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Abstract

Haemophilus (H.) influenzae is a human-restricted bacterial pathogen that can cause severe

invasive disease. During the past two decades, the incidence of infections caused by H.

influenzae serotype ‘a’ (Hia) has increased in several parts of the world, particularly in Abo-

riginal populations of North America. Currently, there is no vaccine available to prevent

Hia infection. While efforts continue to develop an anti-Hia vaccine candidate, a number

of key questions must be addressed to ensure that vaccination is effective in curtailing and

possibly eliminating Hia from affected populations.

In this thesis, we develop mathematical models of Hia transmission and control dynam-

ics and analyze them to address important practical questions. By simulating an in-host

antibody boosting model, we predict the timelines and frequency of natural boosting of

immunity in order to prevent invasive Hia disease. Using laboratory data collected in a

Canadian population, this model indicates that frequent boosting of natural immunity is

required to maintain anti-Hia antibodies at levels required to prevent Hia invasive disease.

We also develop a stochastic in-host model of immune dynamics to evaluate the immune

responses to a bivalent glycoconjugate vaccine against the two serotypes ‘a’ and ‘b’ of H.

influenzae. In particular, we investigate the effect of such a vaccine on the generation of anti-

Hia immune response in the presence of pre-existing immunity to one serotype elicited by

prior vaccination or natural infection. Our results suggest that the protection conferred by
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a bivalent combined vaccine may be affected by the use of carrier protein previously used

in H. influenzae serotype ‘b’ conjugate vaccines.

At the population level, we develop the first stochastic model of Hia transmission dy-

namics to evaluate vaccination strategies and the effect of booster doses. Our results high-

light the importance of primary vaccination and timely booster doses of the individual

immunity not only for infants, but also for a sizeable portion of susceptible individuals to

maintain a high level of herd immunity in the population. Since age plays an important

role in transmission of Hia, we also develop an age-structured model to evaluate vaccina-

tion strategies and determine the effect of age-specific vaccination coverages. We discuss

the implications of our findings for population health.

iii



Acknowledgments

I would like to express my special appreciation and thanks to my advisor Professor

Seyed Moghadas, for supporting and encouraging my research all the way from when

I first started the PhD program in the Department of Mathematics and Statistics, to the

completion of this thesis. I am thankful for his excellent expertise and guidance provided

throughout the past four years.

I also would like to thank my committee members, Professor Marina Ulanova and Pro-

fessor Xin Gao for their collaboration, suggestions and insightful comments. Special thanks

go to Dr. Eli Nix, member of Professor Ulanova’s research team, for the help provided with

laboratory data collection used in our antibody boosting model.

Most importantly, I would like to express my gratitude to my family for their constant

help and support and particularly to the little one, Angelo, to whom this dissertation is

dedicated.

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

2 Haemophilus influenzae 5

2.1 Epidemiology of H. influenzae . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Biological Characteristics of H. influenzae . . . . . . . . . . . . . . . . . . . . . 9

2.3 Clinical and Subclinical Manifestations . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Anti-Hia Vaccine and Vaccination . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Review of Existing H. influenzae Modeling 19

v



4 Dynamics of Naturally Acquired Antibody against Hia 28

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 Stratification with antibody concentration . . . . . . . . . . . . . . . . 31

4.1.3 Antibody Boosting Model . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Parameterization and Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Duration of immunity without secondary antigenic response . . . . . 36

4.3.2 Average time between exposures . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 A Vaccination Model for Hia 41

5.1 Deterministic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Reproduction number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.2 Vaccination dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Stochastic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.3 Model implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Vaccination of susceptibles . . . . . . . . . . . . . . . . . . . . . . . . . 56

vi



5.3.2 Effect of vaccination on herd immunity . . . . . . . . . . . . . . . . . . 57

5.4 Sensitivity and Uncertainty Analyses . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 An Age Structure Model of Hia 65

6.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 Reproduction Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.2 Vaccination Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Stochastic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Stochastic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.2 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.3 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 The effect of vaccine formulations against Hia and Hib 87

7.1 Modelling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.1.1 Bivalent combined Hib-CP/Hia-CP vaccine . . . . . . . . . . . . . . . 97

7.1.2 Stochastic simulation model . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1.3 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3 Sensitivity Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vii



8 Discussion and Future Work 112

8.1 Research Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Appendix A: Details of Computational Methods . . . . . . . . . . . . . . . . . . . . 138

Appendix B: Serum Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

viii



List of Tables

4.1 Summary of the data collected based on the analysis of Hia seroprevalence

in a population of Northwestern Ontario, Canada. . . . . . . . . . . . . . . . . 30

5.1 Description of model parameters with their values (ranges) used for stochas-

tic simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Partial rank correlation coefficients and their associated p-values. . . . . . . . 60

6.1 Description of model parameters with their values (ranges) used for stochas-

tic simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1 Model parameters and their values used for simulations. . . . . . . . . . . . . 101

7.2 Partial rank correlation coefficients and their associated p-values. . . . . . . . 108

ix



List of Figures

4.1 Summary of the collected data stratified for the level of antibody concentra-

tions and the corresponding ages of individuals. . . . . . . . . . . . . . . . . . 32

4.2 Antibody boosting model results: The median GMC antibody levels with

their predictive 95% confidence intervals over a 10-year time period following

priming, without and with a new antigenic challenge. . . . . . . . . . . . . . 37

5.1 Schematic model structure in the absence of vaccination. . . . . . . . . . . . . 44

5.2 Schematic diagram for vaccination dynamics. . . . . . . . . . . . . . . . . . . 48

5.3 Time profiles of Hia carriage and disease without vaccination and with vac-

cination of infants starting at year 10. . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Time profiles of Hia carriage and disease with vaccination of infants and

other susceptibles starting at year 10. . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Herd immunity level against Hia carriage. . . . . . . . . . . . . . . . . . . . . 58

5.6 Time profiles of Hia carriage using the average realizations based on samples

in parameter space generated by the LHS method. . . . . . . . . . . . . . . . . 61

6.1 Leslie diagram for transitions between model compartments. . . . . . . . . . 68

x



6.2 Time profiles of age-specific fraction of population with carriage in the case

of 60 % of colonized individuals experiencing carriage. . . . . . . . . . . . . . 82

6.3 Time profiles of age-specific fraction of population with carriage in the case

of 90 % of colonized individuals experiencing carriage. . . . . . . . . . . . . . 84

7.1 The biological model of humoral immune response. . . . . . . . . . . . . . . . 90

7.2 The effects of pre-existing Hib immune responses on the production of anti-

bodies using a bivalent unimolecular Hib-CP-Hia vaccine. . . . . . . . . . . . 103

7.3 The effects of pre-existing Hib immune responses on the production of anti-

bodies using a bivalent combined Hib-CP/Hia-CP vaccine. . . . . . . . . . . 104

7.4 The effects of pre-existing CP and Hib immune responses on the production

of antibodies using a bivalent combined Hib-CP/Hia-CP vaccine. . . . . . . . 105

7.5 PRCC scatter plots of parameters: γ, γn, γ1, γ3, δ0, dg, δM. . . . . . . . . . . . . 107

xi



List of Abbreviations

Abbreviation Description
AICD Activation-Induced Cell Death

APC Antigen Presenting Cell

CIES Carrier-Induced Epitopic Suppression

CRF Chronic Renal Failure

DTap Diphteria Tetanus accelular Pertussis

DTaP-HB-IPV-Hib Diphtheria, Tetanus, Pertussis, Hepatitis B, Polio, and

Haemophilus influenzae serotype ‘b’

GMC Geometric Mean Concentration

HBOC Haemophilus influenzae serotype ‘b’ Conjugate Vaccine

Hia Haemophilus influenzae serotype ‘a’

Hib Haemophilus influenzae serotype ‘b’

Hib-CP-Hia Bivalent unimolecular vaccine against Haemophilus influenzae

serotypes ‘a’ and ‘b’

Hib-CP/Hia-CP Bivalent combined vaccine against Haemophilus influenzae

serotypes ‘a’ and ‘b’

LHS Latin Hypercube Sampling

MHC II Major Histocompatibility Complex Class II

OMP Outer Membrane Protein

PCV Pneumococcal Vaccine

PRCC Partial Rank Correlation Coefficient

PRP Polyribosylribitol Phosphate Polysaccharide

xii



Chapter 1

Introduction

Haemophilus (H.) influenzae is a bacterial pathogen isolated exclusively from humans. H.

influenzae serotype ‘a’ (Hia) is one of the 6 known encapsulated serotypes of this bacterial

pathogen, classified based on their distinct capsular antigens [1]. The past decade has wit-

nessed the emergence of severe community-acquired acute infections caused by Hia among

Canadian Aboriginal peoples and several other populations worldwide [2, 3]. The rate of

invasive Hia disease in northern communities, especially in the pediatric populations, has

reached alarming rates, with potential for the spread in the general Canadian population.

This underscores the urgent need for the development of preventive measures such as vac-

cination. Experience with H. influenzae serotype ‘b’ (Hib) vaccine over the past two decades

suggests that immunization could be an effective measure in curtailing Hia.

Despite marked decrease in the incidence of Hib following the start of vaccination in

the late 1980s, elimination of Hib colonization has not yet been achieved in several affected

populations [4, 5]. Resurgence of Hib in some North American populations has been re-

1



ported, causing concerns for the spread of disease to unvaccinated populations [4, 6]. Sev-

eral factors may have contributed to this resurgence, including the decline of protective Hib

antibody concentrations after primary immunization [4, 7–10] and deferral of the booster

dose vaccination [5, 12]. Given these observations, and ongoing efforts for vaccine develop-

ment against Hia, there is a clear need for evaluation of immunization strategies to identify

those that are most effective in the prevention and possible elimination of Hia disease.

Because both vaccine-induced immunity and naturally acquired immunity wane over

time, individuals may be at risk of becoming sub-clinically infected, and contribute to the

spread of disease without clinical manifestations. Furthermore, since vaccination limits the

circulation of Hia strains in the population, it directly interferes with the natural boosting of

immunity conferred by re-exposure. It is therefore imperative to investigate the long-term

epidemiological impact of vaccination, and determine the timelines for booster vaccination

to prevent Hia infection. For this investigation, we will develop mathematical models that

encapsulate biological and epidemiological mechanisms of disease transmission pertaining

to Hia infection dynamics, and address several important topics. These include:

• Frequency of Hia recurrent infections and timelines of humoral immune responses;

• Impact of vaccination and herd immunity on curtailing Hia;

• Vaccine formulation and the potential immune interferences.

We develop and simulate a boosting model of antibody concentrations, and use data

collected for anti-Hia antibodies in serum samples of healthy and immunocompromised

adults in a population of Northwestern Ontario, Canada. We investigate both the duration
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of immunity without boosting and the average time interval between subsequent exposures

to Hia. The study of the boosting model includes parametrization, simulations, and sensi-

tivity analysis of evaluation of changes in the model outputs with respect to variations in

input parameters.

We present the first stochastic model of Hia transmission dynamics, and evaluate vac-

cination strategies in a population with the assumption of well-mixed (homogeneous) in-

teractions. Since estimates published in the literature suggest that most infections occur

amongst children and older adults with underlying medical conditions, we extend this

model to incorporate age-structure and matrix of contact patterns. We use the age struc-

ture model to identify key parameters that affect the long-term epidemiological outcomes

of immunization.

Model outcomes using stochastic simulations naturally depend on the choice of pa-

rameters. We therefore need to measure the variations in model outcomes due to param-

eter changes. This quantification is inferred through sensitivity analyses using the Latin

Hypercube Sampling techniques. We perform multiple regression analyses to investigate

and rank the relative importance of parameters in model outputs for disease dynamics.

Through these analyses, we determine key parameters that affect the long-term epidemio-

logical outcomes of vaccination strategies.

To understand the effect of vaccine formulation on the elicitation of optimal immune

responses against both Hia and Hib, we develop an in-host model of immune dynamics

to simulate immune interferences in the presence of a bivalent H. influenzae glycoconjugate

vaccine against Hia. For these simulations, we consider several scenarios of naı̈ve and
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primed immune systems due to previous exposure or vaccination. We use continuous

time Markov-Chain Monte-Carlo simulations based on available parameter estimates in the

published literature. We place our findings in the context of vaccine development against

Hia, and discuss their implications for vaccination policies.

The findings of research presented in this thesis generate new knowledge necessary

for the development of vaccination policies to protect against Hia, and can therefore di-

rectly contribute towards reducing the rates of incidence, hospitalization, death, and severe

outcomes associated with this infection. Considering significant cost-savings that can be

achieved through immunization (prevention) rather than primary care (treatment), this

research has enormous potential to bring significant health and economic benefits, via re-

ducing healthcare costs nationwide. Although invasive Hia disease is more confined to

Aboriginal communities at this stage, the risk of its spread to the wider Canadian pop-

ulation cannot be discounted, especially amongst the elderly and immunocompromised

individuals. Hence, this research is highly relevant and applicable to a broader population

setting than solely considering Aboriginal populations.

The research conducted here is novel in several aspects. It provides the first stochastic

model for the transmission dynamics of Hia. Second, the proposed vaccination model,

for the first time, evaluates the outcomes of a potential vaccine candidate, and provides

information on plausible strategies for curtailing Hia infection. Third, in the context of

ongoing efforts to develop a new anti-Hia vaccine, it provides important information on

comparative evaluation of bivalent vaccine formulations, which could be used to maximize

population-wide benefits of vaccination.
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Chapter 2

Haemophilus influenzae

H. influenzae is an important bacterial pathogen that can cause severe invasive disease.

The invasive disease affects mainly young children, adults with some underlying condi-

tions, and immunocompromised individuals [2, 3]. H. influenzae infection can manifest as

meningitis, epiglottitis, otitis media, bacteremia, pneumonia, septic arthritis, cellulitis and

septicemia [13]. It was first found in a group of patients during an influenza outbreak in

1892 and it was mistakenly considered to be the causative agent of the viral influenza in-

fection, until the discovery of the influenza virus in 1933 [11]. However, its name was kept

as a result of its initial mischaracterization in relation to viral influenza.

H. influenzae is a human-restricted bacterial pathogen that is transmitted via direct con-

tact with an infectious individual by airborne droplets through coughing and sneezing [14].

It enhabits the upper respiratory tract and is part of normal bacterial flora of oropharynx

and nasopharynx in a large proportion of the population [15, 16]. Most infections caused

by H. influenzae bacteria are carriage (without manifestation of any clinical symptoms) and
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may never develop into disease [17]. These bacteria are opportunistic pathogens that usu-

ally live in the host without causing any harm or disease, while waiting for an opportunity

such as the presence of a viral infection, reduced immunity, or weakened immune system.

H. influenzae is characterized by extensive antigenic diversity in their polysaccharide

capsules. The organism may be unencapsulated (nontypeable), or typeable and classified

into 1 of 6 serotypes (namely: a, b, c, d, e, and f) [1]. Nontypeable H. influenzae is highly

variable and counts for the majority of localized respiratory tract infections that are caused

by these bacteria. Nontypeable strains are antigenically divergent and individuals can be

colonized with different strains in different times during their childhood [18, 19]. Non-

typeable H. influenzae infections are responsible for causing otitis media in children and

bronchitis in adults, but may also cause invasive disease, such as bacteremia and pneu-

monia [20]. Among the encapsulated strains, serotypes ‘a’ and ‘b’ are the most virulent

[21].

Hib was the major cause of bacterial meningitis in young children worldwide before the

introduction of the conjugated Hib vaccine in the late 1980s [22]. Routine infant vaccination

against Hib dramatically decreased the incidence of invasive Hib disease and carriage in

countries where vaccination programs were implemented [22]. Prior to the implementation

of Hib vaccination, about 20,000 children younger than 5 years of age developed severe

invasive disease and about 1000 died in the United States alone each year. By 2006, the

number of reported Hib cases was down to only 29 per year [23].

Since protection conferred by Hib vaccines is specific to serotype ‘b’ polysaccharide

capsule, widespread vaccination against Hib may have unmasked disease caused by other
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serotypes [24]. During the preceding decade, the incidence of infections caused by Hia has

increased by differentiated rates of morbidity in different populations worldwide, particu-

larly in Aboriginal communities of North America [25–27]. Currently there is no vaccine

available against Hia infections, and significant efforts continue for the development of a

conjugated anti-Hia vaccine.

2.1 Epidemiology of H. influenzae

Hib was the most common cause of invasive disease among children two decades ago

[28]. World Health Organization estimated that prior to the introduction of conjugated

vaccine, Hib caused around 3 million cases of invasive disease and 386,000 deaths each

year in children under 5 years of age [30]. Disease incidence was higher in children 4-18

months and rare in older children and adults. The prevalence of carriage at birth was low,

but gradually increased in early childhood and thereafter declined gradually with age.

The peak incidence of Hib disease was estimated between 6 and 12 months of age, and

thereafter declined markedly, with a rare presence in adults [17]. There are studies that

show that 20% of children are colonized in the first year and up to 50% colonized by age 5

years [29]. Before the start of vaccination era, the epidemiology of Hib varied in different

populations [31]. In the industrialized world, the peak incidence of Hib disease occurred

around 12 months of age with pneumonia as the most common clinical manifestation. In

developing countries, the disease typically occurred in infants younger than 1 year old, with

meningitis and epiglottits as the most frequent clinical symptom [28]. Universal pediatric
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immunization against Hib dramatically decreased the Hib invasive disease rates.

The preceding decade has witnessed the emergence of Hia as the dominant encapsu-

lated strain of H. influenzae in several specific geographic locations and populations [25, 32].

Severe infections caused by Hia have reached alarming rates in terms of morbidity in Cana-

dian Aboriginal communities [25]. The case-fatality rate of invasive Hia disease among pe-

diatric cases reported by Canadian IMPACT centers in 1996-2001 reached 16% [33]. From

2000 to 2010, 56% of identified cases with serotype information were caused by Hia in

Canadian northern populations, with an average Hia incidence of 4.6 cases per 100,000

population per year over 11 years [25]. Specific reasons behind an increased incidence of

invasive Hia disease among some Indigenous populations remain unknown. Explicators

may include genetic and environmental factors, especially considering that the same popu-

lations experienced the highest incidence rates of invasive Hib disease prior to Hib vaccine

[2].

Current rates of Hia colonization in general North American population is unknown.

Early studies show the presence of Hia in North American Arctic, including Alaska and

Northern Canada, Western Canadian provinces, southwestern parts of the USA, especially

among Indigenous populations living in these areas, as well as some areas of South Amer-

ica (Brazil) [2]. However, due to the lack of comprehensive surveillance programs in many

countries, the epidemiological data of Hia-associated disease are not complete, potentially

underestimating the impact of Hia infections worldwide [3].

Emergence of nontypeable H. influenzae as the most prevalent H. influenzae that caused

invasive disease was reported in studies worldwide [34]. In several populations, the inci-
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dence of other serotypes has increased. In England and Wales, estimates during 2001-2010

indicated an 11.0% year-on-year increase in Hif and a 7.4% increase in Hie [35].

2.2 Biological Characteristics of H. influenzae

H. influenzae is a small, gram-negative bacterium, which belongs to the Pasteurellaceae fam-

ily. Encapsulated strains of H. influenzae isolated from cerebrospinal fluid are coccobacilli.

Non-encapsulated organisms isolated from sputum are pleomorphic and often exhibit long

threads and filaments. H. influenzae bacteria are immobile since they lack the presence of

flagella. The organism is generally aerobic but can grow as a facultative anaerobe. The

bacteria grow best around 35-37 degrees Celsius with a pH level of 7.6 and specific growth

factors that can be found in the blood stream. The organism is characterized by the pres-

ence of a capsular polysaccharide in all encapsulated strains, which plays a major role in

the virulence of the pathogen. The capsule is a well-organized polysaccharide layer that lies

outside the cell envelope of bacteria. Serotypes ‘a’ and ‘b’ are the most virulent strains and

their capsules are composed of a neutral sugar, an alcohol (ribitol), and a phosphodiester

[36].

The pathogenesis of H. influenzae infections is not completely understood, although

the presence of the capsule in the encapsulated strains is known to be a major factor in

virulence. The accepted pathogenesis begins with pharynx as the portal of entry [37]. When

the bacteria breach the epithelial barriers, and enters sites which are normally free of the

germs such as blood or cerebrospinal fluid, they are able to cause invasive disease [11, 40].
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Their capsule allows them to resist phagocytosis and complement-mediated lysis in the

non-immune host. Therefore, the bacteria invade the blood or cerebrospinal fluid without

aggravating an inflammatory response and attracting phagocytes [38, 39]. Encapsulation

facilitates the spread of bacteria from one host to another by enhancing the bacteria ability

to survive the dehydration stress that occurs during transfer between hosts [40].

H. influenzae was the first free-living organism to have its entire genome sequenced [38].

There are several main virulence factors in H. influenzae such as: capsule (present only in en-

capsulated strains), fimbrial adhesin, IgA protease, lipooligosaccharide and protein D. The

main virulence factors in nonencapsuated strains are the adhesin proteins, which mediate

the adherence of microorganism to epithelial cell surfaces facilitating invasion, colonization

and other subsequent pathogenesis of the microorganism [41]. Lipooligosaccharide lipid A,

which is present in Gram-negative bacteria only, has endotoxic activities. IgA protease in-

activates human immunoglubolin A present in the mucosal surfaces. Protein D is a highly

conserved surface lipoprotein present in all encapsulated and unencapsulated strains [42].

The main role of this protein is damaging the ciliary function in human nasopharyngeal

tissue and is, therefore, involved in the pathogenesis of upper respiratory tract infections

[43]. Some of the virulence factors present in H. influenzae are immunogenic and can be

used in designing vaccine candidates against infection caused by H. influenzae.
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2.3 Clinical and Subclinical Manifestations

Clinical diagnosis of H. influenzae is typically confirmed by bacterial culture. Diagnosis is

considered confirmed when the organism is isolated from a sterile body site. In this respect,

H. influenzae cultured from the nasopharyngeal cavity or sputum would not indicate inva-

sive H. influenzae disease, because these sites are colonized in disease-free individuals [22].

