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Abstract

This thesis examined two research projects: probabilistic information retrieval mod-

eling and third-order inference on reliability.

In the first part of this dissertation, two research topics in the information re-

trieval are carried out and experimented on large-scale text data set. First, we

conduct an in-depth study of relationship between information of document length

and document relevance to user need. Two statistical methods are proposed which

incorporates document length as a substantial weighting factor to achieve higher re-

trieval performance. Second, we utilize the property of survival function to propose

a cost-based re-ranking method to promote ranking diversity for biomedical informa-

tion retrieval, and to model the proximity between query terms to improve retrieval

performance. Through extensive experiments on standard TREC collections, our

proposed models perform significantly better than the classical probabilistic infor-

mation retrieval models.

In the second part of this dissertation, a small sample asymptotic method is pro-
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posed for higher order inference in the stress-strength reliability model, R = P (Y <

X), where X and Y are independently distributed. A penalized likelihood method

is proposed to handle the numerical complications of maximizing the constrained

likelihood model. Simulation studies are conducted on two distributions: Burr type

X distribution and exponentiated exponential distribution. Results from simulation

studies show that the proposed method is very accurate even when the sample sizes

are small.

iii



Acknowledgements

I would like to express my sincerest appreciation to my thesis supervisors, Profes-

sor Augustine Wong and Professor Jimmy Huang, whose persistent encouragement,

patience, guidance and continuous support to lead me into a promising area of re-

search. I am deeply grateful to them, their enthusiasm, inspirations and great efforts

to guide and help me to approach research projects throughout my Ph.D study.

I am heartily thankful to my supervisory committee member, Professor Steven

Wang, who is always generously offered his knowledge and help and make my doctoral

study smooth and rewarding.

A special thank to all my colleagues from the department of mathematics and

statistics and information retrieval and knowledge management research lab for their

personal support, interesting discussions and valuable suggestions.

Finally, I wish to express my love and gratitude to my husband, my parents and

my brother’s family for their support, care and understanding. To them I dedicate

this dissertation.

iv



Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents v

List of Tables ix

List of Figures xiii

1 Introduction and Literature Survey in Information Retrieval 1

1.1 Background of Probabilistic Modeling . . . . . . . . . . . . . . . . . . 3

1.2 Diversification in Biomedical Search . . . . . . . . . . . . . . . . . . . 11

1.3 Term Proximity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Impact of Document Length on Relevance 18

v



2.1 Density Analysis and Length Relevance Weighting . . . . . . . . . . . 19

2.1.1 Kernel Density Analysis . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.3 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4 Distribution of Document Length . . . . . . . . . . . . . . . . 28

2.2 Length Relevance Weighting . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Evaluation and Experiment Results . . . . . . . . . . . . . . . . . . . 38

2.3.1 The TREC Test Collections . . . . . . . . . . . . . . . . . . . 38

2.3.2 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . 39

2.3.3 Comparison with BM25 . . . . . . . . . . . . . . . . . . . . . 41

2.3.4 Impact of Parameters . . . . . . . . . . . . . . . . . . . . . . . 45

3 Survival Approach to Diversity and Proximity 50

3.1 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Survival Approach to Diversity . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 The Process of Re-ranking . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Experiment Settings and Evaluation Measures . . . . . . . . . 56

3.2.3 Information Retrieval Baseline Runs . . . . . . . . . . . . . . 57

3.2.4 Experimental Results on Genomics collections . . . . . . . . . 59

3.2.5 Impact of the Survival Models . . . . . . . . . . . . . . . . . . 64

vi



3.2.6 Experiment Results on Web Track . . . . . . . . . . . . . . . 65

3.3 Survival Approach to Proximity . . . . . . . . . . . . . . . . . . . . . 68

3.3.1 Re-ranking Model Based on Term Proximity . . . . . . . . . . 69

3.3.2 Term Proximity Modeling . . . . . . . . . . . . . . . . . . . . 71

3.3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 75

4 Conclusion and Future Work in IR 81

5 Literature Survey on Asymptotic Methods 83

5.1 Standard First-order Likelihood-based Asymptotic Methods . . . . . 84

5.2 Saddlepoint Approximation . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 The Third-order Asymptotic Methods . . . . . . . . . . . . . . . . . . 92

6 Third-Order Likelihood Inference for a General Statistical Model 95

6.1 Canonical Exponential Model . . . . . . . . . . . . . . . . . . . . . . 96

6.2 General Exponential Family . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 General Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Computational Issues 118

7.1 Computation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 A Penalized Likelihood Method . . . . . . . . . . . . . . . . . . . . . 124

vii



8 Application to Stress-Strength Reliability 128

8.1 Inference for Stress-Strength Reliability with Burr Type X Distributions129

8.1.1 Burr type X Distribution . . . . . . . . . . . . . . . . . . . . 129

8.1.2 Stress-Strength Reliability with Equal Scale Parameters . . . . 131

8.1.3 Stress-Strength Reliability with Unequal Scale Parameters . . 141

8.2 Inference for Stress-Strength Reliability with Exponentiated Exponen-

tial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.2.1 Stress-Strength Reliability with Equal Scale Parameters . . . . 153

8.2.2 Stress-Strength Reliability with Unequal Scale Parameters . . 161

8.3 Conclusion and Future Work on Third-order Asymptotic Methods . . 169

Bibliography 171

viii



List of Tables

2.1 Information about the test collections . . . . . . . . . . . . . . . . . . 38

2.2 Evaluation results over the BM25 baseline with b = 0. A star indicates a

statistically significant improvement over the baseline. . . . . . . . . . . . 41

2.3 Evaluation results over the BM25 baseline with optimized setting of b. A

star indicates a statistically significant improvement over this baseline. . . 41

2.4 Evaluation results over the BM25 baseline on disak1&2. . . . . . . . . 42

3.1 The best and mean results in the Genomics tracks . . . . . . . . . . . 59

3.2 Re-ranking Performance based on Aspect Detection Using Wikipedia 60

3.3 Re-ranking Performance based on Aspect Detection Using UMLS . . 63

3.4 Re-ranking Performance on the Diversity Task of TREC 2009 Web

Track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 The MAP/statMAP values obtained by the unigram BM25 baseline

and the bi-gram model. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



3.6 The MAP values obtained by the unigram BM25 baseline and the

bi-gram model on WT10G. . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 The MAP values obtained by the unigram BM25 baseline and the

bi-gram model on Blog06. . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 The MAP values obtained by the unigram BM25 baseline and the

bi-gram model on .GOV2. . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9 The statMAP values obtained by the unigram BM25 baseline and the

bi-gram model on ClueWeb B. . . . . . . . . . . . . . . . . . . . . . . 78

3.10 The MAP/statMAP values obtained for evaluating the tri-gram model.

A star indicates a significant improvement over the unigram BM25

baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Three simulated data sets . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 90% central confidence intervals for θ . . . . . . . . . . . . . . . . . . 103

6.3 µx = 0, ψ = µx − µy = 1, σ2
x = 1, σ2

y = cσ2
x, n = 100 and m = 50. . . . 111

6.4 µx = 0, ψ = µx − µy = 3, σ2
x = 1, σ2

y = cσ2
x, n = 10 and m = 20. . . . . 112

6.5 µx = 0, ψ = µx − µy = 5, σ2
x = 1, σ2

y = cσ2
x, n = 5 and m = 5. . . . . . 113

7.1 The strength data for single carbon fibre at 20-mm, 50-mm. . . . . . 122

7.2 Parameter Estimates for Example using iterative and penalized method123

7.3 Parameter Estimates for Example when N = 2, 4 and 6. . . . . . . . . 126

x



7.4 Parameter Estimates for Example when K(ψ0) = 100, 1000 and 10000

with N = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1 Interval Estimates of ψ for Example assuming equal scale parameter . 136

8.2 σ1 = σ2 = 2, α1 = 5, (n,m) = (10, 10) and α2 satisfies R = α1/(α1 + α2)138

8.3 σ1 = σ2 = 2, α1 = 5, (n,m) = (10, 50) and α2 satisfies R = α1/(α1 + α2)139

8.4 σ1 = σ2 = 2, α1 = 5, (n,m) = (50, 10) and α2 satisfies R = α1/(α1 + α2)140

8.5 Interval Estimates of ψ for Example assuming unequal scale parameters146

8.6 Interval Estimates of ψ for Example using resampling . . . . . . . . . 147

8.7 Simulation results for R when σ is not equal . . . . . . . . . . . . . . 148

8.8 σ1 6= σ2, α1 = 5, α2 = 10, σ1 = 2 and σ2 is obtained by Equation (7.3),

(n,m) = (10, 10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.9 σ1 6= σ2, α1 = 5, α2 = 10, σ1 = 2 and σ2 is obtained by Equation (15),

(n,m) = (10, 50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.10 σ1 6= σ2, α1 = 5, α2 = 10, σ1 = 2 and σ2 is obtained by Equation (15),

(n,m) = (50, 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.11 Interval Estimates of ψ Assuming EED with Same Scale Parameter β 156

8.12 α1 = 4, β = 8 and α2 satisfies R = α1/(α1 + α2), (n,m) = (10, 10) . . 158

8.13 α1 = 4, β = 8 and α2 satisfies R = α1/(α1 + α2), (n,m) = (10, 50) . . 159

8.14 α1 = 4, β = 8 and α2 satisfies R = α1/(α1 + α2), (n,m) = (50, 10) . . 160

xi



8.15 Interval Estimates of ψ for Example . . . . . . . . . . . . . . . . . . . 165

8.16 β1 6= β2, α1 = 2, α2 = 5, β1 = 3 and β2 is obtained by Equation (8.11),

(n,m) = (10, 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.17 β1 6= β2, α1 = 2, α2 = 5, β1 = 3 and β2 is obtained by Equation (8.11),

(n,m) = (10, 50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.18 β1 6= β2, α1 = 2, α2 = 5, β1 = 3 and β2 is obtained by Equation (8.11),

(n,m) = (50, 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xii



List of Figures

1.1 A basic IR system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Illustrate two hypotheses using three extreme cases. . . . . . . . . . . 5

2.1 Kernel density estimate constructed from the document length on four

test collections. “dl” stands for document length. . . . . . . . . . . . 22

2.2 Kernel density estimates constructed from the transformed document

length of four test collections. ”rel” stands relevant document length

and ”non” stands non-relevant document length. . . . . . . . . . . . 27

2.3 Distribution fittings for the relevant document length using transfor-

mation two z = log(d). . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Performance of BM25L over BM25 . . . . . . . . . . . . . . . . . . . 43

2.5 The MAP/statMAP values obtained against the parameter b . . . . . 47

2.6 The MAP/statMAP values obtained against the parameter β . . . . . 48

xiii



3.1 Effects of Survival Model and Aspect Filtering on 2007’s topics.(The

x-axis presents the evaluation measures, where “NLM”, “MuM” and

“Oka” in the left figure stand for three baselines corresponding to

NLMinter, MuMshFd and Okapi07.) . . . . . . . . . . . . . . . . . . 65

3.2 Effects of Survival Model and Aspect Filtering on 2006’s topics.(The

x-axis presents the evaluation measures, where “06a”, “06b” and “06c”

in the right figure stand for three baselines corresponding to Okapi06a,

Okapi06b and Okapi06c.) . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1 p(θ) for Data Set 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 p(θ) for Data Set 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 p(θ) for Data Set 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiv



1 Introduction and Literature Survey in

Information Retrieval

Information retrieval (IR) is the science of searching for documents, for information

within documents, and for metadata about documents, as well as that of searching

relational databases and the World Wide Web. Generally, an IR system receives a

query from user and returns the supposedly relevant documents, where a query is

a statement of an information need. A crucial issue underlying an IR system is to

rank the returned documents by decreasing order of relevance. In most traditional

retrieval systems, queries are translated into query representations. Similarly, docu-

ments are converted into document representations. Figure 1.1 describe a basic IR

system, in which the IR model proposes to match the query representation against

the document representation and computes a numeric score on how relevant each

document representation satisfies the user’s query, and then ranks the documents

according to their scores. Finally, the document representations are recovered to be

1



the original documents for users reading.

User’s

Query

Query Rep-

resentation

IR Models

Retrieved

Relevant

Documents List

Retrieved

Relevant

Documents

Documents

Collections

Documents

Representation

Figure 1.1: A basic IR system.

In general, ranking is based on a weighting model. In Section 1.1, we review the

basic probabilistic model which is one of the most popular weighting models in mod-

ern IR systems and its development. Retrieved documents are ranked in the order

of relevance to the query. A good IR system should return ranked lists that respect

both the query-relevance and the breadth of available information. Section 1.2 in-

troduce the most recent research on promoting search result diversification in ranked

document lists. Utilizing term proximity to improve retrieval performance is given

in Section 1.3. Finally some concluding remarks are given in 1.4.

2



1.1 Background of Probabilistic Modeling

The probabilistic approach in IR is extensively studied in the literature, this fam-

ily of IR models is developed by Robertson (1977) from the Probability Ranking

Principle(PRP). Cooper (1976) gives the formal statement of PRP as follows:

Probability Ranking Principle : If a reference retrieval system’s response to

each request is a ranking of the documents in the collection in order of de-

creasing probability of relevance to the user who submitted the request, where

the probabilities are estimated as accurately as possible on the basis of what-

ever data have been made available to the system for this purpose, the overall

effectiveness of the system to its user will be the best that is obtainable on the

basis of those data.

The basic weighting function proposed by Robertson et al. (1981) is one of the most

popular weighting models in modern IR systems, and it can be expressed as follows:

w(X) = log
P (X|R) P (0|R)

P (X|R) P (0|R)
, (1.1)

where X is an information vector about the document, 0 is a reference vector rep-

resenting a zero-weighted document, and R and R are relevance and non-relevance

respectively. This model considers the independent assumption of the query term

within documents made by Robertson and Jones (1976). At this stage, X contains

3



the information about term frequency within documents only. So it is so natural

to incorporate the document length into this consideration. Robertson and Walker

(1994) introduced the document length d into the basic probabilistic weighting model

in Equation (1.1) and refined it based on the two hypotheses: Verbosity and Scope hy-

potheses. Verbosity hypothesis given by Robertson and Walker (1994) states that the

document length is independent from its relevance. In other words, long documents

simply use more words than short documents to cover similar scope. An opposite as-

sumption about document length is the so-called Scope hypothesis, which states that

some documents may contain more material than others if longer, more details can

be found at (Robertson and Walker 1994). That is, long documents are more likely

to be retrieved. In practice, a document may be considered as a trade-off between

the Verbosity hypothesis and the Scope hypothesis. How to balance between these

two hypotheses by modeling document length within the basic probabilistic weight-

ing paradigm remains a challenging research issue. The impact of document length

on relevance is particularly important for ad-hoc retrieval, where relevance is defined

in a binary or graded manner. Compared to a short document, a long document is

likely to be relevant if it contains paragraphs that meet the information need of the

query, even if a large part of the document is in fact non-relevant. Figure 1.2 elab-

orates the idea of two hypotheses with the three extreme cases. For example, if the

4



Earthquake
in Japan

User’s Query

Verbosity
Hypothesis

Earthquake
in Japan.
A massive

8.9-magnitude
quake hit northeast
Japan on Friday.

Extreme Case 1

Earthquake in Japan.
A massive 8.9-magnitude quake
hit northeast Japan on Friday.
A massive 8.9-magnitude quake
hit northeast Japan on Friday.
Japan was hit by a strongest

earthquake on Friday.
A massive 8.9-magnitude quake
hit northeast Japan on Friday.......

Extreme Case 2

Scope
Hypothesis

Earthquake in Japan.
A massive 8.9-magnitude quake

hit northeast Japan on Friday, ...
Janpan’s meteorological agency is-
sued a tsunami warning, ......

Japan passes budget for emergency earthquake relief......
The economic impact of the earthquake......

According to Reuters, Fukushima nuclear plant workers
evacuated to higher ground following the earthquake,...
Japan’s earthquake and tsunami devastated the country,
and wreaked havoc at the Fukushima nuclear plant......

Quake hits central Japan, no nu-
clear reactor problem reported......

The March 11 earthquake caused extensive
damage at the Fukushima nuclear plant......

Four months ago, the same area
was hit by a massive earthquake............

Extreme Case 3

Earthquake in Japan.
A massive 8.9-magnitude quake hit northeast Japan on Friday.

A massive 8.9-magnitude quake hit northeast
Japan on Friday, causing dozens of deaths,...

Janpan’s meteorological agency issued a tsunami
warning after the earthquake in May, 2011, ......

Japan passes budget for emergency earthquake relief......
The economic impact of the earth-

quake and Japan’s struggle to recover......
According to Reuters, Fukushima nuclear plant workers
evacuated to higher ground following the earthquake............

Mixture 1

+
+

+

Figure 1.2: Illustrate two hypotheses using three extreme cases.

5



user’s query is “Earthquake in Japan”, we can find a short document with only one

sentence “A massive 8.9-magnitude quake hit northeast Japan on Friday”(Extreme

Case 1) and a long document with repeated sentences “A massive 8.9-magnitude

quake hit northeast Japan on Friday” or similar scope but other words like “Japan

was hit by a strongest earthquake on Friday”(Extreme Case 2). Verbosity hypothesis

says the document length is independent from its relevant, so these two documents

should be weighted the same, but clearly document in extreme case 2 is longer than

the one in extreme case 1. Figure 1.2 gives a typical example of Scope hypothesis,

extreme case 3. A document with a lot of more and different information related

to user’s query: Earthquake in Japan but has same document length as extreme

case 2. It may repeated same piece of information several times, but it do contain

more information than the previous two cases. Scope hypothesis says that we should

weight it more than the previous two cases, but Verbosity hypothesis says oppo-

site. Robertson and Walker (1994) recite that real document collections contains

a mixture of effects from two hypothesis, and the individual document may be at

either extreme case or the combination. Normally, in a collection of a documents,

the document length is varying, may from couple of words to thousands, or millions

words. One may think the more likely the document contain the query term if the

document length is more longer. It has been recognized as an important factor for

6



adjusting the IR system to avoid the length bias, but the impact of document length

on relevance remains challenging.

To address the effect of document length on relevance, the basic probabilistic

weighting function with document length been taken into account by Robertson and

Walker (1994) becomes

w(X, d) = log
P (X, d|R)

P (X, d|R)

P (0,∆|R)

P (0,∆|R)
, (1.2)

where w(X, d) is the relevance weight of a given document. d is the document

evidence for relevance, which is given by document length. ∆ denotes the average

document length of the reference vector 0, and X represents all other information

about the document. R andR stand for the non-relevance and relevance, respectively.

This function measures the difference between the probabilities of document length

and all other information we have for the document when it is relevant and when it

is not relevant, respectively, in log scale. The above equation also implies a relevant

document should receive a higher weight than a non-relevant document in order to

achieve a satisfying retrieval performance.

Equation (1.2) can be further decomposed into the three components as follows

Robertson and Walker (1994):

w(X, d) = w(X, d)1 + w(0, d)21 + w(d,∆)22, (1.3)

where

7



w(X, d)1 = log
P (X, d|R)

P (X, d|R)

P (0, d|R)

P (0, d|R)
,

w(0, d)21 = log
P (0|d,R)

P (0|d,R)

P (0|∆, R)

P (0|∆, R)
,

and

w(d,∆)22 = log
P (d|R)P (∆|R)

P (d|R)P (∆|R)
.

Under the Verbosity hypothesis, document length has been considered as indepen-

dent evidence of relevance. This hypothesis nullifies the component w(d,∆)22 in

Equation (1.3), which as a consequence is set to zero in (Robertson and Walker

1994). Thus, the weighting function becomes

w(X, d) = w(X, d)1 + w(0, d)21. (1.4)

The classical BM25 weighting model derived by Hancock-Beaulieu et al. (1996) from

Equation (1.4), more specifically, wBM25 = w(X, d), where wBM25 is the relevance

score of BM25, given by the following weighting function

wBM25 =
(k1 + 1)tf

K + tf
· w(1) · (k3 + 1)qtf

k3 + qtf
⊕ L, (1.5)

where

K = k1 ·
(

(1− b) + b · dl

avdl

)
,

w(1) = log
(r + 0.5)/(R− r + 0.5)

(n− r + 0.5)/(N − n−R + r + 0.5)
,

L = k2 · nq ·
avdl − dl
avdl + dl

.

8



N is the number of indexed documents in the collection, n is the number of documents

containing the query term, R is the number of known relevant documents to a specific

topic, r is the number of relevant documents containing the term, tf is within-

document term frequency, qtf is within-query term frequency, dl is the document

length (i.e. the document evidence d in Equation (1.3)), avdl is the average document

length, nq is the number of query terms, k′is and b are tuning constants (whose

setting depends on the dataset used and is usually empirically determined), and ⊕

indicates that its following component is added only once per document. Particularly,

b functions as a justification factor that adjusts the relative importance between the

two hypotheses given by Robertson et al. (1996).

The classical probabilistic models for IR rank documents according to their rele-

vance scores, assigned by matching the query terms with adjustment for the relation-

ship between document length and term frequency. This approach is developed based

on the Verbosity hypothesis which assumes the document’s relevance is independent

of its length. However, in practice, the impact of document length on relevance may

be a mixture of both the Scope hypothesis and the Verbosity hypothesis brought by

Robertson and Walker (1994). Many previous studies have been conducted to inves-

tigate the impact of document length on relevance. Singhal et al. (1996a) suggested

that long documents tend to have more unique terms, and consequently, long docu-
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ments have a better chance to be retrieved than short documents. As the document

length increases, the number of times the query terms occur in the documents also

increases, which in turn increases the matching score. For instance, Singhal et al.

(1996a,b) illustrated that the probability of a document’s relevance increases propor-

tionally with document length in the early TREC test collections and showed that

better retrieval performance can be achieved with normalization techniques. They

also reported that documents retrieved by a model produce a retrieval pattern by

the distribution of the document length. Moreover, a number of empirical studies

have provided statistical evidence supporting that the probability of a document’s

relevance to an information need is considered to be correlated with the length of the

document. Kraaij et al. (2002) showed that the probability of relevance is positively

correlated with document length on a number of TREC ad-hoc and Web collections.

Furthermore, Voorhees et al. (2005) found that proper term weighting strategies

based on document length can also improve retrieval performance. For example,

normalization techniques have been applied for each term in the query through the

length adjustment to avoid the bias introduced by document length. Losada and

Azzopardi (2008) applied Jelinek-Mercer and Dirichlet prior to two-stage smoothing

strategies on document length in language modeling to show the significant impact

of document length on the information retrieval performance.
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1.2 Diversification in Biomedical Search

Traditional retrieval models assume that the relevance of a document is independent

of the relevance of other documents as stated in Section 1.1. However, in reality, this

assumption may not hold. This assumption may result in high redundancy and low

diversification in a ranked document list, since documents that are similar in content

tend to appear over and over again. That is novel information is needed.

The usefulness of retrieving a document usually depends on previous ranked doc-

uments, since a user may want to see the top ranked documents concerning different

aspects of his/her information need instead of reading relevant documents that only

deliver redundant information. A better information retrieval system thus should

return ranked lists that represent both the query-relevance and the breadth of avail-

able information. For example, in biomedical domain, the desired information of

a question (query) asked by biologists usually is a list of a certain type of entities

covering different aspects that are related to the question, such as genes, proteins,

diseases, mutations, etc. Hence, it is important for a biomedical IR system to be able

to provide comprehensive and diverse answers to fulfill biologists’ information needs.

The dissimilarity between documents has to be considered. In the TREC 2006 and

2007 Genomics tracks, the “aspect retrieval” was investigated. Its purpose was to

study how a biomedical IR system can support a user gather information about the
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different aspects of a topic. In the Genomics tracks, biomedical IR systems were

required to return relevant information at the passage level, while relevance judges

not only rated the passages, but also grouped them by aspect. Aspects of a retrieved

passage could be a list of named entities or MeSH terms, representing answers that

cover different portions of a full answer to the query. Aspect Mean Average Preci-

sion (Aspect MAP) was defined in the Genomics tracks to capture similarities and

differences among retrieved passages. It indicates how comprehensive the questions

are answered. Hersh et al. (2006a) found that relevant passages that do not con-

tribute any new aspects to the aspects retrieved by higher ranked passages will not

be used to accumulate Aspect MAP. Therefore, Aspect MAP is a measurement for

redundancy and diversity of the IR ranked list.

Our work is inspired by several recent papers that concerned with promoting di-

versity and novelty in the IR ranked list. Carbonell and Goldstein (1998) introduced

the maximal marginal relevance (MMR) method, which attempted to maximize rel-

evance while minimizing similarity to higher ranked documents. In order to measure

the redundancy between documents, Zhang et al. (2002) presented four redundancy

measures, which were “set difference”, “geometric distance”, “distributional similar-

ity” and “a mixture model”. They modeled relevance and redundancy separately.

Since they focused on redundant document filtering, experiments in their study were
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conducted on a set of relevant documents. However, in reality, non-relevant doc-

uments are always returned by IR systems along with relevant documents. Re-

dundancy and relevance should both be considered. Zhai et al. (2003) validated a

subtopic retrieval method based on a risk minimization framework. Their subtopic

retrieval method combined the mixture model novelty measure with the query like-

lihood relevance ranking. More recently, a new diversity task of Web retrieval was

defined in the TREC 2009 Web track by Clarke et al. (2009a). Two evaluation

measures, α-nDCG by Clarke et al. (2008a) and an intent-aware version of preci-

sion (IA-P) by Agrawal et al. (2009a), both of which reward novelty and diversity,

were validated in the diversity task of the 2009 Web track. Top diversity task re-

sults showed that re-ranking methods based on anchor text, sites of search results,

link filtering, clustering and sub-queries suggestion were effective in Web retrieval

result diversification. More details can be found at(Song et al. 2004, Craswell et al.

2009, Kaptein et al. 2009 and McCreadie et al. 2009). Santos et al. (2010b) proposed

a novel framework, namely xQuAD, for search result diversification that builds such a

diversified ranking by explicitly accounting for the relationship between documents

retrieved for the original query and the possible aspects underlying this query, in

the form of sub-queries. Their study showed that the sub-query generation step

plays a fundamental role in the method. When they use the ground-truth sub-topics
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provided by the collection of TREC Web track as input to their proposed diversi-

fication models, performance improvements can be obtained. However,when they

use a clustering-based query expansion technique, in an attempt to uncover terms

representative of different aspects underlying a query from a clustering of the top

retrieved results for the query, no consistent performance improvements can be ob-

served. Santos et al. (2010a) also used three major web search engines (WSE) to

generate the sub-queries and investigated the impact of sub-query importance. In

general, using the related or suggested queries from WSEs, improvements over the

initial ranking are obtained in most settings.

In biomedical information retrieval, the Genomics aspect retrieval was firstly

proposed in the TREC 2006 Genomics track and further investigated in the 2007

Genomics track. Many research groups joined these annual campaigns to evaluate

their systems and methodologies. However, to the best of our knowledge, there is not

too much previous work conducted on the Genomics aspect retrieval for promoting

diversity in the ranked list.

1.3 Term Proximity

In literature, term proximity is interpreted as query term co-occurrences, or phrases.

Proximity searches for documents where two or more separately matching term oc-
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currences are within a specified distance, where distance is the number of intermedi-

ate words or characters. Proximity among query terms has been found to be useful

for improving retrieval performance. The intuition behind the development of the

proximity-based models is that documents in which query terms co-occur in a close

proximity, or within the same phrases, tend to be highly relevant.

Term proximity is particularly useful in Web environment, where documents are

highly diverse and heterogeneous. Indeed, some previous studies have demonstrated

the effectiveness of using term proximity for improving the retrieval performance.

Such research has resulted in the development of the so-called n-gram models, in

contrast to the classical “unigram” models which assume term independence. An

n-gram is referred to as a subsequence of n terms from a given sequence, or a given

window, of terms. In addition, the n-gram terms are not necessarily adjacent to each

other. For example, if an n-gram “modeling proximity” appears in “Modeling term

proximity for probabilistic models”, the two n-gram terms have a distance of 1 since

“term” appears between “modeling” and “proximity” in the text.

In the past decades, there have been attempts to develop more sophisticated

IR models by employing the term proximity information. Fagan (1987) empirically

identified phrases using features such as the frequency of the phrase in the collec-

tion and the proximity of the phrase terms, and concludes that the tested phrase
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methods do not perform consistently well across a variety of collections. Croft et al.

(1991) automatically extracted phrases from natural language queries to form struc-

tured queries for a probabilistic ranking model. van Rijsbergen (1977) proposed a

theoretical model for incorporating term co-occurrence information to a binary inde-

pendence model. Losee and Jr. (1994) applied the Bahadur Lazarsfeld expansion to

identify term dependence between more than two terms. In addition, Yu et al. (1983)

generalized both the tree dependence model and the Bahadur Lazarsfeld expansion.

