

Multiple Layer Clustering of Large Software Systems

Bill Andreopoulos
Department of

Computer Science
and Engineering,
York University,

4700 Keele Street,
Toronto, M3J1P3
billa@cs.yorku.ca

Aijun An
Department of

Computer Science
and Engineering,
York University,

4700 Keele Street,
Toronto, M3J1P3
aan@cs.yorku.ca

Vassilios Tzerpos
Department of

Computer Science
and Engineering,
York University,

4700 Keele Street,
Toronto, M3J1P3
bil@cs.yorku.ca

Xiaogang Wang
Department of

Mathematics and
Statistics,

York University,
4700 Keele Street,
Toronto, M3J1P3

stevenw@mathstat.
yorku.ca

Abstract
 Software clustering algorithms presented in the
literature rarely incorporate in the clustering process
dynamic information, such as the number of function
invocations during runtime. Moreover, the structure of
a software system is often multi-layered, while existing
clustering algorithms often create flat system
decompositions.
 This paper presents a software clustering algorithm
called MULICsoft that incorporates in the clustering
process both static and dynamic information.
MULICsoft produces layered clusters with the core
elements of each cluster assigned to the top layer. We
present experimental results of applying MULICsoft to
a large open-source system. Comparison with existing
software clustering algorithms indicates that
MULICsoft is able to produce decompositions that are
close to those created by system experts.

1. Introduction

 Reverse engineering is the process of analyzing a
system’s internal elements and its external behavior
and creating a structural view of the system. Automatic
construction of a structural view of a large legacy
system significantly facilitates the developers’
understanding of how the system works. In legacy
systems the original source code is often the only
available source of information about the system and it
is very time consuming to study.
 Software clustering techniques aim to decompose a
software system into meaningful subsystems, to help
new developers understand the system. Clustering is
applied to large software systems in order to partition
the source files of the system into clusters, such that

files containing source code with similar functionality
are placed in the same cluster, while files in different
clusters contain source code that performs dissimilar
functions. Software clustering can be done
automatically or manually. Automatic clustering of a
large software system using a clustering tool is
especially useful in the absence of experts or accurate
design documentation. It is desirable to have a software
clustering tool that can consider both static and
dynamic system information. Automatic clustering
techniques generally employ certain criteria (i.e., low
coupling and high cohesion) in order to decompose a
software system into subsystems [9, 8, 7]. Manual
decomposition of the system is done by software
engineers. However, it is time consuming and it
requires full knowledge of the system.
 We propose the MULICsoft software clustering
algorithm that is based on the MULIC categorical
clustering algorithm1 that is described in [2].
MULICsoft differs from MULIC in that it incorporates
both static and dynamic information (i.e., the number of
function calls during the run time) in the software
clustering process. MULICsoft handles dynamic
information by associating weights with file
dependencies and incorporating the weights in the
clustering process through special similarity metrics.
We showed that MULIC clustering results are of higher
quality than those of other categorical clustering
algorithms, such as k-Modes, ROCK, AutoClass,
CLOPE and others [2]. Characteristics of MULIC and
MULICsoft include: a. The algorithm does not sacrifice
the quality of the resulting clusters for the number of
clusters desired. Instead, it produces as many clusters as
there naturally exist in the data set. b. Each cluster

1 http://www.cs.yorku.ca/~billa/MULIC/

consists of layers formed gradually through iterations,
by reducing the similarity criterion for inserting objects
in layers of a cluster at different iterations.
 Section 2 describes the Mozilla data set used for
clustering. Section 3 gives an overview of previous
software clustering tools. Section 4 describes the
MULICsoft clustering algorithm. Section 5 describes
the experimental results on the Mozilla system. Section
6 discusses inputting additional data to MULICsoft.
Section 7 discusses the runtime performance. Section 8
concludes the paper and discusses future work.

2. Description of Data Sets

 Static information on a software system represents
dependencies between the objects to be clustered. The
objects to be clustered are source files, while the
dependencies are procedure calls and variable
references. Static information on software systems is
categorical, meaning that the objects have attribute
values that are taken from a set of discrete values and
the values have no specified ordering. We represent
static information as a categorical data set by creating
an N × N matrix, where N is the number of files. Each
row of the matrix represents a file i of the software
system, along with the files that i may call or reference
during execution. The categorical attribute value (CA)
in cell (i,j) of the matrix is ‘zero’ or ‘one’, where ‘one’
represents that file i calls or references file j and ‘zero’
represents that file i does not call or reference file j.
 Dynamic information on a software system contains
the results of a profiling of the execution of the system,
representing how many times each file called
procedures in other files during the run time. Each row
of the data set represents a file x of the software
system, along with the files that x called as well as how
many times x called them during the profiled run time.
We represent dynamic information by associating a
weight with each CA in the matrix, in the range 0.0 to
1.0, where 1.0 represents that file i called file j the
maximum number of times during the runtime and 0.0
represents that file i did not call file j. Figure 1 shows
an example of a software data set in the form of a
matrix.
 The weights were derived by normalizing the number
of procedure calls during an execution profiling, by
dividing all numbers of calls in a column by the
maximum number of calls in that column. Thus, the
weights are real values in the range from 0.0 to 1.0 and
there is at least one weight with a value of ‘1.0’ in each
column. The rationale behind normalizing the weights
this way is that some helper functions get called
thousands of times, but we do not want them to have a
stronger influence on the clustering process than other
important files that get called fewer times.