Most surveys agree that nasopharyngeal or throat culture recover Hib in 3% to 5% of young

children [44]. However, H. influenzae isolated from cerebrospinal fluid or blood would in-

dicate invasive H. influenzae infection. Hospitalization is generally required for invasive H.

influenzae infections and the antimicrobial treatment is necessary. However, treatment de-

pends on where the infection is located at, severity of the infection, the age of the patient,

and the patients medical history. The pathogen is susceptible to chloramphenicol and third

generation cephalosporins (e.g. cefotaxime, ceftriaxone, and cefuroxime) [45]. Many cases

who are diagnosed after presenting chest infections caused by nontypeable H. influenzae

do not respond to penicillins or first-generation cephalosporins. Without treatment, infec-

tion due to H. influenzae can be rapidly fatal, particularly by meningitis and epiglottitis. In

case of survival, H. influenzae infections can cause lifelong disability. Up to 20% of patients

who survive Hib meningitis have permanent hearing loss or other long-term neurological

sequelae [46–48].

H. influenzae frequently colonizes the nasopharynx in healthy individuals and can cause

local infections, such as otitis media, sinusitis or pneumonia. Most H. influenzae infections

are carriage which means the individual harbors the pathogen in the absence of clinical
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manifestation of the illness [49]. Both carriage and the cases with invasive disease play

an important role in transmission. Colonization is defined as the presence of viable H.

influenzae organisms in the human pharyngeal mucosa. H. influenzae carriage rates are

low in the first 6 months of life, reach a maximum between the ages of 3 and 5 years,

and gradually decline in adulthood [17]. Children will have a strain for weeks to months,

which will then be cleared and the acquisition of a new strain may occur [50]. The carriage

rates might be higher under crowding circumstances or presence of Hib disease within

a closed population [51]. Most strains of H. influenzae live in their host without causing

disease, but can cause infection only when other factors create an opportunity. Different

factors impact the development of invasive disease. Some of these factors include the

presence of a viral infection, reduced immune function or chronically inflamed tissues.

Clinical features of invasive H. influenzae disease may include initial symptoms of an upper

respiratory tract infection mimicking a viral infection, usually associated with a low-grade

fever. This may progress to the lower respiratory tract within a few days, with features

often resembling those of a wheezy bronchitis. The cough may persist for weeks without

appropriate treatment. More serious manifestations of H. influenzae include meningitis,

epiglottitis, pneumonia, arthritis, bacterimia, sepsis and cellulitis, which are usually caused

by encapsulated strains. Those infections affect many organ systems and depending on it,

specific clinical symptoms are associated with them. Hallmarks of Hib meningitis are

fever, decreased mental status, and stiff neck (these symptoms also occur with meningitis

caused by other bacteria) [14]. Epiglottitis is an infection and swelling of the epiglottis, the

tissue in the throat that covers and protects the larynx during swallowing. Epiglottitis may
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cause life-threatening airway obstruction. Septic arthritis (joint infection), cellulitis (rapidly

progressing skin infection which usually involves face, head, or neck), and pneumonia

(which can be mild or severe) are common manifestations of invasive disease [14]. Otitis

media and acute bronchitis due to H. influenzae are generally caused by non-typeable strains

[20].

2.4 Prevention

Vaccination against Hib targets the capsular polysaccharide antigen that is specific to Hib

and is effective for Hib but not other serotypes [52]. Vaccine is usually given between two

months and five years of age. Currently there is no vaccine available against Hia or other

serotypes. The experience with Hib vaccines over the past 20 years has demonstrated that

even highly vulnerable populations can be successfully protected using immunization with

protein-polysaccharide conjugated vaccine [53, 54]. Therefore, immunization of vulnerable

populations against Hia may curtail Hia incidence in affected communities. Serum anti-

capsular antibodies are the principle protective factors against H. influenzae infections since

polysaccharide antigens do not stimulate T lymphocytes required for the development of

immunological memory and cell-mediated immunity [14]. Immunoglobulin G (IgG) is the

main type of antibodies produced against H. influenzae infections. IgG is found in all body

fluids. It is the smallest but most common antibody (75% to 80% of all the antibodies).

Immunoglobulin M (IgM) is the largest antibody in the human circulatory system that

appears first in response to the initial exposure to an antigen [55]. At birth, infants are

13



protected through maternal, transplacentally acquired anti-capsular IgG. Over time, the

level of maternally acquired antibodies declines. As children approach 2 years of age, their

own antibodies to the capsular polysaccharide (established only for Hib) begin to appear.

The precise level of antibody required for protection against invasive disease is not clearly

established. However, a titer of 1 µg/ml is suggested to provide long-term protection

against invasive disease in the vaccinated population [56]. It is considered a protective

response after vaccination required to assure a minimal level of 0.15 µg/ml (protective

level) during the course of a year [56].

Natural immunity against H. influenzae infections is based on antibodies that develop

as a result of subclinical infections (carriage) or contacts with other cross-reactive bacteria

[7]. Rates of carriage in the population affect the duration of protective immunity against

invasive H. influenzae disease. It is challenging to determine the rates of carriage since

many cases of subclinical infections may not seek clinical attention, and are therefore not

included in the true prevalence of the infection in the population. High levels of carriage are

usually associated with high serum anti-capsular antibody concentrations [57]. The impact

of carriage on disease incidence is complex. On one hand, encountering the pathogen

increases the risk of invasive disease. On the other hand, it contributes to the rise of

protective immune responses by increasing the level of antibody concentration [7]. The

level of boosting and the risk of developing invasive disease depend on the level of pre-

existing antibody concentration at the time of exposure to the pathogen. Several studies

have provided data suggesting that unvaccinated individuals are protected against invasive

Hib disease if the concentration of serum antibodies is above 0.15 µg/ml [56, 58, 59]. A
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much higher antibody level (10 µg/ml), was assumed to be required for protection against

acquisition of carriage [7].

Based on the experience with Hib vaccination, a vaccine against Hia composed of pu-

rified capsular polysaccharide has low immunogenicity and cannot stimulate T-cell re-

sponses, which are essential for long lasting effects of adaptive immunity. In young ages,

the antibody response to T-cell independent antigens (such as H. influenzae) is low, consists

of a high proportion of IgM antibody, and there is no booster response to subsequent doses

of antigens [37]. Thus producing a conjugate vaccine through covalent linkage to pro-

tein molecules is important to converting polysaccharides into T-cell dependent antigens.

Given the chemical similarities between Hia and Hib capsular polysaccharides, it has been

suggested that a bivalent Hib-Hia glycoconjugate vaccine formulation with a similar car-

rier protein previously used for Hib vaccine could be utilized to induce effective immune

protection against both Hia and Hib infections [2, 3]. In this context, the formulation of

a bivalent vaccine should be carefully evaluated since pre-existing immunity against Hib

may interfere with the generation and boosting of the anti-Hia antibodies.

2.5 Anti-Hia Vaccine and Vaccination

Currently, there is no vaccine available for preventing Hia infection, and the herd immunity

in the population is potentially generated through natural infections. Because the incidence

of Hib has been dramatically reduced over the past 20 years following the introduction of

vaccine, an anti-Hia vaccine may also be a successful measure in curtailing Hia infection.
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While efforts continue for the development of a new anti-Hia vaccine, a number of key

questions must be addressed in order to maximize the population-wide benefits of vac-

cination in Hia prevention, and raise the herd immunity to levels required for pathogen

elimination. Here, we outline these questions that are addressed in this thesis through

modelling, simulations, and data and statistical analysis.

In the absence of vaccination, exposure to the pathogen will lead to the development of

adaptive immune responses. As antibody titres decline over time, the pre-existing immune

responses wane, which increases the susceptibility of individuals to Hia infection, and se-

vere outcomes. Recurrent exposure to Hia can help boost the level of antibody titres for

Hia prevention. When a vaccine is introduced, the circulation of Hia bacteria in the popu-

lation is reduced, and therefore the individual exposure to this pathogen will be decreased.

This will in turn reduce the chance of boosting immune responses. Therefore, the inter-

play between vaccination dynamics and the immune dynamics at both the individual and

population levels has important consequence for the use of Hia vaccine. We will explore

these dynamics to determine the rates at which pre-existing immunity declines, and how

frequently the immune responses should be boosted. The objectives here are to address the

following questions:

• What are the timelines for decline of antibody responses following exposure to Hia

in the absence of vaccination?

• How frequently should the protective antibodies against Hia be boosted in order to

eliminate the risk of Hia infection?
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When an anti-Hia vaccine becomes available, vaccination strategies will need to be in-

formed by the vaccine coverage, booster coverage, timelines for booster vaccination, and

target age groups in the population for vaccination. Our questions here are formulated as

follows:

• Can vaccination of only infants prevent the spread of the disease in the population?

Since Hib vaccine has been implemented in the universal infant immunization pro-

grams, it has been suggested that anti-Hia vaccine will be targeted for immunization

of infants.

• If needed (determined by the outcomes of infant immunization), what are the primary

rates of vaccination for older susceptible individuals?

• Under what conditions, a booster vaccination is required for individuals who have

received the primary dose?

As reported in the incidence of Hia and Hib, age can play a significant role in the

transmission of infection. The incidence of these infections could also be affected by con-

tact patterns between individuals. Estimates published in the literature suggest that most

infections occur amongst children and older adults with underlying medical conditions

[2, 3]. Therefore age may be a factor to be considered in transmission dynamics of Hia and

vaccination. Considering age in vaccination dynamics could therefore reveal more infor-

mation on the target groups and their vaccination coverage. We will address the following

question:

• What is the age-specific vaccination coverage for curtailing Hia disease?
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Considering the similarities of capsular polysaccharide antigens between Hib and Hia,

possible vaccine candidates include a bivalent Hia-Hib vaccine with a carrier protein to

immunize individuals against both Hia and Hib. In naı̈ve populations with no prior ex-

posure to these pathogens, or vaccination against Hib, the choice of vaccine formulation

may not interfere with the immune response at the host level. However, considering that

several populations worldwide have been exposed to Hib or Hia and the protective vaccine

against Hib was implemented in many countries (affected by Hib) as part of their infant

immunization programs, the vaccine formulation may play a significant role in protective

levels of the vaccine-induced immunity. In the context of pre-existing immunity, our aim

is to simulate the immune interferences and vaccine dynamics to address the following

question:

• What are the implications of pre-existing immune responses to Hib in the design of a

new bivalent anti-Hia vaccine?

To address the above questions, we will employ mathematical and computational method-

ologies as well as data and statistical analysis. In the context of ongoing efforts to develop a

new anti-Hia vaccine candidate, the work presented in this thesis is important in addressing

several key public health questions, which include the effectiveness of immunization strate-

gies, optimal scenarios for long-lasting protection in the population, and the most effective

vaccine formulations to provide protection against Hia infections. Since our methodology

relies on the development of mathematical and computational models, we will first present

an overview of the existing models of H. influenzae in the literature.
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Chapter 3

Review of Existing H. influenzae

Modeling

Mathematical models have been used to gain new knowledge of the mechanisms of H.

influenzae disease pathogenesis, transmission, and control programs. During the preceding

two decades, a number of models have been developed to study various aspects of Hib,

including the epidemiology of disease before and after the introduction of anti-Hib vac-

cines [5, 7, 8, 17, 28, 49, 62, 63]. Most models have taken a computational approach, and

divided the population into compartments based on the clinical and epidemiological sta-

tuses of individuals (e.g., susceptible, clinically infectious, and subclinically infectious), and

defined rates at which individuals move between the compartments. These models can be

classified as deterministic or stochastic, and individual or population based. Deterministic

models approximate the average behavior of the system and may be used when the popu-

lation size under study is large. In a stochastic model, state variables are not described by
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unique values, but rather by probability distributions, incorporating the possibilities and

the probability of events occurring. These models may require a larger set of parameters

compared to deterministic models, and can be used even when the populations size is rel-

atively small, accounting for large variations and stochasticity. Some of the Hib models

published in the literature deal with large groups (population-based models) [5, 62], while

others trace individuals through time (individual-based models) [49]. Individual-based

models can be used to study complex interventions, but they require significant amount

of information and may present computational challenges in parameterization [64]. Never-

theless, individual-based models account for stochasticity, and are capable of representing

more realistic scenarios in disease transmission dynamics [65].

One of the earliest models of Hib (Auranen et al., 1996) described Hib infection in

a family with small children. The aim of this individual-based Markov-process model

was to estimate transmission rates of Hib infection and quantify the effect of the family

size and age structure on the prevalence of Hib carriage. This model was fitted to data

collected in the United Kingdom from 1991 to 1992, and Finland from 1985 to 1986 prior

to the introduction of Hib vaccination into the immunization programs of these countries.

The authors observed an age-dependence in carriage prevalence, which led to decline in

transmission rates by age. Their results showed an increase in the prevalence of carriage as

the family size increases.

Before the introduction of vaccines against Hib, herd immunity in the population was

mainly generated as a result of carriage and cross-reactive bacteria with similar or identi-

cal antigens to Hib, which circulated in the population and boosted the immunity against
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Hib. Several studies have discussed the role of carriage and cross-reactive antigens in the

development of immunity against Hib. Coen et. al. (1998) developed a compartmental

model to explore the relationship between Hib carriage and disease within populations

by reviewing empirical studies for the pattern of Hib. They used maximum likelihood

methods to estimate parameters of the model by comparing existing age-structured, de-

terministic models to the observed epidemiological patterns. Their results suggested that

Hib carriage may act as an immunizing process, leading to the development of natural

immunity against disease. Hib carriers have higher antibody titers than non-carriers re-

gardless of the vaccination status. From the analysis of the data sets, their study concluded

that a susceptible-infected-susceptible (SIS) model fits the data better than a susceptible-

infected-recovered (SIR) model, since immunity against the disease is not permanent and

human hosts who clear Hib pharyngeal carriage can become recolonized in a relatively

short time period. Based on the estimated force of infection, the authors suggested that all

ages are capable of acquiring the organism, although there might be a small decline for the

older age groups, which might come as a result of behavioral or immunological factors.

Considering the relatively low force of infection of Hib carriage, their results support the

theory that carriage is not the only determinant of the immunity to disease. The observed

dramatic decrease in Hib disease incidence could best be explained if the majority of the

naturally-acquired immunity were attributed to cross-reactive bacteria.

In 2002 Leino et al., studied the effect of cross-reactive antigens in Hib infection dy-

namics. They applied a statistical model to estimate the total rate of immunizing infections

of Hib and cross-reactive bacteria in Finland and the United Kingdom prior to wide-scale
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vaccinations. Their results supported earlier findings that cross-reactive bacteria may play

an important role in the epidemiology of Hib and generation of immunity. They sug-

gested that the rate of cross-reactive pathogens varies between populations and that the

geographical variation in Hib epidemiology can be explained by different exposure rates

to such bacteria.

After the introduction of vaccines against Hib, mathematical models were more widely

used to study the effectiveness of Hib vaccination [8]. These models have attempted to

address questions regarding optimal schedule and dosage of vaccination. Furthermore,

a number of studies have investigated how vaccination alters the age distribution of the

disease and waning of natural immunity in individuals and the population, which would

indicate the need for boosting vaccination [7, 17].

The vaccine against Hib has been shown to have important consequences for the epi-

demiology of disease. Naturally, vaccination can reduce the occurrence of carriage due to

limitation in pathogen circulation, and this could lead to the waning of the individual im-

munity and its effects extend well beyond self-protection and impact the population level

of immunity (known as herd immunity). This indirect effect was documented in a model of

Hib dynamics and natural immunity studied by Leino et al. in 2000. The model was used

to study the duration of natural immunity to Hib under different forces of infection. This

statistical model was built on the assumption that the magnitude of the initial antibody

response, the rate of decline of antibody concentrations, and the force of infection together

determine the antibody concentration level after an initial antigenic stimulus. The model

examined how antibody concentrations can vary in different populations depending on
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the force of infection. If the force of infection is relatively low, vaccinating young children

would result in a decrease in the circulation of Hib bacteria as well as a decrease in the

number of invasive infections in the unvaccinated cohort. When the force of infection is

high, the effect of vaccination is more complicated. Following vaccination, there is a pos-

sibility that the incidence of invasive disease in the unvaccinated cohort could increase.

The limitation in pathogen circulation could result in a decline of antibody concentrations,

and therefore protective immunity in adults might disappear. The study suggested that

the end result could be a higher incidence of disease in older age groups than before the

vaccination programs were applied. These estimates serve to predict possible changes in

the herd immunity.

In a follow-up study, Leino et al., (2004) incorporated the waning of natural immunity

in a structured population model. They built an individual-based stochastic simulation

model and considered different contact structures where transmission of infection occurs

(i.e., families, daycare units and school classes) to study the protective immunity in the

unvaccinated population obtained by Hib vaccination. The model showed that when the

circulation of the bacteria is diminished, the immunity conferred by natural infection will

wane over time, and those who are not vaccinated may experience a higher risk of infection.

According to the study, even a fairly small effect on carriage can result in a considerable

reduction in the incidence of invasive Hib disease. The model was also used to explore

the effects of different conjugate Hib vaccines and vaccination schedules on achieving suf-

ficiently high antibody concentrations.

The effect of Hib vaccination on the pathogen transmission was further studied by Au-
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ranen et al. (2004). The authors developed an individual-based stochastic simulation model

and embedded the demographics of Finland population in the mid-1990s. Different net-

work contacts such as family, day-care groups, and school classes were defined to represent

typical sites of Hib transmission. Age dependence was incorporated in the model through

age distribution of attending different contact sites and activities. Immunity against in-

vasive disease was stimulated by the total rate of acquisition of Hib carriage and cross-

reactive bacterial encounters. Findings of the model analysis showed that the prevalence

of Hib carriage exhibits an age-dependent pattern. Transmission occurs between children

and adults in families, and pre-school and school-aged children played an important role

in maintaining Hib circulation. Furthermore, through simulation experiments, the number

of secondary infections generated by a single infectious case (R0) was estimated at 1.04 in

the age range between 4 and 16 years, which was higher than R0 of 0.83 for the rest of the

population. The study showed that considering the small number of secondary infections

for a single carrier, even moderate levels of vaccination might impact Hib transmission.

This suggests that for obtaining sufficiently high level of herd immunity in the population,

the effect of vaccination on carriage should carry over to older children.

After the introduction of vaccines against Hib in the routine infant immunization pro-

grams, a decline in the vaccine effectiveness was noticed in different populations. The

decline may have been due to a lower immunogenic version of the vaccine being used,

decline of protective Hib antibody concentrations after primary immunization, or deferral

of the booster dose vaccination. McVernon et al. (2007), studied the causes of decline in

the vaccine effectiveness in the United Kingdom. The authors developed an age-structured
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deterministic susceptible-infected-recovered-susceptible (SIRS) mathematical model to in-

vestigate the impact of vaccine on herd immunity. Their model predicted that the shortage

of vaccine would have no effect on the incidence of Hib disease for the first three years. The

study results highlighted the importance of maintaining high levels of antibody concentra-

tions among age groups at higher risk of invasive disease after wide scale immunization.

This conclusion was consistent with a previously published work. Similarly, Leino et al.,

(2004) suggested that vaccine and vaccination schedules should result in high antibody

concentrations, in addition to immunological memory.

Mathematical models have also been used to study different epidemiological patterns of

Hib that were observed after the introduction of vaccines. Jackson et al. (2012), developed

an age-structured mathematical model of Hib transmission that can be applied in multiple

contexts. The model was useful to study the initial rapid decline in the Hib incidence after

the introduction of vaccines. Their model accounts for the rises in the Hib incidence that

were noted in the United Kingdom 7 years after the catch-up campaign and in the Alaska

Natives populations after the switch of vaccine types from individual conjugated Hib vac-

cine to acellular DTap-IPV-Hib. This model was originally developed in response to the

2007-2009 Hib vaccine shortage in the United States, but it could also be useful for optimiz-

ing the introduction of Hib vaccines in populations with no prior exposure to the pathogen

or vaccine against Hib. The model was implemented for the United States, England and

Wales, and the Alaska Native populations. It classifies populations in a number of states on

the basis of age, Hib antibody levels (high, low, and none) and disease status (susceptible,

colonized, diseased and immune infants). The study suggested several important insights

25



into the epidemiology of Hib and the design of Hib vaccination programs. First, the model

illustrated that in the United States, and England and Wales, Hib transmission is driven

by children 2-4 years of age, which is in contrast with previous models that suggested the

transmission of carriage occurs mostly between individuals of approximately the same age,

known as assortative mixing [8, 17, 62]. Second, the model indicated that Hib transmission

dynamics differ across distinct populations, and in the Alaska Native populations is mainly

driven by children 5-9 years of age. The difference in the transmission dynamics may have

important consequences for the design of Hib vaccination programs. There may be popula-

tions for which a policy of a single dose at 12-15 months would reduce invasive Hib nearly

as much as a 3-dose primary series plus a booster would (for example, the United States

and England and Wales). In contrast, offering only a single dose at 12-15 months of age

would be considerably less effective for the Alaska Native populations. In these settings,

the force of infection is high even for young infants, which has important implications for

the choice of vaccine. The model predicts that both PRP-T (polyribosylribitol phosphate

polysaccharide (PRP) conjugated to tetanus toxoid (T)) and HBOC (PRP conjugated to a

nontoxic mutant of diphtheria toxin) vaccines are much less effective than the PRP-OMP

(PRP conjugated to Neisseria meningitides outer membrane protein, OMP) vaccine, since

PRP-OMP stimulates protective antibodies after the first dose at 2 months of age, which is

not the case for the other two vaccine formulations. Furthermore, in some populations, a

single dose at 12-15 months may lead to a higher reduction of Hib disease compared to a

3-dose primary without a booster. These findings highlighted the importance of evaluating

Hib transmission dynamics for optimizing vaccination.
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The mathematical models developed in this thesis are the first ones to describe the

dynamics of Hia infection and disease. There are no other models of Hia transmission

and control dynamics published in the literature. The antibody-boosting model developed

here is used to investigate the dynamics of naturally acquired antibodies against Hia. We

used data collected for anti-Hia antibodies in serum samples of healthy and immunocom-

promised adults in a population of Northwestern Ontario, Canada. The input data were

provided by our collaborators at Northern Ontario School of Medicine (Dr. Ulanova's re-

search team). The analysis of the boosting model includes parameterization, simulations,

and the Latin Hypercube Sampling technique for sensitivity of the outputs with respect

to variations in input parameters. The vaccination model presented in this thesis will, for

the first time, evaluate the outcomes of a potential vaccine candidate, and provide impor-

tant information on plausible strategies for curtailing Hia infection. Since the prevalence

of Hia carriage exhibits an age-dependent pattern, an age structure model is constructed

and used to reveal more information on the target groups and their vaccination coverage.

