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Abstract

Consider a population of individuals occupying some habitat, and assume that the

population is structured by age. Suppose that there are two distinct life stages,

the immature stage and the mature stage. Suppose that the mature and imma-

ture population are not competing in the sense that they are consuming different

resources. A natural question is “What determines the age of maturity?” A sub-

sequent natural question is “How does the answer to the latter question affect the

population dynamics?” In many biological contexts, including those from plant and

insect populations, the age of maturity is not merely constant but is more accu-

rately determined by whether or not the food concentration reaches a prescribed

threshold.

We consider a model for such a population in terms of a nonlinear transport

equation with nonlocal boundary conditions. The variable age of maturity gives

rise to an implicit state-dependent delay in the system of first order partial differen-

tial equations. We explain the relevance of this problem and provide a mechanistic
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derivation of the model equations. We address the existence, positivity, and conti-

nuity of the solution semiflow arising from the model equations, and then we discuss

the differentiability of the semiflow with respect to initial data, in a suitable weak

sense. The problem of the differentiability of the solution semiflow arising from

even ordinary differential equations containing state-dependent delays was a long

standing open problem for some time. Prior to this work, there were no results

which addressed the linearization of the solution semiflow corresponding to a par-

tial differential equation having a state-dependent delay.
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3.6 Derivatives of Solution Operators Ŝt on M̂0 . . . . . . . . . . . . . . 79

3.7 The Model Equations: Part Two . . . . . . . . . . . . . . . . . . . 93

4 C0-Extendable Banach Manifolds 104

4.1 C1 Banach Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 The C0-Extendable Smooth Structure . . . . . . . . . . . . . . . . 106

4.3 C0-Extendable Submanifolds . . . . . . . . . . . . . . . . . . . . . 108

vi



5 Concluding Remarks 110

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 111

Bibliography 111

vii



1 Introduction

We start off by discussing the big picture, that is, how the results presented in this

thesis complement existing works in the field of functional differential equations,

as well as their relevance for the broader research community. We then present a

mechanistic derivation of the model equations.

1.1 The Big Picture

The work presented in this thesis is a coherent integration of two different themes.

The two themes being integrated are ideas from the theory of differential equations

containing state-dependent delays [35, 36], and the modeling of age structured pop-

ulations using nonlinear transport equations [38]. The outcome is a general frame-

work for the analysis of a class of age structured population models, having two

distinct and non competing stages (the mature and immature stages), and with

the special feature that the age of maturity of an individual at a given time is

determined by whether or not the resource concentration, which depends on the
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immature population, reaches a prescribed threshold. An upshot of this thesis is

that one can create new mathematics by letting oneself cross traditional interdisci-

plinary boundaries, instead of focusing on improving the technicalities of existing

work. Below I briefly explain first the mathematical, and then the interdisciplinary

significance of this work.

Differential equations containing state-dependent delays [ordinary differential

equations (ODEs), or partial differential equations (PDEs)] are the focus of much

of the current research on functional differential equations, and present the most

challenging problems in this field [9, 31, 36, 14, 29, 28]. This is because the nonlinear

term typically is not differentiable (or even Lipschitz!) on the initial history space

of continuous functions, and the corresponding Cauchy problem is not well posed.

Hence results from the well known monographs [7, 3, 8] do not apply to even ODEs

containing state-dependent delays. An alternative for the case of ODEs is to work

on a submanifold of the space of C1 functions, or to work on the space of Lipschitz

functions. As a result, this class of equations does not fit well into any classical

framework for smooth semi-dynamical systems. In the case of PDEs containing

state-dependent delays this problem is more serious since in general, solutions of

PDEs are not locally Lipschitz in time. Consequently, there are very few works

which deal with differential equations containing both state-dependent delays and

partial differential operators.

2



Threshold phenomena in structured populations has been proposed in many

biological contexts. This is usually manifested as a variable transition age between

two distinct life stages. See [9] for examples in epidemiology, and [26, 6] for examples

in fish and insect populations. Other examples of state-dependent delays appearing

in population models, including one for hematopoiesis can be found in [1, 21]. The

model described in the first paragraph of this introduction incorporates this idea

for the case of a two stage population, in which there is no competition between

juveniles and adults, and for which the age of transition from the juvenile to the

adult stage depends implicitly on the history of itself and the history of the juvenile

population, giving rise to a state-dependent delay. Prior to this thesis there was no

mathematical apparatus in which these models, in their natural PDE setting, could

be embedded and not to mention the linearization of the corresponding solution

semiflow. Furthermore, linearization of the solution semiflow for even ODEs with

state-dependent delays was a long standing open problem, see e.g. [35, 9]. Prior to

the work [35] many researchers used to treat the linearization of a state-dependent

delay equation in a purely formal way as in e.g. [16].

The situation above can be described in terms of a nonlinear transport equation

coupled to an algebraic-delay term. This gives rise to an abstract algebraic-delay

differential system. In Chapter 2, we establish sufficient conditions for the corre-

sponding initial value problem to give rise to a continuous semiflow, on a subset
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of the ambient initial history space of continuous functions. In Chapter 3 we give

sufficient conditions for the differentiability of the semiflow (in a weak sense), and

in a certain phase space. The main challenge here is to come up with the right

notion of differentiability and the right phase space to recover the desired result.

In particular, this leads to the notion of a “C0-extendable submanifold”, which is

related to “almost Fréchet differentiable functions” introduced in [23]. We note

for the convenience of the reader, that Chapter 2 and Chapter 3 although closely

related, are entirely self contained and can be read in any order.

1.2 Mechanistic Derivation

The derivation below is adapted from [12] but morally goes back to [26].

Consider some abstract habitat and some population of individuals living in

this habitat. Let u(t, a) be the density of individuals of age a at time t. Let the

immature population at time t be given by I(t). Let S(t) denote the concentration

density of some resource per unit volume in the habitat at time t. To derive a

deterministic model we need to make some assumptions.

First, we assume that S(t) satisfies S ′(t) = S0 − (γiI(t) + C)S(t). Here S0 > 0

is a constant rate of food recruited in the habitat, γi > 0 is the rate of food

consumption of the immature population per unit time, and C > 0 represents

the resource consumption rate by anything else in the habitat. Since the resource
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consumption happens on a much faster time scale than that of life of the population,

we can make a simplifying assumption. If we hold the immature population fixed,

we get the equation, S ′(t) = S0 − (γiI + C)S(t). The steady state is given by the

formula S = S0

γiI+C
. Since this steady state is globally stable, the quasi steady state

approximation gives

S(t) =
S0

γiI(t) + C
. (1.2.1)

For further details see [25].

Second we assume that the age of maturity at time t, τ(t), is defined by the

condition

∫ t

t−τ(t)

S(σ)dσ = T > 0, (1.2.2)

where T > 0 is a “size” threshold. This represents the difference between an

individual’s size at birth and their size τ units of time after birth. Combining (1.2.1)

with (1.2.2) gives us

∫ t

t−τ(t)

S0

γiI(σ) + C
dσ = T with I(σ) =

∫ τ(σ)

0

u(σ, a)da

or equivalently

∫ t

t−τ(t)

S0

[
γi

∫ τ(σ)

0

u(σ, a)da+ C

]−1

dσ = T.
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For convenience, let S0 = γi = 1 and this can be achieved by rescaling the relevant

parameters.

Finally we assume that the individuals have maximum age 0 < m ≤ ∞

and u(t, a) satisfies the standard first order transport partial differential equations

(PDEs),

∂tu(t, a) + ∂au(t, a) = −d(a)u(t, a), t ≥ 0 and 0 ≤ a < m;

u(t, 0) = b(
∫ m
τ(t)

β(ξ)u(t, ξ)dξ),

(1.2.3)

where τ(t) is given by

∫ 0

−τ(t)

[∫ τ(t+σ)

0

u(t+ σ, a)da+ C

]−1

dσ = T. (1.2.4)

Note that we ignore technicalities concerning whether τ(t) is well defined by (1.2.4)

at this stage. To have solutions for t ≥ 0 we must specify the initial conditions,

τ(t) = ϕ(t) for −am ≤ t ≤ 0

and

u(t, a) = ψ(t, a) for −am ≤ t ≤ 0 and 0 ≤ a < m.

Here am ∈ (0,m) is the maximal age of maturity.

A look at (1.2.4) reveals that τ(t) depends on the history at time t of the

population density, ut, and the history of itself, τt. As usual, ut(θ)(·) = u(t+ θ)(·)

and τt(θ) = τ(t + θ) for θ ∈ [−am, 0] and we abuse the notation that u(t, a) =
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u(t)(a). We assume naively that τ(t) is a function of ut and τt, τ(t) = H(ut, τt)

(see Section (2.2) and Section (2.5)).

To summarize, we have obtained the initial value problem,

∂tu(t, a) + ∂au(t, a) = −d(a)u(t, a),

u(t, 0) = b(
∫ m
τ(t)

β(ξ)u(t, ξ)dξ),

τ(t) = H(ut, τt)

(1.2.5)

for t ≥ 0 and 0 ≤ a < m with initial conditions

τ(t) = ϕ(t) and u(t, a) = ψ(t, a) for −am ≤ t ≤ 0 and 0 ≤ a < m. (1.2.6)

Note that for each t ≥ 0,

ut
τt

 ∈M0, where

M0 =


ψ
ϕ

 ∈ some subset of C([−am, 0], L1[0,m)×R) | ϕ(0) = H(ψ, ϕ)

 .

The precise definitions of H and M0 are given in Sections ( 2.2) and ( 2.5). We

can rewrite the initial value problem (1.2.5)–(1.2.6) abstractly as

d
dt

 0

u(t, ·)

 =

−u(t, 0)

−ua(t, ·)

+

b(
∫ m
τ(t)

β(ξ)u(t, ξ)dξ)

−d(·)u(t, ·)

 ,

τ(t) = H(ut, τt),x0

τ0

 =

ψ
ϕ

 ∈M0.
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This mechanistic derivation shows how we are naturally led to considering the

more general algebraic-delay differential system, the initial value problem (2.2.1) of

Section 2.2, which is the object of study in this thesis.
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2 Existence and Continuity of the Abstract

Solution Semiflow

We make a comparison with related existing results in the literature and then pro-

ceed with our abstract framework. In Section 2.2, we state the relevant technical

preliminaries and hypotheses, including the appropriate notion of mild solutions in

the subset M0 of the ambient linear space of continuous functions. In Section 2.3

we prove the existence and uniqueness of local mild solutions in M0, (Theorem 1).

In Section 2.4, we discuss the corresponding semiflow and show that it is contin-

uous (Theorem 2). In Section 2.5, we give an application of the general theory

(Proposition 3).

2.1 Comparison with Existing Results

Similar types of structured population models were already considered by Smith in

[32]. The models considered by Smith were reduced to a single retarded functional

differential equation whose nonlinear term is Lipschitz on the usual phase space
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of continuous functions. Due to the dependence of the age of maturity on the

immature population, this is not possible for the case we are considering. This

is because the second component of the system we are studying, which describes

the age of maturity in the mechanistic derivation above, depends not only on the

history of the population density but also on the history of itself. For a related

work on threshold type delay differential equations, see [15].

More recently, Hbid et al. [11] considered a stage structured population model

with the same feature determining the age of maturity that we have here. However,

based on a simplifying assumption, they reduced the model to an integral equation

containing a state-dependent delay, for which the immature population depends

only on the history of the state variable, and consequently, does not need to be

initialized.

The nonlinear semigroups approach we are using here was motivated by the

works of Thieme [34], and Magal and Ruan [20, 19], specifically for the case of

structured population models. For another semigroup approach for age structured

models, see [38]. The basic reference for semigroup theory is [27].

A unification of various fundamental results for PDE with ordinary delay is

given in [30], which uses a more general class of operators than we have here. It

would be nice to see if the results presented here can find such generalizations. For

a treatment of reaction diffusion systems with ordinary delay, see [39].
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Also closely related is the recent work of Walther [36] on ODE algebraic-delay

differential systems. Walther considered systems of the form

x′(t) = f(xt, r(t)),

0 = ∆(r(t), xt),

where x(t) ∈ Rk and r(t) is defined implicitly by the history of the state, xt. As

long as the derivative of ∆ in the first component is nonsingular, such systems will

be locally uniquely solvable thanks to the implicit function theorem. Unfortunately,

we cannot apply the implicit function theorem for the case we are considering, so

instead we impose a special Lipschitz condition on the function H given in the next

section.

2.2 Technical Preliminaries and Hypotheses

In this section we state the relevant technical preliminaries and hypotheses. All

Banach spaces are assumed to be over the real numbers. Whenever a product

of Banach spaces is considered, we view it as a Banach space equipped with the

corresponding product norm.
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2.2.1 The Ambient Linear Space of Initial Data

Let δ > 0 and I = [−δ, 0]. For F ⊂ E, where E is a Banach space, C(I, F ) denotes

the set of continuous functions mapping I into F . For ψ ∈ C(I, F ), we let ||ψ|| be

the supremum norm of ψ. Then (C(I, E), || · ||) is a Banach space.

Suppose that 0 < T < ∞ and y : I ∪ [0, T ] → F is some map. As usual in

the literature on delay equations, for each t ∈ [0, T ], we define yt : I → F by

yt(θ) = y(t+ θ) for θ ∈ I and call yt the history of y at time t. If T =∞ then the

same definition applies with t ∈ [0, T ] being replaced with t ∈ [0, T ).

2.2.2 Hypotheses

(H1) Let (X, | · |) denote a Banach space and suppose that A : D(A) → X with

D(A) ⊂ X is a linear operator satisfying the estimates of the Hille-Yosida

theorem, that is, there is some M ≥ 1 and some ω ∈ R such that the ray

(ω,∞) ⊂ ρ(A) and ||(A− λI)−n|| ≤ M
(λ−ω)n

for λ > ω and for each positive

integer n.

We let X0 = D(A) and A0 denote the part of A in X0. Actually this class of

operators falls under a more general class of well known operators as pointed out

in [30]. Set Rλ = (A − λI)−1. Without loss of generality, assume that ω > 0.

It follows from (H1) that A0 generates a C0-semigroup of linear operators on X0,
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{T (t)}t≥0, and that ||T (t)|| ≤Meωt.

(H2) Let n > 0 be given. Suppose that K is some compact subset of Rn such

that K is contained in the closed ball of radius h > 0 centered at the origin.

Set I = [−h, 0] ⊂ R and let C0 be some closed and convex subset of X0.

Assume that R0 > 0 and f : R+ → R+ is a strictly increasing function with

f(R0) = 1. Let D(H) =


ψ
ϕ

 ∈ C(I, C0 ×K) | ||ψ|| ≤ R0

 and suppose

H : D(H)→ K is a function which satisfies the following Lipschitz condition:

for each Q > 0 there is some LQ > 0 such that, for

ψ1

ϕ1

,

ψ2

ϕ2

 ∈ D(H)

with ||ψi|| ≤ Q (i = 1, 2), we have

|H(ψ1, ϕ1)−H(ψ2, ϕ2)| ≤ f(Q) ||ϕ1 − ϕ2||+ LQ||ψ1 − ψ2||.

For simplicity of notation, | · | has been used to denote the norm on X and

also the norm on Rn. This will not cause any confusion.

(H3) LetM0 =


ψ
ϕ

 ∈ D(H) | ϕ(0) = H(ψ, ϕ) and ||ψ|| < R0

. AssumeM0 6=

∅.

(H4) Suppose F : C0 × K → X is a globally Lipschitz function, i.e., there is

some D > 0 such that, for c1, c2 ∈ C0 and k1, k2 ∈ K, we have |F (c1, k1) −

F (c2, k2)| ≤ D(|c1 − c2|+ |k1 − k2|).
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(H5) (Subtangential Condition) We assume that, for each (c, k) ∈ C0 ×K,

lim
h↓0

dist

(
T (h)c+ lim

µ→∞

∫ h
0
T (s)µRµF (c, k)ds, C0

)
h

= 0

holds. Here, dist(x,B) = infb∈B |x − b| for x ∈ X and B ⊂ X. (H5) is a

well known condition which ensures the invariance of a closed and convex set,

sometimes referred to as positivity. We refer readers to [24, 30, 34] for more

detail.

Definition. Consider the following initial value problem,

x′(t) = Ax(t) + F (x(t), a(t)),

a(t) = H(xt, at),

x0

a0

 =

ψ
ϕ

 ∈M0.

(2.2.1)

By a mild solution of (2.2.1) on I ∪ [0, T ] in M0 with T < ∞, we mean a pair of

functions

x(t)

a(t)

 with the following properties:

(i) a : I ∪ [0, T ]→ K is continuous.

(ii) x : I ∪ [0, T ] → C0 is continuous such that, for each t ∈ [0, T ],
∫ t

0
x(s)ds ∈

14



D(A) and

x(t) = x(0) + A

∫ t

0

x(s)ds+

∫ t

0

F (x(s), a(s))ds.

(iii) For 0 ≤ t ≤ T ,

xt
at

 ∈M0, i.e., a(t) = H(xt, at) and ||xt|| < R0.

(iv)

x0

a0

 =

ψ
ϕ

.

We similarly define mild solutions in M0 on I ∪ [0, T ) for T =∞.

Note that (H1) implies that (ii) is equivalent to

x(t) = T (t)ψ(0) + lim
µ→∞

∫ t
0
T (t− s)µRµF (x(s), a(s))ds for t ∈ [0, T ] (see [34]).

2.3 Local Solutions in M0

In this section we establish the existence and uniqueness of local mild solutions

for (2.2.1) in M0.

Theorem 1 Suppose A : D(A) → X, H : D(H) → K, F : C0 × K → X,

and M0 are as in Section (2.2). Assume (H1)–(H5) hold. Then the initial value

problem (2.2.1) has a unique mild solution

x(t)

a(t)

 in M0 on I ∪ [0, τ ] for some

0 < τ <∞.
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Proof. We establish the existence and uniqueness of a local mild solution

of (2.2.1) in M0 by constructing a net of approximate solutions using a discrete

approximation scheme. This is done in such a way that the histories of the ap-

proximate solutions lie in M0. We show that the net constructed converges to a

local mild solution of (2.2.1) in M0. This method is a well known approach. See

[34, 24, 30], for example. The difference between our version and others is that we

must work on a “nonlinear submanifold” of the ambient space.

Step 1: Constructing an approximate solution of (2.2.1) in M0.

We choose R1 > 0 such that ||ψ|| < R1 < R0. Set R = R1 − ||ψ||. Then

0 < R < R0. Moreover, f(R1) < 1. By (H2) we can find J > 0 such that if ||γ1||,

||γ2|| ≤ R1 then, for ϕ1, ϕ2 ∈ C(I,K), we have

|H(γ1, ϕ1)−H(γ2, ϕ2)| ≤ f(R1) ||ϕ1 − ϕ2||+ J ||γ1 − γ2||.

Let ψ(0) = x0 and ϕ(0) = a0. Fix some number ε ∈ (0, 1). Pick some 0 < τ ≤

R1 (another upper bound on τ independent of ε will be imposed later). Using (H5),

the strong continuity of T (t), and the uniform continuity of ψ and ϕ, we can find

some 0 < t1 ≤ min{ε, 2τ} such that

dist(G(t1), C0)

t1
<
ε

2
, (2.3.1)

if s ∈ [0, t1) then |T (s)(x0)− x0| ≤ ε,

if s1, s2 ∈ I with |s1 − s2| < t1 then |ϕ(s1)− ϕ(s2)|, |ψ(s1)− ψ(s2)| ≤ ε,

16



where G(t1) = T (t1)x0 + lim
µ→∞

∫ t1
0
T (t1 − s)µRµF (x0, a0)ds. Choose x1 ∈ C0 such

that

|x1 −G(t1)| ≤ εt1
2

+ dist(G(t1), C0) ≤ εt1.

It follows that

|x1 − T (t1)x0| ≤ ε t1 +

∫ t1

0

M2eωt1|F (x0, a0)|ds

≤ 2τ +M22τeω2τ |F (x0, a0)|.

This, combined with |x1− x0| ≤ |x1−T (t1)(x0)|+ |T (t1)(x0)− x0|, tells us that we

can choose τ independently of ε and t1 so that |x1 − x0| ≤ R.

We define a function x1 : I ∪ [0, t1]→ C0 by

x1(t) =


ψ(t) if t ∈ I,

t
t1
x1 + t1−t

t1
x0 if t ∈ [0, t1].

Then, for t ∈ [0, t1], x1(t) is a parameterization of the straight line segment joining

x0 and x1, meaning that x1(t) ∈ C0 ∩ BR(x0), where BR(x0) denotes the closed

ball of radius R in X0 about x0, which is convex. Consequently, for t ∈ [0, t1],

x1
t ∈ C(I, C0) and ||x1

t || ≤ R1 < R0.

To find a corresponding approximation for the second component of the system,

we wish to solve the equation

a1(t) =


ϕ(t) if t ∈ I,

H(x1
t , a

1
t ) if t ∈ [0, t1].

(2.3.2)
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To show that (2.3.2) has a unique solution, we construct an appropriate contrac-

tion on C(I∪[0, t1], K) which is a closed subset of the Banach space C(I∪[0, t1],Rn)

since K is closed. Note that {x1
t} × C(I,K) ⊂ D(H) for t ∈ [0, t1]. So let

A : C(I ∪ [0, t1], K)→ C(I ∪ [0, t1],Rn) be given by the right hand side of (2.3.2).

It follows from (H2) that

(Aa)(s) ∈ K for each s ∈ I ∪ [0, t1] and that Aa is continuous on I ∪ [0, t1]

and

||Aa−Ab|| ≤ W ||a− b|| for some W < 1.

