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Abstract In this paper we explore single phase flow in pores with triangular cross sections at the pore-scale

level. We use analytic and asymptotic methods to calculate the hydraulic conductivity in triangular pores, a

typical geometry used in network models of porous media flow. We present an analytical formula for hydraulic

conductivity based on Poiseuille flow that can be used in network models contrasting the typical geometric

approach leading to many different estimations of the hydraulic conductivity. We consider perturbations to an

equilateral triangle by changing the length of one of the triangle sides. We look at both small and large triangles

in order to capture triangles that are near and far from equilateral. In each case the calculations are compared with

numerical solutions and the corresponding network approximations. We show that the analytical solution reduces

to a quantitatively justifiable formula and agrees well with the numerical solutions in both the near and far from

equilateral cases.

Keywords Porous media flow · triangular flow · hydraulic conductivity · Poiseuille flow · asymptotic analysis

1 Introduction

Flow through porous media is important in a wide range of applications, including water flow through aquifers

[1,2,3], perfusion of blood [4,5,6], and oil extraction [7,8]. For example, water and gas are often injected to aid

in the extraction and recovery of oil from a porous reservoir composed of rock or soil [9,10]. The petrophysical

parameters that drive this flow, such as the hydraulic conductivity, are often estimated by experiments involving

core plugs [11], which are samples obtained by drilling into the reservoir. Core plug testing tends to be a time

consuming and expensive process so alternative methods for determining parameters involving mathematical

modelling and simulation have been developed.

There are two things to model, the porous media and the flow within the porous media. Classically there

were two approaches used to model the porous media, the sphere-pack (see [12,13,14], and [15]) and the bundle-

of-tubes (see [16,17], and [18]). However, the pore geometry in the sphere-pack was found to be too complex

to allow derivations of descriptions of the flow [19], and the bundle-of-tubes model was not found to be very
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Flow in porous media Introduction

representative of real porous media because it only allows flow in one direction and hence the properties derived

from the model did not accurately reflect experimental data. In fact, models of porous media whereby the pores

are straight and parallel are seen to be too simple to accurately account for some important features of real porous

media. For example, pores of variable cross section connected in series undergo capillary pressure hysteresis

during drainage and imbibition cycles due to the connectivity of the pores and this cannot be described using

capillary bundles of pores (see [20,21]). Modern work on modelling porous media comprises of models based

on percolation theory [22,23], pore scale models such as networks, Lattice Boltzmann and phase field [24], con-

tinuum models [25,26], and reconstruction models [27,28]. The recent modelling of porous media attempts to

better capture heterogeneity and network connectivity by including pore size distributions [29,20], building in ad-

ditional state variables such as specific interfacial area [30,31] and percolating versus non-percolating saturation

[32,33], and concepts such as accessivity and radius resolved saturation [21].

A range of approaches have been developed for modelling multiphase flow in porous media, including those

based on computational fluid dynamics (CFD) [34,35], macroscopic multiphase models [36,37], and models us-

ing a network morphology for the pore structure [38,39,40]. CFD approaches are often highly accurate as they

involve solving fully non-linear models on non-standard geometries. However, this means that they are compu-

tationally expensive and hard to upscale to multi-pore systems. For example, in Van Marcke et al. [41], the data

sets being studied by the authors would require extensive amounts of memory and computational time in a CFD

approach. Conversely, macroscale models consider the soil pores as a single continuum characterised by effective

parameters that represent the relationships between macroscopic variables. These parameters depend on the mi-

croscale structure but, due to the fact that the geometry of the porous media is removed at the macroscale level, are

typically deduced from experiments or simulations. This model simplification reduces the computational com-

plexity making the macroscale approach favourable in a variety of applications (cf. [42,43,44]). However, the

results obtained in macroscale models are often sensitive to the choice of empirical function used for the different

features of the flow which are being studied [45].

A network modelling approach strikes a balance between the CFD and macroscale model approach. The

pores in a real material can be viewed as a set of pore-spaces (nodes) connected by narrow throats (edges) thus

preserving some microscale geometry while still allowing for a model-simplified approach. Network models

traditionally represent the void space of the porous medium by a two or three dimensional lattice of wide pores

connected by narrow throats [40]. There has been a vast amount of work done in modelling multiphase flow on

a network, ranging from the pioneering work of Fatt [19], who was the first to model multiphase flow using a

network of pores in the 1950s, to more recent developments which focus on dynamic network models such as

Tørå et al. [11], Al-Gharbi and Blunt [46], and Dahle and Celia [47].

The use of a network model requires that both the pore geometry and flow characteristics be considered. As

both fields have a rich history of complex modelling, often a compromise in simplicity is made for each case.

Many networks want to consider multi-phase flow which requires the allowance of a contact angle in the pore

geometry. For this reason, pores of triangular cross-section are preferred (see [11,46], and [48]). To simplify

the fluid modelling, these authors consider the fluid to follow Poiseuille flow through a cylinder, and use the

triangular geometry to estimate appropriate parameters. The architecture of the network structure removes the

microscale impact of geometry on the global flow, but the geometry is retained in the fluid characteristics and that

is where we will focus our attention. The main downfall of these geometric methods is the fact that the hydraulic

conductivity, a property of the porous medium which depends on the flow profile, is determined purely from the

pore geometry, without any information about the flow. Furthermore, because the hydraulic conductivity depends
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Modelling fluid flow Flow in porous media

on the specific geometry parameters, solutions may have to be recomputed for different-sized pores of the same

geometry.

We consider a more detailed model of fluid flow that appropriately captures the triangular geometry and

extracts the hydraulic conductivity as a consequence of the model of fluid flow and not solely geometry. We

emphasize that our goal is not to criticize the main assumptions that go into simplifying the modelling of pore

geometry and flow for network models, but to provide a more accurate formulation of the conductivity without

sacrificing computational speed due to the other simplifications. We focus on an analytical formulation of the

conductivity so that it is computationally equivalent to the geometric formula used. Analytical solutions for slow

viscous flow through equilateral triangular tubes has long been considered with the first velocity profile derived

by Boussinesq [49]. An analytical solution was extended to isosceles triangles by Proudman [50]. Sparrow [51]

developed a point matching technique which was used to derive an analytical expression for flow in an isosceles

duct, similar techniques were used by Tamayol and Bahrami [52] in their work on non-circular cross sections.

Shah [53] used a least squares matching technique to study flow in cross sections such as an isosceles triangle

and Navardi et al. [54] derived an analytical description of flow in distorted triangular shapes. An overview of the

work done on modelling flow properties in triangular cross sections can be found in Shah and London [55] and

Kumar et al. [56]. However, the corner angles in pores are typically nonuniform and flow is best modelled using

scalene triangles [57].

Fully detailed flow in scalene triangle requires numerical computations which diminishes the advantages of a

simplified model approach such as networks. For example, flow in arbitrary triangles is studied by authors such as

Nakamura et al. [58] and Abdel-Wahed and Attia [59] using finite difference techniques. Instead we will consider

an asymptotic approach that captures a class of scalene triangles as those near and far from equilateral.

While the intent of triangular pores is to capture contact angles in multi-phase flow, we will focus on single-

phase flow to simplify the model. This is an appropriate approximation to use in oil extraction from reservoirs

with oil saturation. We will demonstrate that our technique remains simple enough to implement in network

models while performing better than alternative geometric methods which are currently used [48].

