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Abstract 
   Software clustering algorithms presented in the 
literature rarely incorporate in the clustering process 
dynamic information, such as the number of function 
invocations during runtime. Moreover, the structure of 
a software system is often multi-layered, while existing 
clustering algorithms often create flat system 
decompositions. 
   This paper presents a software clustering algorithm 
called MULICsoft that incorporates in the clustering 
process both static and dynamic information. 
MULICsoft produces layered clusters with the core 
elements of each cluster assigned to the top layer. We 
present experimental results of applying MULICsoft to 
a large open-source system. Comparison with existing 
software clustering algorithms indicates that 
MULICsoft is able to produce decompositions that are 
close to those created by system experts. 
 
1. Introduction 
 
   Reverse engineering is the process of analyzing a 
system’s internal elements and its external behavior 
and creating a structural view of the system. Automatic 
construction of a structural view of a large legacy 
system significantly facilitates the developers’ 
understanding of how the system works. In legacy 
systems the original source code is often the only 
available source of information about the system and it 
is very time consuming to study. 
   Software clustering techniques aim to decompose a 
software system into meaningful subsystems, to help 
new developers understand the system. Clustering is 
applied to large software systems in order to partition 
the source files of the system into clusters, such that 

files containing source code with similar functionality 
are placed in the same cluster, while files in different 
clusters contain source code that performs dissimilar 
functions. Software clustering can be done 
automatically or manually. Automatic clustering of a 
large software system using a clustering tool is 
especially useful in the absence of experts or accurate 
design documentation. It is desirable to have a software 
clustering tool that can consider both static and 
dynamic system information. Automatic clustering 
techniques generally employ certain criteria (i.e., low 
coupling and high cohesion) in order to decompose a 
software system into subsystems [9, 8, 7]. Manual 
decomposition of the system is done by software 
engineers. However, it is time consuming and it 
requires full knowledge of the system. 
   We propose the MULICsoft software clustering 
algorithm that is based on the MULIC categorical 
clustering algorithm1 that is described in [2]. 
MULICsoft differs from MULIC in that it incorporates 
both static and dynamic information (i.e., the number of 
function calls during the run time) in the software 
clustering process. MULICsoft handles dynamic 
information by associating weights with file 
dependencies and incorporating the weights in the 
clustering process through special similarity metrics. 
We showed that MULIC clustering results are of higher 
quality than those of other categorical clustering 
algorithms, such as k-Modes, ROCK, AutoClass, 
CLOPE and others [2]. Characteristics of MULIC and 
MULICsoft include: a. The algorithm does not sacrifice 
the quality of the resulting clusters for the number of 
clusters desired. Instead, it produces as many clusters as 
there naturally exist in the data set. b. Each cluster 
                                                 
1 http://www.cs.yorku.ca/~billa/MULIC/ 



  

consists of layers formed gradually through iterations, 
by reducing the similarity criterion for inserting objects 
in layers of a cluster at different iterations. 
   Section 2 describes the Mozilla data set used for 
clustering. Section 3 gives an overview of previous 
software clustering tools. Section 4 describes the 
MULICsoft clustering algorithm. Section 5 describes 
the experimental results on the Mozilla system. Section 
6 discusses inputting additional data to MULICsoft. 
Section 7 discusses the runtime performance. Section 8 
concludes the paper and discusses future work. 
 
2. Description of Data Sets 
 
   Static information on a software system represents 
dependencies between the objects to be clustered. The 
objects to be clustered are source files, while the 
dependencies are procedure calls and variable 
references. Static information on software systems is 
categorical, meaning that the objects have attribute 
values that are taken from a set of discrete values and 
the values have no specified ordering. We represent 
static information as a categorical data set by creating 
an N × N matrix, where N is the number of files. Each 
row of the matrix represents a file i of the software 
system, along with the files that i may call or reference 
during execution. The categorical attribute value (CA) 
in cell (i,j) of the matrix is ‘zero’ or ‘one’, where ‘one’ 
represents that file i calls or references file j and ‘zero’ 
represents that file i does not call or reference file j.   
   Dynamic information on a software system contains 
the results of a profiling of the execution of the system, 
representing how many times each file called 
procedures in other files during the run time. Each row 
of the data set represents a file x of the software 
system, along with the files that x called as well as how 
many times x called them during the profiled run time. 
We represent dynamic information by associating a 
weight with each CA in the matrix, in the range 0.0 to 
1.0, where 1.0 represents that file i called file j the 
maximum number of times during the runtime and 0.0 
represents that file i did not call file j. Figure 1 shows 
an example of a software data set in the form of a 
matrix. 
   The weights were derived by normalizing the number 
of procedure calls during an execution profiling, by 
dividing all numbers of calls in a column by the 
maximum number of calls in that column. Thus, the 
weights are real values in the range from 0.0 to 1.0 and 
there is at least one weight with a value of ‘1.0’ in each 
column. The rationale behind normalizing the weights 
this way is that some helper functions get called 
thousands of times, but we do not want them to have a 
stronger influence on the clustering process than other 
important files that get called fewer times. 