Therefore, equation (2.3.2) has a unique solution, denoted by a1.

This concludes the first step of our recursion and we have obtained appropriate

functions x1 : I ∪ [0, t1] → C0 and a1 : I ∪ [0, t1] → K. By relabelling if necessary,

we assume that t1 is chosen maximally in the following way:

Let S1 = sup{s ∈ [0, 2τ ] | 0 < s ≤ ε, ξ ∈ [0, s) ⇒ |T (ξ)x0 − x0| ≤

ε, if s1, s2 ∈ I and |s1 − s2| < s then |ϕ(s1)− ϕ(s2)| and |ψ(s1)− ψ(s2)| ≤ ε,

dist(T (s)x0 + limµ→∞
∫ s

0
T (s− ξ)µRµF (x(0), a(0))ds, C0) ≤ εs/2}. Clearly, S1 6= ∅.

By a standard continuity argument, it is easy to see that sup(S1) ∈ S1 and we set

t1 = max(S1).

Let t0 = 0. Suppose that k ≥ 1 and that we are granted a sequence of mesh

points (tj, x
j, aj(tj)), and corresponding functions, xj ∈ C(I ∪ [0, tj], C0) and aj ∈
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C(I ∪ [0, tj], K) such that, for each 1 ≤ j < k, the following properties hold:

If tj−1 < τ then (P1)–(P7) hold and if tj−1 ≥ τ then tj = tj−1.

(P1) tj ≤ 2τ and 0 < tj − tj−1 ≤ ε.

(P2) If s ∈ [0, tj − tj−1) then |T (s)xj−1 − xj−1| ≤ ε. Moreover, for s1, s2 ∈ I ∪

[0, tj−1], if |s1−s2| < tj−tj−1 then |aj−1(s1)−aj−1(s2)|, |xj−1(s1)−xj−1(s2)| ≤

ε.

(P3) dist(T (tj− tj−1)xj−1 +limµ→∞
∫ tj
tj−1

T (tj−s)µRµF (xj−1, aj−1(tj−1))ds, C0) ≤

ε(tj − tj−1)/2.

(P4) tj is chosen maximally with respect to (P1)–(P3).

Namely, tj = maxξ∈[0,2τ ]{(P1)-(P3) hold with ‘ξ’ in place of ‘tj’}.

(P5) |xj − T (tj − tj−1)xj−1 − limµ→∞
∫ tj
tj−1

T (tj − s)µRµF (xj−1, aj−1(tj−1))ds| ≤

ε(tj − tj−1).

(P6) xj ∈ BR(x0).
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(P7)

xj(t) =


xj−1(t) if t ≤ tj−1,

t−tj−1

tj−tj−1
xj +

tj−t
tj−tj−1

xj−1 if t ∈ [tj−1, tj]

and

aj(t) =


aj−1(t) if t ≤ tj−1,

H(xjt , a
j
t) if t ∈ [tj−1, tj].

Note that we denote by ‘xj’ and ‘aj’ both members of C0 and K, respectively,

and the corresponding functions since this should not cause any confusion.

In order to complete the recursion, we show that (P1)–(P7) hold for j = k

whenever τ is small enough. It should be noted that τ has not yet been chosen.

If it happens that tk−1 ≥ τ then we set tk = tk−1, and we are done. Otherwise, by

the same procedure as in the first step of the recursion, we can find some tk ≤ 2τ

and xk ∈ C0 such that (P1)–(P5) hold. We need to verify (P6), then (P7) will

follow exactly as in the first step of the recursion when (2.3.2) was solved using

the contraction mapping principle. The purpose of the tedious estimates below is

to show that τ can in fact be chosen a priori depending only on the initial data.

These calculations are essentially those given in [34], but we repeat them here for

completion. It should be noted that we use the hypothesis ω > 0 from (H1) to

establish (2.3.3) below.
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For j ≤ k, it follows from (P5) that |xj − T (tj − tj−1)xj−1| ≤ ε(tj − tj−1) +

| limµ→∞
∫ tj
tj−1

T (tj − s)µRµF (xj−1, aj−1(tj−1))ds|. Then

|F (xj−1, aj−1(tj−1))| ≤ |F (xj−1, aj−1(tj−1))− F (x0, a0)|+ |F (x0, a0)|

≤ D(|xj−1 − x0|+ |aj−1(tj−1)− a0|) + |F (x0, a0)|

≤ D(R + 2h) + |F (x0, a0)| := P.

Clearly P depends only on the initial data. Thus,

|xj − T (tj − tj−1)xj−1| ≤ Z(tj − tj−1), where Z = (1 +M2eω2τP ).

Having this at our disposal, we next show that, for each j ≤ k,

|xj − T (tj)x
0| ≤MZeωtj tj. (2.3.3)

In fact, we have

|xj − T (tj − tj−2)xj−2|

≤ |xj − T (tj − tj−1)xj−1|+ |T (tj − tj−1)xj−1 − T (tj − tj−2)xj−2|

≤ Z(tj − tj−1) + |T (tj − tj−1)(xj−1 − T (tj−1 − tj−2)xj−2|

≤ Z(tj − tj−1) +Meω(tj−tj−1)Z(tj−1 − tj−2)

≤ MZeω(tj−tj−2)(tj − tj−2).

Continuing in this way, we can prove (2.3.3). It follows from (2.3.3) that

|xk − x0| ≤ |xk − T (tk)x
0|+ |T (tk)x

0 − x0| ≤MZeω2τ2τ + |T (tk)x
0 − x0|. (2.3.4)
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Then we can choose τ > 0 such that xk ∈ BR(x0) and note that, by virtue of (2.3.4)

and the strong continuity of T (t), this choice is independent of ε.

This completes the recursion and we conclude that for each positive integer j,

we can find appropriate mesh points and functions such that (P1)–(P7) hold if

tj−1 < τ and otherwise tj = tj−1.

To obtain an approximate solution in M0, we need to show that this process

ends after a finite number of steps. That is, we want to see that, for some positive

integer j, tj ≥ τ . We assume, by way of contradiction, that tj < τ for each j. So

there is some 0 < t ≤ τ such that tj ↑ t and t > tj. By the same calculations as

those on pages 32-33 of [34], we deduce that xj → x for some x ∈ C0. Now we

define the function x : I ∪ [0, t]→ C0 by

x(s) =


xj(s) if −h ≤ s ≤ tj,

x if s = t.

(2.3.5)

Clearly, x is continuous. Since for each s ∈ [0, t], ||xs|| ≤ R1, the Lipschitz estimate

for H with respect to R1 and the contraction mapping principle give us a unique

continuous solution to the equation

a(s) =


ϕ(s) if s ∈ I,

H(xs, as) if s ∈ [0, t],
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where x is given by (2.3.5). By uniqueness, it follows that a(s) = aj(s) for s ∈

I ∪ [0, tj]. By exploiting uniform continuity of x and a on I ∪ [0, t], and of the

map [0, t] 3 s 7→ |T (s)x − x| we can find 0 < δ < ε such that t + δ ≤ 2τ , and

|s1−s2| < δ ⇒ |x(s1)−x(s2)|, |a(s1)−a(s2)| < ε, and 0 ≤ s < δ ⇒ |T (s)x−x| < ε/3.

Fix α ∈ (0, δ). Since t+α > tj, by maximality, we see that for each j, one of (P1)–

(P3) is not satisfied when ‘tj’ is replaced by ‘t + α’. It is clear that (P1) is not

satisfied for at most finitely many j when tj is replaced with t + α, and similarly

for (P2). Therefore, there are infinitely many j such that

dist(T (t+ α− tj−1)xj−1 + lim
µ→∞

∫ t+α

tj−1

T (t+ α− s)µRµF (xj−1, aj−1(tj−1))ds, C0) >

ε(t+ α− tj−1)/2.

Letting j tend to infinity and exploiting continuity shows that the subtangential

condition, (H5), is violated, a contradiction.

Step 2: Estimates for the ε-approximate solution between mesh points.

The procedure in Step 1 granted us for each 0 < ε < 1 an approximate solution,

which we denote by

x(t)

a(t)

, where x : I ∪ [0, τ ]→ C0 and a : I ∪ [0, τ ]→ K satisfy

x(t) = xj(t) and a(t) = aj(t) if s ≤ tj

and [0, τ ] ⊂ ∪1≤j≤k(ε)[tj−1, tj] for some k(ε) = k <∞ such that tk−1 < τ and tk ≥ τ .

Before moving on to Step 3, we obtain crucial estimates for the components of our

approximate solutions.
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First we note that by (P2), (P5), and (P7) if s ∈ [tj−1, tj] then |x(s)−x(tj−1)| ≤

|xj − xj−1| ≤ c1ε for some constant c1 independent of ε. Similarly, we wish to show

that there is some c > 0 independent of ε such that

|a(s)− a(tj−1)| ≤ cε for s ∈ [tj−1, tj]. (2.3.6)

We achieve this by showing that ||as − atj−1
|| ≤ cε for each s ∈ [tj−1, tj]. Let

θ ∈ [−h, 0] be given. If s+ θ ≤ tj−1 then |a(s+ θ)− a(tj−1 + θ)| ≤ ε by (P2) from

Step 1. Otherwise, s+ θ ≥ tj−1. In this case, we have, by (P2), by the definition of

a, and by the Lipschitz estimate for H with respect to R1 in Step 1, that

|a(s+ θ)− a(tj−1 + θ)| ≤ |a(s+ θ)− a(tj−1)|+ |a(tj−1)− a(tj−1 + θ)|

≤ |a(s+ θ)− a(tj−1)|+ ε

≤ J ||xs+θ − xtj−1
||+ f(R1)||as+θ − atj−1

||+ ε.

Using (P2) and ξ ∈ [tj−1, tj] ⇒ |x(ξ) − x(tj−1)| ≤ c1ε, it is easy to see that

||xs+θ − xtj−1
|| ≤ gε for some constant g > 0 independent of ε. Therefore, we have

that, for each s ∈ [tj−1, tj],

||as − atj−1
|| ≤ Jgε+ f(R1) sup

θ∈I∩[tj−1−s,0]

||as+θ − atj−1
||+ ε. (2.3.7)

The function (s, θ) 7→ ||as+θ − atj−1
|| defined on the compact set K0 := {(s, θ) | s ∈

[tj−1, tj], θ ∈ I ∩ [tj−1 − s, 0]} is continuous and hence attains its maximum for
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some (s∗, θ∗) ∈ K0. By (2.3.7), we get

||as∗+θ∗ − atj−1
|| ≤ Jgε+ f(R1)||as∗+θ∗ − atj−1

||+ ε.

This, combined with the fact that f(R1) < 1, gives us

||as∗+θ∗ − atj−1
|| ≤ (Jg + 1)(1− f(R1))−1ε. (2.3.8)

Then (2.3.8) and (2.3.7) together tell us that (2.3.6) holds with c = (Jg + 1) +

f(R1)(Jg + 1)(1− f(R1))−1 > 0. Clearly c depends only on the initial data.

Step 3: The net of approximate solutions converges to a solution as ε ↓ 0.

Using (P1), (P2), (P5), and the estimate (2.3.6) from Step 2, then proceeding

exactly as on page 34 in [34], we obtain

∣∣∣∣xj − T (tj)x
0 − lim

µ→∞

∫ tj

0

T (tj − s)µRµF (x(s), a(s))ds

∣∣∣∣ ≤ d εeωtj tj (2.3.9)

for some constant d > 0 independent of ε. With the help of (2.3.9), we can argue

in the same way as in [34] to get the critical estimate

∣∣∣∣x(t)− T (t)x0 − lim
µ→∞

∫ t

0

T (t− s)µRµF (x(s), a(s))ds

∣∣∣∣ ≤ d ε,

which holds for each t ∈ [0, τ ]. The constant d is larger than before (we relabeled)

but still independent of ε. To complete this step, we must show that the netxε(t)
aε(t)

 for ε ∈ (0, 1) of approximate solutions converges to a solution of (2.2.1).
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First we show that


xε
aε


 is Cauchy in the complete metric space C(I ∪

[0, τ ], C0×K). If

xε(t)
aε(t)

 and

yδ(t)
bδ(t)

 for ε, δ ∈ (0, 1) are approximate solutions,

then (dropping the superscripts) we get

|x(t)− y(t)|

≤ (ε+ δ)d+

∣∣∣∣ lim
µ→∞

∫ t
0
T (t− s)µRµ(F (x(s), a(s))− F (y(s), b(s))ds

∣∣∣∣(2.3.10)

≤ (ε+ δ)d+

∫ t

0

M2eω(t−s)D(|x(s)− y(s)|+ |a(s)− b(s)|)ds.

Since ||xt||, ||yt|| ≤ R1 for t ∈ [0, τ ], we get

|a(t)− b(t)| ≤ J ||xt − yt||+ f(R1)||at − bt||

and hence

sup
−t−h≤θ≤0

|a(t+θ)−b(t+θ)| ≤ (1−f(R1))−1J sup
−t−h≤θ≤0

|x(t+θ)−y(t+θ)|. (2.3.11)

Then, by (2.3.10), (2.3.11), and an application of Gronwall’s inequality, we have

sup
−t−h≤θ≤0

|x(t+ θ)− y(t+ θ)| ↓ 0 uniformly with respect to t ∈ [0, τ ] as ε, δ ↓ 0.

It follows that ||x − y||∞ ↓ 0 and ||a − b||∞ ↓ 0 as ε ↓ 0 and δ ↓ 0. Therefore,
xε(t)
aε(t)


 converges uniformly to a mild solution of (2.2.1) on I ∪ [0, τ ] in M0

as ε ↓ 0.
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The uniqueness deserves a few remarks. We suppose that

x(t)

a(t)

 and

y(t)

b(t)


are two mild solutions of (2.2.1) respectively on I ∪ A1 and I ∪ A2 in M0 with the

same initial data. Here Ai = [0, τi] or Ai = [0, τi) for 0 < τi ≤ ∞, for each i = 1, 2.

Let A = A1 ∩ A2. We will show that the two solutions agree on A. Assume first

that x 6= y. Let α := inf{t ∈ A | x(t) 6= y(t)}. Then x(t) = y(t) for t ≤ α. Choose

δ > 0 such that (α, α + δ] ⊂ A and R2 > 0 such that for t ∈ (α, α + δ], ||xt||,

||yt|| < R2 for some R2 < R0. By (H2) we have that

|a(t)− b(t)| ≤ LR2||xt − yt||+ f(R2)||at − bt|| for t ∈ (α, α + δ]. (2.3.12)

Now we are in a position to repeat the arguments for (2.3.11) and conclude

by (2.3.12) and Gronwall’s inequality, that x(t) = y(t) for t ∈ (α, α + δ], vio-

lating the minimality of α. This shows that x = y on A. Using (H2) it is easily

seen that a = b on A.

This completes the proof of Theorem 1. �
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2.4 Maximal Solutions and a Semiflow on M0

Given Ψ =

ψ
ϕ

 ∈M0, the local solution granted in the previous section can be ex-

tended to a unique maximal solution

xΨ

aΨ

 of (2.2.1) in M0 defined for t ∈ I∪[0, te)

for some 0 < te ≤ ∞ which depends on Ψ. Namely,

te = sup{τ ∈ (0,∞) | (2.2.1) has a solution

x
a

 on I∪[0, τ ] in M0, with

x0

a0

 =

ψ
ϕ

}. In this section we discuss the semiflow on M0 formed by these maximal

solutions of (2.2.1) in M0.

We first introduce some notations. Let Ω = {(t,Ψ) ∈ [0,∞)×M0|t ∈ [0, te(Ψ))}.

For t ≥ 0, let Ωt = {Ψ ∈ M0|t < te(Ψ)} ⊂ M0. Then Ω ⊂ R × C(I,X0 ×R) and

Ωt ⊂ C(I,X0×R). Both Ω and Ωt are equipped with the relative topology. Define

S : Ω→M0 as

S(t,Ψ) =

xΨ
t

aΨ
t

 for (t,Ψ) ∈ Ω.

Theorem 2 The map S is a continuous semiflow on M0. That is, S is continuous

and satisfies the following two properties:

(i) S(0,Ψ) = Ψ for Ψ ∈M0.
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(ii) For each s, t ≥ 0 with s < te(Ψ) and t < te(S(s,Ψ)), we have t + s < te(Ψ)

and S(t, S(s,Ψ)) = S(t+ s,Ψ) ∈M0.

Proof. Properties (i) and (ii) are straightforward. It suffices to show that S

is continuous. This is done in three steps, where Step 2 and Step 3 are merely

adapting the corresponding proofs in [36] to our framework.

Step 1: Let Ψ ∈ M0. We show that there is τ > 0 and a neighborhood U of Ψ

in M0 such that [0, τ ]× U ⊂ Ω and the restriction S|[0,τ ]×U is continuous.

We take 0 < R2 < R1 < R0 such that ||Ψ|| < R2. Denote R = (R1 − R2)/M ,

where M ≥ 1 is as in (H1). Let Φ =

φ1

φ2

 ∈M0 such that ||Φ−Ψ|| < R. Denote

the corresponding mild solution of Φ in M0 as

x(t)

a(t)

. Then, for t ∈ [0, te(Φ)),

x(t) = T (t)φ1(0) + lim
µ→∞

∫ t

0

T (t− s)µRµF (x(s), a(s))ds.

It follows that

|x(t)| ≤ |T (t)(φ1(0)− ψ1(0))|+ |T (t)ψ1(0)|+
∫ t

0

M2eω(t−s)|F (x(s), a(s))|ds.

Observing that

|F (x(s), a(s))| ≤ |F (x(s), a(s))− F (ψ1(0), ψ2(0))|+ |F (ψ1(0), ψ2(0))|

≤ 2D(R0 + h) + |F (ψ1(0), ψ2(0))|
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and setting C(Ψ) = 2D(R0 + h) + |F (ψ1(0), ψ2(0))|, we get

|x(t)| ≤ (R1 −R2)eωt + |T (t)ψ1(0)|+ tM2eωtC(Ψ).

By continuity, there is some τ > 0 such that, for any Φ ∈ M0 with ||Φ− Ψ|| < R,

we have |x(t)| < R1 for each t ∈ [0, τ ]∩ [0, te(Φ)). Thus if t ∈ [0, τ ]∩ [0, te(Φ)) then

||xt|| < R1. In particular, this shows that τ < te(Φ). Let U be the open ball of

radius R > 0 about Ψ in M0. We have shown [0, τ ]× U ⊂ Ω.

Now suppose we are given (t0,Φ0) ∈ [0, τ ]×U . Then for each (t,Φ) ∈ [0, τ ]×U ,

||S(t,Φ)− S(t0,Φ0)|| ≤ ||S(t,Φ)− S(t,Φ0)||+ ||S(t,Φ0)− S(t0,Φ0)||. To complete

the proof of Step 1, it is now clear that it suffices to show that the first term on the

right hand side of the latter inequality is bounded by c||Φ−Φ0|| for some constant

c > 0 uniformly for t ∈ [0, τ ].

Let x(t), a(t) correspond to Φ0 and y(t), b(t) correspond to Φ. Then we have

that for each t ∈ [0, τ ]

|x(t)− y(t)| ≤Meωτ ||Φ− Φ0||+
∫ t

0

M2eω(t−s)D(|x(s)− y(s)|+ |a(s)− b(s)|)ds

and |a(t)− b(t)| ≤ LR1||xt− yt||+ f(R1)||at− bt||. It is not difficult to see that the

latter inequality implies

sup−h≤t+θ≤t|a(t+ θ)− b(t+ θ)| ≤ c(sup−h≤t+θ≤t|x(t+ θ)− y(t+ θ)|+ ||Φ− Φ0||)

for some constant c > 0 depending on R1. This information combined with a

Gronwall inequality argument completes the proof of Step 1.
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Step 2. Let Ψ ∈M0 and t ∈ [0, te(Ψ)). We show that Ωt ⊂M0 is open and the

map Ωt 3 Φ 7→ S(t,Φ) is continuous at Ψ.

By continuity, we see that the set K1 = {S(s,Ψ) | s ∈ [0, t]} ⊂ M0 is compact.

Therefore, applying Step 1, we find some u > 0 and some open subset N in M0

containing K1 such that [0, u] × N ⊂ Ω and S|[0,u]×N is continuous. Let J be the

smallest positive integer such that t/J < u. Obviously, (J − 1)u ≤ t < Ju. Given

ε > 0, we find δ1 > 0 such that

if ||γ − S((J − 1)u,Ψ)|| < δ1 then γ ∈ N and

||S(t− (J − 1)u, S((J − 1)u,Ψ))− S(t− (J − 1)u, γ)|| < ε.

(2.4.1)

Recursively we can find δj > 0 for j = 2, . . ., J such that

if ||γ − S((J − j)u,Ψ)|| < δj then γ ∈ N and

||S(u, γ)− S(u, S((J − j)u,Ψ))|| < δj−1.

(2.4.2)

Using (2.4.1), (2.4.2), the semigroup property, and induction, we see that if Φ ∈M0

with ||Φ − Ψ|| < δJ then Φ ∈ Ωt and ||S(t,Φ) − S(t,Ψ)|| < ε. This completes the

proof of Step 2.

Step 3. We prove that the map S : Ω→M0 is continuous.

