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Abstract

Smart materials are one of the key emerging technologies for a variety of space

systems ranging in their applications from instrumentation to structural design.

The underlying principle of smart materials is that they are materials that can

change their properties based on an input, typically a voltage or current. When

these materials are incorporated into structures, they create smart structures. This

work is concerned with the dynamics and control of three smart structures: a

membrane structure with shape memory alloys for control of the membrane sur-

face flatness, a flexible manipulator with a collocated piezoelectric sensor/actuator

pair for active vibration control, and a piezoelectric nanopositioner for control of

instrumentation.

Shape memory alloys are used to control the surface flatness of a prototype mem-

brane structure. As these actuators exhibit a hysteretic nonlinearity, they need their

own controller to operate as required. The membrane structures surface flatness

is then controlled by the shape memory alloys, and two techniques are developed:
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genetic algorithm and proportional-integral controllers. This would represent the

removal of one of the main obstacles preventing the use of membrane structures

in space for high precision applications, such as a C-band synthetic aperture radar

antenna.

Next, an adaptive positive position feedback law is developed for control of a

structure with a collocated piezoelectric sensor/actuator pair, with unknown natu-

ral frequencies. This control law is then combined with the input shaping technique

for slew maneuvers of a single-link flexible manipulator. As an alternative to the

adaptive positive position feedback law, genetic algorithms are investigated as both

system identification techniques and as a tool for optimal controller design in vi-

bration suppression. These controllers are all verified through both simulation and

experiments.

The third area of investigation is on the nonlinear dynamics and control of piezo-

electric actuators for nanopositioning applications. A state feedback integral plus

double integral synchronization controller is designed to allow the piezoelectrics to

form the basis of an ultra-precise 2-D Fabry-Perot interferometer as the gap spacing

of the device could be controlled at the nanometer level. Next, an output feedback

linear integral control law is examined explicitly for the piezoelectric actuators with

its nonlinear behaviour modeled as an input nonlinearity to a linear system. Con-

ditions for asymptotic stability are established and then the analysis is extended to
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the derivation of an output feedback integral synchronization controller that guar-

antees global asymptotic stability under input nonlinearities. Experiments are then

performed to validate the analysis.

In this work, the dynamics and control of these smart structures are addressed

in the context of their three applications. The main objective of this work is to

develop effective and reliable control strategies for smart structures that broaden

their applicability to space systems.
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1 Introduction

Smart materials are materials that are capable of changing their properties in

a controlled fashion, typically based on a supplied input. These types of materi-

als can be incorporated into structures to create smart, or intelligent, structures

capable of sensing and reacting to changes in their operating environment. A sen-

sor is used to monitor the system and its output is connected to a control unit

which will generate a response to the sensor signal, which is then applied to the

actuator to generate a desired system behaviour. There are many forms of smart

materials including shape memory alloys, piezoelectrics, magnetorheological and

electrorheological fluids, and magenetostrictives and electrostrictives. The possi-

bility to change a materials property in a controlled fashion is fascinating and has

found applications in a diverse number of fields including positioning, shape and

vibration control, and fault detection and mitigation [1]. Within the space sector,

as more is demanded of systems in increasingly complex applications in harsh envi-

ronments, smart materials present themselves as one of the most viable solutions to
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these engineering problems. Past, current, and future space applications of smart

materials, in particular of piezoelectrics and shape memory alloys, are outlined

briefly below.

Piezoelectric materials can operate as sensors via the direct piezoelectric effect

whereby a voltage is generated when the material is strained. They can also operate

as actuators through the converse piezoelectric effect whereby they generate strain

when a voltage is applied. With proper instrumentation, they can also be used in

applications that require them to operate as both sensors and actuators simulta-

neously. For actuation, they possess the desired qualities of high resolution, fast

response time, large force output, and easy integration into structures, as they can

either be embedded into the structure during the fabrication process, or bonded to

it afterwards [2].

The direct piezoelectric effect is used for sensing in a variety of applications

through their implementations as accelerometers and pressure sensors. For exam-

ple, Meggitt PLC designed the vibration sensors for the Ariane 5 main and second

engine stages. Multiple piezoelectric sensors can also be used on distributed sys-

tems for health monitoring of complex structures [3]. As actuators, one of their

most prolific uses has been found in the vibration control of flexible structures.

In [4], piezoelectrics were used in a space truss experiment, CASTOR, tested on

the MIR space station. The purpose of the actuators is to add damping to the flex-
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ible structure at specific locations, reducing the overall flexibility of the structure.

Piezoelectric actuators are also commonly used in the Stewart platform for vibra-

tion isolation of sensitive instruments [5–7]. In a slightly different configuration,

they are also used in active struts to help mitigate the effect of launch vibrations

transmitted from the launcher to the payload [8]. A current topic of considerable

interest is their application to the problem of controlling the shape and vibration

of inflatable structures [9].

Another application of piezoelectrics is for motors as they don’t require electrical

or mechanical commutation, have a high torque density at low speed, no backlash

(as no gears are required), a fast response time, and a high holding torque [10].

For space applications, motors are required that can survive high temperature and

radiation environments, and from vacuum to high pressure. Current commercial

motor units typically have a maximum operation temperature of approximately

200◦C, although some have been constructed for up to 500◦C, but these have limited

lifetimes and tend to be quite large. Development of piezoelectric-based motors for

drive/steering motors, manipulator joint motors, lander petal motors, ultrasonic

drills, corers, and rock abrasion tools are currently in development at NASA for a

possible rover mission to Venus [10].

Among the most rapidly rising uses of piezoelectric actuators is in high-resolution

positioning for a variety of devices. As they are monolithic in nature, in theory,
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the positioning resolution of a piezoelectric actuator is limited only by its con-

trol electronics. For instance, stack actuators were used for the position control

of a telescope mirror [8], and for the tip-tilt mechanism for PHARAO, an atomic

clock operated onboard the ISS [11]. They are also used for scanning probe mi-

croscopy, 6 DOF positioning, and for spectrometry. The MIDAS experiment for

the ROSETTA mission employed a three degree-of-freedom (xyz) piezoelectric ac-

tuator for the scanning motion of an atomic force microscope for analyzing the dust

of comets [11].

An interesting new application for piezoelectric actuators is for proportional

valves of spacecraft microthrusters [12]. They can be used naturally for nominally

off valves, as the piezo need only be actuated to open the valve for a short thrust

duration, but they can also be used for modulating the flow of gas for the thruster.

Another popular smart material is the shape memory alloy. This material can

be deformed, and when an appropriate thermal procedure is applied to it, return

to a predefined shape. For actuation, they possess the desired qualities of large

force output, large displacement and simple supporting electronic instrumentation.

As the material itself is an alloy, the Joule heating effect can be used to create the

thermal load, or an external heater can be used to create this effect.

The most popular use of shape memory alloys in space has arguably been as low-

shock release mechanisms to replace high-shock pyrotechnic release mechanisms. In

4



these applications, the SMA is in its detwinned form and then is slowly heated un-

til it recovers its original shape, and release occurs. Examples of these include the

range of Frangibolt and Pinpuller devices from TiNi Aerospace Inc., and minia-

turized versions such as Qwknut [13] and Micro Sep-Nut [14] for micro-satellites.

Frangibolt was flown on the 1994 Clementine mission to the moon and was used to

deploy antenna, solar arrays, and the satellite from its launch vehicle [15].

A well known application of shape memory alloys was for the Mars Pathfinder

mission. Here, an SMA was used in an experiment to quantify the effect of dust

on the rovers solar cells. The SMA was used to rotate a dust cover off of a clean

region of the panel to compare the power output with that of regions subject to

dust accumulation [16].

SMAs can also be used for vibration isolation and damping [17]. The change in

stiffness from the elastic region of the SMA response to the transformation region

allows for isolation while the nonlinear pseudoelastic behaviour can be employed to

dissipate the mechanical energy of vibrations [18].

Among the most intriguing possibilities of use for SMAs are in the areas of

deployment, inflatable structures, and shape control. The lightweight flexible solar

array (LFSA) experiment [19] used a SMA at the hinge location to open a folded

solar array on the EO-1 spacecraft. Another experiment was the Shape Memory

Alloy Thermal Tailoring Experiment (SMATTE) [16] which was flown on MightySat
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II.1 where a thin SMA foil was integrated onto the surface of a bistable polymer

matrix composite. Heating the SMA would force the panel to go from one shape to

another, and relieve the thermal warping of the composite caused by the thermal

stress [20]. The use of SMAs for shape control of spaceraft antenna has many

intriguing future possibilities.

1.1 Piezoelectric Materials

In 1880, the Curie brothers first observed the piezoelectric effect during their

experiments on quartz, tourmaline, and Rochelle salt where pressure on the crystals

would create electrical charge, hence ‘piezo’, the Greek word for pressure. This is

referred to as the direct piezoelectric effect, where mechanical energy is converted

into electrical energy. In 1881, Lippman predicted the existence of the converse

piezoelectric effect from the laws of thermodynamics, which the Curie brothers

then verified through experiment [21]. Piezoelectrics were first used in ultrasonic

transducers during World War I which led to a variety of uses after the war. Discov-

ery of piezoceramics, specifically lead zirconate titanate (PZT) in the 1950’s spurred

many applications of piezoelectric materials as they possess very high dielectric and

piezoelectric properties [22].

Piezoelectric ceramics are made up of perovskite crystals. Each crystal has a

lattice structure with large divalent metal ions and oxygen on the outside with a
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smaller tetravalent metal ion inside [21]. Piezoelectric ceramics are typically formed

from powders pressed into the desired shape to create mechanically strong and

dense ceramics. The ceramic is then machined and has electrodes attached, after

which it must then be poled. Poling is done by exposing the material to a strong

electric field, typically along a specific axis, at a temperature slightly lower than

the Curie temperature. This causes the dipole moments of each of the subdomains

of the ceramic to align. After the electric field is removed and the material is

cooled, the subdomains of the crystal remain very closely aligned to the direction

of the electric field applied for poling. The piezoelectric effect can only be exhibited

by materials whose crystal structure has no center of symmetry, that is, they are

anisotropic [23]. This is only the case for ceramics below the Curie temperature,

where the crystal has a built-in electric dipole, although the net electric dipole on a

macroscopic scale is zero. Pressure creates displacement of ionic charges within the

crystal structure which causes the piezoelectric effect. Without any pressure, the

charge distribution in the crystal structure is symmetric and no net electric dipole

moment is created [22].

Piezoelectric materials can be used as a sensor when a force is applied to it. The

compression or tension force exerted on the material changes the dipole moment

which creates a difference in potential between the two surfaces of the material.

More specifically compression in the poled direction generates a voltage of the
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same polarity as the poling voltage, while compression perpendicular to that of

the poled direction generates a voltage of opposite polarity to that of the poling

voltage. Piezoelectrics can also act as actuators through the converse piezoelectric

effect, where it will convert electrical energy into mechanical energy. If a voltage

of the same polarity as the poling voltage is applied in the poled direction, this

will cause the ceramic to lengthen and reduce its width. If a voltage with polarity

opposite to that of the poling voltage is applied in the poled direction, this will

cause the ceramic to shorten and widen.

The IEEE standard [24] for piezoelectric materials is a linear definition which

is a valid assumption for small electric fields and mechanical stress levels [21]. The

relation between the applied voltage and generated strain is linear to a point which

depends on the material properties. However, it is important to note that for large

electric fields or stress levels, the material may exhibit nonlinear behaviour. The

constitutive equations for a piezoceramic can be formulated based on the assump-

tion that the total strain in the material is the sum of the mechanical strain and the

actuation strain caused by the applied voltage. The constitutive electromechanical

equations can be written in tensor form as [25]

Sij = sEijklTkl + dkijEk (1.1)

Di = diklTkl + εTikEk (1.2)
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Fig. 1.1 Model of a piezoelectric material [21]

where Sij is the strain tensor, sEijkl is the compliance tensor, Tkl is the stress tensor,

dkij is the tensor of piezoelectric constants, Ek is the electric field, Di is the electric

displacement, and εTik is the dielectric constant. The convention is to take axis

3 (see Fig. 1.1) as the poling axis, as PZT is transversely isotropic in directions

perpendicular to the poling direction. The constitutive equations can be rewritten

in engineering notation as

ε = SEσ + dE (1.3)

D = dTσ + eσE (1.4)

where ε is the strain vector, S is the matrix of compliance coefficients, σ is the

stress vector in N/m2, d is the matrix of piezoelectric strain constants in m/V,

E is the vector of the applied electric field in V/m, D is the vector of electric
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displacements in C/m2, e is the permittivity in F/m, and the superscripts E and

σ denote measurements taken for a constant electric field and stress. Here, Eq. 1.3

represents the actuator equation and Eq. 1.4 represents the sensor equation. Since

PZT is transversely isotropic, the only non-zero complicance coefficients are

S11 = S12

S13 = S31 = S23 = S32

S12 = S21

S44 = S55

S66 = 2(S11 − S12)

(1.5)

while the only non-zero dielectric coefficients are eσ11 = eσ22 and eσ33 and the only

non-zero piezoelectric strain constants are d31 = d32 and d15 = d24 (this is true for

PZT, not other piezoelectric materials such as PVDF). Hence, Eqs. 1.3–1.4 can be

written in full as
ε1
ε2
ε3
ε4
ε5
ε6

 =


S11 S12 S13 0 0 0
S12 S11 S13 0 0 0
S13 S13 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 2(S11 − S12)




σ1
σ2
σ3
σ4
σ5
σ6

+


0 0 d31
0 0 d31
0 0 d33
0 d15 0
d15 0 0
0 0 0


 E1

E2

E3


(1.6)

 D1

D2

D3

 =

 0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0



σ1
σ2
σ3
σ4
σ5
σ6

+

 eσ11 0 0
0 eσ22 0
0 0 eσ33

 E1

E2

E3


(1.7)

where the piezoelectric coefficient dij is the ratio of free strain in axis j to the

electric field that is applied along axis i with all external stresses constant. When a
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voltage is applied in the poled direction (which is axis 3 by convention), the electric

field created is

E3 =
V

t
(1.8)

hence, the strain induced in axis 1 is then

ε1 =
d31V

t
=

∆l

l
(1.9)

The elastic compliance coefficient Sij is the ratio of the strain in i to the stress

in j while there is no change of stress in the other directions. For subscripts higher

than 3, the elastic compliance coefficient refers to the ratio of shear strain in axis i

to the shear stress in axis j (also defined as ε4 = γ23 and σ4 = τ23). The dielectric

coefficient eij is the charge per unit area in i due to the electric field applied in

j [21]. In some applications, the relative dielectric coefficient may be used as

Kij =
eij
ε0

(1.10)

where in this application only, ε0 refers to the permittivity of free space. While it

has not been used in this discussion, the coupling coefficient kij is often used to

characterize piezoelectric materials. The coupling coefficient refers to the efficiency

with which the ceramic can convert mechanical energy into electrical energy and

back. The coupling coefficient can be expressed in terms of other piezoelectric

constants as

k2ij =
d2ij
SEije

σ
ij

(1.11)
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1.2 Shape Memory Alloys

Shape memory alloys are metallic materials that have the ability to return to a

predetermined shape when subjected to an increase in temperature past a certain

threshold. While many alloys exhibit this effect to some degree [26], the term shape

memory alloy is typically only applied to those alloys that can generate a significant

amount of force, or recover a significant amount of strain. This effect was first seen

in 1932 in a gold-cadmium alloy, but it wasn’t until 1962 that the shape memory

effect was observed in a nickel-titanium (NiTi) alloy that research into its effect and

applications took off. NiTi (also referred to as nitinol) is the most common shape

memory alloy, although copper-based alloys such as Cu-Zn-Al and Cu-Al-Ni have

also been used, albeit to a much lesser extent. NiTi alloys offer the advantage over

copper-based alloys in that they are much more thermally stable, exhibit a greater

shape memory strain, higher ductility, and excellent corrosion resistance [26]. The

desired ‘memory shape’ is typically created by heat treating the alloy between 500

and 800◦C for a few minutes.