This paper is presented as follows: In Section 2 we derive the flow model and assumptions that will be used

in our analysis. This leads to Section 3 where we set up our model geometry and then carry out the asymptotic

analysis to compute the velocity profiles in the triangular pores. In Section 3.1 we consider a small perturbation

to an equilateral triangle while in Section 3.2 we consider a large perturbation. Having computed the velocity

profiles, we calculate the analytical expressions for the hydraulic conductivity in Section 4 which depend on one

parameter related to the size of the triangle and does not require multiple simulations of flow. In Section 4.3

we compare our expression for hydraulic conductivity to one that is numerically computed as well as geometric

conductivity formulae used by Tørå et al. [11] and Al-Gharbi and Blunt [46] in network models. We compare

the results for triangles of a variety of size and show that we generally outperform geometric estimates. Finally,

Section 5 summarises the work carried out in this paper and outlines possible directions for future work.

2 Modelling fluid flow

We choose our axes so that both a triangular pipe of uniform cross-section and the flow are oriented in the

z−direction as shown in Figure 1 and consider a single fluid of constant density ρ moving with velocity v =

(vx,vy,vz), which can vary though time and space. Conservation of mass and momentum in the incompressible

limit yield the Navier–Stokes equations,
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∇ ·v = 0, (1a)

∂ v
∂ t

+(v ·∇)v =− 1
ρ

∇p+
µ
ρ

∇2v, (1b)

subject to no-slip (v = 0) on the boundary, where t is time and ∇ is the gradient operator ∇ = ei
∂

∂xi
with ei as the

ith unit vector. Furthermore, we denote p to be the fluid pressure (or piezometric head) and µ the fluid dynamic

viscosity (assumed constant). We will neglect the effects of body forces without loss of generality, and assume

that the pressure has a constant gradient in the direction of flow. We non dimensionalise (1) with the following

scales,

x∼ lx′, v∼V v′, t ∼ l
V

t ′, p∼ ∆ pp′,

where l is a characteristic length scale, V a velocity scale and ∆ p a scale for the variation in pressure. We will

choose the velocity scale, V , so that V =−∆ pl
µ allowing the flow to be dominantly driven by a pressure gradient.

The momentum equation becomes (after dropping the primes),

Re
(

∂ v
∂ t

+(v ·∇)v
)
= ∇p+∇2v, (2)

where the Reynolds number, Re = ρlV
µ , represents the ratio of inertial to viscous forces. It is typically used to

separate laminar and turbulent flow where the former is characterised by smooth, constant fluid motion and occurs

when Re� 1, while the latter produces fluid instabilities, such as a transition to turbulence, and is associated with

Re� 1. We will focus attention on the laminar case, which reduces the Navier–Stokes equations to the Stokes

flow equations. We assume the flow is of Poiseueille type, i.e., it is steady and well developed so that the transverse

velocity gradients are zero. It then follows that the pressure is linear in z, reducing the momentum equation to

∂ 2vz

∂x2 +
∂ 2vz

∂y2 =−1, (3)

where vz = vz(x,y) due to the incompressibility condition.

3 Single phase flow in triangular pores

3.1 Small perturbation to equilateral triangle

Having already non-dimensionalized, we consider an equilateral triangle of side length 1, with its axis coincident

with the Cartesian z−axis. We consider a perturbation to the equilateral triangle as shown in Figure 2 where the

corner at
( 1

2 ,0
)

is extended by ε in the positive x-direction, for some ε > 0. We also orientate the triangle so that

the vertex C lies on the y−axis.

We seek a solution to (3) which also satisfies the no-slip condition on the boundary. We define a function

W (x,y) given by

W = y
(

y−
√

3
(

x+
1
2

))(
y+
√

3
(

x
1+2ε

− 1
2

))
, (4)

so that W = 0 along the pipe walls. We want to solve a problem of the form

∇2v =−1 subject to v = 0 on W = 0, (5)
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3.1 Small perturbation to equilateral triangle Flow in porous media

and do this via a regular expansion to (4) around ε = 0 of the form W =W0 + εW1 +O
(
ε2
)

which yields

W0 = y(y− y1)(y− y2) , (6a)

W1 =−2
√

3xy(y− y1) , (6b)

where y1 =
√

3
(
x+ 1

2

)
and y2 =−

√
3
(
x− 1

2

)
. Similar to W , we pose an expansion v = v0 + εv1, and substitute

into (5). At O(1) we have

∇2v0 =−1 (7a)

subject to

v0(x,0) = 0, v0(x,y1(x)) = 0, v0(x,y2(x)) = 0 (7b)

while at O(ε) we have

∇2v1 = 0 (8a)

subject to

v1(x,0) = 0, v1(x,y1(x)) = 0, v1(x,y2(x)) =−2
√

3x

(
∂ v0

∂y

∣∣∣∣
y=y2

)
. (8b)

We note that this third boundary condition in (8b) resembles that of a slip condition on the boundary. Problems

with symmetric slip conditions have been studied by Lekner [60].

We take this approach as we wish to exploit the fact that solutions for velocity profiles in an equilateral

triangle domain, which the O(1) problem satisfy, are known. Following the approach taken by others, such as

Lekner [61], the equilateral triangle problem (7) can be solved by taking an ansatz of the form v0 = u0W0 for

some function u0(x,y). We do this for two reasons. Firstly, the boundary condition v0 = 0 on the pipe walls is

automatically satisfied; secondly, the fact that W0, as defined in (6a), is cubic in y and quadratic in x means that it

simplifies greatly under the Laplace operator. Assuming v0 = u0W0, (7a) becomes(
∂ 2u0

∂x2 +
∂ 2u0

∂y2

)
W0 +2

(
∂ u0

∂x
∂ W0

∂x
+

∂ u0

∂y
∂ W0

∂y

)
−2
√

3u0 =−1, (9)

which has constant solution, u0 =
1

2
√

3
, and hence our solution for v0 takes the form

v0 =
1

2
√

3
W0. (10)

Contours of constant v0 are plotted in Figure 3. The contours are triangular at the pipe walls but become circular

towards the centre of the pipe. This indicates that, far enough away from the pipe walls, the velocity profile is like

that of a cylindrical tube. This is important to note as many of the related network models for porous media flow

assume cylindrical Poiseuille flow in their computations. Now, it remains to solve the O(ε) problem, (8). Given

v0 we can compute ∂ v0
∂y ,

∂ v0

∂y
= ((y− y1)(y− y2)+ y(y− y1)+ y(y− y2))u0. (11)

Making the observation that (
∂ v0

∂y

∣∣∣∣
y=y2

)
= (y(y− y1))u0

=− u0

2
√

3x
W1,

(12)
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Flow in porous media 3.1 Small perturbation to equilateral triangle

then the third condition in (8b) becomes

v1 (x,y2) = u0W1. (13)

We therefore seek a solution for v1 of the form

v1 = u0W1 +u0v̂ (14)

for some function v̂. This expansion works because W1(x,0) =W1(x,y1) = 0 as well. Substituting (14) into (8b)

with the third condition given by (13) yields the new problem

∇2v̂ =−∇2W1 with v̂ = 0 on W0. (15)

We have reduced the homogeneous problem on a perturbed geometry to an inhomogeneous problem on the un-

perturbed triangle geometry. Instinctively, we would solve (15) using a separation of variables approach, however

this is not possible in Cartesian coordinates when the boundaries are not at x = constant or y = constant. Alter-

natively, one could solve the original problem (3) on any triangular domain using conformal mapping techniques