For (t0,Ψ0) ∈ Ω, let U be a neighborhood of S(t0,Ψ0) in M0. We want to

find a neighborhood W ⊂ Ω of (t0,Ψ0) such that S(W ) ⊂ U . If t0 = 0, by

Step 1, we are done. Otherwise, t0 > 0. By Step 1, we find some 0 < u < t0

and a neighborhood W1 of Ψ0 in M0 such that [0, u] ×W1 ⊂ Ω and S|[0,u]×W1 is
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continuous. Let 0 < u1 < u. It follows from S(t0,Ψ0) = S(t0 − u1, S(u1,Ψ0)) that

S(u1,Ψ0) ∈ Ωt0−u1 . By Step 2, we can find a neighborhood W2 of S(u1,Ψ0) in M0

such that S(t0 − u1,W2) ⊂ U . Take 0 < δ < u1 such that (u1 − δ, u1 + δ) ⊂ (0, u)

and choose a neighborhood W3 of Ψ0 in M0 with S((u1− δ, u1 + δ)×W3) ⊂ W2. If

s ∈ (t0 − δ, t0 + δ) then s = (t0 − u1) + (s − t0 + u1) and therefore the semigroup

property gives S((t0 − δ, t0 + δ)×W3) ⊂ U , which completes the proof. �

2.5 The Model Equations: Part One

In this section we present an application of the general theory. We will see that in

practice, it is non-trivial to check that all of the relevant hypotheses are satisfied.

Consider the following class of scalar age structured models with threshold de-

pendent age of maturity,

∂tu(t, a) + ∂au(t, a) = −d(a)u(t, a),

u(t, 0) = b(
∫ m
τ(t)

β(ξ)u(t, ξ)dξ),∫ t
t−τ(t)

[
∫ τ(σ)

0
u(σ, a)da+ C]−1dσ = T,u0

τ0

 =

ψ̂
ϕ̂

 ∈ C([−am, 0], (L1
+[0,m))×R+),

(2.5.1)

where t ≥ 0, 0 ≤ a < m, and am < m ≤ ∞. Here m represents the maximum age

and am stands for the maximum juvenile age. We make the following assumptions:

(A1) d : [0,m)→ R+ and β : [0,m)→ R+ are essentially bounded.
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(A2) b : R+ → R+ is bounded, globally Lipschitz, and 0 < maxx∈R+ b(x) ≤ θ for

some θ > 0.

(A3) am = (R0 + C)T < m ≤ ∞, where R0 = C( 1√
Tθ
− 1) > 0.

In order to apply Theorem 1, we rewrite (2.5.1) as follows. Let X = R ×

L1([0,m),R) and define A : D(A)→ X by

A

0

x

 =

−x(0)

−x′

 for

0

x

 ∈ D(A) = {0} ×W 1,1([0,m),R).

Note that X0 = D(A) = {0}×L1[0,m). It is well known that A satisfies (H1) (see,

for instance, [34, 19]). Denote

C0 =


0

γ

 ∈ 0× L1[0,m)|0 ≤ γ(a) ≤ θ a.e. a ∈ [0,m)


and

D(H) =


ψ
ϕ

 ∈ C([−am, 0], C0 ×K) | ||ψ|| ≤ R0

 ,

where K = [0, am] ⊂ R. We prove that our “age of maturity function” is well

defined in the following result.

Lemma 1 The relation H : D(H) → K, which is given by (ψ, ϕ, α) ∈ H if and

only if
∫ 0

−α[
∫ ϕ(σ)

0
ψ(σ, ξ)dξ + C]−1dσ = T , is a function.
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Proof. Given

ψ
ϕ

 ∈ D(H), it suffices to show that there exists a unique α ∈

K such that (ψ, φ, α) ∈ H. In fact, note that the map α 7→
∫ 0

−α[
∫ ϕ(σ)

0
ψ(σ, ξ)dξ +

C]−1dσ defined for α ∈ [0, am] is strictly increasing and continuous. Moreover,∫ 0

−am [
∫ ϕ(σ)

0
ψ(σ, ξ)dξ + C]−1dσ ≥ am/(R0 + C) = T . Now the result follows imme-

diately. �

Define f : R+ → R+ by f(Q) = (Q+C)2T
C2 θ. The coming result tells us that H

satisfies an appropriate Lipschitz condition.

Lemma 2 For any Q > 0 there is some LQ > 0 such that, for

ψ1

ϕ1

,

ψ2

ϕ2

 ∈
D(H) with ||ψi|| ≤ Q (i = 1 , 2), we have

|H(ψ1, ϕ1)−H(ψ2, ϕ2)| ≤ f(Q) ||ϕ1 − ϕ2||+ LQ||ψ1 − ψ2||.

Proof. Let t1 = H(ψ1, ϕ1) and t2 = H(ψ2, ϕ2). Without loss of generality,

assume that t1 ≤ t2. Then we have

∫ 0

−t1

[∫ ϕ1(σ)

0

ψ1(σ, ξ)dξ + C

]−1

dσ −
∫ 0

−t2

[∫ ϕ2(σ)

0

ψ2(σ, ξ)dξ + C

]−1

dσ = 0
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or

∫ −t1
−t2

[∫ ϕ2(σ)

0

ψ2(σ, ξ)dξ + C

]−1

dσ =

∫ 0

−t1

(∫ ϕ1(σ)

0

ψ1(σ, ξ)dξ + C

)−1

−

(∫ ϕ2(σ)

0

ψ2(σ, ξ)dξ + C

)−1
 dσ.

Using the fact that the function u 7→ 1/(u+C) is globally Lipschitz on (0,∞) with

Lipschitz constant 1/C2, we get

|t1 − t2|
Q+ C

≤ 1

C2

∫ 0

−t1

∣∣∣∣∣
∫ ϕ1(σ)

0

ψ1(σ, ξ)dξ −
∫ ϕ2(σ)

0

ψ2(σ, ξ)dξ

∣∣∣∣∣ dσ.
It follows that |t1 − t2| ≤ (Q + C)t1( ||ψ1 − ψ2|| + θ||ϕ1 − ϕ2|| )/C2. Since t1 ≤

(Q+ C)T , we obtain

|H(ψ1, ϕ1)−H(ψ2, ϕ2)| ≤ (Q+ C)2T

C2
||ψ1 − ψ2||+

(Q+ C)2T

C2
θ||ϕ1 − ϕ2||.

This completes the proof. �

Define F : C0 ×K → X by F (x, a) =

b(
∫ m
a
β(ξ)x(ξ)dξ)

−d(·)x(·)

. By (A1) and (A2)

it is clear that F is Lipschitz on C0 × K. The verification of the subtangential

condition (H6) with respect to C0, K, and F follows exactly as on pages 12–14 of

the examples in [34]. Therefore, by Theorem 1, we have the following result.

Proposition 3 In addition to (A1)–(A3), assume that

ψ̂
ϕ̂

 ∈ C([−am, 0], L1
+[0,m)×

R+) satisfies the following two conditions:
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(i) For each σ ∈ [−am, 0], 0 ≤ ψ̂(σ)(a) ≤ θ a.e. a ∈ [0,m) and ϕ̂(σ) ∈ [0, am].

(ii) For each σ ∈ [−am, 0],
∫ m

0
ψ̂(σ)(a)da < C( 1√

Tθ
−1) and

∫ 0

−ϕ̂(0)
[
∫ ϕ̂(σ)

0
ψ̂(σ, ξ)dξ+

C]−1dσ = T .

Then the initial value problem (2.5.1) has a unique maximal solution

u
τ

 ∈

C([−am, te), L1
+[0,m) × [0, am]) on [−am, te) (te > 0) with

u0

τ0

 =

ψ̂
ϕ̂

 in the

following sense:

(i) For 0 ≤ t < te, a 7→
∫ t

0
u(s, a)ds is absolutely continuous, and for a.e. a ∈

[0,m),

u(t, a) = u(0, a)− ∂a
∫ t

0

u(s, a)ds−
∫ t

0

d(a)u(s, a)ds,∫ t

0

u(s, 0)ds =

∫ t

0

b

(∫ m

τ(s)

β(a)u(s, a)da

)
ds.

(ii) For 0 ≤ t < te,
∫ t
t−τ(t)

[
∫ τ(σ)

0
u(σ, a)da+ C]−1dσ = T .

(iii) For t ∈ [0, te) the “total population” satisfies
∫ m

0
u(t, a)da < C( 1√

Tθ
− 1) and

0 ≤ u(t, a) ≤ θ for a.e. a ∈ [0,m).

Finally we note that, by Theorem 2, the corresponding semiflow is continuous.

The reader should be warned that under the present hypothesis it is not necessarily

true that the obtained semiflow is global, i.e. te = ∞. In case for each t ∈ [0, te)
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||ut|| ≤ R1 for some R1 < R0 then te = ∞. On one hand this is a limitation of

the present framework, on the other hand it has the advantage that the delay is a

priori bounded.
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3 Differentiability of the Abstract Solution

Semiflow with Respect to Initial Data

This chapter is devoted to finding general conditions under which the abstract semi-

flow from Chapter 2 is also differentiable with respect to initial data, in a suitable

weak sense. We commence with Section 3.1 explaining the technical difficulties

of the linearization problem for differential equations containing state-dependent

delays, why our results are not contained in the existing literature, as well as why

some well known approaches fail to resolve the linearization problem stemming

from the model equations derived in the Introduction. Subsection 3.1.1 provides

an outline for the main results of this chapter. This chapter is self contained and

can be read without reading Chapter 2, if desired.

3.1 Background

A fundamental problem in the study of dynamical systems concerns the lineariza-

tion of a flow or a semiflow along a trajectory. When the flow is induced by an
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ordinary differential equation (ODE) on Rn with a smooth nonlinearity, this prob-

lem is straightforward and the derivative of the semiflow with respect to initial data

is given by the solution of the corresponding linearized system along flowlines. For

semiflows on infinite dimensional spaces such as these given by solutions of cer-

tain nonlinear parabolic equations or solutions of delay differential equations with

constant delays, this problem is merely an extrapolation of the finite dimensional

ODE case with the help of an abstract variation of constants formula (see, for ex-

ample, [33, 34]). This is possible because the nonlinearity appearing in the relevant

equation is continuously differentiable on the appropriate function space and one

can proceed to obtain the differentiability of the corresponding semiflow relying on

Gronwall’s inequality. It is well known from the works [9, 23, 31, 35, 36, 37, 14, 4, 22]

that even ODEs containing a state dependent delay such as x′(t) = x(t− x(t)) do

not fit into the standard frameworks for functional differential equations in [3, 7, 39].

The reason is that the nonlinear term is not differentiable (or even not Lipschitz!)

on the commonly used phase space of continuous functions. In particular, the cor-

responding initial value problem is not well-posed on this phase space. A resolution

for this problem is to restrict the phase space to a subset of the continuously differ-

entiable functions so that the nonlinearity is continuously differentiable on it and to

exploit the fact that its derivative has a bounded extension to the original space of

continuous functions and this extension satisfies a componentwise continuity prop-
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erty. This weaker type of differentiability (with respect to the supremum norm from

the space of continuous functions), sometimes called almost Fréchet differentiability

as in [23] or more appropriately extendable continuous differentiability as in [31], is

sufficient to obtain a continuously differentiable semiflow on a submanifold of the

space of continuously differentiable functions for a class of equations including the

one given above (see [37]).

Despite their emergence in the modeling of structured populations with de-

velopmental stages of variable length (see [11, 26, 32]), there are very few works

dealing with differential equations containing both state-dependent delays and par-

tial differential operators. The works [28, 29] deal with special classes of reaction

diffusion systems containing state-dependent delays, but use special assumptions

to circumvent the difficulties mentioned above.

Recall our model for a population structured by age with distinct juvenile and

adult stages, and with a variable age of maturity. It is assumed that juveniles and

adults are not competing for resources. As a result the model equations take the

form:
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

∂tu(t, a) + ∂au(t, a) = −d(a)u(t, a),

u(t, 0) = b(
∫ m
τ(t)

β(ξ)u(t, ξ)dξ),∫ t
t−τ(t)

[
∫ τ(σ)

0
u(σ, a)da+ C]−1dσ = T,u0

τ0

 =

ψ
ϕ

 ∈ C([−am, 0], L1
+[0,m)×R+).

(3.1.1)

(See Section 1.2 for a detailed derivation.) Here t ≥ 0, 0 ≤ a < m, am < m ≤ ∞,

and 0 < τ(t) ≤ am represents the variable age of maturity. The parameter T > 0

represents a resource concentration density threshold, m represents the maximum

age, am the maximum juvenile age, and C([−am, 0], L1
+[0,m) × R+) denotes the

space of continuous functions on [−am, 0] having values in L1
+[0,m) × R+. The

natural setting for age structured population models is L1[0,m) since the total

population at a given time is given by the L1 norm of the population density. It

was shown in Chapter 2 that under suitable hypotheses, the second component of

system (3.1.1) can be written as an algebraic-delay equation and that system (3.1.1)

can be written abstractly as:

d

dt

 0

u(t, ·)

 =

−u(t, 0)

−ua(t, ·)

+

b(
∫ m
τ(t)

β(ξ)u(t, ξ)dξ)

−d(·)u(t, ·)

 ,

τ(t) = H(ut, τt), (3.1.2)x0

τ0

 =

ψ
ϕ

 ∈M0.
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Here M0 is a “nonlinear” subset of the ambient space of continuous functions in-

duced by the algebraic component (For precise definitions of M0 and H see Sec-

tion 3.2 and Section 3.7). It was also shown that the abstract system gives rise

to a continuous semiflow on M0 via S

t,
ψ
ϕ


 =

xt
at

, where xt = ut(·) ∈

C([−am, 0], L1([0,m),R+)) and at = τt ∈ C([−am, 0],R+). In this chapter we es-

tablish sufficient conditions which ensure that this semiflow is also continuously

differentiable in a suitable weak sense.

Without going into too many technical details, we list reasons (R1)–(R3) below

why the issue of differentiability of the semiflow induced by the above system is not

addressed in existing works. For system (3.1.2), let F : L1([0,m),R+) × [0,m) →

R+ × L1([0,m),R+) be given by F (x(·), a) =

b(
∫ m
a
β(ξ)x(ξ)dξ)

−d(·)x(·)

. Then (3.1.2)

has the form (3.2.1) (see Page 53). For the purpose of illustration, we take b :

R+ → R+ to be the identity mapping and assume that both β, d : [0,m) → R+

are the constant function with value 1.

(R1) Poor smoothness properties of nonlinearities. Here D2F (x(·), a) =−x(a)

0

 andD1F (x(·), a)γ =


∫ m
a
γ(ξ)dξ

−γ(·)

. It is easy to see thatD2F (x(·), a)

is not defined for general x ∈ L1[0,m) and thatD1F (x(·), a) ∈ L(L1[0,m),R×

L1[0,m)) is not continuous. Even if x is continuous, although it can be shown
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that the partial derivatives of F exist at (x, a), F will not be differentiable

with respect to the norm from L1[0,m)×R. This means, in particular, that

we cannot apply the results of e.g. [30] or [34] even indirectly since they require

continuous differentiability of the nonlinear term, albeit on possibly thin sub-

sets in [30]. Similarly, it will be seen in Section 3.7 that the other nonlinearity

H has a similar lack of smoothness on the space C(I, L1[0,m)×R).

(R2) Classical change of variables. In the work of Smith [32] on ODEs con-

taining a threshold type state-dependent delay such as the one we have here,

a change of variables is employed to reduce the system to one with a constant

delay. Formally, employing such a transformation to system (3.1.1) amounts

to setting z(t) :=
∫ t

0
[
∫ τ(σ)

0
u(σ, a)da + C]−1dσ. Clearly, z(t) is invertible. De-

note w(t, a) := u(z−1(t), a) and c(t) := τ(z−1(t)). Then, after differentiating

c(t), the new system with a constant delay is given by
wt(t, a) + (

∫ c(t)
0

w(t, ξ)dξ + C)wa(t, a) = −d(a)(
∫ c(t)

0
w(t, ξ)dξ + C)w(t, a),

w(t, 0) = b(
∫ m
c(t)

β(ξ)w(t, ξ)dξ),

c′(t) =
∫ c(t)

0
w(t, ξ)dξ −

∫ c(t−T )

0
w(t− T, ξ)dξ.

Although this (larger) system has a constant delay, it suffers from the same

lack of smoothness given in (R1). Additionally, wa(t, a) is multiplied by an

integral nonlinearity.

(R3) Monotonicity of t 7→ t− τ(t). Other works including [12, 32] on differential
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or integral equations containing threshold type delays exploit monotonicity

of the function t 7→ t − τ(t), where τ(t) is the variable transition age in

question. For instance, this property was used implicitly in (R2). We do not

use monotonicity in our rendition for several reasons:

• For the problem at hand, it is not clear how the analysis can be simpli-

fied by using the monotonicity property even if an explicit representation

formula is available such as for system (3.1.1) via the method of charac-

teristics.

• One can construct systems which do not enjoy this property but can

otherwise be included in the present framework.

• As we will show, the monotonicity property is not necessary to obtain

the desired result on differentiability.

To obtain the desired result on differentiability, the problems caused by the

poor smoothness of the nonlinearities are circumvented in an analogous fashion

to existing works for ODEs with state-dependent delays. However, for the model

equations (3.1.1), in contrast to the ODE case we will see that the appearance of

the partial differential operator ∂a also plays a key role.
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3.1.1 Outline and Main Results

Although our results are of a more general nature, for clarity, we outline the struc-

ture of this chapter in terms of the model equations (3.1.1). The main goal of this

chapter is to prove Theorem 11 in Section 3.6.

In Section 3.2, we cover the basic functional analytic preliminaries and the

precise meaning of mild solutions of system (3.1.1). This functional analytic setup is

captured in the way the first equation along with the nonlinear boundary condition

for u(t, 0) in system (3.1.1), is rewritten in system (3.1.2). This setup was motivated

by the studies [19, 20, 34]. Moreover, the ‘subtangential condition’ (H5) adopted

from [34] ensures that the population density remains non-negative for non-negative

initial data.

In Section 3.3 we address the differentiability with respect to time of solutions

of system (3.1.1). The existence and uniqueness of solutions of system (3.1.1) and

continuity of the corresponding semiflow was established in [13]. Due to the poor

smoothness properties of the nonlinearities discussed above, the methods used to

obtain the differentiability of solutions must differ from the standard techniques

from, e.g. [27]. This is where the assumption involving the Radon-Nikodym prop-

erty in (H1) comes into play. We finally obtain a positively invariant set for the

semiflow, denoted M̂0, on which every trajectory is C1 in time and for which the
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population density u(t, ·) is absolutely continuous. The set M̂0 is analogous to the

infinitesimal generator for system (3.1.1).

Let W 1,1[0,m) denote the space of absolutely continuous functions in L1[0,m)

whose derivative lies in L1[0,m) (which, in the motivating example, contains the

population density u(t, ·)). In Section 3.4 we show that the set M̂0 is a C1 subman-

ifold of the space C([−am, 0],W 1,1[0,m) × R). We show that M̂0 has an atlas of

manifold charts whose derivatives have the special extension properties discussed

above. In particular, for each p ∈ M̂0, we show that the tangent space TpM̂ which

is a subspace of C([−am, 0],W 1,1[0,m)×R) has an extension to the larger function

space C([−am, 0], L1[0,m)×R).

In Section 3.5 we show that the (formal) linear variational system along flow

lines in M̂0 can be solved uniquely for mild solutions for initial data belonging to

the corresponding extended tangent space.

Section 3.6 develops the main results of this chapter. We show that the solu-

tion operators Ŝt at time t (whose domain is the set of initial data in M̂0 whose

maximal interval of existence is bigger than t) are differentiable. Here the deriva-

tive at a point p ∈ M̂0 is a linear operator whose domain is the interpolation

space TpM̂
1 := TpM̂ ∩C1([−am, 0], L1[0,m)×R) and whose codomain is the space

C([−am, 0], L1[0,m) × R). Additionally, it is shown that the derivative map dŜt

which is defined on an appropriate subset of the tangent bundle is continuous.
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Finally, in Section 3.7, all of the relevant hypotheses are verified for the moti-

vating example system (3.1.1) and some abstract results are used to infer about the

regularity of its solutions.

3.1.2 Morally Finite or Infinite Dimensional Problem?

As mentioned above, in many cases the techniques used to obtain the differentia-

bility of a semiflow with respect to initial data, which arises from some type of

autonomous differential equation on an infinite dimensional phase space, having a

smooth nonlinearity, are a glorification of the same techniques used in the case of

an ODE. To bridge the gap, enough knowledge of functional analysis to manipulate

an abstract variation of constants formula suffices. The same is not true for the

model equations (3.1.1). We illustrate some reasons below.

The nonlinearity F (x(·), a) =


∫ m
a
x(ξ)dξ

−x(·)

 can be written as a sum F =

F1 + F2, where F1(x(·), a) =


∫ m
a
x(ξ)dξ

0

 and F2(x(·), a) =

 0

−x(·)

. The trou-

ble maker is clearly F1. Although D1F1(x(·), a) ∈ L(L1[0,m),R) exists, the map

L1[0,m) × [0,m) 3 (x(·), a) 7→ D1F1(x(·), a) ∈ L(L1[0,m),R) is not continuous.

However, it is easily checked that F1 is C1 on the smaller set W 1,1[0,m) × [0,m),

where D1F1(x(·), a) ∈ L(W 1,1[0,m),R), and W 1,1[0,m) has the norm |γ|W 1,1 =
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|γ(0)|+ |γ|L1 + |γ′|L1 for γ ∈ W 1,1[0,m).

