > 0 and ∃km > 0, s.t. when k > km +km−1 +· · ·+k1, xk(α(m)) � mU( 1
K+m−1 ).

Set αk = α(i), when ki < k � ki+1. Consequently, we can define the sequence {xk(αk)}. Let
Ψm = {G−1(Ā(x∗, 1

K+m
))}, m = 1,2, . . . . Since G−1(A(x∗, 1

K
)) ⊃ G−1(A(x∗, 1

K+1 )) ⊃ · · · ⊃
G−1(A(x∗, 1

K+m
)) ⊃ · · ·, limm→∞ F( 1

K+m−1 ) = G(x∗) and G is unimodal and continuous,
therefore

⋂
Ψm = {x∗}. It then follows that limk→∞ xk = x∗. �

Finally, we study the relationship of the proposed derivative-free algorithm and a general
gradient algorithm. We obtain the following theorem.

Theorem 3.8. If the second partial derivative of G(x) exists, then for any given α > 0, we have

xk+1 = xk + n

n + 2

∇G(xk)

G(xk)
d2
k + O

(
d3
k

)
, (27)

where dk satisfies
∫
B(xk,d)

G(xk) dx = α.

Proof. To simplify the notation, let x0 = xk and xk+1 = T (xk) where T is the operator defined
by

T
(
xk

) = 1

α

∫
B(xk,d)

yG(y) dy. (28)

Let y = x0 + u. It then follows that

T (x0) = 1

α

(∫
B

(x0 + u)G(x0 + u) du
)

= 1

α

(
x0

∫
G(x0 + u) du +

∫
uG(x0 + u) du

)
= x0 + 1

α
M(x0),
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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where

T (x0) =
∫
B

uG(x0 + u) du, (29)

and B = {u ∈ Rn: ‖u‖ � d}.
Expand the density function as follows:

G(x0 + u) = G(x0) + u∇G(x0) + ‖u‖2Q(x0 + tu), 0 < t < 1,

where

Q(x0 + tu) = 1

2!
n∑

i=1

n∑
j=1

yiyj

∂2f

∂xi∂xj

∣∣∣∣
x=x0+tu

. (30)

By using polar coordinates, it can be verified that∫
B

du = dn

n
Cn,

∫
B

udu = 0,

∫
B

‖u‖2 du = dn+2

n + 2
Cn,

where Cn = (
√

π)n−2

Γ ( n
2 )

2π .

We then have

α =
∫
B

G(x0 + u) du

=
∫
B

G(x0) du +
∫
B

u∇G(x0) du +
∫
B

‖u‖2Q(x0 + tu) du

= α0 + α1 + α2,

where

α0 = G(x0)
dn

n
Cn,

α1 = ∇G(x0)

∫
B

udy = 0,

α2 =
∫
B

‖u‖2Q(x0 + tu) du � MB

dn+2

n + 2
Cn,

where MB = maxB
∂2G(x1,x2,...,xn)

∂xi∂xj
for any i, j .

This implies that

α = G(x0)
dn

Cn + O
(
dn+2). (31)
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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Similarly, we obtain that

M(x0) = I0 + I1 + I2, (32)

where

I0 = G(x0)

∫
B

udu = 0,

I1 = ∇G(x0)

∫
B

‖u‖2 du = ∇G(x0)
dn+2

n + 2
Cn,

I2 =
∫
B

u‖u‖2Q(x0 + tu) du = O
(
dn+3).

It then follows that

M(x0) = ∇G(x0)
dn+2

n + 2
Cn + O

(
dn+3).

We then have
1

α
M(x0) = n

n + 2

∇G(x0)

G(x0)
d2 + O

(
d3).

Moreover, if we ignore the higher order terms in Eq. (27), we then have

xk+1 = xk + n

n + 2

∇G(xk)

G(xk)
d2
k . � (33)

If the limit of the sequence xk exists, say x∗, by taking the limit on both sides of the above
equation, we then have

x∗ = x∗ + n

n + 2

∇G(x∗)
G(x∗)

d2
k .

It then implies that ∇G(x∗) = 0. Therefore, this algorithm is also trying to find saddle points
whose first-order derivative equal to zero.

Although the first-order derivative is not used in the proposed algorithm, the moving direction
of the algorithm is actually closely related to the gradient. For simplicity, let us consider the
1-dimensional case. If f ′(xk) > 0, then the second term in Eq. (33) will be positive. This implies
that the xk+1 is generated to the right of xk which moves to a “higher” ground. Otherwise,
xk+1 will move to the left of xk . Therefore, the first-order derivative actually dictates the direction
of the next move. We emphasize that the first-order derivative is never calculated.