[62,63]. This solution approach involves transforming the triangular domain to the upper half plane and results

in elliptic functions, which, in practice require numerical computations to evaluate and therefore are not imme-

diately beneficial compared to a numerical solution to the partial differential equation. The integrals could be

expanded asymptotically, but it is not clear this is better than the asymptotic approximation of the differential

equation directly. Instead, we write the problem in triangular coordinates. Transforming the problem to one in

the triangular coordinate system will allow a separation of variables approach as the boundaries of the triangle in

this system will be constant (see Appendix A). The orthogonal coordinates which we will work with in this new

coordinate system are given by ξ and η , where ξ = rinc−y = u and η =
√

3x = v−w as shown in Figure 4. Here

rinc =
√

3
6 is the radius of the inscribed circle of the triangle. Writing (15) in triangular coordinates

∇̂2v̂ = 4η +12ξ −12rinc with v̂ = 0 on W0, (16)

where ∇̂ is the Laplace operator in the triangular coordinate system given by

∇̂2 =
∂ 2

∂ξ 2 +3
∂ 2

∂η2 . (17)

Since (16) is an inhomogeneous problem we will consider an eigenfunction expansion with eigenfunctions

∇̂2φ =−λ 2φ with φ = 0 on W0. (18)

We solve (18) by seeking a separable solution of the form φ(ξ ,η) = f (ξ )g(η) and find that both f and g are

simple harmonic oscillators. In order to satisfy the boundary conditions, φ = 0 on the boundaries of the triangle as

described in triangular coordinates, we choose a basis for φ by considering separately the even and odd functions

of φ in η and ξ , both of which will contribute to our solution. This leads us to the following additive solutions,

φ mn
e = sin

(
lπ

3rinc
(ξ +2rinc)

)
cos
(
(m−n)π

9rinc
η
)
+ sin

(
mπ
3rinc

(ξ +2rinc)

)
cos
(
(n− l)π

9rinc
η
)

+ sin
(

nπ
3rinc

(ξ +2rinc)

)
cos
(
(l−m)π

9rinc
η
)
, (19a)

φ mn
o = sin

(
lπ

3rinc
(ξ +2rinc)

)
sin
(
(m−n)π

9rinc
η
)
+ sin

(
mπ
3rinc

(ξ +2rinc)

)
sin
(
(n− l)π

9rinc
η
)

+ sin
(

nπ
3rinc

(ξ +2rinc)

)
sin
(
(l−m)π

9rinc
η
)
, (19b)
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3.1 Small perturbation to equilateral triangle Flow in porous media

where m,n ∈ N, n ≥ m for φe, n > m for φo, l = −m− n, and φo, φe refer to the functions being odd or even

in η respectively. We note that the eigenfunctions form a complete and orthogonal set (see [64] and [65]). The

corresponding eigenvalue for this solution is

λ 2
mn =

4π2

27r2
inc

(m2 +mn+n2). (20)

Details of the calculations performed are described in Appendix A.

We decompose (16) as v̂ = 4v̂η +12v̂ξ −12rincv̂r, where

∇̂2v̂η = η , (21a)

∇̂2v̂ξ = ξ , (21b)

∇̂2v̂r = 1, (21c)

so that (16) is satisfied. To solve (21c) we recall that the solution to the O(1) problem, ∇2v0 =−1, is v0 = u0W0

so it follows that

v̂r =−u0W0. (22)

We also note that 12rinc =
1
u0

, so we have that −12rincv̂r =W0. To solve (21a) and (21b) we must expand v̂η and

v̂ξ as eigenfunction series. Suppose that ∇̂2v̂ = h for some arbitrary h on the left hand side. Then, using (18) and

expanding

v̂ =
∞

∑
m=1

∞

∑
n=m

Bmn
e φ mn

e +
∞

∑
m=1

∞

∑
n=m+1

Bmn
o φ mn

o ,

we deduce that

Bmn
i =− 1

λ 2
mn

∫
T φ mn

i hdT∫
T (φ mn

i )2 dT
(23)

where λmn is the eigenvalue corresponding to the eigenfunction φ mn
i , given by (19). These Bmn

i coefficients can

be computed analytically. Here we have used Green’s identity and Gauss’ Divergence Theorem, with the inner

product in the unperturbed triangular coordinate system given by∫∫
T

f (x,y)dT = 2
∫ 1

2

0

∫ −√3(x− 1
2 )

0
f (x,y)dxdy

=
1√
3

∫ rinc

−2rinc

∫ ξ+2rinc

−ξ−2rinc

f (ξ ,η)dη dξ

=
∫∫

T̂
f (ξ ,η)dT̂

(24)

for a function f (x,y), with T representing the equilateral domain in Cartesian coordinates and T̂ representing the

same domain in triangular coordinates.

We are now in a position to solve (21a) and (21b). For (21a) we note that η is odd and that the inner product

in the triangular coordinate system involves a symmetric integral over η , and thus we only need to consider the

odd eigenfunctions. Thus, the solution to (21a) is

v̂η =
∞

∑
m=1

∞

∑
n=m+1

Bmn
η φ mn

o , Bmn
η =−

∫
T̂ φ mn

o η dT̂

λ 2
mn
∫

T̂ (φ mn
o )2 dT̂

. (25)

The calculation for (21b) is carried out in the same manner. For the eigenfunction expansion of ξ we note that

the φo terms will drop out (φo is odd in η and so will again drop out due to the symmetry in the η integral), and

so the solution to (21b) is given by

v̂ξ =
∞

∑
m=1

∞

∑
n=m

Bmn
ξ φ mn

e , Bmn
ξ =−

∫
T̂ φ mn

e ξ dT̂

λ 2
mn
∫

T̂ (φ mn
e )2 dT̂

. (26)
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Matlab (version R2018b) was used to numerically compute the solution to (3) on this geometry where we

use a Finite Element Method (FEM) mesh with a maximum edge length of 2.5× 10−3. For each value of ε we

computed that the number of triangles used in the mesh is≈ 2.8×10−6 multiplied by the area of the full triangle.

In other words, in order to ensure consistent numerical results were obtained, the ratio of the area of the triangle

to the number of triangles used in the mesh was kept at this number, with the first two significant figures being

the same each time. This ratio, along with the maximum edge length, also indicate that the error of the numerical

solution is smaller than the asymptotic error up to ε ∼ 10−3. We truncate the sums at N = 25, M = 24 so that

max(λ 2) = 104, also consistent with the asymptotic error.

To observe the agreement with the separation of variables solution, we subtract the u0W0 and u0W1 terms from

both the analytical and numerical solutions and plot the L2−norm of the results for various values of ε , which

are shown in Figure 5. As observed in Figure 5 the error decreases as we decrease ε indicating that the separation

of variables in triangular coordinates matches the numerical computations very well. A stepsize of h = 0.005 in

both x and y was used in interpolating the numerical solution from the triangular mesh to a rectangular grid.

3.2 Large perturbation to the equilateral triangle

We now consider modelling a large perturbation to the equilateral triangle by perturbing the right vertex by ε for

ε � 1 so that the triangle can be approximated by an infinite wedge. In order to carry out the asymptotics in this

case we introduce δ = ε−1, where δ is our small parameter in this large perturbation problem. We will derive an

analytic expression for the velocity profile in an infinite wedge and we will show that this is in good agreement

with the numerical solution in this perturbed triangle.