A key result used to obtain the differentiability of the corresponding semiflow

with respect to initial data is

|[D1F1(xp(s), ap+ξ(s))−D1F1(xp(s), ap(s))](xp+ξ(s)− xp(s))|

= |
∫ ap+ξ(s)

ap(s)

xp+ξ(s)(θ)− xp(s)(θ)dθ|

≤ |ap+ξ(s)− ap(s)| |xp+ξ(s)− xp(s)|W 1,1[0,m).

Here xp+ξ(s)(·), xp(s)(·), ap+ξ(s), ap(s) denote the first and second components

of solutions of (3.1.1) in M̂0 at time s corresponding to initial data p + ξ and p,

respectively (See Step 5 in the proof of Theorem 11).

In order to obtain the desired differentiability result, we need

|[D1F1(xp(s), ap+ξ(s))−D1F1(xp(s), ap(s))](xp+ξ(s)− xp(s))| = o(ξ)

as ξ → 0 for each s. Since it will turn out that |ap+ξ(s) − ap(s)| = O(||ξ||), we

require that, for each s, |xp+ξ(s)− xp(s)|W 1,1[0,m) → 0 as ξ → 0. Here || · || denotes

the supremum norm on the space C([−am, 0], L1[0,m) × R). For even further

illustration, we note that letting s = 0 gives us the requirement that

|[D1F1(xp(0), ap+ξ(0))−D1F1(xp(0), ap(0))](xp+ξ(0)− xp(0))|

≤

∣∣∣∣∣
∫ p2(0)+ξ2(0)

p2(0)

ξ1(0)(θ)dθ

∣∣∣∣∣ = o(ξ) as ξ → 0,

where the subscripts 1 and 2 denote the first and second components of the initial

data. Note that it is impossible for the latter to hold merely as ||ξ|| → 0. We
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can only expect this to hold as ξ → 0 with respect to the supremum norm on the

space C([−am, 0],W 1,1[0,m)×R). Namely, the supremum norm which includes a

contribution from the partial differential operator ∂a in system (3.1.1), since the

right hand side is bounded by ||ξ|| |ξ1(0)|W 1,1[0,m). That having been said, another

key result is showing that |xp+ξ(s)−xp(s)|W 1,1[0,m) → 0 as ξ → 0 with respect to this

stronger norm. This part is given in Step 4 of the proof of Theorem 11 in Section 3.6,

which is achieved by showing that ||ẋp+ξs − ẋps|| → 0 as ||ξ|| + ||ξ′|| → 0 for each

s. Here the prime denotes differentiation with respect to time, not age. This leads

us to the interpolation space C1([−am, 0], L1[0,m)×R)∩C([−am, 0],W 1,1[0,m)×

R). Due to the presence of the delay in system (3.1.1), we need to consider the

latter interpolation space with the norm containing contributions from both the

time derivative and the partial differential operator ∂a in system (3.1.1) to obtain

the desired differentiability of the semiflow with respect to initial data, which is

Theorem 11 in Section 3.6. We will see in Section 3.7 that the partial derivative

D1H of the other nonlinearity H has similar properties as D1F1 above.

3.2 Technical Preliminaries and Hypotheses

In this section we state the relevant technical preliminaries and hypotheses. All

Banach spaces are assumed to be over the real numbers. Whenever a product

of Banach spaces is considered, we view it as a Banach space equipped with the
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corresponding product norm.

3.2.1 The Ambient Linear Space of Initial Data

Let 0 < δ < ∞ and I = [−δ, 0]. For F ⊂ E, where E is a Banach space, C(I, F )

denotes the set of continuous functions mapping I into F . For ψ ∈ C(I, F ), we let

||ψ|| be the supremum norm of ψ. Then (C(I, E), ||·||) is a Banach space. Similarly,

we let C1(I, F ) be the set of continuously differentiable functions mapping I into F .

If δ =∞ and I = (−∞, 0], we let BUC(I, F ) denote the set of bounded uniformly

continuous functions mapping I into F and similarly BUC(I, E) is a Banach space

when equipped with the supremum norm.

Suppose that 0 < T < ∞ and y : I ∪ [0, T ] → F is a map. As usual in

the literature on delay equations, for each t ∈ [0, T ], we define yt : I → F by

yt(θ) = y(t+ θ) for θ ∈ I and call yt the history of y at time t. If T =∞ then the

same definition applies with t ∈ [0, T ] being replaced with t ∈ [0, T ).

3.2.2 Hypotheses

(H1) Let (X, | · |) denote a Banach space. Suppose that A : D(A) → X with

D(A) ⊂ X is a linear operator satisfying the estimates of the Hille-Yosida

theorem, that is, there is some M ≥ 1 and some ω ∈ R such that the ray

(ω,∞) ⊂ ρ(A) and ||(A− λI)−n|| ≤ M
(λ−ω)n

for λ > ω and for each positive
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integer n. In order to derive reasonable regualirty properties of solutions of

our system, we further assume that X has the direct sum decomposition,

X = X1⊕X2, where X1 and X2 are closed subspaces and X1 has the Radon-

Nikodym property, that is, given an open subset O ⊂ R, every Lipschitz map

g : O → X1 is a.e. differentiable.

Let X0 = D(A) and A0 denote the part of A in X0. Actually this class of

operators falls under a more general class of well known operators as pointed out

in [30]. Set Rλ = (A − λI)−1. Without loss of generality, assume that ω > 0. It

follows from (H1) that A0 generates a C0-semigroup of linear operators {T (t)}t≥0

on X0 and satisfies ||T (t)|| ≤Meωt.

(H2) Let n be a given positive integer. Suppose that K is some compact subset

of Rn such that K is contained in the closed ball of radius h > 0 centered at

the origin. Set I = [−h, 0] ⊂ R. Let C0 be some closed and convex subset

of X0. Assume that there is some R0 > 0, a strictly increasing function

f : R+ → R+ with f(R0) = 1, and a function H : D(H) → K satisfying

the following Lipschitz condition: for each Q > 0, there is some LQ > 0 such

that, for

ψ1

ϕ1

,

ψ2

ϕ2

 ∈ D(H) with ||ψi|| ≤ Q (i = 1, 2), we have

|H(ψ1, ϕ1)−H(ψ2, ϕ2)| ≤ f(Q) ||ϕ1 − ϕ2||+ LQ||ψ1 − ψ2||,
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where D(H) =


ψ
ϕ

 ∈ C(I, C0 ×K) | ||ψ|| ≤ R0

 (Both norms of the

spaces X and Rn will be denoted by | · | since this should not cause any

confusion).

(H3) LetM0 =


ψ
ϕ

 ∈ D(H) | ϕ(0) = H(ψ, ϕ) and ||ψ|| < R0

. AssumeM0 6=

∅.

Give D(A) the graph norm and view C(I,D(A) × Rn) as a Banach space.

We assume that C0 ∩D(A) 6= ∅. Let D(Ĥ) := D(H)∩C(I,D(A)×Rn). We

let the function Ĥ with domain D(Ĥ) be the restriction of H to D(Ĥ).

Remark. When D(H) and D(Ĥ) are respectively given the relative topology

from C(I,X0×Rn) and C(I,D(A)×Rn), we have the continuous inclusions,

D(H) → C(I,X0 ×Rn)

↑ ↑

D(Ĥ) → C(I,D(A)×Rn)

(H4) Suppose F : C0 × K → X has the form F (c, k) = F1(c, k) + F2(c), where

F1 : C0×K → X1 and F2 : C0 → X2. We assume that F1 is globally Lipschitz

(there is some D > 0 such that, for c1, c2 ∈ C0 and k1, k2 ∈ K, we have

|F1(c1, k1)−F1(c2, k2)| ≤ D(|c1− c2|+ |k1− k2|)) and that F2 is continuously
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differentiable on C0 (for each c ∈ C0, there is a bounded linear operator

DF2(c) : X0 → X2 which satisfies limξ→0, c+ξ∈C0, ξ∈X0

|F2(c+ξ)−F2(c)−DF2(c)ξ|
|ξ| = 0

and the map C0 3 c 7→ DF2(c) is continuous with respect to the uniform

operator topology). We also assume that supc∈C0
||DF2(c)|| < ∞ so that F2

is globally Lipschitz on C0 since C0 is convex. Note that it follows that F is

also globally Lipschitz.

(H5) (Subtangential Condition) We assume that, for each (c, k) ∈ C0 ×K,

lim
h↓0

dist

(
T (h)c+ lim

µ→∞

∫ h
0
T (s)µRµF (c, k)ds, C0

)
h

= 0

holds. Here dist(x,B) = infb∈B |x− b| for x ∈ X and B ⊂ X.

Definition. Consider the following initial value problem,

x′(t) = Ax(t) + F (x(t), a(t)),

a(t) = H(xt, at),x0

a0

 =

ψ
ϕ

 ∈M0.

(3.2.1)

By a mild solution of (3.2.1) on I ∪ [0, T ] in M0 with 0 < T <∞, we mean a pair

of functions

x(t)

a(t)

 with the following properties:

(i) a : I ∪ [0, T ]→ K is continuous.

53



(ii) x : I ∪ [0, T ] → C0 is continuous such that, for each t ∈ [0, T ],
∫ t

0
x(s)ds ∈

D(A) and

x(t) = x(0) + A

∫ t

0

x(s)ds+

∫ t

0

F (x(s), a(s))ds.

(iii) For 0 ≤ t ≤ T ,

xt
at

 ∈M0, i.e., a(t) = H(xt, at) and ||xt|| < R0.

(iv)

x0

a0

 =

ψ
ϕ

.

We similarly define mild solutions in M0 on I ∪ [0, T ) for T =∞.

Note that (H1) implies that (ii) is equivalent to

x(t) = T (t)ψ(0) + lim
µ→∞

∫ t
0
T (t− s)µRµF (x(s), a(s))ds for t ∈ [0, T ]. See [34].

3.3 Differentiability of Solutions with respect to Time

Under the assumptions (H1)–(H5), given

ψ
ϕ

 ∈ M0, there is some te > 0 such

that (3.2.1) has a unique maximal mild solution on I ∪ [0, te) in M0 (see Chapter 2

and [13]). In this section we discuss the differentiability of these mild solutions

with respect to time. In Theorem 4 below, we give sufficient conditions under which

mild solutions are locally Lipschitz in time. This result is used to derive Theorem 5,

which gives sufficient conditions for the C1 smoothness of the x component. Finally,
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with the aid of an additional hypothesis, we derive sufficient conditions for the C1

smoothness of the a component in Theorem 6. We end Section 3.2 by identifying

a positively invariant set for the corresponding solution semiflow S(·, ·), called M̂0,

on which every trajectory is C1 in time.

Theorem 4 Suppose that (H1)–(H5) hold. Given

ψ
ϕ

 ∈M0, let

x(t)

a(t)

 denote

the corresponding (maximal) mild solution on I ∪ [0, te) in M0. If ψ(0) ∈ D(A)

and

ψ
ϕ

 is Lipschitz on I, then

x(t)

a(t)

 is locally Lipschitz on I ∪ [0, te) and

a : I ∪ [0, te)→ K is differentiable almost everywhere.

Proof. Fix T ∈ [0, te). Choose 0 < R1 < R0 such that ||xt|| ≤ R1 for t ∈ [0, T ].

Denote the trivial extensions of x and a to (−∞, T ] respectively by x̂ and â, that is,

â(ξ) =


ϕ(−h) if ξ ≤ −h,

a(ξ) if ξ ∈ [−h, T ]

and x̂(ξ) =


ψ(−h) if ξ ≤ −h,

x(ξ) if ξ ∈ [−h, T ].

Note that, for

each t ∈ [0, T ], x̂t and ât are members of the Banach spaces BUC((−∞, 0], X0) and

BUC((−∞, 0],Rn), respectively. Moreover, Lip(x̂0) = Lip(ψ), Lip(â0) = Lip(ϕ).

The proof is done in the following four steps.

Step 1. A
∫ h

0
T (s)ψ(0)ds = limµ→∞

∫ h
0
T (h− s)µRµAψ(0)ds.

This follows easily from Lemma 1.8 of [34].
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Step 2. There is L > 0 (depending possibly on T ) such that ||x̂s− x̂0|| ≤ Ls and

||âs − â0|| ≤ Ls for each s ∈ [0, T ].

Let s ∈ [0, T ] be given. The result in Step 1 combined with T (s)ψ(0)− ψ(0) =

A
∫ s

0
T (ξ)ψ(0)dξ implies that |x(s) − x(0)| ≤ Cs for some C > 0. Note that C

may depend on T . Then, for each θ ≤ 0, we have |x̂(s + θ) − x̂(θ)| ≤ |x(s +

θ) − x(0)| + |x(0) − x̂(θ)| ≤ Cs + Lip(ψ)(−θ) ≤ Cs + Lip(ψ)s if s + θ ≥ 0 and

|x̂(s+θ)− x̂(θ)| ≤ Lip(ψ)s if s+θ < 0. These observations imply that ||x̂s− x̂0|| ≤

Ls for some L > 0 depending on T . Now we turn to â. If s + θ < 0 then

|â(s+ θ)− â(θ)| ≤ Lip(ϕ)s; if s+ θ ≥ 0, then by (H2) there is some constant J > 0

depending on R1 such that |â(s + θ) − â(θ)| ≤ |a(s + θ) − a(0)| + |a(0) − â(θ)| ≤

J ||xs+θ−x0||+f(R1)||as+θ−a0||+Lip(ϕ)(−θ). With ||xs+θ−x0|| ≤ ||x̂s+θ−x̂0|| ≤ Ls

and ||as+θ−a0|| ≤ ||âs−â0||+Lip(ϕ)s, we get |â(s+θ)−â(θ)| ≤ Qs+f(R1)||âs−â0||

for some Q > 0 depending on T . By virtue of f(R1) < 1 we can conclude that

||âs − â0|| ≤ Ls for a possibly larger constant L than the one found before.

Step 3. There is an L > 0 such that, for each t, h ∈ [0, T ] with t + h ≤ T , we

have ||ât+h − ât|| ≤ L(||x̂t+h − x̂t||+ h).

Given θ ≤ 0, if t+h+θ ≤ 0 then |â(t+h+θ)−â(t+θ)| ≤ Lip(ϕ)h; if t+h+θ ≥ 0

and t + θ < 0 then using the result in Step 2 we have |â(t + h + θ) − â(t + θ)| ≤

|a(t+ h+ θ)− a(0)|+ |a(0)− â(t+ θ)| ≤ L|t+ h+ θ|+Lip(ϕ)h ≤ Lh+Lip(ϕ)h =
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(L + Lip(ϕ))h; if t + h + θ ≥ 0 and t + θ ≥ 0 then |â(t + h + θ) − â(t + θ)| ≤

J ||xt+h+θ − xt+θ||+ f(R1)||at+h+θ − at+θ|| ≤ J ||x̂t+h− x̂t||+ f(R1)||ât+h− ât||. The

required result is now obvious since f(R1) < 1.

Step 4. There is an L > 0 such that, for each t, h ∈ [0, T ] with t + h ≤ T , we

have ||x̂t+h − x̂t|| ≤ Lh and ||ât+h − ât|| ≤ Lh.

For each t ∈ [0, T ], we have

x(t+ h)− x(t)

= (T (t+ h)− T (t))ψ(0) + lim
µ→∞

∫ h

0

T (t+ h− s)µRµF (x(s), a(s))ds

+ lim
µ→∞

∫ t

0

T (t− s)µRµ(F (x(s+ h), a(s+ h))− F (x(s), a(s)))ds

= T (t)(T (h)ψ(0)− ψ(0) + lim
µ→∞

∫ h

0

T (h− s)µRµF (x(s), a(s))ds)

+ lim
µ→∞

∫ t

0

T (t− s)µRµ(F (x(s+ h), a(s+ h))− F (x(s), a(s)))ds.

Using the result in Step 1 and the fact that T (h)ψ(0) − ψ(0) = A
∫ h

0
T (s)ψ(0)ds,

we obtain

x(t+ h)− x(t)

= T (t)

(
lim
µ→∞

∫ h

0

T (h− s)µRµ(F (x(s), a(s)) + Aψ(0))ds

)
+ lim

µ→∞

∫ t

0

T (t− s)µRµ(F (x(s+ h), a(s+ h))− F (x(s), a(s)))ds.
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Then there exists C > 0, depending on T , such that, for each t ∈ [0, T ],

|x(t+ h)− x(t)|

≤ C

(
h+

∫ t

0

eω(t−s)(|x(s+ h)− x(s)|+ |a(s+ h)− a(s)|)ds
)

≤ C(h+

∫ t

0

eω(t−s)(||x̂s+h − x̂s||+ ||âs+h − âs||)ds).

Now the result in this step follows from that in Step 3 and an application of

Gronwall’s inequality. The statement of the Theorem follows from Step 4 and

Rademacher’s theorem (see [5]) applied to the function a.

Theorem 5 Suppose (H1)–(H5) hold. Let

ψ
ϕ

 ∈ M0 and let

x(t)

a(t)

 denote

the corresponding (maximal) mild solution on I ∪ [0, te) in M0. If ψ(0) ∈ D(A),

Aψ(0) +F (ψ(0), ϕ(0)) ∈ X0, and

ψ
ϕ

 is Lipschitz on I, then, for each t ∈ [0, te),

x(t) is continuously differentiable, x(t) ∈ D(A), x′(t) = Ax(t) +F (x(t), a(t)) ∈ X0,

and a : I ∪ [0, te)→ K is differentiable almost everywhere.

Proof. Fix T ∈ (0, te). By Theorem 4, we know that both x(t) and a(t) are

Lipschitz on [0, T ]. Therefore, the function [0, T ] 3 t 7→ F1(x(t), a(t)) ∈ X1 is

also Lipschitz and hence almost everywhere differentiable since X1 has the Radon-

Nikodym property. Let g(t) = d/dtF1(x(t), a(t)). Consider the non-autonomous
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initial value problem
w′(t) = Aw(t) + g(t) +DF2(x(t))w(t), t ∈ [0, T ],

w(0) = Ax(0) + F (x(0), a(0)) ∈ X0,

which has a unique (continuous) mild solution w(t) on [0, T ]. By Theorem 1.9

of [34], we know that x is right differentiable at zero since x(0) ∈ D(A) and Ax(0)+

F (x(0), a(0)) ∈ X0. With standard arguments, we can finish the proof.

In order to derive C1-smoothness of a, we make the following hypothesis, which

is also crucial for the main theorem of this chapter in Section 3.6.

(H6) Equip D(A) with the graph norm. Assume that there is an open subset U of

the Banach space C(I,D(A)×Rn) such that D(Ĥ) ⊂ U and Ĥ : D(Ĥ)→ K

has a continuously differentiable extension (in the Fréchet sense) to a map

He : U → K with D1He(ψ, ϕ) ∈ L(C(I,D(A)),Rn) having rank n. We

further assume that, for each (ψ, ϕ) ∈ U , the partial derivative D1He(ψ, ϕ) ∈

L(C(I,X0),Rn) exists as a relative Fréchet derivative on U (note the larger

space) and that the map U × C(I,X0) 3 (ψ, ϕ, γ) 7→ D1He(ψ, ϕ)γ ∈ Rn is

continuous, where U inherits the topology from C(I,D(A)×Rn).

Remarks. Hypothesis (H6) deserves some remarks.

(i) By “relative Fréchet derivative on U”, we mean that

lim
ξ→0, ξ∈C(I,X0), (ψ+ξ,ϕ)∈U

|He(ψ + ξ, ϕ)−He(ψ, ϕ)−D1He(ψ, ϕ)ξ|
|ξ|C(I,X0)

= 0
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for (ψ, ϕ) ∈ U .

(ii) For each (ψ, ϕ) ∈ U , we can extend DHe(ψ, ϕ) ∈ L(C(I,D(A)×Rn),Rn) to

a linear operator DH1
e ∈ L(C(I,X0×Rn),Rn) using the fact that D1He(ψ, ϕ)

has such an extension. Moreover, the map U × C(I,X0 ×Rn) 3 (ψ, ϕ, γ) 7→

DH1
e (ψ, ϕ)γ ∈ Rn is continuous.

(iii) We will drop the subscript ‘e’ and the superscript ‘1’ from now on.

(iv) The second extension property of the derivative of the function H appearing

above is analogous to those appearing in [35, 36] and in (H7) below.

Theorem 6 Suppose (H1)–(H6) hold. Let

ψ
ϕ

 ∈ D(Ĥ) ∩M0 ∩ C1(I, C0 × K)

with ψ′(0) = Aψ(0)+F (ψ(0), ϕ(0)) and ϕ′(0) = D1H(ψ, ϕ)ψ′+D2H(ψ, ϕ)ϕ′. Then

the corresponding maximal mild solution on I ∪ [0, te) in M0,

x(t)

a(t)

, satisfies

xt
at

 ∈ D(Ĥ) ∩M0 ∩ C1(I, C0 × K), x′(t) = Ax(t) + F (x(t), a(t)), and a′(t) =

D1H(xt, at)x
′
t +D2H(xt, at)a

′
t for each t ∈ [0, te).

Proof. The fact that xt ∈ C(I,D(A)) for t ∈ [0, te) follows from Theorem 5

since [0, te) 3 t 7→ x′(t) ∈ X0 is continuous and Ax(t) = x′(t)−F (x(t), a(t)) implies

that x ∈ C(I ∪ [0, te), D(A)). It remains to prove that a is C1 on I ∪ [0, te) and that
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its derivative is in fact given by the formula above. To this end, fix 0 < T < te.