 

 
Figure 1. Cells representing file dependencies 
have values {CA: zero or one, weight: 0.0-1.0}. 
 
   We have applied the MULICsoft algorithm to cluster 
the Mozilla software system. The process of extracting 
static and dynamic information for Mozilla was 
presented in [3]. There are 1202 objects in the Mozilla 
data set, corresponding to 1202 source files of the 
Mozilla system. We use both categorical data and 
weights in clustering. The CAs are boolean values of 
‘zero’ or ‘one’ describing the dependencies between 
the Mozilla files. A weight in the range 0.0 to 1.0 is 
attached to each CA to indicate how strongly the 
corresponding CA should influence the clustering 
process. 
 
3. Related Work 
 
   Several clustering algorithms for software have been 
presented in the literature [8, 9, 3]. Some of the 
previous software clustering tools can consider the 
dynamic information (i.e., the number of function calls 
during the run time) in the clustering process [12, 3] 
but most can not. In this section, we describe three 
established clustering algorithms: BUNCH, ACDC and 
LIMBO. 
   Bunch is a clustering tool intended to aid the 
software developer and maintainer in understanding, 
verifying and maintaining a source code base [8]. The 
input to Bunch is a Module Dependency Graph 
(MDG). Figure 2 shows an MDG graph. Bunch views 
the clustering problem as trying to find a good partition 
of an MDG graph. Bunch views a “good partition" as a 
partition where highly interdependent modules are 
grouped in the same cluster (representing subsystems) 
and independent modules are assigned to separate 
clusters. Figure 2b shows a “good” partitioning of 
Figure 2a. Finding a good graph partition involves 
systematically navigating through a very large search 
space of all possible partitions for that graph. Bunch 
treats graph partitioning (clustering) as an optimization 
problem. The goal of the optimization is to maximize 
the value of an objective function, called 
Modularization Quality (MQ) [8]. 
 



  

 
Figures 2a,b. An MDG graph, from [8]. 

 
   ACDC works in a different way from other 
algorithms. Most software clustering algorithms 
identify clusters by utilizing criteria such as the 
maximization of cohesion, the minimization of 
coupling, or some combination of the two. ACDC 
performs the task of clustering in two stages. In the 
first stage, it creates a skeleton of the final 
decomposition by identifying subsystems that resemble 
established subsystem patterns, such as the body-
header pattern and the subgraph dominator pattern [9]. 
Depending on the pattern used the subsystems are 
given appropriate names. In the second stage, ACDC 
completes the decomposition by using an extended 
version of a technique known as Orphan Adoption 
[11]. Orphan Adoption is an incremental clustering 
technique based on the assumption that the existing 
structure is well established. It attempts to place each 
newly introduced resource (called an orphan) in the 
subsystem that seems “more appropriate”. This is 
usually a subsystem that has a larger amount of 
connectivity to the orphan than any other subsystem. 
   LIMBO is introduced in [4] as a scalable hierarchical 
categorical clustering algorithm that builds on the 
Information Bottleneck (IB) framework for quantifying 
the relevant information preserved when clustering. 
LIMBO has been successfully applied to the software 
clustering problem [3]. LIMBO’s goal is to create 
clusters whose features contain as much information as 
possible about the features of their contents.  LIMBO 
considers weights representing dynamic dependencies 
in the software clustering process. 
 
4. The MULICsoft Clustering Algorithm 
 
   MULICsoft is an extension of the k-Modes clustering 
algorithm for categorical data sets [6]. The k-Modes 
clustering algorithm requires the user to specify the 
number of clusters to be produced and the algorithm 
builds and refines the specified number of clusters. 
Each cluster has a mode associated with it. Assuming 
that the objects in the data set are described by m 
categorical attributes, the mode of a cluster is a vector 
Q={q1, q2, …, qm} where qi is the most frequent value 
for the ith attribute in the given cluster. 
   MULICsoft makes substantial changes to the k-Modes 
algorithm. The purpose of the MULICsoft clustering 
algorithm is to maximize the similarity between the 

object and the mode of the cluster in which the object is 
inserted: 

)mode,( iiosimilarity                (1) 
where oi is the ith object in the data set and modei is the 
mode of the ith object’s cluster. There are various 
options for the similarity metric that will be described in 
Section 4.4. Maximizing formula (1) ensures that all 
objects are as similar to their clusters’ modes as 
possible, when the objects are clustered. 
   The MULICsoft algorithm has the following 
characteristics. First, the number of clusters is not 
specified by the user. Clusters are created, removed or 
merged during the clustering process, as the need arises. 
Second, it is possible for all objects to be assigned to 
clusters of size two or greater by the end of the process. 
However, outliers are assigned to separate clusters of 
size one. Third, clusters are layered. 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3. The MULICsoft clustering algorithm. 
 