Shape memory alloys are a class of metallic alloys that exhibit phase transfor-

mations within their solid state. These phase transformations are created by tem-

perature and/or stress changes and allow the material to recover what appear to

be permanent strains [27]. SMAs provide large actuation forces and displacements,
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however over only a low frequency bandwidth. The SMA’s behaviour is due to the

martensitic transformation between its martensite and austenite phases. Austenite

exhibits a cubic structure and is the high temperature phase, while martensite is

the low temperature phase where the material exhibits a tetragonal or monoclinic

structure.

In the absence of applied stress, the SMA will change from its martensitic phase

to its austenitic phase due to the application of a thermal load. This transformation

will begin at the austenitic start temperature (As) and finish at the austenitic finish

temperature (Af ). If the thermal load is then removed, as the material cools, it will

begin its solid phase change at the martensitic start temperature (Ms) and become

fully martensitic at its martensitic finish temperature (Mf ). As can be seen in

Fig. 1.2, there is hysteresis associated with the phase change as the martensitic

start temperature is lower than the austenitic start temperature.

So far it has been assumed that there is no applied stress to the shape memory

alloy, and in this absence there will be no macroscopic shape change of the material

as it transitions from the austenite to martensite phase, as the SMA will exhibit

a twinned structure. However, once a stess is applied above a certain level to

the alloy in its martensitic phase, the SMA will deform in shear from twinned

martensite to detwinned martensite (see Fig. 1.3). When the stress is removed,

the SMA will remain in its detwinned martensite form (and hence in its changed
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Fig. 1.2 Transformation vs. temperatue curve for SMA under constant load [26]

shape) as the crystallographic stucture of the SMA is stable in its detwinned phase.

It will remain detwinned until a thermal load is applied to revert the SMA to its

austenite phase, and its ‘remembered’ shape. If the return to the SMA’s austenite

phase is resisted, the SMA can generate very large forces. When the temperature

is reduced, the SMA will return to its twinned martensite form. While there is

a transmission path from twinned to detwinned martensite, no direct return path

exists. This can be seen graphically in Fig. 1.4. This is termed the stress-free

shape memory effect, where the phase change to austenite results in the recovery

of what apperars to be a permanent deformation that occurs during detwinning

(see Fig. 1.4). When the load is removed, the elastic portion of the total strain is

recovered. The inelastic portion associated with the detwinning process remains (as

the detwinned martensite structure is stable). The inelastic strain is only recovered

once the SMA is reheated and returned to its austenite phase. If any plastic strain
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occurs it will not be recovered.

(a) (b) (c)

Fig. 1.3 Crystal phases of shape memory alloy: (a) Austenite (b) Martensite

(twinned) (c) Martensite (detwinned)

Another property of the SMA is that they exhibit pseudoelastic behaviour.

This is caused by a stress-induced phase transformation from austenite to de-

twinned martensite when the material is slightly above its transformation tem-

perature which results in increasing strain at constant stress. When unloaded it

returns to its austenite phase, but not through a temperature change, but through

the reduction of stress. The Clausius-Clapeyron equation gives the critical stress

for the martensitic phase change at a given temperature as [28]

dσc
dT

=
∆H

V T0∆ε
(1.12)

where σc is the critical stress, T is the given temperature, T0 is the temperature

at which the phases are in equilibrium at σ = 0, V is the molar volume, ∆ε is the

transformation strain, and ∆H is the transformation enthalpy. In more detail, this

15



Fig. 1.4 Stress vs. strain vs. temperature curve of SMA [27]

effect can be seen in Fig. 1.5(c). Before Point A it is in its austenite phase and the

SMA responds elastically. After this point, stress-induced detwinned martensite

begins to form and large inelastic strains are generated through to Point B, where

the material is in a detwinned martensitic phase. When loaded above this level,

the SMA once again responds elastically. When the stress is lowered to Point C,

the reversion to the austenitic phase starts and the inelastic strain is recovered

between Point C and D, where at D, the material is in its austenitic phase once

again. The constitutive relations of the SMA rely on the stress-strain-temperature

space [29–32] and are given by

σ − σ0 = D(ε− ε0) + Θ(T − T0) + Ω(ξ − ξ0) (1.13)
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where D is the modulus of elasticity, Θ is the thermoelastic tensor, Ω is the trans-

formation tensor, and ξ(σ, T ) is the martensitic fraction [28]. It should be noted

however, that there are still many limitations in the general applicability of the

consitutive equations for modeling, including the commercial finite element codes

that include analysis packages for SMAs. In fact, for most space applications, little

to no modeling was performed of the SMA through its constitutive equations, and

the systems were designed predominantly through careful experimentation [27].

Shape memory alloys can be used as force/displacement actuators as they can

exert force over a large range of motion, often for a large number of cycles. It is

possible to use a shape memory alloy as a force/positioning mechanism by using

only a portion of the shape recovery as the phase transformation occurs over a range

of temperatures, that also depend on the stress level. For this, a bias mechanism or

load force must be used to return the actuator to its detwinned martensite phase,

or no macroscopic change will occur. Due to the resistance of nitinol, it can be

actuated electrically by Joule heating. This occurs when an electric current is

passed through the SMA and heats it enough to cause the phase transformation

from martensite to austenite. This gives good control over the temperature of

the SMA (and hence force or displacement), however, large currents are typically

required as the resistance of NiTi is small, as it is a metal alloy. Also, as the

current must flow directly through the SMA, it must be electrically isolated. A
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Fig. 1.5 Stress-strain curve for SMA at different temperatures [26]

heater could also be used for actuation of the SMA, however, this is both bulky

and deteriorates the cooling cycle time as the surrounding heating elements must

also cool sufficiently for the martensitic phase change to take place.

1.3 Research Objectives and Organization

This thesis is concerned with the application of smart materials to three spe-

cific space engineering applications: shape memory alloys for flatness control of

a membrane structure, piezoelectrics for vibration control of a single-link flexible

manipulator, and piezoelectric stack actuators for nanopositioning of space instru-

mentation.
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Chapter 2 presents experimental studies on the active flatness control of a rect-

angular membrane structure with elliptical boundary cuts. The control is achieved

by using twenty shape memory alloys as actuators, each with their own proportional

control loop. In Section 2.2 a genetic algorithm (GA) is implemented to minimize

the surface flatness of the membrane. A conventional GA with a single objective

function is used as well as a genetic algorithm with online objective reweighting

capability that is proposed here. This genetic algorithm implements an objective

function that re-weights its objective online to consider both the flatness of the

membrane and tension required by the actuators to achieve it. Experiments are

conducted on a membrane test facility with two implementations: a static mutation

rate, and an adaptive mutation rate. Finally, in Section 2.3 the control architec-

ture for the twenty shape memory alloy actuators used in control of the membrane

structure is revised. The control is based on proportional-integral control with three

different types of pulse width modulation used at the output to more effectively use

the available current. A duty cycle is then implemented for each of the three PWM

types such that a maximum on-time for the shape memory alloys can be enforced

to allow larger currents to be used without damaging the actuators. Experimental

verification of the controllers is conducted, and then their use for shape control of

a membrane under a time-varying thermal load is shown.

Next, Chapter 3 concerns the development of vibration control strategies for
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a flexible manipulator with a collocated piezoelectric sensor/actuator pair. The

experimental system is outlined and then dynamic modeling of the flexible manip-

ulator is conducted through the finite element method. In Section 3.3 a vibration

controller combining the input shaping technique with multi-mode adaptive positive

position feedback is developed to suppress vibration of the flexible manipulator in-

duced by a slew maneuver. Next, in Section 3.4 an iteratively implemented genetic

algorithm is applied to the system identification problem of the flexbile manipu-

lator. A control law based upon positive position feedback is then developed for

vibration suppression. A minimization criteria based on the H∞-norm of the closed

loop system is solved by a genetic algorithm to derive optimal controller parameters.

Numerical simulations and experiments are performed to verify the effectiveness of

both methods.

Then, in Chapter 4, the use of piezoelectric stack actuators for nanopositioning

of space instruments is presented. A linear model of the piezoelectric is first devel-

oped and then a nonlinear phenomenological model is identified from experimental

data based upon the modified Prandtl-Ishlinskii model. Then, in Section 4.3 a state

feedback integral plus double integral synchronization control method is developed

for a parallel three-axis positioning mechanism based on piezoelectric actuators.

Next, in Section 4.4 an output feedback integral control law is examined for the

piezoelectric actuator considering its nonlinear behaviour as an input nonlinearity
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to the state space model of the system. Conditions on the maximum integral gain

are derived such that the system is asymptotically stable. Then, in Section 4.5 this

method is extended to derive an output feedback integral synchronization control

law for the piezoelectric actuators considering their input nonlinearities. Global

asymptotic stability of the system is ensured through a Lyapunov stability analy-

sis. Experiments and hardware in the loop (HITL) simulations are conducted for

each of the above controllers.

Finally, Chapter 5 concludes this work. The results of this work are summarized,

and possible future research directions are discussed.

1.4 Major Contributions

The major contributions of this dissertation are:

1. Development of active flatness controllers for membrane structures based on

different methodologies, including a fast, simple control structure for many

shape memory alloy actuators

2. Design of an adaptive positive position feedback controller and its combina-

tion with input shaping for vibration control of a structure with uncertain

natural frequencies

3. A system identification and controller optimization technique for resonant

21



structures based on an iterative genetic algorithm

4. Design of an integral plus double integral synchronization controller for syn-

chronized movement of multiple piezoelectric actuators

5. Considering the piezoelectric actuator, with its inherent hysteresis, in the

context of absolute stability theory and deriving maximal integral gains for

stability

6. Extending this work to the derivation of an integral synchronization controller

for multiple piezoelectric actuators with consideration for the hysteresis’ effect

on stability
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2 Active Shape Control of a Membrane

Structure using Shape Memory Alloys

Membrane structures are finding applications in future space missions including

synthetic aperture radar (SAR) antennae [33], solar sails [34–36], membrane mirrors

[37–39], and spacecraft sunshields [40,41] among others [42]. The elements common

to all gossamer spacecraft are thin-film membrane structures [43, 44] which are

ultra-lightweight structures, that can be folded and deployed in-situ, and provide

larger surface area to weight ratios than their rigid counterparts. A comprehensive

literature review of the design, analysis, experimentation, and control of gossamer

spacecraft can be found in [45].

A membrane structure has effectively no resistance to compressive stress, hence

any compression in the membrane is relieved through wrinkling. Wrinkling can

occur in a membrane by a number of methods, including through applied boundary

tensions or a concentrated thermal load. For example, a thermal load will cause

expansion, and since there is no resistance to compressive stress, wrinkles will be
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induced. Such wrinkles could cause significant deterioration in the performance of

membrane structures. For example, the occurrence of wrinkles could reduce surface

accuracy in membrane reflectors or cause nonuniform surface heating in solar sails.

Of particular interest to this study is the use of a membrane structure for a C-

band synthetic aperture radar antenna. A membrane structure used for a SAR

antenna has the possibility of being
1

10
the cost,

1

100
the launch volume, and

1

2

the mass of conventional SAR systems [46]. However, the surface accuracy of the

antenna becomes a critical requirement as any wrinkles in the membrane will cause

degradation in the system performance due to phase shifts in the signals. A general

guideline is that the surface accuracy must be maintained within
1

10
to

1

20
of the

operation wavelength [46]. Therefore, the design of efficient membrane structures

that would minimize wrinkle occurrence is of tremendous importance. Moreover,

effective wrinkle control strategies are required in order to eliminate wrinkles once

they occur.

Square membranes are an excellent starting point for experimental verification

of numerical methods, because they admit to well-known wrinkling patterns [47].

In previous work, a considerable amount of effort has been expended to predict

wrinkles under various conditions. Some attempts at analytical approximations

have been made [35, 48], but in general, a full nonlinear finite element analysis

must be undertaken due to the geometrically nonlinear behaviour of the membrane
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[49–51]. From analysis of a rectangular membrane, it was discovered that elliptical

boundary cuts reduce the stress concentrations at the corners of the membrane,

so wrinkling is reduced compared to a rectangular membrane of the same size

[52]. Further, adding the boundary cuts allows for tensions to be applied not only

to the corners, but also at the areas between cuts. Thus, more complex tension

combinations can be applied and wrinkling can be reduced with less control effort.

Since we are dealing with a space application, less control effort translates directly

into lower power required for wrinkle reduction, and so is a central step in proving

the feasibility of membrane structures in space.

Due to the complex nature of the analysis, the computational time to solve

even simple static problems can become immense, making it currently unsuitable

for the testing of active flatness controllers. There have been a variety of methods

proposed for shape or flatness control of membrane structures. In general, there are

two major divisions, those with the control elements embedded into the membrane

structure, and those with control elements along the boundaries of the membrane.

The first main approach for active flatness control is that of patching/embedding

smart materials into the membrane for control of surface profiles, which typically

depend on piezoelectric films [53–55] to ensure the required surface accuracy. Pro-

vided a sufficient number of these elements are patched onto the surface, a large

control authority can be exerted on the host structure [52]. This approach has
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the drawback that the embedded sensors and actuators may interfere with the mi-

crowave components that need to be patched onto the membrane structure, and

that the behaviour of the structure can become much more difficult to predict. The

second main approach for active flatness control is that of manipulating the bound-

aries by actuators connected to the edges of the membrane, which will be used in

this study.

Shape memory alloys are materials that contract when an electrical current is

applied to them due to the Joule heating effect. SMAs offer suitable actuation

forces and adequate response times, unfortunately, SMA’s themselves suffer from

nonlinear effects in the form of hysteresis. Thus, the SMA’s require their own

controller if they are to be used for shape control of the membrane structure.

A variety of methods have been employed to control SMAs including adaptive

control [56], self-tuning fuzzy PID [57], and neural networks [58] among many

others. However, since twenty SMAs must be controlled in real-time, it is desirable

to have a simpler and faster control architecture. Once the SMAs are properly

controlled, the membrane surface flatness can be manipulated by these actuators

mounted along the boundary of the membrane.

Of particular interest to this study, in [59–61] a GA-based controller was ap-

plied to a 200 mm by 300 mm rectangular membrane structure through the use of

12 SMAs and shown to produce good flatness values. This work was built upon
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in [62] for a 200 mm by 300mm rectangular structure with 8 SMAs where the GA-

based controller was combined with a neural network for control. Finally, in [52] an

adaptive GA was applied to the same membrane structure that will be used in this

paper. In Section 2.2, an active flatness control strategy using a genetic algorithm

with online objective reweighting is proposed and tested on an experimental mem-

brane facility. The standard GA objective functions are reformulated with online

objective function reweighting in an attempt to reduce the total tension required

by the control while keeping the original objective of maximum surface flatness

satisfied. In the previous GA-based controllers, the objective function was solely

the flatness value of the membrane.

However, there are a few drawbacks to the GA-based control schemes. The first

is that it computes optimal tension combinations for twenty attachment points,

thus the search space is considerably large and the time required and computational

effort is considerable. Finally, the main drawback of the GA-based controllers is

that the possible combinations must be physically tried on the membrane. A faster

and simpler control scheme is desired, especially considering membrane technology

is going to be applied in space, where computational resources tend to be limited.

For this, a proportional-integral controller is designed in Section 2.3.2 to track a

desired flatness level under changing thermal conditions. This is highly desirable

due to the fact that power usage of the control system can be minimized as the
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actuators will be tightened or loosened based on the current wrinkled state of the

membrane.

In this chapter, the membrane structure and details of the experimental system

and setup is outlined in Section 2.1. Then, in Section 2.2 the design of the GA

controllers for flatness minimization is presented. Next, in Section 2.3, the design

of proportional-integral (PI) controllers combined with three different types of pulse

width modulation (PWM) with duty cycling is shown. In Section 2.3.2, results are

presented for the shape control of the membrane structure under varying thermal

loading conditions with the new SMA controllers. With the SMAs supplying the

desired boundary tensions, membrane flatness can be maintained effectively through

a simple PI master control loop.

