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Abstract

Background: Due to the lack of timely access to resources for critical care, strategic use of antiviral drugs is crucial for
mitigating the impact of novel influenza viruses with pandemic potential in remote and isolated communities. We sought to
evaluate the effect of antiviral treatment and prophylaxis of close contacts in a Canadian remote northern community.

Methods: We used an agent-based, discrete-time simulation model for disease spread in a remote community, which was
developed as an in-silico population using population census data. Relative and cumulative age-specific attack rates, and
the total number of infections in simulated model scenarios were obtained.

Results:We found that early initiation of antiviral treatment is more critical for lowering attack rates in a remote setting with
a low population-average age compared to an urban population. Our results show that a significant reduction in the
relative, age-specific attack rates due to increasing treatment coverage does not necessarily translate to a significant
reduction in the overall arrack rate. When treatment coverage varies from low to moderate, targeted prophylaxis has a very
limited impact in reducing attack rates and should be offered at a low level (below 10%) to avoid excessive waste of drugs.

Conclusions: In contrast to previous work, for conservative treatment coverages, our results do not provide any convincing
evidence for the implementation of targeted prophylaxis. The findings suggest that public health strategies in remote
communities should focus on the wider availability (higher coverage) and timely distribution of antiviral drugs for treatment
of clinically ill individuals.
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Introduction

In the event of an emerging disease, of greatest concerns to

public health are the geographic spread, severity, and time course

of the outbreak. Determining the most effective utilization of

available social, preventive, and therapeutic resources to reduce

population vulnerability and mitigate disease outcomes is the main

focus of the public health response. Understanding the effective-

ness of control measures in population settings with distinct

demographic variables and social structures can inform public

health response plans for the allocation and optimal distribution of

health resources prior to and during the spread of an emerging

infection [1,2].

Emerging infectious diseases are, by definition, novel in type,

scope and/or distribution, and therefore pose a particular

challenge for decision-makers. Decisions related to the optimal

use of health resources and the implementation of community-

specific intervention strategies must be made quickly and in the

face of substantial uncertainty. The 2009 influenza A (H1N1)

pandemic (H1N1pdm09) clearly exemplified this challenge [3].

Canada’s northern remote and isolated communities were

disproportionately affected by the disease and its severe outcomes,

often necessitating medevac to urban areas for hospitalization and

intensive care unit (ICU) admission [4,5]. The differential rates of

infection and hospitalization were particularly high in the first

wave of the H1N1 pandemic in Canada [3,6]. During the first

wave, antiviral drugs were the only pharmaceutical intervention

available. However, limited healthcare resources and a significant

delay in the initiation of antiviral treatment post infection appear

to have been barriers to realizing the full potential that antiviral

drugs may have had in mitigating disease burden especially in

northern communities [7]. Epidemiological data from northern

Manitoba, a centrally located Canadian Province, indicate a

significant delay in antiviral treatment of confirmed cases of

H1N1pdm09 infection, with the mean of 3.5 days post symptoms

(Figure S6 of Text S1). Clinically, in order to maximize the

benefits of antiviral drugs, treatment must be initiated early (within

48 hours of symptom onset) [8].

In northern Manitoba, a significant proportion of the popula-

tion self-identifies as having Aboriginal ancestry. Approximately

35% of Canadian, on reserve communities are considered semi-

isolated, isolated or remote [9]. These communities range from
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having road access but the nearest physician services are more

than 90 km away to having no road access or scheduled flights and

minimal telephone and radio service [8]. Factors such as

multigenerational households, challenging environmental charac-

teristics (e.g. crowded housing, and poor indoor air quality due to

tobacco use), differential prevalence of predisposing health

conditions (e.g. diabetes and asthma) and other types of health

disparities in these population settings (limited access to healthcare

resources and high cost of nutritionally rich foods), put these

communities at much higher risk for serious adverse health

outcomes during a pandemic. More timely access to antiviral

treatment may help to reduce the burden on the healthcare system

in the event of an emerging pandemic by decreasing the number

of individuals from Aboriginal communities requiring hospital and

ICU admission [3].

Although not as effective or cost-effective as vaccination,

antiviral use for the treatment of influenza cases is far more

economical than hospitalization or intensive care. Furthermore,

the time frame required for the development, production and

distribution of a virus-specific vaccine using the conventional egg-

based method ranges from 3 to 6 months once the virus has

emerged [10,11]. Antiviral medication will likely be the only

pharmaceutical option for at least 3 months once the pandemic

strain is identified and therefore the availability and strategic use of

drugs is crucial for mitigating disease in remote and isolated

communities, where the risk of severe outcomes appears to be

significantly elevated compared to the urban populations at more

southern latitudes [3,4].