   Figure 3 shows the main part of the MULICsoft 
clustering algorithm. The algorithm starts by reading all 
objects from the input file and storing them in S. The 
first object is inserted in a new cluster, the object 
becomes the mode of the cluster and the object is 
removed from S. Then, it continues iterating over all 

Input:  (1)  a set S of objects; 
Parameters:  (1)  δφ : the increment for φ; 
                     (2)  threshold for φ : the maximum number 

of values that can differ between an 
object and the mode of its cluster; 

Default parameter values: (1)  δφ = 1; 
                                          (2)  threshold = the number of 

categorical attributes m; 
Output: a set of clusters; 
Method: 

1. Insert the first object into a new cluster, use the 
object as the mode of the cluster, and remove the 
object from S; 

2. Initialize φ to 1; 
3. Loop through the following until S is empty or φ is 

greater than the specified threshold 
a. For each object o in S 

i. Find o’s closest cluster c by using the 
similarity metric to compare o with the 
modes of all existing cluster(s); 

ii. If the number of different values between o 
and c’s mode is larger than φ, insert o into a 
new cluster 

iii. Otherwise, insert o into c and update c’s 
mode; 

iv. Remove object o from S; 
b. For each cluster c, if there is only one object in 

c, remove c and put the object back in S; 
c. If in this loop no objects were placed in a 

cluster with size > 1, increment φ by δφ.



  

objects that have not been assigned to clusters yet, to 
find the closest cluster. In all iterations, the closest 
cluster for each unclassified object is the cluster with 
the highest similarity between the cluster’s mode and 
the object, as computed by the similarity metric. 
   The variable φ is maintained to indicate how strong 
the similarity has to be between an object and the 
closest cluster’s mode for the object to be inserted in the 
cluster – initially φ equals 1, meaning that the similarity 
has to be very strong between an object and the closest 
cluster’s mode. If the number of different values 
between the object and the closest cluster’s mode is 
greater than φ then the object is inserted in a new cluster 
on its own, else, the object is inserted in the closest 
cluster and the mode is updated. 
   At the end of each iteration, all objects assigned to 
clusters of size one have their clusters removed so that 
the objects will be re-clustered at the next iteration. This 
ensures that the clusters that persist through the process 
are only those containing at least 2 objects for which the 
required similarity can be found. Objects assigned to 
clusters with size greater than one are removed from the 
set of unclassified objects S, so those objects will not be 
re-clustered. 
   At the end of each iteration, if no objects have been 
inserted in clusters of size greater than one, then the 
variable φ is incremented by δφ. Thus, at the next 
iteration the criterion for inserting objects in clusters 
will be more flexible. The iterative process stops when 
all objects are classified in clusters of size greater than 
one, or φ exceeds a user-specified threshold. If the 
threshold equals its default value of the number of 
attributes m, the process stops when all objects are 
assigned to clusters of size greater than one. 
   The MULICsoft algorithm can eventually classify all 
objects in clusters, even if the closest cluster to an 
object is not that similar, because φ can continue 
increasing until all objects are classified. Even in the 
extreme cases, where an object o with m attributes has 
only zero or one value similar to the mode of the closest 
cluster, it can still be classified when φ = m or φ = m-1, 
respectively. 
   Figure 4 illustrates what the results of MULICsoft 
look like. Each cluster consists of many different 
"layers" of objects. The layer of an object represents 
how strong the object's similarity was to the mode of 
the cluster when the object was assigned to the cluster. 
The cluster’s layer in which an object is inserted 
depends on the value of φ. Lower layers have a lower 
coherence  - meaning a lower average similarity 
between all pairs of objects in the layer - and 
correspond to higher values of φ. MULICsoft starts by 
inserting as many objects as possible in top layers – 
such as layer 1 - and then moves to lower layers, 
creating them as φ increases. 

 

 
Figure 4. MULICsoft results. Each cluster 
consists of one or more different layers 
representing different similarities of the 

objects attached to the cluster. 
 