2.1 Membrane Structure and Experimental Setup

Fig. 2.1 shows the membrane structure used in this study. The original rectan-

gular membrane size is 800 mm by 550 mm. In order to reduce wrinkling, elliptical

boundary cuts along membrane’s edges are made, as shown in Fig. 2.1. This will

reduce stress concentrations at the corners, and thus wrinkle amplitudes. Table 2.1

gives the properties of the membrane structure used in this study. For active flat-

ness control, twenty shape memory alloy (SMA) actuators are connected to each

of the twenty attachment points, along with strain gauge sensors to determine the

28



tension applied at the attachment points.

Table 2.1 Properties of membrane structure

Property Value
Material Kapton Type 100 HN film
Boundary cut shape Elliptical
Number of cuts 20
Attachment elements 20
Actuators Shape memory alloy
Number of actuators 20
Outside size 800 mm × 550 mm
Inside size 640 mm × 440 mm
Thickness, h 25.4 µm
Density, ρ 1420 kg/m3

Young’s modulus, E 2.5 GPa
Poisson’s ratio, µ 0.34
Linear coefficient of thermal expansion 20 ppm/◦C

Due to the fact that the membrane can only carry very small compressive

stresses, it is expected that a concentrated heat load will cause significant wrin-

kling of the membrane. This is a problem due to the membrane being essentially

unable to carry compressive stresses, which create localized wrinkling in the mem-

brane as a relief mechanism. This effect is created by the thermal load causing local

expansion of the membrane where it is applied, while areas further away from the

heat load will not be affected. When a locally expanding area meets one that is not,

compressive stresses form and the membrane will experience wrinkling. Nonlinear

finite element simulations have been run previously, and the expected wrinkling of
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Fig. 2.1 Membrane with boundary cuts

the membrane structure can be seen in Fig. 2.2. Clearly, the surface of the mem-

brane is distorted and its ability to operate, specifically as a SAR antenna, would

be compromised. To keep the surface of the membrane maximally flat, the root

mean square deviations of the membrane surface from its in-plane nature should be

kept to a minimum. Fig. 2.3 shows the membrane structure active flatness control

test facility. The facility consists of two main components: (a) vision system to

measure the membrane flatness; (b) membrane with control electronics.

The vision system includes a 1300×1000 pixel CMOS digital camera and a light

projector. The camera is calibrated in 3D world space, which allows a pixel in the

camera plane to be mapped to a line (cone) radiating from the focal point in the
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Fig. 2.2 Finite element analysis of membrane under central heat load

world coordinate system [62]. The flatness of the membrane is determined using a

photogrammetry technique. The light projector projects multiple light planes onto

the membrane surface, which produce lines on the membrane. These planes are

calibrated in the world coordinate space. The camera observes the points on the

curves projected by the projector. In order for the vision system camera to see the

curves clearly, a very thin coating is put on one side of the membrane. Locations of

these points and their 3-D coordinates are thus determined by the light plane and
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(a) Overall system

(b) Membrane structure

Fig. 2.3 Membrane structure test facility
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the associated radiating line from the camera focal point. The membrane flatness

is defined as the root mean square (RMS) deviation of the membrane surface from

a plane of best fit which can be defined as

drms =

√∑n
i=1 d

2
i

n
(2.1)

where di is the distance of the ith point on the membrane surface from the fitted

plane, and n is the number of measurement points. The RMS value of the membrane

surface above a plane of best fit can be determined by the vision system with sub-

millimeter accuracy. Test results have shown that the vision system works very well,

and further details of this method can be found in [59]. The membrane flatness

data obtained from the vision system is used in the objective functions for each of

the individuals in the current population of the genetic algorithm to evaluate their

fitness, or as the feedback variable.

The membrane is attached to a frame through twenty attachment points by SMA

actuators for use in tension control. The actuators are connected to an attachment

with adjustable screws such that a small pre-tension force is applied (see Fig. 2.4).

The SMAs are Nitinol type and their properties can be found in Table 2.2. The

SMAs are powered with three Lambda ZUP20-10 DC power supplies with 20 V and

10 A maximums. The data is transferred through three National Instruments SCB-

68 DAQ boxes. Ectron Corporation 563H boards are used to measure the actual

tensions applied by the SMAs through the use of strain gauges as sensors. Real-
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time control is implemented in MATLAB Real-Time Workshop and xPC Target.

A master computer is used to run the vision system and control and then supply

required tensions to a real-time slave computer. The real-time computer takes

the tensions and runs a simple on-off proportional controller to monitor the strain

gauges and supply more current to the actuator’s if necessary [61].

Fig. 2.4 One shape memory alloy and its attachment to the membrane and frame

In order to simulate thermal disturbance on the membrane, a ceramic heater is

placed 0.1 m below the membrane surface. The heat load can be adjusted between

5◦C and 540◦C at a temperature interval of 5◦C. In this study, two temperatures,

145◦C and 205◦C have been used. The first choice of temperature for this study

was made in order to qualitatively compare with previous results in [52] that were

34



Table 2.2 Properties of the shape memory alloys

Property Value
Material Nitinol (NiTi)
Diameter 0.2 mm
Length 66 mm
Resistance 29 Ω/m
Maximum pull force 0.570 kg
Input Current 660 mA
Austenite finishing temperature 90◦C

produced at this temperature. The second temperature choice (205◦C) was made

simply to run the tests at a higher temperature, while ensuring that the membrane

will not be damaged. Since the heat load is not in direct contact with the membrane,

this corresponds to maximum membrane temperatures of approximately 56◦C and

71◦C, respectively. Fig. 2.5 shows thermal distribution photos of our membrane

facility taken by an infrared camera. A contour plot of the wrinkle pattern recorded

by the measurement system can be seen in Fig. 2.6, with a rather large central

distortion. The controllers are tested against the wrinkling caused by the two heat

loads. An obvious expectation is that the larger heat load will cause more wrinkling.
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Fig. 2.5 Thermal distribution of membrane structure
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Fig. 2.6 Contour plot of central membrane area under 205◦C heat load
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2.2 Genetic Algorithm for Control of a Membrane Struc-

ture

The nonlinear behaviour of the membrane antenna with twenty shape memory

alloy actuators is very difficult to characterize, and finding the tension combination

that yields a maximally flat membrane surface can be formulated as an optimization

problem. However, traditional analytical optimization techniques face significant

drawbacks due to the knowledge that must be possessed of the system beforehand.

Genetic algorithms on the other hand are stochastic algorithms capable of searching

the entire solution space with more likelihood of finding the global optimum when

the system is either hard to characterize, or little is known about it ahead of time.

Here, different implementations of a GA will be used to search the 20-D parameter

space for the tension combinations that lead to a minimum surface deviation of the

membrane.

In [52] a genetic algorithm is developed and applied to active flatness control of

membrane structure and works as follows: each member ci of the population of indi-

viduals represents a solution to the optimization problem of flatness minimization.

Each member ci is given by twenty tensions as

ci = {T1, ... , T20} (2.2)

Each candidate function is coded as a chromosome, and the population is ini-
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tialized randomly. The fitness (or objective) function that is evaluated is

F (ci) = drms (2.3)

where drms is the root-mean-square deviation of the membrane surface above a plane

of best fit as measured by the photogrammetry system. After each generation, the

relative fitness of each individual is evaluated. If the population size is µ and the

frequency of crossover is given by pc, then the number of individuals, nc, selected

for crossover is

nc =
µpc
2

(2.4)

The offspring can replace their parents in subsequent generations provided that

their fitness values are superior. To avoid the possibility of zero-probability for a

given solution to propagate, we allow for mutation at a rate given by pm. Finally, the

maximum number of generations, Gmax, limits the number of times that crossover

and mutation can occur while searching for optimal solutions. Once the maximum

number of generations is reached, the process ends.

2.2.1 Adaptive Genetic Algorithm (AGA)

In the standard genetic algorithm, the mutation rate is static and chosen by the

designer. However, the choice of parameters pc and pm, can drastically affect the

solution. If the mutation rate is too high, then the offspring will not resemble their
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parents, and the solution may oscillate [52], while if the crossover rate is too low,

the search may not be able to find an improved solution, as too many individuals

from a sub-optimal generation may make it through to subsequent generations.

To avoid this issue, an adaption mechanism was proposed in [52] in order to

adapt the mutation rate based on the convergence of the solution. At the beginning

of an experiment, the mutation rate should be high. The theory behind genetic

algorithms indicates that, as time goes on, convergence tends to happen. Thus

the mutation rate should be gradually decreasing. However, if a local minimum is

found that is not optimal, the mutation rate is increased to avoid a “stalemate”

situation. Finally, if the flatness value dramatically improves from one generation

to the next, the mutation rate is decreased to preserve what is assumed to be a

good set of chromosomes in the population.

The crossover rate is also changed, but less drastically. The average performance

of the population is evaluated as [52]

F̄g =
∑
i

F (ci)

µ
(2.5)

Since the crossover rate is the probability of individuals from a given popula-

tion being allowed to go forward into a subsequent generation. For a high average

performance value (5% in [52]), the crossover rate is set to 0.8. If the average

performance is near zero, the crossover rate is set to 0.7, and if the average perfor-

mance is poor (the population is becoming less fit), the crossover rate is set to 0.6
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to attempt to drive the solution away from the problem.

2.2.2 Genetic Algorithm with Online Objective Reweighting

As mentioned above, a genetic algorithm has been proposed to achieve a low

level of wrinkling by finding the tension combination that optimizes the objective

function (minimizes drms). The genetic algorithm was also augmented to include

adaptive behaviour in the mutation rate, such that premature convergence should

not occur. Again with the adaptive GA, the objective function was the same.

Since the membrane structure and its active flatness control system will be ap-

plied on a spacecraft, power and computational resources are of particular concern.

Ultimately, any resource that goes into flatness control cannot be used for the mis-

sion objectives. However, wrinkle control with twenty attachment points provides

a twenty-dimensional search space. If we attempt to minimize both wrinkling and

power consumption at the same time, the search space would increase in size, fur-

ther using computational resources. The fact remains, however, that a solution

from the previous GA’s that minimizes wrinkling will not minimize the power re-

quired to reach that flatness level. To contend with this, an online-reweighting

genetic algorithm is developed in which minimizing surface deviation takes prece-

dence until a convergence threshold is reached. When convergence is occurring in

successive generations, the difference in the flatness values (which are also the ob-
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jective functions) should become small. At this point, the online reweighting GA

will begin to modify its objective function to include a preferential weighting for

small tension combinations that yield very similar flatness values. For example, if

the membrane is wrinkled and 3 N applied to all of the actuators yields a flatness

that is only 0.01 mm higher than that of 6 N on all of the actuators, clearly the

first case would be preferred. Thus, the objective is reweighted based on how close

the algorithm is converging, and the newly preferred combination will be kept into

successive generations and used for crossover and mutation.

Since the tensions are proportionally related to the electrical current require-

ment, and the power requirement depends on the square of the current requirement,

in an effort to minimize the amount of power used it would make sense to minimize

the amount of force applied by each actuator. This leads to another problem in

that having a minimum flatness and tension requirement right from the beginning

may not lead to the best performance of the control algorithm. This can possibly

drive the solution away from its minimum flatness value if the minimum tension

constraint takes precedence. To compensate, the proposed controller minimizes

first the flatness, then once it has begun to converge, the tensions are minimized.

This is particularly applicable when the optimal solution exists on a large plateau

in the solution space. Thus, as the primary objective function converges, the algo-

rithm becomes more concerned with minimizing the secondary objective without
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knocking the primary objective off of its plateau in the solution space.

The new objective function is then defined as

F (ci) =


drms −

1

k [max(drms)−min(drms)]
∑N

i=1 Ti
, for max(drms)−min(drms) > M

drms −
1

kW
, for max(drms)−min(drms) ≤M

(2.6)

where drms is the flatness of the membrane (and also the previous objective function

defined in Eq. (2.3)), N is the number of actuators, Ti is the tension applied by the

i-th actuator, and k is a control parameter. Here, W is a control parameter chosen

to give a maximum weight to the minimum tension criteria when a convergence

threshold M is passed. This is done to prevent the denominator from going to

zero, i.e. when max(drms) − min(drms) has converged very closely, which would

cause F (ci) to tend to infinity. On an experimental system this would be a highly

unlikely case due to measurement errors associated with all processes, however, it

has been included for mathematical completeness.

The idea here is that due to
1

max(drms)−min(drms)
in Eq. (2.6), as the genetic

algorithm begins to converge closer and closer in flatness, the minimum tension

objective will begin to play a larger role. Furthermore, in the ideal case, it will play

no role in the first few generations, where reducing wrinkling is more important.

Thus, as the flatness values begin to converge, the minimum tension objective will

become more important, although it is important to note, not at the expense of
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sacrificing any significant amount of flatness. This should be possible as it was

noted in [60] that there appears to be a fairly large plateau in the 20-D solution

space where there are a large number of possible tension combinations that will

result in a minimal membrane flatness value.

The idea behind the adaptive genetic algorithm (AGA) was to reduce the mu-

tation rate when the algorithm begins to converge as mutations are less helpful in

this regime. The problem with this approach is that if the mutation is dropped

too early, premature convergence may occur as the solution space may not be fully

explored. As this may be particularly useful, the reweighting objective function was

also combined with the adaptive genetic algorithm. The power of this algorithm, is

that although it is very unlikely, in the event that the reweighting objective func-

tion begins to yield premature convergence due to the minimum tension criteria,

the adaptive genetic algorithm should be able to pull it back out of any local optima

by the introduction of new random mutations. The other benefit of this new algo-

rithm is when the mutation rate is reduced, the difference between the maximum

and minimum flatness values should become smaller within a run, and allow the

minimum tension criteria to work more effectively.
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2.2.3 Experimental Results

Figs. 2.7 and 2.8 show the flatness of the membrane using three different control

strategies: standard genetic algorithm; reweighting genetic algorithm; and adaptive

reweighting genetic algorithm. The flatness is measured as the RMS deviation

above the plane of best fit to the membrane surface, with central thermal loading

conditions.

0 5 10 15 20 25
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

GA generation

R
M

S
 f

o
r 

fl
at

n
es

s 
m

ea
su

re
m

en
t

(a) Genetic algorithm

0 5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

0.45

0.5

GA generation

R
M

S
 f

o
r 

fl
at

n
es

s 
m

ea
su

re
m

en
t

(b) Reweighting GA
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(c) Adaptive reweighting GA

Fig. 2.7 Flatness for 145◦C central heat load
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(b) Reweighting GA
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(c) Adaptive reweighting GA

Fig. 2.8 Flatness for 205◦C central heat load

Since the reweighting genetic algorithm is designed with the intention of reduc-

ing control effort as well as wrinkle amplitudes, Figs. 2.9 and 2.10 show the control

effort required for the central 145◦C and 205◦C heat loading cases, respectively. It

can be seen in Figs. 2.9(b)–2.9(c) and Figs. 2.10(b)–2.10(c), that one of the main

benefits of using the reweighting genetic algorithms is the reduction of the total

tension required to achieve a low flatness value. The standard genetic algorithms,
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Figs. 2.9(a) and 2.10(a), require higher tension to be applied.

The performance of all three controllers and their respective tension require-

ments have been shown in Figs. 2.7 to 2.10. In general, one form of the reweighting

objective function appears to give the best results for flatness while continually

yielding low tension requirements. It is also interesting to see that for a larger heat

load, the adaptive part of the genetic algorithm becomes more important, possibly

because the solution plateau in the parameter space is not as broad.

For the 145◦C heat load, all of the final RMS deviations of the membrane surface

are around 0.235 mm, and lie within 0.025 mm of each other. The required tensions

for the online reweighting GA variations are 20 N and 4 N lower respectively than

that of the standard GA. For the 205◦C heat load, all of the final RMS deviations

are around 0.265 mm and lie within 0.04 mm of each other. The required tensions

for the online reweighting GA are 7 N and 17 N lower respectively than that of

the standard GA. As expected, the membrane is not quite as flat, even under

control, when the higher heat load is applied. It can be seen that the reweighting

GA’s produce surface flatness values that are just as low as the two previous GA

formulations, with less tension. While for some cases the tension savings made by

the reweighting GA are not huge, the fact that the power will depend on the square

of these tension combinations can mean a significant required power reduction.