Figure 1. Cells representing file dependencies
have values {CA: zero or one, weight: 0.0-1.0}.

 We have applied the MULICsoft algorithm to cluster
the Mozilla software system. The process of extracting
static and dynamic information for Mozilla was
presented in [3]. There are 1202 objects in the Mozilla
data set, corresponding to 1202 source files of the
Mozilla system. We use both categorical data and
weights in clustering. The CAs are boolean values of
‘zero’ or ‘one’ describing the dependencies between
the Mozilla files. A weight in the range 0.0 to 1.0 is
attached to each CA to indicate how strongly the
corresponding CA should influence the clustering
process.

3. Related Work

 Several clustering algorithms for software have been
presented in the literature [8, 9, 3]. Some of the
previous software clustering tools can consider the
dynamic information (i.e., the number of function calls
during the run time) in the clustering process [12, 3]
but most can not. In this section, we describe three
established clustering algorithms: BUNCH, ACDC and
LIMBO.
 Bunch is a clustering tool intended to aid the
software developer and maintainer in understanding,
verifying and maintaining a source code base [8]. The
input to Bunch is a Module Dependency Graph
(MDG). Figure 2 shows an MDG graph. Bunch views
the clustering problem as trying to find a good partition
of an MDG graph. Bunch views a “good partition" as a
partition where highly interdependent modules are
grouped in the same cluster (representing subsystems)
and independent modules are assigned to separate
clusters. Figure 2b shows a “good” partitioning of
Figure 2a. Finding a good graph partition involves
systematically navigating through a very large search
space of all possible partitions for that graph. Bunch
treats graph partitioning (clustering) as an optimization
problem. The goal of the optimization is to maximize
the value of an objective function, called
Modularization Quality (MQ) [8].

Figures 2a,b. An MDG graph, from [8].

 ACDC works in a different way from other
algorithms. Most software clustering algorithms
identify clusters by utilizing criteria such as the
maximization of cohesion, the minimization of
coupling, or some combination of the two. ACDC
performs the task of clustering in two stages. In the
first stage, it creates a skeleton of the final
decomposition by identifying subsystems that resemble
established subsystem patterns, such as the body-
header pattern and the subgraph dominator pattern [9].
Depending on the pattern used the subsystems are
given appropriate names. In the second stage, ACDC
completes the decomposition by using an extended
version of a technique known as Orphan Adoption
[11]. Orphan Adoption is an incremental clustering
technique based on the assumption that the existing
structure is well established. It attempts to place each
newly introduced resource (called an orphan) in the
subsystem that seems “more appropriate”. This is
usually a subsystem that has a larger amount of
connectivity to the orphan than any other subsystem.
 LIMBO is introduced in [4] as a scalable hierarchical
categorical clustering algorithm that builds on the
Information Bottleneck (IB) framework for quantifying
the relevant information preserved when clustering.
LIMBO has been successfully applied to the software
clustering problem [3]. LIMBO’s goal is to create
clusters whose features contain as much information as
possible about the features of their contents. LIMBO
considers weights representing dynamic dependencies
in the software clustering process.

4. The MULICsoft Clustering Algorithm

 MULICsoft is an extension of the k-Modes clustering
algorithm for categorical data sets [6]. The k-Modes
clustering algorithm requires the user to specify the
number of clusters to be produced and the algorithm
builds and refines the specified number of clusters.
Each cluster has a mode associated with it. Assuming
that the objects in the data set are described by m
categorical attributes, the mode of a cluster is a vector
Q={q1, q2, …, qm} where qi is the most frequent value
for the ith attribute in the given cluster.
 MULICsoft makes substantial changes to the k-Modes
algorithm. The purpose of the MULICsoft clustering
algorithm is to maximize the similarity between the

object and the mode of the cluster in which the object is
inserted:

)mode,(iiosimilarity (1)
where oi is the ith object in the data set and modei is the
mode of the ith object’s cluster. There are various
options for the similarity metric that will be described in
Section 4.4. Maximizing formula (1) ensures that all
objects are as similar to their clusters’ modes as
possible, when the objects are clustered.
 The MULICsoft algorithm has the following
characteristics. First, the number of clusters is not
specified by the user. Clusters are created, removed or
merged during the clustering process, as the need arises.
Second, it is possible for all objects to be assigned to
clusters of size two or greater by the end of the process.
However, outliers are assigned to separate clusters of
size one. Third, clusters are layered.