Consider the geometry of an isosceles wedge-shaped duct of angle 2α as shown in Figure 6, where (r, φ ,

z) represent the radius, azimuthal angle and in-field depth of cylindrical polar coordinates. Flow in an isosceles

triangular duct was studied by Sparrow [51] while isosceles and equilateral wedges were considered by Bazant

[66]. We use a similar solution approach here to determine the velocity profile of the infinite wedge. Writing

Poiseuille flow in cylindrical polar co-ordinates with vz = vz(r,θ),

∂ 2vz

∂ r2 +
1
r

∂ vz

∂ r
+

1
r2

∂ 2vz

∂φ 2 =−1. (27)

For the duct-wedge geometry we want to solve (27) subject to the boundary conditions vz = 0 on the duct bound-

aries (φ =±α), and vz finite at r = 0. An application of separation of variables leads to the solution

vz =
1
4

(
r2
(

cos2φ
cos2α

−1
)
+

∞

∑
n=1

Anr
(2n−1)π

2α cos
(
(2n−1)πφ

2α

))
. (28)

The prescription for An comes from matching to a weak boundary layer at the other side of the triangle where

vz = 0. For the large triangle we can determine the wedge angle to be

α =
1
2

arcsin

( √
3δ

2
√

1+δ +δ 2

)
� 1, (29)

which suggests that we scale φ = αθ with −1 < θ < 1. Inspection of (28) in this limit requires An → 0 for

sensible matching. Expanding vz in a Taylor series around δ = 0 furnishes the following asymptotic solution,

vz =
3r2

32
((

1−θ 2)(δ 2−δ 3))+O
(
δ 4) . (30)
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Fluid hydraulic conductivities for single phase flow Flow in porous media

3.2.1 Numerics

In order to get around the issue of the size of numerical computations required for this large triangle, we consider

the equivalent numerical problem in a scaled geometry, as shown in Figure 7. We scale r and the sides of this

large triangle by δ−1, to a similar but asymptotically smaller triangle, to improve the reliability of numerical

solutions. Numerical solutions for the velocity profile in this large perturbed triangle are computed using Matlab.

In this case we use an FEM mesh with a maximum edge length of 5× 10−4. The maximum edge length value

is smaller than that used in the small perturbation case due to the asymptotically smaller area, and is necessary

for the numerics to be sufficiently resolved. In this case, for each value of δ , the number of triangles used in the

mesh is ≈ 1.1×10−7 times the area of the full triangle.

In order to compare the velocity profiles for the numerical and wedge hydraulic conductivities we perform

transformations from cylindrical coordinates to Cartesian coordinates so that the wedge is orientated in the same

way as our original triangle, and so that the wedge velocity is computed on points corresponding to that of the

triangle. Here, the stepsize for the interpolation grid in x−y is taken so that we have 500 points in y and h = 0.002

so that we have about 500 points in x. The additional points are needed to improve the numerical reliability and

to resolve the small boundary layer that arises on the edge opposite the angle 2α . Figure 8 shows the difference

between the numerical solution for the velocity of the large perturbed triangle and the wedge velocity, where we

have taken ε = δ−1 = 10. This figure shows that these two solutions are in excellent agreement, with the only

difference at the far boundary of the triangle. This is due to the fact that the numerical solution must satisfy the

zero condition on this boundary, but the wedge does not. Fortunately, this boundary layer is of negligible width

and does not affect our solution as demonstrated in Figure 9 where we see a convergence between our asymptotic

solution and the numerical one accurate to O
(
ε−4
)
.

4 Fluid hydraulic conductivities for single phase flow

In simulating porous media the hydraulic conductivity plays a vital role. The hydraulic conductivity is defined as

a measure of how easily fluid can move through the pore space and is important for understanding pore pressures

as well as a useful tool for comparing different approaches to porous flow. In practice, accurate estimates of the

conductivity and pressure are important. For flow in pipes, both overestimations and underestimations of the fluid

pressure can have inconvenient implications, such as pipe erosion and leaking [67].

The hydraulic conductivity per unit length, K, which is also referred to as conductance [11,46], is defined in

terms of the volume flux, Q and the pressure difference, ∆ p [68] by the formula

Q = K∆ p, (31)

where Q is defined to be

Q =
∫∫

T
v ·dT, (32)

with T being the cross sectional area of the pipe. The conductivity is an intrinsic property of porous media that

depends on the pressure field and the velocity field. Since we know the velocity profiles of the near equilateral

and far from equilateral scalene triangle geometries, we can proceed with computing the analytical conductivity

in these geometries using the results obtained in Sections 3.1 and 3.2. This is in contrast to geometric methods

that have been used in approximations of the conductivity by network models.

9
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4.1 Conductivity formulae

4.1.1 Derivation of analytic formula

The network models present their results for hydraulic conductivity in terms of G= µLK. For the analytic formula

we then consider (31), the assumption of a linear pressure drop
(

∆ p
L =− d p

dz

)
and the relationship G = µLK

giving the analytic formula for the hydraulic conductivity by the following relationship

Q =− 1
µ

d p
dz

G (33)

Since we have scaled the velocity with −l2 1
µ

d p
dz , the natural scale for the flux will be

Q∼−l4 1
µ

d p
dz

Q′,

resulting in the following scale for the hydraulic conductivity

G∼ l4G′.

This results in the following dimensionless formula for the analytic hydraulic conductivity,

G = Q. (34)

4.1.2 Analytic calculation for ε � 1:

Firstly, we calculate the flux, Q,

Q =
∫∫

vdT =
∫ 1

2+ε

0

∫ −√3( x
1+2ε − 1

2 )

0
vdydx+

∫ 0

− 1
2

∫ √3(x+ 1
2 )

0
vdydx. (35)

For the second integral term we need only to expand v as the integral limits do not depend on ε . For the first

integral we must expand the integrals as well as v. Expanding the inner integral∫ 1
2+ε

0

∫ −√3( x
1+2ε − 1

2 )

0
vdydx =

∫ 1
2+ε

0

(∫ −√3(x− 1
2 )

0
vdy+ ε(v|y=−√3(x− 1

2 )

)
dx+O

(
ε2)

=
∫ 1

2+ε

0

∫ −√3(x− 1
2 )

0
vdydx+ ε

∫ 1
2+ε

0
(v0 + εv1) |y=−√3(x− 1

2 )
dx+O

(
ε2)

=
∫ 1

2+ε

0

∫ −√3(x− 1
2 )

0
vdydx+0+O

(
ε2) (36)

since we know that (v0|y=−√3(x− 1
2 )

= 0. Now, expanding the outer integral (36) becomes

∫ 1
2+ε

0

∫ −√3(x− 1
2 )

0
vdydx =

∫ 1
2

0

∫ −√3(x− 1
2 )

0
vdydx+ ε

(∫ −√3(x− 1
2 )

0
vdy

∣∣∣∣∣
x= 1

2

+O
(
ε2)

=
∫ 1

2

0

∫ −√3(x− 1
2 )

0
vdy+ ε(0)+O

(
ε2) (37)

Now, using (36) and (37) we can further expand v to compute the conductivity

Q =
∫ 1

2

0

∫ −√3(x− 1
2 )

0
(v0 + εv1)dydx+

∫ 0

− 1
2

∫ √3(x+ 1
2 )

0
(v0 + εv1)dydx+O

(
ε2)

=
∫ ∫

(v0 + εv1)dT +O
(
ε2)

=
∫ ∫

v0 dT + ε
∫ ∫

v1 dT +O
(
ε2) ,

(38)

10
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i.e. on expanding, we see that we integrate over the equilateral triangle boundary. Now, v0 is given by v0 = u0W0

with u0, W0 given by 1
2
√

3
and (6a) respectively. Integrating over the non-dimensional triangular area with vertices

corresponding to the equilateral triangle as shown in Figure 2 yields,

Q0 = 2
∫ 1

2

0

∫ −√3( 1
2−x)

0
v0 dydx

=

√
3

320
.