In the context of ongoing efforts to develop an anti-Hia vaccine candidate, the stochas-

tic in-host model of immune dynamics also provides information on the effective vaccine

formulation that maximizes the population-wide benefits of vaccination, considering the

historical precedence in terms of exposure to Hia or Hib. We use continuous time Markov-

Chain Monte-Carlo simulations based on available parameter estimates in the published

literature. Further details of the computational methods used in simulations are provided

in Appendix A. The findings will have important implications for current efforts towards

vaccine development against Hia, as well as vaccination policies.
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Chapter 4

Dynamics of Naturally Acquired

Antibody against Hia

The preceding decade has witnessed the emergence of Hia as the dominant encapsulated

strain of H. influenzae in several specific geographic locations and populations, including

Aboriginal populations in North America [2, 3]. Clinical and epidemiological studies of

Hia indicate that Aboriginal children (younger than 5 years of age) and adults with pre-

disposing medical conditions are most affected by invasive Hia disease [2]. Understanding

of the immunological and epidemiological characteristics of this pathogen is imperative

to develop preventive measures with long-lasting effects. Of particular importance is the

duration of protective immunity against Hia invasive disease, which is primarily affected

by rates of carriage in the population.

Similar to Hib, since vaccination with a conjugate vaccine specific to Hia could reduce

the circulation of Hia bacteria, and therefore the incidence of Hia carriage, determining
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timelines for boosting of protective immunity will be essential for the maintenance of a

high level of herd immunity. In case of Hib, new infections were estimated to occur once in

4 years to maintain serum antibody concentrations ≥ 1.0 µg/ml prior to the introduction

of conjugated Hib vaccine [7]. Currently, there are no estimates of Hia recurrent infections

and timelines for boosting of antibody concentration.

In this study, we develop a model of secondary antigenic response using data for anti-

Hia antibody concentrations in serum samples of participants in a population of Northwest-

ern Ontario, Canada. Our aim is to estimate timelines for boosting antibody concentrations

following priming for different populations’ characteristics. We consider age, sex, ethnicity

(i.e., Aboriginal and non-Aboriginal), and health status (including those presenting chronic

renal failure) of individuals in stratifying collected data. Since rates of antibody decay

against Hia are still unknown, we parameterized the model using available estimates from

the published studies for Hib. We base this assumption on the similarities between Hia

and Hib capsular polysaccharide antigens [66, 67].

4.1 Methodology

Our methodology includes several steps described below, including sample collection and

laboratory assays (see Appendix B for details), data analysis, model development, simu-

lation experiments and sensitivity analyses of the model outcomes. Data collection and

analysis for this part of the research were approved by the Thunder Bay Regional Health

Sciences and Lakehead University Research Ethics Board.
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Table 4.1: Summary of the data collected based on the analysis of Hia seroprevalence in
a population of Northwestern Ontario, Canada. CRF: chronic renal failure; F: female; M:
Male.

Aboriginal Non Aboriginal

Healthy CRF Healthy CRF

Age/Sex F M F M F M F M

19–34 29 5 2 4 10 7 2 0

35–59 23 5 14 7 13 7 4 4

≥ 60 3 1 8 2 5 6 6 19

All 55 11 24 13 28 20 12 23

4.1.1 Study area

The analysis is based on Hia seroprevalence data collected during September 2010–August

2012, in a population of Northwestern Ontario, Canada, which is characterized by a pres-

ence of a significant proportion of Indigenous peoples, i.e., 19.6% of the total population

in this area. In comparison, according to the 2006 Canadian Census, Indigenous peoples

comprise 3.8% of the Canadian population. Healthy adults aged 19–80 years who self-

identified as either Aboriginal or non-Aboriginal were recruited from the Thunder Bay

area. Individuals with chronic renal failure (CRF) aged 24–91 years were recruited from

the Renal Services, Thunder Bay Regional Health Sciences Centre. Characteristics of the

participant groups are presented in a previously published study [68]. We summarize the

demographic and health status of participating subjects in Table 1.
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4.1.2 Stratification with antibody concentration

On the basis of previous findings on immunological correlates of protection against Hib

disease, we hypothesized that anti-Hia polysaccharide antibody concentrations of 1 µg/ml

or above provide long-term protection against invasive Hia disease and concentrations of

5 µg/ml or above prevent colonization of the upper airways. For the purpose of simu-

lations, we stratified the collected data for the level of antibody concentrations and the

corresponding average ages of individuals in Figure 4.1. In all categories of healthy and

CRF participants, the level of antibody concentration < 1 µg/ml corresponds to the lowest

fraction of individuals, with an average age older than 50 years.

We used logistic regression to investigate the effect of age and sex on the concentration

of anti-Hia capsular polysaccharide antibody in serum samples of study participants. The

statistical significance of adding the interaction term for age and sex was assessed by using

a likelihood ratio test. We performed this analysis for both Aboriginal and non-Aboriginal

participants. All tests were at a two-sided significance level of 0.05. The results of this

analysis showed that variables of sex and age were not significant on the level of antibody

concentration, suggesting that the antibody-boosting model could be developed indepen-

dently of these variables.

4.1.3 Antibody Boosting Model

To develop the model, we assumed that in the absence of any boosting, the initial antibody

level decays in the exponential form c(t) = c0e−k(t−t0)
a
, where c(t) is the antibody concen-
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Figure 4.1: (a) The fraction of individuals at low risk of infection (AC ≥ 5 µg/ml; light
grey), low risk of invasive disease (1 µg/ml ≤ AC < 5 µg/ml; dark grey); and high risk of
invasive disease (AC < 1 µg/ml; black). (b) The corresponding average ages of individuals
identified as healthy Non-Aboriginal (NAb-H); Non-Aboriginal with chronic renal failure
(NAb-CRF); healthy Aboriginals (Ab-H); and Aboriginals with chronic renal failure (Ab-
CRF). AC: total IgG and IgM antibody concentration.
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tration at time t; c0 is the initial concentration, k is the decay rate; and a is the parameter

in the range 0− 1 regulating the antibody decline. If a = 1, the boosting model has an

exponential decline of the absolute antibody concentration, whereas for a < 1, the rate of

decline is attenuated in comparison with the exponential model [69].

When stimulating challenge occurs after time t0, the antibody concentration is increased

in the process of boosting immune responses. The level of boosting, however, depends on

c(t) at the time of antigenic challenge. Consistent with previous work, we considered two

threshold levels of antibody concentrations:

i) Subclinical threshold (L1 ): concentration above this level prevents the development

of subclinical disease following exposure, and a minimal stimulation of the immune

system may occur.

ii) Invasive threshold (L2): concentration above this level, but below L1 is not adequate

for infection protection. However, this level of antibody concentration will mitigate

infection if occurs, and prevent severe form of invasive disease. Exposure to infection

during the period in which antibody L2 < c(t) < L1 leads to a moderate boosting of

the immune response and a measurable increase in the antibody concentration.

The maximum level of boosting occurs when c(t) < L2, especially when the individual

is naı̈ve. Due to possibility of boosting immunity following priming, we enhanced the

exponential decay model to include the increase in the level of antibody concentration. We

considered c′(t) = −kc(t) + b(t) where b(t) is the boosting rate at the time of antigenic

challenge. This rate depends on several key parameters, and we used the Heaviside step

33



function to describe the increase in c(t) [70]. We defined:

θ(t) =
β[H(L1 − c(t)) + H(L2 − c(t))]

1 + H(L1 − c(t))
(4.1)

where β is the the maximum boosting rate in the absence of pre-exiting immunity.

Denoting the average time for a secondary antigenic challenge following priming by τ, we

defined b(t) = θ(t)δ(t− nτ) for n = 1, 2, · · · , where Kronecker δ is defined by:

δ(t− nτ) =


1 if t = nτ

0 if t 6= nτ

(4.2)

This functional form of boosting allows for the increase in the antibody concentration

based on the amount of c(t) at the time of antigenic challenge.

For antibody concentrations below L2, the magnitude of simulated boosting response

was full at the time of exposure (that is similar to the case where there is no pre-existing im-

munity). This magnitude reduced by 50% (as defined by θ(t)) for antibody concentrations

between L2 and L1 at the time of exposure.

4.2 Parameterization and Simulations

We parameterized the model using available estimates from the published studies for H. In-

fuenzae type ‘b’. In the absence of vaccination, the duration and the rate of antibody decline

depend on the incidence of infection in the population [7]. We assumed a decay rate in
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the range 0.08− 0.16 (converted to a rate per month) [7], and used antibody concentration

levels of L1 = 5 and L2 = 1 (µg/ml) for preventing subclinical infection (carriage) and in-

vasive disease, respectively. Previous work pertinent to Hib indicates that individuals with

antibody concentrations above 1 µg/ml were protected against invasive disease despite the

occurrence of infection [7, 71]. We estimated the rate of boosting β = cm as a result of

new antigenic challenge following priming, where cm is the geometric mean concentration

(GMC) of the measurements of antibody concentrations.

To determine the timelines for decline of antibody concentration, we used the Latin

Hypercube Sampling (LHS) technique to evaluate the effect of simultaneous variation of

model parameters on the outcomes. We ran simulations for a 10-year period following

priming, when k and a are given by LHS. To allow for the simultaneous variations of

these parameters, samples of size n = 1000 were generated in which each parameter was

treated as a random variable and assigned a probability function. These parameters were

uniformly distributed and sampled within their respective ranges. Each parameter set was

simulated using the antibody concentration measured for each individual in the collected

samples as the initial condition at time t0. For each scenario, corresponding to the average

number of years for a new antigenic challenge, we ran 1000 independent simulations, and

determined the geometric mean concentration (GMC) and 95% confidence intervals of the

antibody concentration within 10 years.
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4.3 Results

4.3.1 Duration of immunity without secondary antigenic response

For scenarios in which there is no new antigenic challenge, we observed that the level of

antibody concentration in healthy Aboriginal individuals would be expected to fall below

the level (1 µg/ml) assumed for protection against invasive disease 3 years after priming

(Figure 4.2(a), black curve). The period of protection against invasive disease is shorter (2

years) for immunocompromised Aboriginal individuals suffering from CRF (Figure 4.2(a),

red curve). The corresponding protection periods for non-Aboriginals against invasive dis-

ease are 2 years (for healthy individuals) and 1 year (for individuals with CRF condition),

as shown in Figure 4.2(b).

4.3.2 Average time between exposures

We simulated the model to estimate the average time within which an antigenic challenge

will need to occur in order to maintain the population level of antibody concentration above

1 µg/ml. For Aboriginal individuals, we estimated that a new antigenic challenge will need

to occur once in 5 and 2 years for healthy and CRF subjects, respectively (Figures 4.2(c-d)).

For healthy non-Aboriginals, a new antigenic challenge was estimated to occur once in 2

years. This challenge was estimated to occur more often (once every year) to prevent the

risk of invasive disease in non-Aboriginals with CRF condition.
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Figure 4.2: The median GMC antibody levels with their predictive 95% confidence inter-
vals over a 10-year time period following priming, without (a-b) and with a new antigenic
challenge (c-d). The risk of carriage is shown in grey area. Black and red curves corre-
spond to healthy and CRF subjects, respectively. For Aboriginals (panel c), new antigenic
challenge occurred once in 5 years for healthy individuals (black curve) and once in 2 years
for individuals with CRF condition (red curve). For non-Aboriginals (panel d), new expo-
sure occurred once in 2 years for healthy individuals (black curve) and once every year for
individuals with CRF condition (red curve).
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4.4 Interpretation

Our results, based on parameter estimates for Hib, indicate that Hia colonization (possibly

in the form of carriage) may be occurring more frequently in some populations, such as

North American Indigenous people, compared to previous estimates for Hib [7]. Indeed,

recent studies indicate that Aboriginal adults have significantly higher serum bactericidal

activity against Hia compared to non-Aboriginal individuals living in the same geographic

area, suggesting an increased exposure to the pathogen in the former population [68].

Although current rates of Hia colonization in the North American population or immuno-

logical correlates of protection against this pathogen are unknown, our data suggest that

adult serum antibody concentrations are above the threshold required for prevention of Hia

invasive disease in Aboriginal populations of Northwestern Ontario (Canada). Our model

indicates that frequent boosting is required to maintain the anti-Hia capsular polysaccha-

ride antibody levels against Hia invasive disease, particularly in individuals with chronic

renal failure who are immunocompromised as a result of profound metabolic consequences

of uremia, underlying medical conditions (e.g., type 2 diabetes mellitus), and hemodialysis

procedure [72].

We should mention the limitations that highlight the need for further investigations

and data collection in specific population settings. First and foremost is the fact that we

parameterized our model with the range of antibody decay previously estimated for Hib.

However, to estimate Hia-specific decay rates of antibody concentrations in the absence of

vaccination, subsequent measurements of serum samples should be collected for several
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years. While such data can provide better estimates of timelines for boosting concentra-

tions, we note that antigens from several organisms other than Hia can also induce cross-

reactive antibodies to Hia capsular polysaccharide [73, 74], and may therefore increase the

antibody concentration. Since the relative importance of antibodies arising in response to

encounters with cross-reactive bacteria is unknown, the measurements of the serum Hia

antibody concentration may not be reliable in detecting carriage.

Also, considering that the majority of invasive Hia disease cases occur among young

children, it is important to mention that the demographics of our study group, comprised

of adults only, do not fully reflect the immunoepidemiology of this infection. Studying the

natural immunity against Hia in paediatric populations should be subject of future work.

4.4.1 Conclusions

Measurements of antibody concentration in a sample of population in an area with high

incidence of invasive disease, show that a significant fraction of participants have anti-Hia

antibody levels above 1 µg/ml. The model developed here suggests that frequent boost-

ing of immunity through natural infection (possibly in the form of carriage) is required

to maintain protective antibody levels above 1 µg/ml observed in data. Amongst factors

that could affect the incidence rate of Hia carriage and disease, and therefore herd immu-

nity in the population, are socio-economic and environmental conditions, particularly in

Canadian northern communities with predominantly Aboriginal populations. These fac-

tors warrant further investigation for understanding biological and epidemiological mech-

anisms responsible for high prevalence of Hia circulation in these population settings. This
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understanding is also important for implementing immunization and booster strategies

with long-lasting effects when a new Hia vaccine candidate becomes available.
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Chapter 5

A Vaccination Model for Hia

Currently, there is no vaccine available for prevention of Hia, and the disease is treated

with antibiotics upon diagnosis. As efforts continue for the development of an anti-Hia

protein-polysaccharide conjugated vaccine, it is important to understand the effect of such

a vaccine on the incidence of infection in the population. Our goal here is to provide this

understanding using a modelling framework, and thereby identify immunization strategies

for achieving the best short-term and long-term outcomes. This framework is represented

as a stochastic model of Hia transmission and control dynamics in a well-mixed population,

where interactions are assumed to be homogeneous and age-independent. We will relax

this assumption and enhance our model to an age-structured in Chapter 6.

The effectiveness of immunization strategies and optimal scenarios for long-lasting pro-

tection are affected by the interplay between the dynamics of vaccine-induced immunity

at the individual level, and herd immunity at the population level [75–77]. Previous dy-

namical models of Hib conjugate vaccine have greatly enhanced our understanding of the

41



effect of vaccine-induced and natural immunity on the incidence of invasive Hib disease,

and on the role of boosting the humoral immune response upon re-exposure to antigenic

challenge [5, 7–10]. Although vaccination can induce indirect protection through herd

immunity, reduction in pathogen transmission can have a profound impact on the long-

term maintenance of immunity in the population. As carriage of H. influenzae organisms

is largely impeded following the implementation of vaccination, protective antibody titres

decline over time due to decreased boosting of immunity, which will in turn affect the levels

of herd immunity. These factors will guide the development of our modelling framework.

5.1 Deterministic Model

To develop the model, we make some realistic assumptions as validated in biological stud-

ies [5, 14, 36]. The population is divided into classes of susceptible individuals (S) with

no prior exposure to Hia; exposed individuals who are infected but not yet infectious (L);

infectious individuals who are subclinical (C) referred to as carriage, and transmit the dis-

ease without developing clinical manifestations; infectious individuals who are currently

subclinical (A), but will develop Hia disease; and infectious individuals with Hia disease

(I). We also considered two classes of individuals following recovery from Hia infection.

The first class (Vb) includes those who have recovered from Hia carriage and disease, and

are fully protected against re-infection for a certain period of time. The second class (Vp)

includes individuals whose full protection has waned over time, currently having partial

immunity, and may experience carriage if exposed to Hia and infection occurs. We as-
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sumed that the level of immunity following recovery from Hia infection declines from full

to partial (thereby moving individuals from Vb to Vp), and ultimately to low levels consid-

ered as fully susceptible (i.e., moving individuals from Vp to S). We introduced the class Lv

for individuals who are exposed to Hia during the period of partial protection and become

infected. The schematic representation of movements between these classes is presented in

Figure 5.1.

Based on the assumption of homogeneously mixing population the model can be ex-

pressed by the following system of differential equations using a proportional incidence of

infection:

dS
dt

= µN + σpVp −
βS
N

[I + δ(C + A)]− µS

dL
dt

=
βS
N

[I + δ(C + A)]− θL− µL

dC
dt

= qθL + θLv − γ1C− µC

dA
dt

= (1− q)θL− αA− µA

dI
dt

= αA− γ2 I − µI

dVb
dt

= γ1C + γ2 I − σVb − µVb

dVp

dt
= σVb −

ηβVp

N
[I + δ(C + A)]− σpVp − µVp

dLv

dt
=

ηβVp

N
[I + δ(C + A)]− θLv − µLv,

(5.1)

where N is the total population size. Parameters of this model are defined in Table 5.1.
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Figure 5.1: Schematic model structure in the absence of vaccination.

5.1.1 Reproduction number

A key parameter in the study of communicable disease is the basic reproduction number,

denoted by R0, which is defined as the expected number of secondary cases produced by

a typical infectious individual in a completely susceptible population during the infectious

period [78]. If R0 < 1, then on average an infected individual produces less than one new

infection over the course of his or her infectious period, and therefore the number of infec-

tions can not grow. On the other hand, if R0 > 1, then each infected individual produces,

on average, more than one new infection, and the disease can invade the population.

For the model proposed in 5.1, the basic reproduction number (R0) can be calculated

using the method of next generation [78, 79] or individual tracing [80, 81]. Let F (x) repre-

sent the generation rate of new infections, and V(x) be the transfer rate, by all other means,

of individuals between model compartments. Then we have
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F (x) =



βS
N

[I + δ(C + A)]

0

0

0


V(x) =



θL + µL

−qθL− θLv + γ1C + µC

−(1− q)θL + αA + µA

−αA + γ2 I + µI


.

The next generation method calculates R0 as the dominant eigenvalue of the matrix FV−1,

where F and V are components of the Jacobian matrices of F (x) and V(x) at the disease-

free state of the model. In our model, the disease-free state is given by (N, 0, 0, 0, 0, 0, 0, 0),

and therefore

FV−1 =



0 δβ δβ β

0 0 0 0

0 0 0 0

0 0 0 0





1
µ + θ

0 0 0

qθ

(µ + γ1)(µ + θ)

1
µ + γ1

0 0

(1− q)θ
(µ + α)(µ + θ)

0
1

µ + α
0

(1− q)θα

(µ + α)(µ + θ)(µ + γ2)
0

α

(µ + α)(µ + γ2)

1
µ + α


.

The dominant eigenvalue of FV−1 is

45



R0 =
qδβθ

(µ + θ)(µ + γ1)
←−

total number of secondary infections

generated during Hia carriage

+
(1− q)δβθ

(µ + θ)(µ + α)
←−

total number of secondary infections generated

during pre-symptomatic infection

+
(1− q)αβθ

(µ + θ)(µ + α)(µ + γ2)
←−

total number of secondary infections

generated during Hia disease

No previous study has estimated R0 for Hia, and we therefore assumed R0 in the range

1.2–1.4 estimated in studies of Hib [82] and other pathogens that cause bacterial meningitis,

such as N. meningitidis serotype C [83]. The epidemiological data on Hia incidence do not

provide sufficient information on the rate of disease transmission. We therefore calculated

the transmission parameter β based on a given reproduction number, while fixing other

parameters of the model.

5.1.2 Vaccination dynamics

We now extend the basic model 5.1 to include vaccination. For a new vaccine candidate, the

population level of immunity against Hia infection can be elevated by vaccinating infants

(Vn) or other susceptible individuals (Sv). We assume that vaccine induces full protection

for a period of time, and this protection gradually wanes (Vp) to levels that prevent the
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development of Hia disease, but Hia carriage may still occur if transmission takes place

[5]. The complete loss of vaccine-induced protection transfers the individuals from Vp

to the susceptible state (Sn) [5, 8]. Individuals who receive a booster dose during the

period of partial protection move from Vp to Vb (and in case of vaccination for susceptibles,

move from Sp to Sb) and acquire a transient full protection again. Protection of booster

vaccination wanes over time, moving individuals from Vb and Sb to Vbp (Figure 5.2). In our

model, it is assumed that the level of vaccine-induced protection for infants and susceptible

individuals is the same as that acquired by natural infection [5]. We revisit this assumption

when we develop the age-structure model in Chapter 6. Booster dose is assumed to be

administered for those who have been vaccinated with the first dose [30].

5.2 Stochastic Model

5.2.1 Stochastic structure

We develop a stochastic structure of the model by assuming that the occurrence of events

depends on the rates of movement between different compartments in the deterministic

model. We consider time t as a continuous variable, and define the following random

vector for t ∈ [0, ∞)

~X(t) = (S(t), Vn(t), Vp(t), Vb(t), L(t), Lv(t), C(t), A(t), I(t), Vbp(t), Sv(t), Sp(t), Sn(t)),
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Figure 5.2: Schematic diagram for vaccination dynamics.

with ∆~X(t) = ~X(t + ∆t)− ~X(t), which represents changes that occur to the random vector

at ∆t units of time. We also define the transition probability as

Pr(∆~X(t)) =
(
Θ(S), Θ(Vn), Θ(Vp), Θ(Vb), Θ(L), Θ(Lv),

Θ(C), Θ(A), Θ(I), Θ(Vbp), Θ(Sv), Θ(Sp), Θ(Sn) | ∆~X(t)
)
,

where

Θ(·) =


−1 decrease in the class (·)

0 no change in the class (·)

1 increase in the class (·)
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The function Θ(·) describes the change in a class (i.e., Θ(·) = −1: an individual leaves

the class; Θ(·) = 0: no changes occur in the class; Θ(·) = 1: an individual enters the class).