   If an unclassified object has equal similarity to the 
modes of the two or more closest clusters, then the 
algorithm tries to resolve this ‘tie’ by comparing the 
object to the mode of the top layer of each of these 
clusters – the top layer of a cluster may be layer 1 or 2 
and so on. Each cluster’s top layer’s mode was stored 
by MULICsoft when the cluster was created, so it does 
not need to be recomputed. If the object has equal 
similarity to the modes of the top layer of all of its 
closest clusters, the object is assigned to the cluster with 
the highest bottom layer. If all clusters have the same 
bottom layer then the object is assigned to the first 
cluster, since there is insufficient data for selecting the 
best cluster. 
   The complexity of MULICsoft is O(N2), where N is 
the number of objects. Most of our trials had a runtime 
of less than 30 seconds. Increasing δφ or decreasing 
threshold reduces the runtime, often without hurting the 
quality of the results [2]. 
 
4.1. Merging of clusters 
 
   We should generally avoid the situation where the 
similarity of the top layers of two different clusters is 
stronger than the similarity of the top and bottom layer 
of the same cluster. To avoid this, after the clustering 
process MULICsoft can merge pairs of clusters whose 
top layers’ modes’ dissimilarity is less than the 
maximum layer depth of the two clusters. For this 
purpose, MULICsoft preserves the modes of the top 
layers of all clusters. This process reduces the total 
number of clusters and may improve the quality of the 
results. This process is described as follows: 
 
 
 
 



  

for (c = first cluster to last cluster) 
for (d = c+1 to last cluster)  

if the dissimilarity between c’s mode and d’s 
mode is less than the maximum layer 
depth of c and d, merge c into d and break 
the inner loop; 

where the dissimilarity between two modes (Qc = {qc1, 
…, qcm} and Qd = {qd1, …, qdm}) is defined as: 

dissimilarity(Qc , Qd)= ∑
=

m

i
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4.2. Dealing with outliers 
 
   MULICsoft will eventually put all the objects in 
clusters if the threshold for φ equals its default value of 
the number of attributes m. When φ equals m, any 
object that remains unclassified will be inserted in the 
lowest layer of a cluster. This is undesirable if the 
object is an outlier and has little similarity with any 
cluster. The user can disallow this situation from 
happening by specifying a value for threshold that is 
less than m. In this case when φ exceeds the maximum 
allowed value specified by threshold, any remaining 
objects are treated as outliers by classifying each object 
in a separate cluster of size one. We showed that top 
layers are more reliable than lower layers in [2]. 
 
4.3. MULICsoft characteristics for software 
clustering 
 
   MULICsoft includes characteristics specific for 
software clustering, allowing the incorporation of both 
static and dynamic system information in the clustering 
process. 
   All categorical attribute values (CAs) of an object 
have "weights" in the range of 0.0 to 1.0 associated 
with them, which represent dynamic information 
derived from profiling the execution of a system. The 
weights were extracted as described in Section 2. We 
represent the weights of an object o as a vector w_o.  
   A position of the mode of a cluster is set to ‘one’ if 
there is at least one object in the cluster that has a CA 
of ‘one’ in the corresponding position, or has a weight 
greater than 0.0 at the corresponding position. We do 
not use the most frequent value for each position of the 
mode, because with our software data set most or all 
values of the mode would be set to ‘zero’. 
   When calculating the similarity between a mode and 
an object, pairs of ‘zero’ attribute values between mode 
and object are ignored. 

   Besides storing the boolean values of ‘zero’ or ‘one’ 
for the mode µ of a cluster, we also store real numbers 
for each position of the mode, which represent the sum 
of all weights at that position over all objects allocated 
to the cluster. We represent this special mode as w_µ.  
   Special similarity metrics are used to compute the 
similarity between a mode and an object. 
 
4.4. Similarity metrics for comparison of 
objects to modes 
 
   A similarity metric is used to find the closest cluster 
to an object, by computing the similarity between the 
cluster’s mode and the object. MULICsoft handles 
dynamic information by associating weights with CAs 
and incorporating these weights in the clustering 
process through special similarity metrics that consider 
CAs and weights. The similarity metrics use the weight 
vectors w_o and/or w_ µ. The function σ returns 1 if an 
object o and a mode µ have identical CAs of ‘one’ at a 
position, and returns 0 otherwise: 
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Similarity metric 1. The first similarity metric uses 
both the weights of the objects and the mode: 
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Similarity metric 2. The second similarity metric uses 
only the weights of the objects: 
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Similarity metric 3. The third similarity metric 
amplifies the weights of the objects as follows: 
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   The parameter x takes an integer value greater than 5. 
This similarity metric places more importance on high 
weights (1.0) than low weights (0.0). The intuition for 
this formula is that for each pair of CAs with identical 
values of ‘one’ between o and µ the contribution to the 
similarity result should be at least 1.0, for the lowest 
weight of 0.0. The maximum contribution, for the 
highest weight of 1.0, depends on the integer value of 
x. For example, for x=6 the contribution to the 
similarity result ranges from 1.2 for a low weight of 
0.1 to 2.0 for a high weight of 1.0. For x=9 the 
contribution to the similarity result ranges from 1.8 for 
a low weight of 0.1 to 5.0 for a high weight of 1.0. 