Although the two methods are of high complexity in theory, their evaluation showed

little improvement over a unigram model argued by Metzler and Croft (2005a).

Recently, the application of term proximity has achieved a certain degree of suc-

cess in the context of the language modeling approach. Gao et al. (2004) incorporated

the term dependence based on a link structure for each query, which could be time-

consuming in practice. Metzler and Croft (2005a) proposed a Markov Random Field

model to estimate term dependencies in the context of language modeling approach.

A similar idea was presented by Mishne and de Rijke (2005). Lv and Zhai (2009)

applied a list of kernel functions to estimate a language model for every position

in a document. Zhao and Yun (2009) constructed the query term proximity as the

Dirichlet hyper-parameter that weights the parameters of the unigram document lan-

guage model. The application of term proximity to the probabilistic models has little

16



success so far. Plachouras and Ounis (2007a) conducted an initial study on incorpo-

rating term proximity in the Divergence From Randomness models. They assume a

Poisson distribution of n-gram co-occurrence in the elite set, i.e., the set of retrieved

documents. However, the approach proposed by Plachouras and Ounis (2007a) only

leads to a moderate improvement over the unigram baseline, possibly due to the lack

of the collection model for the n-gram frequency distribution. Bttcher and Clarke

(2005), Rasolofo and Savoy (2003) also attempted to incorporate the term proximity

into the classical BM25 model, which define the bi-gram co-occurrences as an inverse

function of the square distance between two query terms. However, the retrieval

performance reported by Bttcher and Clarke (2005), Rasolofo and Savoy (2003) is

not as good as expected, possibly due to the naive bi-gram occurrence function.

1.4 Summary

I briefly reviewed the basic weighting model in this Chapter. With its recent develop-

ment in IR field, my research project focus on three parts. In Chapter 2, I study the

impact of document length on its relevance in the context of the Scope hypothesis.

In Chapter 3, I will show that retrieval performance can be improved by applying

survival function on aspect and term proximity. Finally, in Chapter 4, I will discuss

possible future direction of this research.
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2 Impact of Document Length on Relevance

The main focus of this research project is to study the impact of the document length

on its relevance. The Scope hypothesis presented by Robertson and Walker (1994)

suggests the existence of a relationship between document length and relevance. It

implies that the component w(d,∆)22 in Equation (1.3) may not be zero. In this

chapter, we consider document length itself as a direct predictor of relevance. The

study of document length is based on the intuition that long documents tend to have

high retrieval probabilities, since long documents usually have a large number of

unique terms, which are likely to be picked up by the query term matching Singhal

et al. (1996a). In Section 2.1, we study the pattern of the document length and

its relevance by exploring a list of probability density distribution investigate the

behavior of w(d,∆)22 in Equation (1.3), a new weighting function incorporating this

relationship proposed in Section 2.2, which is the result of a mixture of the two

hypotheses. Our results presented in Section 2.3 show that the retrieval performance

of BM25 can be markedly improved over different settings of the parameter b in
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Equation (1.5) by exploiting the document length evidence. More details can be

founded in Zhou et al. (2011).

2.1 Density Analysis and Length Relevance Weighting

Under the Scope hypothesis, w(d,∆)22 in Equation (1.3) is no longer zero since a de-

pendence of relevance on document length is assumed. To add the length information

into the weighting function w(x, d), we decompose the w(d,∆)22 further into

w(d,∆)22 = log
P (d|R)

P (d|R)
+ log

P (∆|R)

P (∆|R)
. (2.1)

The second component of Equation (2.1) is constant over a given document collec-

tion. This is because the average document length ∆ for the reference vector 0 in a

document collection is known and fixed. Therefore, for each document in a collection,

the second component of Equation (2.1) above is the same across the whole docu-

ment collection and does not affect the document ranking. For simplicity, we refer

w(d,∆)22 to as the first component in the Equation (2.1). Thus, the relevance weight

w(d,∆)22 is given by the log odds ratio of the relevance and non-relevance probabil-

ities P (d|R) and P (d|R). In other words, w(d,∆)22 measures the difference between

the probabilities of given document length condition on relevance and non-relevance

in log scale. We name Equation (2.1) as length relevance weighting. Our ultimate

goal is to calculate the w(d,∆)22 in Equation (2.1), this needs a way to estimate the
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probabilities P (d|R) and P (d|R). By adding the measurement of document length

itself into the basic weighting function, the retrieval system is expected to achieve

high accuracy since the length information brings more evidence of relevance. The

estimation of probability distribution function 1 of document length will be discussed

in the next subsections.

For the rest of this chapter, we use d to denote the document length. As a

general rule, we usually make an assumption about observed d’s, i.e. d1, d2, ..., dN

are independent and identically distributed, N is the number of documents in the

collection. For example, N is 741,856 in test collection disk1&2. The proposed

method will be examined on the four standard TREC test collections: disk1&2,

WT10G, .GOV2 and ClueWeb B. The detailed introduction on four test collections

will be given in the Section 2.3.

2.1.1 Kernel Density Analysis

Kernel density estimation (or Parzen window method) is a non-parametric way of

estimating the probability density function of a random variable. It can be used to

1Probability distribution function is a general concept in probability theory, it could refer to
probability mass function on discrete random variable, probability density function on continu-
ous random variable or cumulative distribution function based on context. So we use probability
distribution function and probability density function interchangeable in the rest of this paper.
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extrapolate data to the entire population. In particular, Silverman (1986) defines

f̂h(d) =
1

nh

n∑
i=1

K

(
d− di
h

)
,

where di, i = 1, . . . , n is the independent and identically-distributed sample from

some unknown distribution, n is the number of samples we draw from the population,

K is the kernel function and h is the bandwidth (also known as the smoothing

parameter). We can obtain the smoothing curve by adjusting the parameter h.

Usually K is a standard Gaussian function with a mean of zero and a variance of 1:

K

(
d− di
h

)
=

1√
2π

exp

(
−(d− di)2

2h2

)
.

Kernel density estimation gives us a global picture of the given dataset.

Figure 2.1 shows the distributional pattern of relevant and non-relevant document

length for the test collections disk1&2, .GOV2, WT10G and ClueWeb B respectively

using kernel density estimation with the standard normal kernel function. In Figure

2.1, the length curves of first three subfigures have been substract when the document

length is large than 1500 in x−axis in order to visualize the difference between

the relevant and non-relevant document length because the long documents have

low frequencies to be emerged in test collections. The length of non-relevant and

relevant documents from four test collections are both positively skewed and have

a long tail with different tail shapes. Non-relevant document has higher frequency
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(d) ClueWeb B

Figure 2.1: Kernel density estimate constructed from the document length on four

test collections. “dl” stands for document length.
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than relevant documents when the document length is relatively short. The curve

on disk1&2 appears to have two distinct peaks called bimodality. In contrast, there

is only one mode that arises on WT10G, .GOV2 and ClueWeb B.

2.1.2 Mixture Model

The mixture model is a probabilistic model for representing the presence of more

than one sub-populations within an overall population. Gaussian Mixture Models

(GMMs) are among the most statistically mature methods for density estimation. A

Gaussian mixture model is a weighted sum of M component Gaussian densities as

given by

f(d|µ1, . . . , µM ,Σ1, . . . ,ΣM , λ1, . . . , λM) =
M∑
m=1

λm g(d|µm,Σm),

where λm is the weight of each component and
∑M

m=1 λm = 1, µm,Σm are the pa-

rameters of Gaussian distribution gm which takes form of

g(d|µm,Σm) =
1

(2π)V/2|Σm|1/2
exp

{
−1

2
(d− µm)′ Σ−1

m (d− µm)

}
.

Each Gaussian has its own mean µm and covariance matrix Σm, V is the dimension

of d. For mixture model, data within same group assumed be homogeneous tends to

tight, data between groups are heterogeneous. All component Gaussian are acting

together to model the overall feature density, so mixture model covers the data well.
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The GMMs not only provide a smooth overall distribution fit, its components also

clearly detail the multi-modal nature of the density. Figure 2.1 exhibits that there

are two modes on disk1&2. The parameters of GMMs can be estimated by the

maximum likelihood (ML) criterion using the iterative Expectation-Maximization

(EM) algorithm.

2.1.3 Data Transformation

The data transformation technique is widely used in data processing or pre-processing

for stabilizing the variance and make the data more normal distribution-like. In our

case, all document lengths are positive, whose distribution is skewed to the right

as described in Figure 2.1, and document length cannot be described by standard

statistical methods because of the skewness. Therefore, data transformation is re-

quired to extract a better characteristic of the data. We start with standardization:

the transformation I. By standardizing the data, it forces the data to locate on the

common scales to be compared. Secondly, the Box-Cox transformation is from the

family of functions that are applied to create a rank-preserving transformation of

data which improves the correlation between variables and for other data stabiliza-

tion procedures Box and Cox (1964). Box-Cox transformation is commonly used to

alleviate heteroscedasticity when the distribution of the variable of interest is not
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known, i.e transformations II and III. We also transform the document length to be

within the scale of 0− 1 using transformation IV. The four types of transformation

is described as follows:

• Transformation I: Standardization

z =
d− d̄
sd

(2.2)

• Transformation II: Log transformation. It is the special case of following trans-

formation III when θ = 0.

z = log(d) (2.3)

• Transformation III: Box-Cox transformation

z =
dθ − 1

θ
(2.4)

Box-cox transformation is a parametric power transformation technique in or-

der to reduce anomalies such as non-additivity, non-normality and heteroscedas-

ticity, θ 6= 0 is the transformation power.

• Transformation IV: 0− 1 normalization

z =
d− dmin

dmax − dmin
(2.5)
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where z is the document length after the transformation, d̄ is the average document

length, sd is the standard deviation of document length, dmin denotes the minimum

document length and dmax is the maximum document length.

Figure 2.2 plots the distributional pattern of transformed relevant and non-

relevant document length on four test collections. In Figure 2.2, we examine length

distribution patterns of relevant and non-relevant documents on the four test collec-

tions used. A major observation is that the the curves of the transformed document

length distribution have similar shapes before and after the transformation. That is,

the curves on disk1&2 remain bimodal, while the curves on the other three test col-

lections are still left-skewed, but not as much as those of the original document length

distribution, thanks to the data transformation. Moreover, the curves on .GOV2 and

ClueWeb B become more symmetric after the transformation. On disk1&2, .GOV2

and WT10g, the center of the non-relevant document length distribution shifts far

away to the right of the relevant document length distribution. From Figure 2.2(d),

we can clearly see that relevant and non-relevant document length on Clueweb B

can be distinguished from their distributional frequencies. Note that similar ob-

servations can also be drawn from other three collections used, but the difference

between relevant and non-relevance document length distribution is not as obvious

as on ClueWeb B. This is an encouraging finding as it gives us clue of differentiating
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Figure 2.2: Kernel density estimates constructed from the transformed document

length of four test collections. ”rel” stands relevant document length and ”non”

stands non-relevant document length.
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between relevance and non-relevant documents based on their length distribution.

In the next subsection, we propose to fit the document length distribution with a

list of statistical distributions, in order to find the distributions that can match the

characteristics of relevance and non-relevant documents.

2.1.4 Distribution of Document Length

The criterion of selecting distributions is that the distribution must be positive

skewed with shape and rate parameters. It is impossible to use one single distribu-

tion to capture all kinds features of all different document collections. The commonly

used distributions we applied to fit the transformed document length are as follows:

• Gamma distribution with (γ > 0, β > 0)

f(y) =
yγ−1e−y/β

βγΓ(γ)

for y ≥ 0, where γ and β are shape and scale parameters respectively. Varying

setting of γ can lead to symmetrical or skewed figures.

• Normal distribution with (µ, σ2), which is symmetric with respect to its mean

value (µ), and the variance (σ2) measures the width of the distribution. A Nor-

mal distribution is bell shaped and the shape is independent of its distribution

parameters. The reason of choosing normal distribution is that transformation
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I try to standardize the document length. The Normal distribution density

function is given as follows:

f(y) =
1√

2πσ2
exp

{
−(y − µ)2

2σ2

}

where σ is the standard deviation.

• Lognormal distribution with (µ, σ2)

f(y) =
1

yσ
√

2π
exp

{
−(log y − µ)2

2σ2

}

for y ≥ 0, where if Z is distributed lognormally with parameters µ and σ,

log(Y ) is distributed normally with a mean of µ and a standard deviation of

σ. Lognormal and gamma distribution can produce similar graphs, but the

curvature of lognormal distribution is more steep than gamma distribution.

• Inverse Gaussian distribution (IGD) with (µ, λ)

f(y) =

√
λ

2πy3
exp

{
− λ

2µ2y
(y − µ)2

}

for y > 0, where µ > 0 is the mean and λ > 0 is the shape parameter, changing

λ changes the level of the skewness for the IGD.

• Weibull distribution with (a, b)

f(y) =
b

a

(y
a

)b−1

exp
{
−(
y

a
)b
}
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where a > 0 is the scale parameter and b > 0 is the shape parameter. Weibull

distribution can produce the graph similar to Gamma distribution but with

less steep curve.

• Generalized Extreme Value distribution (GEV) (κ, µ, σ),

f(y) =
1

σ
exp

{
−(1 + κ

(y − µ)

σ
)−

1
κ

}(
1 + κ

(y − µ)

σ

)(−1− 1
κ

)

where κ 6= 0 is the shape parameter, µ is the location parameter and σ > 0

is the scale parameter. Compared to the statistical distributions mentioned

above, GEV is a complicated distribution developed within the extreme value

theory introduced by Gumbel (1958).

Figure 2.3 illustrates the six distribution fittings for the relevant document length

of four test collections using Transformation I. Similar plots can be obtained for the

relevant and non-relevant document length of all four test collections using Trans-

formation I, Transformation III and Transformation IV respectively. All six distri-

butions fit the .GOV2, WT10G and ClueWebB well, not disk1&2 since the bimodal-

ity. Inverse Gaussian and GEV distribution fit the data best on all test collections,

Weibull distribution can preserve the skewness better than the Lognormal, Gamma

distribution, but normal distribution performs very badly in this case since skewness

of the data. After the density functions are fit to the actual length distribution, it
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Figure 2.3: Distribution fittings for the relevant document length using transforma-

tion two z = log(d).
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is necessary to use goodness of fit test to determine how well the distributions fit to

the actual data.

Bootstrapping is a resampling method to learn about the sample characteristics

to infer the population. It has been proved effective in reducing the bias of samples

by Gentle (2002). Adèr et al. (2011) recommend to use bootstrapping when the

sample size is insufficient for straightforward statistical inference. The bootstrapping

procedure is described as follows:

1. Construct an empirical probability distribution Ω from the sample by placing

a probability of 1/n at each point, z1, z2, . . . , zn of the sample. This is the

empirical distribution function of the sample, which is the nonparametric max-

imum likelihood estimate of the population distribution, ω. Now, each sample’s

element has the same probability of being drawn.

2. From the empirical distribution function, Ω, draw a random sample of size n

with replacement. This step is called resampling.

3. Calculate the statistic of interest, θ, for this resample, yielding θ̂∗.

4. Repeat steps 2 and 3 for B times, where B is a large number, in order to create

B resamples. The setting of B depends on the tests to be run on the data.

5. Compute
¯̂
θ∗ = 1

B

∑B
j=1 θ̂

∗
j .
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2.2 Length Relevance Weighting

Based on the discussion above, we first derive the length relevance weighting func-

tion using Equation (1.3) for disk1&2 when the distribution function obtained from

mixture model. We named it ‘Mixture’.

w(d,∆)22 = log

λR1

σR1

exp

{
−(d− µR1)2

2σ2
R1

}
+
λR2

σR2

exp

{
−(d− µR2)2

2σ2
R2

}
λNR1

σNR1

exp

{
−(d− µNR1)2

2σ2
NR1

}
+
λNR2

σNR2

exp

{
−(d− µNR2)2

2σ2
NR2

} (2.6)

The subscript R1, R2, NR1, NR2 represent the relevant and non-relevant for Gaus-

sian component 1 and 2 respectively, λ, µ, σ are the parameters of GMMs.

Second, when the distribution function for transformed document length Z is

obtained, we apply variable change technique in Shao (2003) to obtain the distribu-

tion function for the original document length D, i.e. the document length before

transformation. The theorem of change variable we used is as follows

Theorem 2.2.1 Let Z be a random variable with probability density function (pdf)

fZ(z) and support SZ. Let D = g(Z), where g(z) is one to one differentiable function,

on the support of Z, SZ. Denote the inverse of g by z = g−1(d) and let ∂z
∂d

= ∂[g−1(d)]
∂d

.

Then the pdf of D is given by

fD(d) = fZ(z−1(d))

∣∣∣∣∂z∂d
∣∣∣∣, for d ∈ SD. (2.7)

with the support of D which is the set SD = {d = g(z) : z ∈ SZ}.
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Where z−1(d) is equivalent to Equations (2.2), (2.3), (2.4) and (2.5) when transform-

ing the document length, and |∂z
∂d
| is the determinant of Jacobian of the transforma-

tion in Hogg et al. (2004).

Based on the discussion above, we initiate the pattern of the document length by

kernel density estimation. Based on the findings in step one, second, we apply data

transformation and the change variable techniques to find the distribution functions

of relevant and non-relevant document length and use maximum likelihood estima-

tion(MLE) to obtain the parameter estimators. Two statistical methods, EM and

bootstrapping are exploited to prevent potential bias during parameter estimation,

such as incomplete test collection, randomness of sampling. Hypothesis test employ-

ees to eliminate the distributions at 5% significance. Finally Equation (1.3) is used

to construct the following seven models:

1. In this model, with standardization transformation I in Equation (2.2), trans-

formed relevant and non-relevant document length follow the Normal distribu-

tion. Using Equation (1.3) and change of variable technique in Equation (2.7),

the length relevance weighting function, named ‘Normal’, is as follows

w(d,∆)22 ∝ −
1

2σ2
1

[(
d− d̄
sd

)
− µ1

]2

+
1

2σ2
2

[(
d− d̄
sd

)
− µ2

]2

where subscript 1 indicates that it is the estimates of distribution for relevant

document length, 2 is the estimates of non-relevant document length distribu-
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tion.

2. In this model, with log transformation II in Equation (2.3), transformed rele-

vant and non-relevant document length follow the Gamma distribution. Sim-

ilarly, the length relevance weighting function, named ‘Log-Gamma’, is as fol-

lows

w(d)22 ∝ (γ1 − γ2) log d− log d

β1

+
log d

β2

3. In this model, with log transformation, transformed relevant and non-relevant

document length follow the IGD distribution. We call the length relevance

weighting function ‘Log-IGD’.

w(d)22 ∝ log

√
λ1

2π(log d)3
− log

√
λ2

2π(log d)3

− λ1(log d− µ1)2

2µ2
1 log d

+
λ2(log d− µ2)2

2µ2
2 log d

4. In this model, with Box-Cox transformation in Equation (2.4), transformed

relevant and non-relevant document length follow the Inverse Gaussian dis-

tribution distribution. Then the length relevance weighting function is called

‘Box-Cox-IGD’.

w(d)22 ∝ log

√
λ1

2π(d
θ−1
θ

)3
−
λ1(log(d

θ−1
θ

)− µ1)2

2µ2
1 log(d

θ−1
θ

)

− log

√
λ2

2π(d
θ−1
θ

)3
+
λ2(log(d

θ−1
θ

)− µ2)2

2µ2
2 log(d

θ−1
θ

)
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5. In this model, using Box-Cox transformation, transformed relevant and non-

relevant document length follow the GEV distribution. Then the length rele-

vance weighting function is called ‘Box-Cox-GEV’.

w(d)22 ∝
(
−1− 1

κ1

)
log(1 + κ1

V

σ1

)−
(

1 + κ1
V

σ1

)− 1
κ1

−
(
−1− 1

κ2

)
log(1 + κ2

V

σ2

) +

(
1 + κ2

V

σ2

)− 1
κ2

where V = (dθ − 1)/θ.

6. In this model, using normalization transformation in Equation (2.5), trans-

formed relevant and non-relevant document length follow the Lognormal dis-

tribution. Then the length relevance weighting function is called ‘Lognormal’.

w(d)22 ∝ −
1

2σ2
1

[logL− µ1]2 +
1

2σ2
2

[logL− µ2]2

where L = (d− dmin)/(dmax − dmin).

7. In this model, using normalization transformation, transformed relevant and

non-relevant document length follow the Weibull distribution. Then the length

relevance weighting function is called ‘Weibull’.

w(d,∆)22 ∝ (b1 − b2) logL− (
L

a1

)b1 + (
L

a2

)b2

where L = (d− dmin)/(dmax − dmin).
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Based on the discussion above, we propose a new length-based weighting function

BM25L as follows:

w(x, d) = (1− β) wBM25 ⊕ β ∗ w(d,∆)22 (2.8)

where wBM25 is the relevance score of BM25, ⊕ indicate that the term w(d,∆)22 is

added only once for each document, β is not only the interpolation factor which is

empirically determined and highly depends on the dataset used, but also an adjust

factor of the mixture of two hypotheses: Verbosity and Scope hypothesis. A docu-

ment could be either extreme or of mixture of these two hypotheses as discussed in

Robertson and Walker (1994). More over, the reason of adding β here is that we

ignore the constant term in the calculation of log P (∆|R)
P (∆|R)

, we need to adjust the scale

for the weights between wBM25 and w(x, d), and the weights between two hypotheses

because BM25L consider the situation when both Verbosity and Scope hypothesis

are presented in the same document. For a given query, each of the wBM25 or w(x, d)

scores is normalized by the maximum wBM25 or w(x, d) score. The parameter β is

obtained by Simulated Annealing in Kirkpatrick et al. (1983) over a set of training

topics.

37



2.3 Evaluation and Experiment Results

We first give detail information about the four test collections in subsection 2.3.1,

introduce our methodology for evaluating the BM25L model in Subsection 2.3.2,

and the evaluation results comparing with BM25 baseline is presented in Subsections

2.3.3. The impact of parameters b and β is investigated in Subsection 2.3.4.

2.3.1 The TREC Test Collections

We examine the impact of document length on relevance using four standard TREC

test collections. These four test collections are the most recent TREC datasets, and

provide a good coverage on the a variety of commonly used datasets in IR evaluation,

and are used for different test purposes and vary in size in term of the document

length. Basic information about the test collections and topics are given in Table

2.1.

Table 2.1: Information about the test collections

Coll. TREC Task Topics # Docs

disk1&2 1-3, Ad-hoc 51-200 741,856

WT10G 9, 10 Web 451-550 1,692,096

.GOV2 2004-2006 Terabyte Ad-hoc 701-850 25,178,548

ClueWeb B 2009 Relevance Feedback rf.01-rf.50 49,375,681

The disk1&2 collection contains newswire articles from various sources, such as

38



Association Press (AP), Wall Street Journal (WSJ), Financial Times (FT), etc.,

which are usually considered as high-quality text data with little noise. It usually

used for ad hoc test. The WT10G collection is a medium size crawl of Web docu-

ments, which was used in the TREC 9 and 10 Web tracks. It contains 10 Gigabytes

of uncompressed data. The .GOV2 collection, which has 426 Gigabytes of uncom-

pressed data, is a crawl from the .gov domain. This collection has been employed

in the TREC 14 (2004), 15 (2005) and 16 (2006) Terabyte tracks. The ClueWeb

collection is a very large crawl of the Web, and is currently the largest TREC test

collection. We use the category B of ClueWeb, which contains about 50 million

English Web pages, and its associated topics used in the TREC 2009 Relevance

Feedback track. We index all documents in the above four collections. For all four

test collections used, each term is stemmed using Porter’s English stemmer, and

standard English stopwords are removed.

2.3.2 Evaluation Methodology

We evaluate our proposed BM25L model over the 4 test collections used, namely

disk1&2, WT10G, .GOV2, and ClueWeb B. Each topic contains three topic fields,

namely title, description and narrative. We only use the title topic field that contains

very few keywords related to the topic. The title-only queries are usually short which
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is a realistic snapshot of real user queries in practice.

On each collection, the associated topics are divided into the odd-numbered and

even-numbered topics. Over those two topic subsets, our proposed model is evaluated

by a 2-fold cross-validation. In each fold, one of the topic subsets is used for training,

and the other subset is used for testing purposes. More specifically, the half of the

training topics with lower topic numbers are used to train the length distribution

estimation parameters, and the other half of the training topics are used to train

the score combination parameter β in Equation (2.8). Finally, our proposed BM25L

model is evaluated by its retrieval performance on average over the two subsets of test

topics. We use the TREC official evaluation measures in our experiments, namely the

statMAP on ClueWeb B in Voorhees and Buckland (2009), and the Mean Average

Precision (MAP) on the other three collections in Voorhees et al. (2005).

The baseline of our evaluation is the classical BM25 model with different settings

of its parameter b. By varying the b value, we investigate to which extent BM25L

improves the retrieval performance. In particular, we compare the retrieval perfor-

mance of BM25L to BM25 with b = 0, that is, BM25 without tf normalization, and

BM25 with its parameter b optimized. All statistical tests are based on Wilcoxon

Matched-pairs Signed-rank test.
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2.3.3 Comparison with BM25

Tables 2.2 and 2.3 compare the retrieval performance of BM25L using data transform

technique to the original BM25 without tf normalization (i.e. when b = 0), and with

the tf normalization with its parameter b optimized, respectively.

Table 2.2: Evaluation results over the BM25 baseline with b = 0. A star indicates a

statistically significant improvement over the baseline.

Coll. BM25 Normal Log-Gamma Log-IGD Box-Cox-IGD Box-Cox-GEV Lognormal Weibull

disk1&2 0.1698 0.1700 0.2195* 0.1821 0.1856* 0.2336 0.1685 0.2339*
WT10G 0.1571 0.1570 0.1663 0.1772* 0.1769 0.1647 0.1576 0.1604
.GOV2 0.1782 0.1812 0.2051* 0.2079* 0.2058* 0.1995 0.2058* 0.2564*

ClueWeb B 0.1930 0.2035 0.3192* 0.3084* 0.3265* 0.3117* 0.1931 0.2973*

Table 2.3: Evaluation results over the BM25 baseline with optimized setting of b. A star

indicates a statistically significant improvement over this baseline.

Coll. BM25 Normal Log-Gamma Log-IGD Box-Cox-IGD Box-Cox-GEV Lognormal Weibull

disk1&2 0.2324 0.2326 0.2421 0.2504* 0.2579* 0.2501* 0.2491* 0.2432*
WT10G 0.2090 0.2090 0.2115 0.2143 0.2101 0.2125 0.2111 0.2109
.GOV2 0.3044 0.3051 0.3121 0.3056 0.3321* 0.3227* 0.3134 0.3039

ClueWeb B 0.2322 0.2401 0.2722* 0.3350* 0.3561* 0.3612* 0.1586 0.3963*

From Tables 2.2 and 2.3, we see that modeling document length distribution using

GEV distribution leads to the most stable retrieval performance of our proposed

length-based BM25L model. This is not of a surprise as we have shown that the

GEV density fits the best to the actual document length distribution. Using the

GEV density fitting of the document length, BM25L appears to outperform the

BM25 baseline, and the improvement is statistically significant in most cases on all
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four test collections except WT10G.

The use of other distribution functions, in particular Gamma distribution, also

leads to retrieval performance over the BM25 baseline on some of the test collec-

tions. However, their retrieval performance does not appear to be as robust as that

obtained by GEV distribution. An extreme case is Normal distribution, which does

not improve the BM25 baseline significantly on disk1&2, WT10G, and .GOV2 wether

or not the parameter b is optimized. Out of the four test collections used, ClueWeb B

has the most incomplete relevance assessments, for which only the top-10 documents

returned by the TREC participating runs are judged by human assessors, see Buck-

ley and Robertson. (2008). As the top ranked documents are mostly overlong, the

biase towards long documents in the document ranking could be so evident that

the length distribution of relevant and non-relevant documents fits very well with

the distribution functions on both training and testing topics. As a consequence,

BM25L leads to extremely high retrieval performance on ClueWeb B at most cases.

Tables 2.4 also show that retrieval performance of BM25L using mixture model

to the original BM25 improved.

Table 2.4: Evaluation results over the BM25 baseline on disak1&2.
Coll. BM25 Mixture

BM25 with b=0 0.1698 0.1973
BM25 with optimal b 0.2324 0.2426
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Figure 2.4: Performance of BM25L over BM25

To visualize the improvement brought the proposed length-based BM25L model,

we plot the results in Figures 2.4 for the comparison to BM25 with b = 0 and

with b optimized, respectively. As we can see on the WT10G collection, although

the improvement is not as much as that obtained on other three test collections

using all six distributions, the increase in retrieval performance is the evidence of

length effect in information retrieval. Using Weibull distribution and normalization

transformation has the best results, this may due to that Weibull distribution does

retain the skewness of data between zero and one scale on all collections very well as

we can see from Figure 2.3.