(39)

Now it remains to compute
∫∫

v1 dT . We split the integral as follows;

Q1 =
∫∫

v1 dT = u0

(∫∫
T
(W1 +W0)dT +

∫∫
T̂

(
4v̂η +12v̂ξ

)
dT̂
)

(40)

with the integrals split by coordinate system, given by (24). We first compute the integral over T , which can be

done analytically;

u0

∫∫
T
(W1 +W0)dT =

2
√

3
320

. (41)

For the integral over T̂ we first note that the v̂η term will not have a contribution to the hydraulic conductivity

due to the symmetry in the integral over η . The integral for φe in v̂ξ integrates to zero for each term, except when

n = m. However, when n = m, the Bmn
ξ term is zero. Therefore the contribution of the v̂ξ term to the hydraulic

conductivity will also be zero.

Now, combining (38), (39) and (41) we calculate the flux of the perturbed triangle to be

Q =

√
3

320
(1+2ε). (42)

giving a hydraulic conductivity in the near equilateral triangle, GE of

GE =

√
3

320
(1+2ε). (43)

4.1.3 Analytic calculation for ε � 1:

To find the hydraulic conductivity in the infinite wedge domain, GW , we integrate the velocity, given by (30),

over the triangular domain in polar coordinates. This requires rewriting the edge furthest from the wedge angle

as a distance, R, from the origin given by,

R(θ) =
√

3(δ +1)
δ (sin(α(θ +1))+

√
3cos(α(θ +1)))

(44)

leading to the integral

GW = α
∫ 1

−1

∫ R(θ)

0
rvz dr dθ , (45)

where the additional α is from the change of variable to θ . Substituting α from (29), integrating, and performing

an asymptotic expansion in δ leads to,

GW =1.35×10−2ε +2.03×10−2+

3.38×10−3ε−1−1.69×10−3ε−2 +8.46×10−4ε−3 +O
(
ε−4) (46)

where we have used that δ = ε−1.
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4.2 Geometric approximations

As mentioned in Section 1, network models often use geometric approximations for the hydraulic conductivity.

For example, Al-Gharbi and Blunt [46] assume that the triangular flow is Poiseuille type and equivalent to the

flow in a cylinder given by the average of inscribed radius of the triangle and the radius of a circle with the same

area as the triangle cross section (which is denoted re). This leads to the conductivity, GAG, given by

GAG =
π

128

(√
At

π
+ rinc

)4

, (47)

where the area of the cross section is given by At , so that re =
√

At
π . This formula is already in a dimensionless

form for comparison.

Similarly, Tørå et al. [11] develop a dynamic network model that incorporates a shape factor introduced in the

geometric methods developed by Mason and Morrow [69]. The shape factor is given by the following equation,

where, as before, At denotes the area of the triangle and Pt denotes the perimeter,

F =
At

P2
t
. (48)

F is a dimensionless quantity which measures the irregularity of a triangle. F has a maximum value of 1
12
√

3
,

which corresponds to the shape factor for equilateral triangles. Tørå et al. [11] define the total area of flow by

Atotal,

Atotal =
r2

inc
4F

. (49)

As our focus here is on single phase flow, this is the relevant area to consider. However, it is worth noting that

Tørå et al. [11] have formulae specific to the areas of wetting and non wetting flows, which are used in their

multiphase flow simulations. The adapted dimensionless formula for the hydraulic conductivity, GT , based on

the formula of Tørå et al. [11] is then given by

GT =
1
32

(√
Atotal

π
+ rinc

)2

Atotal. (50)

4.2.1 Geometric method formulae

For the Al–Gharbi and Blunt, as well as the Tørå et al. approximations we need to calculate the area of the

perturbed triangle and the radius of the inscribed circle. For both of the perturbations we obtain

At =

√
3

4
(1+ ε). (51)

The perimeter, Pt , is given by

Pt = 2+ ε +
√

1+ ε + ε2. (52)

A relation which holds for triangular tubes, as well as for all regular polygons, is that

rinc = 2
A
P
= 2FP, (53)

using (48) [69]. We can then use (52) to find the relevant expressions for the inscribed radius. These formulae

can then be used in (47) and (50) to compute the conductivities.

12
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4.3 Comparison

Here we consider a comparison of the approximate and analytical hydraulic conductivities given by (47), (50),

(34) and (46) with the numerical value of the hydraulic conductivity (denoted Gn) for various values of ε .

4.3.1 Comparison for ε � 1

Figure 10 compares the hydraulic conductivities for the near equilateral triangle. We note that the approximations

for GAG and GT are quite disparate which was one of the motivations for this analysis. We also see that the

asymptotic solution (43) agrees most closely to the numerical solution up to ε ≈ 1.5. Once ε increases past 1.5,

the Al-Gharbi and Blunt formula seems to agree the best but then deviates again (we show this deviation occurs

around ε = 5 in Figure 12). We plot the triangles for the cases where ε = 1.5 in Figure 11a and ε = 5 in Figure

11b to give an indication of the difference in the triangle shape.

We also compute the relative error of each of the methods used to compute the hydraulic conductivity, in

comparison with the numerical value, in Table 1. As expected the errors for GE are accurate to O
(
ε2
)
.

4.3.2 Comparison for ε � 1

In this section we carry out a similar analysis as in section 4.3.1 for the hydraulic conductivity in the wedge.

These results are displayed in Figure 13, where we observe that once ε ≈ 6.5 , the wedge formula outperforms

the other two. The relative error of each of these methods in comparison with the numerically computed hydraulic

conductivity is shown in Table 2. The accuracy of the asymptotic formula is emphasised in Figure 14, where the

agreement between the numerical solution and the wedge solution is emphasised as ε increases. These figures

verify that the infinite wedge is a good approximation for the case where there has been a large perturbation to

the equilateral triangle.

4.4 Composite Formula for Conductivity

As shown in the results in sections 4.3.1 and 4.3.2, the asymptotic conductivities outperform the geometric for-

mulae in both the small and large ε perturbation to the triangle. There is an intermediate interval of ε where

neither asymptotic performance is particularly strong. We propose a linear interpolation between the two asymp-

totic limits to capture the intermediate interval. This is motivated by the seemingly piecewise linear behaviour

we observe in the numerics of each perturbation regime. Furthermore, it allows us to define a single conductivity

formula which is more practical for implementation in flow algorithms. In Figure 15 we plot both the small and

large perturbation hydraulic conductivities. This plot shows the region where the small perturbation solution be-

gins to diverge, and where the wedge solution begins to converge. We perform a linear interpolation between the

two asymptotic conductivities at the point where each has a relative error of 0.1 with the numerical conductivity.

This leads to a composite hydraulic conductivity, GC,

GC =



√
3

320 (1+2ε) for ε ≤ 1

1.15×10−3 +1.51×10−1ε for 1 < ε < 12.5

1.35×10−2ε +2.03×10−2 +3.38×10−3ε−1−
1.69×10−3ε−2 +8.46×10−4ε−3 for ε ≥ 12.5.

(54)

The composite conductivity is plotted in Figure 16. We see that our crude interpolation continues to outperform

both geometric approximations and thus (54) is the best approximation for the triangles considered.
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4.4.1 Dimensional formulae

In order to carry out the asymptotic analysis we non dimensionalised the problem and then compared the analyt-

ical formula with the non dimensional geometric and numerical hydraulic conductivities. For practical use of the

composite conductivity formula (54), we will now reintroduce the dimensional scale. The scale for the hydraulic

conductivity is l4, where l is the characteristic length of the equilateral pore. Then, ∆ l represents how far from

equilateral the base of the pore is. From this we get that the dimensional form of (54) is

GC =



√
3l3

320 (l +2∆ l) for ∆ l ≤ l

1.15×10−3l4 +1.51×10−1l3∆ l for l < ∆ l < 12.5l

1.35×10−2l3∆ l +2.03×10−2l4 +3.38×10−2 l5

∆ l
−

1.69×10−2 l6

∆ l2 +8.46×10−3 l7

∆ l3 for ∆ l ≥ 12.5l.