Strategically, the targeted use of antiviral drugs for the

treatment of illness and/or prophylaxis of close contacts may

require different policies for remote communities compared to

urban populations. A ‘‘one size fits all’’ plan may not provide the

most benefit in the case of antiviral use. Previous work has shown

that demographic characteristics (e.g., age and household compo-

sition) can significantly influence the spread of disease, and

therefore the impact of intervention strategies, in the population

[1,12,13]. We sought to investigate the impact of different antiviral

use strategies on the cumulative and relative age-specific attack

rates (i.e., the fraction of population infected) in a synthetic

population representative of a small, remote community in

northern Canada. Our objectives were to: (i) assess the effect of

antiviral treatment (as a single strategy) and the impact of delays in

start of treatment; and (ii) evaluate the combined effect of

treatment and post-exposure prophylaxis on antiviral effectiveness.

For comparative evaluation, we considered the impact of similar

antiviral strategies in a stylized community with the same

population size, but with demographics (age, gender, employment,

and household composition) shifted to resemble an urban area.

For this study, we employed an agent-based, discrete-time

simulation model for the spread of a novel influenza virus in an in-

silico population. This modelling approach allowed us to capture

network patterns, and the stochasticity involved in person-to-

person transmission, particularly during the early stages of the

disease outbreak. A description of the model structure is provided

in the Materials and Methods section with further details in Text S1.

Simulation Design
We developed an in-silico population of individuals in a lattice-

like environment consisting of homes, workplaces, school class-

rooms, and communal spaces that represent a remote community

in northern Canada. The demographic variables (age, gender,

employment, and household composition) were drawn from

Statistics Canada 2006 census data [14,15,16]. For comparison

purposes, we also created an in-silico environment in which the

demographic variables of the remote community (but not the

population size) were modified to resemble the Winnipeg health

region (Figure S3–S5 in Text S1), an urban center in the province

of Manitoba with a large Aboriginal population.

The agent-based simulation model is comprised of several

modules: (i) a spatial module that divides the in-silico population

into a number of workplaces, homes, school classrooms, and

common spaces; (ii) a temporal module for tracking and advancing

the time in simulations; (iii) an agent demographics module that

maintains attributes of each agent (such as age); (iv) an agent

schedule module that determines the location of each agent at any

particular time; (v) a disease transmission module that governs the

spread of the pathogen in the population; and (vi) a disease

progression module that records and updates the change in the

epidemiological status of each individual agent (Figure S1 in

Text S1).

All the simulation results presented here are averaged over 1000

independent realizations, where each realization was seeded

randomly with an initial infectious case. For each independent

realization, agents’ characteristics were drawn and assigned from

distributions provided in demographic data. We set the time

variable in each simulation to advance in increments of one hour.

Each simulation began at the start of the pre-symptomatic

infectious period for the initial infectious case, and ended when

individuals were only susceptible or recovered (i.e., no exposed,

pre-symptomatic, or infectious cases were encountered in the

population at the current simulation time-step).

The model was implemented using a custom C++ based

simulator that can take advantage of desktop and compute cluster

environments. Simulations were carried out on Sharcnet (Shared

Hierarchical Academic Research Computing Network), as part of

the Compute Canada consortium. Following completion of

simulations on Sharcnet, the resulting outputs were downloaded

to the ABM-Lab 64 core SMP machine [17], and analyzed using

Perl and MATLAB. Further details of the model simulator are

provided in the Materials and Methods section.

Results

Table 1 summarizes the scenarios simulated and discussed here

for an estimated reproduction number R0 = 2.2 for the RC

population. To capture the effect of changes in reproduction

number, we also calibrated and simulated the model for R0 = 1.6

and 2.8. (Figures S13–S20 of Text S1).

Treatment and prophylaxis strategies
We first considered antiviral strategies for treatment of identified

infectious cases with the circulating influenza strain. We then

implemented an additional post-exposure prophylaxis strategy in

which close contacts of identified infectious cases were offered

prophylaxis. A newly identified infectious case is defined as an

agent that started receiving treatment, but not as a result of

contact-tracing identification (i.e., seeking treatment or self-

identify themselves). The treatment and prophylaxis coverages

were varied from 0 to 100% (in increments of 2%). Treatment

coverage refers to the fraction of infectious individuals receiving

treatment, and prophylaxis coverage refers to the fraction of close

contacts (of treated cases) that receives prophylaxis. To ensure that

prophylaxis is offered early on during the latent or pre-

symptomatic period, we considered prophylaxis for only close

contacts occurring in the 24 hours prior to the onset of treatment

for an infectious case. We assumed that treatment continued for

the entire infectious period of an infectious case, which was

sampled from a log-normal distribution for every infected
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individual (see Text S1). Close contacts who developed disease

while receiving prophylaxis continued antiviral therapy with

treatment at the increased dosage for the entire sampled infectious

period.