We assume that ∆t is sufficiently small, so that at most one change of status can occur

during the time interval ∆t, which can be viewed as a Markov chain process. The resulting

stochastic model can be described as a continuous time Markov model, with the transition

matrix for random events for all subpopulations given in Matrix 1. During simulations, the

number of individuals in each subpopulation is updated on each transition time from the

associated event.

5.2.2 Parameterization

For a new vaccine candidate, we assign the parameter p to represent the coverage of vacci-

nation for infants, with the baseline value of p = 0 in the absence of vaccination. Previous

work on the dynamics of natural immunity caused by Hib estimated that, prior to the

introduction of conjugated Hib vaccines, new Hib infections occurred once in 4 years to

prevent infection from progressing to invasive Hib disease [7]. In our study on the nat-

urally acquired immunity against Hia in a Canadian Aboriginal population presented in

Chapter 4, we estimated that the incidence of carriage may be occurring more frequently

than that estimated for Hib. Using these estimates, we assume the ranges 2-4 years for

protection against Hia carriage, and 6-10 years for protection against Hia disease following

natural infection or vaccination. Similar to previous estimates for Hib [7], we consider the

probability of carriage following primary infection with Hia in the range 0.6-0.9. It is as-

sumed that Hia in the form of carriage or pre-symptomatic is 50% less infectious than Hia
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disease. Furthermore, susceptibility to encounter new Hia infection during partial protec-

tion is assumed to be reduced by 50%. The incubation period for Hia is estimated between

2 and 4 days [84]. We consider a latent period of 2 days for colonization during which

no transmission can occur, and an average period of 1 day for pre-symptomatic infection

before developing Hia disease. The duration of carriage is unknown, but may range from

several days to several weeks [5, 7], and the risk of infection transmission persists as long

as bacteria are present whether or not there is nasal discharge [84]. We assume an average

infectious period of 50 days for Hia carriage. The variation in these parameters and their

effect on the model outcomes will be addressed through sensitivity analyses. Hia disease

is considered non-communicable within 24-48 hours after starting effective treatment [84].

Since individuals with clinical manifestation of Hia disease are likely to receive antibiotic

treatment, and considering the delay of one day in start of the treatment, we assume an

average infectious period of 2 days for Hia disease. Model parameters and their values are

listed in Table 5.1.

To evaluate the effect of vaccination, we consider several parameters including the cover-

age of primary vaccination for infants (p); the coverage of booster vaccination (pv) for those

who have received primary vaccination during infancy; the rate of primary vaccination (ξ)

for susceptible individuals; and the coverage of booster vaccination (ps) for susceptible in-

dividuals who have received primary vaccination. These parameters will be varied within

their respective ranges in simulation scenarios.
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Matrix 1. Transition matrix for the stochastic simulations.

S Vn Vp Vb L Lv C A I Vbp Sv Sp Sn



recruitment to S +1 0 0 0 0 0 0 0 0 0 0 0 0 (1− p)µN

vaccination of infants 0 +1 0 0 0 0 0 0 0 0 0 0 0 pµN

infection of S −1 0 0 0 +1 0 0 0 0 0 0 0 0 βS[I+δ(C+A)]
N

waning protection in Vn 0 −1 +1 0 0 0 0 0 0 0 0 0 0 σVn

booster vaccination for Vp 0 0 −1 +1 0 0 0 0 0 0 0 0 0 pvσpVp

loss of protection in Vp 0 0 −1 0 0 0 0 0 0 0 0 0 +1 (1− pv)σpVp

infection of Vp 0 0 −1 0 0 +1 0 0 0 0 0 0 0 ηβVp [I+δ(C+A)]
N

waning protection in Vb 0 0 0 −1 0 0 0 0 0 +1 0 0 0 σVb

infection of Vbp 0 0 0 0 0 +1 0 0 0 −1 0 0 0
ηβVbp [I+δ(C+A)]

N

loss of protection in Vbp 0 0 0 0 0 0 0 0 0 −1 0 0 +1 σpVbp

vaccination of susceptibles −1 0 0 0 0 0 0 0 0 0 +1 0 0 ξS

waining protrction in Sv 0 0 0 0 0 0 0 0 0 0 −1 +1 0 σSv

infection of Sp 0 0 0 0 0 +1 0 0 0 0 0 −1 0 ηβSp [I+δ(C+A)]
N

booster vaccination for Sp 0 0 0 +1 0 0 0 0 0 0 0 −1 0 psσpSp

loss of protection in Sp 0 0 0 0 0 0 0 0 0 0 0 −1 +1 (1− ps)σpSp

infection of Sn 0 0 0 0 +1 0 0 0 0 0 0 0 −1 βSn [I+δ(C+A)]
N

carriage from L 0 0 0 0 −1 0 +1 0 0 0 0 0 0 qθL

pre-symptomatic from L 0 0 0 0 −1 0 0 +1 0 0 0 0 0 (1− q)θL

carriage from Lv 0 0 0 0 0 −1 +1 0 0 0 0 0 0 θLv

Hia disease from A 0 0 0 0 0 0 0 −1 +1 0 0 0 0 αA

recovery from Hia carriage 0 0 0 +1 0 0 −1 0 0 0 0 0 0 γ1C

recovery from Hia disease 0 0 0 +1 0 0 0 0 −1 0 0 0 0 γ2 I

natural death for S −1 0 0 0 0 0 0 0 0 0 0 0 0 µS

natural death for Vn 0 −1 0 0 0 0 0 0 0 0 0 0 0 µVn

natural death for Vp 0 0 −1 0 0 0 0 0 0 0 0 0 0 µVp

natural death for Vb 0 0 0 −1 0 0 0 0 0 0 0 0 0 µVb

natural death for L 0 0 0 0 −1 0 0 0 0 0 0 0 0 µL

natural death for Lv 0 0 0 0 0 −1 0 0 0 0 0 0 0 µLv

natural death for C 0 0 0 0 0 0 −1 0 0 0 0 0 0 µC

natural death for A 0 0 0 0 0 0 0 −1 0 0 0 0 0 µA

natural death for I 0 0 0 0 0 0 0 0 −1 0 0 0 0 µI

natural death for Vbp 0 0 0 0 0 0 0 0 0 −1 0 0 0 µVbp

natural death for Sv 0 0 0 0 0 0 0 0 0 0 −1 0 0 µSv

natural death for Sp 0 0 0 0 0 0 0 0 0 0 0 −1 0 µSp

natural death for Sn 0 0 0 0 0 0 0 0 0 0 0 0 −1 µSn
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5.2.3 Model implementation

We use a Markov Chain Monte Carlo method to simulate the stochastic model. In simple

stochastic SIR models, the basic reproduction number can be used to assess the likelihood

of an outbreak taking place, which is determined by the probability [85]:

1− (1/R0)
initial number of infections

For the range 1.2–1.4 of R0, the probability of an epidemic taking place is greater than

0.17 with a single initial infection. For the purpose of simulations, we choose the initial

number of infections C(0) = 10 and I(0) = 1 in a total population of size N = 100, 000.

To estimate the transition time (i.e., step-size in stochastic simulations) to the next event,

we let ∆t = U1/Φ, where U1 is a random variate drawn from the uniform distribution

on the unit interval (0, 1), and Φ is equal to the sum of the rates for all possible events.

We then order the events as an increasing fraction of Φ and generate another uniform

deviate (U2 ∈ [0, 1]) to determine the nature of the next event (see the transition matrix

1). Simulations are run for a large number of samples (n = 1000) to calculate the average

of sample realizations of the stochastic process in each scenario. For each simulation, the

durations of vaccine-induced protection against Hia carriage and disease were randomly

sampled from their ranges. For scenarios presented here, we fix R0 = 1.3, and simulate the

model with parameter values given in Table 5.1 for various rates of vaccination.
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Table 5.1: Description of model parameters with their values (ranges) used for stochastic
simulations.

Parameter Description Value or Range

R0 basic reproduction number 1.2–1.4

η reduced susceptibility during partial protection 0.5

δ reduced transmissibility during carriage or pre-symptomatic infection 0.5

1/σ average duration of protection against subclinical infection 2–4 years

1/σp average duration of protection against Hia disease 6–10 years

1/θ average duration of latency 2 days

q fraction of Hia exposed individuals who undergo carriage 0.6–0.9

1/α average duration of pre-symptomatic infection 1 day

1/γ1 duration of carriage infection 2–10 weeks

1/γ2 duration of communicable Hia disease (under treatment) 1–2 days

1/µ average lifetime 70 years

5.3 Results

In the absence of vaccination, Figure 5.3a shows the prevalence of Hia carriage that peaks

within 3-4 years, creating a high level of herd immunity in the population that results in the

decline of carriage up to year 10. After a transient period of protection following recovery

from carriage, individuals may encounter a new infection, which leads to the second peak

with a significantly smaller magnitude over 20 years of simulations. As shown in Figure
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Figure 5.3: Time profiles of Hia carriage and disease without vaccination (a,b) and with
vaccination of infants (c,d) starting at year 10. Vaccine coverage of first dose for infants was
fixed at 95%, with a booster dose (second dose) of 95% coverage (c,d). Simulations were
run with ρ = 1.3 for q = 0.6 (black curves); q = 0.7 (red curves); q = 0.8 (blue curves); and
q = 0.9 (green curves). Shaded area illustrates the vaccine era.

5.3a. The qualitative pattern of infection spread is independent of the fraction of individuals

who experience Hia carriage (q) during primary infection. We observe qualitatively similar

patterns for the incidence of Hia disease (Figure 5.3b).

Not surprisingly, vaccination reduces the incidence of infection for both Hia carriage

and disease. If vaccination is offered only to infants, with a booster dose within 6-10 years

after the primary dose, then the rate of infection spread is decelerated in the population
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Figure 5.4: Time profiles of Hia carriage and disease with vaccination of infants and other
susceptibles starting at year 10. In all scenarios, vaccine coverage of first dose for infants
was fixed at 95%, with a booster dose (second dose) of 95% coverage. The rate of primary
vaccination for susceptible individuals is ξ = 10−4 per day (a,b) and ξ = 2× 10−4 per day
(c,d). The coverage of booster vaccination for susceptible individuals who received primary
vaccination is 0 (a,c) and 100% (b,d). Simulations were run with R0 = 1.3 for q = 0.6 (black
curves); q = 0.7 (red curves); q = 0.8 (blue curves); and q = 0.9 (green curves).

with lower magnitude compared to the scenario without vaccination (Figure 5.3c,d). How-

ever, the number of infections is still growing over a 10-year period following the start of

vaccination.
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5.3.1 Vaccination of susceptibles

We first implemented a single-dose vaccination of susceptible individuals (those who did

no receive the primary vaccination) in combination with vaccination of infants. For the

vaccination rate ξ = 10−4 per day of susceptibles, corresponding to the probability 0.036 of

receiving vaccine in a year, the increase in the number of Hia carriage can be prevented for

several years, and even slightly decreased when q is sufficiently high (Figure 5.4a). With

gradual decrease in the protection level of vaccinated individuals, the incidence of infection

starts to increase. For these levels of vaccination for infants and susceptible individuals, we

observe that the corresponding average number of cases with Hia disease remains below 1

over 10 years of simulations following the start of vaccination. When the rate of vaccination

for susceptible individuals is increased to ξ = 2 × 10−4 per day (corresponding to the

probability 0.07 of receiving vaccine in a year), the incidence of infection decreases, and the

average number of Hia carriage may decline below 1 within 4-6 years for sufficiently high q

(Figure 5.4c). As the immune protection of individuals wanes, the number of Hia carriage

starts to rise again.

We then included a booster vaccination coverage and ran simulations for the rate ξ =

10−4 per day of primary vaccination for susceptible individuals (Figure 5.4b). For a booster

coverage of 100%, the incidence of infection declines over 10 years following the start of

vaccination, but the average number of Hia carriage still remains above 1 (Figure 5.4b).

This suggests that Hia infection may persist in the population through carriage even when

a booster vaccination is implemented. When the rate of primary vaccination of susceptible
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individuals increased to 2× 10−4 per day (Figure 5.4d), the average number of Hia carriage

decreases below 1 within 6-10 years, with a faster rate of decline for higher q. These

simulations indicate that a low vaccination rate of susceptible individuals may not eliminate

the pathogen even with 100% booster coverage. Furthermore, since Hia carriage may not

be easily identified, especially when Hia disease is absent, these simulations suggest that

Hia can persist in the population and possibly resurge in the form of Hia disease as the

herd immunity declines over time.

5.3.2 Effect of vaccination on herd immunity

The patterns of Hia carriage and disease can be explained by the rise and fall of herd

immunity in the population. Figure 5.5 shows the population level of protection against

Hia carriage prior to, and after the start of, vaccination. Without vaccination, the second

epidemic observed in Figures 5.3a,b results from the decline of herd immunity following

the first epidemic peak (Figure 5.5a). With vaccination of only infants, the rate of decline

of herd immunity is slightly reduced (Figure 5.5b). When primary and booster vaccination

of susceptible individuals are implemented, the decline of herd immunity is halted, with

possibly an increase in the population level of protection during 10 years of vaccination

(Figure 5.5c,d). For a sufficiently high rate of vaccination for susceptible individuals, the

herd immunity increases to levels required for elimination of Hia pathogen.
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Figure 5.5: Level of herd immunity (fraction of population protected, conferred by fully
protected individuals) against Hia carriage without vaccination (a); with vaccination of
only infants at 95% coverage of both primary and booster vaccination (b); with primary
vaccination of susceptible individuals at the rate ξ = 10−4 per day and booster coverage
of 100% (in addition to vaccination of newborns) (c); and with primary vaccination of
susceptible individuals at the rate ξ = 2× 10−4 per day and booster coverage of 100% (in
addition to vaccination of infants). Simulations were run with R0 = 1.3 for q = 0.6 (black
curves); and q = 0.7 (red curves); q = 0.8 (blue curves); q = 0.9 (green curves). Shaded area
illustrates the vaccine era.

5.4 Sensitivity and Uncertainty Analyses

Due to similarities in the epidemiological characteristics of Hia and Hib, we parameterized

the vaccination model using available estimates for Hib. However, we need to consider

the variation in these parameters. To account for the uncertainty in the parameter space,
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we carried out a sensitivity analysis using the Latin Hypercube Sampling (LHS) technique

and calculated Partial Rank Correlation Coefficients (PRCC) to investigate the effect of

parameter changes on the model outcomes, specifically on the number of Hia carriage

and invasive disease. For this analysis, we considered six parameters and their associated

ranges, including

η ∈ [0.3, 0.7], δ ∈ [0.3, 0.7], q ∈ [0.6, 0.9],

γ1 ∈ [0.0143, 0.071], σ ∈ [0.00068, 0.00137], σp ∈ [0.00027, 0.00046]

To allow for the simultaneous variations of these parameters, samples of size 1000 were

generated in which each parameter was treated as a random variable and assigned a prob-

ability function. These parameters were uniformly distributed and sampled within their

respective ranges. To calculate PRCC, we considered the equilibrium state of the determin-

istic model structure as the response (model output), assuming that there is no correlation

between the input parameters [86]. The parameters with large PRCC values (close to 1

or -1) and their corresponding p-values smaller than the significance level (0.05) have the

largest influence on the model outcomes [87]. In this analysis, the transmission rate was

calculated based on the sampled parameter values with fixed R0 = 1.3. We examined scat-

ter plots to verify the existence of monotonic relationships between the parameters used

in LHS sampling and the equilibrium state as the response. The PRCC values and their

associated t-statistics p−values are presented in Table 5.2. This analysis reveals that the rate

of recovery from carriage (γ1) is the most important parameter which has a negative effect

on the response, as increasing γ1 decreases the number of carriage at the equilibrium state
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Table 5.2: Partial rank correlation coefficients and their associated p-values.

Parameter γ1 η σ σp q δ

PRCC −0.9797 0.9099 0.7767 0.3953 0.1802 0.1900

p−value < 0.001 < 0.001 < 0.001 < 0.001 0.0117 0.0078

of the system. The second most important parameter that strongly affects the response is

the level of susceptibility to infection during partial protection period. In our model, we

assumed that exposure to infection during this partial protection (if infection occurs) leads

to carriage, but not to Hia disease.

Considering PRCC values in Table 5.2, we carried out simulations to calculate the av-

erage of independent realizations of the stochastic process using parameter samples gen-

erated by LHS. Figure 5.6 shows the results for different vaccination rates of susceptible

individuals, while fixing the primary and booster coverage of infants at 95%. Similar to

results presented in Figure 5.4, we observe that for a sufficiently low vaccination rate of

susceptible individuals, Hia infection may persist in the population even when the pri-

mary vaccination of susceptibles is supplemented with 100% booster coverage.

5.5 Discussion

Here, we presented the first modelling framework of Hia infection using the natural his-

tory of the disease to investigate the effect of a new vaccine candidate on the incidence of
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Figure 5.6: Time profiles of Hia carriage using the average realizations based on samples
in parameter space generated by the LHS method. Vaccination of infants and susceptible
individuals starts at year 10. In all scenarios, primary and booster vaccine coverages of
infants were fixed at 95%. The rate of primary vaccination for susceptible individuals is
ξ = 10−4 per day (a,b) and ξ = 2× 10−4 per day (c,d). The coverage of booster vaccination
for susceptible individuals who received primary vaccination is 0 (a,c) and 100% (b,d).
Simulations were run with R0 = 1.3 for q = 0.6 (black curves); q = 0.7 (red curves); q = 0.8
(blue curves); and q = 0.9 (green curves).

Hia carriage and disease. Given the similarities between Hia and Hib, we parameterize the

stochastic model using available estimates for Hib prior to and after the introduction of

universal infant immunization programs. Our simulations corroborate with observations

of Hib incidence [5] in projecting that the maintenance of herd immunity through boosting
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of individuals’ protection is a key factor in reducing the incidence, and possibly elimina-

tion of Hia pathogen. We have shown that this goal cannot be achieved by vaccinating only

infants even when a booster vaccination is implemented with a high coverage. Further-

more, while vaccinating susceptible individuals in addition to infants could significantly

lower the incidence of Hia carriage and prevent the incidence of Hia disease, a high cov-

erage of booster vaccination is required to prevent resurgence and wipe out Hia from the

population.

Since most infections are transmitted through carriage, it is difficult to estimate trans-

missibility of Hia from available epidemiological data without collecting data associated

with contact tracing. However, previous studies report a high prevalence of Hia as a cause

of invasive community-acquired disease in some North American Indigenous populations,

e.g., among Navajo and White Mountain Apache (incidence rate 20.2/100,000 persons for

children < 5 years of age), Alaska Native (20.9/100,000 persons for children < 2 years of

age), and northern Canada Indigenous peoples (101.9/100,000 persons for children < 2

years of age) [32, 33, 88]. A previous study in Alaska found a 43% rate of Hia carriage

among close contacts of an infant presenting with invasive Hia disease [89]. The high inci-

dence rates in these population settings could be related to genetic factors, environmental

conditions, and prevalence of predisposing conditions [2, 3]. Data collected for anti-Hia an-

tibodies in serum samples of participants in a population of Northwestern Ontario, Canada,

used in our study presented in Chapter 4, suggest that the individuals with the condition

of chronic renal failure have lower antibody concentrations compared to healthy individ-

uals, and require more frequent boosting of immunity to prevent the risk of Hia disease
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[61]. Crowding living condition with multigenerational households may also be a con-

tributing factor to high incidence of Hia in these populations, as has been discussed for

the spread of other infectious diseases such as influenza and tuberculosis [90–94]. These

observations, combined with the results of our model, highlight the importance of vacci-

nation and timely boosting of the individual’s immunity within the expected duration of

vaccine-induced protection against Hia.

In the absence of specific estimates of the parameters describing the natural history of

Hia infection, and the effectiveness and duration of vaccine-induced protection against Hia

carriage and disease, we have relied on available estimates for Hib infection. However,

we considered a plausible range of parameter values in our simulations, and performed

sensitivity and uncertainty analyses to verify the robustness of the findings. The results

indicate that the rate of recovery from carriage and the reduced level of susceptibility dur-

ing partial protection are the two most important parameters affecting the number of Hia

carriage and disease at the model equilibrium. The recovery rate of Hia carriage is not

certain, and clearly has a negative effect on the number of Hia carriage. This parameter,

which also appears in the expression for the reproduction number R0, effectively relates

to the infectious period of Hia carriage estimated to last from a few days to several weeks

for H. influenzae infections, representing a key parameter in the persistence of Hia in the

population. Other parameters that have significant to moderate effects on the equilibrium

state of the system, and therefore Hia elimination, include the average durations of protec-

tion against Hia carriage and disease following vaccination or natural infection. We note

that the reproduction number R0 is independent of the parameters η, σ, and σp, which can
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greatly influence Hia elimination.

In the next Chapter, we will attempt to overcome some of the limitations related to the

structure of the model proposed here. Specifically, we did not structure the model by age,

but we understand that the incidence of Hia could be affected by age and the patterns

of contacts between individuals [5, 8, 49]. We also note that antigens from several organ-

isms other than Hia can induce cross-reactive antibodies to Hia capsular polysaccharide

[73, 74], and may therefore increase the antibody concentrations. Although the relative im-

portance of antibodies arising in response to encounters with cross-reactive bacteria is un-

known [95], we consider this effect by the variation in the durations of naturally-acquired

and vaccine-induced protection in our simulations to address the uncertainty in several

immunologically-related parameters.
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Chapter 6

An Age Structure Model of Hia

As reported in the incidence of Hia, age can play a significant role in transmission of

infection. Estimates published in the literature suggest that most infections occur amongst

children and older adults with underlying medical conditions [2, 3]. Therefore age may be

an important factor to be considered in transmission dynamics of Hia and vaccination. The

incidence of both carriage and symptomatic Hia infection could also be affected by contact

patterns between individuals, which varies among different age groups. To incorporate

the effect of these contact patterns, we develop an age-structured model to reveal more

information on the target groups and their vaccination coverage. The model is used to

evaluate vaccination strategies and their long-term epidemiological impact.
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6.1 The Model

We develop an age-structured stochastic epidemic model, and consider four age groups in

the population with the associated contact matrix. The age groups include: infants within

the first year of birth; young children between 1 and 2 years of age; children between 2 and

10 years of age; and individuals older than 10 years of age. The population compartments

in each age group represent different epidemiological and clinical statuses as susceptibles

(S); exposed individuals who are not yet infectious (L); infectious individuals without

symptoms referred to as carriage (C); infectious individuals who will develop symptomatic

infection referred to as pre-symptomatic (A); infectious individuals with symptoms (I);

vaccinated individuals (V); and recovered individuals (R). Susceptible individuals can

become colonized with Hia bacteria through contacts with infectious cases.