By comparing the performance improvement by BM25L over BM25 with b = 0

with the improvement over BM25 with the optimized b, we can see that the improve-
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ment over the optimized b is overall of a less scale than that over BM25 without tf

normalization. This is because optimizing the parameter b in BM25 has exaggerated

the length impact on the relevance weighting of term frequency tf , and in return, it

reduces the impact of length relevance weighting itself on improving the document

ranking.

When comparing BM25L with the best known results, for the WT10G, BM25L’s

best MAP is 0.2143, and the best published MAP is 0.2085. A possible explanation of

the relatively minor improvement is as follows: the data transformation on WT10G

does not show much difference between the length distribution of relevance and

non-relevance documents. Compared to large-scale collections such as .GOV2 and

ClueWeb B, it leaves little room for the BM25L model to further improve the retrieval

performance by utilizing such difference (in document length distribution). In other

words, the TREC pools are biased by the length distribution. Such bias is minor on

WT10G, and becomes evident on heterogeneous collections like .GOV2 and ClueWeb

B, which is captured by BM25L to boost the ranking effectiveness. For ClueWeb

B, we believe the best statMAP in the TREC 2009 Relevance Feedback track, i.e.

0.2638, is achieved by combining BM25 with relevance feedback reported by Ye

et al. (2009), although the overview paper is not available. Our model BM25L gives

an MAP of 0.3963. For .GOV2, on top of the retrieval baselines, e.g. BM25 and
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language model, the best run in TREC 2006 further improved the effectiveness using

pseudo relevance feedback and term dependency by Li and Yan (2006), Metzler et al.

(2006). Since our model only considers document length, the best MAP presented

in this paper, i.e. 0.3321, is not directly comparable to the best known MAP of

0.3737. For disk1&2, there hasn’t been known best result for all 150 topics used in

the TREC 1-3 ad-hoc tasks. According to evaluatir.org, the best known MAP on

each task is 0.2062, 0.2475 and 0.3231, respectively, with an average of 0.2589. Note

that the above best known results are achieved by stacking additional techniques

such as relevance feedback over the retrieval baseline. Therefore, the results are not

directly comparable. Even though, BM25L provides an MAP of 0.2579.

2.3.4 Impact of Parameters

Experimental results in the previous section shows that, on one hand, BM25L leads

to more improvement over BM25 when tf normalization is disabled. This is expected

since there is no length information added to BM25 with b = 0 when compare to

BM25L. On the other hand, BM25L provides higher MAP/statMAP values when

the tf normalization parameter b is optimized. From this observation, a question

arises: what is the impact of the setting of b on BM25L’s effectiveness? To answer

this question, Figure 2.5 plots the MAP/statMAP obtained by BM25L using the
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6 different statistics of the document length distribution against different b values,

from 0 to 1. BM25L and the original BM25’s retrieval performance is seen to be

correlated. A better setting of BM25’s b leads to a better retrieval performance of

BM25L. The document length itself do have a power as a stand-alone factor on the

document relevance weighting other than normalization adjustment. The results for

the full range of b are illustrated in Figure 2.5 for all 4 test collections.

Another important factor that could heavily affect BM25L’s retrieval performance

is the parameter β in Equation (2.8). Figure 2.6 plots the MAP/statMAP obtained

by BM25L against β on the four collections used. As we can see that length impact

on the relevance weighting increase first as β increase, then either decrease or remain

flat as β increase. This is no coincidence because with only one factor, i.e. length,

among other many important factors that can affect document relevance weighting,

the improvement would be limited.

Another parameter in Equation (1.5) is k1. BM25L outperforms BM25 with

different settings of k1, although the latter’s retrieval performance is fairly sensitive

to k1’s setting. The related experiments are not included in this paper for brevity,

since changing k1’s setting does not affect the conclusions.

In summary, we have shown that the length information can be used for lever-

aging the bias towards long documents in the document ranking. The retrieval per-

46



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.16

0.18

0.2

0.22

0.24

0.26

0.28

 

 

BM25
Log−IGD
Normal
Lognormal
Weibull
Log−Gamma
Box−Cox−IGD
Box−Cox−GEV

(a) disk1&2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

 

 

BM25
Box−Cox−GEV
Normal
Weibull
Log−IGD
Log−Gamma
Box−Cox−IGD
Lognormal

(b) .GOV2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

 

 

BM25
Weibull
Log−IGD
Normal
Log−Gamma
Lognormal
Box−Cox−GEV
Box−Cox−IGD

(c) WT10G

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

BM25
Log−IGD
Box−Cox−Gev
Log−Gamma
Normal
Weibull
Lognormal
Box−Cox−IGD

(d) ClueWeb B

Figure 2.5: The MAP/statMAP values obtained against the parameter b

formance of the classical well-established BM25 model can be marked improved by

incorporating a length-based weighting component with different settings of BM25’s
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Figure 2.6: The MAP/statMAP values obtained against the parameter β

tf normalization parameter, including the optimal setting. Finally, we recommend

applying GEV distribution for modeling the document length distribution as it has
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demonstrated effective and robust retrieval performance in our experiments. In our

experiments, all parameters are learned from the training data in the two-fold cross-

validation and our proposed model is trained and tested with different queries.
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3 Survival Approach to Diversity and Proximity

3.1 Survival Analysis

Survival analysis is a statistical methodology used for modeling and evaluating sur-

vival data, also called time-to-event data, where one is interested in the occurrence

of events (Cox and Oakes 1984) . Survival time refers to a variable which measures

the time from a particular starting time to a particular endpoint of interest. Events

are usually referred as birth, death and failure that happen to an individual in the

context of study. For example, in clinical trial, one may be interested in the number

of days that patient can survive in the study of the effectiveness of a new treatment

for a disease. Formally, the survival function is defined as:

S(t) = P (surviving longer than time t)

= P (T > t)

(3.1)

where t is a specific time, T is a random variable denoting the time of death, and

“P” stands for probability. That is, the survival function gives the probability that
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the time of death is later than a specified time t. The survival function must be

non-increasing: S(u) ≤ S(t) if u > t and S(0) = 1, that is, at the start of the

study, the probability of surviving past time zero is one. The survival function is

also assumed to approach zero as t goes to infinity.

We assume that the occurrence of event follows Poisson distribution with a pa-

rameter of rate λ, the probability mass function is

P (X = x) =
λx e−λ

x!
(3.2)

where X is a random variable denoting the number of occurrences of an event, λ

(λ > 0) is the rate parameter denoting the expected number of occurrences. The

reason of choosing Poisson distribution will be explained in the next two sections.

Therefore, the survival function derived from Equation (3.1) can be formally written

as:

S(x) = P (X > x) = 1− e−λ
x∑
i=0

λi

i!
(3.3)

3.2 Survival Approach to Diversity

In the context of information retrieval, aspects covered by a document can be con-

sidered as treatments, a document can be considered as a patient in the clinical trial

case. The number of times that an aspect has been observed can be considered as the
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survival time. The new information that can be provided by an aspect corresponds

to the effectiveness of a treatment.

In clinical trial, as the number of times that a treatment has been given to a

patient, the effectiveness of the treatment to the patient decreases. While in an IR

ranked list, one can expect that, as the number of times that an aspect has been

observed increases, the new information provided by this aspect decreases. This

means that the effect of an aspect to a document’s novelty decreases as the number

of its occurrences increases. For example, in a ranked document list, when aspect

“stroke treatment” is observed in the jth document at the first time, the information

provided by this aspect should be counted as completely new. We presume that

“stroke treatment” in the jth document covers the topic of “medications taken by

mouth for long-term stroke treatment”. Then, when aspect “stroke treatment” is

observed again in the kth (k > j) document of the ranked list, it may provide new

information about “injection for short-term stroke treatment”, but it is also possible

that it only provides redundant information about “medications taken by mouth for

long-term stroke treatment”. As we can see, this situation satisfies the properties of

the survival function described above:

• When an aspect is observed at the first time, this aspect can provide com-

pletely new information. This means that, at time point zero, the probability
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of surviving is one.

• The probability of obtaining new information from an aspect decreases as the

number of the aspect’s occurrences increases. This means that the probability

of surviving decreases as time increases.

• When the number of occurrences of an aspect is approaching infinity, this

aspect can not provide any new information. This means that the probability

of surviving is approaching zero as time increases without bound.

The occurrences of a term in a document have a stochastic element was studied

by Robertson and Walker (1994). In this chapter, we consider that the occurrences

of an aspect in retrieved documents have the same stochastic property. So, it is

reasonable to assume that the occurrences of an aspect follow Poisson distribution.

When the aspect aj observed in the retrieved documents, the probability of new

information provided by the aspect aj can be written as

Saj(xj) = P (Xj > xj) = 1− e−λj
xj∑
i=0

λij
i!

(3.4)

where Xj is a random variable denoting the number of the aspect aj observed in

the retrieved documents; λj is the rate parameter denoting the expected number of

occurrences of aspect aj. When all aspects detected at the same rates of λj = λ, j =

1, . . . , n, we name the above as single survival model. In real world, the distributions
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of different aspects’ occurrences may be different from each other. Therefore, instead

of assuming that all aspects’ frequencies follow the same distribution, we assume that

each observed aspect’s frequency follows a specific Poisson distribution with rate λj,

and we referred it to multiple survival model.

3.2.1 The Process of Re-ranking

In order to promote ranking diversity, we propose a document re-ranking method

which combines the novelty and the relevance of retrieved documents at the aspect

level. We ranked the first document according to

d1 = arg max
di

{
∑
aj∈Adi

P (aj|Q)} (3.5)

where di is a retrieved document and Adi is the set of aspects that can be detected

from di.

For other retrieved documents, the document rankings should depend on which

documents the user has already seen. Suppose that we have ranked top i− 1 (i > 1)

documents, and now we need to decide which document should be ranked at the

ith position in the ranking list. The document which can deliver the newest and

most relevant aspects should be considered as the ith document in the ranking list.

Therefore, given previous ranked i− 1 documents, we rank the ith document using
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the following scoring function:

score(di; d1, ..., di−1) = P (New and Rel|di) (3.6)

We assume that aspect novelty and aspect query-relevance are independent of

each other. Moreover, since document di can be presented by the aspects detected

from di, Equation (3.6) thus can be written as:

score(di; d1, ..., di−1) =
∑
aj∈Adi

P (New and Rel|aj)

=
∑
aj∈Adi

P (New|aj)P (Rel|aj)

∝
∑
aj∈Adi

P (New|aj)
P (aj|Rel)
P (aj)

(3.7)

where aj is an aspect detected from document di, which follows Poisson distribution

with an estimated rate parameter. P (New and Rel|aj) denotes the probability that

aj is query-relevant and can provide new information as well.

P (New|aj) in Equation (3.7) states the probability of obtaining new informa-

tion from aspect aj, which can be calculated using the survival models proposed in

Section 3.1. Since we do not usually have relevance information, P (aj|Rel) is un-

available. One possible solution, as introduced in Lavrenko and Croft (2001), is to

consider that the best bet by relating the probability of aspect aj to the conditional

probability of observing aj given the query: P (aj|Rel) ≈ P (aj|Q). Thus we can
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use the ranking scores of aspects from Cao et al. (2005), Zhu et al. (2010). This

two-stage model that combines a relevance model and a co-occurrence model is used

for ranking detected aspects. More formally, the two-stage model is defined as:

P (ai|Q) =
∑
j

P (ai, dj|Q) =
∑
j

P (dj|Q)P (ai|dj, Q) (3.8)

where P (dj|Q) is the relevance model presenting whether a retrieved document

dj(j = 1, 2, ..., N ; where N is the number of retrieved documents) is relevant to

the query Q; P (ai|dj, Q) is the co-occurrence model presenting whether an aspect ai

is associated with the query. More details can be found at (Yin et al. 2010).

3.2.2 Experiment Settings and Evaluation Measures

In order to evaluate the proposed approach for promoting ranking diversity in biomed-

ical information retrieval, we use the TREC 2006 and 2007 Genomics track full-

text collection as the test corpus. It is a full-text biomedical corpus consisting of

162,259 documents from 49 genomics-related journals indexed by MEDLINE intro-

duced by Hersh et al. (2007, 2006b). 28 official topics from the 2006 Genomics track

and 36 official topics from the 2007 Genomics track are used as queries. Topics are in

the form of questions asking for lists of specific entities that cover different portions

of full answers to the topicsGenomics collections only present a fraction of millions

of biomedical literatures indexed by MEDLINE. However, to the best of our knowl-
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edge, they are the largest and the only biomedical text collections with both manual

relevance assessments and diversity evaluation available for biomedical text retrieval

research so far.

There were three levels of retrieval performance that were measured in the TREC

2006 and 2007 Genomics tracks: passage retrieval, aspect retrieval and document re-

trieval. Each was measured by some variants of mean average precision (MAP).

Passage MAP, Passage2 MAP2, Aspect MAP and Document MAP were four evalu-

ation measures corresponding to the three levels of retrieval performance introduced

in (Hersh et al. 2007, 2006b). In this paper, we mainly focus on aspect level and

passage level retrieval performance, since our objective is to promote diversity in the

ranked list of retrieved passages. Moreover, aspect retrieval and passage retrieval

were also the major tasks of these two Genomics tracks.

3.2.3 Information Retrieval Baseline Runs

For the 2007’s topics, three IR baseline runs are used. NLMinter (Demner-Fushman

et al. 2007) and MuMshFd (Stokes et al. 2007) were two of the most competitive

IR runs submitted to the TREC 2007 Genomics track. NLMinter developed by

the U.S. National Library of Medicine achieved the best performance in the TREC

2Passage2 MAP was defined in the TREC 2007 Genomics track, which is an alternative measure
to the Passage MAP defined in the TREC 2006 Genomics track.
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2007 Genomics track in terms of Aspect MAP, Passage2 MAP and Document MAP

reported in (Demner-Fushman et al. 2007, Hersh et al. 2007). It merged the re-

trieval results obtained by Essie (Ide et al. 2007), Indri3, Terrier (Ounis et al. 2006a),

Theme (Demner-Fushman and Lin 2007), and EasyIR Gobeill et al. (2007) and em-

ployed a human-involved relevance feedback method. MuMshFd was developed by

the National ICT Australia, Victoria Research Laboratory and also achieved top

ranked performance in the 2007 Genomics track. Stokes et al. (2007) employed

ontology-based (MeSH and Entrez Gene) query expansion and entity-based rele-

vance feedback for genomics search. Another IR baseline run is an Okapi run, which

is solely based on the probabilistic weighting model BM25 proposed by Hancock-

Beaulieu et al. (1996). The performance of the Okapi run is also above average

among all results reported in the TREC 2007 Genomics track by Hersh et al. (2007).

For 2006’s topics, we test our approach on three Okapi runs since other retrieval

results submitted to the TREC 2006 Genomics track are not available. In order to

find out wether the proposed methods can work well on strong baselines as well as on

average and weak baselines, we (Yin et al. 2011) set different values to BM25 param-

eters to obtain different baselines. The performance of the baseline run Okapi06b is

also among the top performances reported in the TREC 2006 Genomics track Hersh

3http://www.lemurproject.org/indri/
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et al. (2006b).

Since relevance scores from different baselines differ in range and relevance scores

and novelty scores also differ in range,in our experiments we use the 0-1 normalization

method to normalize the scores.

The best and mean results reported in the 2006 and 2007 Genomics tracks are

shown in Table 3.1. The performance of baseline runs are shown in Table 3.2.

Table 3.1: The best and mean results in the Genomics tracks

Best MAP Mean MAP
MAP 2006 2007 2006 2007

Aspect 0.4411 0.2631 0.1643 0.1326
Passage 0.1486 0.0976 0.0392 0.0560
Passage2 0.1148 0.0398

Document 0.5439 0.3286 0.2887 0.1862

3.2.4 Experimental Results on Genomics collections

Evaluation results of the proposed approach for document re-ranking are shown in

Table 3.2, where “Single-SM” and “Multiple-SM” denote the single survival model

and the multiple survival model respectively. The values in the parentheses are the

relative rates of improvement over the original results and * denotes the improvement

over the baseline is statistically significant (Wilcoxon test at the 5% significance

level). As we can see, our approach achieves promising performance improvements
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Table 3.2: Re-ranking Performance based on Aspect Detection Using Wikipedia

on 2007’s topics

MAP Aspect Passage Passage2 Document

NLMinter 0.2631 0.0968 0.1148 0.3286

Single-SM 0.3117* 0.1007 0.1270* 0.3440*

(+18.5%) (+4.0%) (+10.6%) (+4.7%)

Multiple-SM 0.3128* 0.1009 0.1274* 0.3447*

(+18.9%) (+4.2%) (+11.0%) (+4.9%)

MuMshFd 0.2068 0.0840 0.0895 0.2906

Single-SM 0.2432* 0.0877 0.0926 0.3030

(+17.6%) (+4.4%) (+3.5%) (+4.3%)

Multiple-SM 0.2448* 0.0883* 0.0931 0.3056*

(+18.4%) (+5.1%) (+4.0%) (+5.2%)

Okapi07 0.1428 0.0633 0.0641 0.2025

Single-SM 0.1660* 0.0662* 0.0669 0.2086

(+16.2%) (+4.6%) (+4.4%) (+3.0%)

Multiple-SM 0.1686* 0.0671* 0.0677* 0.2124*

(+18.1%) (+6.0%) (+5.6%) (+4.9%)

on 2006’s topics

MAP Aspect Passage Passage2 Document

Okapi06a 0.2176 0.0362 0.0450 0.3476

Single-SM 0.2379* 0.0381 0.0472 0.3557

(+9.3%) (+5.2%) (+4.9%) (+2.3%)

Multiple-SM 0.2383* 0.0388* 0.0487* 0.3604

(+9.5%) (+7.2%) (+8.2%) (+3.7%)

Okapi06b 0.3147 0.1559 0.0968 0.4705

Single-SM 0.3236 0.1606 0.1009 0.4885

(+2.8%) (+3.0%) (+4.2%) (+3.8%)

Multiple-SM 0.3299* 0.1627 0.1030* 0.4934

(+4.8%) (+4.4%) (+6.4%) (+4.8%)

Okapi06c 0.2596 0.0759 0.0601 0.4388

Single-SM 0.2697 0.0796 0.0624 0.4564

(+3.9%) (+4.9%) (+3.8%) (+4.0%)

Multiple-SM 0.2709* 0.0803* 0.0637* 0.4619

(+4.4%) (+5.8%) (+6.0%) (+5.3%)
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in most cases. It is worth mentioning that our approach can further improve the best

result (NLMinter) reported in the TREC 2007 Genomics track by achieving 18.9%

improvement on Aspect MAP and 11% improvement on Passage2 MAP.

Experimental results also show that the multiple survival model slightly outper-

forms the single survival model. In our experiments, we use the Maximum Likelihood

Estimation (MLE) to estimate the Poisson parameter λ, then calculate the P (aj) ac-

cording to Poisson distribution. We do not manually set the rate parameters. As

described in Section 3.1, the multiple survival model estimates the distribution rate

for each detected aspect, while the single survival model only estimates one distribu-

tion rate for all aspects as it assumes that all aspects follow the same distribution.

Thus, it is not surprised that the multiple survival model outperforms the single

survival model.

We also note that, in terms of Aspect MAP, the improvements on the 2007’s

topics are more significant than the improvements on the 2006’s topics. This might

be due to that the average number of distinct aspects of each 2007’s topic (72.3

aspects per topic) is much larger than that of each 2006’s topic (27.9 aspects per

topic) descried by Hersh et al. (2007, 2006b). A topic with more distinct aspects

indicates the information need of this topic could be more diverse. In this case, our

approach performs better.
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In biomedical IR, the use of domain-specific thesauri is still the most commonly

used method of integrating external knowledge. Therefore, it is worthwhile to com-

pare the re-ranking performance based on aspect detection using Wikipedia and

using domain-specific thesauri. Table 3.3 presents re-ranking results based on as-

pect detection using the largest thesaurus UMLS4 in the biomedical domain as the

knowledge resource. When the UMLS is used for aspect detection, performance im-

provements can be obtained in terms of Aspect MAP and Passage2 MAP. However,

Passage MAP and Document MAP may decrease on some baselines. From experi-

mental results shown in Table 3.2 and Table 3.3, we can find that, compared with

aspect detection using the UMLS, aspect detection based on Wikipedia can achieve

more evident and more stable performance improvements. This is because the en-

riched entity pages in Wikipedia could result in a better mapping between terms in

biomedical text and concepts. Moreover, instead of only providing hierarchical re-

lationships (synonyms, hypernyms, hyponyms) among biomedical concepts like the

UMLS, plenty of Wikipedia links and anchor texts can also provide more natural

relationships among Wikipedia concepts.

4http://www.nlm.nih.gov/pubs/factsheets/umls.html
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Table 3.3: Re-ranking Performance based on Aspect Detection Using UMLS

on 2007’s topics

MAP Aspect Passage Passage2 Document

NLMinter 0.2631 0.0968 0.1148 0.3286

Single-SM 0.2688 0.0962 0.1173 0.3240

(+2.2%) (-0.6%) (+2.1%) (-1.4%)

Multiple-SM 0.2695 0.0969 0.1183 0.3243

(+2.4%) (+0.1%) (+2.9%) (-1.3%)

MuMshFd 0.2068 0.0840 0.0895 0.2906

Single-SM 0.2233* 0.0836 0.0907 0.2829

(+8.0%) (-0.5%) (+1.3%) (-2.6%)

Multiple-SM 0.2256* 0.0844 0.0918 0.2844

(+9.1%) (+0.5%) (+2.6%) (-2.1%)

Okapi07 0.1428 0.0633 0.0641 0.2025

Single-SM 0.1564* 0.0638 0.0654 0.2070

(+9.5%) (+0.8%) (+2.0%) (+2.2%)

Multiple-SM 0.1576* 0.0647 0.0655 0.2080

(+10.4%) (+2.2%) (+2.1%) (+2.7%)

on 2006’s topics

MAP Aspect Passage Passage2 Document

Okapi06a 0.2176 0.0362 0.0450 0.3476

Single-SM 0.2202 0.0359 0.0460 0.3420

(+1.1%) (-0.8%) (+2.2%) (-1.6%)

Multiple-SM 0.2219 0.0363 0.0466 0.3431

(+2.0%) (+0.3%) (+3.6%) (-1.3%)

Okapi06b 0.3147 0.1559 0.0968 0.4705

Single-SM 0.3184 0.1512 0.0966 0.4738

(+1.2%) (-3.0%) (-0.2%) (+0.7%)

Multiple-SM 0.3195 0.1538 0.0973 0.4774

(+1.5%) (-1.3%) (+0.5%) (+1.5%)

Okapi06c 0.2596 0.0759 0.0601 0.4388

Single-SM 0.2702 0.0763 0.0603 0.4200

(+4.1%) (+0.5%) (+0.3%) (-4.3%)

Multiple-SM 0.2732* 0.0769 0.0624 0.4255

(+5.2%) (+1.3%) (+3.8%) (-3.0%)
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3.2.5 Impact of the Survival Models

In order to investigate the effect of the survival models on promoting ranking diver-

sity, we substitute the survival model with a binary novelty measuring method. The

binary method measures the novelty of an aspect as follows: if an aspect is observed at

the first time, the novelty score of the aspect is 1, otherwise, 0. The re-ranking results

of using these two methods are shown in Figure 3.1 and Figure 3.2, where “Multi-

SM” denotes the system using the multiple survival model with aspect filtering for

re-ranking, “Binary” denotes the system using the binary novelty measuring method

for re-ranking and “No Filter” denotes the system using the multiple survival model

without aspect filtering for re-ranking. The binary method only involves filtered

aspects. It re-ranks retrieved passages using Equation (3.7), where P (New|aj) = 1

when aj appears the first time, otherwise, P (New|aj) = 0. We can see that the IR

runs using the survival model outperform those using the binary novelty measure.

Statistically significant improvement on Aspect MAP can be observed using the sur-

vival model for re-ranking, while the binary re-ranking method could only achieve

significant improvements on Aspect MAP over the baseline NLMinter(Wilcoxon test

at the 5% significance level). The performance differences between the use of two

methods are more evident on Aspect MAP, while the differences on Passage MAP,

Passage2 MAP and Document MAP are minor. This observation indicates that us-

64



ing the survival model has a substantial impact on promoting diversity of the ranked

list. The survival model successfully measures the probability of obtaining novel

information from an aspect and makes a positive contribution to retrieval result

diversification.
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Figure 3.1: Effects of Survival Model and Aspect Filtering on 2007’s topics.(The x-

axis presents the evaluation measures, where “NLM”, “MuM” and “Oka” in the left

figure stand for three baselines corresponding to NLMinter, MuMshFd and Okapi07.)

3.2.6 Experiment Results on Web Track

Experimental results on the TREC Genomics collections demonstrate that the pro-

posed approach is effective in promoting ranking diversity for biomedical text re-

trieval. However, promoting ranking diversity is not only a research topic in biomed-
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Figure 3.2: Effects of Survival Model and Aspect Filtering on 2006’s topics.(The

x-axis presents the evaluation measures, where “06a”, “06b” and “06c” in the right

figure stand for three baselines corresponding to Okapi06a, Okapi06b and Okapi06c.)

ical IR, but also a research topic in many other retrieval environments (e.g. ad-hoc

retrieval and Web retrieval). In this section, we further conduct a series of experi-

ments on the ClueWeb09-T09B collection (also known as the “Category B” collection

in the TREC 2009) to evaluate our approach in the Web environment. ClueWeb09-

T09B consists of about 50 million English-language Web pages and was used as the

test collection in the TREC 2009 Web track (Clarke et al. 2009b).

We mainly focus on the diversity task of the TREC 2009 Web track, since the

goal of the diversity task is to return a ranked list of Web pages that together provide

complete coverage for a query, while avoiding excessive redundancy in the result list
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in (Clarke et al. 2009b). The evaluation measures of the diversity task are α-nDCG

(with α = 0.5 in the (Clarke et al. 2009b, 2008b) and an intent-aware version of

precision (IA-P) in (Agrawal et al. 2009b). Both evaluation measures reflect the

diversity of a ranked list as well as the query-relevance of retrieved documents. 50

topics (we only use the “<query>” field of the topics) from the 2009 Web track are

used as queries in our experiments.

Table 3.4: Re-ranking Performance on the Diversity Task of TREC 2009 Web Track

α-nDCG@5 α-nDCG@10 α-nDCG@20 IA-P@5 IA-P@10 IA-P@20

BM25 0.125 0.170 0.205 0.061 0.077 0.085

Single-SM 0.169* 0.194* 0.231* 0.081* 0.081* 0.086

(+35.2%) (+14.1%) (+12.7%) (+32.8%) (+5.2%) (+1.2%)

Multiple-SM 0.195* 0.226* 0.253* 0.090* 0.088* 0.090*

(+56.0%) (+32.9%) (+23.4%) (+47.5%) (+14.3%) (+5.9%)

BM25+RF 0.209 0.224 0.238 0.108 0.106 0.089

Single-SM 0.218* 0.225 0.239 0.110 0.106 0.089

(+4.3%) (+0.4%) (+0.4%) (+1.9%) (+0%) (+0%)

Multiple-SM 0.225* 0.232 0.243 0.115* 0.108 0.089

(+7.7%) (+3.6%) (+2.1%) (+6.5%) (+1.9%) (+0%)

We compare our approach with two baseline runs. The first baseline is solely

based on the probabilistic weighting model BM25. The second baseline is much

stronger, which employs BM25 for document ranking and Kullback-Leibler Diver-

gence for relevance feedback (RF) based on 5 human labeled documents reported

by Carpineto et al. (2001), Ye et al. (2009). Experimental results are shown in

Table 3.4. As we can see, the proposed approach achieves significant performance
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improvements over the BM25 baseline in terms of α-nDCG@5, α-nDCG@10, α-

nDCG@20, IA-P@5 and IA-P@10. The multiple survival model still consistently

outperforms the single survival model. Moreover, our approach can further improve

the performance of the baseline with relevance feedback in terms of α-nDCG@5. This

indicates that, based on this strong baseline, our approach can still rank more diverse

and relevant documents to the top of the ranked list. Overall, the evaluation results

on the ClueWeb09-T09B collection demonstrate the effectiveness of our approach in

promoting diversity of Web search result.

3.3 Survival Approach to Proximity

In literature, term proximity is interpreted as query term co-occurrences, or phrases.

Follow the co-occurrence interpretation of the term proximity information in Croft

et al. (1991), the proximity among query terms is interpreted as n-gram frequencies.