As a final comparison, Fig. 2.11 shows a comparison of the mutation rates
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(c) Adaptive reweighting GA

Fig. 2.9 Total tensions for 145◦C central heat load

between the adaptive reweighting genetic algorithms for the 145◦C and 205◦C cases.

For the 205◦C heat load case the reweighting algorithm varies its mutation rate far

more as it searches for an optimal solution to the two objectives.

Finally, two points of particular importance have been noted. The first is that

from looking at the flatness plots, it quickly becomes apparent that although the

heat loads are the same between different controller runs, the starting flatness value
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(c) Adaptive reweighting GA

Fig. 2.10 Total tensions for 205◦C central heat load

is not, although it is in general similar. This is due to the fact that no tensions are

applied at the beginning of the run, and only the heat load is present. Thus, the

end condition of the actuators in the previous experiment will influence the first few

flatness values obtained in the next experiment. Second, since the genetic algorithm

is a stochastic algorithm and is seeded from random values at the beginning, exact

duplicates of runs are impossible, and a change in one generation will make changes
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Fig. 2.11 Mutation rates

in all of the rest. This can make repeatability of controller experiments an issue

as the same controller, when run twice, will give different results, although the

observations show that the results will converge to similar values.

2.3 PWM-PI Control of Shape Memory Alloys

While SMAs typically have a large heat transfer time constant [57,63], the pre-

vious performance was often too slow, due to the low current levels of the system.

To make more current available to the actuators, and to actuate the SMAs faster

and more accurately, a new PWM-PI controller was designed for each actuator. It

should also be noted that in the course of this work, the vision system was substan-

tially revised to work faster, and possess better filtering. The flatness variable is

also now calculated four times for each iteration (possible due to the increased rate
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of the vision system) and averaged to remove any possible dynamic effects from the

data.

2.3.1 PWM-PI Control

The discrete incremental version of PI control is implemented as

∆u(tk) = Kp[e(tk)− e(tk−1)] +Ki∆te(tk) (2.7)

where ∆u(tk) is the force increment, Kp is the proportional gain, Ki is the integral

gain, e(tk) is the error at the current time step, e(tk−1) is the error at the previous

time step, and ∆t is the sampling interval. The output is calculated as

u(tk) = u(tk−1) + ∆u(tk) (2.8)

where u(tk−1) is the previous control commmand. In this case, the error signal is

defined as the difference between the desired and measured tensions of the SMA.

This type of PI controller is chosen because of its incremental nature, which tends

to make the feedback loop less sensitive to the measurement noise from the strain

gauges. This is due to the fact that the control signal is incremented from it’s

previous value as opposed to generating the full command at each time step.

The outputs from the data acquisition card are digital, thus the analog control

signal must be digitized by some means. In this study, the intersective type PWM

is chosen as it is computationally simple to implement. This type of PWM requires
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only sawtooth waveforms (for lead or trail types) and a triangular waveform (for

center type) as the modulation signals. When the reference signal, the control

command u(tk) in this case, is larger than the modulation signal, the PWM signal

goes on, otherwise it is in it’s off state (as can be seen from Fig. 2.12). The

triangular wave is shifted by half a period from how it is commonly defined such

that the PWM will output in the middle of the period, rather than at the beginning

and end.
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Fig. 2.12 Three types of PWM

In order to prevent the shape memory alloys from possibly being burnt out,

the PWM signals to the actuators are designed to possess a duty cycle. This

means that the SMA must be off for some portion of the time period specified by
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its PWM frequency. For example, consider a constant input value of 1 to PWM

set at a frequency of 1 Hz, which would obviously lead to a constant output of 1.

Depending on the current limits in the system (and SMA thickness), this could lead

to actuator burn out. However, as an example, with a 66% duty cycle, the control

is forced off for at least 0.34 seconds of every cycle as can be seen in Fig. 2.13.

This also allows the maximum current, under its current limits, to be used more

effectively as the control signal for all actuators will not all be on simultaneously.

Here, the actuators are numbered according to Fig. 2.1 and will be divided into

sets based upon their location around the membrane. The corner actuators (1, 5,

6, 10, 11, 15, 16, 20) are lead type PWM, the in-between actuators (2, 4, 7, 9, 12,

14, 17, 19) are trail type PWM, and the center actuators (3, 8, 13, 18) are center

type PWM. Thus it can be seen that lead type PWM will fire on the right edge of

the period, trail type will fire on the left edge of the period, and center will fire in

the middle of the period (hence the reason for it’s time shift).

2.3.1.1 Shape Memory Alloy Tracking Results

For the experiments, the Simulink program is downloaded to the xPC target

computer which is configured to have a sample rate of 1 kHz. All twenty controller’s

for the SMAs are set to the same parameters with the proportional gain set to 5,

the integral gain to 0.2, the PWM frequency to 50 Hz, and the duty cycle to 0.75.
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Fig. 2.13 Three types of PWM with duty cycle

In Fig. 2.14 both the tracking performance of the SMA to a step input, over short

and long time periods, and the generated control signals can be seen. Here it can

be seen that the SMA steps up from 2 to 5 N in less than a second with minimal

overshoot or oscillation. In Fig. 2.15, the second shape memory alloy actuator is

stepped from 2 N to 7 N in 5 second intervals. It can be seen that the dynamic

response of the actuator is different every time. However, the actuator quickly

achieves it’s desired value and remains there within +/– 0.04 N for the duration of

the step. The next test to run is to move all twenty actuators at the same time.

An actuator from each of the three set types is selected randomly for plotting as

can be seen in Fig. 2.16 (although all 20 are moving). The actuators will begin

from whatever their pretensions are, and then move together to a target of 2 N.

After 15 seconds, the corner actuators will be sent to 1 N, the middle actuators to
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Fig. 2.14 Single SMA tracking performance

5 N, and the between actuators to 3 N as in Fig. 2.16(a). All of the actuators move

to their set points, although it can be seen that it takes almost a second longer

for them to move than it does for the single actuator operating on its own. This

is due to the coupling that the actuator’s experience to each other through the

membrane, and the fact that they are current limited by the hardware. However,
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Fig. 2.15 Single SMA tracking performance to multiple steps

all of the desired forces can be maintained as before, within +/– 0.04 N of their

target value. Next, in Fig. 2.16(b) all twenty actuators are again set to 2 N to

begin, and then to 5 N. Again, it can be seen that it takes slightly longer for all of

the actuator’s to converge to their desired value. This is particularly true for the

center actuator, number 8, as it moved much faster to it’s objective in Fig. 2.16(a),

even though it is the same set point. Again this is due to the coupling that the

actuators experience to each other through the membrane. It also appears that this

effect may also partially be due to the how the shape memory alloys connection

to the membrane is physically supported, as it is experienced most strongly by the

center actuators, and then by the between actuators, and almost not at all by the

corner actuators. It is suspected that this is due to the geometry of the membrane

structure and support system.
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Fig. 2.16 Twenty actuator tracking performance

2.3.2 Membrane Controller Design

Application of identical tension forces on all the attachment points will cancel

out most of the wrinkles which in principle is a very simple controller to implement

[64], as it requires only one PI controller that would then implement a tension
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for all the actuators. This PI controller was implemented in Matlab to use the

membrane flatness as its feedback variable. The control is implemented with a

discrete incremental PI controller in the same way as done for the SMA controllers

in Eq. 2.7 and 2.8. However, in this case, the error signal is defined as

e(tk) = drms − dd (2.9)

where drms is the membrane flatness, dd is the desired flatness, and u(tk) will be

the desired actuator tension.

2.3.2.1 Experimental Results on Active Flatness Control

At the beginning of the experiment there is no heat applied to the membrane,

then for the next two iterations, a 205◦C heat load is applied to the membrane.

The ceramic heater, and thus the membrane, is allowed to warm up for five minutes

before the second measurement. Then, the PI controller is turned on and allowed

to run for 30 iterations. Then, the heat load is turned off and the control runs

for another 30 iterations. Finally, the ceramic heater is turned back on to 145◦C

and the control continues for another 30 iterations (the vertical lines in Fig. 2.17-

2.18 represent the boundaries of each portion of the experimental run). The PI

controller should track the desired RMS deviation of 0.24 mm while either increasing

its desired tensions when a heat load induces wrinkling, or loosening its desired

tensions when a heat load is not being applied. The camera is the only sensor
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providing a feedback variable (drms) in the master control loop. The calculated

tensions will then be supplied to the target computer where the SMAs are being

controlled. For the master control loop, the gains are chosen to be Kp = 1.7, and

Ki = 0.25.

Fig. 2.17 Membrane flatness

Fig. 2.18 Desired and actual tensions on the membrane
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In Fig. 2.17 the time history of the membrane flatness can be seen. The spike

before t = 0 is when the heater has been on for five minutes, and before any

tensions are supplied to the membrane, besides the pretension forces. At t = 0,

2 N is applied on all the actuators, and the membrane flatness falls from 0.59 to

0.42. However, the desired flatness value is 0.24, thus, the master PI control loop

will increase the tensions up to approximately 73 N total and then level off as can

be seen in Fig. 2.18. When the heat load is removed, it can be seen that the RMS

flatness will slowly begin to rise, as the tension supplied to the membrane is slowly

decreasing. The slow fall of the tensions is due to the membrane beginning to cool

down, as it will still be subjected to some thermal loading as the ceramic heater

below it also cools down. Finally, when the 145◦C heat load is applied in the third

section of the plot, it can be seen that once again the tensions will begin to trend

upwards as the membrane warms up. After an initial jump in the flatness due to the

heat coming on, the control will bring it back down to its desired level. It should be

noted that this controller does take a relatively long time as the sampling interval

is limited to 25 seconds. This is mainly due to the vision system as four images

must be analyzed per interval and the resulting flatness averaged in an attempt

to reduce any dynamical effects on the membrane. This process is what takes

the most amount of time, as it is rather computationally intensive. However, the

shape memory alloy’s perform quite satisfactorily in following the desired tension
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trajectory on the membrane, with a small error as can be seen in Fig. 2.18.
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3 Vibration Control of a Flexible Manipulator

using Piezoelectric Sensors and Actuators

Flexible manipulator systems exhibit many advantages over their rigid coun-

terparts. They possess a higher load ratio, and a large increase in the speed of

the links is possible. They require less power to produce the same acceleration as

the rigid links which have the same load carrying capacity, hence inexpensive and

smaller actuators are sufficient. Because of the high performance requirements,

consideration of structural flexibility in robots arms is a real challenge. Unfortu-

nately, taking into account the flexibility of the arm leads to the appearance of

oscillations at the tips of the links during the motion. These oscillations make the

control problems of such systems very difficult. There has been extensive research

on active vibration control of flexible systems, see for example [65]. Many control

strategies have been used in the control of lightweight flexible structures. These

control strategies include, but are not limited to: adaptive control [66], fuzzy logic

control [67], H∞ control [68], and time-optimal control [69].
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With the developments in sensor/actuator technologies, many researchers have

concentrated on vibration control using smart materials such as shape memory al-

loys (SMA) and piezoelectric transducers, among others. Piezoelectric materials

have been applied in structural vibration control as well as in structural acous-

tics because of their advantages of fast response, large force output and the fact

that they generate no magnetic field in the conversion of electrical energy into

mechanical motion. Positive Position Feedback (PPF) was devised by Goh and

Caughey [70] and has several distinguished advantages. It has been shown to be a

solid vibration control strategy for flexible systems with smart materials, particu-

larly with the PZT (lead zirconium titanate) type of piezoelectric material [71–74].

PPF is essentially a second order filter that is used to apply high frequency gain

stabilization by improving the frequency roll-off of the system [23]. Alternatively,

PPF works by using a second-order system which is forced by the position response

of the structure. This response is then fed back to give the force input to the struc-

ture. To apply PPF, the natural frequencies of the structure should be known. The

effectiveness of PPF will deteriorate when the natural frequencies are poorly known

or have changed due to, for example, the presence of a tip mass.

One of the most successful methods used to control flexible structures is that

of input shaping, which can be seen in Fig. 3.1. With this method, a command

is convolved with a sequence of impulses, called an input shaper, to produce a
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shaped command that causes less vibration than the original unshaped command

[75]. The earliest work on input shaping (or command shaping) was conducted

by O. J. Smith in the late 1950’s [76]. The posicast method proposed by Smith

effectively took two impulses whose vibrations were self-canceling and convolved

them with the baseline reference command. Due to its sensitivity to frequency

uncertainty, the input shaping method was not widely used until robust methods

were developed in [75]. So far, more than 700 papers on this subject have been

published [77] and input shaping has been implemented on a variety of systems

including a large space-based antenna [78], long-reach manipulator [79], crane [80],

flexible manipulator [81, 82], and flexible spacecraft [83–89].

There are various versions of the input shaping control technique, such as ZV

(Zero-Vibration) shaper [75], ZVD (Zero-Vibration-Derivative) shaper [75], ZVDD

(Zero-Vibration-Derivative-Derivative) shaper [75], SI (Specified-Insensitivity) shaper

[90], and EI (Extra-Insensitive) shaper [85, 91]. These input shapers can suppress

residual vibrations if the system parameters are well known, or the change in model-

Fig. 3.1 Principle of input shaping
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ing parameters is limited to within a reasonable bound. However, if the system has

a large range of unknown or varying frequencies, then another approach is needed to

make the control methods more robust [92]. One approach is to use adaptive input

shaping techniques. Tzes and Yurkovich have proposed online adaptive schemes to

update the input shaper parameters [93]. Bodson has used a recursive least-squares

technique to tune the input shaper parameters [94]. Kojima and Singhose have pro-

posed an adaptive deflection-limiting input shaping control for slewing flexible space

structures [92].

Section 3.3 presents a new approach to overcome the problem of large parame-

ter uncertainties. Rather than using adaptive input shaping techniques, a control

strategy is proposed here to combine the input shaping with a multi-mode adaptive

PPF control law in order to suppress vibration while slewing the flexible system.

Input shaping is used to shape the command in order to minimize the flexible vi-

bration induced by the maneuver. Any residual vibrations will be suppressed by

the PZT actuator and the proposed multi-mode adaptive PPF. Hu and Ma have

previously combined input shaping with PPF and showed good results for vibra-

tion control of a flexible spacecraft [88]. However, for this control method to be

effective, the frequencies must be known accurately. A few different forms of adap-

tive PPF have been developed for constrained stuctures in [95–97], which vary in

the way they are implemented. In this portion of the work, input shaping will be
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combined with multi-mode adaptive PPF to suppress the vibrations of a slewing

flexible manipulator with frequency uncertainty.

As an alternative to adaptation, a genetic algorithm based system identification

technique is examined in Section 3.4 for offline identification. There are many

standard formulations for system identification, the majority of which are calculus-

based. Many procedures have been suggested for system identification including

least squares, the prediction error method, and subspace methods among others.

However, these methods typically all have drawbacks such as issues with noise,

dealing with nonlinearities, and the possibility of getting trapped in local minima.

Genetic algorithms (GA), on the other hand are stochastic algorithms that can be

guaranteed to converge to within some very close vicinity of the global optima,

provided of course that the solution space is well defined. However, GAs sacrifice

speed, and typically do poorly at hill-climbing in the vicinity of the global optima,

which can be problematic for resonant systems. In [98–101] GAs have been applied

for system identification purposes, and in [102] a GA was used to identify a plate

structure. In [103], a solution was proposed that combined the GA for global

search and a gradient-based search method for hill-climbing when in the vicinity

of the global optimum. While this method was shown to give good results, it

has a few disadvantages, namely that it can still fail due to nonlinearities or a

noisy environment, and that the user is forced to develop two distinct optimization
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routines. A system identification is proposed in Section 3.4 based on an iterative

implementation of a GA. The solution at the end of one GA run is used to restart the

genetic algorithm with a condensed search space based upon the weighted standard

deviation of the individuals within the old population. While this method sacrifices

speed it allows for a very precise solution and also does not require significant tuning

of the genetic algorithm parameters in order to guarantee convergence. Also, the

genetic algorithm in this case is used to search for all of the transfer function

coefficients. A precise system identification is imperative in this case since the

optimality of the controller will depend upon the accuracy of the identification

procedure.