In developing the model, we make some realistic assumptions as validated in biological

studies, and used in our previous chapter. We assume that the level of immunity following

recovery from Hia infection declines from full to partial (thereby moving individuals from

R to P), and ultimately to low levels considered as fully susceptible (i.e., moving individ-

uals from P to S). With partial immunity, we assume that individuals experience carriage

if infected; however, susceptible individuals can also develop symptomatic Hia disease,

and only a fraction of them may experience carriage. These assumptions that have been

observed in clinical studies, have important implications for our modelling analysis. Since

both vaccine-induced and naturally acquired immunity wane over time, individuals may

enter the state of partial protection (Vp), and are therefore at risk of becoming infected. We
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introduce the class (Lp) for individuals who are exposed to Hia and infected during partial

protection conferred from a previous infection or vaccination.

The model includes two key aspects of the population over time-scales used for simula-

tion dynamics: (i) average number of contacts between individuals in the same or different

age groups; and (ii) movements of individuals from one compartment of an age group to

the corresponding compartment of another age group due to changes in their age. Transi-

tions between model compartments and different age groups are described in Figure 6.1.

The model is built using 4 sub-systems of ordinary differential equations. For infants

less than 1 year of age (belonging to group 1 referred to as G1), the following system of

equations applies, where Nj is the total population size of age group j:

dS1

dt
= bN + σpP1 − S1

4

∑
j=1

β1j
Ij + δ(Cj + Aj)

Nj
− κ1S1 − µS1

dL1

dt
= S1

4

∑
j=1

β1j
Ij + δ(Cj + Aj)

Nj
− θL1 − µL1

dC1

dt
= qθL1 + θLP1 − γ1C1 − µC1

dA1

dt
= (1− q)θL1 − αA1 − µA1

dI1

dt
= αA1 − γ2 I1 − µI1

dR1

dt
= γ1C1 + γ2 I1 − σR1 − κ1R1 − µR1

dP1

dt
= σR1 − ηP1

4

∑
j=1

β1j
Ij + δ(Cj + Aj)

Nj
− σpP1 − κ1P1 − µP1

dLP1

dt
= ηP1

4

∑
j=1

β1j
Ij + δ(Cj + Aj)

Nj
− θLP1 − µLP1

(6.1)
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Figure 6.1: Leslie diagram for transitions between model compartments.
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For the second and third age groups comprising young children between 1 and 2 years

of age, and children between 2 and 10 years of age, the sub-systems are governed by the

following equations for i = 2, 3:

dSi

dt
= κi−1Si−1 + σpPi − Si

4

∑
j=1

βij
Ij + δ(Cj + Aj)

Nj
− κiSi − µSi

dLi

dt
= Si

4

∑
j=1

βij
Ij + δ(Cj + Aj)

Nj
− θLi − µLi

dCi

dt
= qθLi + θLPi − γ1Ci − µCi

dAi

dt
= (1− q)θLi − αAi − µAi

dIi

dt
= αAi − γ2 Ii − µIi

dRi

dt
= γ1Ci + γ2 Ii + κi−1Ri−1 − σRi − κiRi − µRi

dPi

dt
= κi−1Pi−1 + σRi − ηPi

4

∑
j=1

βij
Ij + δ(Cj + Aj)

Nj
− σpPi − κiPi − µPi

dLpi

dt
= ηPi

4

∑
j=1

βij
Ij + δ(Cj + Aj)

Nj
− θLPi − µLPi

(6.2)

In these sub-systems, κi−1 (i = 2, 3, 4) represents the rate at which individuals in age

group i− 1 move to the corresponding compartments in age group i as a result of change

in their ages. We also include the recruitment into the population through newborns in the

first age group.

The system for the last age group (i.e., individuals older than 10 years of age) is de-

scribed by the following differential equations:

69



dS4

dt
= κ3S3 + σpP4 − S4

4

∑
j=1

β4j
Ij + δ(Cj + Aj)

Nj
− µS4

dL4

dt
= S4

4

∑
j=1

β4j
Ij + δ(Cj + Aj)

Nj
− θL4 − µL4

dC4

dt
= qθL4 + θLP4 − γ1C4 − µC4

dA4

dt
= (1− q)θL4 − αA4 − µA4

dI4

dt
= αA4 − γ2 I4 − µI4

dR4

dt
= γ1C4 + γ2 I4 + κ3R3 − σR4 − µR4

dP4

dt
= κ3P3 + σR4 − ηP4

4

∑
j=1

β4j
Ij + δ(Cj + Aj)

Nj
− σpP4 − µP4

dLP4

dt
= ηP4

4

∑
j=1

β4j
Ij + δ(Cj + Aj)

Nj
− θLP4 − µLP4

(6.3)

In these systems, the parameter βij is defined as βcij, where β is the baseline transmis-

sion of infection, and cij is the average number of contacts between an individual in group

i and individuals in group j. The description of other parameters and their values are

provided in Table 6.1.

6.1.1 Reproduction Number

For the model proposed here, the basic reproduction number (R0) can be calculated us-

ing the next generation method [78, 79]. Let F (x) represent the generation rate of new

infections, and V(x) be the transfer rate, by all other means, of individuals between model

compartments. Then we have
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F (x) =



a1[I1 + δ(C1 + A1)] + a2[I2 + δ(C2 + A2)] + a3[I3 + δ(C3 + A3)] + a4[I4 + δ(C4 + A4)]

0

0

0

a5[I1 + δ(C1 + A1)] + a6[I2 + δ(C2 + A2)] + a7[I3 + δ(C3 + A3)] + a8[I4 + δ(C4 + A4)]

0

0

0

a9[I1 + δ(C1 + A1)] + a10[I2 + δ(C2 + A2)] + a11[I3 + δ(C3 + A3)] + a12[I4 + δ(C4 + A4)]

0

0

0

a13[I1 + δ(C1 + A1)] + a14[I2 + δ(C2 + A2)] + a15[I3 + δ(C3 + A3)] + a16[I4 + δ(C4 + A4)]

0

0

0



where:

a1 = c11β
S1

N1
a2 = c12β

S1

N2
a3 = c13β

S1

N3
a4 = c14β

S1

N4

a5 = c21β
S2

N1
a6 = c22β

S2

N2
a7 = c23β

S2

N3
a8 = c24β

S2

N4

a9 = c31β
S3

N1
a10 = c32β

S3

N2
a11 = c33β

S3

N3
a12 = c34β

S3

N4

a13 = c41β
S4

N1
a14 = c42β

S4

N2
a15 = c43β

S4

N3
a16 = c44β

S4

N4
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and

V(x) =



θL1 + µL1

−qθL1 − θLP1 + γ1C1 + µC1

−(1− q)θL1 + αA1 + µA1

−αA1 + γ2 I1 + µI1

θL2 + µL2

−qθL2 − θLP2 + γ1C2 + µC2

−(1− q)θL2 + αA2 + µA2

−αA2 + γ2 I2 + µI2

θL3 + µL3

−qθL3 − θLP3 + γ1C3 + µC3

−(1− q)θL3 + αA3 + µA3

−αA3 + γ2 I3 + µI3

θL4 + µL4

−qθL4 − θLP4 + γ1C4 + µC4

−(1− q)θL4 + αA4 + µA4

−αA4 + γ2 I4 + µI4



.

According to the next generation method, R0 is the dominant eigenvalue of the matrix

FV−1, where F and V are components of the Jacobian matrices of F (x) and V(x) at the

disease-free state of the model, given by (S1, 0, 0, 0, S2, 0, 0, 0, S3, 0, 0, 0, S4, 0, 0, 0),
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with

S1 =
βN

µ + κ1

S2 =
( κ1

µ + κ2

) βN
µ + κ1

S3 =
( κ2

µ + κ3

)( κ1

µ + κ2

) βN
µ + κ1

S4 =
(κ3

µ

)( κ2

µ + κ3

)( κ1

µ + κ2

) βN
µ + κ1

The Jacobian F and V are given by

F =



0 δa1 δa1 a1 0 δa2 δa2 a2 0 δa3 δa3 a3 0 δa4 δa4 a4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 δa5 δa5 a5 0 δa6 δa6 a6 0 δa7 δa7 a7 0 δa8 δa8 a8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 δa9 δa9 a9 0 δa10 δa10 a10 0 δa11 δa11 a11 0 δa12 δa12 a12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 δa13 δa13 a13 0 δa14 δa14 a14 0 δa15 δa15 a15 0 δa16 δa16 a16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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and

V =



V1 0 0 0

0 V2 0 0

0 0 V3 0

0 0 0 V4


with

V1 =



θ + µ 0 0 0

−qθ γ1 + µ 0 0

−(1− q)θ 0 α + µ 0

0 0 −α γ2 + µ


, V2 =



θ + µ 0 0 0

−qθ γ1 + µ 0 0

−(1− q)θ 0 α + µ 0

0 0 −α γ2 + µ



V3 =



θ + µ 0 0 0

−qθ γ1 + µ 0 0

−(1− q)θ 0 α + µ 0

0 0 −α γ2 + µ


, V4 =



θ + µ 0 0 0

−qθ γ1 + µ 0 0

−(1− q)θ 0 α + µ 0

0 0 −α γ2 + µ



Using Maple©, eigenvalues of matrix FV−1 are 0 and the product of 1
(γ1+µ)(γ2+µ)(θ+µ)(α+µ)

with the roots of the quartic:

Z4 − (a1 + a11 + a16 + a6)Z3 + (a1a11 + a1a16 + a1a6 − a10a7 + a11a16 + a11a6

− a12a15 − a13a4 − a14a8 + a16a6 − a2a5 − a3a9)Z2 + (a1a10a7 − a1a11a16 − a1a11a6
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+ a1a12a15 + a1a14a8 − a1a16a6 − a10a15a8 + a10a16a7 − a10a3a5 + a11a13a4 + a11a14a8

− a11a16a6 + a11a2a5 − a12a13a3 − a12a14a7 + a12a15a6 − a13a2a8 + a13a4a6 − a14a4a5

− a15a4a9 + a16a2a5 + a16a3a9 − a2a7a9 + a3a6a9)Z− a9a8a2a15 − a5a4a15a10 − a5a3a14a12

+ a5a2a15a12 + a7a4a13a10 − a8a3a13a10 − a9a7a4a14 + a9a8a3a14 − a7a2a13a12 + a15a4a6a9

+ a16a2a7a9 − a16a3a6a9 + a1a10a15a8 − a1a10a16a7 − a1a11a14a8 + a1a11a16a6 + a1a12a14a7

− a1a12a15a6 + a10a16a3a5 + a11a13a2a8 − a11a13a4a6 + a11a14a4a5 − a11a16a2a5

+ a12a13a3a6 = 0

Since the solutions of this equation cannot be expressed explicitly in terms of param-

eters and the population sizes at the disease-free equilibrium, we obtained R0 = 1.12

numerically using parameters given in Table 5.1 as the largest eigenvalue of FV−1.

6.1.2 Vaccination Dynamics

The population level of immunity against Hia infection can be increased by vaccinating

different age-groups. We extended our age structure model to include age-specific vaccina-

tion. Individuals who receive the vaccine are fully protected against the disease for a period

of time. We use previous estimates pertained to Hib for the duration of immune protection

following primary vaccination in different age groups [7]. The immune protection induced

by the vaccine wanes gradually over time and individuals will become partially protected.

In the partially protected state, individuals are protected against the development of symp-

tomatic disease, but carriage may still occur if transmission takes place. The complete loss
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of immunity will lead to full susceptibility of individuals. In our model, it is assumed that

the level of vaccine-induced protection for different age-groups is the same as that acquired

by natural infection [5].

6.2 Stochastic Model

6.2.1 Stochastic Structure

To implement the model and simulate, we develop its stochastic structure by assuming

that the occurrence of events depends on the rates of movement between different com-

partments in the deterministic model. We consider time t as a continuous variable, and

define the following random vector for t ∈ [0, ∞)

~X(t) = (S1(t), V1(t), Vp1(t), L1(t), Lp1(t), C1(t), A1(t), I1(t), R1(t), P1(t),

S2(t), V2(t), Vp2(t), L2(t), Lp2(t), C2(t), A2(t), I2(t), R2(t), P2(t),

S3(t), V3(t), Vp3(t), L3(t), Lp3(t), C3(t), A3(t), I3(t), R3(t), P3(t),

S4(t), V4(t), Vp4(t), L4(t), Lp4(t), C4(t), A4(t), I4(t), R4(t), P4(t))

where V1, V2, V3 and V4 represent respectively the states for vaccinated and fully protected

individuals in difference age groups; Vp1, Vp2, Vp3 and Vp4 represent the corresponding

states of partially protected individuals in different age groups.

Let ∆~X(t) = ~X(t + ∆t)− ~X(t) represent changes that occur to the random vector at ∆t
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units of time. We define the transition probability as

Pr(∆~X(t)) =
(
Θ(S1), Θ(V1), Θ(Vp1), Θ(L1), Θ(Lp1), Θ(C1), Θ(A1), Θ(I1), Θ(R1), Θ(P1)

Θ(S2), Θ(V2), Θ(Vp2), Θ(L2), Θ(Lp2), Θ(C2), Θ(A2), Θ(I2), Θ(R2), Θ(P2)

Θ(S3), Θ(V3), Θ(Vp3), Θ(L3), Θ(Lp3), Θ(C3), Θ(A3), Θ(I3), Θ(R3), Θ(P3)

Θ(S4), Θ(V4), Θ(Vp4), Θ(L4), Θ(Lp4), Θ(C4), Θ(A4), Θ(I4), Θ(R4), Θ(P4)

| ∆~X(t)
)
,

where

Θ(·) =


−1 decrease in the class (·)

0 no change in the class (·)

1 increase in the class (·)

The function Θ(·) describes the change in a class (i.e., Θ(·) = −1: an individual leaves

the class; Θ(·) = 0: no changes occur in the class; Θ(·) = 1: an individual enters the

class). We assume that ∆t is sufficiently small, so that at most one change of status can

occur during the time interval ∆t, which can be viewed as a Markov chain process. The

resulting stochastic model can be described as a continuous time Markov model. During

simulations, the number of individuals in each class is updated on each transition time

based on the associated event and its outcomes.
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6.2.2 Parameterization

Disease transmission can occur through contacts between susceptible and infectious indi-

viduals in the same or different age groups. We assign an age-specific transmission rate

βij for a susceptible individual in age group i being infected as a result of contact with an

infectious individual in age group j. These transmission rates are determined based on

the contact matrix of age groups and the baseline transmission of infection determined by

the reproduction number. We assume a homogeneous random mixing among members

of each age group. To determine the transmission rates, we used contact matrix between

different age groups to calculate βij = βcij, where cij is the number of proportional contacts

between individuals in age group i and age group j, and β is the baseline transmission

probability used in simulations (i.e., β = 0.002). The contact rates used in our simulations

are previously described in published literature [96] and are given by the following matrix



c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44


=



3.8 3.8 0.9 0.8

3.8 3.8 0.9 0.8

1.6 1.6 12.9 1.2

2.9 2.9 3.9 3.7


The model includes an important aspect of the population dynamics over time-scales,

which is the movement of individuals from one compartment to another due to changes in

their age. In compartments 1,2 and 3, individuals transition from age group i to age group

i + 1 by aging. In this context, κi is the rate at which individuals leave the i-th class (i.e.,
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1/κi is the life-span in class i = 1, 2 and 3). Individuals are only born in group 1 (at a rate

b), but die at a rate µ of natural death.

For vaccination of each age group, we assigned the parameter pi to represent the vaccine

coverage in age group i, with the baseline value of pi = 0 in the absence of vaccination.

Using available parameters from previous literature, and our recent estimates for timelines

of immunity following recovery from Hia infection presented in Chapter 4, we simulate the

model for age-specific profiles of carriage over time. Consistent with [5, 7], we use different

durations of protection following primary vaccination in different age groups. The model

parameters and their values are listed in Table 6.1.

6.2.3 Model Implementation

We used a Markov Chain Monte Carlo method to simulate the stochastic model. Age

groups considered in our model are: < 1 years of age; between 1 and 2 years of age; be-

tween 2 and 10 years of age; and older than 10 years of age. For the purpose of simulations,

we chose the initial number of infections C(0) = 5 and I(0) = 1 introduced in the first age

group. We considered a total population of size N = 10, 000 with the following initial

conditions for different age groups: G1 = 500, G2 = 500, G3 = 2000 and G4 = 7000.

To estimate the transition time (i.e., the step-size in stochastic simulations) to the next

event, we let ∆t = U1/Φ, where U1 is a random variate drawn from the uniform distribu-

tion on the unit interval (0, 1), and Φ is equal to the sum of the rates for all possible events.

We then ordered the events as an increasing fraction of Φ and generated another uniform

deviate (U2 ∈ [0, 1]) to determine the nature of the next event. Simulations were run for

79



Table 6.1: Description of model parameters with their values (ranges) used for stochastic
simulations.

Parameter Description Value or Range

R0 basic reproduction number 1.12

η reduced susceptibility during partial protection 0.5

δ reduced transmissibility during carriage 0.5

κ1 average duration of stay in age group 1 1 year

κ2 average duration of stay in age group 2 1 year

κ3 average duration of stay in age group 3 8 years

1/σ average duration of protection due to natural infection 4 years

1/σp average duration of partial protection 6 years

1/ξ1 average duration of protection following primary

vaccine in age group 1 (< 1 year of age)

1 year

1/ξ2 average duration of protection following primary

vaccine in age group 2 (1–2 years of age)

2 years

1/ξ3 average duration of protection following primary

vaccine in age group 3 (2–10 years of age)

4 years

1/ξ4 average duration of protection following primary

vaccine in age group 4 (> 10 years of age)

4 years

1/θ average duration of latency 2 days

q fraction of colonized individuals who undergo carriage 0.6–0.9

1/α average duration of pre-symptomatic infection 1 day

1/γ1 duration of carriage infection 2–10 weeks

1/γ2 duration of communicable disease (under treatment) 1–2 days

1/µ average lifetime 70 years
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a large number of samples (n = 500) to calculate the average of sample realizations of the

stochastic process in each scenario. For the purpose of illustrations, we consider the age-

specific profile of carriage proportional to the total population size of the corresponding

age group at any particular time during simulations.

6.3 Results

We ran the simulations for two scenarios of q = 0.6 and q = 0.9 for the fraction of exposed

individuals who experience carriage without developing symptomatic infection. Figure

6.2 shows the curves of age-specific fraction of carriage in different age groups over a 20-

year time period. In the absence of vaccination (Figure 6.2a), carriage curves increase over

time, and saturate at their age-specific endemic states. For groups < 1 (blue curve) and

older than 2 years of age (red and cyan curves), the persistence of infection (endemic state)

follows a peak for the maximum incidence of carriage. This initial increase leads to a high

level of herd immunity in the population that results in a significant decline of the carriage

curves before approaching their endemic states. However, the incidence of carriage for

those between 1 and 2 years of age (green curve) increases over time and stabilizes at its

endemic state.

We then implemented vaccination at year 5 and ran the simulations. When only age

group < 1 is vaccinated (with a coverage of 90%), a significant decline in the incidence

of carriage in all age groups is observed over 20 years of simulation period (Figure 6.2b).

While this leads to elimination of carriage in the group < 1 year of age (blue curve), elim-
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Figure 6.2: Time profiles of age-specific fraction of population with carriage: (a) no vac-
cination; (b) 90% vaccination of group 1 only; (c) 90% vaccination of group 1 and 50%
vaccination of group 2. Simulations were run with β = 0.002 for q = 0.6.
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ination of infection is still not achieved in other age groups within 15 years following the

start of vaccination. Combining vaccination of age group 1 with 50% coverage of vaccina-

tion for age group 2 (between 1 and 2 years of age) leads to a faster decline of incidence in

all age groups (Figure 6.2c), and possible elimination of carriage in the second age group

(green curve). However, the level of herd immunity is still below the threshold required for

elimination of infection in all age groups.

For the scenario of q = 0.9, and in the absence of vaccination, we observed similar

results for saturation of age-specific carriage curves at their corresponding endemic states

(Figure 6.3a). However, in contrast to the case of q = 0.6 (Figure 6.2a), all age groups

show increasing incidence of carriage towards their endemic states. When vaccination is

implemented, the incidence of carriage starts to decline for all age groups. We obtained

similar results of declining trends for age-specific incidence of carriage corresponding to

the scenarios of vaccinating age groups 1 and 2 within a 20-year simulation period. How-

ever, such decline was stabilizing towards the end of this period, and elimination was not

achieved for age groups > 1 year of age (Figure 6.3b,c).

Overall our simulations show that vaccination of age groups 1 and 2 helps curtail the

infection, but does not generate sufficient herd immunity in the population to eradicate the

disease within 15 years of the start of the vaccination.
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Figure 6.3: Time profiles of age-specific fraction of population with carriage: (a) no vac-
cination; (b) 90% vaccination of group 1 only; (c) 90% vaccination of group 1 and 50%
vaccination of group 2. Simulations were run with β = 0.002 for q = 0.9.
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6.4 Discussion

Considering that the incidence of H. influenzae infection could be affected by age and contact

rates between individuals [5, 8, 49], we developed an age-structure stochastic epidemic

model of Hia infection. We considered four age groups in the population and simulated

the model for age-specific profiles of carriage over time. We studied the model dynamics,

and used previous parameter estimates to evaluate the direct effects of vaccinating different

age groups on the incidence of carriage over a 20-year time period.

In developing the model, we made some realistic assumptions as validated in biological

studies [5, 14, 36], and used recent estimates for timelines of immunity following recovery

from Hia infection derived from our previous work [97]. Our results show that several key

model parameters should be carefully considered. These include the duration of vaccine-

induced immunity, population size of each age group, and more importantly, the contact

rates within and between different age groups that influence the incidence of infection.

The average duration of protection against Hia carriage following vaccination or natural

infection has a significant effect on the equilibrium state of the system, and therefore Hia

elimination. Individuals who lose their full immune protection generated as a result of

vaccination or natural infection will become partially protected. During the time of partial

protection (which lasts on average longer than full protection period [7]), individuals are

at risk of infection mainly led to carriage acquisition, which contributes to even higher

incidence of carriage in the population. In this way, carriage will stabilize itself within

the population (as observed by equilibrium state). High coverage of a vaccine which con-
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fers long lasting immunity reduces the carriage incidence, but elimination depends on the

aforementioned factors. A high incidence of carriage in the population may indicate the

need for booster vaccination to raise the level of herd immunity. Implementation of booster

vaccination in different age groups is expected to have a significant impact in the model

outcomes. Investigating the effect of boosting immunity is subject of future work, which

requires extension of the model to distinguish classes of primary and booster vaccination.