Let R1 = maxs∈[0,T ]||xs|| < R0. The equation

b(s) =


ϕ′(s) if s ∈ I

D1H(xs, as)x
′
s +D2H(xs, as)bs if s ∈ [0, T ]

has a unique continuous solution, b : I ∪ [0, T ] → Rn, thanks to the contraction

mapping principle since ||D2H(xs, as)|| ≤ f(R1) < 1 for each s ∈ [0, T ]. We will

show that a′(t) = b(t) for each t ∈ [0, T ]. Firstly, for t ∈ [0, T ] and r ∈ [0, h] such

that t+ r ≤ T , we have

a(t+ r)− a(t)− rb(t)

= H(xt+r, at+r)−H(xt, at+r) +H(xt, at+r)−H(xt, at)− rb(t)

= D1H(xt, at+r)(xt+r − xt)−D1H(xt, at)rx
′
t + ω1(xt+r − xt, xt, at+r)(3.3.1)

+D2H(xt, at)(at+r − at − rbt) + ω2(at+r − at, xt, at),

where ω1 : Ω1 → Rn and ω2 : Ω2 → Rn are the remainder terms. Here Ω1 =

{(ξ, β, χ) ∈ C(I,X0)×C(I,D(A))×C(I,Rn) | (β, χ) ∈ U and (β+ ξ, χ) ∈ U} and

Ω2 is given similarly. It follows from (H6) that ω2 is continuous on Ω2 where Ω2

inherits the relative topology from C(I,Rn)×C(I,D(A))×C(I,Rn) (Note carefully

how the assumption concerning the relative partial Fréchet derivative from (H6) is

used). By (H6) the function g : [0, T ]→ Rn given by g(s) = H(xs, at+r) is C1 with
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g′(s) = D1H(xs, at+r)x
′
s. Moreover,

ω1(xt+r − xt, xt, at+r)

= g(t+ r)− g(t)−D1H(xt, at+r)(xt+r − xt)

= g′(t)r +

(∫ 1

0

g′(t+ sr)− g′(t)ds)r −D1H(xt, at+r)(xt+r − xt
)

= D1H(xt, at+r)(x
′
tr − xt+r + xt)

+

(∫ 1

0

D1H(xt+sr, at+r)x
′
t+sr −D1H(xt, at+r)x

′
tds

)
r.

Note that limr→0
ω1(xt+r−xt,xt,at+r)

r
= 0. Secondly, it follows from Theorem 4 that a

is Lipschitz on I ∪ [0, T ] and hence it is clear that limr→0
ω2(at+r−at,xt,at)

r
= 0. The

proof is finished in the coming two steps, where we will use the notation j = o(k)

for functions j and k to mean limx→0
|j(x)|
|k(x)| = 0.

Step 1. limr→0, 0<r≤min{T,h}
||ar−a0−rb0||

r
= 0.

Let θ ∈ [−h, 0]. First, if r + θ ≤ 0, then

|a(r + θ)− a(θ)− rb(θ)| = |ϕ(r + θ)− ϕ(θ)− rϕ′(θ)|

≤
∫ 1

0

|ϕ′(θ + sr)− ϕ′(θ)|ds r

≤ max
−h≤ξ≤−r

∫ 1

0

|ϕ′(ξ + sr)− ϕ′(ξ)|ds r

= o(r).

Next, if r + θ > 0, then

|a(r + θ)− a(θ)− rb(θ)| ≤ I1 + I2,
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where

I1 = |a(r + θ)− ϕ(0)− (r + θ)ϕ′(0)|

and

I2 = |ϕ(0) + (r + θ)ϕ′(0)− ϕ(θ)− rϕ′(θ)|.

We have

I2 = |ϕ(0) + (r + θ)ϕ′(0)− ϕ(θ)− rϕ′(θ)|

= |ϕ(θ)− ϕ(0)− ϕ′(0)θ + r(ϕ′(θ)− ϕ′(0))|

≤ max
−r≤ξ≤0

|ϕ(ξ)− ϕ(0)− ϕ′(0)ξ|+ r max
−r≤ξ≤0

|ϕ′(ξ)− ϕ′(0)|

= o(r).

For I1, using (3.3.1) for t = 0 with r being replaced by r + θ and the continuity of

D1H(ψ, ϕ)γ in (ψ, ϕ, γ) ∈ U × C(I,X0) from (H6), we obtain

I1 = |a(r + θ)− ϕ(0)− (r + θ)ϕ′(0)|

≤ o(r + θ) + |ω1(xr+θ − x0, x0, ar+θ)|

+f(R1)||ar+θ − a0 − (r + θ)b0||+ |ω2(ar+θ − a0, x0, a0)|.

Note that sup−r<ξ≤0
|o(r+ξ)|

r
→ 0 as r → 0. Since |ω1(xr+θ− x0, x0, ar+θ)| = o(r+ θ)

and |ω2(ar+θ − a0, x0, a0)| = o(r + θ), it follows that

I1 = f(R1)||ar+θ − a0 − (r + θ)b0||+ o(r).
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Let K0 := {(r, θ) ∈ R2 | r + θ ≥ 0, r ∈ [0, T ] ∩ [0, h], θ ∈ [−h, 0]} and note

that the compactness of K0 and continuity of the function K0 3 (r, θ) 7→ ||ar+θ −

a0 − (r + θ)b0|| ∈ R implies that we can find (r∗, θ∗) ∈ K0 which maximizes this

function. Hence, collectively, we can conclude that, for each r ∈ (0, h] ∩ (0, T ],

||ar − a0− rb0|| ≤ o(r) + f(R1)||ar∗+θ∗ − a0− (r∗+ θ∗)b0||. As f(R1) < 1, it is clear

that ||ar − a0 − rb0|| = o(r) as desired.

Step 2. For each t ∈ [0, T ), limr→0, t+r≤T, 0<r≤h
||at+r−at−rbt||

r
= 0.

Let θ ∈ [−h, 0]. If either t+ r + θ ≤ 0 or t+ r + θ > 0 with t+ θ ≤ 0, then by

Step 1 we have

|a(t+ r + θ)− a(t+ θ)− rb(t+ θ)| = |ar(t+ θ)− a0(t+ θ)− rb0(t+ θ)|

≤ ||ar − a0 − rb0||

= o(r).

Now, if t+ θ > 0, then it follows from (3.3.1) with t+ θ replacing t that

|a(t+ r + θ)− a(t+ θ)− rb(t+ θ)|

≤ |D1H(xt+θ, at+θ+r)(xt+θ+r − xt+θ)−D1H(xt+θ, at+θ)rx
′
t+θ|

+|ω1(xt+θ+r − xt+θ, xt+θ, at+θ+r)|+ f(R1)||at+θ+r − at+θ − rbt+θ||

+|ω2(at+θ+r − at+θ, xt+θ, at+θ)|.
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It follows from continuity that there is (t∗, θ∗) ∈ {(s, ξ) | s ∈ [0, T ] and ξ ∈

[−s, 0] ∩ [−h, 0]} such that the maximum in (t, θ) of the right hand side of the

above inequality is achieved at (t∗, θ∗). Then, for s ∈ [0, T ) with s + r ≤ T and

r ∈ (0, h], we have

||as+r − as − rbs|| ≤ o(r) + f(R1)||at∗+θ∗+r − at∗+θ∗ − rbt∗+θ∗ ||

(Note that o(r) does not depend on s). Applying this to s = t + θ∗ ≥ 0 and

using the fact that f(R1) < 1, we obtain ||at+r − at − rbt|| = o(r) as desired. This

completes the proof.

We remark that although in general, a satisfies what is called a neutral dif-

ferential equation, for the concrete example given in the introduction and in Sec-

tion 3.7, this will turn out to be merely an ordinary differential equation with a

state-dependent delay.

The following result follows immediately from Theorem 6.

Corollary 7 Suppose (H1)–(H6) hold. The set M̂0 :=

{ψ
ϕ

 ∈ D(Ĥ) ∩M0 ∩

C1(I, C0×K) |ψ′(0) = Aψ(0)+F (ψ(0), ϕ(0)) and ϕ′(0) = D1H(ψ, ϕ)ψ′+D2H(ψ, ϕ)ϕ′

}
is a positively invariant subset of M0 for the semiflow S.
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3.4 The semiflow on M0 and its Restriction to M̂0

In this section we briefly discuss the semiflow on M0 and the smaller positively

invariant set M̂0.

Denote the semiflow induced by maximal mild solutions of (3.1.1) in M0 by

S : Ω → M0, where Ω := {(t,Ψ) ∈ [0,∞) ×M0 | t < te(Ψ)}. The fact that S

is a semiflow and is continuous with respect to the relative topologies from R ×

C(I,X0 × Rn) and C(I,X0 × Rn), respectively, is established in [13]. Let Ω̂ :=

Ω ∩ ([0,∞) × M̂0) = {(t,Ψ) ∈ [0,∞) × M̂0 | t < te(Ψ) and Ψ ∈ M̂0}. Define

Ŝ := S|Ω̂. The coming lemma is immediate from the fact that S is a semiflow on

M0 (see Section (2.4)).

Lemma 3 The map Ŝ : Ω̂→ M̂0 has the semigroup property, that is,

(i) Ŝ(0,Ψ) = Ψ for each Ψ ∈ M̂0;

(ii) If Ψ ∈ M̂0 and 0 ≤ s, t with s < te(Ψ) and t < te(Ŝ(s,Ψ)), then t+ s < te(Ψ)

and Ŝ(t, Ŝ(s,Ψ)) = Ŝ(t+ s,Ψ).

Next we introduce notations for the solution operators. Let Ωt := {Ψ ∈M0 | t <

te(Ψ)} and St : Ωt → M0 be given by St(Ψ) := S(t,Ψ). Similarly, Ω̂t := Ωt ∩ M̂0

and Ŝt : Ω̂t → M̂0 is given by Ŝt := St|Ω̂t .

Let M̂ :=


ψ
ϕ

 ∈ U | ϕ(0) = H(ψ, ϕ)

, where U is given in (H6) (see Page 59).
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Let D(A) be given the graph norm. We can turn C(I,D(A) ×Rn) into a C1-

Banach manifold by assigning it the standard C1-smooth structure. For Banach

manifolds, we refer readers to the book by Lang [17].

Proposition 8 Suppose (H6) holds. The set M̂ is a C1-Banach submanifold of

C(I,D(A)×Rn) of codimension n. For each p ∈ M̂ , the tangent space at p, TpM̂ ,

is given by the kernel of the derivative of the map U 3 (ψ, ϕ) 7→ ϕ(0)−H(ψ, ϕ) at

the point p.

Proof. Let J(ψ, ϕ) = ϕ(0) −H(ψ, ϕ) for (ψ, ϕ) ∈ U . Then J is C1 on U . Fix

(ψ0, ϕ0) ∈ U . We have

DJ(ψ0, ϕ0)(γ1, γ2) = γ2(0)−D1H(ψ0, ϕ0)γ1 −D2H(ψ0, ϕ0)γ2

for (γ1, γ2) ∈ C(I,D(A) × Rn). Let e1, . . ., en form a basis of Rn. For each j,

we set γ2 = 0 ∈ Rn and (by (H6)) choose γ1 such that D1H(ψ0, ϕ0)γ1 = −ej.

Then DJ(ψ0, ϕ0)(γ1, γ2) = ej. This shows that DJ(ψ0, ϕ0) is surjective. Therefore,

we have the decomposition C(I,D(A) × Rn) = ker(DJ(ψ0, ϕ0)) ⊕ N for some n-

dimensional subspace N such that DJ(ψ0, ϕ0)|N is an isomorphism. Hence we can

write (ψ0, ϕ0) = k0 +n0 for k0 ∈ kerDJ(ψ0, ϕ0) and n0 ∈ N and J(k0 +n0) = 0. We

can find relatively open neighborhoods U1 of k0 in the subspace ker(DJ(ψ0, ϕ0))

and V1 of n0 in the subspace N such that U1 +V1 ⊂ U . Define J̃ : U1×V1 → Rn by

J̃(k′, n′) = J(k′ + n′). Since D2J̃(k0, n0) is an isomorphism, the implicit function
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theorem gives relatively open sets U0 in the subspace kerDJ(ψ0, ϕ0) and V0 in

the subspace N with (k0, v0) ∈ U0 × V0, and a C1 map h : U0 → V0 satisfying

J(k′ + n′) = 0 for (k′, n′) ∈ U0 × V0 if and only if n′ = h(k′). It follows that

U0 + V0 is an open neighborhood of (ψ0, ϕ0). Let β : U0 + V0 → K ×N be given by

β(k′ + n′) = (k′, h(k′)− n′). Observe that β is a C1 homeomorphism and satisfies

β((U0 + V0) ∩ M̂) = U0 × {0}. It is not difficult to verify the statement concerning

the tangent space at (ψ0, ϕ0).

Let us make some comments about the special manifold charts above and

the tangent spaces. In light of Proposition 8, we have T(ψ,ϕ)M̂ = {(γ1, γ2) ∈

C(I,D(A) × Rn) | γ2(0) = D1H(ψ, ϕ)γ1 + D2H(ψ, ϕ)γ2} for each (ψ, ϕ) ∈ M̂ .

Note that, by (H6), T(ψ,ϕ)M̂ has an extension to the larger space C(I,X0 × Rn),

which we call T(ψ,ϕ)M and is given by the same formula. For each p ∈ M̂ , we can

find ambient-open sets U0 ⊂ TpM̂ and V0 such that (U0 + V0) ∩ M̂ is a neighbor-

hood of p in M̂ , and a chart whose inverse is a map g : U0 → U0 + V0 given by

g(k) = k + h(k), where h : U0 → V0 is C1. Since J(k + h(k)) = 0 for k ∈ U0,

differentiating with respect to ‘k’ yields DJ(k + h(k))(1TpM̂ + Dh(k)) = 0. Thus

Dh(k) = −(DJ(k+h(k))|Np)
−1DJ(k+h(k))1TpM̂ , where Np is the complementary

n-dimensional subspace. Notice that the right hand side of the expression for Dh(k)

is defined on the larger space TpM by (H6) and that this induces a bounded linear

operator in L(TpM,Np), where TpM is a Banach space with the weaker supremum
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norm. We denote this extension by Dhe(k) ∈ L(TpM,Np) and lastly we note that,

by (H6), the map U0 × TpM 3 (k, γ) 7→ Dhe(k)γ varies continuously.

Remark. It is natural to call M̂ a C0-extendable submanifold of C(I,D(A)×

Rn).

3.5 The Linear Variational System along Flowlines in M̂0

Throughout this section, let Ψ0 =

ψ0

ϕ0

 ∈ M̂0 and let

x(t)

a(t)

 be the corre-

sponding (maximal) (classical) solution of (3.2.1) on I ∪ [0, te) which lies in M̂0.

We consider (for now formally) the linear variational system along the trajectory

Ŝ(t,Ψ0),

y′(t) = Ay(t) +D1F1(x(t), a(t))y(t)

+D2F1(x(t), a(t))b(t) +DF2(x(t))y(t), t ∈ [0, te),

b(t) = D1H(xt, at)yt +D2H(xt, at)bt,y0

b0

 =

ψ1

ϕ1

 .

(3.5.1)

We make the following hypothesis concerning the partial derivatives of F1 : C0 ×

K → X1.

(H7) (i) For each (c, k) ∈ C0 × K there is a bounded linear map D1F1(c, k) ∈

L(X0, X1) with limξ→0,c+ξ∈C0

|F1(c+ξ,k)−F1(c,k)−D1F1(c,k)(ξ)|
|ξ| = 0.
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(ii) For each (c, k) ∈ (D(A) ∩ C0) × K there is a bounded linear map

D2F1(c, k) ∈ L(Rn, X1) with

lim
ξ→0,k+ξ∈K

|F1(c, k + ξ)− F1(c, k)−D2F1(c, k)(ξ)|
|ξ|

= 0.

(iii) The maps (C0 × K × X0)X0×Rn×X0 3 (c, k, γ) 7→ D1F1(c, k)γ ∈ X1

and [(D(A) ∩ C0) × K]D(A)×Rn 3 (c, k) 7→ D2F1(c, k) ∈ L(Rn, X1) are

continuous (The subscripts attached to the domains indicate the choices

of topology on the domains).

Remark. The weaker form of continuity of the partial derivative given in (H7)

is reminiscent of one given in [9, 35].

We start with the following definitions.

Definition. Suppose (H6) holds. Let Ψ =

ψ
ϕ

 ∈ M̂0. For t ∈ [0, te), let

TM t
0 :=


ρ
χ

 ∈ C(I,X0 ×Rn) | χ(0) = D1H(xt, at)ρ+D2H(xt, at)χ

 .

Remark. TM t
0 = TŜt(Ψ)M is simply an extension of the tangent space TŜt(Ψ)M̂

introduced in Section 3.5.

Definition. Suppose (H1)–(H7) hold. By a mild solution of (3.5.1) on I∪ [0, T ]

for 0 < T < te ≤ ∞ we mean a pair of functions

y
b

 such that
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(i) b : I ∪ [0, T ]→ K is continuous;

(ii) y : I ∪ [0, T ] → X0 is continuous and, for each t ∈ [0, T ],
∫ t

0
y(s)ds ∈ D(A)

and

y(t) = y(0) + A

∫ t

0

y(s)ds+

∫ t

0

[
D1F1(x(s), a(s))y(s)

+D2F1(x(s), a(s))b(s) +DF2(x(s))y(s)
]
ds;

(iii) For 0 ≤ t ≤ T ,

yt
bt

 ∈ TM t
0, i.e., b(t) = D1H(xt, at)yt +D2H(xt, at)bt;

(iv)

y0

b0

 =

ψ1

ϕ1

.

In case T = te, we make appropriate modifications to the above definition.

Remark. Given t0 ∈ (0, te), we can also consider (3.5.1) for t ∈ (t0, te) with

initial data

ψ1

ϕ1

 ∈ TM t0
0 and similarly define a mild solution on [t0−h, t0]∪ [t0, T ]

for t0 < T < te or [t0 − h, t0] ∪ [t0, T ) for t0 < T ≤ te.

It does not follow from [13] or other related works on partial functional differ-

ential equations such as [30, 34, 39] that (3.5.1) has a mild solution. We address

this issue with the following lemma and proposition.

Lemma 4 Suppose that (H6) and (H7) hold. The map C0×K 3 (c, k) 7→ D1F1(c, k) ∈

L(X0, X1) is locally bounded in the following sense: Each X0×Rn-compact set J ⊂
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C0×K has an X0×Rn-open neighborhood N such that D1F1 : C0×K → L(X0, X1)

is bounded on N ∩ (C0 × K). Similarly, the map U 3 (ψ1, ϕ1) 7→ D1H(ψ1, ϕ1) ∈

L(C(I,X0),Rn) is also locally bounded, where U has the relative topology from

C(I,D(A)×Rn).

Proof. We only give the proof of the first part since that of the second part is

similar. Let J ⊂ C0×K be compact. For each (c0, k0) ∈ J , we show that there is a

relative neighborhoodN(c0,k0) of (c0, k0) and B > 0 such that ||D1F1(c, k)||L(X0,X1) ≤

B for each (c, k) ∈ N(c0,k0). By way of contradiction, there is a (c0, k0) ∈ J and a

sequence (cn, kn) → (c0, k0) in C0 × K such that ||D1F1(cn, kn)||L(X0,X1) → ∞ as

n→∞. It follows from (H7)(iii) that {D1F1(cn, kn)γ} is bounded for each γ ∈ X0.

Then the uniform boundedness principle implies that {||D1F1(cn, kn)||L(X0,X1)} is

also bounded, which is a contradiction. Now the result follows since J is compact.

Proposition 9 Suppose (H1)–(H7) hold. If the initial data

ψ1

ϕ1

 ∈ TM0
0 , then (3.5.1)

has a unique mild solution

y(t)

b(t)

 on I ∪ [0, te).

Proof. The proof is completed in three steps.
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Step 1. Let 0 ≤ t0 < te and

ψ
ϕ

 ∈ TM t0
0 be given. Then there is τ ∈ (t0, te)

such that (3.5.1) has a mild solution on [t0 − h, τ ] with initial data

ψ
ϕ

.

Let T ∈ (t0, te) and C := {b : [t0 − h, T ] → Rn | b is continuous and bt0 = ϕ}.

Note that C is a closed subset of C([t0 − h, T ],Rn). Furthermore, for each b ∈ C

the non-autonomous equation
y′(t) = Ay(t) +D1F1(x(t), a(t))y(t)

+D2F1(x(t), a(t))b(t) +DF2(x(t))y(t), t ∈ [t0, T ],

yt0 = ψ

(3.5.2)

can be solved for a unique mild solution y = y(b) : [t0 − h, T ] → X0. To

justify the latter statement, we note by (H7)(iii) that the map [0, T ] 3 s 7→

D2F1(x(s), a(s))b(s) ∈ X is continuous. Therefore, it suffices to show that for each

fixed t ∈ [t0, T ] the termG : [t0, T ]×X0 → X given byG(t, y) := D1F1(x(t), a(t))y+

D2F1(x(t), a(t))b(t) +DF2(x(t))y is Lipschitz on X0 uniformly in t as we then can

apply Proposition 2.10 of [34]. Given y1, y2 ∈ X0, we have

|G(t, y1)−G(t, y2)| = |D1F1(x(t), a(t))(y1 − y2) +DF2(x(t))(y1 − y2)|.