  

 
Figure 5. The function surface of the 3rd 

similarity metric, for x=6 and weight values 
between 0.0 and 1.0. 

 
   Figure 5 shows the shape of the values returned by the 
3rd similarity metric for x=6. Each object in this 
example has 10 CAs and weights. This graph shows 
that an object is more likely to be assigned to a cluster if 
all CAs match the mode with high weights of 1.0, than 
if all CAs match the mode with medium weights of 0.5, 
than if all CAs match the mode with low weights of 0.1, 
than if 1 CA matches the mode with a high weight, than 
if 1 CA matches the mode with a low weight. 
 
5. Results for Clustering Mozilla with 
MULICsoft 
 
   In order to evaluate the applicability of MULICsoft 
to the software clustering problem, we applied it to the 
Mozilla software system and compared its output to 
that of other well-established software clustering 
algorithms. We experimented with Mozilla version 1.3 
that was released in March 2003. It contains 
approximately four million lines of C and C++ source 
code. We built Mozilla under Linux and extracted its 
static dependency graph using CPPX and a dynamic 
dependency graph using jprof. A decomposition of the 
Mozilla source files for version M9 was presented in 
[5]. For the evaluation portion of our work, we used an 
updated authoritative decomposition for version 1.3 
[12]. We have placed all of our detailed results online2. 
   We compared MULICsoft to the following software 
clustering algorithms: ACDC [9], BUNCH [8], 
LIMBO [4]. 
   To evaluate the clustering results we compared them 
with the authoritative manual decomposition, using the 
MoJo distance measure3 [10, 9]. MoJo measures the 
                                                 
2 http://www.cs.yorku.ca/~billa/MULICsoftware05/ 
3 A Java implementation of MoJo is available for download at: 
http://www.cs.yorku.ca/~bil/downloads. 

distance between two decompositions of the same 
software system by computing the number of Move 
and Join operations one needs to perform in order to 
transform one to the other. Intuitively, the smaller the 
distance of a proposed decomposition to the 
authoritative one, the more effective the algorithm that 
produced it. 
   MULICsoft clusters the 1202 Mozilla files into 100-
200 clusters, without merging the clusters after the 
clustering process. The clusters produced for Mozilla 
before merging have sizes ranging from 3 to 37 files. 
The results indicate that MULICsoft outperforms other 
software clustering algorithms, such as LIMBO, 
BUNCH and ACDC. The MoJo distances for ACDC, 
BUNCH and LIMBO applied to clustering the Mozilla 
software system are shown in Table 1. MULICsoft 
clusters all Mozilla system files, without treating any 
as outliers, giving MoJo distances such as 388, 397, 
399, 424, as explained in the next section. 
 

Table 1. ACDC, BUNCH, LIMBO results for 
clustering Mozilla. 

Software 
Clustering 
Algorithm 

MoJo 
distance 

Number 
of clusters 

Files 
classified 

ACDC 439 205 1202 
BUNCH 440 21 1202 
LIMBO 438 75 1202 

 
5.1. Results for different similarity metrics 
 
   Table 2 shows the results for each of the 3 similarity 
formulas. The experiments use a linear increase of φ by 
setting it to an initial value of 1 and increasing it by a 
constant value δφ, after each loop where no object was 
classified in a cluster of size greater than one. We set 
threshold equal to its default value of the number of 
attributes m, so that no objects are treated as outliers 
and all 1202 files are clustered. We do not merge the 
clusters after the clustering process. 
 

Table 2. MULICsoft results for clustering 
Mozilla with different similarity metrics. 