The results of this age-structured model remain consistent with those obtained in our

previous study [98], indicating that vaccinating only infants may not sufficiently raise the

level of herd immunity to eradicate the disease from the affected population. Our simula-

tions are consistent with previous work pertaining to Hib [5], emphasizing the importance

of maintaining a high level of herd immunity through boosting in order to reduce the

incidence of carriage in different age groups.
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Chapter 7

The effect of vaccine formulations against

Hia and Hib

In the context of ongoing efforts to develop an anti-Hia vaccine candidate, it is important

to provide information on the effective vaccine formulation that maximizes the population-

wide benefits of vaccination. Our goal here is to provide this information using a modelling

framework to evaluate the effect of bivalent vaccine formulations against Hia and Hib

infections.

Based on the experience with Hib vaccination, producing a conjugate vaccine through

covalent linkage to protein molecules (carrier proteins) is important for long lasting effects

of adaptive immunity through stimulation of T-cell responses. Given the chemical similar-

ities between Hia and Hib capsular polysaccharides, it has been suggested that a bivalent

Hib-Hia glycoconjugate vaccine formulation with a similar carrier protein (CP) previously

used for Hib vaccine could be utilized to induce effective immune protection against both
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Hia and Hib infections [2, 3]. Considering that Hib and Hia have been circulating in several

regions of the world [3, 30], and the Hib conjugate vaccine has been included in the uni-

versal infant immunization programs in a number of countries since the late 1980s [30], the

pre-existing immunity elicited by prior vaccination or natural infection of Hib may inter-

fere with the generation and boosting of the anti-Hia antibodies. In this context, evidence

is accumulating that the glycoconjugate vaccines may elicit low titres of protective anti-

body against bacterial polysaccharides [99–101]. There have been a number of mechanisms

proposed to explain the suboptimal immune responses to this type of vaccine, including

the ‘carrier-induced epitopic suppression’ (CIES) [99]. In CIES, polysaccharide antigens

conjugated with CP will be rapidly depleted by binding to pre-existing anti-CP antibodies

and forming the immune complexes, which eventually undergo phagocytosis by phago-

cytes, such as macrophages or dendritic cells. Concurrently, CP-specific memory B cells

quickly bind and internalize CP-linked polysaccharide antigens [99, 100]. These processes

will in turn impede the polysaccharide-naı̈ve B cell stimulations, and therefore interfere

with survival and proliferations during clonal expansion as a result of rapid depletion of

free antigens [99]. Therefore, we hypothesize that the production of Hia-specific antibod-

ies using a bivalent Hia-Hib vaccine is diminished in the presence of pre-existing immune

responses against CP or Hib.

At present, no bivalent vaccines against H. influenzae serotypes ‘a’ and ‘b’ have been de-

veloped, and experimental evaluations of pathogen-specific immune responses to analyze

immune interferences induced by pre-existing immunity are infeasible. We therefore devel-

oped a stochastic simulation model of humoral immune response to encapsulate the biolog-
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ical processes underlying T cell-dependent B cell activation and the antibody production.

We considered two different vaccine formulations: a bivalent combined (Hib-CP/Hia-CP)

glycoconjugate vaccine and a bivalent unimolecular (Hib-CP-Hia) glycoconjugate vaccine

[102]. Using our model, we aim to evaluate the potential level of immune responses con-

ferred by these vaccine formulations in the presence of pre-existing immunity to serotype

‘b’ of H. influenzae and CP.

7.1 Modelling framework

To simulate the immune response and antibody production, we developed a stochastic

simulation model based on immunological mechanisms of T cell-dependent B cell prolif-

eration. The system presented here includes compartments describing B cells, including

naı̈ve B cells (Bn), stimulated B cells (Bs), activated B cells (Ba), and proliferated B cells

(B1, · · · , B8). The system also includes Hia antigen (AA
g ), Hib antigen (AB

g ); carrier protein

(CP); antibodies (Ab); and immune-complexes (Ic). To formulate our model, we first de-

rive differential equations for each compartment of the system based on well-established

biological mechanisms.

The humoral immune response is initiated upon the recognition of antigens by antigen-

presenting cells (APCs), which activate naı̈ve T cells in the form of T helper cells. These

helper cells activate stimulated B cells that have already presented the same antigens on

the cell surface via major histocompatibility complex class II (MHC II). Activated B cells

subsequently proliferate and differentiate into plasma cells (that secrete antibodies) or long-
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Figure 7.1: The biological model of humoral immune response. The model includes antigen
(Ag), antibody (Ab); naı̈ve B cells (Bn), stimulated B cells (Bs), activated B cells (Ba), prolif-
erating B cells (B1–B8); immune complex (IC); memory B cells (M); plasma cells (P); and T
helper cells (Th). Arrows show the transitions between biological states. The dashed-line
arrows show multistep processes involved in the biological mechanisms.

lived memory B cells (for the secondary responses to the same antigenic challenge). In the

presence of antigens, memory cells can further be stimulated and enter the cycle of clonal

expansion and antibody production providing a faster and stronger antibody response.

Following secretion, antibodies can bind to antigens to form immune complexes, which

can be recognized and cleared by phagocytes (Figure 7.1).
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In a bivalent unimolecular vaccine, the two antigens are covalently linked to the same

molecule of carrier protein. The conjugation onto the carrier protein of two carbohydrate

antigens is a strategy to co-deliver simultaneously the antigens to APCs. In this way by

coupling both surface carbohydrates targeting both strains of Hia and Hib into the same

CP, a unimolecular construct is obtained. Therefore we include a single compartment of

antigen (Ag) in our model. This antigen peptide can activate B cells that present AA
g , AB

g ,

or CP on their cell surface.

Naı̈ve B cell stimulation

The presence of antigen peptides causes activation of naı̈ve B cells, leading to clonal ex-

pansion and differentiation into plasma cells that secrete antibodies. In this process, free

antigen binds to the B cell surface receptors, and stimulates proliferation. We assume that

the rate (γn) at which B cells are stimulated is proportional to the total concentration of

free antigen (Ag). In the absence of stimulation, naı̈ve B cells decay at a natural death rate

δn. Assuming that naı̈ve B cells are produced at a rate ρ, the equation for B cell activation

is given by:

B′n = ρ− γn AgBn − δnBn (7.1)

Activation of stimulated B cell

While the dynamics of T-helper cells in the process of B cell clonal expansion is not directly

modelled here, we include their effect through a specific compartment (C) in our model.

This step incorporates all the necessary mechanisms involved in activation of B-cells, in-
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cluding stimulation from T-helper cells when they encounter and recognize an antigen on

APCs at the rate γ. The antibody complexes (IC) are generated at a rate δc and the stimu-

lated cells (Bs) decay at a rate δa. The dynamics of B cell stimulation are governed by the

following equations

C′ = γAg + δc Ic (7.2)

B′s = γn AgBn − γ1CBs − δaBs (7.3)

B cell proliferation

The activated B cells proliferate through division cycles at a constant rate γ2, and we con-

sidered 8 division cycles. Memory cells (M) can become activated through binding with

free antigen peptides and initiate the process of proliferation in the same way as stimu-

lated naı̈ve B cells. The memory cells (M) have a relatively prolonged life span compared

to naı̈ve or plasma cells, and can be activated by a lower antigen concentration. They also

have higher proliferation rates, and exhibit high avidity surface receptors due to matura-

tion processes that occur during the primary response. We consider a rate γm for memory

cell stimulation. Activated cells decay at a rate δa as described in the following equation

B′a = γmCMs + γ1CBs − γ2Ba − δaBa (7.4)

Antigen induced cell death (AICD) can occur when activated B cells encounter free

antigen peptides during their proliferation cycles, which could eliminate proliferated cells
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from becoming effectors in the form of plasma or memory [103]. This mechanism could

have a number of implications for a repeated antigenic challenge during primary response.

On one hand, larger antigen doses stimulate a greater fraction of naı̈ve cells, but not nec-

essarily the degree to which the individual cells are stimulated [103]. On the other hand,

a higher fraction of proliferated cells experiences AICD, and therefore a lower number of

effector cells may develop. The last division cycle in proliferation will lead to generation

of memory cells, and plasma cells that secret antibody molecules. With the decay rate of δa

for proliferated B cells, the dynamics of clonal expansion is described by

B′i = 2γ2Bi−1 − γ2Bi − d0
Ag

Ag0

Bi − δaBi i = 2, · · · , 8 (7.5)

Plasma cells, memory cells and antibody molecules

Plasma cells (Bp) and memory cells (M) are generated through proliferation of activated B

cells. Plasma cells decay at a rate δp in the following equation

B′p = γ2B8 − δpBp (7.6)

In the presence of free antigen, memory cells can go through the process of activation

and proliferation. Memory cells decay at a rate δM, with the dynamics described by

M′ = γ2BA
8 − γ3AgM− δM M (7.7)

M′s = γ3AgM− γmCMs − δM Ms (7.8)
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We consider a total amount of antibodies (Ab), mainly consisting of two major antibody

molecules secreted by plasma cells, IgG and IgM. The concentration of antibody molecules

is increased at the rate α (i.e., production rate from plasma cells), and reduced by a removal

rate of δb. The concentration of antibody molecules is reduced by the formation of immune

complexes through binding with free antigen peptides at the constant rate β, which incor-

porates the average avidity of circulating antibody molecules. The dynamics of antibody

molecules are governed by the following equation

A′b = αBp − βAg Ab − δb Ab (7.9)

Antigen and antibody complexes

The initial antigen concentration is reduced by rates that are proportional to the concentra-

tion of the antigen bound to antibody molecules and activation-induced cell death during

proliferation of B cells. With a removal rate of dg for antigen peptides, the dynamics of

antigen concentration (Ag) is given by

A′g = −βAg Ab − γ1AgBn − γ3AgM− γAg − d0
Ag

Ag0

(B1 + · · ·+ B8)− dg Ag (7.10)

The concentration of antibody complexes (IC) increases as a result of antigen binding

with antibodies, and reduces at a rate δc, which is governed by the equation

I′C = βAg Ab − δc IC (7.11)
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Summarizing the above, the dynamics of humoral immune response in the presence

of a bivalent unimolecular (Hib-CP-Hia) glycoconjugate vaccine can be described by the

following sub-models (7.12)–(7.16):

B′n = ρ− γn AgBn − δnBn

C′ = γAg + δc Ic

(7.12)

Dynamics of immune response against serotype ‘a’:

B′As =
1
3

γn AgBn − γ1CBA
s − δaBA

s

B′Aa = γmCMA
s + γ1CBA

s − γ2BA
a − δaBA

a

B′A1 = 2γ2BA
a − γ2BA

1 − δ0BA
1

B′Ai = 2γ2BA
i−1 − γ2BA

i − δ0BA
i − d0

Ag

Ag0

BA
i i = 2, · · · , 8

B′Ap = γ2BA
8 − δpBA

p

M′A = γ2BA
8 − γ3AgMA − δM MA

M′As = γ3AgMA − γmCMA
s − δM MA

s

A′Ab = αBA
p − βAA

g AA
b − δb AA

b

(7.13)

Dynamics of immune response against serotype ‘b’:

B′Bs =
1
3

γn AgBn − γ1CBB
s − δaBB

s

B′Ba = γmCMB
s + γ1CBB

s − γ2BB
a − δaBB

a

B′B1 = 2γ2BB
a − γ2BB

1 − δ0BB
1
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B′Bi = 2γ2BB
i−1 − γ2BB

i − δ0BB
i − d0

Ag

Ag0

BB
i i = 2, · · · , 8

B′Bp = γ2BB
8 − δpBB

p (7.14)

M′B = γ2BB
8 − γ3AgMB − δM MB

M′Bs = γ3AgMB − γmCMB
s − δM MB

s

A′Bb = αBB
p − βAg AB

b − δb AB
b

Dynamics of immune response for carrier protein ‘C’:

B′Cs =
1
3

γn AgBn − γ1CBC
s − δaBC

s

B′Ca = γmCMC
s + γ1CBC

s − γ2BC
a − δaBC

a

B′C1 = 2γ2BC
a − γ2BC

1 − δ0BC
1

B′Ci = 2γ2BC
i−1 − γ2BC

i − δ0BC
i − d0

Ag

Ag0

BC
i i = 2, ..., 8

B′Cp = γ2BC
8 − δpBC

p

M′C = γ2BC
8 − γ3AgMC − δM MC

M′Cs = γ3AgMC − γmCMC
s − δM MC

s

A′Cb = αBC
p − βAg AC

b − δb AC
b

(7.15)

Dynamics of antigen and immune complexes:

A′g = −βAg AA
b − βAg AB

b − βAg AC
b − γn AgBn

− γ3Ag(MA + MB + MC)− γAg − dgAg − d0
Ag

Ag0

(BA
i + BB

i + BC
i )

I′C = βAg AA
b + βAg AB

b + βAg AC
b − δc IC

(7.16)
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7.1.1 Bivalent combined Hib-CP/Hia-CP vaccine

In the case of a bivalent combined vaccine, antigens are covalently linked to carrier proteins

separately. We therefore consider these two different antigen peptides in two distinct com-

partments in our model, denoted by AA
g and AB

g . The dynamics of B cell clonal expansion

and antibody production for a bivalent combined (Hib-CP/Hia-CP) glycoconjugate vaccine

are therefore described by the following sub-models (7.17)–(7.21):

C′ = γAA
g + γAB

g + δc Ic (7.17)

Dynamics of immune response against serotype ‘a’:

B′An = ρ− γn AA
g BA

n − δnBA
n

B′As = γn AA
g BA

n − γnCBA
s − δaBA

s

B′Aa = γmCMA
s + γnCBA

s − γ2BA
a − δaBA

a

B′A1 = 2γ2BA
a − γ2BA

1 − δ0BA
1

B′Ai = 2γ2BA
i−1 − γ2BA

i − δ0BA
i − d0

AA
g

AA
g0

BA
i i = 2, · · · , 8

B′Ap = γ2BA
8 − δpBA

p

M′A = γ2BA
8 − γ3AA

g MA − δM MA

M′As = γ3AA
g MA − γmCMA

s − δM MA
s

A′Ab = αBA
p − βAA

g AA
b − δb AA

b

(7.18)
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Dynamics of immune response against serotype ‘b’:

B′Bn = ρ− γn AB
g BB

n − δnBB
n

B′Bs = γn AB
g BB

n − γnCBB
s − δaBB

s

B′Ba = γmCMB
s + γnCBB

s − γ2BB
a − δaBB

a

B′B1 = 2γ2BB
a − γ2BB

1 − δ0BB
1

B′Bi = 2γ2BB
i−1 − γ2BB

i − δ0BB
i − d0

AB
g

AB
g0

BB
i i = 2, · · · , 8

B′Bp = γ2BB
8 − δpBB

p

M′B = γ2BB
8 − γ3AB

g MB − δM MB

M′Bs = γ3AB
g MB − γmCMB

s − δM MB
s

A′Bb = αBB
p − βAB

g AB
b − δb AB

b

(7.19)

Dynamics of immune response for carrier protein ‘C’:

B′Cn = ρ− γn AA
g BC

n − γ1AB
g BC

n − δnBC
n

B′Cs = γn AA
g BC

n + γ1AB
g BC

n − γnCBC
s − δaBC

s

B′Ca = γmCMC
s + γnCBC

s − γ2BC
a − δaBC

a

B′C1 = 2γ2BC
a − γ2BC

1 − δ0BC
1

B′Ci = 2γ2BC
i−1 − γ2BC

i − δ0BC
i − d0

AA
g

AA
g0

BC
i − d0

AB
g

AB
g0

BC
i i = 2, ..., 8

B′Cp = γ2BC
8 − δpBC

p (7.20)

M′C = γ2BC
8 − γ3AA

g MC − γ3AB
g MC − δM MC
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M′Cs = γ3AgAMC + γ3AgBMC − γmCMC
s − δM MC

s

A′Cb = αBC
p − βAA

g AC
b − βAB

g AC
b − δb AC

b

Dynamics of antigens and immune complexes:

A′Ag = −βAA
g AA

b − γ1AA
g BA

n − γ3AA
g MA − γAA

g − dgAA
g − d0

AA
g

AA
g0

BA
i − d0

AA
g

AA
g0

BC
i

A′Bg = −βAB
g AB

b − γ1AB
g BB

n − γ3AB
g MB − γAB

g − dgAB
g − d0

AB
g

AB
g0

BB
i − d0

AB
g

AB
g0

BC
i

I′C = βAA
g AA

b + βAB
g AB

b − δc IC

(7.21)

7.1.2 Stochastic simulation model

We implemented the stochastic Markov-Chain simulation model, in which events occur

randomly based on the rates of immunological mechanisms. The state of the model is de-

fined by the number of cells, antigens, antibodies, and immune complexes, and is changed

discretely whenever an event occurs. In our simulations, rates of immunological mecha-

nisms are converted to probabilities of the corresponding event by considering

P(event i) =
ai

∑
i

ai
, (7.22)

where ai is the transition rate of the event i. In this formulation, the time to the next event

(τ) is exponentially distributed with the parameter equal to the sum of the rates for all

possible events. The probability density function is given by
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f (τ) =
(
∑

i
ai
)

exp
(
− τ ∑

i
ai
)

(7.23)

Using inverse transform sampling [104], we estimated the time to the next event: for

a given random variate r drawn from the uniform distribution on the unit interval (0, 1),

τ was estimated as − ln r/∑
i

ai. To determine the nature of the next event, we ordered

the events as an increasing fraction of the sum of all events and compared with another

uniform deviate generated in the unit interval. Simulations were run for a large number of

samples (n = 500) to calculate the average of sample realizations of the stochastic process

in each scenario.

7.1.3 Parameterization

The model was parameterized using available estimates from the previous literature sum-

marized in Table 6.1. Since the specific interactions between T cells and macrophages have

been measured in a short (5 to 15 minutes) time period [105], we used an average value

of 10 minutes to calculate the MHC II antigen presentation rate, giving a rate of 6 h−1

(per hour). Naı̈ve B cells are stimulated and activated at a much slower rate compared to

memory B cells [106, 107]. We used rates of 5.26× 10−2 and 0.5 h−1 for naı̈ve and memory

B cells stimulation, respectively. Each division during proliferation cycle of immune cells

takes about 8 hours [108], and we used a rate of 0.125 h−1. Upon the completion of each di-

vision cycle, plasma B cells are generated, which secrete antibodies at an estimated rate of

around 2000 molecules per second [109]. This gives the rate of 7.2× 106 antibody molecules
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Table 7.1: Model parameters and their values used for simulations.

Parameter Description Value Reference

γn Stimulation rate of B cells 5.88× 10−2 (MHC II)−1 h−1 [106]

γ1 Activation rate of naı̈ve B cells 0.5 (antigen)−1 h−1 [107]

γ2 Proliferation rate of B cells 0.125 h−1 [109]

γm Stimulation rate of memory B cells 1 (antigen)−1 h−1 Estimated

γ3 Activation rate of memory B cells 1 (MHC II)−1 h−1 Estimated

γ Rate of production of MHC II by APCs 6 h−1 [105]

β Binding rate of antibody with antigen 60 (antigen molecule)−1 h−1 [110]

δn Death rate of naı̈ve B cell 4.16× 10−3 h−1 [111]

δM Death rate of memory B cells 2.1× 10−4 h−1 Estimated

d0 Activation-induced cell death (AICD) 6.67× 10−2 h−1 [111]

rate in the absence of antigen

δ0 Natural death rate of B cells 7.5× 10−3 h−1 [111–113]

δp Death rate of plasma B cells 8.33× 10−3 h−1 [111–113]

δb Antibody removal rate 8.33× 10−3 h−1 [111]

δc Immuno complex removal rate 4.63× 10−4 h−1 [113]

dg Antigen removal rate 8.33× 10−3 h−1 Estimated

ρ Production rate of naı̈ve B cells 10 day−1 [114]

α Rate of antibody production 7.2× 106 [109]

per cell per hour. The binding rate of antibody-antigen is taken from the previous literature

considering the affinity and the number of binding sites of the antibodies [110]. High avid-

ity antibodies will react rapidly while low avidity species may continue to form complexes
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for several hours after the initiation of reaction with the antigen. Since the peak rate of

immune complex formation occurs within 1 minute after mixing antibodies and antigens

[110], we used an antigen-antibody binding rate of 60 h−1 per antigen. We used an average

life span of short- and long-lived plasma cells [111–113], with a rate of 8.33 × 10−3 h−1

within the reported ranges. For the purpose of simulations, an initial number of 4× 104

antigens was used in four different scenarios: (i) naı̈ve immune system; (ii) pre-existing

antibodies (Ab = 106 molecules) against only one antigen; (iii) pre-existing memory B cell

(M = 400 cells) specific to only one antigen; and (iv) pre-existing antibodies and memory

B cells (Ab = 4× 104 molecules and M = 200 cells) specific to only one antigen.