(55)

The dimensional Tørå et al. [11] and Al-Gharbi and Blunt [46] formulae also scale with l4, the dimensional form

of these formulae are equivalent to (47) and (50) where this length scale is absorbed into the dimensional area

and inscribed radius. Furthermore, we note that there is a relationship between the dimensionless ε and the shape

factor, F , given by

F :=
A
P2 =

√
3(1+ ε)

4
(

2+ ε +
√

1+ ε + ε2
)2 . (56)

Then using (53) we can rewrite (56) in terms of the area and inscribed radius as

r2
inc
A

=

√
3(1+ ε)(

2+ ε +
√

1+ ε + ε2
)2 , (57)

therefore giving an alternative expression for ε . We plot the relative error of each of the dimensional formulae

with the corresponding numerical hydraulic conductivity for various values of ∆ l, where we have taken l = 10µm,

in Figure 17.

4.5 Other approximations

There are alternative approaches one could take to determine hydraulic conductivity, here we discuss a couple

of particular interest. Other more general rules have been used to compute conductivity, one particular example

which we consider for comparative purposes is based on the flow rate for general pipe shapes proposed by Bruus

in [70] and [71]. This approximate formula, given by µQ = ∂ p
∂ z

A3

2P2 is based on a dimensional analysis argument.

This formula was investigated by Lekner [72] in the context of a triangular pipe. In this paper Lekner compared

this flow formula with the actual flow rate, estimating the ratio of the actual flow to the predicted flow to be∼ 1.2

for a triangular cross section. We carried out a similar analysis using the numerical conductivities and found that

the ratio of actual to predicted varied from 1.19 for ε = 0.01 to 1.3 for ε = 30, agreeing with the findings of

Lekner [72].

An alternative approach to the perturbative approach taken here is to consider conformal shape perturbations that

have exact solutions. This type of approach is outlined in Bazant [66] and is based on de Saint-Venant’s velocity
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solutions for m-sided polygonal domains with rounded edges. Following the approach of Bazant [66] we use the

following expression for the exact solution of the velocity profile of a triangular domain with rounded edges

u =
1
4
(
1− r2 +amrm sin(mθ)

)
. (58)

We note that this expression for the velocity will approximately correspond to zero velocity on the boundary of

an equilateral triangular domain on taking m = 3, am = −0.36. To consider more scalene triangles we consider

an adjustment to the velocity profile adapted from Bazant [66] of the form:

u =
1
4

(
1− r2 +amrm sin(mθ)− cm

1.05− r cos(θ)
1.052−2.1r cos(θ)+ r2

)
(59)

When comparing this with the numerical solution in a triangular domain of the same geometry, albeit with straight

edges, we considered three cases, equilateral (cm = 0), near equilateral (cm = 0.55) and far from equilateral

(cm = 1). The relative errors for the hydraulic conductivity were 0.328, 0.532 and 0.121 respectively. Comparing

these errors with the results obtained by our asymptotic approach, shown in Table 1 and Table 2, we see that

the asymptotic formula is a more accurate prediction of the hydraulic conductivity. We note that the rounded

edges may be a better approximation of real pores, however under the constraint of straight pores the asymptotic

approach yields more accurate results. Furthermore, the aim of this work is to provide an improved formula which

can be used in the network codes, therefore the formula needs to be easy to implement for many nodes of varying

pore size. In this framework we have little control over the precise geometry of the pore.

5 Discussion and Conclusions

The study of flow in porous media is a large and diverse area of research. Since the work carried out by Darcy

[73] there have been a number of approaches taken to improve analysis of porous flow. Most importantly, CFD

simulations, network models and macroscale models have enabled more accurate modelling of both single phase

and multiphase porous media flow.

Network models are becoming increasingly important for modelling flow in porous media due to their ability

to incorporate a range of the physically observed phenomena, such as piston displacement, drainage and imbibi-

tion. However, network models depend on accurate formulations for determining parameters such as the hydraulic

conductivity. The complexity of the network requires low-level computation at each node, making it computa-

tionally expensive to numerically solve the flow problem, therefore a more analytic approach is preferable. For

this paper we investigated pore-scale models and compared the results obtained for hydraulic conductivity to

those used in contemporary network models.

Our approach was to consider both small and large perturbations to the length of one of the sides of an equi-

lateral triangle. Analytical solutions for various cases were obtained and the associated conductivities compared

with the results of various approximate methods in the literature. We found that our analytical solutions compare

well with the numerics, in particular they compare more favourably than the geometric approximations. In Sec-

tion 3 we showed that that there is an order of magnitude difference between conductivity results obtained from

the approximation methods employed by network models relative to the true values based on numerical results.

It appears that the approximations used by Tørå et al. [11] coincide with both the numerical and the analytical

values more consistently than those of Al-Gharbi and Blunt [46] for small values of ε , but then quickly diverge.

The results of Al-Gharbi and Blunt [46] improve as ε increases until the curve intersects the numerical curve,

before again diverging. We observe that the Tørå et al. [11] formula appears to diverge most quickly in both

the small and large perturbation cases, however their full formula was set up with multiphase flow in mind and
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accounts separately for the wetting and non wetting layers of fluid. This could explain the poor agreement for

single phase flow.

It is clear how changes in the perturbation will affect the analytic solution, whereas calculations have to be

revised for the approximate methods based on the geometry of the perturbation. This can be seen as an advan-

tage of the asymptotic approach as we have a stronger handle on perturbations than the numerically approximated

solutions from the geometric methods. This means that the analytic formulae developed for the hydraulic conduc-

tivity allows a large range of triangles to be considered without the need to recompute the flow. For this reason, it

would be easy to account for each node in a network having a different sized triangle.

For our formulation we considered the perturbation to the triangle in a particular way, by fixing one side to

have length one with an angle of 60◦ to the base and then varying the length of the base. The final side and two

angles were then determined through this perturbation. Not all scalene triangles can necessarily be perturbed in

this way, such as triangles that have no angles near 60◦. However, this perturbation technique can be explored by

changing the angle as well and it is of future interest to see the extent to which the composite conductivity (54)

generalizes to arbitrary scalene triangles. With this in mind we note that more delicate consideration must be taken

if the wedge angle becomes obtuse [66,74]. Nevertheless, we have demonstrated its power for a broad range of

triangles. Furthermore, we note that while not reported, analogous results can be obtained for different triangular

orientations. Numerical experiments carried out by Long et al. [35] suggest that the hydraulic conductivities do

not explicitly depend on the geometry of the pore, but rather the geometric shape factor, F , providing optimism

that our formula indeed generalizes. This is an interesting avenue of future research.

This paper placed focus on understanding single phase flow in porous media; however, future work will aim

to further extend the work carried out here to multiphase flow. Next steps will involve analysis of the conditions

imposed on the meniscus interface between two fluids in the corner of a triangle. Once these are established

they can be applied a duct flow analysis in the corner of a triangle to gain insight into the velocity profile and

hydraulic conductivities in the limiting case where we have a triangle, almost fully saturated with one fluid, with

an O(ε) layer of wetting fluid. Having analysed the hydraulic conductivities for this limiting case we will then

carry out a comparison with the network approximations. We will then further extend the analysis to various

wetting/non-wetting saturation scenarios.

We note that it is insufficient to have only pore-models of the flow, as connections between pores are important

features of real porous media as mentioned in Section 1. It will therefore be important to consider a non-uniform

cross section channel so that a full three-dimensional flow model can be analysed.
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Fig. 1: Diagram depicting how we align the pipe and the direction of flow.