Figure 3. The MULICsoft clustering algorithm.

 Figure 3 shows the main part of the MULICsoft
clustering algorithm. The algorithm starts by reading all
objects from the input file and storing them in S. The
first object is inserted in a new cluster, the object
becomes the mode of the cluster and the object is
removed from S. Then, it continues iterating over all

Input: (1) a set S of objects;
Parameters: (1) δφ : the increment for φ;
 (2) threshold for φ : the maximum number

of values that can differ between an
object and the mode of its cluster;

Default parameter values: (1) δφ = 1;
 (2) threshold = the number of

categorical attributes m;
Output: a set of clusters;
Method:

1. Insert the first object into a new cluster, use the
object as the mode of the cluster, and remove the
object from S;

2. Initialize φ to 1;
3. Loop through the following until S is empty or φ is

greater than the specified threshold
a. For each object o in S

i. Find o’s closest cluster c by using the
similarity metric to compare o with the
modes of all existing cluster(s);

ii. If the number of different values between o
and c’s mode is larger than φ, insert o into a
new cluster

iii. Otherwise, insert o into c and update c’s
mode;

iv. Remove object o from S;
b. For each cluster c, if there is only one object in

c, remove c and put the object back in S;
c. If in this loop no objects were placed in a

cluster with size > 1, increment φ by δφ.

objects that have not been assigned to clusters yet, to
find the closest cluster. In all iterations, the closest
cluster for each unclassified object is the cluster with
the highest similarity between the cluster’s mode and
the object, as computed by the similarity metric.
 The variable φ is maintained to indicate how strong
the similarity has to be between an object and the
closest cluster’s mode for the object to be inserted in the
cluster – initially φ equals 1, meaning that the similarity
has to be very strong between an object and the closest
cluster’s mode. If the number of different values
between the object and the closest cluster’s mode is
greater than φ then the object is inserted in a new cluster
on its own, else, the object is inserted in the closest
cluster and the mode is updated.
 At the end of each iteration, all objects assigned to
clusters of size one have their clusters removed so that
the objects will be re-clustered at the next iteration. This
ensures that the clusters that persist through the process
are only those containing at least 2 objects for which the
required similarity can be found. Objects assigned to
clusters with size greater than one are removed from the
set of unclassified objects S, so those objects will not be
re-clustered.
 At the end of each iteration, if no objects have been
inserted in clusters of size greater than one, then the
variable φ is incremented by δφ. Thus, at the next
iteration the criterion for inserting objects in clusters
will be more flexible. The iterative process stops when
all objects are classified in clusters of size greater than
one, or φ exceeds a user-specified threshold. If the
threshold equals its default value of the number of
attributes m, the process stops when all objects are
assigned to clusters of size greater than one.
 The MULICsoft algorithm can eventually classify all
objects in clusters, even if the closest cluster to an
object is not that similar, because φ can continue
increasing until all objects are classified. Even in the
extreme cases, where an object o with m attributes has
only zero or one value similar to the mode of the closest
cluster, it can still be classified when φ = m or φ = m-1,
respectively.
 Figure 4 illustrates what the results of MULICsoft
look like. Each cluster consists of many different
"layers" of objects. The layer of an object represents
how strong the object's similarity was to the mode of
the cluster when the object was assigned to the cluster.
The cluster’s layer in which an object is inserted
depends on the value of φ. Lower layers have a lower
coherence - meaning a lower average similarity
between all pairs of objects in the layer - and
correspond to higher values of φ. MULICsoft starts by
inserting as many objects as possible in top layers –
such as layer 1 - and then moves to lower layers,
creating them as φ increases.

Figure 4. MULICsoft results. Each cluster
consists of one or more different layers
representing different similarities of the

objects attached to the cluster.

 If an unclassified object has equal similarity to the
modes of the two or more closest clusters, then the
algorithm tries to resolve this ‘tie’ by comparing the
object to the mode of the top layer of each of these
clusters – the top layer of a cluster may be layer 1 or 2
and so on. Each cluster’s top layer’s mode was stored
by MULICsoft when the cluster was created, so it does
not need to be recomputed. If the object has equal
similarity to the modes of the top layer of all of its
closest clusters, the object is assigned to the cluster with
the highest bottom layer. If all clusters have the same
bottom layer then the object is assigned to the first
cluster, since there is insufficient data for selecting the
best cluster.
 The complexity of MULICsoft is O(N2), where N is
the number of objects. Most of our trials had a runtime
of less than 30 seconds. Increasing δφ or decreasing
threshold reduces the runtime, often without hurting the
quality of the results [2].