By Lemma 4, there is some B > 0 such that ||D1F1(x(s), a(s))||L(X0,X1) ≤ B for

each s ∈ [t0, T ]. By (H4) there is some B′ > 0 such that ||DF2(x(s))|| ≤ B′ for

each s ∈ [t0, T ]. It follows that G(t, ·) is Lipschitz on X0 uniformly in t.
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To obtain a solution for the second component of (3.5.1), we let A : C → C be

given by

(Ab)(t) =


ϕ(t− t0) if t ∈ [t0 − h, t0],

D1H(xt, at)y(b)t +D2H(xt, at)bt if t ∈ [t0, T ],

(3.5.3)

where y(b) denotes the solution to (3.5.2). That (Ab) ∈ C follows from the

continuity of the maps [t0, T ] 3 t 7→ y(b)t ∈ C([t0 − h, t0], X0), [t0, T ] 3 t 7→

D1H(xt, at)y(b)t ∈ Rn, and [t0, T ] 3 t 7→ D2H(xt, at) ∈ L(C(I,Rn),Rn). The

continuity of the latter two maps is a consequence of (H6) while that of the former

is a consequence of the continuity of y(b) on [t0 − h, T ]. In the following, we show

that A is a contraction provided T is small enough.

Let T0 ∈ (t0, te). It follows that maxs∈[0,T0] ||xs|| = R1 for some R1 ∈ [0, R0].

Using (3.5.3), (H6), (H2), and Lemma 4 we have for t0 < T0 < te and t ∈ [t0, T0]

that

|(Ab1)(t)− (Ab2)(t)| ≤ |D1H(xt, at)(y(b1)t − y(b2)t)|

+|D2H(xt, at)((b1)t − (b2)t)| (3.5.4)

≤ C||y(b1)t − y(b2)t||+ f(R1)||(b1)t − (b2)t||,

where C = sups∈[0,T0] ||D1H(xs, as)||. Moreover, using the abstract variation of

constants formula (see the Remark following (3.2.1)), Lemma 4, (H7)(iii), (H4),
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and (H1), we have

|y(b1)(t)− y(b2)(t)|

=

∣∣∣∣∣ lim
µ→∞

∫ t

t0

T (t− s)µRµ[D1F1(x(s), a(s))(y(b1)(s)− y(b2)(s))

+D2F1(x(s), a(s))(b1(s)− b2(s))

+DF2(x(s))(y(b1)(s)− y(b2)(s))]ds

∣∣∣∣∣
≤

∫ t

t0

M2eω(t−s)(C1|y(b1)(s)− y(b2)(s)|+ C2||b1 − b2||)ds

≤ M2C2e
ωT0 ||b1 − b2||t+

∫ t

t0

M2eω(t−s)C1|y(b1)(s)− y(b2)(s)|ds, (3.5.5)

where

C1 = max{ sup
s∈[0,T0]

||D1F1(x(s), a(s))||, max
s∈[0,T0]

||DF2(x(s))||},

C2 = max
s∈[0,T0]

||D2F1(x(s), a(s))||.

An application of Gronwall’s inequality to (3.5.5) yields that, for each t0 ≤ t ≤ T0,

|y(b1)(t)−y(b2)(t)| ≤ JC2t||b1−b2|| for some J > 0 which depends on T0. It follows

from ||y(b1)t − y(b2)t|| ≤ ||y(b1)− y(b2)|| ≤ JC2T ||b1 − b2|| and (3.5.4) that

|(Ab1)(t)− (Ab2)(t)| ≤ CJC2T ||b1 − b2||+ f(R1)||b1 − b2||

for each t0 ≤ t ≤ T ≤ T0. Since f(R1) < 1, it is clear that A is a contraction

provided T = τ is chosen small enough.

Step 2. Local solutions of (3.5.1) are unique.
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Suppose that

y1

b1

 and

y2

b2

 are two mild solutions of (3.5.1) respectively

on I ∪ A1 and I ∪ A2 having the same initial data

ψ1

ϕ1

 ∈ TM0
0 , where Ai =

[0, τi] ⊂ [0, te) or Ai = [0, te), i = 1, 2. We show that the two solutions agree on

A = A1 ∩ A2. For each T ≥ 0 such that [0, T ] ⊂ A, by the same argument as in

Step 1 which established (3.5.5), we have

|y1(t)− y2(t)| ≤
∫ t

0

M2eω(t−s)(C1|y1(s)− y2(s)|+ C2|b1(s)− b2(s)|)ds (3.5.6)

for t ∈ [0, T ]. Let

b̂i(ξ) =


ϕ1(−h) if ξ ≤ −h

bi(ξ) if ξ ∈ [−h, T ]

and

ŷi(ξ) =


ψ1(−h) if ξ ≤ −h

yi(ξ) if ξ ∈ [−h, T ]

be the trivial extensions of bi and yi to (−∞, T ], respectively, i = 1, 2. Denote

R1 = maxs∈[0,T ] ||xs||. Clearly,

ŷt
b̂t

 ∈ BUC((−∞, 0], X0 × Rn). Arguing as in

Step 1, we have that |b1(t) − b2(t)| ≤ C||(y1)t − (y2)t|| + f(R1)||(b1)t − (b2)t|| for

t ∈ [0, T ]. It is not difficult to see that

||(b̂1)t − (b̂2)t|| ≤ C(1− f(R1))−1||(ŷ1)t − (ŷ2)t||. (3.5.7)
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Combining (3.5.6) with (3.5.7) and using an application of Gronwall’s inequality,

we get y1(t) = y2(t) for t ∈ I ∪ [0, T ]. It now follows from (3.5.7) that b1 = b2 on

I ∪ [0, T ]. As T is arbitrary, this completes Step 2.

Step 3. Let

t′e(ψ1, ϕ1) := sup{ρ ∈ (0, te) | (3.5.1) has a mild solution (y, b) on I ∪ [0, ρ]}.

Then t′e(ψ1, ϕ1) = te.

By Step 1, t′e > 0. Suppose t′e = ρ0 < te. It follows from Lemma 4, (H7)(iii),

and (H4) that

max



sup
s∈[0,ρ0]

||D1F1(x(s), a(s))||,

max
s∈[0,ρ0]

||DF2(x(s))||,

max
s∈[0,ρ0]

||D2F1(x(s), a(s))||


<∞.

By Lemma 4, C ′ := sups∈[0,ρ0] ||D1H(xs, as)|| <∞. Let (y, b) : I∪[0, ρ0)→ X0×Rn

be the mild solution of (3.5.1) having initial data

ψ1

ϕ1

. Let R1 = maxs∈[0,ρ0] ||xs||.

As in Step 2, let (ŷ, b̂) : (−∞, 0]∪[0, ρ0) be the trivial extension of (y, b) to [−∞, ρ0).

It is not difficult to see that ||b̂t|| ≤ (1− f(R1))−1||ϕ1|| + (1− f(R1))−1C ′||ŷt|| for

each t ∈ [0, ρ0). Therefore, there is some C ′′ > 0 (which depends on ρ0) such that

|y(t)| ≤Meωt|ψ1(0)|+C ′′
∫ t

0
(|y(s)|+|b(s)|)ds ≤Meωt|ψ1(0)|+C ′′

∫ t
0
(||ŷs||+||b̂s||)ds
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for t ∈ [0, ρ0). It follows that there is C ′′′ > 0 such that

||ŷt|| ≤ ||ψ1||+Meωt||ψ1||+ C ′′′
∫ t

0
||ŷs||+ ||ϕ1||ds

≤ (Meωt + 1)||ψ1||+ C ′′′||ϕ1||t+ C ′′′
∫ t

0
||ŷs||ds

for t ∈ [0, ρ0). Then the continuity of the map [0, ρ0) 3 t 7→ ŷt ∈ BUC((−∞, 0], X0)

and Gronwall’s inequality imply that y is bounded on I∪[0, ρ0). By setting ỹ(ρ0) :=

T (ρ0)ψ1(0) + lim
µ→∞

∫ ρ0
0
T (ρ0 − s)µRµ[D1F1(x(s), a(s))y(s) + D2F1(x(s), a(s))b(s) +

DF2(x(s))y(s)]ds, it is not difficult to see that y can be extended to a continuous

map ỹ : I ∪ [0, ρ0]→ X0. Then, the equation

b̃(t) =


ϕ0(t) if t ∈ I

D1H(xt, at)ỹt +D2H(xt, at)b̃t if t ∈ [0, ρ0]

can be solved for a unique continuous map b̃ : I ∪ [0, ρ0] → Rn by using the

fact that f(R1) < 1, where R1 = maxs∈[0,ρ0] ||xs||, and the contraction mapping

principle. Note that it is obvious that b̃(t) = b(t) for t < ρ0. Then applying Step 1

for t0 = ρ0 and (ψ, ϕ) = (ỹρ0 , b̃ρ0) ∈ TM
ρ0
0 , we can extend (y, b) beyond ρ0, which

is a contradiction.

By applying similar arguments as those in Step 3 of the proof of Proposition 9,

we can obtain the following result.

Corollary 10 Suppose (H1)–(H7) hold. For Ψ ∈ TM0
0 , let

y
b

 be the corre-

sponding mild solution to (3.5.1) on I ∪ [0, te). Then, for each T ∈ [0, te) and
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t ∈ [0, T ],

∥∥∥∥∥
yt
bt


∥∥∥∥∥ ≤ C||Ψ||, where C depends on Ψ0 and T . (Recall that Ψ0 is

fixed throughout this section).

3.6 Derivatives of Solution Operators Ŝt on M̂0

Recall from Section 3.4 that M̂0 is a positively invariant subset for the semiflow S of

the C1-submanifold M̂ of C(I,D(A)×Rn). At each point p ∈ M̂0 the tangent space

at p, denoted by TpM̂ , is contained in a larger set TpM which is a Banach space

with the weaker supremum norm (i.e., the supremum norm which does not include

the contribution from the operator A). Moreover, we let TM̂0 = {(p, γ) | p ∈

M̂0 and γ ∈ TpM̂} denote the tangent bundle of M̂ restricted to M̂0 and point out

that it has an obvious extension which we call TM0 = {(p, γ) | p ∈ M̂0 and γ ∈

TpM}. In order to derive the desired differentiability of Ŝt on Ω̂t, we consider the

interpolation space (C1(I,X0×Rn)∩C(I,D(A)×Rn), || · ||1), where

∥∥∥∥∥
ξ1

ξ2


∥∥∥∥∥

1

=

||ξ′1||+||ξ′2||+

∥∥∥∥∥
ξ1

ξ2


∥∥∥∥∥
C(I,D(A)×Rn)

. From now on, we let TpM̂
1 = TpM̂∩C1(I,X0×

Rn) and view it as a Banach space with the || · ||1 norm. We note that the norm

|| · ||1 is equivalent to the norm given by ||ξ||′1 = ||ξ|| + ||ξ′|| + ||Aξ1||, where ξ =
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ξ1

ξ2

 ∈ TpM̂
1. Before stating the main theorem of this section, we strengthen

hypotheses (H6) and (H7) as follows1:

(H6)* In addition to (H6), we further assume that, for (ψ0, ϕ0), (ψ, ϕ) ∈ M̂0,

|DH(ψ, ϕ)(ψ′, ϕ′)−DH(ψ0, ϕ0)(ψ′0, ϕ
′
0)| ≤ O(||ψ−ψ0||+ ||ϕ−ϕ0||)+O(||ϕ−

ϕ0||)||ψ′0||+O(||ϕ−ϕ0||)||ϕ′0|| and ||D1H(ψ, ϕ)−D1H(ψ0, ϕ0)||L(C(I,D(A)),Rn) ≤

O(||ψ − ψ0||+ ||ϕ− ϕ0||) both hold uniformly.

(H7)* In addition to (H7), we assume that for each (c, k), (c0, k0) ∈ (C0∩D(A))×

K we have ||D2F1(c, k)−D2F1(c0, k0)||L(Rn,X1) ≤ O(|c−c0|D(A))+Z(c0,k0)(|c−

c0| + |k − k0|). Moreover, for (c, k) ∈ (C0 ∩ D(A)) × K, D1F1(c, k) ∈

L(D(A), X1) exists and satisfies the special Lipschitz condition: ||D1F1(c, k)−

D1F1(c0, k0)||L(D(A),X1) ≤ O(|c− c0|+ |k − k0|) uniformly.

Remark. Note that the Lipschitz conditions in each of (H6)* and (H7)* involve

a weaker norm on the right hand side.

The following is the main result of this section.

Theorem 11 Assume (H1)–(H5), (H6)*, and (H7)* hold. Then the function Ŝt :

1Throughout this section we use the following notation for a function g defined on a neighbor-
hood of zero, in the product of two normed spaces, and whose image is contained in another normed

space. |g(ξ, w)| ≤ o(|ξ|) means that limξ→0
|g(ξ,w)|

|ξ| = 0 pointwise. Similarly, |g(ξ, w)| ≤ O(|ξ|)
means |g(ξ, w)| ≤ C|ξ| for some C > 0 which depends on w. Lastly, |g(ξ, w)| = Zw(|ξ|) means
|g(ξ, w)| → 0 as ξ → 0 pointwise.
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Ω̂t → M̂0 is differentiable in the following sense: For each p ∈ Ω̂t, DŜt(p) ∈

L(TpM̂
1, TŜt(p)M) and satisfies

lim
ξ→0,p+ξ∈Ω̂t,ξ∈TpM̂1

||Ŝt(p+ ξ)− Ŝt(p)−DŜt(p)ξ||C(I,X0×Rn)

||ξ||TpM̂1

= 0.

In fact, the mapping z : I ∪ [0, te(p))→ X0 ×Rn given by z(t) = DŜt(p)(ξ)(0) for

t ∈ [0, te(p)) is a solution of the linear variational system (3.5.1) along Ŝ(t, p) with

initial data z0 = ξ. Furthermore, the map dŜt : TM̂0 ∩ (Ω̂t × C1(I,X0 ×Rn)) →

TM0 given by dŜt(p, γ) = (Ŝt(p), DŜt(p)γ) is continuous when the domain inherits

the relative product topology induced from the || · ||1 norm on C1(I,X0 × Rn) ∩

C(I,D(A)×Rn) and TM0 has the relative product topology from C(I,X0 ×Rn).

Proof. Given t > 0 and p =

ψ
ϕ

 ∈ Ω̂t, write Ŝ(t, p) =

xψt
aϕt

 =

xpt
apt

 ∈ M̂0.

Let

y
b

 : I ∪ [0, te(p)) → X0 ×Rn be the mild solution of the linear variational

system (3.5.1) along Ŝt(p) having initial data ξ =

ξ1

ξ2

 ∈ TpM̂ . It follows from

Corollary 10 that

∥∥∥∥∥
yt
bt


∥∥∥∥∥ ≤ C

∥∥∥∥∥
ξ1

ξ2


∥∥∥∥∥ for a constant C > 0 depending on p and

t. In case ξ ∈ TpM̂1, we note that

∥∥∥∥∥
yt
bt


∥∥∥∥∥ ≤ C

∥∥∥∥∥ξ
∥∥∥∥∥
TpM̂1

. We can find 0 < R1 < R0

such that maxs∈[0,t] ||xps|| < R1. The proof is achieved in the following eight steps.
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Step 1. For s ∈ [0, t], p, p + ξ ∈ Ω̂t, ||xp+ξs − xps|| + ||ap+ξs − aps|| ≤ O(||ξ||)

uniformly in s and pointwise in p.

This follows from a standard argument using Gronwall’s inequality and (H2)

(See Step 2 of the proof of Proposition 9 or Step 1 in the proof of Theorem 2

in [13]).

Step 2. For µ ∈ Ω̂t, the pair

ẋµ
ȧµ

 is a mild solution of the linear variational

system (3.5.1) on I ∪ [0, t] along

xµ
aµ

. In particular,

ẍµ(s) = Aẋµ(s) +D1F1(xµ(s), aµ(s))ẋµ(s)

+D2F1(xµ(s), ap(s))ȧµ(s) +DF2(xµ(s))ẋµ(s)

in the mild sense and

ȧµ(s) = D1H(xµ(s), aµ(s))ẋµs +D2H(xµ(s), aµ(s))ȧµs.

By the proof of Theorem 5 and by Theorem 6, it suffices to check that

d

ds
F1(xµ(s), aµ(s)) = D1F1(xµ(s), aµ(s))ẋµ(s) +D2F1(xµ(s), ap(s))ȧµ(s).

Note that this is not an immediate consequence of the chain rule since in general

F1 is not differentiable. However, the same arguments as those before Step 1 in the
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proof of Theorem 6 (with the use of (H6) being replaced by (H7)) can be used to

obtain the desired result here.

Step 3. For s ∈ [0, t] and p, p + ξ ∈ Ω̂t, ||ȧp+ξs − ȧps|| ≤ O(||ξ|| + ||ξ′||) holds

pointwise in p and uniformly in s.

Let θ ∈ [−h, 0]. If s ∈ [0, t] and s+ θ ≤ 0 then |ȧp+ξ(s+ θ)− ȧp(s+ θ)| ≤ ||ξ̇||.

If s+ θ ≥ 0, then by Step 2, (H6)*, and Step 1, we have

|ȧp+ξ(s+ θ)− ȧp(s+ θ)|

≤ |DH(xp+ξs+θ, a
p+ξ
s+θ)(ẋ

p+ξ
s+θ, ȧ

p+ξ
s+θ)−DH(xps+θ, a

p
s+θ)(ẋ

p
s+θ, ȧ

p
s+θ)|

≤ O(||ξ||) +O(||ξ||)||ẋps+θ||+O(||ξ||)||ȧps+θ||

≤ O(||ξ||),

where the constant coming from the latter big O depends on

maxµ∈I∪[0,t] |ẋp(µ)|,maxµ∈I∪[0,t] |ȧp(µ)| and clearly depends on p.

Therefore, ||ȧp+ξs − ȧps|| ≤ O(||ξ||+ ||ξ′||) pointwise in p and uniformly in s.

Step 4. For s ∈ [0, t] and p, p + ξ ∈ Ω̂t, ||ẋp+ξs − ẋps|| → 0 as ||ξ|| + ||ξ′|| → 0

uniformly in s and pointwise in p.
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Let w(s) := ˙xp+ξ(s)− ẋp(s). From Step 2 we have

|w(s)| ≤ |T (s)(ξ̇(0))|+
∫ s

0

M2eω(s−θ)|D1F1(xp+ξ(θ), ap+ξ(θ)) ˙xp+ξ(θ)

−D1F1(xp(θ), ap(θ))ẋp(θ) +D2F1(xp+ξ(θ), ap+ξ(θ)) ˙ap+ξ(θ)

−D2F1(xp(θ), ap(θ))ȧp(θ) +DF2(xp+ξ(θ)) ˙xp+ξ(θ)

−DF2(xp(θ))ẋp(θ)|dθ

= |T (s)(ξ̇(0))|+
∫ s

0

M2eω(s−θ)|I(θ)|dθ

for s ∈ [0, t]. Since the set {(xp(s), ap(s)) | s ∈ [0, t]} ⊂ C0 × K is X0 × Rn

compact, by Lemma 4 we can find an open neighborhood N of it in X0 ×Rn such

that C := sup(c,k)∈N∩(C0×K) ||D1F1(c, k)|| <∞. By Step 1, we can choose ||ξ|| small

enough such that (xp+ξ(s), ap+ξ(s)) ∈ N for each s ∈ [0, t]. Therefore, it follows
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from (H7), (H7)*, and Step 3 that

|I(θ)| ≤ C| ˙xp+ξ(θ)− ẋp(θ)|

+|D1F1(xp+ξ(θ), ap+ξ(θ))ẋp(θ)−D1F1(xp(θ), ap(θ))ẋp(θ)|

+|[D2F1(xp+ξ(θ), ap+ξ(θ))−D2F1(xp(θ), ap(θ))] ˙ap+ξ(θ)|

+||D2F1(xp(θ), ap(θ))|| | ˙ap+ξ(θ)− ȧp(θ)|

+|DF2(xp+ξ(θ))ẋp+ξ(θ)−DF2(xp(θ))ẋp(θ)|

≤ C| ˙xp+ξ(θ)− ẋp(θ)|+ Z(xp(θ),ap(θ))(||ξ||)

+(|xp+ξ(θ)− xp(θ)|D(A) + Z(xp(θ),ap(θ))(||ξ||))|ȧp+ξ(θ)|

+ max
µ∈[0,t]

||D2F (xp(µ), ap(µ))|| |O(||ξ||+ ||ξ′||)|

+||DF2(xp+ξ(θ))|| |ẋp+ξ(θ)− ẋp(θ)|

+||DF2(xp+ξ(θ))−DF2(xp(θ))|| |ẋp(θ)|.