Similarity 
metric 

MoJo 
distance 

Number  
of clusters 

δφ 

1st 424 156 80 
2nd 417 227 80 

3rd, x=6 399 187 110 
3rd, x=7 397 183 110 
3rd, x=9 388 191 130 

 
   As Table 2 shows, for all of our similarity metrics, 
the MoJo distance to the authoritative manual 
decomposition is significantly lower than the distances 



  

of ACDC, BUNCH and LIMBO. The 3rd similarity 
metric produces the best results. For the 3rd similarity 
metric with x=9, the results are especially good with a 
MoJo distance of 388 to the authoritative 
decomposition. The reason why x=9 produces the best 
results is that the 3rd similarity metric amplifies 
significantly the effect of the high weights on the 
clustering process. We tried setting x to even higher 
values, such as 10, 12 and 15, but the MoJo distance no 
longer decreased. Thus, a high value for the parameter 
x improves the results until a specific point. As x 
decreases to 7 and 6, the results are still good, with 
MoJo distances of 397 and 399 respectively. 
   For the 1st and 2nd similarity metrics the results are 
better than those of ACDC, BUNCH and LIMBO. 
Note that for the 1st and 2nd similarity metrics a lower 
value of δφ of 80 is used than for the 3rd metric. The 
reason for this is that with the 3rd metric more files are 
classified in the correct cluster during the first and 
second iterations, because of the amplified effect of the 
weights on the clustering process. With the 1st and 2nd 
metrics, on the other hand, fewer files are classified 
correctly during the first and second iterations and the 
lower value of δφ allows some of the files to be 
considered instead at the next iterations. 
 
5.2. MULICsoft with linear and exponential 
growths of φ 
 
   We also experimented with increasing the variable φ 
linearly by setting it to an initial value of 1 and 
increasing it by a constant value δφ after each loop at 
which no object was placed in a cluster of size greater 
than one. We also experimented with increasing the 
variable φ exponentially by setting it to an initial value 
of 1 and multiplying it by 2 after each loop at which no 
object was classified in a cluster of size greater than 
one. 
   Table 3 shows our results for both a linear and an 
exponential increase of φ. We let threshold have its 
default value equal to the number of attributes m, so 
that no objects are treated as outliers and all 1202 files 
are clustered. We assume no merging is done on the 
clusters after the clustering process. 
 
 
 
 
 
 
 
 
 

Table 3. MULICsoft results for clustering 
Mozilla with linear and exponential growths of 

φ. The initial value of φ is 1. 
MoJo 
dist. 

Number of 
clusters 

δφ Similarity 
metric 

Linear growth of φ, 3rd similarity metric, x=9 
399 187 150 3rd, x=9 
391 188 140 3rd, x=9 
388 191 130 3rd, x=9 
408 197 110 3rd, x=9 
410 199 90 3rd, x=9 

Linear growth of φ, 3rd similarity metric, x=6 
402 187 120 3rd, x=6 
399 187 110 3rd, x=6 
399 197 100 3rd, x=6 
407 195 105 3rd, x=6 
402 199 90 3rd, x=6 
412 207 80 3rd, x=6 
414 212 70 3rd, x=6 

Exponential growth of φ 
456 280 multiply φ by 2 3rd, x=9 

 
   As Table 3 shows, for the 3rd similarity metric a 
value of δφ between 70 and 150 gives the best results 
overall, with MoJo distances as low as 388, 391 and 
399. The reason why a high value of δφ is used is that 
sufficient files should be clustered at each iteration so 
that the modes of the clusters are given the opportunity 
to change, as opposed to remaining static. 
   For the 3rd similarity metric and x=6 a value of δφ 
between 100 and 110 gives the best results, while for 
x=9 a value of δφ between 130 and 150 gives the best 
results. The reason for this is that with x=9 more files 
are classified in the correct cluster during the first and 
second iterations, because of the amplified effect of the 
weights on the clustering process. With x=6, on the 
other hand, fewer files are classified correctly during 
the first and second iterations and the lower value of δφ 
allows some of the files to be considered instead at the 
next iterations. 
   For the exponential growth of φ, the MoJo distance 
increases to 456. Even though the exponential growth 
of φ does not produce the best results in this case, it 
can still produce good results when we treat some 
objects as outliers, as described in the next section.  
 
 
 
 
 
 
 
 
 



  

5.3. Treating objects as outliers by setting a 
threshold for φ 
 
   Some times it may be desirable to treat the objects in 
bottom layers of clusters as outliers. Objects are treated 
as outliers by setting the threshold for φ to a value less 
than the number of attributes m, as discussed in Section 
4.2. When φ exceeds the maximum allowed value 
specified by threshold, any remaining objects are 
treated as outliers by classifying them independently in 
clusters of size one. For example, setting the threshold 
for φ to the value 150 means that clustering will stop at 
layer 150 and any objects that would be clustered in 
layers greater than 150 are treated as outliers. We 
showed that lower layers are less reliable than higher 
layers in [2]. We experiment with various thresholds 
for φ, for both linear and exponential growths of φ. We 
use the 3rd similarity metric with x=7. We assume no 
merging is done on the clusters after the clustering 
process. Table 4 shows the results. 
 