We allowed re-prophylaxis of individuals who completed a

course of prophylaxis without developing disease, and were

subsequently identified as a close contact of another identified

infectious case. Prophylaxis was offered if the contact was

identified at least 24 hours after the completion of a previous

course of prophylaxis. For antiviral strategies, we considered three

scenarios for the treatment of identified infectious cases, corre-

sponding to an average delay of 1, 2, or 3 days for the initiation of

treatment after the onset of symptoms. Scenarios with longer

delays between symptom onset and the start of treatment are

closer to the average delay observed in H1N1pdm09 epidemio-

logical data reported for northern Manitoba, Canada where many

remote and isolated communities are found (see Text S1). In each

strategy, we implemented scenarios where post-exposure prophy-

laxis was offered in the community for three weeks and five weeks

after the first infectious case was identified for treatment. While a

short-term period of targeted prophylaxis is generally feasible,

long-term prophylaxis poses significant challenges once the

healthcare system has been overwhelmed. For short-term scenar-

ios, no prophylaxis was offered beyond the end of the term (in both

three and five weeks scenarios), but those who started a course of

prophylaxis towards the end of the program completed their

antiviral regimen. Here, we describe the results for an antiviral

strategy involving a three-week prophylaxis use of drugs. The

results for a 5-week prophylaxis use are presented in Figures S7–

S10 of Text S1.

Age-specific attack rates
The simulation outputs were analyzed for four main age groups

in the population: pre-school children (0 to 5 years of age); school-

aged children (6 to 18 years of age); adults (19 to 49 years of age);

and older adults (50+ years of age). We calibrated the model to

ascertain the probability of transmission, from one infectious agent

to one susceptible contact, using the estimated average R0~2:2
for northern Manitoba [18,19]. With antiviral treatment only and

in the absence of prophylaxis, the variations in age-specific,

cumulative attack rates with different treatment coverage are

shown in Figure 1a–c. School-aged children have considerably

higher attack rates in all scenarios regardless of the delay in the

start of treatment following the onset of symptoms (green curves),

and regardless of the treatment coverage. Also, the oldest age

group (50+ years of age) has the lowest attack rates in all scenarios

(blue curves). We observed that increasing the treatment coverage

has a marginal effect on reducing cumulative attack rates for the

children and older adults, and the delay in start of treatment has

virtually no impact on the magnitude of this reduction. However,

increasing the treatment coverage can have a relatively modest

effect on reducing attack rates in other age groups (red and black

curves). Longer delays in the start of treatment would decrease this

effect particularly for high coverages of treatment.

For comparison purposes, we shifted (modified) the demo-

graphic variables of the remote community (RC) to resemble those

of the Winnipeg health region, the largest urban centre in the

province of Manitoba, which has a significant urban Aboriginal

population. When averaging independent realizations in the

absence of treatment, we found R0~1:4 for the model with

shifted demographics (SD). Simulation results of cumulative, age-

specific attack rates for the SD are shown in Figure 1d–f.

Compared to the scenarios for the original RC demographics

presented in Figure 1a–c, we observed several important

differences. Most conspicuous is the results that the lowest attack

rates are associated with the pre-school children (below 2%), while

the attack rates for the group aged 50 years and older remain in

the same range 2%–4%. The attack rates for school-aged children

(green curves) in all scenarios of SD are significantly lower (below

10%) than those of the original RC demographics (above 20%).

Overall, the reduction in age-specific attack rates is comparable in

the corresponding scenarios for treatment delay between SD and

the original RC demographics.

We also analyzed the simulation outputs for the relative attack

rates (the fraction of infected individuals in each age group) for all

the scenarios discussed above. The results of age-specific, relative

attack rates are shown in Figure 2a–f. Interestingly, the highest

attack rates occur in the school-aged children within the ranges

60%–80% and 30%–50% in the RC and SD demographics,

respectively. Attack rates for pre-school children are below school-

aged children, and lie within the ranges 20%–40% and 8%–20%

in the RC and SD demographics, respectively; but remain above

Table 1. Simulation scenarios presented for treatment and prophylaxis strategies, when prophylaxis was implemented for
3 weeks.