Genetic algorithms can also be applied to the controller design problem. In [104]

a GA was applied to the problem of designing a pole placement controller, and

in [105] to finding the optimal coefficients in the weighting matrix of a LQR/LQG

controller. Also, in [106] a fuzzy logic integrated GA was used for vibration control

of a cylindrical shell. For PPF it can be time consuming to design each controller,

with no guarantee that they will result in optimal vibration suppression. Since,

in general, one controller is targeted to one mode, the number of parameters rises

rapidly with the number of modes that need to be controlled. In [107] an optimiza-

tion criteria based on the H∞-norm of the closed loop systems transfer function is

posed. A nonlinear search technique is used to solve for the optimal parameters,
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however, a careful initialization procedure must be followed to ensure the solution

does not fall into local minima. Using a genetic algorithm in this case offers the

additional advantages of lacking an initialization step and being fast and easy for

extending the control to any desired number of modes. Some previous attempts

have been made to solve for the control parameters of PPF with a genetic algo-

rithm by a far different minimization criteria [108–110], however, only the controller

natural frequency parameter is searched for with associated damping and gain pa-

rameters assumed. In Section 3.4, the H∞ criteria posed in [107] is minimized by a

genetic algorithm that searches for all the parameters of a two-mode PPF controller.

Further, using genetic algorithms for both procedures offers two advantages. The

first is that the core GA code is easily extended to more or less modes with trivial

alterations. The second is that the exact same GA is used for both the system

identification and controller optimization routines.

This chapter is organized as follows: Section 3.1 presents the experimental sys-

tem and Section 3.2 develops its dynamic model through the finite element method

to take into account the presence of the collocated sensor/actuator pair. Section 3.3

presents the development of the combined input shaping plus adaptive positive po-

sition feedback control method and its verification through both simulation and

experiment. Finally, Section 3.4 presents the development of the GA-based system

identification and controller optimization technique. Again, both simulation and
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experimental results are presented.

3.1 Experimental System

The experimental setup is shown in Fig. 3.2 and its correpsonding parameters

can be seen in Table 3.1. Here the system consists of a very flexible beam with a

collocated piezoelectric sensor/actuator pair that is mounted on a DC motor. The

two piezoelectrics are Mide QP10W that have been epoxy bonded to the beam. One

PZT patch acts as the sensor, and will output a voltage when the beam undergoes

deformation, the other patch will act as the actuator, and will strain based upon

the voltage supplied to it by the control system. The sensor data can in theory be

acquired from the PZT without any additional circuitry, however this is not possible

since the terminal board has a finite impedance. This causes the capacitance of the

piezoelectric to appear in parallel with the resistance of the measurement device

which creates a high pass filtering effect. A simple circuit essentially consisting

of a unity gain buffer amplifier with high impedance was built to push the cutoff

frequency of the high pass filter well below the frequency range of interest. For the

slew experiments, a 4:1 voltage divider is placed before the op amp circuit to prevent

saturation due to the large magnitude signals that the slew maneuver produces in

the piezoelectric sensor. The piezoelectric actuator is driven by the QPA200 high

voltage amplifier which accepts signals between +/– 10 V and can amplify them
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linearly to an output range of +/– 200 V. The flexible manipulator is mounted

on a HarmonicDrive DC motor RHS-20-3007-E100Al with a rated torque of 24

N·m/A with a differential quadrature encoder generating 4096 pulses/revolution

for angular position feedback. The DC motor is controlled by an Advanced Motor

Controls Digiflex DPRANIE-015A400A digital servo drive powered by a 24 V DC

power supply from OMRON. The sample rate for the control system is chosen as 1

kHz and the entire process is controlled from Simulink through Quanser’s Q8 data

acquisition board and QuaRC interface for real-time control.

Fig. 3.2 Single-link flexible manipulator
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3.2 Dynamic Modeling

Fig. 3.3 shows the diagram of the flexible manipulator being modeled. The

flexible manipulator system consists of a rigid hub, a flexible beam, a tip mass, and a

collocated piezoelectric sensor/actuator pair. In this study, the flexible manipulator

without the piezoelectric sensor/actuator pair will be modeled first using the finite

element method and the dynamics equations will be augmented later to consider

the effects of the piezoelectric sensor/actuator pair.

Fig. 3.3 Diagram of flexible manipulator

The kinetic energy of the system assuming an Euler-Bernoulli beam is [111]

T =
1

2
Ihθ̇

2+
1

2

∫ L

0

ρA
[
ẇ+(b+x)θ̇

]2
dx+

1

2
mtip

[
(b+L)θ̇+ẇ(L, t)

]2
+

1

2
Itip
[
θ̇+ẇ′(L, t)

]2
(3.1)

where the first term is due to the rigid hub, the second term is due to the energy
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of the beam with respect to its velocity normal to x, the third term is due to the

tip mass, and the last term is due to the inertia of the tip mass.

The potential energy of the system remains the same as that for a simple beam

due to the fact that a rigid body will make no contribution to this term. It can be

seen that after discretizing the body into elements, the first elements kinetic energy

expression is given by

T1 =
1

2
Ihθ̇

2 +
1

2

∫ l

0

ρA
[
ẇ + (b+ x+ xi)θ̇

]2
dx (3.2)

where l is the length of the element. The i-th element, where i = 2 to n − 1 will

have kinetic energy

Ti =
1

2

∫ l

0

ρA
[
ẇ + (b+ x+ xi)θ̇

]2
dx (3.3)

where xi is the distance from the root of the beam to the closest side of the i-th

beam element. The last element of the beam will have kinetic energy

Tn =
1

2

∫ l

0

ρA
[
ẇ+(b+x+xi)θ̇

]2
dx+

1

2
mtip

[
(b+L)θ̇+ẇ(L, t)

]2
+

1

2
Itip
[
θ̇+ẇ′(L, t)

]2
(3.4)

This naturally leads to an augmentation of the traditional Euler-Bernoulli finite
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element shape functions to

[N ]T =


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)2
+
(x
l

)3


(3.5)

While strictly speaking, xi is a variable in the global sense, it can be treated

simply as a constant in the local coordinate system of the elements as it is simply

a length offset, which allows the shape functions to be augmented as above.

The mass matrix of each element can then be seen as [111]

[M e] = ρA

∫ l

0

[N ]T [N ]dx =

[
M e

θθ M e
θw

M eT
θw M e

ww

]
(3.6)

where

M e
θθ =

ρAl

3

[
(xi + b)2 + (xi + b+ l)(xi + b) + (xi + b+ l)2

]
(3.7)

M e
θw = ρAl
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(3.8)

M e
ww =

ρAl

420


156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2

 (3.9)
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As indicated in the kinetic energy expression for the first element, there will

be a contribution from the inertia of the rigid hub, thus for the first element M e
θθ

becomes

M e
θθ = Ih +

ρAl

3

[
(xi + b)2 + (xi + b+ l)(xi + b) + (xi + b+ l)2

]
(3.10)

Similarly, for the last element, there will be a contribution from the mass and

inertia of the tip mass, thus for the last element M e
θw and M e

ww become

Mn
θw = M e

θw +M e
θt = ρAl
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(3.11)
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ww = M e

ww +Mwt =
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(3.12)

Taking the second spatial derivative of the shape function matrix [N ] gives

[B]T =
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(3.13)
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which is simply the shape function matrix for a beam augmented by a zero term.

Thus, the element stiffness matrix will be

[Ke] =
EI

l3


0 0 0 0 0
0 12 6l −12 6l
0 6l 4l2 −6l 2l2

0 −12 −6l 12 −6l
0 6l 2l2 −6l 4l2

 (3.14)

For the purpose of illustration, the assembled mass and stiffness matrices of the

system for two elements after reduction would look like

[M ] =


Ih +M1

θθ +M2
θθ M1
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θw(1, 1) M1

θw(1, 4) +M2
θw(1, 2)

M1
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ww(1, 1) M1
ww(3, 4) +M2

ww(1, 2)
M1

ww(4, 4) +M2
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M2
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M2
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M2
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M2
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(3.15)

[K] =


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ww(1, 1) K1
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ww(2, 2) K2
ww(2, 3) K2
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K2
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(3.16)

The assembled and reduced system variables are now

q =


θ
w2

θ2
w3

θ3

 (3.17)
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where wn and θn are the deflection and rotation variables of the nodes.

3.2.1 Piezoelectric Elements in Full System Model

The piezoelectric elements are bonded to both the bottom and top of the beam,

and are assumed to have two structural degrees of freedom like the regular beam

element. In addition, the piezoelectric element has one electrical degree of freedom

which is the voltage. This single degree of freedom is due to the fact that the voltage

generated by the piezoelectric is constant over the electrode. The single electrical

degree of freedom is used as a sensor or actuator voltage when the material is used

as a sensor or actuator.

Voltage can be used as a control input to the actuator, which will cause the

actuator to apply moments that are equal and opposite to each other at either end

of the element. The bending moment resulting from the voltage input will add a

positive bending moment at node 2 and a negative bending moment at node 1. It is

assumed that the displacement functions of the PZT will remain the same as that

of the regular beam element and that the moments exerted by the piezoelectric

actuator act at the nodal points.

In derivation of the piezoelectric beam element, it is assumed that the sensor

and actuator have the same width and thickness, and form a collocated sensor-

actuator pair. With this assumption, the piezoelectric beam element can be seen as
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a sandwich with the regular beam element in the middle with a piezoelectric element

bonded on top of it (as actuator) and a piezoelectric element bonded underneath

it (as sensor). More details of this method can be found in [73,112].

Making the same assumptions as for the derivation of the regular beam element,

the piezoelectric beam element mass matrix can be obtained as

[Mpe] = ρA

∫ l

0

[N ]T [N ]dx (3.18)

where

ρA = ρbbbtb + 2ρpbptp (3.19)

where l is the length of the piezoelectric element, bb is the height (or width of the

beam), bp is the width of the piezoelectric material, ρb is the density of the beam,

ρp is the density of the piezoelectric material, tb is the thickness of the beam, and tp

is the thickness of the piezoelectric patch. Upon inspection, it can be clearly seen

that the mass matrix of the piezoelectric element can be written as

[Mpe] = [M e] + 2[M e
p ] (3.20)

which is the sum of the mass matrix of the regular element, [M e], plus the mass

matrix for the piezoelectric elements on the top and bottom of the beam, [M e
p ].

The piezoelectric beam element stiffness matrix can be obtained as

[Kpe] = EI

∫ l

0

[B]T [B]dx (3.21)
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where EI = EbIb + 2EpIp, Eb is Young’s modulus for the beam, Ib is the inertia

of the beam, Ep is Young’s modulus for the piezoelectric material, and Ip is the

inertia of the piezoelectric element with respect to the neutral axis of the beam.

From the parallel axis theorem, Ip =
1

12
bpt

3
p + bptp

(
tp + tb

2

)2

.

As for the mass matrix, [Kpe] can also be written as

[Kpe] = [Ke] + 2[Ke
p ] (3.22)

provided that the inertia of the piezoelectric component is properly defined.

3.2.1.1 Piezoelectric Sensor Equations

The equations for a piezoelectric sensor can be derived from the direct piezoelec-

tric equation under the assumption that there is no external electric field applied

to the sensor layer. Thus, the electric displacement is directly proportional to the

strain acting on it. For the sensor, the poling will be done along the thickness

direction with electrodes on the upper and lower surfaces. Thus, the only non-zero

electric displacement component is Dz, which is given by (assuming no external

electric field)

Dz = d31σ1 (3.23)

From Hooke’s law in one dimension, it is known that the stress is related to the

77



strain through the modulus of elasticity, E, as

σ1 = Epε1 (3.24)

Therefore, the electric displacement becomes

Dz = d31Epε1 (3.25)

where d31 is the relevant electric displacement coefficient. The total charge devel-

oped by the strain in the structure will be

Q =

∫∫
A

DzdA (3.26)

which upon substitution for Dz becomes

Q = d31Epbp

∫ l

0

ε1dx (3.27)

Since the strain in Euler-Bernoulli beam theory has only one non-zero compo-

nent of strain, which is along the x-axis, the strain through the beam is given by

(here, for simplicity in the derivation, the coordinate corresponding to the rigid

mode has been omitted from q and only the flexible structure is considered)

ε1 =

(
tb
2

+ tp

)
[B]q (3.28)

which upon substitution into the equation for charge [112] becomes

Q = d31Epbp

(
tb
2

+ tp

)∫ l

0

[B]qdx (3.29)
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and evaluating gives

Q = d31Epbp

(
tb
2

+ tp

)[
0 −1 0 1

]
q (3.30)

The capacitance of the piezoelectric sensor [21] can be shown as

C =
lbpe

σ
33

tp
(3.31)

which means that the voltage generated by the sensor is given as

Vs = Gs
Q

Cp
=
Gsd31Eptp

(
tb
2

+ tp
) [

0 −1 0 1
]
q

leσ33
(3.32)

where Gs is the sensor signal conditioning gain. Letting

p =
Gsd31Eptp

(
tb
2

+ tp
)

leσ33


0
−1
0
1

 (3.33)

the equation for the voltage developed can be simplified to

Vs(t) = pTq (3.34)

3.2.1.2 Piezoelectric Actuator Equations

For the piezoelectric actuator, the sensor voltage is typically applied as a control

signal to the actuator after being modified by a control law, and then multiplied

by another gain Ga, which is usually supplied by means of an amplifier. Therefore

the actuator voltage is given by

Va(t) = GaVin(t) (3.35)
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The applied electric field in the actuator is due to the applied voltage, therefore

the electric field is given by

Ef =
Va(t)

tp
(3.36)

The strain created in the actuator by the applied electric field can then be

described as

εa = d31Ef (3.37)

and once again using Hooke’s law in one dimension gives the stress as

σa =
Epd31Va(t)

tp
(3.38)

Due to the stress in the structure, bending moments will act in an equal and

opposite manner at the two nodal points. Since the piezoelectric element will

typically have a small cross-section, it is assumed that the moments exerted by

the patch essentially act at the nodal points [112]. The expression for the bending

moment in the small cross-section is given by

Ma = bp

∫ tb
2
+tp

tb
2

σazdz (3.39)

which upon substitution for the stress gives

Ma =
Epd31Va(t)bp

tp

∫ tb
2
+tp

tb
2

zdz (3.40)

which upon evaluation of the integral gives

Ma = Epd31Va(t)bp

(
tp + tb

2

)
(3.41)
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The control force, or force exerted by the actuators due to the applied con-

trol voltage can be derived as (here again note that the rigid coordinate has been

omitted)

fp = Epd31bpVa(t)

(
tp + tb

2

)∫ l

0

[B]Tdx (3.42)

which after carrying through the integration and substituting in Eq. (3.35) becomes

fp = Epd31bpGaVin(t)

(
tp + tb

2

)
0
−1
0
1

 (3.43)

Letting

h = GaEpd31bp

(
tp + tb

2

)
0
−1
0
1

 (3.44)

the control force equation becomes

fp = hVin(t) (3.45)

3.2.2 Additional Piezoelectric Considerations

For completeness it should be noted that the vectors p and h will have all of

their elements shifted down one position to make room for a zero at the location

of the first element corresponding to the fact that their influence is not exerted at

the location of the hub.
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3.2.3 System Assembly, Reduction, and Modal Decoupling

The entire second-order differential equation can be assembled using the stan-

dard finite element technique with Rayleigh damping included as

[M ]q̈ + [D]q̇ + [K]q = F (3.46)

where [M ], [D], and [K] are the global mass, damping, and stiffness matrices.

Modal decoupling can be performed to obtain the normal mode system through

similarity transformations [113] giving

ẍ + Zẋ + Ωx = STmF (3.47)

where Sm is the matrix of mass normalized eigenvectors.

3.3 Combined Input Shaping and Adaptive Positive Posi-

tion Feedback

The slewing motion of the hub is controlled using a simple PD feedback law as

τ(t) = Kp(θd − θ) +Kd(θ̇d − θ̇) (3.48)

where θ is the actual hub angle, θd is the desired angle, Kp and Kd are the propor-

tional and derivative gains, respectively. Of course for either disturbance rejection

or step-following, the slewing motion of the hub generates vibrations in the flexible
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appendage which need to be controlled using other control laws. To do this, the

PD controller will be combined with input shaping.