4.1. Merging of clusters

 We should generally avoid the situation where the
similarity of the top layers of two different clusters is
stronger than the similarity of the top and bottom layer
of the same cluster. To avoid this, after the clustering
process MULICsoft can merge pairs of clusters whose
top layers’ modes’ dissimilarity is less than the
maximum layer depth of the two clusters. For this
purpose, MULICsoft preserves the modes of the top
layers of all clusters. This process reduces the total
number of clusters and may improve the quality of the
results. This process is described as follows:

for (c = first cluster to last cluster)
for (d = c+1 to last cluster)

if the dissimilarity between c’s mode and d’s
mode is less than the maximum layer
depth of c and d, merge c into d and break
the inner loop;

where the dissimilarity between two modes (Qc = {qc1,
…, qcm} and Qd = {qd1, …, qdm}) is defined as:

dissimilarity(Qc , Qd)= ∑
=

m

i
dici qq

1
),(δ

where




≠
=

=
).(1
);(0

),(
dici

dici
dici qq

qq
qqδ

4.2. Dealing with outliers

 MULICsoft will eventually put all the objects in
clusters if the threshold for φ equals its default value of
the number of attributes m. When φ equals m, any
object that remains unclassified will be inserted in the
lowest layer of a cluster. This is undesirable if the
object is an outlier and has little similarity with any
cluster. The user can disallow this situation from
happening by specifying a value for threshold that is
less than m. In this case when φ exceeds the maximum
allowed value specified by threshold, any remaining
objects are treated as outliers by classifying each object
in a separate cluster of size one. We showed that top
layers are more reliable than lower layers in [2].

4.3. MULICsoft characteristics for software
clustering

 MULICsoft includes characteristics specific for
software clustering, allowing the incorporation of both
static and dynamic system information in the clustering
process.
 All categorical attribute values (CAs) of an object
have "weights" in the range of 0.0 to 1.0 associated
with them, which represent dynamic information
derived from profiling the execution of a system. The
weights were extracted as described in Section 2. We
represent the weights of an object o as a vector w_o.
 A position of the mode of a cluster is set to ‘one’ if
there is at least one object in the cluster that has a CA
of ‘one’ in the corresponding position, or has a weight
greater than 0.0 at the corresponding position. We do
not use the most frequent value for each position of the
mode, because with our software data set most or all
values of the mode would be set to ‘zero’.
 When calculating the similarity between a mode and
an object, pairs of ‘zero’ attribute values between mode
and object are ignored.

 Besides storing the boolean values of ‘zero’ or ‘one’
for the mode µ of a cluster, we also store real numbers
for each position of the mode, which represent the sum
of all weights at that position over all objects allocated
to the cluster. We represent this special mode as w_µ.
 Special similarity metrics are used to compute the
similarity between a mode and an object.

4.4. Similarity metrics for comparison of
objects to modes

 A similarity metric is used to find the closest cluster
to an object, by computing the similarity between the
cluster’s mode and the object. MULICsoft handles
dynamic information by associating weights with CAs
and incorporating these weights in the clustering
process through special similarity metrics that consider
CAs and weights. The similarity metrics use the weight
vectors w_o and/or w_ µ. The function σ returns 1 if an
object o and a mode µ have identical CAs of ‘one’ at a
position, and returns 0 otherwise:



 ==

=
otherwise

ii
o

ii
o

0

);1(1
),(

µ
µσ

Similarity metric 1. The first similarity metric uses
both the weights of the objects and the mode:

),(
1

__),(
ii

o
m

i i
w

i
owosimilarity µσµµ ×∑

=
×=

Similarity metric 2. The second similarity metric uses
only the weights of the objects:

),(
1

_),(
ii

o
m

i i
owosimilarity µσµ ×∑

=
=

Similarity metric 3. The third similarity metric
amplifies the weights of the objects as follows:

),(
1)_4(5

)_4(
),(

ii
o

m

i
i

ow
i

owx
osimilarity µσµ ×∑

= ×−

×−
=

 The parameter x takes an integer value greater than 5.
This similarity metric places more importance on high
weights (1.0) than low weights (0.0). The intuition for
this formula is that for each pair of CAs with identical
values of ‘one’ between o and µ the contribution to the
similarity result should be at least 1.0, for the lowest
weight of 0.0. The maximum contribution, for the
highest weight of 1.0, depends on the integer value of
x. For example, for x=6 the contribution to the
similarity result ranges from 1.2 for a low weight of
0.1 to 2.0 for a high weight of 1.0. For x=9 the
contribution to the similarity result ranges from 1.8 for
a low weight of 0.1 to 5.0 for a high weight of 1.0.

Figure 5. The function surface of the 3rd

similarity metric, for x=6 and weight values
between 0.0 and 1.0.