A Separation of Variables in Triangular Coordinates

Consider the eigenvalue problem

∇2φ =−λ 2φ with φ = 0 on W = 0, (58)

where W is the equilateral triangle domain given as in Figure 18.

The problem with separation of variables in this domain is that the boundaries of the triangle are not constant

in x or y. Transforming to a triangular coordinate system is useful as each point in space is measured relative
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Fig. 3: Contours of constant velocity for the non-dimensional equilateral triangle domain corresponding to Figure

2, with triangle boundary given by (6a) and velocity profile given by v0 = u0W0.

to the bisectors of the angles through the midpoint of the opposite sides, with the origin being the centre of the

inscribed circle of the triangle, with radius rinc =
√

3
6 .

Considering Figure 19, each point P in (x,y,z) is projected onto (u,v,w) in this new coordinate system, giving

the following relations

u = rinc− y (59a)

v =

√
3

2
x+

1
2
(y− rinc) (59b)

w =−
√

3
2

x+
1
2
(y− rinc) (59c)

with positive orientation directed towards the boundary. Adding these three equations it can be seen that there is

a linear dependence in the variables,

u+ v+w = 0, (60)
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2, where we denote the triangle boundary (given by (6a)) with 0 velocity in black and the velocity profile is given

by v0 = u0W0.Triangular coordinates Flow in porous media
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Fig. 4: Triangular coordinate system

Fig. 5: Log-log plot depicting the L2 norm between the analytical and numerical solutions minus the components

of the solution involving u0,W0,W1 terms, where u0 = − 1
2
√

3
, and W0,W1 given by (6a) and (6b) respectively.

Error decreases at a rate proportional to ε2 as ε → 0.

which is consistent with R2 being uniquely spanned by two vectors. Now, in this new coordinate system, the

boundaries of the triangle are now u = rinc, v = rinc and w = rinc, which are constant values and so allow us to

proceed with separation of variables.

Rearranging the equations in (59) we see that

x =
v−w√

3
(61a)

y = rinc−u (61b)

and so defining ξ = u and η = v−w provides a good orthogonal system. In this new coordinate system the

Laplace operator can be written as

∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 =
∂ 2

∂ξ 2 +3
∂ 2

∂η2 = ∇̂2, (62)
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Fig. 4: Triangular coordinate system

Table 1: Relative errors of each of the hydraulic conductivity methods in comparison with the numerical hydraulic

conductivity Gn.

Relative errors of the hydraulic conductivities

ε Shape factor GE GAG GT

0.01 0.04811 3.2781×10−5 1.3987×10−1 8.8897×10−2

0.1 0.04789 4.2160×10−3 1.3985×10−1 9.1059×10−2

0.5 0.04444 4.6331×10−2 1.3845×10−1 1.2873×10−1

1 0.03868 8.8038×10−2 1.3100×10−1 2.0682×10−1

1.5 0.03356 1.1381×10−1 1.1714×10−1 2.9806×10−1

2 0.02941 1.3048×10−1 9.8679×10−2 3.9441×10−1

A Separation of Variables in Triangular Coordinates

Consider the eigenvalue problem

∇2φ =−λ 2φ with φ = 0 on W = 0, (60)
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Fig. 5: Log-log plot depicting the L2 norm between the analytical and numerical solutions minus the components

of the solution involving u0,W0,W1 terms, where u0 =
1

2
√

3
, and W0,W1 given by (6a) and (6b) respectively. Error

decreases at a rate proportional to ε2 as ε → 0.
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Fig. 8: Numerical velocity for large triangle when ε = 10 with the infinite wedge asymptotic solution subtracted

away.

and the system (58) becomes

∇̂2φ =−λ 2φ , (63)

subject to φ = 0 on ξ = rinc, η = u+2rinc, and η =−u−2rinc. Seeking a separable solution of the form φ(ξ ,η) =

f (ξ )g(η) and substituting this into (63) yields

fξ ξ +α2 f = 0 (64a)

gηη +β 2g = 0 (64b)

α2 +3β 2 = λ 2. (64c)
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and the system (58) becomes

∇̂2φ =−λ 2φ , (63)

subject to φ = 0 on ξ = rinc, η = u+2rinc, and η =−u−2rinc. Seeking a separable solution of the form φ(ξ ,η) =

f (ξ )g(η) and substituting this into (63) yields

fξ ξ +α2 f = 0 (64a)

gηη +β 2g = 0 (64b)

α2 +3β 2 = λ 2. (64c)
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Fig. 7: Rescaled large triangle

where W is the equilateral triangle domain given as in Figure 18.

The problem with separation of variables in this domain is that the boundaries of the triangle are not constant

in x or y. Transforming to a triangular coordinate system is useful as each point in space is measured relative

20



Triangular coordinates Flow in porous media

Fig. 8: The absolute value of the numerical velocity for large triangle when ε = 10 with the infinite wedge

asymptotic solution subtracted away.

Fig. 9: Convergence of the asymptotic correction term (30) to O(ε−4), 1< ε < 10. As ε increases the asymptotics

approximate the large triangle to O(ε−4) as predicted.

to the bisectors of the angles through the midpoint of the opposite sides, with the origin being the centre of the

inscribed circle of the triangle, with radius rinc =
√

3
6 .
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Fig. 10: Comparison of the analytical hydraulic conductivity, GE , the two approximate methods, GAG, GT , and

the numerical solution, GN . We scale each G by the leading order conductivity
√

3
320 in order to present O(1)

conductivities.

(a) ε = 1.5, Shape Factor= 0.03356 (b) ε = 5, Shape Factor= 0.01645

Fig. 11: Perturbed triangles for different ε values.

Considering Figure 19, each point P in (x,y,z) is projected onto (u,v,w) in this new coordinate system, giving

the following relations

u = rinc− y (61a)

v =

√
3

2
x+

1
2
(y− rinc) (61b)

w =−
√

3
2

x+
1
2
(y− rinc) (61c)
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Fig. 12: Graph showing the comparison of the analytical hydraulic conductivities, the two approximate methods

and the numerical solution using the figures from Table 1 and larger values of ε . Each G is scaled by the leading

order conductivity
√

3
320 in order to present O(1) conductivities.

Fig. 13: Hydraulic conductivities for large perturbation to the equilateral triangle with 2.5 < ε < 40.

with positive orientation directed towards the boundary. Adding these three equations it can be seen that there is

a linear dependence in the variables,

u+ v+w = 0, (62)

which is consistent with R2 being uniquely spanned by two vectors. Now, in this new coordinate system, the

boundaries of the triangle are now u = rinc, v = rinc and w = rinc, which are constant values and so allow us to

proceed with separation of variables.
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Fig. 14: Hydraulic conductivities for large perturbation to the equilateral triangle with 10 < ε < 100.

Fig. 15: Hydraulic conductivities for various ε values demonstrating the regions where the small and large per-

turbation formulae overlap in performance.

Rearranging the equations in (61) we see that

x =
v−w√

3
(63a)

y = rinc−u (63b)
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Fig. 16: Hydraulic conductivities for various ε values demonstrating the complete analytic conductivity formula,

GC given by (54), in comparison with the two geometric formulae and the numerical conductivity. The grey

dashed lines denote the points where the line fit meets the two asymptotic formulae.

Table 2: Relative errors of each of the hydraulic conductivity methods in comparison with the numerical hydraulic

conductivity Gn for ε � 1.