Although we have established convergence properties in this section, we remark that conver-
gence to a local optimum is still possible in our algorithm. For example, for a very small initial
value of α, our algorithm could converge to a local optimum. However, we will show through
examples in the next section that the outcome of our algorithm is not very sensitive to the choice
of the initial values.

4. Numerical experiments

In this section, we will present results of numerical experiments and compare our algorithm
with three widely used algorithms: the Newton, the Quasi-Newton and the wedge trust region
methods.
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.08.091
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4.1. Comparison with Newton and Quasi-Newton method

The first objective function that we consider is the following:

G11(x) = e−x2 + 0.7 ∗ e−(x−2)2 + 10, −∞ < x < ∞. (34)

This function is asymmetric and has one global maximum at 0.18 but with an additional local
optima around 2. It is mainly flat on most of its domain but has a steep increase near the global
and local optima. The function is displayed in the left panel of Fig. 2.

Table 1 provides a comparison between the Newton method and our algorithm. It can be seen
that Newton method is very sensitive to the initial values. The Newton method could generate
correct results when the initial values are set within the interval (−0.5,0.5). For other initial
values, however, the Newton method does not work well. For example, it is interesting to exam
the result generated by the Newton method when the initial value is 1. The location of this
particular initial value is actually closer to the global optimum located at 0.18 than the local
optimum at 2. However, the Newton method converges to the local saddle point 1.18 instead. If
the initial values are set to be on the other side of the local optimum, then the Newton algorithm
will be trapped at the local optimum. Furthermore, if the initial values are set to be either −1 or 3
which are both relatively far from the optimum, then the Newton method could not calculate the
derivatives at those locations and consequently failed to find either the global or local optima.
Among all the initial values we tried, the Newton method could only find the global optima when
the initial values are very close to the true global maxima. Another commonly used optimization
algorithm for one-dimensional case is the Secant method. The Secant method does not require the
calculation of the derivative. But it does require the input of 2 parameters. Table 1 also provides
the results using different initial values for the Secant method. It can be seen that the Secant
method also suffers the similar drawback as the Newton method. First of all, it could also diverge
as the Newton method does. Secondly, the accuracy of the algorithm depends heavily on the
initial choice of the parameters.

In contrast with the results generated by the Newton method, our algorithm based on condi-
tional moments (CM) can find the global optima regardless of the relative position of the initial
value to the global optima. In particular, our algorithm gives a very surprising performance when
the initial value is set to be 3. In this case, the starting point lies on the right-hand side of both the
global and the local optima. Our algorithm actually jumped across the local optimum and indeed
reached the global optimum.

Fig. 2. Objective functions: e−x2 + 0.7 ∗ e−(x−2)2 + 10 (left) and e−(50∗x−2)2 + e−(100∗x−2)2 + 10.
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.08.091
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Table 1
Comparison with Newton and Secant method for function G11 (tolerance = 10−8)
Initials x0 = −1 x0 = −0.5 x0 = 0.0 x0 = 0.5 x0 = 1.0 x0 = 2.5 x0 = 3
Newton NA 1.1808 0.1791 0.1791 1.1808 1.8948 NA
CM 0.1806 0.1824 0.1803 0.1812 0.1813 0.1813 0.1813

Initials (−1,−0.5) (−1,0) (−0.5,0) (−0.5,1) (0.5,1.0) (0.5,1.5) (1,2) (1,2.5)

Secant NA 0.1791 0.1791 1.1808 1.1808 1.1808 1.8948 NA

Table 2
Comparison with Newton and Secant method for function G12 (tolerance = 10−8)

x0 = 0 x0 = 0.01 x0 = 0.02 x0 = 0.03 x0 = 0.04 x0 = 0.05
Newton NA NA 0.0229 0.0229 NA NA
CM 0.0224 0.0224 0.0227 0.0.234 0.0229 0.0229

(0,0.01) (0,0.03) (0.01,0.02) (0.01,0.03) (0.02,0.04) (0.03,0.04) (0.03,0.05)

Secant NA 0.0221 0.0221 NA NA NA −0.1282

The second objective function we used is

G12(x) = exp
{−(50x − 2)2} + exp

{−(100x − 2)2} + 100, −∞ < x < ∞. (35)

This function has one unique optimum at 0.022 but is very steep in its neighbourhood. It is plotted
in the right panel in Fig. 2.

The results of the Newton method and ours are presented in Table 2. We see that the depen-
dence on the initial values is quite evident for the Newton method. In fact, the Newton method
failed to produce any sensible results unless the initial values are set to be very close to the true
optima. The results obtained through the Secant method are also given in Table 2. It can be seen
that the Secant method is either divergent or failed to find the true optimum for most initial val-
ues we selected. It is highly sensitive to the initial choice of the parameters. For example, the
true optimum is found by using initial parameters (0.01,0.02). However, the Secant method is
divergent for a similar pair of parameters, namely (0.01,0.03).