 Figure 5 shows the shape of the values returned by the
3rd similarity metric for x=6. Each object in this
example has 10 CAs and weights. This graph shows
that an object is more likely to be assigned to a cluster if
all CAs match the mode with high weights of 1.0, than
if all CAs match the mode with medium weights of 0.5,
than if all CAs match the mode with low weights of 0.1,
than if 1 CA matches the mode with a high weight, than
if 1 CA matches the mode with a low weight.

5. Results for Clustering Mozilla with
MULICsoft

 In order to evaluate the applicability of MULICsoft
to the software clustering problem, we applied it to the
Mozilla software system and compared its output to
that of other well-established software clustering
algorithms. We experimented with Mozilla version 1.3
that was released in March 2003. It contains
approximately four million lines of C and C++ source
code. We built Mozilla under Linux and extracted its
static dependency graph using CPPX and a dynamic
dependency graph using jprof. A decomposition of the
Mozilla source files for version M9 was presented in
[5]. For the evaluation portion of our work, we used an
updated authoritative decomposition for version 1.3
[12]. We have placed all of our detailed results online2.
 We compared MULICsoft to the following software
clustering algorithms: ACDC [9], BUNCH [8],
LIMBO [4].
 To evaluate the clustering results we compared them
with the authoritative manual decomposition, using the
MoJo distance measure3 [10, 9]. MoJo measures the

2 http://www.cs.yorku.ca/~billa/MULICsoftware05/
3 A Java implementation of MoJo is available for download at:
http://www.cs.yorku.ca/~bil/downloads.

distance between two decompositions of the same
software system by computing the number of Move
and Join operations one needs to perform in order to
transform one to the other. Intuitively, the smaller the
distance of a proposed decomposition to the
authoritative one, the more effective the algorithm that
produced it.
 MULICsoft clusters the 1202 Mozilla files into 100-
200 clusters, without merging the clusters after the
clustering process. The clusters produced for Mozilla
before merging have sizes ranging from 3 to 37 files.
The results indicate that MULICsoft outperforms other
software clustering algorithms, such as LIMBO,
BUNCH and ACDC. The MoJo distances for ACDC,
BUNCH and LIMBO applied to clustering the Mozilla
software system are shown in Table 1. MULICsoft
clusters all Mozilla system files, without treating any
as outliers, giving MoJo distances such as 388, 397,
399, 424, as explained in the next section.

Table 1. ACDC, BUNCH, LIMBO results for
clustering Mozilla.

Software
Clustering
Algorithm

MoJo
distance

Number
of clusters

Files
classified

ACDC 439 205 1202
BUNCH 440 21 1202
LIMBO 438 75 1202

5.1. Results for different similarity metrics

 Table 2 shows the results for each of the 3 similarity
formulas. The experiments use a linear increase of φ by
setting it to an initial value of 1 and increasing it by a
constant value δφ, after each loop where no object was
classified in a cluster of size greater than one. We set
threshold equal to its default value of the number of
attributes m, so that no objects are treated as outliers
and all 1202 files are clustered. We do not merge the
clusters after the clustering process.

Table 2. MULICsoft results for clustering
Mozilla with different similarity metrics.

Similarity
metric

MoJo
distance

Number
of clusters

δφ

1st 424 156 80
2nd 417 227 80

3rd, x=6 399 187 110
3rd, x=7 397 183 110
3rd, x=9 388 191 130

 As Table 2 shows, for all of our similarity metrics,
the MoJo distance to the authoritative manual
decomposition is significantly lower than the distances

of ACDC, BUNCH and LIMBO. The 3rd similarity
metric produces the best results. For the 3rd similarity
metric with x=9, the results are especially good with a
MoJo distance of 388 to the authoritative
decomposition. The reason why x=9 produces the best
results is that the 3rd similarity metric amplifies
significantly the effect of the high weights on the
clustering process. We tried setting x to even higher
values, such as 10, 12 and 15, but the MoJo distance no
longer decreased. Thus, a high value for the parameter
x improves the results until a specific point. As x
decreases to 7 and 6, the results are still good, with
MoJo distances of 397 and 399 respectively.
 For the 1st and 2nd similarity metrics the results are
better than those of ACDC, BUNCH and LIMBO.
Note that for the 1st and 2nd similarity metrics a lower
value of δφ of 80 is used than for the 3rd metric. The
reason for this is that with the 3rd metric more files are
classified in the correct cluster during the first and
second iterations, because of the amplified effect of the
weights on the clustering process. With the 1st and 2nd
metrics, on the other hand, fewer files are classified
correctly during the first and second iterations and the
lower value of δφ allows some of the files to be
considered instead at the next iterations.