7.2 Results

Simulation results for the number of antibody using the bivalent combined and unimolec-

ular glycoconjugate vaccines are illustrated in Figures 7.2–7.4. In a naı̈ve condition (Fig-

ures 7.2a and 7.3a), both Hib-CP-Hia and Hib-CP/Hia-CP can elicit comparable levels of

anti-Hia, anti-Hib, and CP-specific antibodies. In the presence of pre-existing Hib specific

immune responses, such as antibodies and/or memory B cells, the production of anti-Hia

and CP antibodies by a unimolecular Hib-CP-Hia vaccine is significantly reduced (Figures

7.2b-7.2d), compared to the scenario of the naı̈ve condition. Furthermore, pre-existing Hib

antibodies may impede the boosting of Hib-specific antibodies following vaccination with

both Hib-CP-Hia and Hib-CP/Hia-CP formulations (Figures 7.2b and 7.3b). In contrast, the

pre-existing Hib-specific immune responses have no effect on the production of anti-Hia
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Figure 7.2: The effects of pre-existing Hib immune responses on the production of antibod-
ies using a bivalent unimolecular Hib-CP-Hia vaccine. An initial 4x104 amount of antigen
was assumed for simulations in (a) the naı̈ve condition (pre-existing Ab = 0 and M = 0);
(b) the presence of pre-existing anti-Hib antibodies only (pre-existing AB

b = 106); (c) the
presence of pre-existing Hib-specific memory B cells only (MB = 400); and (d) the presence
of both anti-Hib antibodies and Hib-specific memory B cells (AB

b = 4× 104 and MB = 200)

antibodies using a combined Hib-CP/Hia-CP vaccine (Figure 7.3, b–d). However, when im-

mune responses of CP and Hib-specific (antibodies or memory cells) exist, the generation

of Hia-specific antibody is largely inhibited (Figures 7.4a–7.4b). These simulations suggest
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Figure 7.3: The effects of pre-existing Hib immune responses on the production of anti-
bodies using a bivalent combined Hib-CP/Hia-CP vaccine. An initial 4× 104 amount of
antigen was assumed for simulations in (a) the naı̈ve condition (pre-existing Ab = 0 and
M = 0); (b) the presence of pre-existing anti-Hib antibodies only (pre-existing AB

b = 106);
(c) the presence of pre-existing Hib-specific memory B cells only (MB = 400); and (d) the
presence of both anti-Hib antibodies and Hib-specific memory B cells (AB

b = 4× 104 and
MB = 200)
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Figure 7.4: The effects of pre-existing CP and Hib immune responses on the production of
antibodies using a bivalent combined Hib-CP/Hia-CP vaccine. An initial 4× 104 amount
of antigen was assumed for simulations in (a) the presence of pre-existing CP-specific and
Hib-specific memory B cells only (MB = 400 and MC = 400); (b) the presence of pre-
existing anti-Hib and CP antibodies only (AB

b = 106 and AC
b = 106).

that the pre-existing CP-specific immune responses may significantly impede the produc-

tion of both anti-Hia and anti-Hib antibodies when a bivalent vaccine contains the same CP.

However, the pre-existing Hib-specific antibodies or memory cells may interfere with, and

impede the development of anti-Hia immune responses only in a bivalent unimolecular

vaccine.

7.3 Sensitivity Analyses

While the relative importance of the parameters in the model may not have a significant

biological implication, the results may be quantitatively sensitive to their values. In order

to evaluate this sensitivity, we considered the effect of variation in the parameters used in

105



the in-host model. Due to the lack of specific ranges for these parameters in the literature,

we perturbed each parameter around the values provided in Table 7.1, and carried out a

sensitivity analysis using the Latin Hypercube Sampling (LHS) technique. We calculated

Partial Rank Correlation Coefficients (PRCCs), and defined the response variable as the

ratio of the maximum antibody concentrations against Hib and Hia over a period of 30

days following antigen presentation in the system. Specifically, assuming that there is no

correlation between the input parameters, we considered

Response =
max{AB

b }
max{AA

b }
. (7.24)

The goal of LHS/PRCC analysis is to identify key parameters whose uncertainties con-

tribute to prediction imprecision, and to rank these parameters by their importance in

contributing to this imprecision. We performed this analysis for the case where there

is pre-existing immunity in the form of antibodies (AB
b (0) = 4× 104) and memory cells

(MB(0) = 200), which are present as a result of prior exposure to the pathogen and/or vac-

cination against Hib infection. To allow for the simultaneous variations of these parameters,

samples of size 1000 were generated in which each parameter was treated as a random vari-

able and assigned a probability function. This analysis identified seven parameters of the

model to have significant effect on the response variable (with the corresponding p-values
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smaller than 0.05). These parameters include

γ ∈ [3, 9], γn ∈ [0.0294, 17.0294], γ1 ∈ [0.25, 0.75], γ3 ∈ [0.5, 1.5],

δ0 ∈ [3.75× 10−3, 1.125× 10−2], δM ∈ [1.05× 10−4, 3.15× 10−4],

dg ∈ [0.0042, 0.0125].

Since the range of each parameter was relatively small, the parameters were uniformly

sampled (without the need to sample on a log-scale) [86]. The parameters with large PRCC

values (close to 1 or -1) and their corresponding p-values smaller than the significance

level (0.05) have the largest influence on the model outcomes [87]. The PRCC values and

their associated t-statistics p−values are presented in Table 7.2. We examined scatter plots

to verify the existence of monotonic relationships between the parameters used in LHS

sampling and the response variable. Figure 7.5 shows the scatter plots of partial residual

of parameters that were found to be significant in the analysis.
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Figure 7.5: PRCC scatter plots of parameters: γ, γn, γ1, γ3, δ0, dg, δM. The abscissa repre-
sents the residuals of the linear regression between the rank-transformed values of the pa-
rameter under investigation versus the rank-transformed values of all the other parameters.
The ordinate represents the residuals of the linear regression between the rank-transformed
values of the response versus the rank-transformed values of all the parameters under in-
vestigation.
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Table 7.2: Partial rank correlation coefficients and their associated p-values.

Parameter PRCC p-value

γ 0.1840 < 0.001

γn −0.9524 < 0.001

γ1 −0.3472 < 0.001

γ3 0.8833 < 0.001

δ0 −0.0676 0.0340

dg 0.0631 0.0477

δM −0.0767 0.0161

Our analysis reveals that the stimulation rate of B-cells (γn) is the most important pa-

rameter which has a negative effect on the response, as increasing γn decreases the inhibi-

tion of anti-Hia antibody production. The second most important parameter that strongly

affects the response is the activation rate of memory B cells (γ3).

7.4 Discussion

With the prospect of a vaccine candidate against Hia infection, we developed a model to

evaluate bivalent unimolecular and combined formulations. Using a stochastic simula-

tion model, we simulated the potential effect of immunization with such vaccines on the

elicitation of immune responses. Our simulations suggest that, in either type of bivalent
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combined or unimolecular vaccine, the pre-existing immunity to one antigen at the in-

dividual level may interfere with the production of antibodies against both antigens. In

particular, the pre-existing CP or Hib-specific antibodies or memory B cells, respond faster

to the same antigen (CP or Hib) than naı̈ve B cells, which leads to rapid depletion of free

antigen peptides through interaction with memory B cells or formation of immune com-

plexes. This will in turn impede the generation of anti-Hia immune responses (Figures

7.2c-7.2d, 7.3c-7.3d, 7.4a-7.4b), or even reduce the total number of pre-existing Hib anti-

bodies (Figures 7.2b, 7.3b, 7.4b). However, in a naı̈ve individual with no prior exposure or

vaccination, a bivalent vaccine can trigger comparable immune responses against both Hia

and Hib (Figures 7.2a and 7.3a).

These findings have important implications for current efforts towards vaccine develop-

ment against Hia, as well as vaccination policies. Given the fact that Hib and Hia have been

circulating in several regions of the world [3, 30], and the Hib conjugate vaccine has been

included in the universal infant immunization programs in a number of countries since

the late 1980s [30], our results indicate that the use of a bivalent Hia-Hib vaccine in these

population settings (where individuals may have varying degrees of pre-existing immunity

due to natural infection or vaccination) may not be effective in raising antibody numbers

to levels required for Hia prevention. While such a vaccine may be recommended for im-

munization of infants (as naı̈ve individuals) to prevent the spread of both Hia and Hib,

the duration of vaccine-induced protection remains undetermined, and therefore booster

doses may be required [5]. Our results in Chapter 5 demonstrate that, when a monovalent

Hia vaccine becomes available, achieving and maintaining a sufficiently high level of herd
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immunity for curtailing Hia requires vaccination of a fraction of susceptible individuals in

addition to high primary and booster vaccine coverage of infants.

Given the previous clinical and laboratory investigation of carrier-induced epitopic sup-

pression, a new bivalent vaccine formulation may be optimized to enhance Hia-specific im-

mune responses and antibody production via various approaches, such as the utilization

of a different carrier protein from the one previously used for the Hib conjugate vaccine, or

the inclusion of high-density Hia polysaccharide antigens [100, 115]. The use of a different

CP from the one previously used can eliminate the potential effects of pre-existing CP im-

mune responses on the production of anti-Hia antibodies elicited by a bivalent combined

vaccine. However, in a bivalent unimolecular vaccine, a high density of Hia antigens may

increase the probability of recognition by Hia-specific naı̈ve B cells. Our findings here sug-

gest that for the development of a bivalent combined glycoconjugate vaccine, the utilization

of new carrier proteins not previously used for Hib vaccine can help to develop effective

vaccine-induced protections against both Hib and Hia infections.

It should be mentioned that, for simulations presented here, we relied on parameter

estimates reported in the previous literature, which may be subject to variations, and we

therefore emphasize the qualitative aspects of the results. The pre-existing immunity in

our model was included as the initial condition for antibodies or memory B cells at the

time of vaccination without considering any prior specific mechanism for their generation.

However, we note that antigens from several organisms other than Hia and Hib can induce

cross-reactive antibodies to H. influenzae capsular polysaccharide [73]. Nevertheless, we

have provided the first simulation model for evaluation of the bivalent vaccine-induced im-
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munity, which can be extended with further immunological mechanisms and recalibrated

as data become available through further immunological experiments.

In conclusion, we draw attention to the importance of pre-existing immune responses to

Hib and CP (due to natural infection or vaccination) for the composition of a new bivalent

vaccine against Hia and Hib. In this context, ongoing efforts should include experimental

investigation of the immune responses elicited by bivalent vaccines in the presence of pre-

existing immunity.
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Chapter 8

Discussion and Future Work

Rates of Hia infections have increased in several geographic regions in Canada, including

Northwestern Ontario. The burden of disease falls mainly on Aboriginal populations,

but elderly and immunocompromised individuals are also at risk of infection [2, 3]. The

existing mono and multivalent vaccines against Hib are specific to serotype ‘b’ and does

not provide any protection against Hia. There is currently no vaccine available to prevent

Hia infection. Considering the increasing rates of Hia and successful Hib immunizations

programs, an anti-Hia vaccine may be an effective measure to curtail the incidence of Hia

and possibly eliminate the pathogen from affected populations.

In this thesis, we aimed to address a number of important questions on vaccination and

prevention of Hia at the individual and population levels, considering the duration and

strength of immunity acquired naturally or through vaccination. We developed and ana-

lyzed mathematical models, and employed computational and statistical methodologies to

evaluate the outcomes of various scenarios for long-lasting protection in the population,
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and identify the most effective vaccine strategies and formulations to prevent Hia infec-

tions. Our methodology included the analysis of data collected for Hia, which were used

to parameterize and simulate in-host and between-host models of immune dynamics and

disease transmission, and perform simulations with sensitivity analysis of the outcomes

as a result of variation in the parameter space. We developed a model of boosting immu-

nity, and used data on anti-Hia antibody levels in a population of Northwestern Ontario

to determine the timelines and frequency of exposure to Hia in this population. We then

developed the stochastic models of Hia transmission and control dynamics, and extended

to an age-structure model to evaluate vaccination strategies. Since the results depend on

the choice of parameters, largely extracted from the published literature on Hib, we per-

formed sensitivity analysis using the Latin Hypercube sampling technique and ranked the

importance of parameters on model outcomes. In this way, we determined key parameters

that critically affect the vaccination strategies in the long-term.

In the absence of vaccination, the immunity against Hia infection, in the form of anti-

capsular polysaccharide antibodies, is acquired naturally as a result of exposure to Hia and

other cross-reactive bacteria. Raising herd immunity through vaccination may interrupt

pathogen circulation in the population, which reduces the chance of recurrent exposure

and boosting of immunity. In the absence of such boosting, however, the adaptive immu-

nity of individuals decays gradually, causing a decline in the herd immunity. The loss of

immunity in the absence of boosting can have a significant impact of the long-term out-

comes of vaccination programs. We therefore used the antibody boosting model to deter-

mine the timelines required for boosting protective antibodies against invasive Hia disease.
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Using estimates obtained from this model, we parameterize the vaccination models at the

population level to simulate various scenarios with different vaccine coverages for infants

and other susceptible individuals.

8.1 Research Outcomes

The research presented in this thesis provides important information regarding vaccination

strategies that can offer long-lasting protection against Hia infection. Since vaccination

influences the rates of carriage in the population, we used antibody-boosting model to

estimate the frequency of exposure to the pathogen and timelines for boosting protective

antibodies. Our results are based on the data collected in a pre-dominantly Aboriginal

population in Northwestern Ontario. In our analysis, we considered ethnicity, health state,

and age of participants. Data suggest that adult serum antibody concentrations are above

the threshold required for prevention of Hia disease in this population. We showed that

frequent boosting of natural immunity may be required to maintain the level of protective

antibodies above the threshold. Since the circulation of bacteria is high among Aboriginal

people and individuals with CRF condition, they may be at higher risk of developing

Hia disease, which highlights the need to develop preventive measures for curtailing Hia

infection in vulnerable populations.

For the use of a vaccine, the stochastic model of disease transmission and control sug-

gests that primary and booster vaccination programs will need to go beyond infant immu-

nization programs. While recent studies emphasize the importance of maintaining control
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of the disease and, most probably carriage, in children, they provide evidence for the lack

of seroprotection against Hib in adults, suggesting that long-term routine boosting of pre-

school children or adolescents may be required [116–118]. Given the estimates for the du-

ration of vaccine-induced protection, the model simulations indicate that a sizeable portion

of susceptible individuals needs to be vaccinated to maintain the decline trend of carriage

over time. However, estimates of vaccine coverage for susceptible individuals (children

older than 2 years of age or adults) may be affected by several factors, including vaccine

protection efficacy, population demographics, and other health statuses of the individuals.

It is therefore essential to monitor vaccination outcomes and rates of Hia infection over

time when a vaccine becomes available and implemented.

We further extended the vaccination model to include age-structure and consider a

contact matrix for interactions between different age groups in the population. While re-

producing similar results to the original model for vaccination of only infants, this model

also demonstrates age-specific rates of carriage. Our simulations show that the highest

incidence of carriage occurs amongst children between 1 and 2 years of age. As shown by

the model results, the incidence of carriage in children affects the long-term incidence of

carriage in other age groups, highlighting the effect of population contact matrix on disease

outcomes.

Formulation and efficacy of vaccines remain key determinants in the effectiveness of

vaccination strategies. In the context of pre-existing immunity, vaccine formulation may

influence the generation and boosting of immunity. Since multivalent vaccines are in-

creasingly used for prevention of different pathogens (e.g., DTaP-HB-IPV-Hib) or different
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serotypes of a pathogen (e.g., PCV10 and PCV13), a bivalent Hia-Hib vaccine may become a

vaccine candidate to protect against both serotypes ‘a’ and ‘b’ of H. influenzae. Considering

the pre-existing immunity to Hib bacteria acquired naturally or through pediatric immu-

nization programs, the competitive interference between serotypes using a bivalent vaccine

is an important factor to be considered. We developed an in-host immune-dynamics model,

based on well-established biological mechanisms of T-cell dependent B-cell proliferations,

to simulate the effect of a bivalent glycoconjugate Hia-Hib vaccine formulation (unimolec-

ular and combined). Our simulations suggest that pre-existing immunity to one antigen

may interfere with the production of antibodies against both antigens. We concluded that a

bivalent vaccine formulation with a different carrier protein from the one previously used

in anti-Hib vaccines may be more effective to generate optimal immune responses in the

context of pre-existing immunity against Hia or Hib.

The outcomes of this research provide important information for optimizing vaccina-

tion policies when an anti-Hia vaccine becomes available. While Hia is currently mainly

affecting Aboriginal populations, the risk of its spread to the general population cannot be

discounted, especially amongst the elderly and immunocompromised individuals. There-

fore, our results may be considered in a broader population scope than only Aboriginal

communities. Optimizing vaccination strategies can lead to substantial healthcare and eco-

nomic benefits by reducing the rates of hospitalization and severe outcomes associated with

Hia infection, as well as the costs of healthcare resource utilization.
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8.2 Limitations

Our study has several limitations that merit further investigation in future research. In

the absence of parameter estimates specific to Hia epidemiology, natural history of infec-

tion, and immune dynamics, we parameterized our models using available estimates in

the literature for Hib infection. However, to estimate Hia-specific decay rates of antibody

concentrations in the absence of vaccination, subsequent measurements of serum samples

should be collected for several years. Such data and information are currently not avail-

able. Furthermore, epidemiological data on Hia incidence published in the literature do

not provide sufficient information on the transmission rates of Hia in different population

or age groups. We therefore calculated the transmission rates using the expression for the

basic reproduction number, while fixing other parameters in this expression. The basic re-

production number is also currently unknown for Hia, and we considered the estimates for

Hib disease and other bacterial diseases with similar outcomes. Vaccination models were

also parameterized using estimates for Hib vaccination and vaccine-induced protection pe-

riods. In the in-host antibody boosting model, the levels of IgG and IgM were considered

as indicators of protection against Hia disease. However, we note that clinical protection

does not necessarily fully correlate with the immunological data. Clinical protection could

be affected by antibody avidity and isotype subclass distribution, considering that certain

isotypes may be more important than others in protecting against infections.

To develop the antibody-boosting model we used data collected for anti-Hia antibodies

in serum samples of healthy and immunocompromised adults in a population of North-
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western Ontario, Canada. But since the majority of invasive Hia disease cases occur among

young children, the demographics of our study group, comprised of adults older than 18

years of age, do not fully reflect the immunoepidemiology of this infection. Future stud-

ies on the level of naturally acquired immunity in pediatric populations could help refine

estimates for the timelines of boosting and frequency of exposure to Hia.

We also note that antigens from several organisms other than Hia can induce cross-

reactive antibodies to Hia capsular polysaccharide, and may therefore increase the antibody

concentrations. In this context, measurements of the serum Hia antibody concentration

may not reliably correspond to the occurrence of Hia infection. Since the relative impor-

tance of cross-reactive bacteria in the immune dynamics of Hia is unknown, it is important

to further investigate the role of cross-reactive bacterial organisms in the maintenance of

immunity at the individual level.

Despite these limitations, the findings of this study suggest that high rates of primary

and booster vaccination are required for curtailing Hia infection when a new vaccine be-

comes available. Enhanced surveillance of the incidence and monitoring of the population

level of immunity could help determine these rates specific to the population at risk. The

findings presented in this thesis have important implications for current efforts towards

vaccine development, as well as vaccination policies in the fight against Hia.
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8.3 Future Work

The research presented here provides a solid foundation for further studies in modelling,

epidemiology, and clinical aspects of Hia disease. Extension of the age-structured vaccina-

tion model could help determine optimal strategies for primary and booster vaccination.

Previous studies on Hib vaccination raise the question of optimal timing for booster vac-

cination following primary series offered to infants between the age of 2 and 6 months

[116, 118, 119]. Given that the immune protection induced by vaccine may wane over time,

timing of booster dose may be a key factor in the long-term disease outcomes [117]. In our

vaccination models, we assumed that the level of vaccine-induced protection for infants

and susceptible individuals is the same as that acquired by natural infections. Lifting this

assumption by further investigating the differences between the average protection periods

resulting from vaccination or natural infections may reveal outcomes that could be used in

optimizing age-specific vaccination schedules. In this context, it is important to note that

polysaccharide protein conjugate vaccines result in the generation of immune memory in

addition to antibodies, and can therefore lead to a longer protection period.

In understanding the timelines of immune protection, our model suggests a difference

in the frequency of boosting required to generate protective antibodies against Hia infection

among Aboriginal and non-Aboriginal populations. In developing our antibody-boosting

model, we assumed the same thresholds for protecting against invasive disease and car-

riage in all population groups. However, we understand that these protection thresholds

may be different, especially in the context of increased vulnerability and risk factors due to
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underlying health conditions. The true reasons for higher vulnerability of Aboriginal peo-

ple to Hia infection compared to non-Aboriginal populations are still unknown, and remain

a subject of future work. However, explicators may include socio-economic and environ-

mental factors, and prevalence of co-morbid conditions, particularly in Canadian northern

communities. These factors could affect the incidence of carriage and disease, and warrant

further investigation to better understand the mechanisms responsible for high rates of Hia

circulation in vulnerable populations.

This research also highlights the importance of epidemiological and clinical studies to

inform models and provide estimates of parameters specific to Hia infection. For example,

subsequent measurements of antibody concentrations in serum samples over several years

can be used to determine the rates of Hia-specific antibody decay in the absence of vaccina-

tion. Furthermore, improved epidemiological data on Hia disease in specific populations

can help refine transmission rates, and will allow models to inform vaccination strategies

that fit the demographics the populations at risk.

Finally, when an anti-Hia vaccine becomes available, modelling studies with the use

of enhanced surveillance and clinical data are needed to tailor vaccination and booster

strategies. These studies, considering the characteristics of different communities, could

contribute to the possible elimination of Hia from affected populations.
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Appendix A: Details of Computational Methods

Mathematical models presented in this thesis are complex and non-linear, and therefore

cannot be solved analytically. In order to show the results and their sensitivity to input

parameters, we used computational methods to implement these models. We developed

computational algorithms to implement the models stochastically and considered the range

of parameter values obtained from our analysis of serum sample data for Hia, or from

previously published literature on Hib.

Computational algorithms for stochastic simulations were developed and ran in Matlab©.

To consider the stochastic nature of events, we ran a large number of independent realiza-

tions (i.e., 500 realizations) in the prescribed scenarios, and calculated the average. In

these simulations, the time to the next event (i.e., step-size) was exponentially distributed,

estimated for a given random variate drawn from the uniform distribution on the unit in-

terval, and used to determine the nature of the next event. Variables of the system were

then updated according to the occurrence of the events in each time-step. Since the step-

size in simulations were adaptive, often very small to capture the impending event, the

simulations were computationally intensive and time-consuming. The amount of time in

computations varied depending on the scenario, and ranged from 2 to 8 hours per 100

realizations. Simulations were run using a Shared-Memory Multiprocessor computer with

64 AMD Opteron 2.1GHz processors, 264GB of Memory and 20TB of storage.

Here we provide the algorithm used to simulate the stochastic model of vaccination

presented in Chapter 5. Similar structures were developed to simulate models presented
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in Chapters 6 and 7.