Note that by Theorem 5 and Step 1,

|xp+ξ(θ)− xp(θ)|D(A) = |xp+ξ(θ)− xp(θ)|+ |Axp+ξ(θ)− Axp(θ)|

≤ |xp+ξ(θ)− xp(θ)|+ |ẋp+ξ(θ)− ẋp(θ)|

+|F (xp+ξ(θ), ap+ξ(θ))− F (xp(θ), ap(θ))|

≤ O(||ξ||) + |ẋp+ξ(θ)− ẋp(θ)|,
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where the constant coming from the big O depends only on p. Furthermore, by

Step 3 we have that

|ȧp+ξ(θ)| ≤ |ȧp+ξ(θ)− ȧp(θ)|+ |ȧp(θ)| ≤ O(||ξ||+ ||ξ′||) + max
µ∈[0,t]

|ȧp(µ)|,

where the constant coming from the big O depends only on p. Hence, choosing

||ξ|| + ||ξ′|| small enough, we have |ȧp+ξ(θ)| ≤ 1 + maxµ∈[0,t] |ȧp(µ)|. This gives

(|xp+ξ(θ)− xp(θ)|D(A) + Z(xp(θ),ap(θ))(||ξ||))|ȧp+ξ(θ)| ≤ O(||ξ||+ |ẋp+ξ(θ)− ẋp(θ)|) +

Z(xp(θ),ap(θ))(||ξ||). Then by (H4), the continuity of DF2 on C0 implies that we can

find an X0-open neighborhood, N1, of the X0-compact set {xp(µ) | µ ∈ [0, t]} and

some C1 > 0 such that, for each c ∈ N1 ∩ C0, ||DF2(c)||L(X0,X2) ≤ C1. By Step 1,

we can choose ||ξ|| small enough such that xp+ξ(µ) ∈ N1 for each µ ∈ [0, t]. Hence

||DF2(xp+ξ(θ))|| < C1. Finally, we can conclude that, for ||ξ||+ ||ξ′|| small enough

(depending on only p),

|I(θ)| ≤ C| ˙xp+ξ(θ)− ẋp(θ)|+ Z(xp(θ),ap(θ))(||ξ||)

+O( ||ξ||+ |ẋp+ξ(θ)− ẋp(θ)| ) + Z(xp(θ),ap(θ))(||ξ||)

+O(||ξ||+ ||ξ′||) +O(|ẋp+ξ(θ)− ẋp(θ)|) + Z(xp(θ))(||ξ||)

≤ O(||ξ||+ ||ξ′||) +O(| ˙xp+ξ(θ)− ẋp(θ)|) + Z(xp(θ),ap(θ))(||ξ||).
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Therefore, for each s ∈ [0, t],

|w(s)| ≤ Meωt||ξ′||+
∫ s

0

M2eω(s−θ)[O(||ξ||+ ||ξ′||) +O(|w(θ)|)

+Z(xp(θ),ap(θ))(||ξ||)]dθ

≤ O(||ξ||+ ||ξ′||) +

∫ s

0

O(|w(θ)|)dθ +

∫ t

0

Z(xp(θ),ap(θ))(||ξ||)dθ

≤ O(||ξ||+ ||ξ′||) +

∫ s

0

O(|w(θ)|)dθ + Zp(||ξ||).

Here we have used the dominated convergence theorem to obtain the last line above.

Step 4 now follows from Gronwall’s inequality.

Step 5. If p, p+ ξ ∈ Ω̂t and ξ ∈ TpM̂ , then ||x̂p+ξt − x̂pt − ŷt|| ≤ o(||ξ||+ ||ξ′||) +∫ t
0
O(||x̂p+ξs − x̂ps − ŷs|| + ||âp+ξs − âps − b̂s||)ds pointwise in p, where ·̂ indicates the

trivial extension of the corresponding function to (−∞, 0] by its value at −h for

θ ≤ −h.
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For each s ∈ [0, t], it follows from (H4) and (H7) that

F1(xp+ξ(s), ap+ξ(s))− F1(xp(s), ap(s))−D1F1(xp(s), ap(s))y(s)

−D2F1(xp(s), ap(s))b(s) + F2(xp+ξ(s))− F2(xp(s))−DF2(x(s))y(s)

= F1(xp+ξ(s), ap+ξ(s))− F1(xp(s), ap+ξ(s)) + F1(xp(s), ap+ξ(s))

−F1(xp(s), ap(s))−D1F1(xp(s), ap(s))y(s)−D2F1(xp(s), ap(s))b(s)

+DF2(xp(s))(xp+ξ(s)− xp(s)− y(s)) + ω3(xp+ξ(s)− xp(s), xp(s))

= D1F1(xp(s), ap+ξ(s))(xp+ξ(s)− xp(s))−D1F1(xp(s), ap(s))y(s)

+ω1(xp+ξ(s)− xp(s), xp(s), ap+ξ(s))

+D2F1(xp(s), ap(s))(ap+ξ(s)− ap(s)− b(s))

+ω2(ap+ξ(s)− ap(s), xp(s), ap(s))

+DF2(xp(s))(xp+ξ(s)− xp(s)− y(s)) + ω3(xp+ξ(s)− xp(s), xp(s))

= [D1F1(xp(s), ap+ξ(s))−D1F1(xp(s), ap(s))](xp+ξ(s)− xp(s))

+D1F1(xp(s), ap(s))(xp+ξ(s)− xp(s)− y(s))

+ω1(xp+ξ(s)− xp(s), xp(s), ap+ξ(s))

+D2F1(xp(s), ap(s))(ap+ξ(s)− ap(s)− b(s))

+ω2(ap+ξ(s)− ap(s), xp(s), ap(s))

+DF2(xp(s))(xp+ξ(s)− xp(s)− y(s)) + ω3(xp+ξ(s)− xp(s), xp(s)),
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where ω1, ω2, and ω3 denote the error terms associated with D1F1, D2F1, and DF2,

respectively. By Step 1 and (H4), we know that |ω3(xp+ξ(s)−xp(s), xp(s))| ≤ o(||ξ||)

uniformly in s ∈ [0, t]. Similarly, by Step 1 and (H7), we know that |ω2(ap+ξ(s) −

ap(s), xp(s), ap(s))| ≤ o(||ξ||) uniformly in s. The meat of the matter lies in ω1.

To this end, let gs : [0, 1] → X1 be given by gs(µ) = F1(xp(s) + µ(xp+ξ(s) −

xp(s)), ap+ξ(s)). By (H7), gs is C1 in µ and

|ω1(xp+ξ(s)− xp(s), xp(s), ap+ξ(s))|

= |g(3.1.1)− g(0)− g′(0)|

=

∣∣∣∣∣
∫ 1

0

g′(µ)− g′(0)dµ

∣∣∣∣∣
≤

∫ 1

0

|D1F1(xp(s) + µ(xp+ξ(s)− xp(s)), ap+ξ(s))(xp+ξ(s)− xp(s))

−D1F1(xp(s), ap+ξ(s))(xp+ξ(s)− xp(s))|dµ

≤
∫ 1

0

O(||ξ||)|xp+ξ(s)− xp(s)|D(A)dµ

≤ O(||ξ||)|xp+ξ(s)− xp(s)|D(A).

Note carefully how the second last inequality follows from (H7)* and Step 1, and

that the constant coming from the latter big O depends only on p. Then |xp+ξ(s)−

xp(s)|D(A) ≤ O(||ξ||)+ |ẋp+ξ(s)− ẋp(s)| ≤ Zp(||ξ||+ ||ξ′||), where the first inequality

follows from the argument starting with “Note that by Theorem 5 . . . ” in Step

4 and the second inequality follows from Step 4. This shows that |ω1(xp+ξ(s) −

xp(s), xp(s), ap+ξ(s))| ≤ o(||ξ||+ ||ξ′||) pointwise in p and uniformly in s. Similarly,
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it follows from (H7)*, Step 1, and Step 4 that

|[D1F1(xp(s), ap+ξ(s))−D1F1(xp(s), ap(s))](xp+ξ(s)− xp(s))|

≤ O(||ξ||)|xp+ξ(s)− xp(s))|D(A)

≤ o(||ξ||+ ||ξ′||)

uniformly in s and pointwise in p. Therefore, it follows from the abstract variation

of constants formula that, for θ ∈ (−∞, 0] and t+ θ ≥ 0,

|xp+ξ(t+ θ)− xp(t+ θ)− y(t+ θ)|

≤
∫ t+θ

0

M2eω(t+θ−s)[o(||ξ||+ ||ξ′||)

+|D1F1(xp(s), ap(s))(xp+ξ(s)− xp(s)− y(s))|+ o(||ξ||+ ||ξ′||)

+|D2F1(xp(s), ap(s))(ap+ξ(s)− ap(s)− b(s))|+ o(||ξ||)

+|DF2(xp(s))(xp+ξ(s)− xp(s)− y(s))|+ o(||ξ||)]ds.

Since sup
s∈[0,t]

||D1F1(xp(s), ap(s))||, max
s∈[0,t]

||D2F1(xp(s), ap(s))||, max
s∈[0,t]

||DF2(xp(s))|| <

∞ (see (H7), Lemma 4, and (H4)), Step 5 follows.

Step 6. If s ∈ [0, t], p, p + ξ ∈ Ω̂t, and ξ ∈ TpM̂ , then ||âp+ξs − âps − b̂s|| ≤

o(||ξ|| + ||ξ′|| + ||Aξ1||) + O(||x̂p+ξs − x̂ps − ŷs||) uniformly in s and pointwise in p,

where the meaning of ·̂ is same as in Step 5.
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Proceeding analogously as in Step 5 and using (H6), we have that

ap+ξ(s)− ap(s)− b(s)

= H(xp+ξs , ap+ξs )−H(xps, a
p
s)−D1H(xps, a

p
s)ys −D2H(xps, a

p
s)bs

= (D1H(xps, a
p+ξ
s )−D1H(xps, a

p
s))(x

p+ξ
s − xps)

+D1H(xps, a
p
s)(x

p+ξ
s − xps − ys) + ω1(xp+ξs − xps, xps, ap+ξs )

+D2H(xps, a
p
s)(a

p+ξ
s − aps − bs) + ω2(ap+ξs − aps, xps, aps)

for all s ∈ [0, t]. It follows from (H6) that the error term |ω2(ap+ξs − aps, xps, aps)| ≤

o(||ξ||) uniformly in s ∈ [0, t] and pointwise in p. Arguing as in Step 5 and using

(H6)*, we can obtain

|ω1(xp+ξs − xps, xps, ap+ξs )|

≤
∫ 1

0

|D1H1(xps + µ(xp+ξs − xps), ap+ξs )(xp+ξs − xps)

−D1H1(xps, a
p+ξ
s )(xp+ξs − xps)|dµ

≤
∫ 1

0

O(||ξ||)||xp+ξs − xps||C(I,D(A))dµ

≤ O(||ξ||)||xp+ξs − xps||C(I,D(A)).

Now ||xp+ξs − xps||C(I,D(A)) = maxθ∈I |xp+ξ(s + θ) − xp(s + θ)| + |Axp+ξ(s + θ) −

Axp(s + θ)| ≤ ||ξ1|| + ||Aξ1|| + Zp(||ξ|| + ||ξ′||). Hence |ω1(xp+ξs − xps, xps, ap+ξs )| ≤

o(||Aξ1||+ ||ξ||+ ||ξ′||) pointwise in p and uniformly in s. Similarly, using (H6)* and

Step 1 gives |(D1H(xps, a
p+ξ
s )−D1H(xps, a

p
s))(x

p+ξ
s − xps)| ≤ o(||Aξ1|| + ||ξ|| + ||ξ′||)
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pointwise in p and uniformly in s. Then, for θ ∈ (−∞, 0] with s+ θ ≥ 0, we have

|ap+ξ(s+ θ)− ap(s+ θ)− b(s+ θ)|

≤ o(||ξ||+ ||Aξ1||+ ||ξ′||) + C||xp+ξs+θ − x
p
s+θ||+ f(R1)||ap+ξs+θ − a

p
s+θ||

holds pointwise in p and uniformly in s, where C = sups∈[0,t] ||D1H(xps, a
p
s)|| <∞ is

granted by Lemma 4. Hence ||âp+ξs − âps− b̂s|| ≤ o(||ξ||+ ||ξ′||+ ||Aξ1||)+O(||x̂p+ξs −

x̂ps||) + f(R1)||âp+ξs − âps||, which implies that ||âp+ξs − âps − b̂s|| ≤ o(||ξ|| + ||ξ′|| +

||Aξ1||) +O(||x̂p+ξs − x̂ps||) holds uniformly in s and pointwise in p since f(R1) < 1.

Step 7. If t ≥ 0 and p ∈ Ω̂t, then DŜt(p) ∈ L(TpM̂
1, TŜt(p)M) exists and is

given by DŜt(p)(ξ) =

yt
bt

 for ξ ∈ TpM̂1.

From Steps 5 and 6, and Gronwall’s inequality we see that if p + ξ ∈ Ω̂t and

ξ ∈ TM̂p then ||xp+ξt − xpt − yt|| ≤ ||x̂
p+ξ
t − x̂pt − ŷt|| ≤ o(||ξ||+ ||ξ′||+ ||Aξ1||) holds

pointwise in p. By Step 6 it follows that ||âp+ξt − âpt − b̂t|| ≤ o(||ξ||+ ||ξ′||+ ||Aξ1||)

also holds pointwise in p. This completes the proof of Step 7.

Step 8. dŜt(p, γ) = (Ŝt(p), DŜt(p)γ) is continuous with respect to the topologies

stated in the hypothesis of this theorem.

Step 8 follows from Theorem 4.2 of [13] (concerning the continuity of Ŝt), (H4),

(H6), (H7), Lemma 4, Step 1, Step 4, and arguments similar to those used in Step 6,

which involve trivial extensions of the relevant functions to (−∞, 0] by their values
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at −h, the fact that f(R1) < 1, and Gronwall’s inequality.

3.7 The Model Equations: Part Two

In this section we present an application of the general theory.

Consider the following class of scalar age structured models with threshold de-

pendent age of maturity,

∂tu(t, a) + ∂au(t, a) = −d(a)u(t, a),

u(t, 0) = b(
∫ m
τ(t)

β(ξ)u(t, ξ)dξ),∫ t
t−τ(t)

[
∫ τ(σ)

0
u(σ, a)da+ C]−1dσ = T,u0

τ0

 =

ψ
ϕ

 ∈ C1([−am, 0], L1
+[0,m)×R+),

(3.7.1)

where t ≥ 0, 0 ≤ a < m, and 0 < am < m ≤ ∞. Here m represents the

maximum age and am stands for the maximum juvenile age. We make the following

assumptions.

(A1) d : [0,m)→ R+ and β : [0,m)→ R+ are bounded and continuous.

(A2) b : R+ → R+ is C2, b, b′, and b′′ are bounded, and 0 < maxx∈R+ b(x) ≤ θ for

some θ > 0.

(A3) am = (R0 + C)T < m ≤ ∞, where R0 = C( 1√
Tθ
− 1) > 0.
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Next we rewrite (3.7.1) as follows. Let X = R × L1([0,m),R) and define

A : D(A)→ X by

A

0

x

 =

−x(0)

−x′

 for

0

x

 ∈ D(A) = {0} ×W 1,1([0,m),R).

Note that X0 = D(A) = {0}×L1[0,m). It is well known that A satisfies (H1) (see,

for instance, [19, 34]). Denote

C0 =


0

γ

 ∈ {0} × L1[0,m) | 0 ≤ γ(a) ≤ θ a.e. a ∈ [0,m)


and

D(H) =


ψ
ϕ

 ∈ C(I, C0 ×K) | ||ψ|| ≤ R0

 ,

where K = [TC
2
, am] ⊂ R and I = [−am, 0] for simplicity of notation.

As in Lemma 5.1 of [13], it follows that the relation H : D(H) → K, which is

given by (ψ, ϕ, α) ∈ H if and only if
∫ 0

−α[
∫ ϕ(σ)

0
ψ(σ, ξ)dξ+C]−1dσ = T , is a function

which satisfies the appropriate Lipschitz condition from (H2) with f(Q) = (Q+C)2T
C2 θ.

Let M0 be as in (H3). We give D(A) = {0} × W 1,1[0,m) the graph norm,

namely, |γ| = |γ(0)|+ |γ|L1 + |γ′|L1 for γ ∈ D(A).

We would like to study the differentiability of the function H. To this end, let

Γ =



ψ
ϕ

 ∈ C(I, L1[0,m)× [0,m)

∣∣∣∣∣∣∣∣∣∣∣∣

‖ψ‖ < R0 and, for σ ∈ I,∫ ϕ(σ)

0
ψ(σ, ξ)dξ > −C/2

and 0 < ϕ(σ) < m


.
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Define G : (0, am)× Γ→ R by G(α, ψ, ϕ) =
∫ 0

−α[
∫ ϕ(σ)

0
ψ(σ, ξ)dξ +C]−1dσ − T . We

first study the differentiability of G. We commence with some lemmas.

Lemma 5 The set Γ is open in C(I, L1[0,m) × R). In particular, Γ̂ := Γ ∩

C(I,D(A)×R) is open in C(I,D(A)×R), where D(A) is given the graph norm.

Proof. Let

ψ
ϕ

 ∈ Γ. Fix a1, a2 ∈ (0,m) such that a1 < ϕ(σ) < a2. We find

some r1 > 0 such that if γ1 ∈ C(I,R) with ||γ1−ϕ|| < r1 then a1 < γ1(σ) < a2 for

each σ ∈ I. The continuity of the map I 3 σ 7→
∫ ϕ(σ)

0
ψ(σ, ξ)dξ ∈ R implies that we

can find r2 > 0 such that, for any σ ∈ I, if |x−
∫ ϕ(σ)

0
ψ(σ, ξ)dξ| < r2 then x > −C/2.

We note that, for each

γ1

γ2

 ∈ C(I, L1[0,m) ×R) with ||γ1 − ϕ|| < r1, we have

|
∫ ϕ(σ)

0
ψ(σ, ξ)dξ−

∫ γ1(σ)

0
γ2(σ, ξ)dξ| ≤ ||ψ−γ2||+|

∫ γ1(σ)

ϕ(σ)
ψ(σ, ξ)dξ|. Next observe that

the map θ : I × [a1, a2] 3 (σ, s) 7→ |
∫ s
ϕ(σ)

ψ(σ, ξ)dξ| is uniformly continuous. Then

|
∫ ϕ(σ)

0
ψ(σ, ξ)dξ−

∫ γ1(σ)

0
γ2(σ, ξ)dξ| ≤ ||ψ−γ2||+ |θ(σ, γ1(σ))|. Note that |θ(σ, γ1(σ)|

converges to zero uniformly as ||ϕ − γ1|| → 0. It follows that we can choose

||ϕ−γ1||+||ψ−γ2|| small enough such that |
∫ ϕ(σ)

0
ψ(σ, ξ)dξ−

∫ γ1(σ)

0
γ2(σ, ξ)dξ| < r2,

which gives the desired result.

Lemma 6 (i) The partial derivatives D1G(α, ψ, ϕ) and

D2G(α, ψ, ϕ) ∈ L(C(I, L1[0,m)),R) exist in the Fréchet sense and are given

respectively by D1G(α, ψ, ϕ)1 = [
∫ ϕ(−α)

0
ψ(−α, ξ)dξ + C]−1 and
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D2G(α, ψ, ϕ)γ =
∫ 0

−α
−

∫ ϕ(σ)
0 γ(σ,ξ)dξ

(
∫ ϕ(σ)
0 ψ(σ,ξ)dξ+C)2

dσ for (α, ψ, ϕ) ∈ (0, am)× Γ.

(ii) The map (0, am)× Γϕ 3 (α, ψ) 7→ D1,2G(α, ψ, ϕ) ∈ L(R× C(I, L1[0,m)),R)

is continuous, where Γϕ = {ψ ∈ C(I, L1[0,m)) | (ψ, ϕ) ∈ Γ}.

(iii) The map G is continuously differentiable in the Fréchet sense on (0, am)× Γ̂

and D3G(α, ψ, ϕ)γ =
∫ 0

−α
−ψ(σ,ϕ(σ))γ(σ)

(
∫ ϕ(σ)
0 ψ(σ,ξ)dξ+C)2

dσ, where (0, am) × Γ̂ inherits the

norm from R× C(I,D(A)×R).

(iv) For (α, ψ, ϕ) ∈ Γ̂, the partial derivative D2G(α, ψ, ϕ) ∈ L(C(I,D(A)),R)

has a bounded extension to L(C(I, L1[0,m)),R), L(α, ψ, ϕ), and the map

(0, am) × Γ̂ × C(I, L1[0,m)) 3 (α, ψ, ϕ, γ) 7→ L(α, ψ, ϕ)γ ∈ R is continuous,

where Γ̂ has the relative topology induced from C(I,D(A)×R).

Proof. Let (α, ψ, ϕ) ∈ (0, am) × Γ. It follows from the continuity of I 3 σ 7→∫ ϕ(σ)

0
ψ(σ, ξ)dξ ∈ R that D1G(α, ψ, ϕ)1 = [

∫ ϕ(−α)

0
ψ(−α, ξ)dξ + C]−1 and it is easy

to check that D1G is continuous when Γ is given the relative topology from R ×

C(I, L1[0,m)×R). We turn our attention to D2G(α, ψ, ϕ). Define y : (−C
2
,∞)→

R by y(σ) = 1
σ+C

, lα : C(I,R) → R by lα(γ) =
∫ 0

−α γ(σ)dσ, gϕ : C(I, L1[0,m)) →

C(I,R) by gϕ(γ)(σ) =
∫ ϕ(σ)

0
γ(σ, ξ)dξ, and h : C(I, (−C

2
,∞)) → C(I,R) by

h(γ)(σ) = y(γ(σ)). Then G(α, ψ, ϕ) = lα(h(gϕ(ψ)))−T and the chain rule gives us

D2G(α, ψ, ϕ)γ = Dlα(h(gϕ(ψ))Dh(gϕ(ψ))Dgϕ(ψ)γ =
∫ 0

−α
−

∫ ϕ(σ)
0 γ(σ,ξ)dξ

(
∫ ϕ(σ)
0 ψ(σ,ξ)dξ+C)2

dσ. This

completes the proof of item (i).
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Next we verify item (ii). First, it is easy to check that D1G is continuous on

(0, am)×Γ. Second, it is easily checked that when ϕ is fixed and (α, ψ) are allowed

to vary, each of the linear operators in the latter composition vary continuously,

which verifies item (ii).