In the context of modeling term proximity information, the importance of the n-gram

in the document is measured by the co-occurrence probability. The main focus of

this section is modeling co-occurrence probability of n-gram among query terms.
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3.3.1 Re-ranking Model Based on Term Proximity

The probabilistic document ranking (PDR) for a given query using the term prox-

imity evidence pi is given by van Rijsbergen (1977) as follows:

PDR
rank
=

∑
i=1,2,...,n

αi · Score(d, pi) (3.9)

where Score(d, pi) is the ith n-gram relevance score. Different n-gram models are

combined through a linear function with a parameter αi to adjust the relative impor-

tance of each n-gram model.Thus, a major difficulty is how to assign the relevance

score using term proximity between more than one terms, i.e. when i is larger than

or equal to 2.

There could be many ways to assign the proximity-based relevance scores, such

as those mentioned in Section 1.3. Here, we adopt the co-occurrence interpretation

of term proximity introduced by van Rijsbergen (1977), where the proximity among

query terms is represented by the n-gram frequencies, then the n-gram relevance

score of a document d for a query Q is given as follows:

Score(d,Q, pn) =
∑

t1,t2,...,tn∈Q

w(1) (k1n + 1)tfn
K + tfn

· qtwn (3.10)

where an n-gram consists of n query terms t1, t2, ..., and tn. In the context of the

n-gram model, the above variables can be interpreted as follows:
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• tfn is the n-gram frequency. A simple method for computing the n-gram fre-

quency is to count the number of co-occurrences of query terms. A more

sophisticated solution is to consider information provided by n-gram frequency

a decreasing function of the distance between query terms. We propose vari-

ous novel methods for computing the n-gram frequency, which is described in

details in the next section.

• w(1) is the raw term weight, following the re-written point-5 formula proposed

by Robertson et al. (1995), is given as

w(1) = log
N −Nn + 0.5

Nn + 0.5
(3.11)

where Nn is the n-gram document frequency , i.e. the number of documents in

which the n-gram occurs for at least once. This Equation is corresponding to

the w(1) in Equation (1.5).

• qtwn is the n-gram weight, it is given by the average query term weight of the

n-gram terms t1, t2, ..., and tn: qtwn =
∑
i∈1,2,...,n qtwti

n
.

• K is given by: K = k1n

(
(1− bn) + bn

ln
avg ln

)
, where the variables are defined

in the context of the n-gram model. The length ln refers to the number of

windows in a document, which is given by (l − n + 1). avg ln is the average

number of windows in a document, given by
(∑

d∈Coll ld −N · n− 1
)
, where
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∑
d∈Coll ld is the number of tokens in the whole collection.

• Each individual bi of n-gram model is optimized by Simulated Annealing pro-

posed by Kirkpatrick et al. (1983) on training queries, while only the n-gram

model is enabled. This is equivalent to setting the linear combination weight

αi (see Equation (3.9)) of other n-gram models to 0.

• The other parameters k1n and k3n are the same parameters for each n-gram

model, as those in the content-based BM25 in Equation (1.5). In experiment,

we default them to k1 = 1.2 and k3 = 1000 for every n-gram model to reduce

the number of parameters to be optimized.

3.3.2 Term Proximity Modeling

The simple way of modeling term proximity is the window-based n-gram frequency

counting (NC) method, which has been popular in previous studies on using term

proximity for IR (e.g. Metzler and Croft (2005b), Plachouras and Ounis (2007b)).

The basic idea of the window-based n-gram counting method is to segment the

document into a list of sliding windows, with each window having a fixed window

size wSize. If a document has a length of l, and the window size is set to wSize,

the document is then segmented into 1-wSize sliding windows, where each window

contains wSize consecutive tokens. For example, if a document has four tokens A,
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B, C, and D, and the window size is 3, there are two windows in this document,

namely A, B, C and B, C, D. The n-gram frequency is then defined as the number

of windows in which all n-gram terms co-occur.

However, the n-gram counting method does not take the actual distance between

query terms into account, and any n-gram terms appear together within a window

is counted as one occurrence of the n-gram. Another possible downside is that it is

unable to differentiate between n-grams in which the n-gram terms appear loosely

and tightly in the text. An alternate solution is to approximate a proximity-based co-

occurrence probability of the n-gram terms in the document d. The distance between

the n-gram terms is characterized by the shortest distance between any two n-gram

terms in the n-gram, and other n-gram terms appears in between. For example, if a

window consists of a sequence of the following 6 tokens: Q1, A, Q2, Q1, B, Q3, where

Q1, Q2, and Q3 are the tri-gram terms, and A, B are tokens in the document, the

distance between the tri-gram terms is 2 in this case, which is the number of tokens

between Q2 and Q3.

Therefore, the n-gram frequency becomes:

tfn =
∑

i=1,...,x

Pi(Qn, τi) (3.12)

where x is the number of windows in which the n-gram terms co-occur. τi is the

distance between the n-gram terms in the ith window in which the n-gram terms
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co-occur. To simplify the approximation, we assume that only the two n-gram terms

that have the shortest distance in the window (and the other n-gram terms appear

in between) is taken into account. In the context of modeling the term proxim-

ity information, the importance of the n-gram in the document is measured by the

probability of co-occurrence and its proximity, denoted as S(τ). The co-occurrence

probability corresponds to the effectiveness of a treatment, or a mean of modeling

of the distance, where τ is the distance between Qi and Qj. More details can be

founded in He et al. (2011). Remind that Qi and Qj are the two n-gram terms with

the shortest distance in the text window. A text window can be interpreted as a

patient in the clinical trial case, and the distance between Qi and Qj, composed of

a sequence of words, can be interpreted as the survival time, that is, the time that

it takes for the treatment to cure the patient. In other words, in a text window, as

the distance between the n-gram terms increases, the importance of the n-gram in

the document decreases. The n-gram has the highest importance when the n-gram

terms are adjacent to each other, that is, when the distance or survival time is zero.

So the probability of the n-gram co-occurrence and proximity can be approximated

by utilizing survival function on the Homogeneous Poisson Process (SurvHPP), ex-

ponential distribution (SurvExp), and empirical distribution (SurvEmp) as follows:
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1. T follows Poisson distribution:

S(τ) = 1− F (τ) = 1− e−λ ·
τ∑
i=0

λi

i!
(3.13)

2. T follows exponential distribution:

S(τ) = P (T > τ) = e−λτ (3.14)

3. The empirical survivor function is

S(τ) = 1− 1

n

n∑
i=1

I(τ) (3.15)

where I(τ) is an indicator function.

3.3.3 Experimental Setup

We evaluate our proposed methods on ad-hoc topics over four large-scale TREC

Web collections. These four collections are the most recent Web collections with

associated ad-hoc test topics, which are currently the best snapshot of the real Web

environment5. The WT10G, .GOV2 and ClueWebB collections are introduced in

the Subsection 2.3.1. The Blog06 collection includes 100,649 blog feeds collected

over an 11 week period from December 2005 to February 2006. Following the official

TREC setting in (Ounis et al. 2006b), we index only the permalinks, which are the

5Other TREC Web collections are not used in that they do not have corresponding ad-hoc test
topics.
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blog posts and their associated comments. For all four test collections used, each

term is stemmed using Porter’s English stemmer, and standard English stopwords

are removed.

Each topic contains three topic fields, namely title, description and narrative.

We only use the title topic field that contains few keywords related to the topic.

The title-only queries are usually short which is a realistic snapshot of real user

queries in practice. On each collection, we evaluate our proposed model by a two-

fold cross-validation. The test topics associated to each collection are split into two

equal subsets, namely the odd-numbered and even-numbered topics. In each fold, we

use one subset of topics for training, and use the remaining subset for testing. The

overall retrieval performance is averaged over the two test subsets of topics. We use

the TREC official evaluation measures in our experiments, namely the Mean Average

Precision (MAP) on WT10G and .GOV2 in Voorhees et al. (2005), the topical MAP

on Blog06 in Ounis et al. (2006b), and the statMAP on ClueWeb B6.

3.3.4 Experimental Results

In this section, we evaluate our proposed proximity-based model in a bi-gram setting

first. The evaluation baseline is the original unigram BM25 model in Equation 1.5

6Information about the ClueWeb dataset can be found at the following URL:
http://boston.lti.cs.cmu.edu/Data/clueweb09/
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proposed by (Robertson et al. 1995) . Compared to this baseline, we evaluate our

proposed model at two different levels. First, we compare the performance of the

bi-gram BM25 model with the unigram BM25 baseline. Second, we compare the

unigram BM25 model alone with the combination of the unigram and bi-gram BM25

models.

Table 3.5: The MAP/statMAP values obtained by the unigram BM25 baseline and

the bi-gram model.

Unigram Bi-gram, unordered

Coll. BM25 NC SurvHPP SurvExp SurvEmp

WT10G 0.2217 0.1605 0.1359 0.1623 0.1468

Blog06 0.3403 0.2205 0.2111 0.2163 0.2082

.GOV2 0.3055 0.2445 0.1977 0.2434 0.2023

ClueWeb B 0.2085 0.1437 0.1405 0.1423 0.1379

Unigram Bi-gram, ordered

WT10G 0.2217 0.1575 0.1302 0.1600 0.1206

Blog06 0.3403 0.2189 0.1945 0.2082 0.1955

.GOV2 0.3055 0.2423 0.1907 0.2412 0.2002

ClueWeb B 0.2085 0.1376 0.1045 0.1451 0.1310

Table 3.5 compares the retrieval performance of the bi-gram models with the

unigram BM25 model. The two variants, namely the ordered and the unordered

bi-gram models, are also tested. Results in Table 3.5 show that the bi-gram BM25

model is not as good as the unigram model. This observation is in line with the

findings in previous studies (e.g. Metzler and Croft (2005b)). We suggest that the
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relatively low performance of the bi-gram model could be due to the fact that the

bi-gram model is unable to properly measure the informativeness of the individual

query terms that do not form a concept with other query terms. Even though, the

bi-gram model still provides a descent retrieval performance, which has the potential

to lead to improved retrieval performance by combining the unigram model with the

bi-gram model.

Table 3.6: The MAP values obtained by the unigram BM25 baseline and the bi-gram

model on WT10G.

Model Unigram Unordered Ordered

NC 0.2104 0.2240, 6.46*% 0.2201, 4.61*%

SurvHPP 0.2104 0.2168, 3.04% 0.2158, 2.57%

SurvExp 0.2104 0.2229, 5.94*% 0.2199, 4.52*%

SurvEmp 0.2104 0.2167, 2.99% 0.2146, 2.00%

Table 3.7: The MAP values obtained by the unigram BM25 baseline and the bi-gram

model on Blog06.

Model Unigram Unordered Ordered

NC 0.3190 0.3521, 10.38*% 0.3384, 6.08*%

SurvHPP 0.3190 0.3449, 8.12*% 0.3417, 7.12*%

SurvExp 0.3190 0.3551, 11.32*% 0.3397, 6.49*%

SurvEmp 0.3190 0.3417, 7.12*% 0.3376, 5.83*%

Next, we examine the retrieval performance of the linear combination of the

unigram and bi-gram models. The related experimental results on the four collections
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Table 3.8: The MAP values obtained by the unigram BM25 baseline and the bi-gram

model on .GOV2.

Model Unigram Unordered Ordered

NC 0.3045 0.3211, 5.45*% 0.3146, 3.32%

SurvHPP 0.3045 0.3118, 2.40% 0.2842, -6.67%

SurvExp 0.3045 0.3196, 4.96*% 0.3119, 2.43%

SurvEmp 0.3045 0.3117, 2.36% 0.2797, -8.15%

Table 3.9: The statMAP values obtained by the unigram BM25 baseline and the

bi-gram model on ClueWeb B.

Model Unigram Unordered Ordered

NC 0.2107 0.2136, 1.38% 0.2043, -3.04%

SurvHPP 0.2107 0.2107, 0% 0.1854, -12.01%

SurvExp 0.2107 0.2131, 1.39% 0.2057, -2.37%

SurvEmp 0.2107 0.2113, 0.28% 0.1877, -10.92%

used are listed in Tables 3.6 - 3.9, respectively. From these tables, we observe that

the combined model outperforms the unigram BM25 model in most cases. To be

more specific, the N-Gram Counting (NC) method and the Survival Analysis over

exponential distribution (SurvExp) result in statistically significant improvement

over the unigram BM25 baseline on three out of four test collections used. We also

observe insignificant improvement brought by BM25P on ClueWeb B. Furthermore,

the unordered combined model is consistently better than the ordered one. This

indicates that the order of appearances of query terms is not important for ad-hoc
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retrieval on the collections used. In addition to the bi-gram models tested in the

Table 3.10: The MAP/statMAP values obtained for evaluating the tri-gram model.

A star indicates a significant improvement over the unigram BM25 baseline.

Coll. BM25 NC SurvHPP SurvExp SurvEmp

Unigram Unigram+Bi-gram, unordered

WT10G 0.2104 0.2240* 0.2168 0.2229* 0.2167

Blog06 0.3190 0.3521* 0.3449* 0.3494* 0.3417*

.GOV2 0.3045 0.3211* 0.3118* 0.3196* 0.3117

ClueWeb B 0.2107 0.2136 0.2107 0.2131 0.2113

Unigram Unigram+Trigram, unordered

WT10G 0.2104 0.2198* 0.2166 0.2203* 0.2143

Blog06 0.3190 0.3254* 0.3267* 0.3301* 0.3271*

.GOV2 0.3045 0.3102 0.3056 0.3074 0.2956

ClueWeb B 0.2107 0.2187 0.2132 0.2215 0.2197

Unigram Unigram+Bi-gram+Trigram, unordered

WT10G 0.2104 0.2283* 0.2194* 0.2275* 0.2184

Blog06 0.3190 0.3535* 0.3491* 0.3584* 0.3468*

.GOV2 0.3045 0.3245* 0.3187* 0.3213* 0.3117

ClueWeb B 0.2107 0.2177 0.2187 0.2208 0.2173

previous section, we evaluate the effectiveness of our proposed model in tri-gram

setting in this section. We do not experiment beyond the tri-gram model since

only few title-only TREC test queries contain more than four non-stopword unique

keywords.

Table 3.10 presents the results for evaluating the tri-gram model. The combi-

nation of the unigram model with either the bi-gram or the tri-gram model can
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provide a statistically significant improvement over the unigram baseline in many

cases. However, the improvement brought by the tri-gram model is not as high as

those brought by the bi-gram model. This might be due to the fact that the bi-gram

model better utilizes the latent association between query words than the tri-gram

model. Moreover, a combination of the unigram, bi-gram and tri-gram models per-

forms better than the combination of the unigram and bi-gram models, while the

improvements are rather marginal on all four collections. We only report the results

with the unordered models in that the ordered models lead to similar conclusions

while their retrieval performance is slightly lower. In summary, the tri-gram model is

shown to be a useful addition to the bi-gram model, although the combination of the

unigram and bi-gram models are sufficient to provide reliable retrieval performance

on the collections used.
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4 Conclusion and Future Work in IR

We have demonstrated the effectiveness of incorporating document length, aspect and

term proximity information into the classical probabilistic IR models. In Chapter 2,

we study the impact of document length on its relevance based on the assumption

that a document may exhibit both Verbosity and Scope hypotheses and show the

evidence to its retrieval. In Chapter 3, we apply the survival function to estimate

the novel information provided by aspects to promoting the diversity in the ranked

document lists, and term proximity to improve retrieval performance.

Based on the current work, we plan to extend our work to the other IR models,

such as language model and PL2, possibly by incorporating with machine learning

methods.

• Document length has been empirically proved as an useful factor in document

retrieval. There is a need of finding a simple way to model the impact of

document length on document relevance when document style and structure

change dynamically nowadays.
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• In fact, whether a repeated aspect could provide novel information may depends

on the context it appears. We thus plan to take aspects’ contextual information

into account in our future work. We also plan to adapt our approach to other

domains, such as Web retrieval.

• Term proximity that can be employed not only by BM25 in text retrieval, we

also consider to extend the application of our proposed model to retrieval from

structured documents, such as the XML retrieval. An XML document is an

ordered and labeled tree, where the nodes are usually composed of short text,

and tokens of the same word appear at different levels in the tree structure.

This poses a challenge for the application of our proposed model to the XML

documents, since it is difficult to define the notions of n-grams and window size

in such a tree structure.

From next Chapter, we will start on the topic of asymptotic methods and its

applications.
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5 Literature Survey on Asymptotic Methods

Fisher (1921) defined the likelihood function as a function of the parameters of

a statistical model, which is proportional to the joint density of the model. In

1922, Fisher extended the studies and proposed the method of maximum likelihood

estimate (MLE) as a mean of a systematic way of estimating the parameters based

on the observed sample. Neyman and Pearson (1933) proved that the likelihood

ratio test is the most powerful test for any given size γ test. Under regularity

conditions as stated in Wilks (1938), he proved that the limiting distribution of

the likelihood ratio is a χ2 distribution. Wald (1943) extended Wilks’ work on the

distribution of the likelihood ratio statistic to a more general situation, and derived

the limiting distribution of the maximum likelihood estimate. Additionally, Rao

(1948) introduced score test which is also based on the likelihood function. These

likelihood inference methods have rates of convergence O(n−1/2) and is referred to

as the first-order approximation methods. Even though the first-order methods are

widely used, they generally do not give accurate approximation especially when the
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sample size is small. In recent literature, Fraser and Reid (1995) derived a more

accurate likelihood-based asymptotic method with rate of convergence O(n−3/2).

This section reviews some key concepts and definitions in asymptotic approxi-

mation inference. In Section 5.1, we review the likelihood function and maximum

likelihood estimate. The standard first-order asymptotic techniques are also exam-

ined. In Section 5.2, the saddlepoint approximation to the density of the mean of

n independent identically distributed random variables is introduced. We give the

brief presentation about the third-order asymptotic method in Section 5.3.

5.1 Standard First-order Likelihood-based Asymptotic Meth-

ods

Assume a statistical model has probability density function (or probability function)

f(· ; θ), where θ = (θ1, θ2, · · · , θk)′ ∈ Θ is a k-dimensional parameter. The likeli-

hood function defined by Fisher (1921) for any random sample y = (y1, y2, · · · , yn)′

obtained from the above model is

L(θ) = L(θ; y1, · · · , yn) = cf(y1, · · · , yn; θ),

for values of θ within a given domain, where c > 0 is a multiplicative constant,

and f(y1, · · · , yn; θ) is the value of the joint probability distribution or the joint
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probability density function of the random variables Y1, · · · , Yn evaluated at Y1 =

y1, · · · , Yn = yn. The corresponding log-likelihood function is

`(θ) = `(θ; y1, . . . , yn) = a+
n∑
i=1

log(f(yi; θ)), (5.1)

where a ∈ R is an additive constant. Without lost of generality, a is set to be zero

hereafter in this dissertation.

Let θ̂ be the overall MLE, which can be obtained by solving

`θ(θ̂) =
∂`(θ)

∂θ

∣∣∣∣
θ=θ̂

= 0.

Let ψ = ψ(θ) be a scalar parameter of interest and λ be the nuisance parameter with

size k − 1, denoted as θ = (ψ, λ′)′. Now, consider the null hypothesis

H0 : ψ(θ) = ψ0,

θ̂ψ is the constrained MLE of θ which maximize (5.1) for a given ψ(θ) = ψ0. Gener-

ally, when λ is explicitly known, θ̂ψ is obtained by solving

`λ(θ̂ψ) =
∂`(θ)

∂λ

∣∣∣∣
θ=θ̂ψ

= 0.

However, when λ is not explicitly available, θ̂ψ can be obtained by applying the

Lagrange multiplier technique for maximizing (5.1) subject to the constraint ψ(θ) =

ψ0. Since the closed form of θ̂ and θ̂ψ are not always available, numerical methods

are often required. The tilted log-likelihood function is defined as

˜̀(θ) = `(θ) + κ̂[ψ(θ)− ψ0] (5.2)
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with maximum value at θ̂ψ and κ̂ is the Lagrange multiplier which maximized the

(5.2). Note that this tilted likelihood has the property ˜̀(θ̂ψ) = `(θ̂ψ) for a given

constraint ψ(θ) = ψ0.

Moreover, throughout this dissertation with θ ∈ Θ, the following regularity con-

ditions are assumed to hold:

• f(y; θ) > 0 is twice continuously differentiable in a neighborhood of θ;

•
∫

sup
θ∈N
|fθ(y; θ)|dy <∞ and

∫
sup
θ∈N
|fθθ′(Y ; θ)|dy <∞,

where fθ(y; θ) =
∂f(y; θ)

∂θ
and fθθ′(y; θ) =

∂2f(y; θ)

∂θ∂θ′
;

• E[`θ(y; θ)`′θ(y; θ)] exists and is nonsingular, where `θ(θ) =
∂`(θ)

∂θ
;

•
∫

sup
θ∈N
|`θθ′(y; θ)|dy <∞, where `θθ′(θ) =

∂2`(θ)

∂θ∂θ′
.

Under these regularity conditions, applying Central Limit Theorem and Taylor

expansion to (5.1), the following can be obtained:

• `θ(θ)
d−→ Nk(0, var[`θ(θ)]), or equivalently `

′

θ(θ) {var[`θ(θ)]}−1 `θ(θ)
d−→ χ2

k,

where var(`θ(θ)) = iθθ′(θ) = E [jθθ′(θ)] is the Fisher expected full information

matrix, and jθθ′(θ) = −`θθ′(θ) is the observed information matrix.

• θ̂ d−→ Nk(θ, var(θ̂)), or equivalently (θ̂ − θ)′[var(θ̂)]−1(θ̂ − θ) d−→ χ2
k,

where var(θ̂) ≈ i−1
θθ′(θ).
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• 2
[
`(θ̂)− `(θ)

]
d−→ χ2

k.

Note that although iθθ′(θ) could be difficult to obtain, it can be approximated by

jθθ′(θ̂). When we are interested in the inference for ψ, the following three test

statistics are usually used:

• Signed log-likelihood ratio statistic

r = r(ψ) = sgn(ψ̂ − ψ){2[`(θ̂)− `(θ̂ψ)]}
1
2 . (5.3)

• Wald statistic

q = q(ψ) =
ψ̂ − ψ√
var(ψ̂)

. (5.4)

• Score statistic

S = S(ψ) =
`ψ(θ̂ψ)√
var(θ̂ψ)

, (5.5)

where

var(ψ̂) ≈ ψθ(θ̂)j
−1

θθ′
(θ̂)ψθ(θ̂)

′
,

ψθ(θ̂) =
∂ψ(θ)

∂θ

∣∣∣∣
θ=θ̂

,

`ψ(θ̂ψ) =
∂`(ψ, λ)

∂ψ

∣∣∣∣
λ=λ̂ψ

.
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Engle (1984) showed that the three tests are asymptotically equivalent.

The p-value functions based on (5.3), (5.4) and (5.5) are defined as

p(θ) =



Φ(r)

Φ(q)

Φ(S)

(5.6)

where Φ(·) is the cumulative distribution function of N(0,1). These methods all have

rate of convergence O(n−1/2) and are generally referred to as the first-order methods.

Hence a central (1− γ)× 100% confidence interval for ψ is

(
min{p−1(γ/2), p−1(1− γ/2)},max{p−1(γ/2), p−1(1− γ/2)}

)
. (5.7)

The first two statistics are more popular in terms of application. For finite sam-

ple, Doganaksoy and Schmee (1993) found that generally (5.3) has better coverage

properties than (5.4). As we have discussed before, Neyman and Pearson (1933)

proved that (5.3) gives the most powerful test. However, they also pointed out the

(5.4) is more popular in applied analysis than (5.3) because of its simplicity in ap-

plication. For example, a (1 − γ)100% confidence interval for ψ is approximately

ψ̂ ± zγ/2
√

var(ψ̂).

Although the three first-order methods are widely used in hypothesis testing, they

do not perform well when the sample size is small or when the underlying distribution
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is far away from the normal distribution. In the next two subsections, higher-order

asymptotic methods will be introduced.

5.2 Saddlepoint Approximation

Daniels introduced saddlepoint approximation to statistics in 1954. This method

approximate the density of the mean of n independent and identically distributed

(i.i.d.) random variables, and it is very accurate but could be very complicated in

terms of computation.

Assume Y1, . . . , Yn are i.i.d. random vectors with size k from a model with density

fY (·; θ). The moment generating function is defined as

M(t) = E[et
′
Y ]

and cumulant generating function is

K(t) = log(M(t)).

The saddlepoint approximation for the density of the mean of n independent,

identically distributed random variables, i.e. Ȳ = n−1
∑n

i=1 Yi, given by Daniels

(1954), is

fȲ (ȳ) = (2π)−k/2

{
n∣∣Ktt′(t̂)

∣∣
}1/2

exp
[
n{K(t̂)− t̂′ȳ}

]
{1 +O(n−1)} (5.8)
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where

Kt(t̂) =
∂K(t)

∂t

∣∣∣∣
t=t̂

= ȳ (5.9)

is the saddlepoint and

Ktt′(t̂) =
∂K2(t)

∂t∂t′

∣∣∣∣
t=t̂

t̂ is known as the saddlepoint. Note that (5.8) has a relative error of O(n−1).

A statistical version of the derivation of the saddlepoint approximation can be

obtained by combing exponential tilting and Edgeworth expansion techniques and

then collect the first four terms. For detailed review of the derivation, please refer

to Barndorff-Nielsen (1978), Barndorff-Nielsen and Cox (1979, 1989, 1994) and Reid

(1988). The resulting density is

fȲ (ȳ) = a

{
n∣∣Ktt′(t̂)

∣∣
}1/2

exp
[
n{K(t̂)− t̂′ȳ}

]
{1 +O(n−3/2)} (5.10)

where a is the normalizing constant. Durbin (1980) showed that error term of the

saddlepoint approximation (5.8) is reduced to O(n−3/2) when (2π)−k/2 is replaced by

a normalizing constant a in (5.10).

For a canonical exponential family model with density

fY (y; θ) = exp {θ′y − c(θ) + h(y)} , (5.11)

and the log-likelihood function can be written as

`(θ) = nθ′ȳ − nc(θ),
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with the cumulant generating function

K(t) = log(M(t)) = c(θ + t)− c(θ),

there exists a one-one transformation from Ȳ to θ̂

Kt(θ̂) = Ȳ ,

where Ȳ is a minimal sufficient statistic for θ. Barndorff-Nielsen(1980, 1983) showed

that the saddlepoint approximation of the density function of θ̂ is

f(θ̂; θ) = a|jθθ′(θ̂)|1/2 exp
{
`(θ)− `(θ̂)

}{
1 +O(n−3/2)

}
, (5.12)

where a is a normalizing constant. For models outside the exponential family setting,

if an ancillary statistic is available, there is one-to-one correspondence between the

minimum sufficient statistic and an ancillary statistic. An example of the construc-

tion of the ancillary statistic can be found in Barndorff-Nielsen (1980) or Barndorff-

Nielsen and Chamberlin (1991). For a general model, if the MLE is not a one-one

transformation of the minimal sufficient statistic, whereas (5.12) continues to provide

an approximation to a conditional density of θ̂ by conditioning on an appropriate

ancillary statistic A. The same result derived by Barndorff-Nielsen and Cox (1984)

is

f(θ̂|A; θ) = a(θ, A)|jθθ′(θ̂)|1/2 exp
{
`(θ)− `(θ̂)

}{
1 +O(n−3/2)

}
. (5.13)
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The above approximation is accurate to O(n−3/2) for exponential families and trans-

formation models. Detailed discussion of the saddlepoint method and its application

in statistics can be found in Barndorff-Nielsen (1983, 1986, 1991, 1991), McCul-

lagh (1987), Fraser (1988), Reid (1988, 1996) and Barndorff-Nielsen and Cox (1989).

However, there is no systematic method to construct ancillary statistic for a general

model. Moreover, ancillary statistic may not exist and even if it exists, it may not

be unique.

5.3 The Third-order Asymptotic Methods

Intensive research on higher-order asymptotics was intrigued by Barndorff-Nielsen

and Cox (1979), which highlighted the usefulness and accuracy of the saddlepoint

approximation to the density function of Ȳ , the mean of n i.i.d. random variables, as

well as the cumulative distribution function for Y , FȲ (ȳ) =
∫ ȳ
−∞ fȲ (s)ds. However,

this approximation may not have closed form and numerically integration is required,

which will introduce significant error when analytical solution does not exist.

Following the idea of saddlepoint approximation, Lugannani and Rice (1980) cal-

culated the cumulative distribution function by inverting the characteristic function

(Fourier transformation):

FȲ (ȳ) = P (Ȳ ≤ ȳ) = Φ(r) + φ(r)

(
1

r
− 1

q

)
+O(n−3/2), (5.14)

92



where r = sgn(t̂)
√

2n[t̂ȳ −K(t̂)] and q = t̂
√
nKtt(t̂). Note that t̂ is the saddlepoint

defined in Section 5.2 which satisfied Kt(t̂) = ȳ.