3.3.1 Input Shaping

Basically, any type of input shaper can be combined with the proposed multi-

mode adaptive PPF control for vibration suppression. Here, for simplicity, three

simple shapers (ZV, ZVD, and ZVDD) will be used.

The ZV shaper is a 2-impulse input shaper that can achieve zero vibration after

the last (2nd) impulse. The amplitudes and time instants of two impulses are as

follows

A1 =
1

1 +K
, t1 = 0

A2 =
K

1 +K
, t2 =

π

ωd

where K = exp

(
− ξπ√

1−ξ2

)
, ξ is the damping ratio, ωd is the damped natural

frequency. The ZV shaper can be used to achieve zero vibration if the natural

frequency and damping ratio are known exactly. However, the residual vibration

will be large if the uncertainty in the natural frequency is large. In other words,

the ZV shaper is not robust.

The robustness of the input shaper to uncertainty in the system’s natural fre-

quencies can be increased by setting the derivative to zero. Setting the derivative to
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zero is the equivalent of producing small changes in vibration with corresponding

changes in the natural frequency [114]. This yields a three-impulse ZVD shaper

with parameters

A1 =
1

1 + 2K +K2
, t1 = 0

A2 =
2K

1 + 2K +K2
, t2 =

π

ωd

A3 =
K2

1 + 2K +K2
, t3 = 2t2

The robustness of the input shaper can further be increased by setting the

second derivative to zero. Similarly, this yields a four-impulse ZVDD shaper with

parameters

A1 =
1

1 + 3K + 3K2 +K3
, t1 = 0

A2 =
3K

1 + 3K + 3K2 +K3
, t2 =

π

ωd

A3 =
3K2

1 + 3K + 3K2 +K3
, t3 = 2t2

A4 =
K3

1 + 3K + 3K2 +K3
, t4 = 3t2

The sensitivity curves for these three input shapers are shown in Fig. 3.4. It

can be seen that, for the same residual vibration level, the ZVDD shaper allows

much more uncertainty in the frequency than the ZV shaper.
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Fig. 3.4 Sensitivity curves of various input shapers

3.3.2 Positive Position Feedback

Considering the scalar case first, PPF can be described by two coupled differ-

ential equations where the first equation describes the structure, and the second

describes the compensator [72] as

ξ̈ + 2ζωξ̇ + ω2ξ = gω2η

η̈ + 2ζfωf η̇ + ω2
fη = ω2

fξ
(3.49)

where ξ is the modal coordinate, η is the filter coordinate, ζ and ζf are the structural

damping and filter damping ratios, ω and ωf are the structural natural frequency

and filter frequency, and g is the scalar gain. It is shown in [72] that the necessary
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and sufficient condition for stability is

0 < g < 1 (3.50)

The major advantage of PPF is that the transfer function of the controller rolls

off quickly, as can be seen from its Bode plot in Fig. 3.5. This is good because

it makes the PPF controller well-suited for control of low-frequency modes of a

structure with well-separated modes. This is also a major advantage due to the fact

that the system will be not be influenced by unmodeled high frequency dynamics.

Hence, all spillover into uncontrolled or unmodelled modes is stabilizing [72].
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Fig. 3.5 Bode plot for a single mode PPF controller
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There are three possible output conditions for a PPF controller based upon

the choice of controller frequency ωc: active flexibility, active damping, or active

stiffness [74]. In order to effectively damp out a structural mode, obviously the case

of active damping is required. Thus the controller frequency should be selected to

be close to the modal frequency.

In theory, a flexible manipulator has infinite vibrational modes, and sometimes

there is more than one dominant mode. In order to damp the dominant modes,

multiple PPF controllers are required in parallel, where each controller is tuned

to the natural frequency of the mode it is to damp. In our system, the first two

vibration modes are dominant and need to be suppressed. This means that the

frequency of η1 is chosen to be close to that of ξ1 while the frequency of η2 is chosen

to be close to that of ξ2.

For the general multi-variable case, the system of equations becomes

ξ̈ +Dξ̇ + Ωξ = CTGη

η̈ +Df η̇ + Ωfη = ΩfCξ
(3.51)

where G is the diagonal gain matrix, C is the participation matrix, Ω and Ωf are

the diagonal modal and filter frequency matrices, and D and Df are the diagonal

modal and filter damping matrices. In this case, stability can be guaranteed [72] if

and only if

Ω− CTGC > 0 (3.52)
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Considering for a moment, only the flexible modes of the structure, a positive

position feedback controller is developed in this section for the beam using a single

collocated PZT sensor/actuator pair. The dynamic equation of the structure in

modal coordinates is

ẍ+ Zsẋ+ Ωsx = STmhu (3.53)

where x is the vector of modal coordinates, Zs is the damping matrix, Ωs is the

frequency matrix, STm is the matrix of mass normalized eigenvectors of the system,

h is the actuator influence matrix, and u is the input to the actuator (voltage in

this case). The sensor (or output) equation can be seen as

y = pTSmx (3.54)

where p is the sensor influence matrix.

The equation describing the controller is given as

η̈ + Zf η̇ + Ωfη = ΩfEy (3.55)

where η is the vector of controller coordinates, Zf is the controller damping matrix,

Ωf is the controller frequency matrix, and E is the modal participation factor

matrix, which will be defined shortly. The actuator input equation is given as

u = ETGη (3.56)

where G is the gain matrix.
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Since STm is the matrix of mass normalized eigenvectors, the modal participation

factor matrix can be defined as

E = STmMr (3.57)

where M is the global mass matrix of the system, and r is a matrix of ones with

the same number of rows as M , and the number of columns equal to the number

of collocated sensor/actuator pairs.

The four equations, i.e. Eqs. (3.53–3.56), describing the system can be combined

into two second order differential equations as

ẍ+ Zsẋ+ Ωsx = STmhE
TGη (3.58)

η̈ + Zf η̇ + Ωfη = ΩfEp
TSmx (3.59)

Now the structure and controller equations will be placed into state space (or

first order form) for ease of analysis. The structural equations become

˙̂x = Ax̂+Bu (3.60)

y = Cx̂ (3.61)

where

A =

[
0 I
−Ωs −Zs

]
B =

[
0

STmh

]
C =

[
pTSm 0

]
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and the controller equations become

˙̂η = Âη̂ + B̂y (3.62)

u = Ĉη̂ (3.63)

where

Â =

[
0 I
−Ωf −Zf

]
B̂ =

[
0

ΩfE

]
Ĉ =

[
ETG 0

]

3.3.3 Adaptive Parameter Estimation

Since the structural transfer function is single-input and single-output (SISO),

it can be put in transfer function form through

G(s) =
Z(s)

R(s)
= C(sI − A)B (3.64)

where

R(s) = sn + an−1s
n−1 + ...+ a1s+ a0 (3.65)

Z(s) = bms
m + ...+ b1s+ b0 (3.66)

which allows the adaptive law to be developed generically.

The output of the system is of the following form

y = G(s)u =
Z(s)

R(s)
u (3.67)

where u is the input of the plant, and the output can also be expressed as [115]

y(n) + an−1y
(n−1) + ...+ a1ẏ + a0y = bmu

(m) + ...+ b1u̇+ b0u (3.68)
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Lumping all of the unknown parameters into the vector

Φ =
[
bm ... b0 an−1 ... a0

]T
(3.69)

and filtering both sides of Eq. (3.68) with the following monic Hurwitz polynomial

[115]

1

Λ(s)
=

1

sn + λn−1sn−1 + ...+ λ1s+ λ0
(3.70)

the static parametric model can be obtained as [115]

z = ΦTφ (3.71)

where

z =
sn

Λ(s)
y

φ =

[
sm

Λ(s)
u · · · 1

Λ(s)
u −s

n−1

Λ(s)
y · · · − 1

Λ(s)
y

]T
The estimation model can now be defined as

ẑ = Φ̂Tφ (3.72)

where ẑ and Φ̂ is the estimate of z and Φ at each time t. The estimation error can

then be defined as

ε =
z − ẑ
m2
s

=
z − Φ̂Tφ

m2
s

(3.73)

where m2
s is referred to as the normalizing signal and is designed to bound φ from

above [115]. A typical choice for the normalizing signal is

m2
s = 1 + αφTφ (3.74)
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where α > 0.

The cost function is a convex function of Φ̂ with a global minimum and is given

by

J(Φ̂) =
1

2

∫ t

0

e−β(t−τ)
[z(τ)− Φ̂T (t)φ(τ)]2

m2
s(τ)

dτ +
1

2
e−βt(Φ̂− Φ̂0)

TQ0(Φ̂− Φ̂0) (3.75)

where Q0 = QT
0 > 0, β > 0 are design constants, and Φ̂0 = Φ̂(0) is the initial

parameter estimates of the unknowns.

This cost function serves to deweight previous data and includes a penalty on

the error in the initial guess. The recursive least squares algorithm with forgetting

factor is obtained as [115]

˙̂
Φ = Pεφ (3.76)

Ṗ =

 βP − P φφ
T

m2
s

P ‖P‖ ≤ R0

0 otherwise
(3.77)

where P (0) = P0 = Q−10 . Here, R0 is a scalar that serves as an upper bound for

‖P‖, since in this case, with β > 0, P (t) may grow without bound.

3.3.4 Combining the System

Considering the full system, the state space model can be transformed into

transfer function form through the relation

H(s) = C(sI − A)−1B +D (3.78)
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Due to the fact that there are two outputs (hub angle and sensor voltage) and

two inputs (torque and actuator voltage) in the system, H(s) becomes a 2 × 2

transfer function matrix, given for the open loop by

[
θ(s)
Vs(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
τ
Vc

]
(3.79)

As a generic case, which can be extended or simplified with relative ease, the

system is chosen to consider the rigid mode and two flexible modes with A, B, and

C given as

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 −Ω1 0 0 −z1 0
0 0 −Ω2 0 0 −z2

 B =


0 0
0 0
0 0
a b
c d
e f

 C =

[
p q r 0 0 0
t u v 0 0 0

]

In this case, the four transfer functions can be found through Eq. (3.78) as

G11(s) =
m1s

4 +m2s
3 +m3s

2 +m4s+m5

s2(s2 + z1s+ Ω1)(s2 + z2s+ Ω2)

G12(s) =
(qd+ rf)s2 + (rfz1 + qdz2)s+ (rfΩ1 + qdΩ2)

(s2 + z1s+ Ω1)(s2 + z2s+ Ω2)

G21(s) =
(uc+ ve)s2 + (vez1 + ucz2)s+ (veΩ1 + ucΩ2)

(s2 + z1s+ Ω1)(s2 + z2s+ Ω2)

G22(s) =
(ud+ vf)s2 + (vfz1 + udz2)s+ (vfΩ1 + udΩ2)

(s2 + z1s+ Ω1)(s2 + z2s+ Ω2)

where m1 = (qc + re + pa), m2 = (rez1 + qcz2 + paz1 + paz2), m3 = (paΩ2 +

paz1z2 + reΩ1 + paΩ1 + qcΩ2), m4 = (paz1Ω2 + paΩ1z2), and m5 = paΩ1Ω2. In

the simplification of the last three transfer functions the fact that b and t tend to
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zero have been used to reduce the order of the individual transfer functions. This

simplification is made due to the fact that if b tends to zero, this implies that control

voltage on the piezos does not directly affect the hub angle, and with t tending to

zero implies that the hub angle does not directly affect the sensor voltage produced.

For the control system, the step command is shaped by an input shaper outside

of the loop, with a PD controller inside the closed-loop for the rigid hub motion.

The estimator is on at the beginning with arbitrary initial guesses, and is set up to

adapt on G21(s), which is between the sensor voltage and the torque. The estimator

is modified to turn off when the error

ε =
z − ẑ
m2
s

=
z − Φ̂Tφ

m2
s

< 0.1 (3.80)

for longer than one second, and then to turn on the multi-mode adaptive PPF con-

troller. This is done since at this point, the parameter estimates will have converged

within a reasonable amount (as ε represents the difference between the actual trans-

fer function and estimated transfer function), and adaptation is no longer needed.

The second reason this is done, is that after a few seconds of running, the PPF con-

troller may start to eliminate the vibrations in the structure and the persistence of

excitation condition may no longer be valid, leading to possibly erroneous estimates

of the natural frequencies as control is applied.
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3.3.5 Simulation Results

The physical properties of the system and the simulation parameters are listed

in Table 3.1. Finite element analysis shows that the actual frequencies of the first

two vibration modes are 1.7141 Hz and 10.4337 Hz, and they are assumed to be

known with uncertainties. It is desired to slew the rigid hub 0.5 radians which is

done by a PD control law. Saturation is included on the input and output of the

PZT sensor and actuator at +/− 10 V to keep the system physically realistic.

Table 3.1 System and simulation parameters

Parameter Value Description

Ih 10 kg·m2 Hub inertia
b 0.11715 m Hub radius
l 1.1365 m Length of the beam
t 0.00258 m Thickness of the beam
h 0.0828 m Height of the beam
ν 0.33 Poisson’s ratio of the beam
ρ 2700 kg/m3 Density of the beam
E 70 GPa Modulus of elasticity for the beam
lp 0.05084 m Length of the piezoelectric
bp 0.03806 m Width of the piezoelectric
tp 0.00038 m Thickness of the piezoelectric
νp 0.3 Poisson’s ratio of the piezoelectric
ρp 7700 kg/m3 Density of the piezoelectric
Ep 68 GPa Modulus of elasticity for the piezoelectric
mtip 0 Tip mass
Itip 0 Inertia of tip mass
d31 -171 x 10−12 C/N Electric displacement coefficient
eσ33 1.5317 x 10−8 F/m Permittivity
Gs 1 Sensor gain
Ga 20 Actuator amplifier gain
sp 0.06559 m Start location of piezoelectric from root of beam
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In this study, three simulation scenarios are considered: (1) PD control only;

(2) PD control with adaptive PPF; and (3) PD control with input shaping and

adaptive PPF. The proportional gain is chosen to be Kp = 55 and the derivative

gain is set to be 45 and the initial parameter guess as Φ̂0 = [1 1 1 1 1 1 1]T .

First, PD feedback is applied to control the hub angle, however, neither input

shaping nor multi-mode adaptive PPF is used. Since no active vibration control is

used, the vibration of the flexible beam is quite large, as seen in Fig. 3.6.

To suppress flexible vibration, in the next simulation, the proposed multi-mode

adaptive PPF controller is added to suppress the vibration of the first two modes.

The simulation results are shown in Fig. 3.6 for comparison. It can be seen from

the simulation results that the flexible vibration has been suppressed to a very low

level after 18 sec using the proposed adaptive PPF controller. It also shows that, at

about 10 sec, the parameter estimator successfully estimated the first two natural

frequencies to be 1.7143 Hz and 10.4327 Hz, respectively, which are very close to

the true values. Once the estimation is done, the PPF controllers are turned on.

Finally, the input shaping and adaptive positive position feedback are combined

to suppress vibration. Input shaping is designed to suppress the first flexible vi-

bration mode during slewing. Due to the frequency uncertainty, however, there

will be residual vibration, which will be suppressed through the PZT actuator with

multi-mode adaptive PPF. Here, three input shapers are used in the simulations,
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(b) Output control torque
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(c) PZT sensor voltage
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Fig. 3.6 Simulation results of PD control with multi-mode adaptive PPF
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the ZV shaper, ZVD shaper, and ZVDD shaper. Moreover, two frequency uncer-

tainty levels (10% high and 50% high) are considered for the first vibration mode.

For comparison purposes, PD control with input shaping is also applied to slew

the manipulator in order to suppress the vibration. The simulation results have

been included in the figures corresponding to which shaper the adaptive PPF is

combined with. Figs. 3.7–3.12 show the hub angle response, torque control output,

PZT sensor output, PZT actuator control input and frequency estimation for those

simulations. Table 3.2 shows the estimated frequencies of the first two vibration

modes and the times for the estimation to be done. It can be seen that (i) the

frequencies of the first and second mode can be estimated accurately for all the

cases; (ii) the vibrations have been suppressed very well and quickly by combining

the input shaping and the adaptive PPF strategy.