Table 4. MULICsoft results for setting a 
threshold for φ and treating some files as 
outliers. The initial value of φ is 1. The 3rd  

similarity metric is used with x=7. 
δφ Thres-

hold for 
φ  

MoJo 
dist. 

Number 
of 

clusters 

Number 
of 

outliers 
Linear growth of φ 

120 121 651 110 402 
120 121 477 180 141 
10 50 627 254 287 
10 80 523 276 126 
50 51 604 214 266 
60 61 582 207 243 
99 100 508 179 152 

Exponential growth of φ 
multiply 
φ by 2 

32 672 250 352 

multiply 
φ by 2 

64 577 270 186 

 
   As Table 4 shows, the MoJo distance increases after 
treating objects as outliers. This increase in MoJo 
distance is related to the fact that each object that is 
treated as an outlier is placed in an independent cluster 
of size one. Thus, many Moves and Joins need to be 
performed for the computed decomposition to reach 
the authoritative manual decomposition and it is 
expected for the MoJo distance to increase. We do not 
interpret the increase in MoJo distance as a decline of 
the quality of the results, but as a sign that we should 
treat outliers in a different way from placing them in 
clusters independently. The MoJo distance would 

significantly decrease if all outliers were placed instead 
in one cluster together. Furthermore, the MoJo distance 
decreases even more if the outliers are simply ignored 
and the distance is computed between the intersection  
of files in the computed decomposition with files in the 
authoritative manual decomposition. A different 
distance measure could be useful for computing the 
distance between a computed decomposition and an 
authoritative decomposition, when outliers are 
involved. 
 
5.4. Merging of clusters 
 
   MULICsoft provides the capability to merge clusters 
that are very similar after the clustering process, for the 
purpose of reducing the number of clusters, as 
described in Section 4.1. Table 5 presents the results 
after merging the clusters. For this experiment we 
ignore the files that are outliers, since they are 
classified independently in clusters of size one and are 
not merged. 
 

Table 5. MULICsoft results after merging 
clusters. The initial value of φ is 1 and it grows 

exponentially by multiplying φ by 2. The 
threshold is 32. The 3rd similarity metric is 

used with x=7. 
Clusters after 

merging 
MoJo 

distance 
Clusters Files 

classified 
100 clusters Increased 

from 320 
to 374 

Reduced 
from 250 

to 100  

850 

90 clusters Increased 
from 320 

to 379 

Reduced 
from 250 

to 90  

850 

80 clusters Increased 
from 320 

to 384 

Reduced 
from 250 

to 80  

850 

 
   As Table 5 shows, in all cases the initial number of 
clusters is 250. We merge clusters until the number of 
clusters decreases to 100, 90 and 80. The MoJo 
distance increases, but this may be due to the MoJo 
distance metric not being able to capture some 
structural change in the clusters caused by the merging. 
In any case, the slight increase in MoJo distance 
caused by merging clusters is an interesting 
observation and we will be investigating it further.  
Perhaps the harm from the increase in MoJo distance is 
less than the benefit from decreasing the number of 
clusters and MoJo is not able to capture this tradeoff. 
 
 
 



  

6. Inputting Additional Categorical Data 
 
   We integrated the following categorical data sets 
with the Mozilla file data set, to produce improved 
results when MULICsoft clustering is applied to the 
integrated data sets. 
• Developers (Dev): The ownership information, i.e., 

the names of the developers involved in the 
implementation of the file. In case no developer was 
known, a unique dummy value for each file is used. 

• Directory Path (Dir): The full directory path for 
each file. In order to increase the similarity of files 
residing in similar directory paths, the set of all 
subpaths for each path is included. 

• Lines of Code (Loc): The number of lines of code 
for each of the files. The values are discretized by 
dividing the full range of loc values into the intervals 
{0; 100}, {100; 200}, {200; 300}, etc. Each file is 
given a feature such as RANGE1, RANGE2, 
RANGE3, etc. 

• Time of Last Update (Tim): The time-stamp of 
each file on the disk. Only the month and year are 
included. 
 

   Table 6 shows the MULICsoft MoJo distances to the 
authoritative decomposition for Mozilla, after inputting 
additional categorical data sets. 
 

Table 6. MULICsoft results for clustering 
Mozilla with additional categorical data. The 

initial value of φ is 1 and it grows linearly. The 
3rd similarity metric is used with x=9. δφ=130. 