For the canonical exponential family defined by (5.11), the likelihood formulation

of the statistics r and q is

r = sgn(q)
[
2{`(θ̂)− `(θ)}

] 1
2
, (5.15)

q = (θ̂ − θ){jθθ(θ̂)}
1
2 . (5.16)

which coincide with the signed likelihood ratio statistic and the maximum likelihood

departure as defined by (5.3) and (5.4) for a scalar parameter of interest situation.

Hence the p-value function of θ approximated by Lugannani and Rice (1980) formula

is

p(θ) = Φ(r) + φ(r)

(
1

r
− 1

q

)
. (5.17)

Barndorff-Nielsen (1986) derived alternative approximation that incorporates the

correction term into the quantile of the normal cumulative distribution:

FȲ (ȳ) = P (Ȳ ≤ ȳ) = Φ(r∗)
(
1 +O(n−3/2)

)
(5.18)

where

r∗ = r +
1

r
log

q

r
(5.19)
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and showed that it is asymptotically distributed as a standard normal distribution

with a relative error of O(n−3/2). r∗ is referred as modified signed log-likelihood ratio

statistic. Hence the approximated p-value function of θ

p(θ) = Φ(r∗). (5.20)

It is interesting to note that the Barndorff-Nielsen’s method adjusts the signed

log-likelihood ratio statistic such that the p-value function obtained from r∗ is close

to the true p-value function; whereas the Lugannani & Rice method adjusted the

p-value function obtained from the signed log-likelihood ratio statistic such that it

is close to the true p-value function. Fraser (1990) and Jensen (1992) showed that

these two adjustments are equivalent up to third-order accuracy.

Equations (5.17) and (5.20) are generally referred as the third-order methods.

For exponential family models and transformation models, (5.17) and (5.20) can be

obtained easily. However for general models, q could be difficult or impossible to

derived since it is based on the existence of ancillary statistic. In practice, there

is no accessible procedure available for the construction of an ancillary in a general

context. In Chapter 6, a route to the third-order likelihood inference for any general

statistical model will be discussed.

94



6 Third-Order Likelihood Inference for a

General Statistical Model

This chapter details the mechanics of the likelihood-based third-order methods for a

general statistical model. The advantage of these two proposed third-order methods,

Lugannani and Rice, and Barndorff-Nielsen, are their prominent accuracy for even

when sample size is small and applicability on obtaining inference for any scalar pa-

rameter of interest. It only depends on the likelihood function and its first sample

space derivative at the data points. However, calculating the p-values may encoun-

tered singularity at the maximum likelihood value, and be numerically instable in

the neighborhood of the maximum likelihood value. Fraser et al. (2003) proposed

a bridging method to deal with the instability and singularity problem when the

MLE is close to the hypothesized value, therefore it will not be discussed in detail in

this dissertation. When the parameter of interest, ψ cannot be expressed explicitly,

computation problems arise for any likelihood-based methods. For example, the ψ
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considered in this dissertation is an integral which has no known closed-form. The

numerical difficulties will be discussed in the next chapter and a penalized likelihood

method is proposed to deal with the constrained maximization problem for the model

we considered will also be presented in the next chapter.

The organization of the rest chapter is as follows. Section 6.1 studies the canon-

ical exponential family model with the presence of the explicitly known nuisance

parameter λ and then extended to a general exponential model in Section 6.2. An

illustrated example is also given in this section via Behrens-Fisher problem. A gen-

eral algorithm to the third-order likelihood inference for any statistical model will be

introduced in Section 6.3.

6.1 Canonical Exponential Model

Consider a canonical exponential family model

f(y; θ) = exp {θ′y − c(θ) + h(y)} (6.1)

where θ = (ψ, λ′)′ and our parameter of interest is ψ. It is easy to see that y

is a sufficient statistic and θ is the canonical parameter for the model. For any

random sample from above model, the signed log-likelihood ratio statistic r is remain
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unchanged as in (5.3) and it is

r = r(ψ) = sgn(ψ̂ − ψ)
{

2
[
`(θ̂)− `(θ̂ψ)

]}1/2

(6.2)

where `(θ̂ψ) is the log likelihood evaluated at constraint MLE.

Applying saddlepoint procedure (Fraser et al. (1991)) on the joint and on the

marginal likelihood functions, the standardized maximum likelihood departure in

the canonical parameter space becomes

q = q(ψ) = (ψ̂ − ψ)


∣∣∣jθθ′(θ̂)∣∣∣∣∣∣jλλ′(θ̂ψ)

∣∣∣


1/2

(6.3)

where jθθ′(θ̂) is the observed overall information matrix evaluated at the overall

MLE θ̂ and jλλ′(θ̂ψ) is the observed nuisance information matrix evaluated at the

constrained MLE θ̂ψ. Detailed derivation of (6.3) is discussed in Fraser et al. (1991).

Therefore we can apply either Lugannani-Rice formula (5.17) or Barndorff-Nielsen

formula (5.20) to obtain p(ψ) with r and q defined above. These two approximations

both have third-order accuracy.

To illustrate the application of third-order method for canonical exponential fam-

ily model, the exponential distribution, the simplest case, is considered. Suppose

(y1, · · · , yn)′ is a sample from exponential distribution with rate θ > 0, and its prob-

ability density function can be written in canonical form as

f(y; θ) = exp {−θy + log θ} , y > 0, θ > 0,
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This is also known as the Gamma(1, θ) distribution. Then the log-likelihood is

l(θ) = n log(θ)− θ
n∑
i=1

yi. (6.4)

The overall MLE can be obtained easily i.e. θ̂ =
n∑n
i=1 yi

, and jθθ(θ) = −lθθ(θ) =
n

θ2
.

The signed log-likelihood ratio statistic and the standardized maximum likelihood

estimate departure given in (6.2) and (6.3) can be easily obtained as

r = sgn(θ̂ − θ){2[`(θ̂)− `(θ̂ψ)]}1/2

q = (θ̂ − θ)
(
n

θ̂2

)1/2

.

Hence, we can approximate p-value function for θ by (5.17) or (5.20).

Moreover, let T =
∑n

i=1 Yi, where Yi is i.i.d. from exponential model above, from

distribution theory, T ∼ Gamma(n, θ). Hence, for a given θ,

P (T ≤ t; θ) =

∫ t

0

fT (s; θ)ds.

Then the exact p-value function for θ is

p(θ) = 1− P (T ≤ t; θ).

To compare the accuracy of third-order methods, we generated three data set

from above exponential distribution with θ = 4 and sample size to be 5, 10 and 20.

The simulated data are recorded in Table 6.1.
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Figure 6.1: p(θ) for Data Set 1.
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Figure 6.2: p(θ) for Data Set 2.
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Figure 6.3: p(θ) for Data Set 3.
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Table 6.1: Three simulated data sets

Data Set Observations Sample Size n

1 0.0413 0.1784 0.3138 0.2645 0.2235 5

2 0.1533 0.0529 0.2861 0.1332 0.8038 10

0.0461 0.4998 0.0664 0.3269 0.2138

3 0.0702 0.0680 0.0841 0.1256 0.0216 20

0.5176 0.1051 0.0879 0.0760 1.0258

0.0862 0.0205 0.1602 0.1994 0.3186

0.2660 0.3802 0.0306 0.0189 0.2039

Figures 6.1 to 6.3 display the p-value functions obtained from Exact, Φ(r), Φ(q)(Wald),

Equation (5.17)(LR) and Equation (5.20)(BN) for the three data sets. The horizon-

tal lines indicate the two nominal levels, 0.95 and 0.05, for the 90% central confidence

interval, respectively. Table 6.2 gives the corresponding 90% confidence intervals.

Both the plots and Table 6.2 show the outstanding performance of the third-order

methods over the first-order methods, and third-order methods have remarkable

accuracy when sample size is small.
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Table 6.2: 90% central confidence intervals for θ

Method n = 5 n = 10 n = 20

Exact (1.9303, 8.9603) (2.1003, 6.0803) (3.4303, 7.2103)

r (2.1203, 9.4303) (2.1903, 6.2503) (3.5003, 7.3203)

Wald (1.2903, 8.5003) (1.8603, 5.8903) (3.2703, 7.0703)

LR (1.9303, 8.9603) (2.1003, 6.0803) (3.4303, 7.2103)

BN (1.9303, 8.9603) (2.1003, 6.0803) (3.4303, 7.2103)

6.2 General Exponential Family

Now, consider a general full rank exponential family model,

f(y; θ) = exp {ϕ′(θ)t(y)− c(θ) + h(t(y))} (6.5)

with the scalar parameter of interest being ψ = ψ(θ) and θ = (ψ, λ′)′ with λ be

nuisance parameters vector which is explicitly known. Under the set up of model

(6.5), the natural parameter and natural variable are θ and y, and ϕ(θ) and t(y)

are the canonical parameter and canonical variable which are functions of the nat-

ural parameter and natural variable, respectively. We restrict our attention to the

full-rank exponential family model where the canonical parameter and the natural

parameter have the same dimensionality since most commonly used distributions in
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the exponential family belong to this category. For the curved exponential family

model, that is, the dimension k of the parameter vector θ = (θ1, · · · , θk)′ is less than

the dimension s of the vector ϕ(θ) = (ϕ1(θ), · · · , ϕs(θ))′, detailed discussion can be

found in Barndorff-Nielsen (1978).

The signed log-likelihood ratio statistic, r = r(ψ), is invariant to reparameteriza-

tion, it remains unchanged and is same as in (6.2). However, the quantity q = q(ψ)

has to be reexpressed in the canonical parameter, ϕ(θ), scale.

For the general exponential model above, we have

`(θ; y) = ϕ′(θ)t(y)− c(θ).

Fraser (1990) derived

ϕ′(θ) = ˙̀(θ; y0) Ṡ−1(θ̂; y0)

for the observation y0 with θ̂ being the corresponding MLE, where

˙̀(θ; y) =
∂`(θ; y)

∂y′
, Ṡ−1(θ̂) =

∂S(θ; y)

∂y′
, S(θ; y) =

∂`(θ; y)

∂θ
.

Let χ(θ) be a rotated coordinate of ϕ(θ) that agrees with ψ(θ) at θ̂ψ, is define as

χ(θ) =
ϕψ(θ̂ψ)

||ϕψ(θ̂ψ)||
ϕ(θ), (6.6)

which can be viewed operationally as the canonical parameter of in ϕ(θ) scale. The

ϕψ(θ) is the row of ϕ−1
θ (θ) that corresponds to ψ, ||ϕψ(θ)||2 is the square length of the
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vector ϕψ(θ), and ϕθ(θ) is the derivatives of ϕ(θ) with respect to θ. The calibrated

version, χ(θ) of ϕ(θ), is basically a vector from the space spanned by the columns of

the ϕ(θ) and its direction depends on the constrained MLE for given ϕ(θ). Hence

|χ(θ̂)− χ(θ̂ψ)| is a measure of departure of ψ̂ from ψ in ϕ(θ) scale.

Since `(θ) = `(ϕ), by the chain rule in differentiation, we have the full and

nuisance information determinants recalibrated on the ϕ(θ) scale:

|jϕϕ′(θ̂)| = |jθθ′(θ̂)||ϕθ(θ̂)|−2 and |j(λλ′)(θ̂ψ)| = |jλλ′(θ̂ψ)||ϕ′λ(θ̂ψ)ϕλ(θ̂ψ)|−1,

where ϕλ(θ) is the derivatives of ϕ(θ) with respect to λ.

An estimated variance for
(
χ(θ̂)− χ(θ̂ψ)

)
obtained by Fraser et al. (1999) in ϕ(θ)

scale is:

v̂ar(χ(θ̂)− χ(θ̂ψ)) =
|j(λλ′)(θ̂ψ)|
|jϕϕ′(θ̂)|

.

Thus the standardized maximum likelihood departure of ψ in ϕ(θ) scale is

q = q(ψ) = sgn(ψ̂ − ψ)|χ(θ̂)− χ(θ̂ψ)|

{
|jϕϕ′(θ̂)|
|j(λλ′)(θ̂ψ)|

}1/2

. (6.7)

Therefore p(ψ) can be obtained by Lugannani & Rice method (5.17) and Barndorff-

Nielsen method (5.20) with r and q being defined in (6.2) and (6.7) respectively.

Thus, a (1− γ)100% confidence interval for ψ is

(
min

{
p−1(γ/2), p−1(1− γ/2)

}
,max

{
p−1(γ/2), p−1(1− γ/2)

})
. (6.8)
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As an example, we consider inference for the difference of two independent nor-

mal means which has been widely studied in statistical literature. Typically, the

variances are assumed to be unknown and must be estimated. When we assume

equal variances, then a pooled estimate of the common variance is used and the

test statistic is exactly distributed as a Student t distribution. However, without

making the equality of variances assumption, the problem is then the well-known

Behrens-Fisher problem, where no exact distribution of the test statistic is available.

There exists many approximate solutions. In this section, we apply the third-order

methods discussed in the previous chapters to the Behrens-Fisher Problem with an

additional assumption that the ratio of the two variances is known, which is ex-

amined by Schechtman and Sherman (2007). More discussion can be found on the

third-order methods to Behrens-Fisher Problem proposed by She et al. (2011) when

the ratio of the two variances is unknown. The comparison with first-order approx-

imation methods and the methods proposed by Schechtman and Sherman (2007) is

presented.

Let x = (x1, ..., xn)′ and y = (y1, ..., ym)′ be random samples from two indepen-

dent normal distribution with mean and variance (µx, σ
2
x) and (µy, σ

2
y), respectively.

Assume σ2
x and σ2

y are unknown but with the ratio σ2
y/σ

2
x = c known. Our parameter

of interest is ψ = µx − µy.
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The log-likelihood function can be written as

l(θ) = −m+ n

2
log(σ2

x)−
1

2σ2
x

n∑
i=1

(xi − ψ − µy)2 − 1

2cσ2
x

m∑
j=1

(yj − µy)2

where θ = (ψ, µy, σ
2
x)
′.

The overall MLE, θ̂ = (ψ̂, µ̂y, σ̂2
x)
′, are:

ψ̂ = x̄− ȳ, µ̂y = ȳ, σ̂2
x =

∑n
i=1 (xi − x̄)2 + 1

c

∑m
j=1 (yj − ȳ)2

m+ n
.

Then the observed full information matrix jθθ′(θ) can be derived as
n

σ2
x

n

σ2
x

n(x̄− ψ − µy)

(σ2
x)2

n

σ2
x

n

σ2
x

+
m

cσ2
x

n(x̄− ψ − µy)

(σ2
x)2

+
m(ȳ − µy)

c(σ2
x)2

n(x̄− ψ − µy)

(σ2
x)2

n(x̄− ψ − µy)

(σ2
x)2

+
m(ȳ − µy)

c(σ2
x)2

−
m+ n

2(σ2
x)2

+
1

(σ2
x)3

(
∑

(xi − ψ − µy)2 +
1

c

∑
(yj − µy)2)

.
Hence, the determinant of the observed information matrix evaluated at the overall

MLE is |jθθ′(θ̂)| =
mn(m+ n)

2c(σ̂2
x)

4
.

The constrained MLE, θ̂ψ = (ψ, µ̃y, σ̃
2
x)
′, can also be obtained directly, where

µ̃y =
n

n+m/c
x̄+

m/c

n+m/c
ȳ − n

n+m/c
ψ,

σ̃2
x =

∑
(xi − ψ − µ̃y)2 + 1

c

∑
(yj − µ̃y)2

m+ n
,

and µ̃y = ψ + µ̃y

Similarly, the observed nuisance information matrix jλλ′(θ) is
n

σ2
x

+
m

cσ2
x

n(x̄− ψ − µy)
(σ2

x)
2

+
m(ȳ − µy)
c(σ2

x)
2

n(x̄− ψ − µy)
(σ2

x)
2

+
m(ȳ − µy)
c(σ2

x)
2

−m+ n

2(σ2
x)

2
+

1

(σ2
x)

3
(
∑

(xi − ψ − µy)2 +
1

c

∑
(yj − µy)2)

 .

107



Therefore, the determinant of constrained nuisance information matrix is

|jλλ′(θ̂ψ)| =
(m+ n)(m+ cn)

2c(σ̃2
x)

3
.

The signed log-likelihood ratio statistic, (6.2), can be written as

r = sgn(ψ̂ − ψ)

√√√√2(m+ n)log

((
σ̃2
x

σ̂2
x

)1/2
)
. (6.9)

This model is a canonical exponential family model with canonical parameter

ϕ(θ) =

(
ψ + µy
σ2
x

,
µy
σ2
x

,
1

σ2
x

)′
.

Then we have

ϕθ(θ) =


σ−2
x σ−2

x −(ψ + µy)σ
−4
x

0 σ−2
x −µyσ−4

x

0 0 −σ−4
x

 ,

|ϕθ(θ)| = −σ−8
x ,

ϕλ(θ) =


σ−2
x −(ψ + µy)σ

−4
x

σ−2
x −µyσ−4

x

0 −σ−4
x

 ,

ϕψ(θ) = (σ2
x,−σ2

x,−ψσ2
x).

Thus, from (6.7), we have

q = q(ψ) =

√
mn

m+ cn

σ̂2
x

(σ̃2
x)

3/2
(ψ̂ − ψ). (6.10)
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The p-value function for ψ can then be approximated from either by the Lugannani

& Rice method (5.17) or by the Barndorff-Nielsen method (5.20) with third-order

accuracy, where r and q are defined in (6.9) and (6.10) respectively.

Schechtman and Sherman (2007) showed that a (1− γ)100% confidence interval

for ψ = µx − µy under set up in the previous Section ?? is(
(x̄− ȳ)− t

[
sp

√
1

n
+

c

m

]
, (x̄− ȳ) + t

[
sp

√
1

n
+

c

m

])

where x̄ =
∑n
i=1 xi
n

, ȳ =
∑m
j=1 yi

m
, s2
x =

∑n
i=1(xi−x̄)2

n−1
, s2
y =

∑m
j=1(yj−ȳ)2

m−1
, s2
p =

(n−1)s2x+(m−1)s2y/c

n+m−2
,

and t is the (1− γ/2)100th percentile of the t-distribution with (n+m− 2) degrees

of freedom. They claimed that their method is good in terms of size and power. To

compare the accuracy of the third-order methods with the Wald method, the signed

log likelihood ratio method, and the Schechtman and Sherman (2007) method, Monte

Carlo simulation studies were conducted.

We generated 10,000 simulated samples for some combinations of the parameters.

For each simulated sample, we calculate the 95% confidence intervals for ψ obtained

by the third-order methods in Section 5.3, i.e. (5.17)(LR) and (5.20)(BN) with the

Wald method (Wald), the signed log-likelihood ratio method (r), and the Schecht-

man and Sherman (2007) method (SS). For each simulated setting, we report the

proportion of ψ that falls outside the lower bound of the confidence interval (lower

error), the proportion of ψ that falls outside the upper bound of the confidence in-
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terval (upper error), the proportion of ψ that falls within the confidence interval

(central coverage), and the average bias (Average Bias), which is defined as

Average Bias =
|lower error− 0.025|+ |upper error− 0.025|

2
.

The nominal values for the lower and the upper errors, the central coverage and the

average bias are 0.025, 0.025, 0.95 and 0 respectively. These values reflect the desired

properties of the accuracy and symmetry of the interval estimates of ψ.

The simulation standard errors for these three quantities are 0.0022, 0.0016 and

0.0016 respectively. Results are recorded in Tables 6.3 to 6.5. It is clear that the

results from Wald method and signed log-likelihood method are not satisfactory es-

pecially when the sample sizes are small. Results from the Schechtman and Sherman

(2007) method, LR and BN are identical for large sample size, and almost indistin-

guishable for small sample sizes (they are all within 3 simulated standard errors).
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Table 6.3: µx = 0, ψ = µx − µy = 1, σ2
x = 1, σ2

y = cσ2
x, n = 100 and m = 50.

c(known) Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.0268 0.0282 0.9450 0.00250

r 0.0262 0.0275 0.9463 0.00185

0.5 SS 0.0250 0.0264 0.9486 0.00070

LR 0.0250 0.0264 0.9486 0.00070

BN 0.0250 0.0264 0.9486 0.00070

Wald 0.0277 0.0273 0.9450 0.00250

r 0.0272 0.0265 0.9463 0.00185

1 SS 0.0258 0.0251 0.9491 0.00045

LR 0.0258 0.0251 0.9491 0.00045

BN 0.0258 0.0251 0.9491 0.00045

Wald 0.0278 0.0272 0.9450 0.00250

r 0.0272 0.0257 0.9471 0.00145

5 SS 0.0265 0.0249 0.9486 0.00080

LR 0.0265 0.0249 0.9486 0.00080

BN 0.0265 0.0249 0.9486 0.00080

Wald 0.0285 0.0266 0.9449 0.00255

r 0.0280 0.0260 0.9460 0.00200

10 SS 0.0268 0.0247 0.9485 0.00105

LR 0.0268 0.0247 0.9485 0.00105

BN 0.0268 0.0247 0.9485 0.00105

111



Table 6.4: µx = 0, ψ = µx − µy = 3, σ2
x = 1, σ2

y = cσ2
x, n = 10 and m = 20.

c(known) Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.0353 0.0336 0.9311 0.00945

r 0.0322 0.0300 0.9378 0.00610

0.5 SS 0.0273 0.0246 0.9481 0.00135

LR 0.0276 0.0246 0.9478 0.00150

BN 0.0276 0.0246 0.9478 0.00150

Wald 0.0363 0.0346 0.9291 0.01045

r 0.0323 0.0308 0.9369 0.00655

1 SS 0.0266 0.0258 0.9476 0.00120

LR 0.0266 0.0258 0.9476 0.00120

BN 0.0266 0.0258 0.9476 0.00120

Wald 0.0359 0.0321 0.9320 0.00900

r 0.0316 0.0275 0.9409 0.00455

5 SS 0.0257 0.0227 0.9516 0.00150

LR 0.0258 0.0227 0.9515 0.00155

BN 0.0258 0.0227 0.9515 0.00155

Wald 0.0358 0.0314 0.9328 0.00860

r 0.0318 0.0274 0.9408 0.00460

10 SS 0.0263 0.0219 0.9518 0.00220

LR 0.0263 0.0219 0.9518 0.00220

BN 0.0263 0.0219 0.9518 0.00220
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Table 6.5: µx = 0, ψ = µx − µy = 5, σ2
x = 1, σ2

y = cσ2
x, n = 5 and m = 5.

c(known) Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.0586 0.0586 0.8828 0.03360

r 0.0443 0.0445 0.9112 0.01940

0.5 SS 0.0236 0.0237 0.9527 0.00135

LR 0.0243 0.0244 0.9513 0.00065

BN 0.0242 0.0243 0.9515 0.00075

Wald 0.0593 0.0603 0.8804 0.03480

r 0.0456 0.0443 0.9101 0.01995

1 SS 0.0244 0.0245 0.9511 0.00055

LR 0.0254 0.0259 0.9487 0.00065

BN 0.0252 0.0257 0.9491 0.00045

Wald 0.0590 0.0577 0.8833 0.03335

r 0.0465 0.0440 0.9095 0.02025

5 SS 0.0270 0.0240 0.9490 0.00150

LR 0.0283 0.0251 0.9466 0.00170

BN 0.0283 0.0249 0.9468 0.00170

Wald 0.0597 0.0569 0.8834 0.03330

r 0.0467 0.0427 0.9106 0.01970

10 SS 0.0286 0.0240 0.9474 0.00230

LR 0.0298 0.0253 0.9449 0.00255

BN 0.0297 0.0251 0.9452 0.00240
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6.3 General Statistical Model

The key step of the third-order method is to find the canonical parameter ϕ = ϕ(θ).

For a general statistical model, when sufficiency and ancillarity do not reduce the di-

mension of the variable to that of the parameter, an approximation of ancillary statis-

tics could be obtained. Barndorff-Nielsen (1980) and McCullagh (1987) suggested

a different ways of constructing approximate ancillary statistics but the methodolo-

gies are problem dependent. However, ancillary statistics may not exist and even if

it exits, it may not be unique. Moreover, the feasible methods are lacking for tail

probability approximation. Fraser (1988) developed the tangent exponential model

to approximate an asymptotic model with third-order accuracy for a model with

variable and parameter of the same dimension, and Fraser and Reid (1995) extended

to more general case of variable of larger dimension than parameter by constructing

an ancillary direction and using observed likelihood. The tangent exponential model

can be fully characterized by its likelihood function and sample space derivative of

the likelihood function at the data point showed by Fraser and Reid (1993). For the

one dimension case, the tangent exponential model is determined by the first row and

the first column of the coefficient matrix of the Taylor expansion of the log-likelihood

function at both the MLE and observations.

The term ancillary direction is refer to the tangent direction to the ancillary
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statistic surface at the observed data point. It can be retrieved from an appropriate

pivotal quantity in the applications without construction of approximate ancillary

statistic (Fraser and Reid (1995)).

Consider real-valued parameter θ and response y. Assume the cumulative dis-

tribution function of Y , F (y; θ) has nonzero derivative with respect to θ and the

variable y is monotone increasing in θ. Note that F (y; θ) ∼ U(0, 1), hence it is a

pivotal quantity. The total differential for F at θ̂ is

dF (y; θ) = Fy(y; θ)|θ̂, y0dy + Fθ(y; θ)|θ̂, y0dθ (6.11)

with Fy(y; θ) and Fθ(y; θ) being the partial derivatives of F (y; θ) with respect to both

y and θ respectively. y0 is the observed value for y. With the probability level F

held constant, the ancillary direction is given by Fraser (1990) as

V =
∂y

∂θ
= −F−1

y (y; θ)Fθ(y; θ)
∣∣
θ̂,y0

. (6.12)

which depicts the change in y that corresponds to the change in θ. Denote the

ancillary direction as V = (v1, v2, · · · , vd). V records how y changes when θ changes.

For a pivotal quantity, z(y, θ), other than the cumulative distribution function,

the ancillary direction is given by

V =
∂y

∂θ
= −z−1

y (y, θ)zθ(y, θ)

∣∣∣∣
θ̂,y0

. (6.13)

115



Note that vectors (v1, v2, · · · , vd) are tangent to first derivative ancillaries for param-

eter changes in linearly independent direction at θ = θ̂. For more details on the

ancillary directions tangent to the level surface of an approximate ancillary statistic

see Fraser (1990), Fraser and Reid (1995,1996).

If the model is conditional model which is conditioning on some ancillary statistic,

then the conditional likelihood gradient becomes the full likelihood gradient tangent

to the ancillary surface. Thus Fraser et al. (1999) derive that the reparametrization

ψ(θ) can be obtained by differentiating the full likelihood in the directions V

ϕ(θ) =
∂

∂V
l(θ; y)

∣∣∣∣
y0

= ly(θ
′; y0)V

=

(
n∑
i=1

∂

∂yi
l(θ; y0)vi1, · · · ,

n∑
i=1

∂

∂yi
l(θ; y0)vik

)
. (6.14)

This quantity is the locally defined canonical parameter for the tangent exponential

model at the data point y0. So the observed log-likelihood l(θ; y0) and the ancillary

direction V together will produce a locally defined canonical parameter ϕ(θ). The

tangent exponential model provides the full third-order p-values for the original model

(Fraser et al. (1999)).

For a special case, when the dimension of variable y is same as the dimension of

parameter θ, the new parameter ψ(θ) would be

ϕ = ϕ(θ) = `y(y
0; θ) =

∂`(y; θ)

∂y

∣∣∣∣
y0
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Fraser (1990), and Fraser and Reid (1995) proved that to secure third-order accuracy

in (5.17) and (5.20), an ancillary statistic of second-order is sufficient.

Once we have the tangent exponential family model and its locally defined canon-

ical parameter, the methodology in Section 6.2 can be directly applied to approxi-

mating the tail probability by using either the Barndorff-Nielsen method (5.17) or

the Lugannani-Rice method (5.20). Thus a (1 − α) × 100% confidence interval for

ψ can be obtained accordingly. The results always apply for the cases when the

nuisance parameter is explicit or implicit. Computational issues encountered in ob-

taining constrained MLE for likelihood-based third-order method will be addressed

in Chapter 7. Illustration of third-order method for general statistical model will

be presented in Chapter 8. For the rest of this dissertation, we only consider the

Barndorff-Nielsen method (5.17) since we can see the results from Barndorff-Nielsen

method (5.17) and Lugannani-Rice method (5.20) in Section 6.2 are almost identical

regardless the sample size.
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7 Computational Issues

Calculating constrained MLE is one of the major steps of the likelihood-based third-

order method. Computation problems always arise for the likelihood-based method

because of the optimization problem, especially when the constrained MLE involves

a constraint which cannot be expressed in closed-form. In our case, the constraint

is equating the stress-strength reliability in a form of an integral. This problem will

be discussed in Section 7.1, a penalized likelihood method is proposed in Section 7.2

to deal with this numerical complication of maximizing the constrained likelihood

model, illustration of proposed penalized likelihood method using a real life example

will also be presented.