Table 3.2 Estimation results of the first two frequencies (Hz)

Input shaper type Estimated frequencies
Frequency uncertainty: +50% Frequency uncertainty: +10%

ZV 1.7141, 10.4323 (∼5 sec) 1.7141, 10.4308 (∼6 sec)
ZVD 1.7141, 10.4323 (∼6 sec) 1.7141, 10.4223 (∼7 sec)

ZVDD 1.7141, 10.4323 (∼5 sec) 1.7130, 10.4209 (∼10 sec)

In Fig. 3.7, the results of applying the ZV shaper, and the ZV shaper with the

adaptive PPF can be seen for the case when the first mode is off by +50%. The

advantages of using the combined control law (PD+IS+APPF) can be seen as the

ZV shaper alone will still have residual vibration at the end of the simulation, while

98



0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
H

ub
 A

ng
le

 (
ra

d)

Time (s)

 

 

0 10 20 30 40
0.4994

0.4996

0.4998

0.5

0.5002

0.5004

0.5006

0.5008

H
ub

 A
ng

le
 M

ag
ni

fie
d 

(r
ad

)

PD
PD+IS
PD+IS+APPF
IS Trajectory

(a) Hub angle response

0 5 10 15 20 25 30 35 40
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

T
or

qu
e

Time (s)

 

 

PD
PD+IS
PD+IS+APPF

(b) Output control torque

0 5 10 15 20 25 30 35 40
−10

−8

−6

−4

−2

0

2

4

6

8

10

S
en

so
r 

vo
lta

ge
 (

V
)

Time (s)

 

 

PD
PD+IS
PD+IS+APPF

(c) PZT sensor voltage
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(d) Control voltage from PPF

Fig. 3.7 Simulation results with multi-mode adaptive PPF and ZV input shaper

(frequency uncertainty: +50%)

the combined law has no residual vibration after roughly 12 seconds. When the

frequency uncertainty is only +10% as in Fig. 3.8, the control with only the ZV

shaper will again still have residual vibration at the end of the simulation (although

at a much lower level than that of the previous case). Here, the combined law has
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(c) PZT sensor voltage
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(d) Control voltage from PPF

Fig. 3.8 Simulation results with multi-mode adaptive PPF and ZV input shaper

(frequency uncertainty: +10%)

damped out the residual vibrations of the manipulator in about 11 seconds.

In the next case, when the ZV shaper is replaced with a ZVD shaper, it is ex-

pected that the residual vibration will be lower for both cases. In Fig. 3.9 when the

frequency error is +50%, it can again be seen that there will be residual vibration
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(c) PZT sensor voltage
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(d) Control voltage from PPF

Fig. 3.9 Simulation results using multi-mode adaptive PPF and ZVD input shaper

(frequency uncertainty: +50%)

for the ZVD shaper control only at the end of the simulation, while again, with the

combined law, it is damped out within 12 seconds. In Fig. 3.10 when the frequency

error is +10%, the effect of the input shaper becomes much stronger, and there

is only a small amount of residual vibration. Here again, however, in roughly 11

101



0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
H

ub
 A

ng
le

 (
ra

d)

Time (s)

 

 

0 10 20 30 40
0.4994

0.4996

0.4998

0.5

0.5002

0.5004

0.5006

0.5008

H
ub

 A
ng

le
 M

ag
ni

fie
d 

(r
ad

)

PD
PD+IS
PD+IS+APPF
IS Trajectory

(a) Hub angle response

0 5 10 15 20 25 30 35 40
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

T
or

qu
e

Time (s)

 

 

PD
PD+IS
PD+IS+APPF

(b) Output control torque

0 5 10 15 20 25 30 35 40
−10

−8

−6

−4

−2

0

2

4

6

8

10

S
en

so
r 

vo
lta

ge
 (

V
)

Time (s)

 

 

PD
PD+IS
PD+IS+APPF

(c) PZT sensor voltage
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(d) Control voltage from PPF

Fig. 3.10 Simulation results using multi-mode adaptive PPF and ZVD input

shaper (frequency uncertainty: +10%)

seconds, the combined law has suppressed the vibrations of the manipulator.

For the last shaper considered, the ZVDD, it is again expected that the amount

of residual vibration will be smaller than that of the ZVD and ZV shaper due to

the fact that it is more robust. For a frequency error of +50% in the shaper, it can
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(c) PZT sensor voltage
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(d) Control voltage from PPF

Fig. 3.11 Simulation results using multi-mode adaptive PPF and ZVDD input

shaper (frequency uncertainty: +50%)

be seen in Fig. 3.11 that with the ZVDD shaper, there is still residual vibration

again at the end of the simulation, again however, at a lower level than that of the

ZVD shaper. When the ZVDD shaper is combined with the adaptive PPF law,

the vibrations again have been removed in roughly 11 seconds. For the next case,
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(c) PZT sensor voltage
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(d) Control voltage from PPF

Fig. 3.12 Simulation results with multi-mode adaptive PPF and ZVDD input

shaper (frequency uncertainty: +10%)

when the error is +10% (in Fig. 3.12), the residual vibration is very, very small for

the ZVDD shaper, and it could be argued that in experiment, this would be very

difficult to pick up out of noise. The combined law again suppresses what little

residual vibration there is left in the system.
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The simulation results indicate that the proposed adaptation law works and

can adapt to the actual parameter values. Moreover, the results show that better

vibration suppression performance can be obtained by combining input shaping

with the proposed multi-mode adaptive PPF controller. When the design frequency

of an input shaper is close to the true value, the first vibration mode is more

effectively suppressed and the second mode is not as excited by the slewing motion.

As the initial value chosen for the first natural frequency of the system becomes

less accurate, the vibration suppression capability of the input shaper obviously

decreases and more vibrations are seen in the system, and here the multi-mode

adaptive PPF algorithm shows its benefits. Also, as expected, as the robustness

of an input shaper increases, the amount of system vibration decreases, even when

the shapers are badly tuned.

3.3.6 Experimental Results

In this section, two sets of experiments will be conducted. The first is termed

the constrained case as the motor is disabled, hence the vibration will be externally

induced in the system. The second set of experiments is termed the unconstrained

case as the manipulator will be slewed by the motor. Due to issues with the motor

and gearbox, including a large deadzone on the command, only the ZV shaper will

be used for the unconstrained experiments.
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It was also found through experiments that the system possessed quite a large

feedthrough (or direct energy transmission) term. In the following section, condi-

tions for the stability of PPF are derived for systems with feedthrough.

3.3.6.1 Modification to the PPF Control Structure for Systems with

Feedthrough

To prove the stability of PPF in the presence of feedthrough, the structural

equations can be rewritten in matrix form as

ẍ+ 2ZsΩsẋ+ Ω2
sx = KTu (3.81)

y = Kx+Du (3.82)

where x = [x1, x2, ..., xn]T , Zs = diag{[ζ1, ζ2, ..., ζn]}, Ωs = diag{[ω1, ω2, ..., ωn]},

and K = [
√
k1,
√
k2, ...,

√
kn]. The controller equation can now be written as

η̈ + 2ZfΩf η̇ + Ω2
fη = ΩfG

Ty (3.83)

u = GΩfη (3.84)

where η = [η1, η2, ..., ηm]T , Zf = diag{[ζf1 , ζf2 , ..., ζfm ]}, Ωf = diag{[ωf1 , ωf2 , ..., ωfm ]},

and G = [
√
g1,
√
g2, ...,

√
gm]. The notation zi = 2ζiωi and zfi = 2ζfiωfi may also be

used interchangeably. By combining equations to form the closed loop system [72][
ẍ
η̈

]
+

[
2ZsΩs 0

0 2ZfΩf

] [
ẋ
η̇

]
+

[
Ω2
s −KTGΩf

−ΩfG
TK Ω2

f − ΩfG
TDGΩf

] [
x
η

]
=

[
0
0

]
(3.85)
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which can then be written compactly as

¨̂x+ Ẑ ˙̂x+ Ω̂x̂ = 0 (3.86)

Since Ẑ > 0, it must only be shown that Ω̂ is also positive definite. By taking

the Schur complement of the closed loop stiffness matrix, Ω̂, the two conditions

that guarantee stability of PPF for a system with feedthrough are found as [107]

C1 = Ω2
f − ΩfG

TDGΩf > 0 (3.87)

and

C2 = Ω2
s −KTGΩfC

−1
1 ΩfG

TK > 0 (3.88)

3.3.6.2 Constrained Experiments

From the FFT of the open loop response, the actual natural frequencies of the

system can be found as 10.0091 rad/s and 60.4882 rad/s respectively, although

they are assumed unknown. To excite vibrations in a repeatable manner, the

piezoelectric actuator is used to excite vibration using the addition of two sinusoidal

signals at the beam’s first two natural frequencies along with a noise component

for 10 seconds (not shown in the plots). The actuator is then switched off at which

point the estimation and control can begin. The three parameters for the estimation

algorithm are chosen to be: β = 5, Q0 = 109I, and the initial paramter estimate is

taken as a vector of ones implying no prior knowledge of the system. During the
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control run, the estimator finds the first two natural frequencies to be 10.0246 rad/s

and 60.0935 rad/s respectively, which are very close to the true values. It takes the

estimator approximately three seconds to converge on the correct frequency values

as can be seen in Figs. 3.15 and 3.16.
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Fig. 3.13 Piezoelectric sensor voltage due to vibration

The PPF control takes approximately 25 seconds to damp out the vibrations as

can be seen in Fig. 3.13, with the corresponding control voltage seen in Fig. 3.14.

This is relatively quick due to the beam’s extremely small intrinsic damping and

given that free vibration would continue in time into the minute range. One im-

portant effect should be discussed in Fig. 3.13. When the control comes online at

approximately 3 seconds it can be seen that the voltage detected by the piezoelectric

sensor rises before being damped out by the PPF control. This is due to the effect
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Fig. 3.14 Voltage supplied by control to amplifier
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Fig. 3.15 Estimation of the first natural frequency in rad/s
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Fig. 3.16 Estimation of the second natural frequency in rad/s

of feedthrough, which collocated piezoelectric sensor/actuator pairs are particularly

susceptible to [23]. From a mathematical point of view, for the first three seconds,

when the control is off, the tranfer function is simply that of a monic vibrating

system subjected to an arbitrary impulse. When the control comes on, the transfer

function that describes the input-output relationship between the sensor and actu-

ator takes over, however, its denominator remains the same, while its numerator

will be altered [116, 117]. Physically, this is due to the fact that for the collocated

pair there will be some direct energy transmission from the actuator to the sensor.

Thus the sensor voltage is made up of two components, that of the beam response

due to the actuator, and some direct transmission of the strain energy due to the

collocation of the actuator [117].
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3.3.6.3 Unconstrained Results

To experimentally test the effectiveness of combining input shaping and adaptive

PPF, the simplest input shaper, the ZV shaper is chosen. Also, the motor is

fairly powerful and has a large amount of static friction, thus a direct comparison

of different shapers is unfeasible due to saturation of the vibration signal on the

measurement electronics, even with the 4:1 voltage divider on the input. A bang-

bang torque command is set up as 0.5 V for 1.115 seconds which is convolved with

the ZV shaper. The estimator is on at the beginning with arbitrary initial guesses,

and is set up to adapt on G21(s). Since the coefficients of the transfer function

denominator are being estimated, the individual modal frequencies are retrieved

from these parameters via a numerical root-finding method at each time step. The

estimator is modified to turn off when

1

γ +
∫ t
0

√
|ε(τ)|dτ

< δ (3.89)

where δ is the threshold for convergence to have occurred, and γ is a small positive

bias term such that the division remains defined. This is done since at this point the

parameter estimates will have converged within a reasonable amount, as ε represents

the difference between the actual transfer function and estimated transfer function,

and adaptation is no longer needed. The second reason this is done, is that after

a few seconds of running, the PPF controller may start to eliminate the vibrations
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in the structure and the persistence of excitation condition may no longer be valid,

leading to possibly erroneous estimates of the natural frequencies as control is

applied. The estimator parameters are chosen as λ=64, β=3, Φ̂0 = [1, 1, 1, 1]T ,

Q0=1011I, R0=1016, δ=1, and γ=0.1. The control parameters for PPF are chosen

to be g1=0.25, g2=0.015, ζ1=0.25, and ζ2=0.015.

In Fig. 3.17 the results with the ZV shaper tuned to 1.5ω1 can be seen. The

result for the ZV shaper shows that vibration is still present at 60 seconds. With

the adaptive control law, the vibrations are suppressed to a low level much faster

than with only the input shaper. The estimator produces the first two frequencies

of the system as 1.6011 and 9.8915 Hz in roughly 4.3 seconds. In Fig. 3.18 the

results for the ZV shaper tuned to 1.1ω1 are presented. While the vibration level is

lower than that for the ZV shaper at 1.5ω1 there is still a large amount of residual

vibration in the system. The estimator produces the system frequencies in this

case as 1.5931 and 9.8390 Hz in roughly 4.6 seconds. In both cases the final motor

position is achieved within 1.5 seconds and the position error is limited to within

3% of the maneuver, which is acceptable given the large amount of friction present

in the system. The use of the shapers is advantageous in the fact that the residual

vibrations after the maneuver are smaller than they would be for the bang-bang

input. This also allows the APPF controller to suppress the vibrations faster. In

both cases the estimator identifies the frequencies quickly and the PPF control law
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(c) PZT sensor voltage
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(d) Control voltage from PPF

Fig. 3.17 Experimental results with multi-mode adaptive PPF and ZV input

shaper (tuned to 1.5ω1)

comes online to more effectively suppress the system vibration.
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(c) PZT sensor voltage
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(d) Control voltage from PPF

Fig. 3.18 Experimental results with multi-mode adaptive PPF and ZV input

shaper (tuned to 1.1ω1)
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3.4 Genetic Algorithm for System Identification and Con-

troller Optimization

Most conventional optimization methods are based upon calculus and require

a good initial guess of the parameter as well as derivatives of the objective func-

tion. Conventional methods can fall into local minima, rather than the the global

minimum, as they are point-to-point search techniques. Genetic algorithms on the

other hand are stochastic algorithms capable of searching the entire solution space

with more likelihood of finding the global optimum when the system is either hard

to characterize, nonlinear, or little is known about it ahead of time. Genetic al-

gorithms are based on Darwin’s ‘survival of the fittest’ principle of evolution and

consist of a population of individuals that each represent a possible solution to the

optimization problem. This population of possible solutions is then used to create

a new population by evolutionary means such as selection, crossover, and mutation.

By searching in parallel, the algorithm is much less likely to fall into local minima,

and more likely to find the global minima. Moreover, GAs were also shown to have

no issues in dealing with measurement noise as the error was typically around the

noise level [103]. However, GAs are typically much more computationally intensive

to run than conventional optimization methods, and thus take longer to produce a

solution.
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A genetic algorithm works as follows: first, a population is initialized randomly

where each individual in the population represents a possible solution to the op-

timization problem. A string of symbols makes up each individual and can be

encoded in a variety of ways (binary, real, etc.). In this case, binary encoding is

chosen, however, Gray coding is used to avoid Hamming cliffs. Each individual in

the population is evaluated by an objective function, and it is the genetic algorithms

goal to optimize this objective function. Clearly, the objective function will depend

on the specific problem to be optimized. Based on how well each individual in the

population minimizes (or maximizes) the objective function, they will be assigned

a rank. Here the fitness function is based on rank and can be defined as

Fitn = 2− SP + 2(SP − 1)
P − 1

N − 1
(3.90)

where N is the number of individuals, P is their rank, and SP is the selective

pressure. A linear ranking allows values of SP between 1 and 2, and 2 is used in this

case to give a proportionately larger weight to better individuals. A new population

will be created by merging two individuals from the current generation (crossover

operator) or by randomly modifying an individual (mutation operator). A new

generation will be formed by keeping the parents and children (selection operator)

with the highest fitness values and rejecting those with poor ones, ensuring the

population stays the same size. Due to these operations, the best individual (or

solution) should begin to emerge over successive generations.
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3.4.1 Modifications to Simulation Model

Placing the structure in transfer function form gives

Gplant(s) =
∞∑
i=1

ki
s2 + 2ζiωis+ ω2

i

(3.91)

where ki is the gain, ζi is the damping, ωi is the frequency, and i is the mode number.

