

Pinpointing The Structural Dynamics of Plasminogen Activator Inhibitor -1 binding to Heparin using Hydrogen/Deuterium Exchange Mass Spectrometry

Introduction

- ✤PAI-1 is a key player to regulate the activation of fibrinolysis, with broad influence effects on inflammation, hemostasis, tissue remodeling, and wound healing¹.
- The binding of endogenous cofactor vitronectin to PAI-1 helps to extend PAI-1 half-life and delay its latency transition thus controlling the stability of the active form¹.
- Previous studies have suggested that low molecular weight heparin alters the levels of circulating PAI-1 and enhances endogenous fibrinolysis. However, the intrinsic dynamics of this binding are not completely understood².
- Our findings reveal that Low Molecular Weight Heparinn (LMWH) may contribute to the localization of PAI-1 at specific sites, hence involved in the regulation of plasminogen activation and its functional stability.
- Hydrogen-Deuterium Exchange (HDX) coupled to MS is widely used to study protein dynamics.
- Continuous time-resolved Electrospray ionization TRESI-HDX-MS technique is used to characterize protein structural transitions in relatively ordered regions of proteins³.

Experimental Methods

- Recombinant human active PAI-1 stabilized by four mutations (14-1B), wild active PAI and Fondaparinux is a synthetic heparin pentasaccharide were obtained from Innovative Research Laboratories, and Amsbio respectively.
- Conformational dynamic studies using Continuous Flow Injection (CFI)TRESI-HDX-MS³.
- ✤Pumps were used flow rates 8 uL/min for the protein carrier buffer (100 mM) ammonium Formate), 8 uL/min for the D_2O carrier buffer (100% H_2O), and 40 uL/min for the acid quench.
- Analytes were subjected to native mass spectrometry on a Waters G2S ion mobility mass spectrometer by direct infusion ESI.
- Data were collected on a Waters Synapt G2-Si and processed with Mass Spec Studio 1.0 and Mass Studio 2.0.

Figure 1. The continuous pullback device CFI-TRESI-HDX Coupled to Mass Spec utilized to perform automated data collection.

Marwa Abdalla¹, Joseph Anacleto¹, Derek Wilson¹

1. Department of Chemistry, York University, Toronto, ON, Canada

Results and Discussion (A) Mutant PAI-1 L:2 PAI-1:LMWH (Sum of 3 time points) **Shutter Region** Flexible Joint F. KIHITA MATHITA IHITA LGTG WATP **(B)** Gate region 180° Shutter region Flexible Joint Region <10% 10-15% No Difference

Figure 2. Maximal difference in Deuterium uptake with and without LMWH

(A) LMWH binding to PAI-1 induces a significant attenuation of deuterium uptake. Peptides covering the Flexible joint region has the strongest protection against isotopic exchange [peptides (99-105), (114-125)]. Some changes are also noticed in regions away from LMWH binding site, where modest decrease in D20 uptake take place [peptides (206-213), (239-249); gate area]. Lastly, Protection was also observed in Shutter area [peptide(307-319)] (B) Differences in Deuterium uptake are mapped on 14-1B mutated PAI-1 structure, PDB 3Q02

Figure 3. Example of a Deuterium –labeled PAI-1 peptide. Deuterium Uptake Plot:- MS spectra of the peptide 46-59 (m/z 772.9) ion signal after HDX for 15 and 45 sec on PAI-1 in the presence and absence of LMWH. The spectrum of 0 sec represents nondeuterated peptide.

- half PAI-1 molecule

- active and latent state.

- doi:10.1021/acs.analchem.2c05003

Acknowledgements: Funding for this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) CRD program and Mitacs program grant.

Conclusions and Future Work

LMWH binding to active PAI-1 results in significant stabilization in the lower

Upper few areas in PAI-1 Molecule are also impacted

The binding sites of LMWH to 14-1B mutated PAI-1 is equal to the wild PAI-1 however more protection in observed in the mutated version.

To further explore this study, we are going to investigate: longer time points conformational changes and kinetics of binding through transition between

References

1) Trelle, Morten Beck et al. "Hydrogen/deuterium exchange mass spectrometry reveals specific changes in the local flexibility of plasminogen activator inhibitor 1 upon binding to the somatomedin B domain of vitronectin." Biochemistry vol. 51,41 (2012): 8256-66. doi:10.1021/bi3008998

2) Makedonov, Ilia et al. "Prevention and Management of the Post-Thrombotic Syndrome." Journal of clinical medicine vol. 9,4 923. 27 Mar. 2020, doi:10.3390/jcm9040923

3) Anacleto, Joseph et al. "Apparatus for Automated Continuous Hydrogen Deuterium Exchange Mass Spectrometry Measurements from Milliseconds to Hours." Analytical chemistry vol. 95,9 (2023): 4421-4428.