7.1 Computation Problem

The constrained MLE θ̂ψ for a given ψ0, is obtained by maximizing the log-likelihood

function (5.1) subject to the constraint R = ψ(θ) = ψ0. Formally, this optimiza-
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tion problem can be approached using the Lagrange multiplier method. But when

the constraint has no closed form representation, the standard Lagrange multiplier

method will encounter numerical difficulties. In the rest of this chapter, Burr type

X distribution will be used as an illustration.

The Burr type X distribution was introduced by Burr (1942). Using the notation

in Raqab and Kundu (2006), let Y be distributed as a Burr type X distribution,

BurrX(α, σ), the distribution function can be written as

F (y;α, σ) =
(

1− e−(σy)2
)α

α > 0, σ > 0, y > 0. (7.1)

where α is the shape parameter and σ is the scale parameter. Let x = (x1, . . . , xn)′

and y = (y1, . . . , ym)′ be the random samples fromBurrX(α1, σ1) andBurrX(α2, σ2)

respectively. Then the log-likelihood function is

l(α1, α2, σ1, σ2;x, y)

= n logα1 + 2n log σ1 +
n∑
i=1

log xi −
n∑
i=1

(σ1xi)
2 + (α1 − 1)

n∑
i=1

log
[
1− e−(σ1xi)

2
]

+ m logα2 + 2m log σ2 +
m∑
j=1

log yj −
m∑
j=1

(σ2yj)
2 + (α2 − 1)

m∑
j=1

log
[
1− e−(σ2yj)

2
]

(7.2)

where θ = (α1, α2, σ1, σ2)′ and α1, α2, σ1, σ2 are positive. The parameter of interest,
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ψ, is the stress-strength reliability, R, which is defined as:

R = R(θ) = P (Y < X) =

∫ ∞
0

∫ x

0

f(x; α1, σ1) f(y; α2, σ2) dx dy (7.3)

=

∫ ∞
0

2α1σ
2
1 x e

−(σ1x)2
(

1− e−(σ1x)2
)α1−1 [

1− e−(σ2x)2
]α2

dx.

The constrained MLE θ̂ψ = (α̃1, α̃2, σ̃1, σ̃2)′ for a given ψ0, is obtained by maximizing

the log-likelihood function in (7.2) subject to the constraint R = ψ(θ) = ψ0 in (7.3).

In this case, the constraint on θ values is expressed by equating an integral, R(θ)

(which has no closed form representation) to ψ0. The highly nonlinear form of the

constraint suggests that the standard Lagrange multiplier method will encounter

numerical difficulties. Indeed, this was the case. Moreover, there is no obvious way

to study convexity and other properties of the constraint set corresponding to the

ψtho contour of R(θ).

Our first attempt is to solve the integral constraint iteratively for one of the

parameters (say α1) in terms of the others and then choose the others to maximize

the unconstrained likelihood but with α1 fixed. That is, first choose any positive

number as a start value for α2, σ1 and σ2, denoted as θ0
c = (α0

2, σ
0
1, σ

0
2)′, to find the

optimal solution for the following function for a fixed ψ0,

R(α0
1) = (R(θ)− ψ0)2, (7.4)

whereR(θ) is given by (7.3). In other words, α1 can be expressed as α1 = f(α2, σ1, σ2),
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a function of other three parameters. Then we maximize the following log-likelihood

function l(α0
1, α2, σ1, σ2;x, y) for a given α0

1

l(α0
1, α2, σ1, σ2;x, y)

= n logα0
1 + 2n log σ1 +

n∑
i=1

log xi −
n∑
i=1

(σ1xi)
2 + (α0

1 − 1)
n∑
i=1

log
[
1− e−(σ1xi)

2
]

+ m logα2 + 2m log σ2 +
m∑
j=1

log yj −
m∑
j=1

(σ2yj)
2 + (α2 − 1)

m∑
j=1

log
[
1− e−(σ2yj)

2
]
.

We repeat the above procedure until the log-likelihood function l(α1, α2, σ1, σ2) given

by (7.2) is maximized. We found out that this iterative method gives relative sat-

isfactory results when R is great than 0.42 and smaller than 0.9 on the strength

data for single carbon fibre at 20-mm, 50-mm reported by Badar and Priest (1982)

despite the computing time due to the integration. The strength data are recorded

in Table 7.1. This is not surprising, considering the sample sizes of 65 and 69 are

relatively large. Out of this range, even this method claim there is a optimal solu-

tion at some points of R, the convergence condition is not satisfied. In statistical

software R, it gives the error code 52 and error message of ‘ERROR: ABNOR-

MAL TERMINATION IN LNSRCH’, which indicates ‘NaNs’ is produced in opti-

mization. The mathematical software Matlab also delivers a warning message of

‘Matrix is singular, close to singular or badly scaled. Results may be inaccurate’.

We will show some of these results in Table 7.2 comparing with the proposed penal-

ized likelihood method (Penalized) which will be introduced in the next Section 7.2
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Table 7.1: The strength data for single carbon fibre at 20-mm, 50-mm.

Data Set Obs Sample Size

fibre 20-mm 1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 69

1.944 1.958 1.966 1.997 2.006 2.021 2.027 2.055

2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270

2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426

2.434 2.435 2.478 2.490 2.511 2.514 2.535 2.554

2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684

2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821

2.880 2.957 3.012 3.067 3.084 3.090 3.096 3.128

2.848 3.233 3.433 3.585 3.585

fibre 50-mm 1.339 1.434 1.549 1.574 1.589 1.613 1.746 1.753 65

1.764 1.807 1.812 1.840 1.852 1.852 1.862 1.864

1.931 1.952 1.974 2.019 2.051 2.055 2.058 2.088

2.125 2.162 2.171 2.172 2.180 2.194 2.211 2.270

2.272 2.280 2.299 2.308 2.335 2.349 2.356 2.386

2.390 2.410 2.430 2.431 2.458 2.471 2.497 2.514

2.558 2.577 2.593 2.601 2.604 2.620 2.633 2.670

2.682 2.699 2.705 2.735 2.785 3.020 3.042 3.116

3.174
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with optimal settings. Table 7.2 shows that the estimated parameters using penal-

ized likelihood method reach higher likelihood than the iterative method. Moreover,

when R approaches the boundary and the sample size is getting smaller, this method

runs into the singularity problem. For example, when n = 10 or m = 10 and R is

approach 0.1 or greater than 0.8 in the simulations.

Table 7.2: Parameter Estimates for Example using iterative and penalized method

ψ0 Method α1 α2 σ1 σ2 Loglikelihood

0.22 Iterative 8.9836 0.7772 10.0005 0.7772 -216.9874

Penalized 6.6900 0.7470 10.0570 0.6433 -214.1980

0.34 Iterative 9.1430 0.7476 10.0005 0.6733 -196.0151

Penalized 7.3164 0.7184 10.6230 0.6838 -194.9954

0.40 Iterative 8.6891 0.7215 10.0005 0.6872 -189.2763

Penalized 7.6284 0.7063 10.9243 0.7027 -188.7765

0.97 Iterative 9.3193 0.5231 10.0000 0.9003 - 254.8785

Penalized 12.8284 0.5842 19.3404 0.9875 -250.8684
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7.2 A Penalized Likelihood Method

The penalized likelihood function, PL, is defined as:

PL(θ, ψ0;x, y) = l(θ;x, y)−K(ψ0)[R(θ)− ψ0]N (7.5)

where N is an even natural number and K(ψ0) is a positive constant. If K(ψ0)

is sufficiently small then it is approximately true that PL(θ, ψ0;x, y) = l(θ;x, y).

Therefore, the unconstrained likelihood model is embedded in (7.5). Even when

K(ψ0) is positive, we still consider the unconstrained maximization of PL(x, y; θ, ψ0).

Given that [R(θ) − ψ0]N is always positive, as K(ψ0) is set to successively larger

values, the term −K(ψ0)[R(θ) − ψ0]N will dominate unless the model parameters

are chosen so that −K(ψ0)[R(θ)− ψ0]N is very close to 0 and this only occurs if the

integral constraint is satisfied.

In practice, for the problems we considered, we found that N could be set to

2 and that K(ψ0) could be set to 10,000 for 0.1 < ψ0 < 0.9 and that a value of

K(ψ0) = 80, 000 worked well for the remaining more extreme values of ψ0. It is

sometimes noted in the optimization literature that a sequence of K(ψ0) values may

help convergence. Table 7.3 presents the parameter estimates with K(ψ0) = 10, 000

and ψ0 varying from 0.1 to 0.9 when N is chosen to be 2, 4 and 6. Note that

when N = 0, it corresponds to the normal MLE. Table 7.4 presents the parameter

estimates with N = 2 and ψ0 varying from 0.1 to 0.9 when K(ψ0) is chosen to be
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100, 1000 and 10000.

The final consideration is that the Hessian matrix of PL(θ, ψ0;x, y) with respect

to the parameters θ must be negative definite at the optimum. In all cases we found

that this condition was satisfied. In particular, all of the eigenvalues of the Hessian

matrix were negative at all optima.

In practice, we obtained parameter estimates through unconstrained optimization

of PL using the optim function in the statistical software package, R. Within optim,

we adopted the L-BFGS-B algorithm. L-BFGS-B was developed by Byrd et al.

(1995) and is a quasi-Newton optimization variant of the Broydon-Fletcher-Goldfarb-

Shanno (BFGS) algorithm. L-BFGS-B conveniently allows for simple upper and

lower search bounds on the parameters.
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Table 7.3: Parameter Estimates for Example when N = 2, 4 and 6.

ψ0 N α1 α2 σ1 σ2 Loglikelihood

N=0 8.7900 0.6667 12.1310 0.7706 -179.2783

N=2 6.0017 0.7846 9.4026 0.5929 -248.7447

ψ0 = 0.1 N=4 6.4828 0.7579 9.8569 0.6285 -223.1123

N=6 6.9610 0.7258 9.6508 0.6570 -201.4173

N=2 6.5816 0.7525 9.9657 0.6360 -218.5981

ψ0 = 0.2 N=4 7.3181 0.7187 10.6288 0.6837 -195.0653

N=6 7.9000 0.6960 11.1848 0.6960 -184.6655

N=2 7.1196 0.7274 10.4446 0.6710 -200.2460

ψ0 = 0.3 N=4 7.7399 0.7019 11.0294 0.7095 -186.9096

N=6 8.2829 0.6827 11.5748 0.7415 -180.9538

N=2 7.6284 0.7063 10.9243 0.7027 -188.7765

ψ0 = 0.4 N=4 8.1570 0.6869 11.4459 0.7342 -181.9196

N=6 8.6082 0.6723 11.9255 0.7602 -179.4868

N=2 8.1440 0.6875 11.4361 0.7334 -182.0525

ψ0 = 0.5 N=4 8.5513 0.6741 11.8610 0.7697 -179.6424

N=6 8.7743 0.6672 12.1129 0.7697 -179.2799

N=2 8.6889 0.6697 12.0260 0.7650 -179.3391

ψ0 = 0.6 N=4 8.7877 0.6668 12.1277 0.7704 -179.2784

N=6 8.7900 0.6667 12.1310 0.7706 -179.2783

N=2 9.3100 0.6521 12.7628 0.7999 -180.8716

ψ0 = 0.7 N=4 8.9172 0.6630 12.2808 0.7778 -179.3780

N=6 8.7930 0.6666 12.1347 0.7707 -179.2784

N=2 10.0654 0.6335 13.8002 0.8415 -188.1891

ψ0 = 0.8 N=4 9.3147 0.6519 12.7653 0.8001 -180.8990

N=6 8.8916 0.6637 12.2494 0.7763 -179.3418

N=2 11.2616 0.6083 15.9035 0.9072 -209.9848

ψ0 = 0.9 N=4 9.8395 0.6388 13.4648 0.8289 -185.4150

N=6 9.1884 0.6554 12.6062 0.7930 -180.2209

126



Table 7.4: Parameter Estimates for Example when K(ψ0) = 100, 1000 and 10000

with N = 2

ψ0 K(ψ0) α1 α2 σ1 σ2 Loglikelihood

K(ψ0) = 100 7.8615 0.6973 11.1511 0.7169 -185.1367

ψ0 = 0.1 K(ψ0) = 1000 6.6187 0.7504 9.9958 0.6386 -216.9586

K(ψ0) = 10000 6.0017 0.7846 9.4026 0.5929 -248.7447

K(ψ0) = 100 8.0299 0.6912 11.3182 0.7268 -183.1303

ψ0 = 0.2 K(ψ0) = 1000 6.9853 0.7330 10.3297 0.6629 -203.9641

K(ψ0) = 10000 6.5816 0.7525 9.9657 0.6360 -218.5981

K(ψ0) = 100 8.2055 0.6852 11.4971 0.6852 -181.5117

ψ0 = 0.3 K(ψ0) = 1000 7.3807 0.7160 10.6925 0.6878 -193.5799

K(ψ0) = 10000 7.1196 0.7274 10.4446 0.6710 -200.2460

K(ψ0) = 100 8.3869 0.6792 11.6871 0.7476 -180.3202

ψ0 = 0.4 K(ψ0) = 1000 7.7980 0.6997 11.0889 0.7131 -186.0212

K(ψ0) = 10000 7.6284 0.7063 10.9243 0.7027 -188.7765

K(ψ0) = 100 8.5719 0.6734 11.8869 0.7582 -179.5773

ψ0 = 0.5 K(ψ0) = 1000 8.2378 0.6842 11.5306 0.7389 -181.2657

K(ψ0) = 10000 8.1440 0.6875 11.4361 0.7334 -182.0525

K(ψ0) = 100 8.5847 0.6677 12.0952 0.7688 -179.2845

ψ0 = 0.6 K(ψ0) = 1000 8.7070 0.6692 12.0378 0.7659 -179.3210

K(ψ0) = 10000 8.6889 0.6697 12.0260 0.7650 -179.3391

K(ψ0) = 100 8.9441 0.6622 12.3098 0.7792 -179.4221

ψ0 = 0.7 K(ψ0) = 1000 9.2134 0.6547 12.6358 0.7943 -180.3362

K(ψ0) = 10000 9.3100 0.6521 12.7628 0.7999 -180.8716

K(ψ0) = 100 9.1268 0.6571 12.5283 0.7895 -179.9527

ψ0 = 0.8 K(ψ0) = 1000 9.7611 0.6407 13.3519 0.8246 -184.5582

K(ψ0) = 10000 10.0654 0.6335 13.8002 0.8415 -188.1891

K(ψ0) = 100 9.3045 0.6523 12.7483 0.7994 -180.8252

ψ0 = 0.9 K(ψ0) = 1000 10.3388 0.6276 14.1984 0.8559 -192.0126

K(ψ0) = 10000 11.2616 0.6083 15.9035 0.9072 -209.9848
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8 Application to Stress-Strength Reliability

Inferences for the stress-strength reliability, R = P (Y < X), where X and Y are

independently distributed, are a subject of interest in statistical literature and have

been widely studied in many areas. Wolfe and Hogg (1971) considered the quantity

R as a measure of difference between distributions. Hanley (1989) discussed the im-

portance of R in medical applications. In addition, R has been examined extensively

in many other areas, such as radiology, reliability and material science. This chapter

will discuss the inference for R = P (Y < X) in two cases, that is, when X and Y are

independent Burr type X distribution and when X and Y are independent Exponen-

tiated Exponential distribution (EE). The reason of choosing these two distributions

will be reviewed in Section 8.1.1 and 8.2. A penalized likelihood method proposed

in Chapter 7 is adopted to deal with the numerical complications of maximizing the

constrained likelihood model with differing scale parameters for the two distributions

mentioned above. Then following the general procedure of third-order method dis-

cussed in previous Section 6.3, the detailed calculation of obtaining the inference for
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R = P (Y < X) with Burr type X is presented Section 8.1 and with Exponentiated

Exponential distribution is presented in Section 8.2. To illustrate the accuracy of

third-order method, a real life example and simulation study are presented.

8.1 Inference for Stress-Strength Reliability with Burr Type

X Distributions

In this section, we will briefly introduce the Burr type X distribution and present how

third-order method applied to Burr type X distribution. We will first consider the

case that the two independent Burr type X distribution have equal scale parameter.

Then we discuss the different scale parameters case, which is not commonly discussed

in literature. Finally, numerical results for both cases are presented as well.

8.1.1 Burr type X Distribution

Burr introduced Burr type X distribution in 1942, and, following the notation in

Section 7.1, let Y be distributed as a Burr typeX distribution, BurrX(α, σ), where α

is the shape parameter and σ is the scale parameter. For convenience, the distribution

function is rewritten here as

F (y;α, σ) =
(

1− e−(σy)2
)α

α > 0, σ > 0, y > 0.
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BurrX(α, σ) distribution is a generalized Rayleigh distribution with no shift param-

eter. It is also equivalent to the exponentiated Weibull (κ = 2, α, σ) distribution as

introduced in Mudholkar and Srivastava (1993), where κ is the first shape parameter,

α is the second shape parameter and σ is the scale parameter. Moreover, if α = 1,

it reduced to the Weibull (2, σ) model. Furthermore, BurrX(α, σ) is a useful model

for lifetime data because when α ≥ 1/2, the model has a monotone increasing hazard

function and when α < 1/2, then it has bathtub hazard function. Its cumulative

distribution function and survival function can be explicitly written in closed form.

Various aspects of BurrX(α, 1) model were studied by Sartawi and Abu-Salih

(1991), Jaheen (1995, 1996), and Ahmad et al. (1997). Several interesting proper-

ties of the BurrX(α, σ) model were discussed by Surles and Padgett (2005) and

Raqab and Kundu (2006). Raqab and Kundu (2006) also studied the relations of

BurrX(α, σ) model with gamma, Weibull, generalized exponential and exponenti-

ated Weibull distributions. Raqab and Kundu (2005) compared several methods of

estimating for R when X and Y followed independent Burr type X distributions

with same scale parameters. Surles and Padgett (1998, 2001) derived inference pro-

cedures for R when X and Y are independently distributed as BurrX(α1, σ1) and

BurrX(α2, σ2).

The Burr type X distribution is generally difficult to work with since it is neither
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a transformation family model, nor an exponential family model. Moreover, it does

not have closed-form for moments or moment generating function although some

approximated moments can be obtained using results of Mudholkar et al. (1995). The

case of equal scale parameters has been extensively study in literature (see, Surles and

Padgett 2001, 2005). And, it is often stated in literature that the methodology can be

extended to the non equal scale parameters case. However, when the scale parameters

are not equal, computation problems arised for any likelihood-based method because

of the optimization problem for the constrained MLE with the constraint being an

integral without closed-form. The penalized likelihood method discussed in chapter 7

is applied to obtain the constrained MLE. The proposed likelihood-based third-order

method is then applied to obtain inference for R = P (Y < X).

8.1.2 Stress-Strength Reliability with Equal Scale Parameters

Let X and Y be independently distributed as BurrX(α1, σ1) and BurrX(α2, σ2)

respectively. When the scale parameters are unequal, σ1 6= σ2, the stress-strength

reliability R is a form of integral in (7.3). An exact inference method for R is

not available but Surles and Padgett (2001) obtained asymptotic inference results

for R based on the expected Fisher information matrix which will be discussed in

next subsection 8.1.3. When scale parameters are equal, σ1 = σ2 = σ, R = R(θ)
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can be simplified to R =
α1

α1 + α2

. Let x = (x1, . . . , xn)′ and y = (y1, . . . , ym)′ be

the random samples from BurrX(α1, σ) and BurrX(α2, σ) respectively. The log-

likelihood function of the above model can be written as

l(α1, α2, σ;x, y) = n logα1 +m logα2 + 2(n+m) log σ +
n∑
i=1

log xi +
m∑
j=1

log yj

− σ2

(
n∑
i=1

x2
i +

m∑
j=1

y2
j

)
+ (α1 − 1)

n∑
i=1

log(1− e−(σxi)
2

) + (α2 − 1)
m∑
j=1

log(1− e−(σyj)
2

).

Denote the overall maximum likelihood estimate as θ̂ = (α̂1, α̂2, σ̂)′, then observed

information matrix jθθ(θ̂) can be obtained as

jθθ(θ̂) =



n

α̂2
1

0 −2
n∑
i=1

σ̂ x2
i e
−(σ̂xi)

2

1− e−(σ̂xi)2

0
m

α̂2
2

−2
m∑
j=1

σ̂ y2
j e
−(σ̂yj)

2

1− e−(σ̂yi)2

−2
n∑
i=1

σ̂ x2
i e
−(σ̂xi)

2

1− e−(σ̂xi)2
−2

m∑
j=1

σ̂ y2
j e
−(σ̂yj)

2

1− e−(σ̂yi)2
jσσ(θ̂)


,

where jσσ(θ̂) =
2(n+m)

σ̂2
− 2(α̂1 − 1)

n∑
i=1

x2
i e
−(σ̂xi)

2
(1− e−(σ̂xi)

2 − 2σ̂2 x2
i )

(1− e−(σ̂xi)2)
2

+ 2

(
n∑
i=1

x2
i +

m∑
j=1

y2
j

)
− 2(α̂2 − 1)

m∑
j=1

y2
j e
−(σ̂yj)

2
(1− e−(σ̂yj)

2 − 2σ̂2 y2
j )(

1− e−(σ̂yj)2
)2 .

The parameter of interest is ψ(θ) =
α1

α1 + α2

. Now we define the tilted log-

likelihood function l̃(θ) as

l̃(θ) = n logα1 +m logα2 + 2(n+m) log σ +
n∑
i=1

log xi +
m∑
j=1

log yj − σ2

(
n∑
i=1

x2
i +

m∑
j=1

y2
j

)

+ (α1 − 1)
n∑
i=1

log(1− e−(σxi)
2

) + (α2 − 1)
m∑
j=1

log(1− e−(σyj)
2

) + κ̂[ψ(θ)− ψ].

(8.1)
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Then penalized likelihood method is adopted to obtain the constrained MLE θ̂ψ =

(α̃1, α̃2, σ̃)′. Once θ̂ψ is obtained, we can calculate κ̂, the Lagrange multiplier, by

solving

∂`(θ̂ψ)

∂α1

− κ̂∂R(θ̂ψ)

∂α1

= 0 .

Hence, the tilted log-likelihood function can be obtained by (8.1). Similarly, the

constrained observed information matrix j̃θθ(θ̂ψ) is obtained as

j̃θθ(θ̂ψ) =



n

α̃2
1

+
2κ̂α̃2

(α̃1 + α̃2)3
− κ̂(α̃1 − α̃2)

(α̃1 + α̃2)3
−2

n∑
i=1

σ̃ x2
i e
−(σ̃xi)

2

1− e−(σ̃xi)2

− κ̂(α̃1 − α̃2)

(α̃1 + α̃2)3

m

α̃2
2

− 2κ̂α̃1

(α̃1 + α̃2)3
−2

m∑
j=1

σ̃ y2
j e
−(σ̃yj)

2

1− e−(σ̃yi)2

−2
n∑
i=1

σ̃ x2
i e
−(σ̃xi)

2

1− e−(σ̃xi)2
−2

m∑
j=1

σ̃ y2
j e
−(σ̃yj)

2

1− e−(σ̃yi)2
j̃σσ(θ̂ψ)


,

where j̃σσ(θ̂ψ) =
2(n+m)

σ̃2
− 2(α̃1 − 1)

n∑
i=1

x2
i e
−(σ̃xi)

2
(1− e−(σ̃xi)

2 − 2σ̃2 x2
i )

(1− e−(σ̃xi)2)
2

+ 2

(
n∑
i=1

x2
i +

m∑
j=1

y2
j

)
− 2(α̃2 − 1)

m∑
j=1

y2
j e
−(σ̃yj)

2
(1− e−(σ̃yj)

2 − 2σ̃2 y2
j )(

1− e−(σ̃yj)2
)2 .

Now, we have everything to calculate r(ψ). The next step is to find the ancillary

direction V . First, let w = (x1, . . . , xn, y1, . . . , ym)′ be the observed data and z =

(α1 log(1 − e−(σx1)2), . . . , α1 log(1 − e−(σxn)2), α2 log(1 − e−(σy1)2), . . . , α2 log(1 −

e−(σym)2))′ be the vector-pivotal quantity. Note that z is continuously differentiable,

and has one-one mappings between zk, yk for each k. Then,

∂zi
∂wi

=


2α1 σ

2 xi e
−(σxi)

2

1− e−(σxi)2
, if 1 ≤ i ≤ n

2α2 σ
2 yi−n e

−(σyi−n)2

1− e−(σyi−n)2
, if (n+ 1) ≤ i ≤ (n+m)

(8.2)
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and
∂zi
∂wj

= 0 for all i 6= j. Hence, we have the ancillary direction V

V = (V1, V2, V3)

=



−(1− e−(σ̂x1)2) log(1− e−(σ̂x1)2)

2α̂1 σ̂2 x1 e−(σ̂x1)2
0 −x1

σ̂
...

...
...

−(1− e−(σ̂xn)2) log(1− e−(σ̂xn)2)

2α̂1 σ̂2 xn e−(σ̂xn)2
0 −xn

σ̂

0 −(1− e−(σ̂y1)2) log(1− e−(σ̂y1)2)

2α̂2 σ̂2 y1 e−(σ̂y1)2
−y1

σ̂
...

...
...

0 −(1− e−(σ̂ym)2) log(1− e−(σ̂ym)2)

2α̂2 σ̂2 ym e−(σ̂ym)2
−ym
σ̂



.

Thus, the locally defined canonical parameter from (6.14) is

ϕ(θ) =

(
n+m∑
i=1

∂l(θ)

∂wi
V1i,

n+m∑
i=1

∂l(θ)

∂wi
V2i,

n+m∑
i=1

∂l(θ)

∂wi
V3i

)′
,

where
∂l(θ)

∂wi
=

1

xi
− 2σ2xi + (α1 − 1)

2σ2 xi e
−(σxi)

2

1− e−(σxi)2
, if 1 ≤ i ≤ n

∂l(θ)

∂wi
=

1

yi−n
− 2σ2yi−n + (α2 − 1)

2σ2 yi−n e
−(σyi−n)2

1− e−(σyi−n)2
, if (n+ 1) ≤ i ≤ (n+m)

and its derivative is

ϕθ(θ) =
∂ϕ(θ)

∂θ

=



n+m∑
i=1

∂2l(θ)

∂wi∂α1

V1i

n+m∑
i=1

∂2l(θ)

∂wi∂α2

V1i

n+m∑
i=1

∂2l(θ)

∂wi∂σ
V1i

n+m∑
i=1

∂2l(θ)

∂wi∂α1

V2i

n+m∑
i=1

∂2l(θ)

∂wi∂α2

V2i

n+m∑
i=1

∂2l(θ)

∂wi∂σ
V2i

n+m∑
i=1

∂2l(θ)

∂wi∂α1

V3i

n+m∑
i=1

∂2l(θ)

∂wi∂α2
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n+m∑
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∂wi∂σ
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
(8.3)
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Finally,

ψθ(θ) =

(
∂R(θ)

∂α1

∂R(θ)

∂α2

∂R(θ)

∂σ

)
.

Therefore, χ(θ) can be calculated from (6.6), q(ψ) can be calculated from (6.7), r∗(ψ)

can be obtained from (5.19), and the (1 − γ)100% confidence interval for R can be

obtained. Since the results from BN (5.17) and LN (5.20) are almost identical, we

will only consider BN hereafter.

Here, we analyze the strength data for single carbon fibre reported by Badar

and Priest (1982). Badar and Priest reported the strength data for single carbon

fibre at 20-mm, 50-mm, 150-mm and 300-mm gauge length which is given in Table

7.1. Surles and Padgett (1998, 2001) drew inferences for R = P (Y < X) on 20-mm

and 50-mm gauge lengths, where X represent the strength of 20-mm fiber and Y

represents the strength of 50-mm fiber, with sample sizes of 69 and 65, respectively.

Assuming X and Y follow Burr type X distributions with equal scale parameters,

Surles and Padgett (1998) reported the MLE of R is R̂ = 0.57284 , and concluded

that R is greater than 0.5 using the approximate inference procedures they suggested.

This is consistent with the fact of that short fibers tends to be stronger than long

ones.