Simulation scenarios Simulation outcomes Demographic scenario R0
Delay in start of treatment

1 day 2 days 3 days

Treatment, no prophylaxis Age-specific cumulative AR* RC 2.2 Fig1a Fig1b Fig1c

SD 1.4 Fig1d Fig1e Fig1f

Age-specific relative AR RC 2.2 Fig2a Fig2b Fig2c

SD 1.4 Fig2d Fig2e Fig2f

Treatment and prophylaxis Overall AR RC 2.2 Fig3a Fig3b Fig3c

SD 1.4 Fig4a Fig4b Fig4c

Wasteful use of prophylaxis RC 2.2 Fig3d Fig3e Fig3f

SD 1.4 Fig4d Fig4e Fig4f

Treatment and prophylaxis Effective use of drugs RC 2.2 Fig6a Fig6b Fig6c

SD 1.4 Fig6d Fig6e Fig6f

Simulation outcomes for R0 = 1.6 and 2.8 are reported in Figures S13–S20 of Text S1.
* AR: attack rate.
doi:10.1371/journal.pone.0089651.t001
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those of adults and 50+ age groups in all scenarios. While

equivalent in the original demographics of RC, attack rates of

adults remain slightly above the group aged 50 years and older in

SD scenarios. Overall, increasing treatment coverage decreases

the relative attack rates in each age group, but the delay in the

start of treatment reduces this effect.

Overall, in the model with RC demographics, increasing

antiviral treatment coverage of infectious cases can have a positive

impact on decreasing the attack rates in all age groups. The effect

is most easily observed when comparing relative attack rates rather

than cumulative attack rates. However, if treatment is not

administered within 24 hours after symptom onset, the observed

effect is very minimal. The ordering of cumulative attack rates

differs between the RC and SD demographics. This observation is

a function of the different age structure of the populations with the

RC population having many fewer individuals in the oldest age

category (50+).

Combined effect of treatment and prophylaxis
We ran simulations for both the RC and SD demographics

when the treatment of identified infectious cases is augmented with

prophylaxis of their close contacts (defined as individuals having

direct contact with the case in the 24 hours prior to case

identification). Simulation results of the cumulative attack rates

and ‘‘wasteful use’’ of prophylaxis are presented in Figure 3a–f for

the RC demographics, and Figure 4a–f for SD demographics. In

our model, the ‘‘wasteful use’’ of prophylaxis refers to the use of

antiviral drugs for those who were identified as close contacts of

infectious cases under treatment, but who were previously infected

and not diagnosed. In this case, administering antiviral treatment

to these individuals is considered ‘‘waste’’, because they will not

develop disease as a result of their close contact. This is due to the

fact that in our model, we assumed that the immunity generated

during primary infection prevents re-infection by the same

influenza strain.

For low treatment coverage (below 10%), increasing prophylaxis

coverage of close contacts has little impact on reducing attack rates

(Figure 3a–c). However, the effect of prophylaxis becomes more

pronounced as the treatment coverage increases above 40%. The

greatest waste of prophylaxis corresponds to the range 5%–20%

treatment coverage in the scenario of 1-day delay for start of

treatment. For longer delays, the range of prophylaxis waste

expands to higher treatment coverages (Figure 3d–f). The overall

waste of prophylaxis is significantly higher in the model with the

original RC demographics compared to SD, and could be as much

as 3 times higher in the range 10%–40% treatment coverage,

which is considered a plausible range for public health to

successfully implement an antiviral treatment policy [20,21]. This

relatively low treatment coverage may result from several factors,

including diagnosis uncertainties for influenza cases, treatment

guidelines for use of antiviral drugs, familiarity with antiviral

agents, access to drug stockpiles, or knowledge of the potential

severity and outcomes of infection. Our simulations suggest that,

when the treatment coverage is relatively low (below 40%),

prophylaxis of close contacts should be targeted at a low coverage

(below 10%) to avoid excessive waste.

Attack rates at different community places
We analyzed the simulation results for attack rates in different

locations of the modeled community: households, workplaces,

schools, and other places. From multiple scenarios, we chose to

present the results for a 1-day delay in start of treatment combined

with the scenario of 3 weeks prophylaxis for both RC and SD

demographics. Figure 5 shows boxplots for these simulations,

indicating that in contrast to the SD demographics, attack rates

among households could be significantly higher than those for

Figure 1. The impact of different coverages (0–100%) of antiviral treatment on the age-specific cumulative attack rates under
different assumptions for the mean time between symptoms onset and the start of treatment (1–3 day delay). Panels a–c (RC) show
results from the model representing the remote and isolated Canadian Aboriginal community, and panels d–f (SD) show results from the model
representing a community with an urban-like shifted demographic structure. Green: School-aged children (6–18); red: adults (19–49); blue: older
adults (50+); black: pre-school (0–5).
doi:10.1371/journal.pone.0089651.g001
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workplaces (possibly due to more crowded households in the RC

compared to SD demographics). In all scenarios, the highest attack

rates correspond to schools for both RC and SD demographics.