To show (iii), given (α, ψ, ϕ) ∈ (0, am) × Γ̂, define gψ : C(I, (0,m)) → C(I,R)

by gψ(γ)(σ) =
∫ γ(σ)

0
ψ(σ, ξ)dξ. Then G(α, ψ, ϕ) = lα(h(gψ(ϕ))) − T and hence

D3G(α, ψ, ϕ)γ = Dlα(h(gψ(ϕ))Dh(gψ(ϕ))Dgψ(ϕ)γ =
∫ 0

−α
−ψ(σ,ϕ(σ))γ(σ)

(
∫ ϕ(σ)
0 ψ(σ,ξ)dξ+C)2

dσ. It is

clear that the other two partial derivatives of G on (0, am)× Γ̂ (with respect to the

stronger norm) are given by the same formulas as in (i). Since D1G is continuous

on (0, am)× Γ, it suffices to check the continuity of D2G and D3G on (0, am)× Γ̂.

We have Dlα(h(gϕ(ψ))γ =
∫ 0

−α γ(σ)dσ, which is clearly continuous. Furthermore,

(Dh(gϕ(ψ))γ)(σ) = −γ(σ)

(
∫ ϕ(σ)
0 ψ(σ,ξ)dξ+C)2

is easily checked to be continuous in (ψ, ϕ)

(even with respect to the weaker norm) and Dgϕ(ψ)γ(σ) =
∫ ϕ(σ)

0
γ(σ, ξ)dξ for

γ ∈ C(I,D(A)). So, for (ψi, ϕi) ∈ Γ̂ (i = 1, 2), we have

|Dgϕ1(ψ1)γ(σ)−Dgϕ2(ψ2)γ(σ)| =

∣∣∣∣∣
∫ ϕ2(σ)

ϕ1(σ)

γ(σ, ξ)dξ

∣∣∣∣∣
=

∣∣∣∣∣
∫ ϕ2(σ)

ϕ1(σ)

γ(σ, 0) +

∫ ξ

0

d2γ(σ, θ)dθ dξ

∣∣∣∣∣
≤ ||ϕ1 − ϕ2|| ||γ||C(I,D(A)),

which shows that D2G is continuous on (0, am)× Γ̂. Turning our attention to D3G,

it suffices to check that Dgψ(ϕ) varies continuously in (ψ, ϕ). If (ψi, ϕi) ∈ Γ̂ (i = 1,
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2), then

|Dgψ1(ϕ1)γ(σ)−Dgψ2(ϕ2)γ(σ)|

=
∣∣(ψ1(σ, ϕ1(σ))− ψ2(σ, ϕ2(σ)))γ(σ)

∣∣
≤

(
||ψ1 − ψ2||C(I,D(A)) +

∣∣∣∣∣
∫ ϕ2(σ)

ϕ1(σ)

d2ψ
2(σ, ξ)dξ

∣∣∣∣∣
)
||γ||

and it is now obvious that Dgψ(ϕ) is continuous. This proves (iii).

The first part of (iv) follows from (i). In light of the above discussion, to

complete the proof of (iv), it suffices to check that the map Γ̂ × C(I, L1[0,m)) 3

(ψ, ϕ, γ) 7→ Dgϕ(ψ)γ ∈ C(I,R) is continuous. For (ψi, ϕi, γi) ∈ Γ̂× C(I, L1[0,m))

(i = 1, 2), we have

|Dgϕ1(ψ1)γ1(σ)−Dgϕ2(ψ2)γ2(σ)| ≤ ||γ1 − γ2||+

∣∣∣∣∣
∫ ϕ2(σ)

ϕ1(σ)

γ2(σ, ξ)dξ

∣∣∣∣∣
and the desired result is now obvious.

Let D(Ĥ) := D(H) ∩ C(I,D(A)×R) and Ĥ = H|D(H).

Lemma 7 (i) The function Ĥ : D(Ĥ) → K can be extended to a continuously

differentiable function He : U → K, where U is an open subset of the Banach

space C(I,D(A)×R).

(ii) For each (ψ, ϕ) ∈ U , D1He(ψ, ϕ) ∈ L(C(I, L1[0,m)),R) exists as a rela-

tive Fréchet derivative on U and the map U × C(I, L1[0,m)) 3 (ψ, ϕ, γ) 7→
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D1He(ψ, ϕ)γ is continuous when U has the relative topology induced from

C(I,D(A)×R).

Proof. For

ψ
ϕ

 ∈ D(Ĥ), we have (Ĥ(ψ, ϕ), ψ, ϕ) ∈ (0, am)×Γ̂, G(H(ψ, ϕ), ψ, ϕ) =

0, and D1G(H(ψ, ϕ), ψ, ϕ) 6= 0. By Lemma 6(iii) and an application of the im-

plicit function theorem, we can find an open set U ⊂ Γ̂ in C(I,D(A) × R) and

a C1 extension He : U → (0, am). The image of He is actually contained in

K = [TC
2
, am] by the definition of Γ and G. To verify (ii), fix ϕ ∈ C(I, (0,m)) and let

Gϕ : (0, am)× Γϕ → R be given by Gϕ(α, ψ) = G(α, ψ, ϕ). Note that Γϕ is defined

in Lemma 6(ii) and it is open in C(I, L1[0,m)). By Lemma 6(ii), we know that Gϕ

is C1 in the Fréchet sense on (0, am) × Γϕ. Therefore, if (ψ, ϕ) ∈ U then ψ ∈ Γϕ,

Gϕ(He(ψ, ϕ), ψ) = 0, and D1Gϕ(He(ψ, ϕ), ψ) 6= 0. The implicit function theorem

gives us an open set U(ϕ) ⊂ Γϕ of ψ and a C1-function H(ϕ) : U(ϕ) → (0, am)

satisfying H(ϕ) = Heϕ on Uϕ ∩ U(ϕ), where Uϕ and Heϕ are defined in the obvi-

ous way. Then for each ξ ∈ C(I, L1[0,m)) such that ψ + ξ ∈ U ∩ U(ϕ) we have

He(ψ+ξ, ϕ)−He(ψ, ϕ)−DH(ϕ)(ξ) = H(ϕ)(ψ+ξ)−H(ϕ)(ψ)−DH(ϕ)(ξ) = o(ξ).

This proves the first part of (ii). The continuity property stated in (ii) follows

from the formula D1He(ψ, ϕ)γ = −D1G(He(ψ, ϕ), ψ, ϕ)−1D2G(He(ψ, ϕ), ψ, ϕ))γ,

the continuity of D1G (see proof of Lemma 6), and Lemma 6(iv).
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It follows from Lemma 7 that

D1He(ψ, ϕ)γ =
∫ 0

−He(ψ,ϕ)

∫ ϕ(σ)
0 γ(σ,ξ)dξ

(
∫ ϕ(σ)
0 ψ(σ,ξ)dξ+C)2

dσ(
∫ ϕ(−He(ψ,ϕ))

0
ψ(−He(ψ, ϕ), ξ)dξ + C)

and

D2He(ψ, ϕ)γ =
∫ 0

−He(ψ,ϕ)
ψ(σ,ϕ(σ))γ(σ)

(
∫ ϕ(σ)
0 ψ(σ,ξ)dξ+C)2

dσ(
∫ ϕ(−He(ψ,ϕ))

0
ψ(−He(ψ, ϕ), ξ)dξ + C).

Then rank(D1He(ψ, ϕ)) = 1 and hence (H6) is verified. It is not difficult to check

that, for (ψ, ϕ) ∈ M̂0, DH(ψ, ϕ)(ψ′, ϕ′) = 1 −
∫ ϕ(−ϕ(0))
0 ψ(−ϕ(0),ξ)dξ+C∫ ϕ(0)

0 ψ(0,ξ)dξ+C
and hence it

is easy to verify the first statement in (H6)* by using this formula. The second

statement of (H6)* can be checked using the above formula for D1H.

Remark. This is the ‘special property of the derivative of H’ mentioned in the

Future Work section of [13].

Define F : C0 × K → X by F (x, a) =

b(
∫ m
a
β(ξ)x(ξ)dξ)

−d(·)x(·)

. Then the ver-

ification of the subtangential condition (H5) with respect to C0, K, and F fol-

lows exactly as in [34]. We write F (x, a) = F1(x, a) + F2(x), where F1(x, a) =b(
∫ m
a
β(ξ)x(ξ)dξ)

0

 and F2(x) =

 0

−d(·)x(·)

. Taking X1 = R × {0} and

X2 = {0}×L1[0,m) gives X = X1⊕X2 and hypotheses (H7), (H7)*, and (H4) are

easily verified.

Therefore, by Theorem 5, we have the following result.
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Proposition 12 In addition to (A1)–(A3), assume that

ψ
ϕ

 ∈ C1(I, L1
+ ×R+)

satisfies the following three conditions.

(i) ψ(0, 0) = b(
∫ m
ϕ(0)

β(ξ)ψ(0, ξ)dξ) and ψ(0)(·) ∈ W 1,1[0,m).

(ii) For each σ ∈ I, 0 ≤ ψ(σ)(a) ≤ θ for all a ∈ [0,m) and ϕ(σ) ∈ [TC
2
, am].

(iii) For each σ ∈ I,
∫ m

0
ψ(σ)(a)da < C( 1√

Tθ
− 1) and

∫ 0

−ϕ(0)
[
∫ ϕ(σ)

0
ψ(σ, ξ)dξ +

C]−1dσ = T .

Then the initial value problem (3.7.1) has a unique maximal solution

u(t, ·)

τ(t)

 ∈
C([−am, te), L1[0,m]×R) (te > 0) in M0, such that t 7→ u(t, ·) ∈ C1([0, te), L

1[0,m]),

τ(t) is locally Lipschitz on [0, te), and

u0

τ0

 =

ψ
ϕ

. Moreover,

(i) For 0 ≤ t < te, [0,m) 3 a 7→ u(t, a) is absolutely continuous, and for a.e.

a ∈ [0,m),

∂tu(t, a) + ∂au(t, a) = −d(a)u(t, a) for 0 ≤ t < te,

u(t, 0) = b

(∫ m

τ(t)

β(ξ)u(t, ξ)dξ

)
.

(ii) For 0 ≤ t < te,
∫ t
t−τ(t)

[
∫ τ(σ)

0
u(σ, a)da+ C]−1dσ = T .

(iii) For t ∈ [0, te), the “total population” satisfies
∫ m

0
u(t, a)da < C( 1√

Tθ
− 1) and

0 ≤ u(t, a) ≤ θ for each a ∈ [0,m).
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Actually, we can say more about the differentiability of τ(t). From Proposi-

tion 12(ii), we note that, for a.e. t ∈ [0, te),

τ ′(t) = 1−
∫ τ(t−τ(t))

0
u(t− τ(t), a)da+ C∫ τ(t)

0
u(t, a)da+ C

.

Since a Lipschitz function with continuous a.e. derivative is continuously differen-

tiable, it follows that τ(t) is C1 on [0, te). Note that Proposition 12 also implies

that the map [0, te)× [0,m) 3 (t, θ) 7→
∫ θ

0
u(t, a)da ∈ R is C1. Therefore, we obtain

the following result.

Corollary 13 Under the hypothesis of Proposition 12, τ(t) is C2 on [0, te) and

τ ′(t) = 1−
∫ τ(t−τ(t))
0 u(t−τ(t),a)da+C∫ τ(t)

0 u(t,a)da+C
.

This smoothing in time effect for the age of maturity function is caused by the

fact that it satisfies an ODE with a state-dependent delay. The same is not true

for the population density.

In order to derive the “integration along the characteristics” formula we make

the following observations. Define q : [−am, te)× [0,m)→ R2 by

q(t, a) =



ψ(0, a− t) exp(−
∫ a
a−t d(θ)dθ) if 0 ≤ t ≤ a,

b(
∫ m
τ(t−a)

β(θ)u(t− a, θ)dθ) exp(−
∫ a

0
d(θ)dθ) if t ≥ a,

ψ(t, a) if t ∈ I.

.

It is not difficult to check that (q(t, ·), τ(t))t is a mild solution of (3.7.1) in M0 on

[−am, te). By uniqueness, it follows that q(t, ·) = u(t, ·) for t ∈ [−am, te).
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We conclude this discussion by noting that classical solutions to (3.7.1) in M0,

that is, solutions corresponding to initial conditions given in the hypothesis of

Proposition 12, will be even more regular than the abstract semigroup theory tells

us if we assume that the initialization ψ(t, a) and the model paramemters in (A1)-

(A3) are more regular. However, the population density can never become smoother

than the initialization ψ, which is clear from the integration along the characterstics

formula.
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4 C0-Extendable Banach Manifolds

The purpose of this section is to give an intrinsic definition of a new class of Banach

manifolds and their submanifolds, which has appeared in this thesis concerning the

phase space for our state-dependent delay system. The definition is general enough

to include the “C0-extendable submanifold” M̂ introduced in Section 3.4. We begin

by recalling the definition of a C1 Banach manifold in the way it is given in [17].

4.1 C1 Banach Manifolds

Definition 14 Let X be a set. A C1 atlas on X is a collection of pairs (Ui, ϕi), i ∈

I (for some index set I) satisfying the following conditions:

• (A1) Each Ui is a subset of X and the collection {Ui}i∈I covers X.

• (A2) Each map ϕi is a bijection of Ui onto an open subset ϕi(Ui) of some

Banach space Êi. For any i, j, ϕi(Ui ∩ Uj) is open in Êi.

• (A3) For any i, j the map ϕj ◦ ϕi−1 : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is a C1-
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diffeomorphism.

Then the collection {Ui}i∈I ∪{ϕ−1
j (W ) | W is an open subset of ϕ(Uj) and j ∈

I} is a subbasis for a topology on X in which each Ui is open and for which each

map ϕi : Ui → ϕ(Ui) is a homeomorphism. For each i ∈ I the pair (Ui, ϕi) is

called a chart of the atlas. Suppose that U ⊂ X is open and that ϕ : U → U ′

is a topological isomorphism, where U ′ is an open subset of some Banach space.

The pair (U,ϕ) is said to be compatible with the atlas (Ui, ϕi) if the conditions

(A2), (A3) are satisfied when ‘ϕj’ is replaced with ‘ϕ’ and ‘Uj’ is replaced with ‘U ’

for each i ∈ I. Two atlases are compatible if their charts are pairwise compatible.

The compatibility relation on the collection of all C1 atlases on X is an equivalence

relation. Given a C1 atlas on X, its equivalence class is said to define a C1 smooth

structure on X.

Definition 15 A set X together with a C1 smooth structure on X is called a C1

Banach manifold.
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4.2 The C0-Extendable Smooth Structure

We will define a new smooth structure useful for our purposes below.

Definition 16 Suppose the collection (Ui, ϕi) is a C1 atlas for X. If in addition

to (A1)-(A3) from Definition 14, we assume the following:

• (A4) For each i the Banach space (Êi, || · ||i,1) is contained in some larger

Banach space (Ei, || · ||i,0) such that || · ||i,0 ≤ || · ||i,1.

• (A5) For any i, j and any p ∈ ϕi(Ui ∩ Uj), D(ϕj ◦ ϕi−1)(p) ∈ L(Êi, Êj) has

a bounded extension De(ϕj ◦ ϕi−1)(p) ∈ L(Ei, Ej) which is invertible.

• (A6) For any i, j the map ϕi(Ui ∩ Uj) × Ei 3 (p, γ) 7→ De(ϕj ◦ ϕi−1)(p)γ ∈

Ej is continuous, where ϕi(Ui ∩ Uj) inherits the relative topology from Êi.

Furthermore, ϕi(Ui ∩ Uj) × Ej 3 (p, γ) 7→ [De(ϕj ◦ ϕi−1)(p)]−1γ ∈ Ei is

continuous.

We call (Ui, ϕi) a C0-extendable atlas for X.
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Proposition 17 The relation (Ui, ϕi)i∈I ' (Vj, ψj)j∈J if and only if for each i, j

conditions (A2),(A3),(A5),(A6) hold (with ψj in place of ϕj and Vj in place of

Uj), is an equivalence relation on the collection of C0- extendable atlases for X.

Proof. It is clear that (Ui, ϕi) ' (Ui, ϕi). Now suppose (Ui, ϕi)i∈I ' (Vj, ψj)j∈J .

It suffices to only check conditions (A5) and (A6). We have that for each i ∈ I

and each j ∈ J , and any p ∈ ϕi(Ui ∩ Vj), D(ψj ◦ ϕi−1)(p) ∈ L(Êi, F̂j) has a

bounded extension De(ψj ◦ ϕi−1)(p) ∈ L(Ei, Fj) which is invertible. (Here ψj :

Vj → ψj(Vj) ⊂ F̂j ⊂ Fj). Let q ∈ ψj(Ui ∩ Vj) then D(ϕi ◦ ψj−1)(q) = [D(ψj ◦

ϕi
−1)(p)]−1 where ψj ◦ ϕi−1(p) = q. Let Le = De(ψj ◦ ϕi−1)(p) ∈ L(Ei, Fj). Then

(Le)
−1 ∈ L(Fj, Ej) is an extension of D(ϕi ◦ ψj−1)(q) having the desired property,

which verifies (A5). The continuity property (A6) is trivial. This shows that

(Vj, ψj)j∈J ' (Ui, ϕi)i∈I . Now suppose that (Ui, ϕi)i∈I ' (Vj, ψj)j∈J ' (Wk, βk)k∈K ,

where βk : Wk → βk(Wk) ⊂ Ĝk ⊂ Gk. Let p ∈ Ui ∩Wk and choose some Vj 3 p.

Then we have that (βk ◦ ϕ−1
i )(p) = ((βk ◦ ψ−1

j ) ◦ (ψj ◦ ϕ−1
i ))(p) and we are granted

bounded invertible extensions De(ψj ◦ ϕ−1
i )(p) ∈ L(Ei, Fj) and De(βk ◦ ψ−1

j )((ψj ◦

ϕ−1
i )(p)) ∈ L(Fj, Gk). We take De(βk ◦ ϕ−1

i )(p) to be the composition of the latter

two in the appropriate order. The continuity property from (A6) follows from the

easily checked fact that the set ϕi(Ui ∩ Vj ∩Wj) is open in Êi and ψj(Ui ∩ Vj ∩Wj)

is open in F̂j. (Recall that Vj depends on p).
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Definition 18 A set X together with a C0-extendable smooth structure is called a

C0-extendable Banach manifold.

4.3 C0-Extendable Submanifolds

In this section we give the definition of a submanifold of a C0-extendable Banach

manifold, we then briefly point out why the examples encountered in this thesis are

an instance of these.

Definition 19 By a submanifold of a C0-extendable Banach manifold X we mean

a subset Y having the property that for each y ∈ Y there is some chart (U,ϕ) of X

at y such that ϕ is a homeomorphism of U onto a product V1× V2 where V1, V2 are

open in some Banach spaces E1, E2, respectively, and such that ϕ(Y ∩U) = V1×{0}.

The remarks following Proposition 8 in Section 3.4 shows that the set M̂ is

a C0-extendable submanifold of C(I,D(A) × Rn) when the latter is viewed as a

C0-extendable Banach manifold whose smooth structure is generated by the trivial

atlas, consisting only of the identity map on C(I,D(A)×Rn). It should be pointed

out that the solution manifolds appearing in other literature on state-dependent

delay equations such as [35] are not an instance of our definition. The reason

for this is that our examples are induced by a purely ‘algebraic-delay’ condition,

whereas in [35] a derivative term is involved. Despite this difference among the latter
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examples, both share the property that the tangent spaces of the solution manifolds

are embedded in a larger space with a weaker norm, and that this embedding is

continuous.
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5 Concluding Remarks

5.1 Summary

We have motivated an abstract algebraic-delay differential system in Chapter 1.2

via a two stage age structured population model, in which it is assumed that there

is no competition between juvenilles and adults for resources. The key feature of

the model is that the age of maturity at a given time depends on the history of

the population density, as well as the history of itself. With the help of semigroup

theory, we addressed the existence, positivity and continuity of the solution semi-

flow corresponding to the model equations. Finally, we showed that the solution

semiflow is differentiable with respect to initial data, in a suitable weak sense, in

Chapter 3.6. The latter was carried out by proving the well posedness of a formal

linear variational system in Chapter 3.5, and then finding the right interpolation of

spaces, for which the solution of the linear variational system is actually the deriva-

tive of the solution operator. In order to state the main differentiability result,

Theorem 11 of 3.6, we used the notion of a C0-extendable submanifold of a Banach
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space. In Chapter 4 we gave an intrinsic definition of a new class of Banach mani-

folds, and their submanifolds to facilitate the latter and briefly indicated how they

differ with similar examples in other places in the literature on state-depdendent

delay equations.

5.2 Future Research Directions

There are various research directions which can be pursued related to the work

given in the present thesis. Since this work grants a linearization of an abstract

solution semiflow, one can try to derive a principle of local linearized stability. See

[34, 12, 3] for renditions of the linearized stability principle for semiflows generated

by delay differential equations and structured population models, and [9] in case

of ODEs with state-dependent delays. One can try to adpat a proof of the Hopf

bifurcation theorem in [7] and the corrected version in [18], which exploits only

C1 smoothness of the solution semiflow, to the present case for the weak type of

differentiability introduced here. The problem of the higher order differentiability

(in the classical sense) for semiflows arising from even ODEs having state depden-

dent delays remains open, see [9]. The question of higher order differentiability (in

a weak sense) with respect to parameters for a system of state-dependent delay

equations is investigated in the work [2] (see also [10]). Perhaps a similar approach

may be looked into here.
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