Assume thatX and Y are independently distributed asBurrX(α1, σ) andBurrX(α2, σ)

respectively. We are interested in testing H0 : R = 0.5 vs. H1 : R > 0.5 where
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R = P (Y < X) is given in (7.3). Using the techniques discussed in Chapter 6, the

p-values are 0.0426, 0.0493 and 0.0503 obtained by the Wald method, the signed

log-likelihood ratio method and the proposed method, respectively. At the 5% sig-

nificance level, the proposed third-order method gives different conclusion than the

other two first-order methods. That is, proposed third-order method fail to reject

H0 at 5% level whereas the first-order methods reject H0 at 5% level. Moreover,

the 90% and 95% confidence intervals (CI) for R based on Wald, r and proposed

third-order (Proposed) intervals are presented in Table 8.1. In examining Table 8.1,

we observe that all three methods give similar interval estimations. The result is not

surprising because both samples are relatively large.

Table 8.1: Interval Estimates of ψ for Example assuming equal scale parameter

90% Confidence Interval 95% Confidence Interval

Wald (0.5032, 0.6425) (0.4899, 0.6558)

r (0.5003, 0.6429) (0.4863, 0.6559)

Proposed (0.4999, 0.6427) (0.4858, 0.6557)

To examine the accuracy of the methods discussed in this dissertation, simulation

studies are performed. To compare the accuracy of the proposed method with the

Wald method and the signed log-likelihood ratio method, Monte Carlo simulation

studies were conducted.

For each parameter configuration and for each sample size, we generate 10,000
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random samples from Burr type X distributions by using the following transforma-

tion:

T =
1

σ

[
− log(1− U

1
α )
] 1

2
(8.4)

where U is a uniform variate between 0 and 1. For each simulated sample, we calcu-

lated the 95% confidence interval for ψ obtained by the proposed method (Proposed)

with the Wald method (Wald), and the signed log-likelihood ratio method (r). For

each simulated setting, we report the same comparison criterions used in Chapter 6:

lower error, upper error, central coverage and the average bias. The nominal values

for the lower and the upper errors, the central coverage and the average bias are

0.025, 0.025, 0.95 and 0 respectively. These values reflect the desired properties of

the accuracy and symmetry of the interval estimates of R.

Tables 8.2, 8.3 and 8.4 present the simulation results for the cases that σ1 =

σ2 = 2. More specifically, we present results using the parameters setting: σ1 = σ2 =

2, α1 = 5 and R = 0.1(0.1)0.9 with (n,m) = (10, 10), (10, 50) and (50, 10). Note that

α2 is uniquely determined from R = α1/(α1 + α2).
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Table 8.2: σ1 = σ2 = 2, α1 = 5, (n,m) = (10, 10) and α2 satisfies R = α1/(α1 + α2)

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.1605 0.0024 0.8371 0.07905

0.1 r 0.0506 0.0176 0.9318 0.01650

Proposed 0.0217 0.0249 0.9534 0.00170

Wald 0.1223 0.0122 0.8655 0.05505

0.2 r 0.0455 0.0232 0.9313 0.01115

Proposed 0.0246 0.0255 0.9499 0.00045

Wald 0.0971 0.0234 0.8795 0.03685

0.3 r 0.0432 0.0261 0.9307 0.00965

Proposed 0.0252 0.0246 0.9502 0.00030

Wald 0.0740 0.0369 0.8891 0.03045

0.4 r 0.0393 0.0298 0.9309 0.00955

Proposed 0.0261 0.0250 0.9489 0.00055

Wald 0.0560 0.0540 0.8900 0.03000

0.5 r 0.0356 0.0337 0.9307 0.00965

Proposed 0.0255 0.0257 0.9488 0.00060

Wald 0.0391 0.0716 0.8893 0.03035

0.6 r 0.0310 0.0382 0.9308 0.00960

Proposed 0.0264 0.0241 0.9495 0.00115

Wald 0.0246 0.0925 0.8829 0.03395

0.7 r 0.0274 0.0414 0.9312 0.00940

Proposed 0.0257 0.0245 0.9498 0.00060

Wald 0.0127 0.1164 0.8709 0.05185

0.8 r 0.0233 0.0456 0.9311 0.01115

Proposed 0.0250 0.0246 0.9504 0.00020

Wald 0.0031 0.1459 0.8510 0.07140

0.9 r 0.0185 0.0473 0.9342 0.01440

Proposed 0.0238 0.0241 0.9521 0.00105
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Table 8.3: σ1 = σ2 = 2, α1 = 5, (n,m) = (10, 50) and α2 satisfies R = α1/(α1 + α2)

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.0730 0.0093 0.9177 0.03185

0.1 r 0.0302 0.0269 0.9429 0.00355

Proposed 0.0241 0.0258 0.9501 0.00085

Wald 0.0565 0.0215 0.9220 0.01750

0.2 r 0.0277 0.0289 0.9434 0.00330

Proposed 0.0247 0.0253 0.9500 0.00030

Wald 0.0447 0.0324 0.9229 0.01355

0.3 r 0.0259 0.0296 0.9445 0.00275

Proposed 0.0239 0.0249 0.9512 0.00060

Wald 0.0326 0.0443 0.9231 0.01345

0.4 r 0.0249 0.0317 0.9434 0.00340

Proposed 0.0252 0.0234 0.9514 0.00090

Wald 0.0235 0.0547 0.9218 0.01560

0.5 r 0.0233 0.0326 0.9441 0.00465

Proposed 0.0244 0.0233 0.9523 0.00115

Wald 0.0165 0.0657 0.9178 0.02460

0.6 r 0.0227 0.0334 0.9439 0.00535

Proposed 0.0261 0.0228 0.9511 0.00165

Wald 0.0098 0.0782 0.912 0.03420

0.7 r 0.0211 0.0337 0.9452 0.00630

Proposed 0.0259 0.0219 0.9522 0.00200

Wald 0.0054 0.0947 0.8999 0.04465

0.8 r 0.0201 0.0354 0.9445 0.00765

Proposed 0.0263 0.0221 0.9516 0.00210

Wald 0.0018 0.1144 0.8838 0.05630

0.9 r 0.0171 0.0401 0.9428 0.01150

Proposed 0.0241 0.0223 0.9536 0.00180
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Table 8.4: σ1 = σ2 = 2, α1 = 5, (n,m) = (50, 10) and α2 satisfies R = α1/(α1 + α2)

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.1114 0.0009 0.8877 0.05525

0.1 r 0.0402 0.0158 0.9440 0.01220

Proposed 0.0228 0.0241 0.9531 0.00155

Wald 0.0909 0.0042 0.9049 0.04335

0.2 r 0.0379 0.0191 0.9430 0.00940

Proposed 0.0226 0.0249 0.9525 0.00125

Wald 0.0781 0.0098 0.9121 0.03415

0.3 r 0.0347 0.0219 0.9434 0.00640

Proposed 0.0228 0.0259 0.9513 0.00155

Wald 0.0650 0.0182 0.9168 0.02340

0.4 r 0.0340 0.0228 0.9432 0.00560

Proposed 0.0232 0.0258 0.9510 0.00130

Wald 0.0542 0.0250 0.9208 0.01460

0.5 r 0.0324 0.0245 0.9431 0.00395

Proposed 0.0235 0.0258 0.9507 0.00115

Wald 0.0427 0.0342 0.9231 0.01345

0.6 r 0.0309 0.0255 0.9436 0.00320

Proposed 0.0245 0.0256 0.9499 0.00055

Wald 0.0319 0.0425 0.9256 0.01220

0.7 r 0.0287 0.0275 0.9438 0.00310

Proposed 0.0232 0.0263 0.9505 0.00155

Wald 0.0201 0.0531 0.9268 0.01650

0.8 r 0.0282 0.0280 0.9438 0.00310

Proposed 0.0242 0.0250 0.9508 0.00040

Wald 0.0087 0.0667 0.9246 0.02900

0.9 r 0.0273 0.0287 0.9440 0.00300

Proposed 0.0253 0.0249 0.9498 0.00020
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It is clear that the coverage probabilities for R are poor and the two-tail error

probabilities are extremely asymmetric from the Wald method in all three settings.

The results from signed log-likelihood method are not satisfactory. The proposed

method gives not only an almost exact coverage probability but also it has symmetric

two-tail error probabilities even for small sample sizes.

8.1.3 Stress-Strength Reliability with Unequal Scale Parameters

When scale parameters are unequal, σ1 6= σ2, R, in (7.3) becomes difficult to calculate

since integral has no known closed-form. Let x = (x1, . . . , xn)′ and y = (y1, . . . , ym)′

be the random samples from BurrX(α1, σ1) and BurrX(α2, σ2) respectively. By

maximizing the log-likelihood function in (7.2), the overall MLE can be obtained.

Denote the overall MLE as θ̂ = (α̂1, α̂2, σ̂1, σ̂2)′. The observed information matrix

evaluated at θ̂ is

jθθ(θ̂) =

n

α̂2
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0 −2
n∑
i=1

σ̂1 x
2
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−(σ̂1xi)

2
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0
m
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2

0 −2
m∑
j=1

σ̂2 y
2
j e
−(σ̂2yj)

2

1− e−(σ̂2yi)2

−2
n∑
i=1
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2
i e
−(σ̂1xi)

2

1− e−(σ̂1xi)2
0 jσ1σ1(θ̂) 0

0 −2
m∑
j=1

σ̂2 y
2
j e
−(σ̂2yj)
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1− e−(σ̂2yi)2
0 jσ2σ2(θ̂)


,
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where jσ1σ1(θ̂) =
2n

σ̂1
2 + 2

n∑
i=1

x2
i − 2(α̂1 − 1)

n∑
i=1

x2
i e
−(σ̂1xi)

2
(1− e−(σ̂1xi)

2 − 2σ̂1
2 x2

i )

(1− e−(σ̂1xi)2)
2

and jσ2σ2(θ̂) =
2m

σ̂2
2 + 2

m∑
j=1

y2
j − 2(α̂2 − 1)

m∑
j=1

y2
j e
−(σ̂2yj)

2
(1− e−(σ̂2yj)

2 − 2σ̂2
2 y2

j )(
1− e−(σ̂2yj)2

)2 .

The constrained MLE θ̂ψ = (α̃1, α̃2, σ̃1, σ̃2)′ for a given ψ0, is obtained by penalized

likelihood method discussed in Chapter 7 subject to the constraint R = ψ(θ) = ψ0.

Once θ̂ψ is obtained, we can calculate κ̂, the Lagrange multiplier, by solving

∂`(θ̂ψ)

∂α1

− κ̂∂R(θ̂ψ)

∂α1

= 0 .

Hence, the tilted log-likelihood function can be obtained by (5.2). Thus, the observed

information matrix for the tilted log-likelihood function evaluated at constrained

MLE θ̂ψ is j̃θθ(θ̂ψ) = −l̃θθ(θ̂ψ) and can be written as

j̃θθ(θ̂ψ) =



j̃α1α1(θ̂ψ) j̃α1α2(θ̂ψ) j̃α1σ1(θ̂ψ) j̃α1σ2(θ̂ψ)

j̃α1α2(θ̂ψ) j̃α2α2(θ̂ψ) j̃α2σ1(θ̂ψ) j̃α2σ2(θ̂ψ)

j̃α1σ1(θ̂ψ) j̃α1σ2(θ̂ψ) j̃σ1σ1(θ̂ψ) j̃σ1σ2(θ̂ψ)

j̃α1σ2(θ̂ψ) j̃α2σ2(θ̂ψ) j̃σ1σ2(θ̂ψ) j̃σ2σ2(θ̂ψ)


where

• j̃α1α1(θ̂ψ) =
n

α̃2
1

− κ̂ Rα1α1(θ̂ψ), where Rα1α1(θ̂ψ) =
∂R(θ)

∂α1α1

∣∣∣∣
θ̂ψ

• j̃α1α2(θ̂ψ) = −κ̂ Rα1α2(θ̂ψ), where Rα1α2(θ̂ψ) =
∂R(θ)

∂α1α2

∣∣∣∣
θ̂ψ

• j̃α1σ1(θ̂ψ) = −2
n∑
i=1

σ̃1 x
2
i e
−(σ̃1xi)

2

1− e−(σ̃1xi)2
− κ̂ Rα1σ1(θ̂ψ), where Rα1σ1(θ̂ψ) =

∂R(θ)

∂α1σ1

∣∣∣∣
θ̂ψ
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• j̃α1σ2(θ̂ψ) = −κ̂ Rα1σ2(θ̂ψ), where Rα1σ2(θ̂ψ) =
∂R(θ)

∂α1σ2

∣∣∣∣
θ̂ψ

• j̃α2α2(θ̂ψ) =
m

α̃2
2

− κ̂ Rα2α2(θ̂ψ), where Rα2α2(θ̂ψ) =
∂R(θ)

∂α2α2

∣∣∣∣
θ̂ψ

• j̃α2σ1(θ̂ψ) = −κ̂ Rα2σ1(θ̂ψ), where Rα2σ1(θ̂ψ) =
∂R(θ)

∂α2σ1

∣∣∣∣
θ̂ψ

• j̃α2σ2(θ̂ψ) = −2
m∑
j=1

σ̃ y2
j e
−(σ̃yj)

2

1− e−(σ̃yi)2
− κ̂ Rα2σ2(θ̂ψ), where Rα2σ2(θ̂ψ) =

∂R(θ)

∂α2σ2

∣∣∣∣
θ̂ψ

• j̃σ1σ1(θ̂ψ) =
2n

σ̃1
2 +2

n∑
i=1

x2
i −2(α̃1−1)

n∑
i=1

x2
i e
−(σ̃1xi)

2
(1− e−(σ̃1xi)

2 − 2σ̃1
2 x2

i )

(1− e−(σ̃1xi)2)
2 −

κ̂ Rσ1σ1(θ̂ψ), where Rσ1σ1(θ̂ψ) =
∂R(θ)

∂σ1σ1

∣∣∣∣
θ̂ψ

• j̃σ1σ2(θ̂ψ) = −κ̂ Rσ1σ2(θ̂ψ), where Rσ1σ2(θ̂ψ) =
∂R(θ)

∂σ1σ2

∣∣∣∣
θ̂ψ

• j̃σ2σ2(θ̂ψ) =
2m

σ̃2
2 +2

m∑
j=1

y2
j −2(α̃2−1)

m∑
j=1

y2
j e
−(σ̃2yj)

2
(1− e−(σ̃2yj)

2 − 2σ̃2
2 y2

j )(
1− e−(σ̃2yj)2

)2 −

κ̂ Rσ2σ2(θ̂ψ), where Rσ2σ2(θ̂ψ) =
∂R(θ)

∂σ2σ2

∣∣∣∣
θ̂ψ

Now, let w = (x1, . . . , xn, y1, . . . , ym)′ be the observed data and z = (z1, . . . , zn, zn+1, . . . , zn+m)′

denoted the vector-pivotal quantity, in this case, z = (logF (x1;α1, σ1), . . . , logF (xn;α1, σ1),

logF (y1;α2, σ2), . . . , logF (ym;α2, σ2))′ and

∂zi
∂wi

=


2α1 σ

2
1 xi e

−(σ1xi)
2

1− e−(σ1xi)2
, if 1 ≤ i ≤ n

2α2 σ
2
2 yi−n e

−(σ2yi−n)2

1− e−(σ2yi−n)2
, if (n+ 1) ≤ i ≤ (n+m)

(8.5)
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and
∂zi
∂wj

= 0 for all i 6= j. Hence, from (6.13), we have

V = (V1, V2, V3, V4) (8.6)

=



− log(1− e−(σ̂1x1)2)(1− e−(σ̂1x1)2)

2α̂1 σ̂1
2 x1 e−(σ̂1x1)2

0 −x1

σ̂1

0

...
...

...
...

− log(1− e−(σ̂1xn)2)(1− e−(σ̂1xn)2)

2α̂1 σ̂1
2 xn e−(σ̂1xn)2

0 −xn
σ̂1

0

0 − log(1− e−(σ̂2y1)2)(1− e−(σ̂2y1)2)

2α̂2 σ̂2
2 y1 e−(σ̂2y1)2

0 −y1

σ̂2

...
...

...
...

0 − log(1− e−(σ̂2ym)2)(1− e−(σ̂2ym)2)

2α̂2 σ̂2
2 ym e−(σ̂2ym)2

0 −ym
σ̂2


Thus, the locally defined canonical parameter from (6.14) is

ϕ(θ) =

(
n+m∑
i=1

∂l(θ)

∂wi
V1i,

n+m∑
i=1

∂l(θ)

∂wi
V2i,

n+m∑
i=1

∂l(θ)

∂wi
V3i,

n+m∑
i=1

∂l(θ)

∂wi
V4i

)′
(8.7)

where
∂l(θ)

∂wi
=

1

xi
− 2σ2

1xi + (α1 − 1)
2σ2

1 xi e
−(σ1xi)

2

1− e−(σ1xi)2
, if 1 ≤ i ≤ n

∂l(θ)

∂wi
=

1

yi−n
− 2σ2

2yi−n + (α2 − 1)
2σ2

2 yi−n e
−(σ2yi−n)2

1− e−(σ2yi−n)2
, if (n+ 1) ≤ i ≤ (n+m)
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and its derivative is

ϕθ(θ) =
∂ϕ(θ)

∂θ

=



n+m∑
i=1

∂2l(θ)

∂wi∂α1

V1i 0
n+m∑
i=1

∂2l(θ)

∂wi∂σ1

V1i 0

0
n+m∑
i=1

∂2l(θ)

∂wi∂α2

V2i 0
n+m∑
i=1

∂2l(θ)

∂wi∂σ2

V2i

n+m∑
i=1

∂2l(θ)

∂wi∂α1

V3i 0
n+m∑
i=1

∂2l(θ)

∂wi∂σ1

V3i 0

0
n+m∑
i=1

∂2l(θ)

∂wi∂α2

V4i 0
n+m∑
i=1

∂2l(θ)

∂wi∂σ2

V4i


(8.8)

Finally,

ψθ(θ) =

(
∂R(θ)

∂α1

∂R(θ)

∂α2

∂R(θ)

∂σ1

∂R(θ)

∂σ2

)
Therefore q(ψ) can be calculated from (6.7), r∗(ψ) can be obtained from (5.19), and

the (1− γ)100% confidence interval for R can be obtained.

To illustrate the proposed method with unequal scale parameters, we will use

the same data sets of carbon fibre reported by Badar and Priest (1982). Surles and

Padgett (2001) reported the MLE of R is R̂ = 0.616592 , and concluded that R is

greater than 0.5 using the approximate inference procedures they suggested. This is

consistent with the fact of that short fibers tends to be stronger than long ones.

Again, assuming that X and Y are independently distributed as BurrX(α1, σ1)

and BurrX(α2, σ2) respectively. We are interested in testing H0 : R = 0.5 vs.
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H1 : R > 0.5 where R = P (Y < X) is given in (7.3). Using the techniques dis-

cussed in Section 8.1.3, the p-values are 0.0067, 0.0081 and 0.0086, obtained by the

Wald method, the signed log-likelihood ratio method and the proposed method, re-

spectively. They provide strong evidence to suggest that 20-mm fiber is typically

stronger than 50-mm fiber.

Moreover, the 90% and 95% confidence intervals (CI) for R based on Wald, r

and proposed third-order method (Proposed) intervals are presented in Table 8.5. In

examining Table 8.5, we observe that all three methods give similar interval estima-

tions. The result is not surprising because both samples have relatively large sample

sizes.

Table 8.5: Interval Estimates of ψ for Example assuming unequal scale parameters

90% Confidence Interval 95% Confidence Interval

Wald (0.5392, 0.6946) (0.5243, 0.7095)

r (0.5357, 0.6937) (0.5199, 0.7077)

Proposed (0.5346, 0.6927) (0.5188, 0.7067)

We randomly sampled from this data set using n = 30, 50 and n = 30, 50, for

each combination of (n,m), we obtained the 90% and 95% CI for R and the results

are reported in Table 8.6. As we can see in Table 8.6, the proposed method and the

other methods give quite different results for small sample size situations.

We also conduct the Monte Carlo simulation studies when the scale parameters
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Table 8.6: Interval Estimates of ψ for Example using resampling

Sample sizes Methods 90% Confidence Interval 95% Confidence Interval

Wald (0.4702, 0.7076) (0.4476, 0.7293)

n=30, m=30 r (0.4681, 0.7011) (0.4450, 0.7210)

Proposed (0.4660, 0.6994) (0.4429, 0.7027)

Wald (0.5279, 0.7080) (0.5106, 0.7252)

n=50, m=50 r (0.5255, 0.7041) (0.5076, 0.7196)

Proposed (0.5240, 0.7027) (0.5044, 0.7182)

of two Burr type X distributions are differ with similar settings comparing when

scale parameter is same. For each parameter configuration and for each sample

size, we generate 10,000 random samples from Burr type X distribution by using

the transformation from (8.4) For each simulated sample, we calculated the 95%

confidence interval for ψ obtained by the proposed third-order method with the Wald

method, and the signed log-likelihood ratio method. For each simulated setting, we

report the same criterions: lower error, upper error, central coverage and the average

bias.

Table 8.7 presents the simulation results of , lower errors, upper errors, coverage

probabilities and average bias by choosing α1 = 8, σ1 = 0.7 and α2 = 12.5, σ2 = 0.8

which is closed to the overall MLE obtained from example in the previous section,

when the same sample sizes are equal, n = m = 10, and when sample sizes are not

equal, n = 10, m = 50 and n = 50, m = 10. In this case, R = ψ = 0.5966. It is clear
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Table 8.7: Simulation results for R when σ is not equal

Sample Size Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.0394 0.0613 0.8993 0.02535

n=m=10 r 0.0308 0.0364 0.9376 0.00620

Proposed 0.0273 0.0257 0.9470 0.00150

Wald 0.0372 0.0567 0.9061 0.02195

n=10, m=50 r 0.0289 0.0335 0.9376 0.00620

Proposed 0.0236 0.0223 0.9541 0.00205

Wald 0.0338 0.0562 0.9100 0.02000

n=50, m=10 r 0.0283 0.0362 0.9355 0.00725

Proposed 0.0222 0.0256 0.9522 0.00170

that the coverage probabilities for R are poor and the two-tail error probabilities are

extremely asymmetric from the Wald method in all three settings. The results from

signed log-likelihood method are not satisfactory. The proposed method gives not

only an almost exact coverage probability but also it has symmetric two-tail error

probabilities even for small or uneven sample sizes.

Tables 8.8 to 8.10 present more simulation results for α1 = 5, α2 = 10, σ1 = 2, and

R = 0.1(0.1)0.9 with (n,m) = (10, 10), (10, 50) and (50, 10). Note that, we fixed R

and σ2 is determined uniquely by (7.3). Again, the proposed method outperformed

the other two methods even when the sample sizes are small or uneven.
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Table 8.8: σ1 6= σ2, α1 = 5, α2 = 10, σ1 = 2 and σ2 is obtained by Equation (7.3),

(n,m) = (10, 10).

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.1607 0.0036 0.8357 0.07855

0.1 r 0.0406 0.0183 0.9411 0.01115

Proposed 0.0204 0.0259 0.9537 0.00275

Wald 0.1140 0.0123 0.8737 0.05085

0.2 r 0.0399 0.0234 0.9367 0.00825

Proposed 0.0215 0.0259 0.9526 0.00220

Wald 0.0854 0.0236 0.8910 0.03090

0.3 r 0.0372 0.0268 0.9360 0.00700

Proposed 0.0236 0.0258 0.9506 0.00110

Wald 0.0652 0.0362 0.8986 0.02570

0.4 r 0.0358 0.0304 0.9338 0.00810

Proposed 0.0244 0.0259 0.9497 0.00075

Wald 0.0497 0.0508 0.8995 0.02525

0.5 r 0.0326 0.0337 0.9337 0.00815

Proposed 0.0266 0.0267 0.9467 0.00165

Wald 0.0357 0.0674 0.8969 0.02655

0.6 r 0.0290 0.0371 0.9339 0.00805

Proposed 0.0267 0.0251 0.9482 0.00090

Wald 0.0232 0.0889 0.8879 0.03285

0.7 r 0.0262 0.0383 0.9335 0.00725

Proposed 0.0255 0.0256 0.9489 0.00055

Wald 0.0145 0.1207 0.8648 0.05310

0.8 r 0.0234 0.0396 0.9370 0.00810

Proposed 0.0261 0.0240 0.9499 0.00105

Wald 0.0036 0.1693 0.8271 0.08285

0.9 r 0.0195 0.0442 0.9363 0.01235

Proposed 0.0264 0.0231 0.9505 0.00165
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Table 8.9: σ1 6= σ2, α1 = 5, α2 = 10, σ1 = 2 and σ2 is obtained by Equation (15),

(n,m) = (10, 50)

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.1322 0.0047 0.8631 0.06375

0.1 r 0.0395 0.0190 0.9415 0.01025

Proposed 0.0227 0.0254 0.9519 0.00135

Wald 0.0983 0.0131 0.8886 0.04260

0.2 r 0.0376 0.0245 0.9379 0.00655

Proposed 0.0238 0.0254 0.9508 0.00080

Wald 0.0772 0.0251 0.8977 0.02615

0.3 r 0.0352 0.0291 0.9357 0.00715

Proposed 0.0228 0.0271 0.9501 0.00215

Wald 0.0604 0.0352 0.9044 0.0280

0.4 r 0.0335 0.0312 0.9353 0.00735

Proposed 0.0219 0.0264 0.9517 0.00225

Wald 0.0456 0.0474 0.9070 0.02150

0.5 r 0.0306 0.0330 0.9364 0.00680

Proposed 0.0221 0.0246 0.9533 0.00165

Wald 0.0340 0.0661 0.8999 0.02505

0.6 r 0.0280 0.0348 0.9372 0.00640

Proposed 0.0235 0.0218 0.9547 0.00235

Wald 0.0224 0.0889 0.8877 0.03375

0.7 r 0.0250 0.0391 0.9359 0.00705

Proposed 0.0233 0.0234 0.9533 0.00165

Wald 0.0131 0.1179 0.8690 0.05240

0.8 r 0.0221 0.0420 0.9359 0.00995

Proposed 0.0229 0.0237 0.9534 0.00170

Wald 0.0045 0.1654 0.8301 0.08045

0.9 r 0.0175 0.0457 0.9368 0.01410

Proposed 0.0222 0.0232 0.9546 0.00230
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Table 8.10: σ1 6= σ2, α1 = 5, α2 = 10, σ1 = 2 and σ2 is obtained by Equation (15),

(n,m) = (50, 10)

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.1348 0.0052 0.8600 0.06480

0.1 r 0.0404 0.0208 0.9388 0.00980

Proposed 0.0235 0.0249 0.9516 0.00080

Wald 0.0912 0.0153 0.8935 0.03795

0.2 r 0.0355 0.0227 0.9418 0.00640

Proposed 0.0221 0.0231 0.9548 0.00240

Wald 0.0679 0.0239 0.9082 0.02200

0.3 r 0.0337 0.0260 0.9403 0.00485

Proposed 0.0228 0.0236 0.9536 0.00180

Wald 0.0552 0.0350 0.9128 0.01860

0.4 r 0.0321 0.0293 0.9386 0.00570

Proposed 0.0237 0.0244 0.9519 0.00095

Wald 0.0405 0.0464 0.9131 0.018455

0.5 r 0.0296 0.0320 0.9384 0.00580

Proposed 0.0225 0.0245 0.9530 0.00150

Wald 0.0289 0.0557 0.9154 0.01730

0.6 r 0.0263 0.0349 0.9388 0.00560

Proposed 0.0225 0.0246 0.9529 0.00145

Wald 0.0184 0.0681 0.9135 0.02485

0.7 r 0.0227 0.0371 0.9402 0.00720

Proposed 0.0217 0.0247 0.9536 0.00180

Wald 0.0109 0.0818 0.9073 0.03545

0.8 r 0.0185 0.0375 0.9440 0.00950

Proposed 0.0191 0.0245 0.9564 0.00320

Wald 0.0042 0.1033 0.8925 0.04955

0.9 r 0.0163 0.0341 0.9496 0.00890

Proposed 0.0196 0.0216 0.9588 0.00440
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8.2 Inference for Stress-Strength Reliability with Exponen-

tiated Exponential Distribution

Gupta et al. (1998) and Gupta and Kundu (2001) introduced a two-parameter ex-

ponentiated exponential (EE) distribution as an alternative to the two-parameter

gamma and Weibull distributions for analysing failure time data. For the two-

parameter gamma distribution, its cumulative distribution function, or equivalently,

the survival function cannot be expressed in closed form if the shape parameter is

not an integer. This makes it less popular than the Weibull distribution, whose

distribution function, survival function, and hazard function can all be expressed

as a closed form. However, for the Weibull distribution, the asymptotic coverage

to normality for the distribution of the maximum likelihood estimators (MLEs) is

very slow (Bain 1976). Therefore, most of the asymptotic inferences are not very

accurate, unless the sample size is very large. Compare to these two most commonly

used distributions, the cumulative distribution function of EE distribution can be

expressed in explicit form, share some common properties with gamma and Weibull

distributions for failure time data, and has fast convergence of the MLEs.