Prophylaxis can have a modest impact on reducing household

attack rates in the RC demographics, but this effect is relatively

marginal on attack rates associated with other locations.

Figure 2. The impact of different coverages (0–100%) of antiviral treatment on the age-specific relative attack rates under different
assumptions for the mean time between symptoms onset and the start of treatment (1–3 day delay). Panels a–c (RC) show results from
the model representing the remote and isolated Canadian Aboriginal community, and panels d–f (SD) show results from the model representing a
community with an urban-like shifted demographic structure. Green: School-aged children (6–18); red: adults (19–49); blue: older adults (50+); black:
pre-school (0–5).
doi:10.1371/journal.pone.0089651.g002

Figure 3. The projected effect of combining antiviral treatment of infectious cases with prophylaxis of close contacts on population
attack rates (a–c) and wasteful use of drugs (d–f) in the RC demographics when antiviral treatment delays (for infectious cases)
range from 1 day to 3 days post symptom onset.
doi:10.1371/journal.pone.0089651.g003
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Drug-use
For antiviral strategies combining treatment of infectious cases

with prophylaxis of close contacts, we analyzed the simulation

outputs for the effective use of drugs (defined as the total drug

usage excluding wasteful use of prophylaxis). The number of

effective courses of drugs used is presented as heat-maps in

Figure 6a–f for the RC and SD demographics models. Contour

curves in Figure 6 correspond to the wasteful use of prophylaxis.

Heat-maps illustrate that the effective use of drug depends

critically on the coverages for treatment and prophylaxis. For an

Figure 4. The projected effect of combining antiviral treatment of infectious cases with prophylaxis of their close contacts on
population attack rates (a–c) and wasteful use of drugs (d–f) in the SD demographics when antiviral treatment delays range from
1 day to 3 days post symptom onset.
doi:10.1371/journal.pone.0089651.g004

Figure 5. Box plots for the projected attack rates in households, workplaces, schools, and other places for RC and SD demographics
with 1 day delay in start of treatment and a 3-week prophylaxis strategy. Red circles are outliers for boxplots between the first and third
quartiles.
doi:10.1371/journal.pone.0089651.g005
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antiviral strategy with a 1-day delay in the start of treatment after

the onset of symptoms, the largest drug use occurs in the high

range of treatment and prophylaxis (Figure 6a). This range is lower

(in the middle) for the same antiviral strategy in the SD population

(Figure 6d). In the SD demographics, high coverages of treatment

and prophylaxis are associated with lower use of drugs compared

to the middle range. For the RC demographics, as delay in the

start of treatment increases to 3 days, a transition in the range for

effective use of drugs moves toward higher coverages of treatment

and prophylaxis. These results suggest that, in the case of limited

drug supply, early treatment with high coverages of treatment and

prophylaxis will provide maximum benefits both in terms of drug

usage and the reduction of attack rates.

Discussion

Our study, for the first time, provides a comparative evaluation

of antiviral strategies for mitigating the effect of a novel influenza

virus in populations with distinct demographic characteristics,

representative of a remote community and an urban community

in Canada. We compared the outcomes of treatment-only and

combined treatment-prophylaxis strategies in terms of cumulative

and relative attack rates, drug usage, and wasteful use of

prophylaxis in four different age groups in the population.

Qualitatively, we observed several similarities and differences

between the observed outcomes. First is the observation that in

crowded settings with low average age (e.g. RC populations), the

highest attack rate is associated with school-aged children. Delay

in treatment interventions following the onset of symptoms has a

large impact on the effectiveness of antiviral drugs in reducing the

Figure 6. The projected effective use of antiviral drugs when combining antiviral treatment of infectious cases (y-axis) with
prophylaxis of close contacts (x-axis) in the remote community model (RC) (a–c) and the shifted demographics model (SD) (d–f).
Antiviral treatment delays range from 1 day to 3 days post symptom onset. Contours describe the amount of antiviral wastage (counted in the
number of courses given) for dispensing drugs as prophylaxis.
doi:10.1371/journal.pone.0089651.g006
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overall and age-specific attack rates (Figure 1). These observations

can be placed in the context of remote communities of primarily

Aboriginal ethnicity. In these communities, multigenerational

households and strong community social ties can lead to frequent

close contacts allowing influenza to spread throughout the

community relatively easily. When comparing the relative attack

rates for each age-group, we observed similar patterns for both

remote and urban-like demographics, with the highest and lowest

attack rates in school-aged children and individuals aged 50 years

and older, respectively. These findings suggest that a significant

reduction in relative attack rates of a specific age group may not

necessarily contribute to a large reduction in the cumulative attack

rates.