5.2. MULICsoft with linear and exponential
growths of φ

 We also experimented with increasing the variable φ
linearly by setting it to an initial value of 1 and
increasing it by a constant value δφ after each loop at
which no object was placed in a cluster of size greater
than one. We also experimented with increasing the
variable φ exponentially by setting it to an initial value
of 1 and multiplying it by 2 after each loop at which no
object was classified in a cluster of size greater than
one.
 Table 3 shows our results for both a linear and an
exponential increase of φ. We let threshold have its
default value equal to the number of attributes m, so
that no objects are treated as outliers and all 1202 files
are clustered. We assume no merging is done on the
clusters after the clustering process.

Table 3. MULICsoft results for clustering
Mozilla with linear and exponential growths of

φ. The initial value of φ is 1.
MoJo
dist.

Number of
clusters

δφ Similarity
metric

Linear growth of φ, 3rd similarity metric, x=9
399 187 150 3rd, x=9
391 188 140 3rd, x=9
388 191 130 3rd, x=9
408 197 110 3rd, x=9
410 199 90 3rd, x=9

Linear growth of φ, 3rd similarity metric, x=6
402 187 120 3rd, x=6
399 187 110 3rd, x=6
399 197 100 3rd, x=6
407 195 105 3rd, x=6
402 199 90 3rd, x=6
412 207 80 3rd, x=6
414 212 70 3rd, x=6

Exponential growth of φ
456 280 multiply φ by 2 3rd, x=9

 As Table 3 shows, for the 3rd similarity metric a
value of δφ between 70 and 150 gives the best results
overall, with MoJo distances as low as 388, 391 and
399. The reason why a high value of δφ is used is that
sufficient files should be clustered at each iteration so
that the modes of the clusters are given the opportunity
to change, as opposed to remaining static.
 For the 3rd similarity metric and x=6 a value of δφ
between 100 and 110 gives the best results, while for
x=9 a value of δφ between 130 and 150 gives the best
results. The reason for this is that with x=9 more files
are classified in the correct cluster during the first and
second iterations, because of the amplified effect of the
weights on the clustering process. With x=6, on the
other hand, fewer files are classified correctly during
the first and second iterations and the lower value of δφ
allows some of the files to be considered instead at the
next iterations.
 For the exponential growth of φ, the MoJo distance
increases to 456. Even though the exponential growth
of φ does not produce the best results in this case, it
can still produce good results when we treat some
objects as outliers, as described in the next section.

5.3. Treating objects as outliers by setting a
threshold for φ

 Some times it may be desirable to treat the objects in
bottom layers of clusters as outliers. Objects are treated
as outliers by setting the threshold for φ to a value less
than the number of attributes m, as discussed in Section
4.2. When φ exceeds the maximum allowed value
specified by threshold, any remaining objects are
treated as outliers by classifying them independently in
clusters of size one. For example, setting the threshold
for φ to the value 150 means that clustering will stop at
layer 150 and any objects that would be clustered in
layers greater than 150 are treated as outliers. We
showed that lower layers are less reliable than higher
layers in [2]. We experiment with various thresholds
for φ, for both linear and exponential growths of φ. We
use the 3rd similarity metric with x=7. We assume no
merging is done on the clusters after the clustering
process. Table 4 shows the results.

Table 4. MULICsoft results for setting a
threshold for φ and treating some files as
outliers. The initial value of φ is 1. The 3rd

similarity metric is used with x=7.
δφ Thres-

hold for
φ

MoJo
dist.

Number
of

clusters

Number
of

outliers
Linear growth of φ

120 121 651 110 402
120 121 477 180 141
10 50 627 254 287
10 80 523 276 126
50 51 604 214 266
60 61 582 207 243
99 100 508 179 152

Exponential growth of φ
multiply
φ by 2

32 672 250 352

multiply
φ by 2

64 577 270 186

 As Table 4 shows, the MoJo distance increases after
treating objects as outliers. This increase in MoJo
distance is related to the fact that each object that is
treated as an outlier is placed in an independent cluster
of size one. Thus, many Moves and Joins need to be
performed for the computed decomposition to reach
the authoritative manual decomposition and it is
expected for the MoJo distance to increase. We do not
interpret the increase in MoJo distance as a decline of
the quality of the results, but as a sign that we should
treat outliers in a different way from placing them in
clusters independently. The MoJo distance would

significantly decrease if all outliers were placed instead
in one cluster together. Furthermore, the MoJo distance
decreases even more if the outliers are simply ignored
and the distance is computed between the intersection
of files in the computed decomposition with files in the
authoritative manual decomposition. A different
distance measure could be useful for computing the
distance between a computed decomposition and an
authoritative decomposition, when outliers are
involved.

5.4. Merging of clusters

 MULICsoft provides the capability to merge clusters
that are very similar after the clustering process, for the
purpose of reducing the number of clusters, as
described in Section 4.1. Table 5 presents the results
after merging the clusters. For this experiment we
ignore the files that are outliers, since they are
classified independently in clusters of size one and are
not merged.