We now compare the performances of the Newton method and our method for a two-
dimensional function:

G21(x, y) = e−(x2+y2) + e−(x−1)−(y−1)2 + 10, −∞ < x < ∞. (36)

The above function has one unique optimum at (0.5,0.5). Unlike the functions studied in the
one-dimensional case, this function is rather flat near the optimum as seen in Fig. 3.

In the two-dimensional case, Quasi-Newton method is also commonly used. We present the
results from the Newton, Quasi-Newton and our methods (CM) in Table 3. It is clear that the
Newton method is highly sensitive to the initial value of (X0, Y0). In fact, the Newton method
failed to perform any iteration in many initial values since the method could not calculate the
derivatives of the objective function. In comparison, the Quasi-Newton method is only marginally
better. Although it delivers the optimum in two cases in which the Newton method failed, the
reported values are both grossly far from the true optimum. The Quasi-Newton method, however,
would diverge for many initial values. In comparison, our method finds the true optima for most
of the initial values. When the initial values are both negative, however, our method reports
that the optimum is around (0,0). Although it seems that our method also missed the target for
these cases, carefully examination of the objective function especially the contour plot in Fig. 3
reveals that the optimal value returned by our method is about 11 while the true optimal value
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.08.091
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Fig. 3. Surface and contour plot for the function G21.

Table 3
Comparison with Newton and Secant method for function G21 (tolerance = 10−8)
(X0, Y0) Newton Quasi-Newton CM
(−1.0,−1.0) NA NA (−0.00716,−0.00725)

(−0.5,−0.5) NA (−4.0998,−4.0998) (−0.00347,−0.00381)

(0.6,0.6) (0.50000,0.50000) (0.5000,0.50000) (0.50001,0.50001)

(1.0,1.0) (0.50000,0.50000) (0.50000,0.50000) (0.50000,0.50000)

(1.2,1.2) (0.50000,0.50000) (0.5000,0.50000) (0.50001,0.50001)

(1.5,1.5) NA (5.09988,5.09988) (0.50000,0.50000)

(2.0,2.0) NA NA (0.50000,0.50000)

(3.0,3.0) NA NA (0.50000,0.50000)

for the function is 11.2. Our method could not proceed further since the top of the 2-dimensional
function is very flat indeed. Thus those output results by our method seem to be quite reasonable
given the nature of the function near the global optimum.

4.2. Comparison with wedge trust region method

We now compare our method with the wedge trust region method (see Marazzi and Nocedal
[12]). The wedge trust region method has been shown to be very efficient and accurate for a
variety of functions. We indeed apply the wedge trust region method to the functions studied in
previous section. The wedge trust region works almost perfectly for those functions with very
large or very small first-order derivatives. We proceed to make further comparison in much more
complicated situations in which the global optima of the objective functions are accompanied by
some local optima.

The first objective function we chose is the function

G22(x, y) = 30 exp
(
0.01 ∗ [ − 30(x − 2)2 − 20(y − 2)2])

+ 20 exp
(−20(x − 4)2 − 5(y − 4)2) + 10.

The surface and contour plots are provided in Fig. 4. The global optimum is at (2,2) with a local
optimum located at (4,4). We apply both the wedge trust region method and our method to this
function. The results are presented in Table 4. We actually tried many initial values and many
of those pairs give almost identical results for both methods. Thus, we only present results that
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.08.091
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Fig. 4. Comparison with wedge trust method using G22.

Table 4
Comparison between the wedge trust region method and the conditional moment method
using G22

Initial values Wedge trust region Conditional moment

(4,1) (2.000405,2) (2.004554,2.003649)

(1,5) (2.000405,2) (2.005478,2.004500)

(1,−1) (2.000405,2) (2.006220,2.005184)

(1,1) (2.000405,2) (2.000781,2.000408)

(0,4) (2.000405,2) (2.005800,2.004797)

(5,5) (3.923584,4) (2.001318,2.000835)

(4,6) (3.923584,4) (2.001557,2.001029)

(3,5) (3.923584,4) (2.002954,2.002219)

(5,3) (3.923584,4) (2.002939,2.002206)

are representative. The class of top four cases presented in Table 4 demonstrates that these two
methods could both find the global optimum for this set of different starting points. If the location
of the initial value is not close to the local optimum located at (4,4), the wedge trust region
method is very effective and accurate. In fact, it is more efficient and accurate than our method.
For example, if the starting point is chosen at (1,1) or (0,4), the wedge trust region locates the
true global optimum very accurately while the CM method only converges to the neighbourhood
of the location (2.005,2.005). However, if the initial values are chosen to be close to the local
optimum at (4,4) such as those chosen in the last 4 cases in Table 4, the wedge trust region
method will converge to the local optimum instead of the global one. Our CM method, however,
converges successfully to the global optimum and ignored the attraction from the local optimum.
In summary, the performance of the wedge trust region method also depends on the choice of the
initial starting point. Our method, on the other hand, does not rely on the initial value and seem
to be more robust although it could be less accurate than the wedge trust region method for some
cases.