When treatment is implemented alongside prophylaxis of close

contacts, we observed similar patterns for the overall attack rate

in both models for original (RC) and shifted (SD) demographics.

Importantly, the wasteful use of drugs for prophylaxis corre-

sponds to levels of antiviral treatment that are generally most

plausible in public health responses (between 10% and 40%)

[20,21]. Our simulations suggest that, in both demographic

scenarios, when treatment coverage varies from low to moderate,

targeted prophylaxis should be offered at only low levels (below

10% in our simulations) to avoid excessive waste of drugs

(Figures S11 and S12 of Text S1). Within an antiviral strategy

for post-exposure prophylaxis, early treatment of infectious cases

is more crucial to the effectiveness and effective use of drugs.

Maintaining a significant public health response that focuses on

following up close contacts of infectious cases for the provision of

antiviral prophylaxis for a time period in excess of 3 weeks

described here (e.g., 5 weeks) has very little impact on overall

attack rates, and results in a considerably more drug wastage (see

Text S1). Furthermore, such an extended period of prophylaxis

contributes to a significant workload to an already overburdened

health system, particularly during the peak incidence of infection.

We observed qualitatively similar behaviours by simulating our

models for different reproduction numbers (see Text S1).

Figure 7. Compartmentalization of the model structure with four main blocks: (a) prior to becoming symptomatically infectious; (b)
develop symptomatic infection without having received prophylaxis; (c) develop symptomatic infection while receiving
prophylaxis; (d) develop symptomatic infection after completing a course of prophylaxis. Subscripts have the following meaning: (P)
the agent is currently undergoing a course of prophylaxis; (X) the agent is (was) receiving prophylaxis during the pre-symptomatic or exposed period;
(U) the agent is unidentified and therefore not treated (when Infectious, following a delay, the agent may seek treatment with some probability); (T)
the agent is under treatment (or received treatment), and is therefore known to have had the disease. Blue arrows indicate disease progression,
which is influenced by the passage of time and some particular disease parameters. In the case of the S-to-E transition, transmission occurs between
co-located susceptible and infectious individuals in either pre-symptomatic or symptomatic stage. Green arrows indicate self-identification following
a delay in seeking treatment by a symptomatically infectious agent. Red arrows are socially mediated transitions resulting from the identification (i.e.,
contact-tracing) of the agent as having been in contact with a new infectious case within the last 24 hours.
doi:10.1371/journal.pone.0089651.g007

Antiviral Strategies for Novel Influenza Viruses
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When treatment is maintained at conservative levels, our

findings do not provide any convincing evidence for the

implementation of community-wide prophylaxis of close contacts.

These findings also suggest that the early initiation of antiviral

treatment is more critical for lowering attack rates in a crowded

setting with a low average age (such as a remote community with

demographic characteristics simulated here) compared to an

urban-like population. Furthermore, a longer delay in the start

of treatment significantly diminishes the effect of increasing

treatment coverage in reducing the overall attack rate (Figures 3–

4).

There is an emerging body of evidence suggesting that there is

a strong correlation between the speed with which antiviral

treatment is initiated following the onset of symptoms and the

degree of disease severity in critically ill patients of influenza

[3,4]. The experience of H1N1pdm09 in Canada’s northern

Aboriginal communities provides compelling evidence for severe

disease outcomes, often necessitating hospitalization and ICU

admission [3,4,6]. Analysis of the age-distribution of the

H1N1pdm09 cases in the province of Manitoba, Canada,

indicates significantly higher rates of infection and hospitalization

amongst First Nations compared to non-First Nations popula-

tions. These rates were as much as 12 times (for infection) and 22

times (for hospitalization) higher in First Nations young children,

aged 0–4, compared to the same age group in non-First Nations

populations [6]. Continued improvements to the health infra-

structure in northern communities during the inter-pandemic

period and focused pandemic planning will permit northern

healthcare providers to more effectively manage the surging

demand for healthcare and specifically antivirals during the peak

of pandemic outbreaks [3].