Table 5. MULICsoft results after merging
clusters. The initial value of φ is 1 and it grows

exponentially by multiplying φ by 2. The
threshold is 32. The 3rd similarity metric is

used with x=7.
Clusters after

merging
MoJo

distance
Clusters Files

classified
100 clusters Increased

from 320
to 374

Reduced
from 250

to 100

850

90 clusters Increased
from 320

to 379

Reduced
from 250

to 90

850

80 clusters Increased
from 320

to 384

Reduced
from 250

to 80

850

 As Table 5 shows, in all cases the initial number of
clusters is 250. We merge clusters until the number of
clusters decreases to 100, 90 and 80. The MoJo
distance increases, but this may be due to the MoJo
distance metric not being able to capture some
structural change in the clusters caused by the merging.
In any case, the slight increase in MoJo distance
caused by merging clusters is an interesting
observation and we will be investigating it further.
Perhaps the harm from the increase in MoJo distance is
less than the benefit from decreasing the number of
clusters and MoJo is not able to capture this tradeoff.

6. Inputting Additional Categorical Data

 We integrated the following categorical data sets
with the Mozilla file data set, to produce improved
results when MULICsoft clustering is applied to the
integrated data sets.
• Developers (Dev): The ownership information, i.e.,

the names of the developers involved in the
implementation of the file. In case no developer was
known, a unique dummy value for each file is used.

• Directory Path (Dir): The full directory path for
each file. In order to increase the similarity of files
residing in similar directory paths, the set of all
subpaths for each path is included.

• Lines of Code (Loc): The number of lines of code
for each of the files. The values are discretized by
dividing the full range of loc values into the intervals
{0; 100}, {100; 200}, {200; 300}, etc. Each file is
given a feature such as RANGE1, RANGE2,
RANGE3, etc.

• Time of Last Update (Tim): The time-stamp of
each file on the disk. Only the month and year are
included.

 Table 6 shows the MULICsoft MoJo distances to the
authoritative decomposition for Mozilla, after inputting
additional categorical data sets.

Table 6. MULICsoft results for clustering
Mozilla with additional categorical data. The

initial value of φ is 1 and it grows linearly. The
3rd similarity metric is used with x=9. δφ=130.

Threshold has its default value.
Categorical Data Sets MoJo

distance
Number of

clusters
Dev+Dir+LocEQ+Tim 387 196

Dev+Dir+LocEQ 407 192
Dev+Dir+Tim 407 192

Dev+Dir 409 177

 As Table 6 shows, the MoJo distance to the
authoritative decomposition does not significantly
improve after inputting additional categorical data sets
to MULICsoft. After inputting all 4 additional data sets
of Dev+Dir+LocEQ+Tim, the result is 387, which is
just slightly better than the best previous result of 388
for not inputting any additional categorical data. As
fewer additional categorical data sets are input, the
MoJo distance increases slightly. For 3 additional
categorical data sets the distance increases to 407 and
for 2 additional categorical data sets the distance
increases again to 409. The reason why we do not
observe a significant improvement is likely to be that
for the additional data sets we have set all weights to a

default value of 1.0, implying that all of the additional
data will influence the clustering process the same.
However, in the additional data sets different data
should have a different effect on the process. For
example, a directory path with a large number of files
should be more influential in clustering any of its files
than a directory path with only a few files. These
experiments are only preliminary, as we have not
evaluated MULICsoft for all types and combinations of
additional data sets and we need to assign different
weights to the data.

7. Runtime Evaluation

 Our experiments were performed on a Sun Ultra 60
with 256 MB of memory and a 300 MHz processor.
Table 7 shows the run times it took for MULICsoft to
cluster the files of the Mozilla system.

Table 7. MULICsoft runtimes, in seconds. The

initial value of φ is 1 and it grows linearly.
Time

(Seconds)
Sim.

metric
δφ Threshold

12 3rd, x=9 90 Default (1202)
12 3rd, x=9 120 Default (1202)
29 3rd, x=7 10 50
13 3rd, x=7 120 121
13 3rd, x=9 50 Default (1202)