To further verify our observation that the wedge trust region method might be trapped in a
local optimum which is close to the global one, we consider the following function:

G23(x) = 30 exp
(
0.01 ∗ [−30(x − 2)2 − 20(y − 2)2])

+ 20 exp
(−20(x − 4)2 − 5(y − 4)2).
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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Fig. 5. Surface and contour plot of G23.

Table 5
Comparison between the wedge trust region method and the conditional moment method
using function G23

Initial values Wedge trust region Conditional moment

(2,5) (2.000000,2.0) (2.000000,2.000003)

(2,−3) (2.000000,2.0) (2.000000,1.999999)

(−2,2) (2.000000,2.0) (2.000001,2.000000)

(2,−1) (2.000000,2.0) (2.000000,1.999998)

(5,−1) (3.902682,0.2) (2.000001,1.999999)

(5,5) (3.902682,4.0) (2.000000,2.000004)

(−1,−2) (0.009731,0.2) (2.000000,1.999974)

(−1,5) (0.009731,4.0) (1.999999,2.000001)

(5,2) (3.902682,4.0) (2.000001,2.000000)

The surface and contour plots are given in Fig. 5. As we can see that the global optimum located
at (2,2) is surrounded by four local optima. This is a more challenging case as the objective
function changes more radically around the global optimum. We see that both methods would
converge to the global optimum if the starting points are in one of the four “valleys.” This is not
surprising as there exists a clear direct path to the optimum from those locations. However, the
wedge trust region method would converge to one of the four local optima if the initial values
are close to one of those local optima. In comparison, the CM method could jump over the local
optimum nearby and go directly to the global optimum.

We also tried to compare our algorithm with the trust region algorithm for a very challenging
function

G24 = 103 sin(r)/r, (37)

where r = √
x2 + y2 and −10 < x < 10, −10 < y < 10.

The optimum is achieved at the (0,0) which is the location of singularity of the derivative.
Around the global optimum, there is also a ring of infinite local multi-optima within the range
of [−10,10]× [−10,10]. The graphical presentation of this function is shown in Fig. 6. The left
panel shows the 3-D picture of the function with the singularity removed. The sectional plot of
the function for y = 0 is provided in the right panel of Fig. 6. Please note that the optimum has
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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Fig. 6. Surface and section plots of function G24(x, y)/100.

Table 6
Comparison between the wedge trust region method and the conditional moment method
using function G24

Initial values Wedge trust region Conditional moment

(4.0,5.0) (5.85,5.00) (0.02,0.06)

(5.0,5.0) (5.32,6.00) (−0.01,−0.01)

(5.0,6.0) (5.04,6.00) (−0.05,0.04)

(6.0,7.0) (4.65,6.00) (−0.06,0.03)

(7.0,7.0) (5.98,5.00) (0.03,0.07)

been removed in order to plot the graph. The numerical results are given in Table 6. Since the
function is symmetric, we only provide results using initial points from the first quadrant. The
results using initial values from other areas are very similar. It can be seen from Table 6 that the
trust region method could not even get close to the global optimum and is trapped by the ring of
infinitely many surrounding local optima. Our method, however, can break through the collection
of infinite multi-optima and get reasonably close to the global optima. Due to the singularity of
the derivative at the global optimum, our method could not get very close to the true optima for
one run. The precision could be improved iteratively by applying a strictly decreasing sequence
of αk by using the previous stopping point as the new starting point. However, the trust region
method would not get any better result.

5. Conclusion

In this article we propose a derivative-free algorithm for optimization. The novel feature
of the algorithm lies in the fact that it is based on conditional moments calculated from lo-
cal integrations and does not require the evaluations or knowledge of any order derivatives of
the objective function. The local integrations can be evaluated by the numerical quadratures
for each dimension separately to avoid integration on high-dimensional space. The parame-
ters dk and αk in the algorithm are calculated adaptively by Newton type of iterations. We also
provide theoretical analysis to provide insights on the proposed algorithm. Numerical results
based on various one-dimensional and two-dimensional functions have shown that the algorithm
could be very effective and accurate when compared with those widely used optimization algo-
rithms.
Please cite this article as: X. Wang et al., A derivative-free optimization algorithm based on conditional moments, J.
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