The distribution function, F (y;α, β), of the EE distribution takes the form

F (y;α, β) = (1− e−βy)α α, β, y > 0 (8.9)
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where α is the shape parameter and β is the scale parameter.

Similar to the two-parameter gamma distribution, the EE distribution also has an

increasing or decreasing failure rate that depends on the shape parameter. The den-

sity function of the EE distribution also varies significantly depending on the shape

parameter. The advantage of the EE distribution is that the cumulative distribution

function and the survival function can be explicitly written in closed form.

8.2.1 Stress-Strength Reliability with Equal Scale Parameters

Let X and Y be independently distributed as EE(α1, β) and EE(α2, β) respectively.

Then the stress-strength reliability with same scale parameter, β, is

R = P (Y < X) =

∫ ∞
0

∫ x

0

f(x;α1, β) f(y;α2, β) dy dx

=
α1

α1 + α2

(8.10)

Let x = (x1, . . . , xn)′ and y = (y1, . . . , ym)′ be the random samples from EE(α1, β)

and EE(α2, β) respectively. Then the log-likelihood function of above model can be

written as

l(α1, α2, β;x, y) = n logα1 +m logα2 + (n+m) log β − β

(
n∑
i=1

xi +
m∑
j=1

yj

)

+ (α1 − 1)
n∑
i=1

log(1− e−βxi) + (α2 − 1)
m∑
j=1

log(1− e−βyj)
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Denote the overall maximum likelihood estimate as θ̂ = (α̂1, α̂2, β̂)′, then the observed

information matrix jθθ(θ̂) can be obtained as

jθθ(θ̂) = −lθθ(θ̂)

=



n

α̂2
1

0 −
n∑
i=1

xi

eβ̂xi − 1

0
m

α̂2
2

−
m∑
j=1

yj

eβ̂yj − 1

−
n∑
i=1

xi

eβ̂xi − 1
−

m∑
j=1

yj

eβ̂yj − 1

n+m

β̂2
+ A


,

where A = (α̂1 − 1)
n∑
i=1

x2
i e

β̂xi

(eβ̂xi − 1)2
+ (α̂2 − 1)

m∑
j=1

y2
j e

β̂yj

(eβ̂yj − 1)2
.

The tilted log-likelihood function l̃(θ) is defined as

l̃(θ) = l(x, y;α1, α2, β) + κ̂[ψ(θ)− ψ]

where ψ(θ) = R =
α1

α1 + α2

. Then the constrained MLE can be obtained from

penalized likelihood method and denote as θ̂ψ = (α̃1, α̃2, β̃)′. κ̂ can be calculated by

Lagrange multiplier method, and constrained observed information matrix j̃θθ(θ̂ψ)

can be written as

j̃θθ(θ̂ψ) =



n

α̃2
1

+
2κ̂α̃2

(α̃1 + α̃2)3
− κ̂(α̃1 − α̃2)

(α̃1 + α̃2)3
−

n∑
i=1

xi

eβ̃xi − 1

− κ̂(α̃1 − α̃2)

(α̃1 + α̃2)3

m

α̃2
2

− 2κ̂α̃1

(α̃1 + α̃2)3
−

m∑
j=1

yj

eβ̃yj − 1

−
n∑
i=1

xi

eβ̃xi − 1
−

m∑
j=1

yj

eβ̃yj − 1

n+m

β̃2
+B


,
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where B = (α̃1 − 1)
n∑
i=1

x2
i e

β̃xi

(eβ̃xi − 1)2
+ (α̃2 − 1)

m∑
j=1

y2
j e

β̃yj

(eβ̃yj − 1)2
. Now, we have

everything to calculate r(ψ).

Let z = (z1, . . . , zn, zn+1, . . . , zn+m)′ denotes the vector-pivotal quantity, in this

case, z = (logF (x1;α1, β), . . . , logF (xn;α1, β), logF (y1;α2, β),

. . . , logF (ym;α2, β))′. Thus, the ancillary direction V is

V = (V1, V2, V3) =



− log(1− e−β̂x1) e
β̂x1 − 1

α̂1β̂
0 −x1

β̂
...

...
...

− log(1− e−β̂xn)
eβ̂xn − 1

α̂1β̂
0 −xn

β̂

0 − log(1− e−β̂y1) e
β̂y1 − 1

α̂2β̂
−y1

β̂
...

...
...

0 − log(1− e−β̂ym)
eβ̂ym − 1

α̂2β̂
−ym
β̂


Then we can calculate the locally defined canonical parameter ϕ(θ)

ϕ(θ) =

(
n+m∑
i=1

∂l(θ)

∂wi
V1i,

n+m∑
i=1

∂l(θ)

∂wi
V2i,

n+m∑
i=1

∂l(θ)

∂wi
V3i

)′

where w = (x1, . . . , xn, y1, . . . , ym)′ be the observed data. Hence, we also have ϕθ(θ).

For this particular case, χ(θ) can be obtained accordingly. Therefore, ˆvar
(
χ(θ̂)− χ(θ̂ψ)

)
,

Q(ψ) and r∗(ψ) can be obtained. Hence (1− γ)100% confidence interval can be ob-

tained from the modified signed log-likelihood ratio statistics.

To illustrate the proposed third-order method for interval estimation, the follow-
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ing two data sets with sample size of 11 and 9 are used: 2.1828, 0.5911, 1.0711,

0.9007, 1.7814, 1.3616, 0.8629, 0.2301, 1.5183, 0.8481, 1.0845 and 0.8874, 1.1482,

0.8227, 0.4086, 0.5596, 1.1978, 1.1324, 0.5625, 1.0679. Assume that X and Y are in-

dependently distributed as EE(α1, β) and EE(α2, β) respectively. We are interested

in testing H0 : R = 0.5 vs. H1 : R > 0.5, where R = P (Y < X) is given in (8.10).

The 90% and 95% confidence intervals for R based on Wald, r and r∗ methods are

presented in Table 8.11. In examining Table 8.11, we observe that all three methods

give different interval estimations.

Table 8.11: Interval Estimates of ψ Assuming EED with Same Scale Parameter β

90% Confidence Interval 95% Confidence Interval

Wald (0.3441, 0.7138) (0.3086, 0.7492)

r (0.3485, 0.7058) (0.3165, 0.7363)

Proposed (0.3501, 0.7110) (0.3176, 0.7415)

To compare the accuracy of the proposed method with the MLE method, the

signed log-likelihood ratio method, and the proposed method, Monte Carlo simu-

lation studies were conducted. The cases of unequal and equal scale parameters

are both examined. For each parameter configuration and for each sample size, we

generate 10,000 random samples from EE distribution by using the following trans-

formation:

T = − 1

β
log(1− U1/α),
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where U is a uniform variate between 0 and 1.

The performance of a method is judged by using the same criteria as before:

central coverage, upper error, lower error and average bias. These values reflect the

desired properties of the accuracy and symmetry of the interval estimates of R.

Tables 8.12 to 8.14 present simulation results for the equal scale parameter case,

i.e. α1 = 4, β = 8, and R = 0.1(0.1)0.9 with (n,m) = (10, 10), (10, 50) and (50, 10).

Note that, we fixed R and α2 is determined uniquely by R = α1/(α1 + α2). Again,

the proposed method outperformed the other two methods even when the sample

sizes are small.
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Table 8.12: α1 = 4, β = 8 and α2 satisfies R = α1/(α1 + α2), (n,m) = (10, 10)

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.1608 0.0024 0.8368 0.07920

0.1 r 0.0526 0.0189 0.9285 0.01685

Proposed 0.0236 0.0267 0.9497 0.00155

Wald 0.1195 0.0121 0.8684 0.05370

0.2 r 0.0502 0.0236 0.9262 0.01330

Proposed 0.0269 0.0264 0.9467 0.00165

Wald 0.0944 0.0224 0.8832 0.03600

0.3 r 0.0428 0.0256 0.9316 0.00920

Proposed 0.0225 0.0234 0.9541 0.00205

Wald 0.0724 0.0347 0.8929 0.02855

0.4 r 0.0387 0.0277 0.9336 0.00820

Proposed 0.0256 0.0224 0.9520 0.00160

Wald 0.0523 0.0517 0.8960 0.02700

0.5 r 0.0335 0.0328 0.9337 0.00815

Proposed 0.0244 0.0230 0.9526 0.00013

Wald 0.0378 0.0753 0.8869 0.03155

0.6 r 0.0295 0.0400 0.9305 0.00975

Proposed 0.0234 0.0260 0.9506 0.00130

Wald 0.0245 0.0944 0.8811 0.03495

0.7 r 0.0282 0.0454 0.9264 0.01180

Proposed 0.0261 0.0262 0.9477 0.00115

Wald 0.0109 0.1187 0.8704 0.05390

0.8 r 0.0226 0.0467 0.9307 0.01205

Proposed 0.0239 0.0262 0.9499 0.00115

Wald 0.0027 0.1464 0.8509 0.07185

0.9 r 0.0211 0.0499 0.9290 0.01440

Proposed 0.0268 0.0252 0.9480 0.00100
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Table 8.13: α1 = 4, β = 8 and α2 satisfies R = α1/(α1 + α2), (n,m) = (10, 50)

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.0722 0.0093 0.9185 0.03145

0.1 r 0.0302 0.0273 0.9425 0.00375

Proposed 0.0250 0.0261 0.9489 0.00055

Wald 0.0577 0.0206 0.9217 0.01855

0.2 r 0.0287 0.0268 0.9445 0.00275

Proposed 0.0260 0.0244 0.9496 0.00080

Wald 0.0431 0.0327 0.9242 0.01290

0.3 r 0.0276 0.0306 0.9418 0.00410

Proposed 0.0261 0.0257 0.9482 0.00090

Wald 0.0299 0.0412 0.9289 0.01055

0.4 r 0.0216 0.0290 0.9494 0.00370

Proposed 0.0218 0.0227 0.9555 0.00275

Wald 0.0475 0.0488 0.9037 0.02315

0.5 r 0.0234 0.0358 0.9408 0.00620

Proposed 0.0243 0.0269 0.9488 0.00130

Wald 0.0166 0.0688 0.9146 0.02610

0.6 r 0.0221 0.0350 0.9429 0.00645

Proposed 0.0249 0.0254 0.9497 0.00250

Wald 0.0105 0.0789 0.9106 0.03420

0.7 r 0.0206 0.0366 0.9428 0.00800

Proposed 0.0276 0.0229 0.9495 0.00235

Wald 0.0059 0.1021 0.8920 0.04810

0.8 r 0.0195 0.0426 0.9379 0.01155

Proposed 0.0259 0.0269 0.9472 0.00140

Wald 0.0016 0.1210 0.8774 0.05970

0.9 r 0.0160 0.0456 0.9384 0.01480

Proposed 0.0239 0.0249 0.9512 0.00060
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Table 8.14: α1 = 4, β = 8 and α2 satisfies R = α1/(α1 + α2), (n,m) = (50, 10)

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.1120 0.0008 0.8872 0.05560

0.1 r 0.0412 0.0161 0.9427 0.01255

Proposed 0.0230 0.0247 0.9523 0.00115

Wald 0.1011 0.0048 0.8941 0.04815

0.2 r 0.0407 0.0202 0.9319 0.01025

Proposed 0.0261 0.0260 0.9479 0.00105

Wald 0.0805 0.0108 0.9087 0.03485

0.3 r 0.0366 0.0232 0.9402 0.00670

Proposed 0.0248 0.0275 0.9477 0.00135

Wald 0.0648 0.0140 0.9212 0.02540

0.4 r 0.0338 0.0215 0.9447 0.00615

Proposed 0.0238 0.0247 0.9515 0.00075

Wald 0.0551 0.0258 0.9191 0.01545

0.5 r 0.0317 0.0256 0.9427 0.00365

Proposed 0.0242 0.0276 0.9482 0.00170

Wald 0.0437 0.0296 0.9267 0.01165

0.6 r 0.0329 0.0228 0.9443 0.00505

Proposed 0.0247 0.0229 0.9524 0.00120

Wald 0.0332 0.0400 0.9268 0.01160

0.7 r 0.0307 0.0247 0.9446 0.00300

Proposed 0.0257 0.0241 0.9502 0.00080

Wald 0.0228 0.0548 0.9224 0.01600

0.8 r 0.0294 0.0266 0.9440 0.00300

Proposed 0.0256 0.0242 0.9502 0.00070

Wald 0.0098 0.0670 0.9232 0.02860

0.9 r 0.0247 0.0299 0.9454 0.00260

Proposed 0.0234 0.0261 0.9505 0.00135
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8.2.2 Stress-Strength Reliability with Unequal Scale Parameters

Let X and Y be independently distributed as EE(α1, β1) and EE(α2, β2) respec-

tively. When scale parameters are unequal, β1 6= β2, R is difficult to calculate since

integral has no known closed-form, which is

R = P (Y < X) =

∫ ∞
0

α1β1 (1− e−β1x)α1−1 e−β1x (1− e−β2x)α2 dx (8.11)

Exact inference procedure for R is not available. Let x = (x1, . . . , xn)′ and y =

(y1, . . . , ym)′ be the random samples from EE(α1, β1) and EE(α2, β2) respectively.

Then the log-likelihood function of above model can be written as

l(α1, β1, α2, β2;x, y) = n logα1 + n log β1 + (α1 − 1)
n∑
i=1

log(1− e−β1xi)

−β1

n∑
i=1

xi +m logα2 +m log β2 + (α2 − 1)
m∑
j=1

log(1− e−β2yj)− β2

m∑
j=1

yj

Denote the overall maximum likelihood estimate as θ̂ = (α̂1, α̂2, β̂1, β̂2)′, and observed

information matrix jθθ(θ̂) can be obtained as

jθθ(θ̂) = −`θθ(θ̂)

=



n

α̂2
1

−
n∑
i=1

xi e
−β̂1xi

1− e−β̂1xi
0 0

−
n∑
i=1

xi e
−β̂1xi

1− e−β̂1xi
n

β̂2
1

+ A 0 0

0 0
m

α̂2
2

−
m∑
j=1

yj e
−β̂2yj

1− e−β̂2yj

0 0 −
m∑
j=1

yj e
−β̂2yj

1− e−β̂2yj
m

β̂2
2

+B


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where A = (α̂1 − 1)
n∑
i=1

x2
i e
−β̂1xi

(1− e−β̂1xi)2
and B = (α̂2 − 1)

m∑
j=1

y2
j e
−β̂2yj

(1− e−β̂2yj)2
.

The tilted log-likelihood function l̃(θ) is defined as

l̃(θ) = l(x, y;α1, α2, β1, β2) + κ̂[ψ(θ)− ψ]

where ψ(θ) = R defined by (8.11). Similarly, we can obtain the constrained MLE

θ̂ψ = (α̃1, α̃2, β̃1, β̃2)′ by penalized likelihood method and κ̂ by Lagrange multiplier

method, then constrained observed information matrix j̃θθ(θ̂ψ) can be written as

j̃θθ(θ̂ψ) = −l̃θθ(θ̂ψ) =



j̃α1α1(θ̂ψ) j̃α1α2(θ̂ψ) j̃α1β1(θ̂ψ) j̃α1β2(θ̂ψ)

j̃β1α1(θ̂ψ) j̃β1α2(θ̂ψ) j̃β1β1(θ̂ψ) j̃β1β2(θ̂ψ)

j̃α2α1(θ̂ψ) j̃α2α2(θ̂ψ) j̃α2β1(θ̂ψ) j̃α2β2(θ̂ψ)

j̃β2α1(θ̂ψ) j̃β2α2(θ̂ψ) j̃β2β1(θ̂ψ) j̃β2β2(θ̂ψ)


where

• j̃α1α1(θ̂ψ) =
n

α̃2
1

− κ̂ Rα1α1(θ̂ψ), where Rα1α1(θ̂ψ) =
∂2R(θ)

∂α2
1

∣∣∣∣
θ=θ̂ψ

.

• j̃α1α2(θ̂ψ) = −κ̂ Rα1α2(θ̂ψ), where Rα1α2(θ̂ψ) =
∂2R(θ)

∂α1∂α2

∣∣∣∣
θ=θ̂ψ

.

• j̃α1β1(θ̂ψ) = −
n∑
i=1

xi e
−β̃1xi

1− e−β̃1xi
− κ̂ Rα1β1(θ̂ψ), where Rα1β1(θ̂ψ) =

∂2R(θ)

∂α1∂β1

∣∣∣∣
θ=θ̂ψ

.

• j̃α1β2(θ̂ψ) = −κ̂ Rα1β2(θ̂ψ), where Rα1β2(θ̂ψ) =
∂2R(θ)

∂α1∂β2

∣∣∣∣
θ=θ̂ψ

.

• j̃α2α2(θ̂ψ) =
m

α̃2
2 − κ̂ Rα2α2(θ̂ψ), where Rα2α2(θ̂ψ) =

∂2R(θ)

∂α2
2

∣∣∣∣
θ=θ̂ψ

.
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• j̃α2β1(θ̂ψ) = −κ̂ Rα2β1(θ̂ψ), where Rα2β1(θ̂ψ) =
∂2R(θ)

∂α2∂β1

∣∣∣∣
θ=θ̂ψ

.

• j̃α2β2(θ̂ψ) = −
m∑
j=1

yj e
−β̃2yj

1− e−β̃2yj
− κ̂ Rα2β2(θ̂ψ), where Rα2β2(θ̂ψ) =

∂2R(θ)

∂α2∂β2

∣∣∣∣
θ=θ̂ψ

.

• j̃β1β1(θ̂ψ) =
m

β̃2
1

+ (α̃1 − 1)
n∑
i=1

x2
i e
−β̃1xi

(1− e−β̃1xi)2
− κ̂ Rβ1β1(θ̂ψ), where Rβ1β1(θ̂ψ) =

∂2R(θ)

∂β2
1

∣∣∣∣
θ=θ̂ψ

.

• j̃β1β2(θ̂ψ) = −κ̂ Rβ1β2(θ̂ψ), where Rβ1β2(θ̂ψ) =
∂2R(θ)

∂β1∂β2

∣∣∣∣
θ=θ̂ψ

.

• j̃β2β2(θ̂ψ) =
m

β̃2
2 + (α̃2 − 1)

m∑
j=1

y2
j e
−β̃2yj

(1− e−β̃2yj)2
− κ̂ Rβ2β2(θ̂ψ), where Rβ2β2(θ̂ψ) =

∂2R(θ)

∂β2
2

∣∣∣∣
θ=θ̂ψ

.

Thus r(ψ) can be obtained accordingly.

Let z = (z1, . . . , zn, zn+1, . . . , zn+m)′ denotes the vector-pivotal quantity, in this

case, z = (logF (x1;α1, β), . . . , logF (xn;α1, β), logF (y1;α2, β),
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. . . , logF (ym;α2, β))′. Hence the ancillary direction V is

V = (V1, V2, V3, V4)

=



− log(1− e−β̂1x1) 1− e−β̂1x1

α̂1β̂1e−β̂1x1
−x1

β̂1

0 0

...
...

...

− log(1− e−β̂1xn)
1− e−β̂1xn

α̂1β̂1e−β̂1xn
−xn
β̂1

0 0

0 0 − log(1− e−β̂2y1) 1− e−β̂2y1

α̂2β̂2e−β̂2y1
−y1

β̂2

...
...

...
...

0 0 − log(1− e−β̂2ym)
1− e−β̂2ym

α̂2β̂2e−β̂2ym
−ym
β̂2


Then we can calculate the locally defined canonical parameter ϕ(θ) as

ϕ(θ) =

(
n+m∑
i=1

∂l(θ)

∂wi
V1i,

n+m∑
i=1

∂l(θ)

∂wi
V2i,

n+m∑
i=1

∂l(θ)

∂wi
V3i,

n+m∑
i=1

∂l(θ)

∂wi
V4i

)′

where w = (x1, . . . , xn, y1, . . . , ym)′ be the observed data. Hence, we also have ϕθ(θ).

Therefor, for this unequal scale parameter case, χ(θ) can be obtained accordingly.

Therefore, ˆvar
(
χ(θ̂)− χ(θ̂ψ)

)
, Q(ψ) and r∗(ψ) can be obtained. Hence (1−γ)100%

confidence interval can be obtained from the modified signed log-likelihood ratio

statistics.

Table 8.15 present the 90% and 95% confidence intervals (CI) for R based on

Wald, r and proposed third-order methods by using the same data set recorded in

Section 8.2.1.
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Table 8.15: Interval Estimates of ψ for Example

90% Confidence Interval 95% Confidence Interval

Wald (0.4223, 0.8179) (0.3843, 0.8557)

r (0.4151, 0.7966) (0.3767, 0.8241)

Proposed (0.4080, 0.7910) (0.3698, 0.8188)

We also conduct Monte Carlo simulation studies. The performance of a method

is judged by using the following same criteria: central coverage, upper error, lower

error and average bias.

Tables 8.16 to 8.18 present simulation results for the unequal scale parameters

case, i.e. α1 = 2, α2 = 5, β1 = 3, and R = 0.1(0.1)0.9 with (n,m) = (10, 10), (10, 50)

and (50, 10). Note that, we fixed R and β2 is determined uniquely by Equation

(8.11). It is clear that the coverage probabilities for R are poor and the two-tail

error probabilities are extremely asymmetric from the Wald method. The results

from signed log-likelihood method are not satisfactory especially when two sample

sizes are small or sample sizes are unequal, and it also shows some evidence of

asymmetry of two-tail error probabilities. However, the proposed method gives not

only an almost exact coverage probability but also it has symmetric two-tail error

probabilities even for small or uneven sample sizes.
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Table 8.16: β1 6= β2, α1 = 2, α2 = 5, β1 = 3 and β2 is obtained by Equation (8.11),

(n,m) = (10, 10)

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.1602 0.0033 0.8365 0.07845

0.1 r 0.0401 0.0177 0.9422 0.01120

Proposed 0.0207 0.0252 0.9541 0.00255

Wald 0.1138 0.0125 0.8737 0.05065

0.2 r 0.0388 0.0235 0.9377 0.00765

Proposed 0.0218 0.0258 0.9524 0.00200

Wald 0.0857 0.0225 0.8918 0.03160

0.3 r 0.0372 0.0262 0.9366 0.00670

Proposed 0.0230 0.0259 0.9527 0.00135

Wald 0.0656 0.0362 0.8982 0.02590

0.4 r 0.0352 0.0294 0.9354 0.00730

Proposed 0.0244 0.0259 0.9497 0.00075

Wald 0.0505 0.0506 0.8989 0.02555

0.5 r 0.0317 0.0328 0.9355 0.00725

Proposed 0.0249 0.0255 0.9496 0.00030

Wald 0.0353 0.0670 0.8977 0.02615

0.6 r 0.0290 0.0359 0.9351 0.00745

Proposed 0.0244 0.0246 0.9510 0.00050

Wald 0.0235 0.0900 0.8865 0.03325

0.7 r 0.0257 0.0394 0.9349 0.00755

Proposed 0.0246 0.0238 0.9516 0.00080

Wald 0.0142 0.1234 0.8624 0.05460

0.8 r 0.0239 0.0419 0.9342 0.00900

Proposed 0.0261 0.0239 0.9500 0.00110

Wald 0.0035 0.1763 0.8202 0.08640

0.9 r 0.0198 0.0465 0.9337 0.01335

Proposed 0.0262 0.0240 0.9498 0.00110
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Table 8.17: β1 6= β2, α1 = 2, α2 = 5, β1 = 3 and β2 is obtained by Equation (8.11),

(n,m) = (10, 50)

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.1341 0.0046 0.8613 0.06475

0.1 r 0.0399 0.0186 0.9415 0.01065

Proposed 0.0231 0.0246 0.9523 0.00115

Wald 0.1007 0.0131 0.8862 0.04380

0.2 r 0.0370 0.0243 0.9387 0.00635

Proposed 0.0239 0.0251 0.9510 0.00060

Wald 0.0774 0.0249 0.8977 0.02625

0.3 r 0.0349 0.0289 0.9362 0.00690

Proposed 0.0228 0.0270 0.9502 0.00210

Wald 0.0615 0.0353 0.9032 0.02340

0.4 r 0.0327 0.0311 0.9362 0.00690

Proposed 0.0220 0.0260 0.9520 0.00200

Wald 0.0475 0.0488 0.9037 0.02315

0.5 r 0.0294 0.0323 0.9383 0.00585

Proposed 0.0229 0.0240 0.9531 0.00155

Wald 0.0351 0.0682 0.8967 0.02665

0.6 r 0.0278 0.0348 0.9374 0.00630

Proposed 0.0222 0.0222 0.9556 0.00280

Wald 0.0225 0.0962 0.8813 0.03685

0.7 r 0.0256 0.0388 0.9356 0.00720

Proposed 0.0226 0.0227 0.9547 0.00235

Wald 0.0126 0.1249 0.8625 0.05615

0.8 r 0.0217 0.0431 0.9352 0.01070

Proposed 0.0224 0.0242 0.9534 0.00170

Wald 0.0063 0.1779 0.8158 0.08580

0.9 r 0.0168 0.0473 0.9359 0.01525

Proposed 0.0215 0.0238 0.9547 0.00235
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Table 8.18: β1 6= β2, α1 = 2, α2 = 5, β1 = 3 and β2 is obtained by Equation (8.11),

(n,m) = (50, 10)

R Method Lower Error Upper Error Central Coverage Average Bias

Wald 0.1257 0.0046 0.8697 0.06055

0.1 r 0.0392 0.0167 0.944115 0.01125

Proposed 0.0207 0.0203 0.9590 0.00450

Wald 0.0885 0.0154 0.8961 0.03655

0.2 r 0.0347 0.0223 0.9430 0.00620

Proposed 0.0226 0.0226 0.9548 0.00240

Wald 0.0657 0.0234 0.9109 0.02115

0.3 r 0.0332 0.0252 0.9416 0.00420

Proposed 0.0221 0.0233 0.9546 0.002130

Wald 0.0497 0.0335 0.9168 0.01660

0.4 r 0.0317 0.0286 0.9397 0.00515

Proposed 0.0228 0.0241 0.9531 0.00155

Wald 0.0368 0.0428 0.9204 0.01480

0.5 r 0.0285 0.0309 0.9405 0.00475

Proposed 0.0222 0.0236 0.9542 0.00210

Wald 0.0264 0.0499 0.9237 0.01315

0.6 r 0.0248 0.034830 0.9422 0.00410

Proposed 0.0215 0.0231 0.9554 0.00270

Wald 0.0184 0.0595 0.9221 0.02055

0.7 r 0.0222 0.0332 0.9446 0.00550

Proposed 0.0206 0.0235 0.9559 0.00295

Wald 0.0112 0.0715 0.9173 0.03015

0.8 r 0.0186 0.0324 0.9490 0.00690

Proposed 0.0196 0.0212 0.9592 0.00460

Wald 0.0055 0.0927 0.9018 0.04360

0.9 r 0.0149 0.0291 0.9560 0.00710

Proposed 0.0183 0.0209 0.9608 0.00540
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8.3 Conclusion and Future Work on Third-order Asymp-

totic Methods

A likelihood-based higher order asymptotic method is proposed to apply inference

in the stress-strength reliability model when the two populations are distributed

independently. When the scale parameters are different, the constrained MLE cannot

be obtained by standard Lagrange multiplier methods and a penalized likelihood

method is proposed. The proposed third-order method exhibits high accuracy and

the penalized likelihood method can be easily employed for relatively small data set.

Based on the current work, there are several possible directions that research

could be extended to:

• Theoretically, the proposed method can be applied to obtain inference for

stress-strength reliability from any distributions. In this dissertation, the pa-

rameter is from a continuous distribution. However, when the distribution is

of a discrete nature, the ancillary direction V cannot be obtained by differen-

tiation. It will be important if an appropriate approach can be developed.

• The third-order method results in extremely accurate p-values and confidence

intervals. In applied work, researchers may deal with inference for hierarchical

structure data, for example, in medical science. Extending third-order methods
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to those fields will be an interesting future project.

• The exponential approximation plays an important role of providing accurate

approximations to general statistical models in third-order inference. The is

due to that p(θ) does not dependent on the non-exponential term to the third

order, and it depends only on the observed likelihood and the gradient of the

likelihood at the data point. This dissertation illustrates that this property

hold for univariate model. When working with multivariate or non independent

situation data, does this property still hold? This topic remains challenging.
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