8. Conclusion and Future Work

 We have presented a software clustering algorithm,
named MULICsoft. MULICsoft creates
decompositions that are close to manually created
ones. MULICsoft does not sacrifice the quality of the
results for the number of clusters, which in k-Modes is
defined strictly before the process [2].
 For each cluster, MULICsoft forms layers of varying
interdependencies between the files. It starts by
forming a first layer of highly interdependent files,
using strict criteria concerning which files to insert in
the layer. The first layer of a cluster contains the highly
interdependent files that are at the core of a subsystem.
As the process continues, MULICsoft relaxes its
criteria, forming layers with files that are less
interdependent than the previous layers. The multi-
layer structure of MULICsoft is ideal for clustering
software system data. MULICsoft clusters are
representative of the underlying patterns in a software
system, because differing layers of interdependencies
exist in a cluster between files.
 MULICsoft similarity metrics consider dynamic
system information by incorporating weights on the

file interdependencies that are derived from a runtime
profiling of the system. In the end, the human expert
has the option of merging clusters that are very similar
to build larger clusters and reduce the number of
clusters.
 We have evaluated the quality of MULICsoft results
on the Mozilla software system for which an expert-
defined authoritative system decomposition exists. On
this data set, the MULICsoft distance to the
authoritative decomposition was lower than the
distances of LIMBO [4], BUNCH [8] and ACDC [9].
Finally, we showed that the runtime of MULICsoft
was satisfactory as it took between 10 and 30 seconds.
 Future work will include improving the method for
merging clusters that are similar, to build larger
clusters, after the clustering process. We are currently
implementing and testing an improved method for
merging the clusters. This improved merging method
will hopefully produce better MoJo distance results
than the current one.
 The results for inputting additional categorical data
sets to MULICsoft are only preliminary. Thorough
experiments with more types of data are needed. We
intend to conduct more experiments for additional
categorical data, such as data on the developers of the
source files, the time stamps of source files, the
directory paths of the source files, etc. Furthermore, we
will be setting the weights for the additional data sets
to values other than the default value of 1.0 as it is
currently, depending on the effect that the data should
have on the clustering process.
 The results for identifying outliers indicate that often
the distance to the authoritative decomposition
increases when outliers are identified. However, this is
related to the fact that in the computed decomposition
each outlier is inserted in an independent cluster of size
one. We will be experimenting with different ways to
handle outliers, such as inserting them all in one
cluster. This would decrease the MoJo distance, since
fewer Moves and Joins would need to be performed in
the computed decomposition to reach the authoritative
manual decomposition. Furthermore, we are designing
a different distance measure for computing the distance
between a computed decomposition and an
authoritative decomposition, when outliers are
involved.

9. References

[1] B. Andreopoulos, A. An and X. Wang. (2005) BILCOM:
Bi-level Clustering of Mixed Categorical and Numerical
Biological Data. Technical Report # CS-2005-01.
Department of Computer Science and Engineering, York
University.

[2] B. Andreopoulos, A. An and X. Wang. (2004) MULIC:
Multi-Layer Increasing Coherence Clustering of Categorical
Data Sets. Technical Report # CS-2004-07. Department of
Computer Science and Engineering, York University.

[3] P. Andritsos, V. Tzerpos. Information-Theoretic Software
Clustering. IEEE Transactions on Software Engineering,
Vol.31, No.2, February 2005.

[4] P. Andritsos, P. Tsaparas, R. J. Miller, K. C. Sevcik.
LIMBO: Scalable Clustering of Categorical Data. In
Proceedings of the Ninth International Conference on
Extending DataBase Technology (EDBT), March 2004.

[5] M.W. Godfrey and E.H.S. Lee. Secrets from the Onster:
Extracting Mozilla’s Software Architecture. In Proceedings
of the Second International Symposium on Constructing
Software Engineering Tools (CoSET), 2000.

[6] Huang Z. (1998) Extensions to the k-Means Algorithm
for Clustering Large Data Sets with Categorical Values. Data
Mining and Knowledge Discovery 2(3): 283-304.

[7] Brian S. Mitchell, Spiros Mancoridis. Comparing the
Decompositions Produced by Software Clustering
Algorithms using Similarity Measurements. In Proceedings
of the International Conference on Software Maintenance
(ICSM) 2001, pages 744-753.

[8] S. Mancoridis, B.S. Mitchell, Y. Chen, and E. R.
Gansner. Bunch: a clustering tool for the recovery and
maintenance of software system structures. In Proceedings of
the International Conference on Software Engineering, 1999.

[9] Vassilios Tzerpos and Richard C. Holt. ACDC: An
algorithm for comprehension-driven clustering. In
Proceedings of the Seventh Working Conference on Reverse
Engineering, pages 258-267, 2000.

[10] Vassilios Tzerpos and Richard C. Holt. MoJo: A
Distance Metric for Software Clusterings. In Proceedings of
the Sixth Working Conference on Reverse Engineering,
pages 187-, 1999.

[11] Vassilios Tzerpos and Richard C. Holt. The Orphan
Adoption problem in Architecture Maintenance. In
Proceedings of the Fourth Working Conference on Reverse
Engineering 1997, Amsterdam, October 1997, pages 76-82.

[12] C. Xiao and V. Tzerpos. Software Clustering Based on
Dynamic Dependencies. In Proceedings of the Ninth
European Conference on Software Maintenance and
Reengineering, to appear.