Threshold has its default value. 
Categorical Data Sets MoJo  

distance 
Number of  

clusters 
Dev+Dir+LocEQ+Tim 387 196 

Dev+Dir+LocEQ 407 192 
Dev+Dir+Tim 407 192 

Dev+Dir 409 177 
 
   As Table 6 shows, the MoJo distance to the 
authoritative decomposition does not significantly 
improve after inputting additional categorical data sets 
to MULICsoft. After inputting all 4 additional data sets 
of Dev+Dir+LocEQ+Tim, the result is 387, which is 
just slightly better than the best previous result of 388 
for not inputting any additional categorical data. As 
fewer additional categorical data sets are input, the 
MoJo distance increases slightly. For 3 additional 
categorical data sets the distance increases to 407 and 
for 2 additional categorical data sets the distance 
increases again to 409. The reason why we do not 
observe a significant improvement is likely to be that 
for the additional data sets we have set all weights to a 

default value of 1.0, implying that all of the additional 
data will influence the clustering process the same. 
However, in the additional data sets different data 
should have a different effect on the process. For 
example, a directory path with a large number of files 
should be more influential in clustering any of its files 
than a directory path with only a few files. These 
experiments are only preliminary, as we have not 
evaluated MULICsoft for all types and combinations of 
additional data sets and we need to assign different 
weights to the data. 
 
7. Runtime Evaluation 
 
   Our experiments were performed on a Sun Ultra 60 
with 256 MB of memory and a 300 MHz processor. 
Table 7 shows the run times it took for MULICsoft to 
cluster the files of the Mozilla system. 
 
Table 7. MULICsoft runtimes, in seconds. The 

initial value of φ is 1 and it grows linearly. 
Time 

(Seconds) 
Sim. 

metric 
δφ Threshold 

12 3rd, x=9 90 Default (1202) 
12 3rd, x=9 120 Default (1202) 
29 3rd, x=7 10 50 
13 3rd, x=7 120 121 
13 3rd, x=9 50 Default (1202) 

 
 
8. Conclusion and Future Work 
 
   We have presented a software clustering algorithm, 
named MULICsoft. MULICsoft creates 
decompositions that are close to manually created 
ones. MULICsoft does not sacrifice the quality of the 
results for the number of clusters, which in k-Modes is 
defined strictly before the process [2]. 
   For each cluster, MULICsoft forms layers of varying 
interdependencies between the files. It starts by 
forming a first layer of highly interdependent files, 
using strict criteria concerning which files to insert in 
the layer. The first layer of a cluster contains the highly 
interdependent files that are at the core of a subsystem. 
As the process continues, MULICsoft relaxes its 
criteria, forming layers with files that are less 
interdependent than the previous layers. The multi-
layer structure of MULICsoft is ideal for clustering 
software system data. MULICsoft clusters are 
representative of the underlying patterns in a software 
system, because differing layers of interdependencies 
exist in a cluster between files. 
   MULICsoft similarity metrics consider dynamic 
system information by incorporating weights on the 



  

file interdependencies that are derived from a runtime 
profiling of the system. In the end, the human expert 
has the option of merging clusters that are very similar 
to build larger clusters and reduce the number of 
clusters. 
   We have evaluated the quality of MULICsoft results 
on the Mozilla software system for which an expert-
defined authoritative system decomposition exists. On 
this data set, the MULICsoft distance to the 
authoritative decomposition was lower than the 
distances of LIMBO [4], BUNCH [8] and ACDC [9]. 
Finally, we showed that the runtime of MULICsoft 
was satisfactory as it took between 10 and 30 seconds. 
   Future work will include improving the method for 
merging clusters that are similar, to build larger 
clusters, after the clustering process. We are currently 
implementing and testing an improved method for 
merging the clusters. This improved merging method 
will hopefully produce better MoJo distance results 
than the current one. 
   The results for inputting additional categorical data 
sets to MULICsoft are only preliminary. Thorough 
experiments with more types of data are needed. We 
intend to conduct more experiments for additional 
categorical data, such as data on the developers of the 
source files, the time stamps of source files, the 
directory paths of the source files, etc. Furthermore, we 
will be setting the weights for the additional data sets 
to values other than the default value of 1.0 as it is 
currently, depending on the effect that the data should 
have on the clustering process. 
   The results for identifying outliers indicate that often 
the distance to the authoritative decomposition 
increases when outliers are identified. However, this is 
related to the fact that in the computed decomposition 
each outlier is inserted in an independent cluster of size 
one. We will be experimenting with different ways to 
handle outliers, such as inserting them all in one 
cluster. This would decrease the MoJo distance, since 
fewer Moves and Joins would need to be performed in 
the computed decomposition to reach the authoritative 
manual decomposition. Furthermore, we are designing 
a different distance measure for computing the distance 
between a computed decomposition and an 
authoritative decomposition, when outliers are 
involved. 
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