Part 1: variables, parameters, initial values, and simulation time

1 func t ion [ t , S , Vn , Vp, Vb , L , Lv , C,A, I , Vbp , Sv , Sp , Sn ] = simul ( p ,mu, beta ,

del ta , sigmap , sigma , gamma1, gamma2, theta , alpha , q , eta , p1 , xi , p2 , S0 ,

Vn0 , Vp0 , Vb0 , L0 , Lv0 , C0 , A0 , I0 , Vbp0 , Sv0 , Sp0 , Sn0 , tmax )

2 % The main i t e r a t i o n

3 [ t , pop ] = S t o c h I t e r a t i o n ( [ 0 tmax ] , [ S0 , Vn0 , Vp0 , Vb0 , L0 , Lv0 , C0 , A0 , I0

, Vbp0 , Sv0 , Sp0 , Sn0 ] , [ p ,mu, beta , del ta , sigmap , sigma , gamma1, gamma2,

theta , alpha , q , eta , p1 , xi , p2 ] ) ;

4 S=pop ( : , 1 ) ; Vn=pop ( : , 2 ) ; Vp=pop ( : , 3 ) ; Vb=pop ( : , 4 ) ; L=pop ( : , 5 ) ;

5 Lv=pop ( : , 6 ) ; C=pop ( : , 7 ) ; A=pop ( : , 8 ) ; I =pop ( : , 9 ) ; Vbp=pop ( : , 1 0 ) ; Sv=

pop ( : , 1 1 ) ; Sp=pop ( : , 1 2 ) ; Sn=pop ( : , 1 3 ) ;

Part 2: initialize the system, estimate step-size, and vary specific parame-

ters at specific time of simulations

1 func t ion [ T , P]= S t o c h I t e r a t i o n ( Time , I n i t i a l , Parameters )

2 S= I n i t i a l ( 1 ) ; Vn= I n i t i a l ( 2 ) ; Vp= I n i t i a l ( 3 ) ; Vb= I n i t i a l ( 4 ) ; L=

I n i t i a l ( 5 ) ; Lv= I n i t i a l ( 6 ) ; C= I n i t i a l ( 7 ) ; A= I n i t i a l ( 8 ) ; I = I n i t i a l

( 9 ) ; Vbp= I n i t i a l ( 1 0 ) ; Sv= I n i t i a l ( 1 1 ) ; Sp= I n i t i a l ( 1 2 ) ; Sn= I n i t i a l

( 1 3 ) ;
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3 T=0; P ( 1 , : ) =[S Vn Vp Vb L Lv C A I Vbp Sv Sp Sn ] ;

4 old =[S Vn Vp Vb L Lv C A I Vbp Sv Sp Sn ] ;

5 loop =1;

6 t new1 =0;

7 while ( T ( loop )<Time ( 2 ) )

8 [ step , new]= I t e r a t e ( old , Parameters ) ;

9 t new1=t new1+step ;

10 i f ( t new1 <10*365)

11 Parameters ( 1 ) =0;

12 Parameters ( 1 3 ) =0;

13 e l s e

14 Parameters ( 1 ) = 0 . 0 ;

15 Parameters ( 1 4 ) = 0 . 0 ;

16 end

17 p=Parameters ( 1 ) ;

18 x i =Parameters ( 1 4 ) ;

19 loop=loop +1;

20 T ( loop ) =T ( loop−1)+step ;

21 P ( loop , : ) =old ;

22 loop=loop +1;

23 T ( loop ) =T ( loop−1) ;
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24 P ( loop , : ) =new ; old=new ;

25 i f loop>=length ( T )

26 T ( loop * 2 ) =0;

27 P ( loop * 2 , : ) =0 ;

28 end

29 end

30 T=T ( 1 : loop ) ; P=P ( 1 : loop , : ) ;

Part 3: running simulations with given parameter and initial values

1 % Parameters values , i n i t i a l values , s imulat ion time , and averaging

2 % Parameter values

3 p = 0 . 0 ;

4 p1 = 0 . 0 ;

5 p2 =0;

6 x i =0;

7 RRR0 = 1 . 3 ;

8 d e l t a = 0 . 5 ;

9 mu=1/(70*365) ;

10 gamma1=1/50;

11 gamma2=1/2;

12 e ta = 0 . 5 ;
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13 alpha =1;

14 q = 0 . 6 ;

15 t h e t a =1/2;

16 % Simulat ion time

17 tmax = 1 0 * 3 6 5 ;

18 tau =2;

19 t t ime =0: tau : tmax ;

20 % I n i t i a l values

21 S0=100000−10−1;

22 Vn0=0;

23 Vp0=0;

24 Vb0=0;

25 L0 =0;

26 Lv0 =0;

27 C0=10;

28 A0=0;

29 I0 =1;

30 Vbp0=0;

31 Sv0 =0;

32 Sp0 =0;

33 Sn0 =0;
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34 % Estimating beta from the reproduct ion number

35 beta=RRR0/( d e l t a * q * t h e t a / ( (mu+gamma1) * (mu+ t h e t a ) ) + d e l t a *(1−q ) *

t h e t a / ( (mu+ t h e t a ) * (mu+alpha ) ) + (1−q ) * t h e t a * alpha / ( (mu+ t h e t a ) * (

mu+gamma2) * (mu+alpha ) ) ) ;

36 % S t a r t of s imulat ions

37 nsims =500; % Number of s imulat ions to run

38 f o r i =1: nsims

39 KK1 = 2* rand ( 1 , 1 ) + 2 ;

40 KK2 = 4* rand ( 1 , 1 ) + 6 ;

41 sigma = 1/(KK1* 3 6 5 ) ;

42 sigmap = 1/(KK2* 3 6 5 ) ;

43 [ t , S , Vn , Vp, Vb , L , Lv , C,A, I , Vbp , Sv , Sp , Sn ] = simul ( p ,mu, beta , del ta ,

sigmap , sigma , gamma1, gamma2, theta , alpha , q , eta , p1 , xi , p2 , S0 , Vn0

, Vp0 , Vb0 , L0 , Lv0 , C0 , A0 , I0 , Vbp0 , Sv0 , Sp0 , Sn0 , tmax ) ;

44 SS ( i , 1 ) =S ( 1 ) ;

45 VVn( i , 1 ) =Vn( 1 ) ;

46 VVp( i , 1 ) =Vp( 1 ) ;

47 VVb( i , 1 ) =Vb ( 1 ) ;

48 LL ( i , 1 ) =L ( 1 ) ;

49 LLv ( i , 1 ) =Lv ( 1 ) ;

50 CC( i , 1 ) =C( 1 ) ;
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51 AA( i , 1 ) =A( 1 ) ;

52 I I ( i , 1 ) = I ( 1 ) ;

53 VVbp( i , 1 ) =Vbp ( 1 ) ;

54 SSv ( i , 1 ) =Sv ( 1 ) ;

55 SSp ( i , 1 ) =Sp ( 1 ) ;

56 SSn ( i , 1 ) =Sn ( 1 ) ;

57 k =2;

58 f o r j =1 : length ( t )

59 f o r bb=k : length ( t t ime )

60 i f t t ime ( bb )<=t ( j )

61 SS ( i , bb ) =S ( j −1) ;

62 VVn( i , bb ) =Vn( j −1) ;

63 VVp( i , bb ) =Vp( j −1) ;

64 VVb( i , bb ) =Vb( j −1) ;

65 LL ( i , bb ) =L ( j −1) ;

66 LLv ( i , bb ) =Lv ( j −1) ;

67 CC( i , bb ) =C( j −1) ;

68 AA( i , bb ) =A( j −1) ;

69 I I ( i , bb ) = I ( j −1) ;

70 VVbp( i , bb ) =Vbp( j −1) ;

71 SSv ( i , bb ) =Sv ( j −1) ;
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72 SSp ( i , bb ) =Sp ( j −1) ;

73 SSn ( i , bb ) =Sn ( j −1) ;

74 e l s e

75 break

76 end

77 end

78 k=bb ;

79 end

80 end

81 % Averaging independent r e a l i z a t i o n s

82 AveS=sum( SS , 1 ) / s i z e ( SS , 1 ) ;

83 AveVn=sum(VVn, 1 ) / s i z e (VVn, 1 ) ;

84 AveVp=sum(VVp, 1 ) / s i z e (VVp, 1 ) ;

85 AveVb=sum(VVb, 1 ) / s i z e (VVb, 1 ) ;

86 AveL=sum( LL , 1 ) / s i z e ( LL , 1 ) ;

87 AveLv=sum( LLv , 1 ) / s i z e ( LLv , 1 ) ;

88 AveC=sum(CC, 1 ) / s i z e (CC, 1 ) ;

89 AveA=sum(AA, 1 ) / s i z e (AA, 1 ) ;

90 AveI=sum( I I , 1 ) / s i z e ( I I , 1 ) ;

91 AveVbp=sum(VVbp, 1 ) / s i z e (VVbp, 1 ) ;

92 AveSv=sum( SSv , 1 ) / s i z e ( SSv , 1 ) ;
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93 AveSp=sum( SSp , 1 ) / s i z e ( SSp , 1 ) ;

94 AveSn=sum( SSn , 1 ) / s i z e ( SSn , 1 ) ;

Part 4: updating system variables

1 func t ion [ step , new value ]= I t e r a t e ( old , Parameters )

2 % Parameters

3 p=Parameters ( 1 ) ; mu=Parameters ( 2 ) ; beta=Parameters ( 3 ) ; d e l t a =

Parameters ( 4 ) ; sigmap=Parameters ( 5 ) ; sigma=Parameters ( 6 ) ; gamma1

=Parameters ( 7 ) ; gamma2=Parameters ( 8 ) ; t h e t a =Parameters ( 9 ) ; alpha

=Parameters ( 1 0 ) ; q=Parameters ( 1 1 ) ; e ta=Parameters ( 1 2 ) ; p1=

Parameters ( 1 3 ) ; x i =Parameters ( 1 4 ) ; p2=Parameters ( 1 5 ) ;

4 % Var iab les

5 S=old ( 1 ) ; Vn=old ( 2 ) ; Vp=old ( 3 ) ; Vb=old ( 4 ) ; L=old ( 5 ) ; Lv=old ( 6 ) ; C=

old ( 7 ) ; A=old ( 8 ) ; I =old ( 9 ) ; Vbp=old ( 1 0 ) ; Sv=old ( 1 1 ) ;

6 Sp=old ( 1 2 ) ; Sn=old ( 1 3 ) ;

7 % Updating v a r i a b l e s based on the events

8 Change=zeros ( 3 5 , 1 3 ) ;

9 Rate ( 1 ) = (1−p ) *mu* ( S+Vn+Vp+Vb+L+Lv+C+A+ I +Vbp+Sv+Sp+Sn ) ;

10 Change ( 1 , : ) = [+1 0 0 0 0 0 0 0 0 0 0 0 0 ] ;

11

12 Rate ( 2 ) = p*mu* ( S+Vn+Vp+Vb+L+Lv+C+A+ I +Vbp+Sv+Sp+Sn ) ;
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13 Change ( 2 , : ) = [0 +1 0 0 0 0 0 0 0 0 0 0 0 ] ;

14

15 Rate ( 3 ) = beta * S * ( I + d e l t a * (C+A) ) /(S+Vn+Vp+Vb+L+Lv+C+A+ I +Vbp+Sv+Sp+

Sn ) ;

16 Change ( 3 , : ) = [−1 0 0 0 +1 0 0 0 0 0 0 0 0 ] * s ign ( S ) ;

17

18 Rate ( 4 ) = (1−p1 ) * sigmap *Vp ;

19 Change ( 4 , : ) = [0 0 −1 0 0 0 0 0 0 0 0 0 +1]* s ign (Vp) ;

20

21 Rate ( 5 ) = p1 * sigmap *Vp ;

22 Change ( 5 , : ) = [0 0 −1 +1 0 0 0 0 0 0 0 0 0 ] * s ign (Vp) ;

23

24 Rate ( 6 ) = mu* S ;

25 Change ( 6 , : ) = [−1 0 0 0 0 0 0 0 0 0 0 0 0 ] * s ign ( S ) ;

26

27 Rate ( 7 ) = e ta * beta *Vp* ( I + d e l t a * (C+A) ) /(S+Vn+Vp+Vb+L+Lv+C+A+ I +Vbp+Sv

+Sp+Sn ) ;

28 Change ( 7 , : ) =[0 0 −1 0 0 +1 0 0 0 0 0 0 0 ] * s ign (Vp) ;

29

30 Rate ( 8 ) = mu*Vp ;

31 Change ( 8 , : ) =[0 0 −1 0 0 0 0 0 0 0 0 0 0 ] * s ign (Vp) ;
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32

33 Rate ( 9 ) = sigma *Vn ;

34 Change ( 9 , : ) = [0 −1 +1 0 0 0 0 0 0 0 0 0 0 ] * s ign (Vn) ;

35

36 Rate ( 1 0 ) = mu*Vn ;

37 Change ( 1 0 , : ) =[0 −1 0 0 0 0 0 0 0 0 0 0 0 ] * s ign (Vn) ;

38

39 Rate ( 1 1 ) = mu*Vb ;

40 Change ( 1 1 , : ) =[0 0 0 −1 0 0 0 0 0 0 0 0 0 ] * s ign (Vb) ;

41

42 Rate ( 1 2 ) = sigmap *Vb ;

43 Change ( 1 2 , : ) = [0 0 0 −1 0 0 0 0 0 +1 0 0 0 ] * s ign (Vb) ;

44

45 Rate ( 1 3 ) = e ta * beta *Vbp * ( I + d e l t a * (C+A) ) /(S+Vn+Vp+Vb+L+Lv+C+A+ I +Vbp+

Sv+Sp+Sn ) ;

46 Change ( 1 3 , : ) =[0 0 0 0 0 +1 0 0 0 −1 0 0 0 ] * s ign (Vbp) ;

47

48 Rate ( 1 4 ) = mu*Vbp ;

49 Change ( 1 4 , : ) = [0 0 0 0 0 0 0 0 0 −1 0 0 0 ] * s ign (Vbp) ;

50

51 Rate ( 1 5 ) = sigmap *Vbp ;
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52 Change ( 1 5 , : ) = [0 0 0 0 0 0 0 0 0 −1 0 0 +1]* s ign (Vbp) ;

53

54 Rate ( 1 6 ) = gamma2* I ;

55 Change ( 1 6 , : ) = [0 0 0 +1 0 0 0 0 −1 0 0 0 0 ] * s ign ( I ) ;

56

57 Rate ( 1 7 ) = gamma1*C;

58 Change ( 1 7 , : ) = [0 0 0 +1 0 0 −1 0 0 0 0 0 0 ] * s ign (C) ;

59

60 Rate ( 1 8 ) = q * t h e t a *L ;

61 Change ( 1 8 , : ) =[0 0 0 0 −1 0 +1 0 0 0 0 0 0 ] * s ign ( L ) ;

62

63 Rate ( 1 9 ) = (1−q ) * t h e t a *L ;

64 Change ( 1 9 , : ) =[0 0 0 0 −1 0 0 +1 0 0 0 0 0 ] * s ign ( L ) ;

65

66 Rate ( 2 0 ) = mu*L ;

67 Change ( 2 0 , : ) =[0 0 0 0 −1 0 0 0 0 0 0 0 0 ] * s ign ( L ) ;

68

69 Rate ( 2 1 ) = t h e t a *Lv ;

70 Change ( 2 1 , : ) =[0 0 0 0 0 −1 +1 0 0 0 0 0 0 ] * s ign ( Lv ) ;

71

72 Rate ( 2 2 ) = mu*Lv ;
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73 Change ( 2 2 , : ) =[0 0 0 0 0 −1 0 0 0 0 0 0 0 ] * s ign ( Lv ) ;

74

75 Rate ( 2 3 ) = mu*C;

76 Change ( 2 3 , : ) =[0 0 0 0 0 0 −1 0 0 0 0 0 0 ] * s ign (C) ;

77

78 Rate ( 2 4 ) = alpha *A;

79 Change ( 2 4 , : ) =[0 0 0 0 0 0 0 −1 +1 0 0 0 0 ] * s ign (A) ;

80

81 Rate ( 2 5 ) = mu*A;

82 Change ( 2 5 , : ) =[0 0 0 0 0 0 0 −1 0 0 0 0 0 ] * s ign (A) ;

83

84 Rate ( 2 6 ) = mu* I ;

85 Change ( 2 6 , : ) =[0 0 0 0 0 0 0 0 −1 0 0 0 0 ] * s ign ( I ) ;

86

87 Rate ( 2 7 ) = x i * S ;

88 Change ( 2 7 , : ) =[−1 0 0 0 0 0 0 0 0 0 +1 0 0 ] * s ign ( S ) ;

89

90 Rate ( 2 8 ) = mu* Sv ;

91 Change ( 2 8 , : ) =[0 0 0 0 0 0 0 0 0 0 −1 0 0 ] * s ign ( Sv ) ;

92

93 Rate ( 2 9 ) = sigma * Sv ;
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94 Change ( 2 9 , : ) =[0 0 0 0 0 0 0 0 0 0 −1 +1 0 ] * s ign ( Sv ) ;

95

96 Rate ( 3 0 ) = mu* Sp ;

97 Change ( 3 0 , : ) =[0 0 0 0 0 0 0 0 0 0 0 −1 0 ] * s ign ( Sp ) ;

98

99 Rate ( 3 1 ) = e ta * beta * Sp * ( I + d e l t a * (C+A) ) /(S+Vn+Vp+Vb+L+Lv+C+A+ I +Vbp+

Sv+Sp+Sn ) ;

100 Change ( 3 1 , : ) =[0 0 0 0 0 +1 0 0 0 0 0 −1 0 ] * s ign ( Sp ) ;

101

102 Rate ( 3 2 ) = p2 * sigmap * Sp ;

103 Change ( 3 2 , : ) =[0 0 0 +1 0 0 0 0 0 0 0 −1 0 ] * s ign ( Sp ) ;

104

105 Rate ( 3 3 ) = (1−p2 ) * sigmap * Sp ;

106 Change ( 3 3 , : ) =[0 0 0 0 0 0 0 0 0 0 0 −1 +1]* s ign ( Sp ) ;

107

108 Rate ( 3 4 ) = mu* Sn ;

109 Change ( 3 4 , : ) =[0 0 0 0 0 0 0 0 0 0 0 0 −1]* s ign ( Sn ) ;

110

111 Rate ( 3 5 ) = beta * Sn * ( I + d e l t a * (C+A) ) /(S+Vn+Vp+Vb+L+Lv+C+A+ I +Vbp+Sv+Sp

+Sn ) ;

112 Change ( 3 5 , : ) = [0 0 0 0 +1 0 0 0 0 0 0 0 −1]* s ign ( Sn ) ;
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113 % Determining the nature of events

114 R1=rand ( 1 , 1 ) ;

115 R2=rand ( 1 , 1 ) ;

116 i f (sum( Rate ) > 0)

117 s tep = −log ( R2 ) /(sum( Rate ) ) ;

118 e l s e

119 s tep = 0 . 0 0 1 ;

120 new value=old ;

121 re turn

122 end

123 % Find which event occurs and update the corresponding v a r i a b l e

124 m=min ( f ind (cumsum( Rate )>=R1*sum( Rate ) ) ) ;

125 new value=old+Change (m, : ) ;
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Appendix B: Serum Assays

Serum samples were obtained from the participants (after informed consent was given)

and stored at -80°C prior to use.

Anti-Hia capsular polysaccharide IgG ELISA

The assay was developed by Dr. Nix based on published methodology with some mod-

ifications [95]. The Hia capsular polysaccharide was isolated according to the method of

Anderson and Smith. Based on a developed methodology, the isolated polysaccharide was

then oxidized and conjugated to human serum albumin, and the resulting conjugate was

purified and characterized [120]. Hia polysaccharide conjugated to human serum albumin

was dissolved in coating buffer (0.01M PBS) and 100 µl added to each well of a 96-well

ELISA plate (Cedarlane, Burlington, Canada) at a concentration of 1 µg/ml, covered with

plate sealer (Fisher Scientific, Ottawa, Canada) and incubated at 37°C for 1.5 hours. The

standard and samples were serially diluted in dilution buffer (0.01M PBS, 0.3% Tween

20) 1:400 to 1:25,600 and 1:200 to 1:1,600, respectively and run in duplicate. Plates were

washed five times with 250 µl wash buffer (0.01M PBS, 1.2% Tween 20), the first addition

of wash solution was left on the plate for 1 minute. Next, 100 l of diluted serum was added

to each well and left at room temperature for 90 minutes then washed as previously de-

scribed. Horseradish peroxidase conjugated mouse anti-human IgG antibody (Hybridoma

Reagent Laboratory, Baltimore, MD) was diluted 1:4,000 in antibody buffer (0.01M PBS,

0.05% Tween 20), 100 µl added to each well and incubated for 2 hours at room temper-
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ature. Then 100 µl of Sure Blue TMB peroxidase substrate (Mandel Scientific, Guelph,

Canada) was added to each well and incubated at room temperature for 30 minutes fol-

lowed by the addition of 100 µl of 1N HCl. The colorimetric substrate was detected using a

microplate reader (BioTek Powerwave XS; Winooski,VT) at 450 nm with 630 nm reference.

Quantification of antibody was performed using a previously described methodology [95].

The concentration of anti-Hia polysaccharide IgG (4.1 µg/ml) in the standard was deter-

mined by cross-standardization to the Hib (FDA 1983) reference serum. The quantification

range was 0.10-4 µg/ml. Samples above the upper limit of quantification were diluted an

additional 5 times and re-assayed effectively increasing the upper limit of quantification to

20 µg/ml.

Anti-Hia capsular polysaccharide IgM ELISA

To quantify anti-Hia capsular polysaccharide IgM, the anti-Hia PS IgG protocol was used

by Dr. Nix with the following modifications. Following coating, the plates were blocked

for 2 hours at room temperature with antibody dilution buffer containing 1% fish gelatin

(Sigma-Aldrich, Oakville, Canada) and washed as described. Serum IgG was depleted us-

ing IgG/RF stripper. As a standard, we selected the serum of a volunteer (NOSM 97/13)

from our collection that exhibited high bactericidal activity against Hia. Following a two-

fold serial dilution scheme (1:100 to 1:6,400) serum samples were incubated with coated

plates for 60 minutes. As a secondary antibody, horseradish peroxidase conjugated goat

anti-human IgM (Southern Biotech, Birmingham, AL) diluted 1:5,000 in antibody dilu-

tion buffer was used and incubated in the wells for 1 hour at room temperature. The
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concentration of anti-Hia PS IgM (3.84 µg/ml) in the standard was determined by cross-

standardization [60] to the Hib (FDA 1983) standard. The estimated range of quantification

was 0.01–18 µg/ml, for statistical purposes samples below the lower limit of quantification

were assigned a value one half the lower quantification limit. Samples above the upper

limit of quantification were diluted an additional 5 times and re-assayed increasing the

upper limit of quantification to 90 µg/ml.
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