Relative errors of the hydraulic conductivities

ε Shape factor GW GAG GT

2.5 0.026943 4.6017×10−1 5.4998×10−2 5.1060×10−1

5 0.016627 2.3724×10−1 5.6999×10−2 9.9136×10−1

10 0.009409 1.2130×10−1 3.2314×10−1 1.9307

15 0.006559 8.3342×10−2 5.8795×10−1 2.8342

20 0.005034 6.5793×10−2 8.4702×10−1 3.7169

25 0.004085 5.6820×10−2 1.1018 4.5882

30 0.003436 5.2610×10−2 1.3542 5.4552

and so defining ξ = u and η = v−w provides a good orthogonal system. In this new coordinate system the

Laplace operator can be written as

∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 =
∂ 2

∂ξ 2 +3
∂ 2

∂η2 = ∇̂2, (64)

and the system (60) becomes

∇̂2φ =−λ 2φ , (65)
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Fig. 17: Relative error of hydraulic conductivities for various ∆ l values where l = 10µm. the inset plot zooms in

on the area where the error of GAG is close to the error of GC.

Flow in porous media Triangular coordinates

Fig. 17: Relative error of hydraulic conductivities for various ∆ l values where l = 10µm. the inset plot zooms in

on the area where the error of GAG is close to the error of GC.
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Fig. 18: Equilateral triangle domain

Writing (70) as a sum of sines, it can then be seen that φe = 0 if

lπ
3rinc

−βl =−
mπ
3rinc

−βm, (71a)

lπ
3rinc

+βl =−
nπ

3rinc
+βn, (71b)

mπ
3rinc

−βm =− nπ
3rinc

−βn, (71c)

where it should be noted that these choices are not unique. We notice that adding the above expressions

l +m+n = 0, (72)

26

Fig. 18: Equilateral triangle domain

subject to φ = 0 on ξ = rinc, η = u+2rinc, and η =−u−2rinc. Seeking a separable solution of the form φ(ξ ,η) =

f (ξ )g(η) and substituting this into (65) yields

fξ ξ +α2 f = 0 (66a)

gηη +β 2g = 0 (66b)

α2 +3β 2 = λ 2. (66c)

Solutions to (66a) and (66b) are simple harmonic oscillators. We first consider the solution to (66a). The boundary

condition to be satisfied is φ = 0 on ξ = rinc, but we need a second boundary condition. Considering that we would

like the top corner of the triangle to be consistent with the boundary conditions on the triangle sides, we impose

that φ = 0 on ξ =−2rinc. Thus, we require f (rinc) = f (−2rinc) = 0. Let’s consider a shift in f (ξ ),

f (ξ ) = cosα(ξ − γ)+ sinα(ξ − γ), (67)
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Fig. 5: Log-log plot depicting the L2 norm between the analytical and numerical solutions minus the components

of the solution involving u0,W0,W1 terms, where u0 = − 1
2
√

3
, and W0,W1 given by (6a) and (6b) respectively.

Error decreases at a rate proportional to ε2 as ε → 0.

which is consistent with R2 being uniquely spanned by two vectors. Now, in this new coordinate system, the

boundaries of the triangle are now u = rinc, v = rinc and w = rinc, which are constant values and so allow us to

proceed with separation of variables.

Rearranging the equations in (59) we see that

x =
v−w√

3
(61a)

y = rinc−u (61b)

and so defining ξ = u and η = v−w provides a good orthogonal system. In this new coordinate system the

Laplace operator can be written as

∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 =
∂ 2

∂ξ 2 +3
∂ 2

∂η2 = ∇̂2, (62)
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Fig. 19: Triangular coordinate system

for some constant γ . Taking γ =−2rinc we see that

f (ξ ) = sin
(

lπ
3rinc

(ξ +2rinc)

)
, l ∈ N, l 6= 0; α =

lπ
3rinc

. (68)

In order to solve the original problem we will consider separately the even and odd functions of η , denoted

φe and φo respectively,

φe = sin
(

lπ
3rinc

(ξ +2rinc)

)
cos(βη) (69a)

φo = sin
(

lπ
3rinc

(ξ +2rinc)

)
sin(βη), (69b)

noting that if both φe and φo satisfy (60) then their sum will automatically satisfy (60) also. Now we must satisfy

the boundary conditions at v = rinc and w = rinc, which are equivalent to η = u+ 2rinc and η = −u− 2rinc. By

symmetry, if φ = 0 is satisfied at one of these two boundaries, then it is satisfied at the other also.

Considering φe, we need to satisfy φe = 0 at η = u+2rinc. Recall that ξ = u,

φe = sin
(

lπ
3rinc

(u+2rinc)

)
cos
(

β (u+2rinc)

)
= 0. (70)

Now (70) cannot be zero for all u. But we know that φe is a solution for all non-zero integers. This then motivates

consideration of additive solutions at η = u+2rinc of the form

φe = sin
(

lπ
3rinc

(u+2rinc)

)
cos
(

βl(u+2rinc)

)
+ sin

(
mπ
3rinc

(u+2rinc)

)
cos
(

βm(u+2rinc)

)
= 0. (71)

Trigonometric identities can be used to write (71) as a sum of sines, which then indicates that for φe = 0 to be

satisfied we have φe = 0, so the two mode solution is also inadequate. We consider adding more integers,

φe = sin
(

lπ
3rinc

(u+2rinc)

)
cos
(

βl(u+2rinc)

)
+ sin

(
mπ
3rinc

(u+2rinc)

)
cos
(

βm(u+2rinc)

)
+sin

(
nπ

3rinc
(u+2rinc)

)
cos
(

βn(u+2rinc)

)
= 0.

(72)

Writing (72) as a sum of sines, it can then be seen that φe = 0 if

lπ
3rinc

−βl =−
mπ
3rinc

−βm, (73a)

lπ
3rinc

+βl =−
nπ

3rinc
+βn, (73b)

mπ
3rinc

−βm =− nπ
3rinc

−βn, (73c)
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where it should be noted that these choices are not unique. We notice that adding the above expressions

l +m+n = 0, (74)

which echoes the linear dependence u+ v+w = 0. Adding (73a) and (73c), substituting m based on (74) we see

βn−βl =
(l +n)π

3rinc
. (75)

Then, due to the degeneracy in (74), we recall the condition (66c), which simplifies as

β 2
l −β 2

n =
(n2− l2)π2

27r2
inc

. (76)

Combining (75) and (76) we can solve for βn, and then we can use (73) to determine βl and βm,

βn =
(l−m)π

9rinc
, (77a)

βl =
(m−n)π

9rinc
, (77b)

βm =
(n− l)π

9rinc
, (77c)

with corresponding eigenvalue,

λ 2
mn =

4π2

27r2
inc

(m2 +mn+n2). (78)

The odd solution φo can be determined in a similar manner, where, in fact, due to the choice of conditions in (73),

we find that the odd solution is of the same form. Thus the solution to (65) subject to the homogeneous Dirichlet

boundary conditions is given by

φ mn
e = sin

(
lπ

3rinc
(ξ +2rinc)

)
cos
(
(m−n)π

9rinc
η
)
+ sin

(
mπ
3rinc

(ξ +2rinc)

)
cos
(
(n− l)π

9rinc
η
)

+ sin
(

nπ
3rinc

(ξ +2rinc)

)
cos
(
(l−m)π

9rinc
η
)
= 0, (79a)

φ mn
o = sin

(
lπ

3rinc
(ξ +2rinc)

)
sin
(
(m−n)π

9rinc
η
)
+ sin

(
mπ
3rinc

(ξ +2rinc)

)
sin
(
(n− l)π

9rinc
η
)

+ sin
(

nπ
3rinc

(ξ +2rinc)

)
sin
(
(l−m)π

9rinc
η
)
= 0. (79b)

More detail can be found in McCartin [65].
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