Model limitations
Any model, regardless of the level of detail included in its

structure, is subject to limitations. While several limitations are

related to the lack of specific data and measurements, others arise

from the assumptions. For example, the mitigation effects of

antiviral drug use on disease spread can be modeled as a reduction

of disease transmissibility from the start of treatment but no

reduction in infectious period, or a reduction in infectious period

but no reduction in transmissibility, or a combination thereof. In a

practical sense, the overall effect of treatment should match the

reduction in secondary attack rates observed in household studies

[22,23]. Since reduction in transmissibility over the entire

infectious period can capture the effectiveness of antivirals, we

chose the first method. We also did not consider antiviral use in

the context of other public health interventions; however, a variety

of interventions (such as vaccination if available, quarantine/

isolation, or social distancing including school closure) may take

place simultaneously during the course of an outbreak.

Our model does not explicitly include asymptomatic infection;

however, a distribution of transmission probabilities in infectious

individuals would address the variability in infectiousness seen in

undiagnosed infectious cases, of which the asymptomatic infections

are a subset. Incorporating a separate class for asymptomatic

individuals in the model can be managed computationally, but we

have steered clear of this additional class in the model because very

little is known about asymptomatic cases, and so the challenge of

finding appropriate data would be significant. Yet, we understand

that antiviral wastage may in fact exceed what we have described

here, due to the possibility of asymptomatic infections. We only

consider waste as a result of giving prophylaxis to ‘‘recovered’’

individuals that were never identified as cases and therefore

recovered naturally from their infection and would be immune

against re-infection with the same strain of influenza. We did not

consider antiviral wastage that might occur as a result of the co-

circulation of other pathogens that cause acute respiratory disease

[24]. Furthermore, our model does not take into account the

evolution of drug resistance. In the context of transmissible drug-

resistance, prophylaxis would only enhance the spread of resistant

strains [25,26]. This is facilitated by a reduction of susceptibility to

the sensitive infection and an increase in vulnerability of

susceptible individuals who are receiving prophylaxis to resistant

infection.

Other limitations related to the lack of specific data include

our basic models for the time-use of individuals during their

regularly scheduled activities, and the level of strain-related pre-

existing immunity in the population. The type of community

modeled is considered to be remote and isolated, and therefore

interactions with other communities are not modelled. Finally,

the model outcomes are quantitatively subject to uncertainty in

disease parameters. We performed simulations based on recent

parameter estimates of H1N1pdm09 data and previous estimates

of antiviral effectiveness. However, the combination of treatment

and prophylaxis is not adequately discussed in the literature,

particularly for remote and isolated communities. While quan-

titative results of our simulations may change with variations in

model parameters, or the choice of modelling approach, we

expect our results to remain qualitatively robust despite the

above limitations.

Materials and Methods

We restructured and calibrated a previously validated agent-

based modelling framework for the spread of influenza infection in

a remote and isolated community in northern Canada, referred to

as RC throughout this paper [1]. We included antiviral treatment

of identified infectious cases, and post-exposure prophylaxis of

close contacts as control measures in the absence of pre-existing

immunity or vaccination.

Modelling framework
To capture the movement and interactions of individuals (i.e.,

agents), we developed an in-silico environment as a lattice-scaled

representation of the community. We considered a Markov Chain

compartmental structure for disease spread, and assumed that at

any particular time, each agent belongs to one of the compart-

ments in the model depending on the particular epidemiological

history of that agent. The basic framework includes the

compartments represented in Figure 7, which correspond to

susceptible, exposed, pre-symptomatic, symptomatic, and recov-

ered classes of agents. To include the effect of antiviral treatment,

we further subdivided these compartments by using subscripts.

The transition between model compartments was a function of

time and other model variables. The type of transition is indicated

by the color of the arrows in Figure 7. A description of model

variables and ranges of parameter values are provided in Table S1

and S2 of Text S1.

Population study
We assume that the remote community (RC) has no road access

to any urban center and air travel is the only possible conduit. The

demographic data (i.e. age, gender, household size, and employ-

ment characteristics) for RC were based on Statistics Canada

census data [27–29] that are rounded to the nearest five

individuals. The population size of each age group, and the

distribution of individuals per household for the original RC

demographics are given in Figures S3–S5 of Text S1. For shifting
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the demographic variables to those of an urban centre (the

Winnipeg health region), we modified the age distribution,

household size, and employment characteristics using reported

census data, while keeping the same population size of RC (see

Text S1).

Model parameterization
For each pair of co-located infectious and susceptible individ-

uals, the probability of transmission is independent and given by

Ptransmission~1{ 1{b 1{q1ð Þ 1{q2ð Þð Þt

Where b is the transmission rate; q1is the reduction in

transmissibility (viral shedding) of an infectious individual due to

antiviral treatment and/or prophylaxis; q2 is the protective effect

of prophylaxis offered to a susceptible individual; and t is the

amount of time spent in potentially infectious contacts. We

assumed that infected individuals during pre-symptomatic stage

are (on average) 50% less infectious than during symptomatic

phase (see Table S2 of Text S1).

In the absence of any antiviral interventions, the rate of disease

transmission, b, was iteratively modified through a series of trials

in order to calibrate the model to an initial reproduction number,

R0, within the estimated ranges for H1N1pdm09 in northern

communities [17]. In our calibration, R0 was calculated by

averaging the number of secondary infections generated by the

initial infectious case in each independent simulation. Each trial

used 10,000 randomly initialized simulation runs. Averaged

calibration trials determined the rate b, with an average

R0~2:2 for the original RC demographics. The corresponding

R0 for (urban-like) shifted demographics was found to be 1.4. For

calculation of relative and cumulative attack rates, we averaged

the total number of infections in different age groups and overall

(throughout the entire course of outbreak) for all simulation trials.

This averaging excluded simulations in which no secondary

infections were generated by the initial infectious case.

We included the overall effect of antiviral treatment in the

reduction of disease transmissibility following the initiation of

treatment. We assumed that treatment reduces the infectiousness

by 60% if the infectious person was not receiving prophylaxis at

the time of exposure [30]. Prophylaxis was assumed to reduce

susceptibility to infection by 30% and transmissibility (if infected)

by 60% [29]. Those who developed symptomatic infection while

receiving prophylaxis and continued with treatment were

assumed to have an additional 60% reduction in infectiousness

[29,31], with an overall 84% reduction of infectiousness (given by

1–(0.460.4) = 0.84). We assumed a probability of 0.65 that

individuals receiving prophylaxis will have significantly milder

symptomatic infection (if they developed illness) [30,31], and

therefore will not seek treatment. A course of prophylaxis in the

model simulations lasted for 7 days. Previous work [32]

considered a longer duration of prophylaxis (about 10 days);

however, considering possible compliance issues, we assumed a

shorter prophylaxis period. Individuals that were previously

receiving prophylaxis were not eligible to receive a subsequent

course of prophylaxis if identified as a close contact within

24 hours of completing the previous course. Symptomatically

infectious individuals who are identified as a close contact were

offered antiviral treatment, unless they were symptomatically

infectious for more than 48 hours prior to identification. A

course of treatment for each individual spanned for the entire

duration of infectiousness.

The exposed period was drawn from a uniform distribution with

a minimum of 1 day and a maximum of 2 days [33]. The pre-

symptomatic period for each infected individual was drawn from a

log-normal distribution with the scale parameterm~{0:775 days,

and shape parameter s2~0:16 days, giving an average of 0.5 days

[34]. The duration of symptomatic infection was sampled from a

log-normal distribution (Figure S2 of Text S1), with the scale

parameter m~1 day, and the shape parameter s2~0:4356 days,

which has a mean of 3.38 days [35]. In our model, we used 1000

independent realizations to sample the resulting generation times

in the absence of any interventions. Averaging the time interval

from the start of pre-symptomatic period of the initial infectious

case to the start of pre-symptomatic period of the earliest

secondary case in these realizations resulted in 69.3 hours, giving

a generation time of approximately 2.9 days (95% confidence

interval: 25–131.3 hours), which lies within the estimated range

for H1N1pdm09 [36–38]. Again, without interventions, we

calculated the generation time throughout the outbreak [39,40],

using the same method applied to infectious cases beyond the

initial case. We ran 1000 independent realizations, and averaged

the individual generation times for each epidemic episode to

determine the generation time distribution. We estimated the

mean generation of 71.9 hours (approximately 3 days) with the

95% confidence interval 24–133 hours. These simulations

provided an average doubling time of 34 hours (1.4 days) for the

time interval between the introduction of the first infectious case to

the time of exposure of the earliest secondary case. The delay in

seeking treatment after the onset of symptoms was sampled from a

uniform distribution with a minimum of 0.5 days, and a mean of

1, 2, or 3 days, corresponding to the simulated scenarios.

Supporting Information

Text S1 Supplementary Information. Details of model

structure, parameter values, and further simulation scenarios.

(PDF)
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