In practice, only a certain bandwidth is of interest and a modal truncation is usually

performed to keep only those modes belonging to the frequency range of interest.

However, straight modal truncation can cause problems for collocated systems as

the effect of the poles and zeros from the higher modes will be ignored. While the

poles of the truncated system will lie at the correct frequencies, the locations of the

zeros will be distorted due to the omission of the higher order modes [116]. This can

cause a large difference between the theoretically predicted closed loop performance

and the actual performance, and in the worst case possibly lead to instability due

to overestimation of the maximum allowable controller gain. A feedthrough term

can be added to the transfer function to compensate for this effect as

Gplant(s) =
n∑
i=1

ki
s2 + 2ζiωis+ ω2

i

+D (3.92)

where n is the number of modes kept in the model and the feedthrough term D is

given by [116]

D =
1

2ωc

∞∑
i=n+1

ki
ωi

ln

(
ωi + ωc
ωi − ωc

)
(3.93)

where ωc is an ideal lowpass filter cutoff frequency between mode n and n+ 1.
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3.4.2 GA for System Identification

Using a genetic algorithm for system identification should offer the advantages

of being able to find an optimal solution without getting stuck in local minima, and

also being very robust to measurement noise. Unfortunately, genetic algorithms do

poorly at hill-climbing in the general vicinity of the global optimum. This problem

becomes even more pronounced for highly resonant systems, such as a vibrating

beam due to the importance one paramter, specifically frequency in this case, plays

over another. Consider for example, the objective function (which will be discussed

below) in Fig. 3.19 that is evaluated over a 1000-point mesh over a defined search

space. A small dip in what appears to be a well-behaved solution space is observed,

which corresponds to the correct frequency. If the 1000-point mesh is shrunk into

a much smaller region it becomes clear that even small variations in frequency or

gain can drastically change the objective function values. While the GA finds the

frequency region of interest very easily, it does not converge to the exact minimum

within this area quickly.

To overcome the problems associated with genetic algorithms and hill-climbing,

an iterative solution is proposed. However, before that can be done, the objective

function, which in this case is equivalent to the minimal error index, must be defined
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Fig. 3.19 Objective function versus frequency and gain

as

ObjF =

√∑N
i=1(yi − ŷi)2∑N

i=1 y
2
i

(3.94)

where yi is the measured response, and ŷi is the estimated response. Importantly, ŷi

must be generated for each individual in the population, which in this case precludes
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the use of frequency-domain matching due to the huge computational burden this

would create.

Fig. 3.20 Identification flow chart

The algorithm is shown in Fig. 3.20. In more detail, the first two steps are run

separately due to the highly resonant nature of the system. When both frequencies

are searched for in one GA run, one can outweigh the other not leading to a small

enough region for the next search. Next the standard deviation of each variable at
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the end of a run can be calculated from

wsd =

√√√√√√√√√
N∑
i=1

wi(xi − x̄w)2

(N ′ − 1)
N ′

N∑
i=1

wi

(3.95)

where N is the number of individuals, wi is the weight, xi is the parameter, x̄w is

the weighted mean, and N ′ is the number of non-zero weights. Here, the weights wi

become easy to choose as the weight of each individual can be determined by their

fitness value. The weighted mean is more likely to lie close to the true solution,

while the weighted standard deviation is more likely to determine good bounds.

The parameter ±r can be used to determine how large of a search space around

the weighted average is kept. For example, if r = 1 the search space is reduced to

one standard deviation on each side of the weighted mean, while if r = 0.5, half a

standard deviation on each side of the weighted mean. One of the main advantages

of this implementation is that careful tuning of each of the GA parameters is not

required. In many problems a full analysis of what the best parameters are for

solving the problem is done on successive GA searches, and then a set of the best

parameters is selected for the search.
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3.4.3 GA for Optimal PPF

Multiple PPF controllers can be implemented in parallel, one for each mode,

tuned to the natural frequency of the mode it is to damp as

GPPF (s) =
m∑
i=1

giω
2
fi

s2 + 2ζfiωfis+ ω2
fi

(3.96)

where i is the mode number, m is the number of modes to be controlled, gi is the

controller gain, ζfi is the controller damping, and ωfi is the controller frequency.

In [107] the optimization problem for picking the PPF control parameters was

suggested as

min
ωfi

,ζfi ,gi
||GCL(iw)|| (3.97)

where the H∞-norm of the closed loop transfer function is to be minimized. How-

ever, in [107] the optimization problem was solved by using a nonlinear search,

which needed a good initialization scheme, otherwise the optimization problem

could fall into local minima.

For this structure, it is desired to control the first two modes of vibration, there-

fore six parameters need to be picked, three for each PPF controller. It can be time

consuming to choose these parameters, and there is no guarantee that they will

result in the best possible performance. Since the frequencies are assumed known,

the search space is divided in the frequencies to give reasonable bounds on either

side of the expected frequency, while the damping term of each controller must
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lie between zero and one. The only difficulty lies in choosing the search space for

the two PPF controller gains that will result in a closed loop system that can be

guaranteed stable. This is an issue due to the fact that the H∞-norm of an unstable

closed loop system can still be well defined, as opposed to the H2-norm which will

become infinite when the closed loop system is unstable. Thus, the search space

for the gi must be bounded according to the stability conditions outlined in Sec-

tion 3.3.6.1. The H∞-norm is also a particularly appropriate minimization criteria

for vibration control, as it corresponds to the peak gain of the frequency response.

Thus, the resonant frequencies will be targeted by this norm. A genetic algorithm

naturally lends itself to this nonlinear optimization problem as each candidate in

the population can represent one controller, and the resulting closed loop norm

can easily be calculated. One note is that carrying out the design for an optimal

controller on each mode and combining will yield a suboptimal controller. The

result can actually be substantially worse, as the controller for the second mode

can seriously degrade the performance on the first mode. Thus, the control design

must be done for all modes simultaneously.

3.4.4 Simulation Results

The model parameters chosen for the finite element model of the beam can be

seen in Table 3.1. The sensor/actuator pair is chosen to lie near the root of the
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beam since the optimal location for the actuator is where the strain energy of the

structure is highest [118]. Collocation of the sensor is required by the PPF control

law such that the system is minimum phase. The full model is put into transfer

function form and the modal parameters of each of the transfer functions found can

be seen in Table 3.3.

Table 3.3 System parameters

Parameter Mode 1 Mode 2 Mode 3 Mode 4

ki 5.4681 108.9400 322.9974 153.8421
ζi 0.0006 0.0033 0.0091 0.0177
ωi 10.5833 65.5031 181.8815 354.3648
D 0.2159

3.4.4.1 System Identification

To identify the plant, a chirp signal with an amplitude of 5 V is applied to the

control actuator with a frequency that varies from 0.1 to 20 Hz over 30 seconds.

The response is recorded and this signal is used to compare the system response

against candidate transfer functions in the genetic algorithm. The GA is set up

as follows: the number of individuals per subpopulation is selected as 50, with a

mutation rate of 0.05, a crossover rate of 0.7, and a generation gap of 0.9, which

is somewhat of an elitist strategy as the 5 best individuals will always propagate

forward. The number of generations is selected as 50 and the chromosomes have

a 20-bit gray-coded binary representation for each variable. In the first two steps
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of the algorithm, only the frequency and damping terms are being searched for

while in the iterative part of the algorithm, all seven parameters are being searched

for simultaneously. For the individual initial searches, the damping and frequency

search spaces are selected as

ζ1, ζ2 = (0, 1)
ωf1 = (0, 30) rad/s
ωf2 = (30, 100) rad/s

(3.98)

In Fig. 3.21 the minimization history of the first searches for the damping and

frequency values for each mode can be seen. The results for the first mode show a

larger minimization, this is due to the fact that the first mode is the more dominant

signal, thus leading to a better match than for the second mode. The initial search

yields values: ω1 = 10.5806 rad/s, ω2 = 65.5037 rad/s, and ζ1 = ζ2 = 1.0095 ×

10−4. These values are already very close to their true values, and now with r =

0.5 ranges for the full search can be established as

ζ1 = (0, 0.1033]
ζ2 = (0, 0.1275]

ωf1 = [10.2714, 11.0705] rad/s
ωf2 = [65.2217, 66.1367] rad/s

k1 = (0, 20]
k2 = [50, 120]
D = (0, 1)

(3.99)

By reseeding the GA, it offers the advantage of starting fresh with a new search

space and being able to populate a specific region more densely, thus leading to

better matches. In Fig. 3.22 the minimization history of the first run can be seen

where the best individual in the first generation results in an error index of 68% (or
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Fig. 3.21 Minimization history of initialization searches

0.68) and by the end, the error has been reduced to about 8.5%. This figure also

shows the iteration history of the multiple genetic algorithm runs (where iteration 0

denotes the best individual in the first generation of the first GA run). Clearly, after

the third iteration, very little improvement is being made in terms of minimizing the
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error index. Thus the genetic algorithm could be stopped here, and the parameters

found used as those for the identified transfer function. Where exactly to stop the

GA run will depend on a variety of factors such as how good the match needs to be,

how much noise there is in the system, and how quickly the parameters converge.

Stopping after iteration 3 yields an error of 1.9%. The parameters found are: k1 =

5.5403, k2 = 104.3349, ζ1 = 1.0095 × 10−4, ζ2 = 0.0031, ω1 = 10.5834 rad/s, ω2 =

65.5036 rad/s, D = 0.2291. It is important to point out that the feedthrough term

will be larger in the identified plant than in the actual four mode model due to

the fact that it corrects for the neglected modes. Fig. 3.23 shows a comparison of

output signals from a chirp input and the transfer functions bode plots. The plant

transfer function can clearly be seen to be identified very closely.

Fig. 3.24 shows the comparison of the actual transfer function, to the identified

transfer function when subjected to the summation of two sinusoidal signals of 2

V, one at 1 Hz and the other at 5 Hz. It can be seen that the output signals are

very close, thus confirming that the system identification has worked properly.

3.4.4.2 Controller Design

The genetic algorithm is set up with the exact same parameters as for the system

identification. All six control parameters will be searched for simultaneously, and

with respect to guaranteeing stability of the closed loop system, the search space
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Fig. 3.22 Minimization history

for the genetic algorithm can be defined as

ζf1 , ζf2 = (0, 1)
ωf1 = (0, 30) rad/s
ωf2 = (30, 100) rad/s
g1, g2 = (0, 1.6)

(3.100)

For the GA to run, each individual candidate PPF transfer function is con-
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Fig. 3.23 Comparison of identified transfer function to actual transfer function

structed, and then the closed loop H∞-norm of the system is calculated. In Fig. 3.25

the minimization history of the norm can be seen over all of its generations. Also,

in Fig. 3.26, the convergence of the individual PPF controller parameters can be

seen in 3D where each of the variables for one controller represents one axis. It can
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Fig. 3.24 Comparison of identified transfer function response to actual response

be seen that to a large degree the parameters have converged to within a specific

region in this space.

At the end of the search, the optimal control parameters are found to be: g1 =

0.9212, g2 = 0.3738, ζf1 = 0.2800, ζf2=0.0698, ωf1=10.2071 rad/s, and ωf2=63.3633
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Fig. 3.25 Minimization history of H∞-norm

rad/s. This results in a reduction of the system’s H∞-norm from 42.3512 to 0.6234,

or a reduction from 32.5373 dB to -4.1047 dB. It is good to see that both controller

frequencies chosen are near the natural frequencies of the system, which is as ex-

pected. It is also interesting to note that they are both slightly smaller than their

actual target frequencies at approximately 0.965ωi. This means that for an opti-

mal PPF controller, the frequency should be placed slightly in front of the system

natural frequency. Another important point is that the controller gains are well

within their stability bounds, thus, even if there is a substantial error in the system

identification, the controller should remain stable. In Fig. 3.27 the bode plots for

the uncontrolled and controlled system can be seen, where the system response has

been significantly attenuated near the resonant frequencies. In addition, it should
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Fig. 3.26 Convergence of individual PPF controller parameters

be noted that it is necessary to minimize the H∞-norm with both modes of the PPF

controller instead of each individual controller for optimal performance. Since the

minimization criteria is H∞, which is minimization of the peak gain, the criteria

will not allow spillover from the second controller to reduce the controller effective-
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ness on the first mode as this would violate the minimization criteria itself. Hence,

it can be seen that the magnitude plot for the closed loop system is very nearly

flat across the bandwidth of interest and that the first and second mode peaks

are at similar magnitudes. Finally, the designed controller is applied for vibration

suppression in Fig. 3.28(a). The plant is subjected to the summation of two 4 V

sinusoidal inputs near its first two resonant frequencies for five seconds. After this

point, the input signal is switched off and the PPF controllers are turned on and

suppress the vibrations in less than 15 seconds. For verification that the control

command generated by the designed PPF controller is both reasonable and able to

be physically implemented, Fig. 3.28(b) shows the generated control signal.
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Fig. 3.27 Bode plots of uncontrolled and controlled system
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Fig. 3.28 Results of vibration suppression

3.4.5 Experimental Results

Now, the algorithm is verified on the experimental system. For system iden-

tification, a chirp signal that varies from 1 to 125 rad/s in 30 seconds with an

amplitude of 5 V is applied to the piezoelectric actuator. For the genetic algorithm
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to be applied, some bounds must be chosen and some knowledge of the structure

from mathematical models is helpful. Where the frequencies lie is roughly known,

and given the fact that typical values for structural damping for this type of system

are very low, the search ranges can be set up accordingly. The values for the ki

and Di are harder to define from the models, thus larger ranges are used for them.

Thus, the total search space can be set up as

ζ1 = (0, 0.1]
ζ2 = (0, 0.1]

ωf1 = [1, 25] rad/s
ωf2 = [30, 100] rad/s

k1 = (0, 20]
k2 = [20, 120]
D = (0, 1)

(3.101)

In Fig. 3.29 the minimization history of the first iteration can be seen. The best

individual from the first iteration gives parameters of: k1=1.8817, z1 = 0.0471, ω1 =

10.0990 rad/s, k2 = 44.8780, and z2 = 0.2684, ω2 = 62.6228 rad/s, and D = 0.9755.

These values are already fairly close to their true values, and now with r = 1 ranges

for the next iteration can be established as

z1 = [0.0075, 0.0523]
z2 = [0.2073, 0.6001]

ωf1 = [8.9520, 11.2401] rad/s
ωf2 = [60.3597, 65.5057] rad/s

k1 = [0.6120, 2.5816]
k2 = [28.5363, 65.6717]
D = [0.9212, 0.9973)

(3.102)

In Fig. 3.29 the minimization history of the first search can be seen where the

best individual of the first generation gives an error index of 38% (or 0.38) and by
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Fig. 3.29 Minimization history

the end, the error has been reduced to about 6%. In this case since the controller

will only be as good as the system identification, thus, it is necessary to have

a very good match. The search space is then reseeded into a denser area, and

the genetic algorithm is run again. At the end of the third iteration the error is
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4.0%, which compared to the simulation results error of 1.9%, is very good. The

remaining difference can be largely attributed to the small measurement noise of the

system. After the third iteration, very little improvement is being made in terms

of minimizing the error index. Thus the genetic algorithm is stopped here, and

the parameters found used as those for the identified transfer function. The final

parameters are: k1 = 2.4249, k2 = 38.4899, z1 = 0.0388, z2 = 0.2343, ω1 = 10.0842

rad/s, ω2 = 62.6054 rad/s, D = 0.9710. The feedthrough term here is much larger

than that predicted theoretically using the correction for beam theory. However,

the beam is very thin and contains collocated piezoelectrics, thus it is suspected

that even with the feedthrough correction, the neglection of the membrane strains

induced by the piezoelectrics causes this rather substantial difference [23].

Fig. 3.30 shows a comparison of the actual chirp signal to that simulated by

the identified transfer function and the agreement is very good. There are some

very small differences in the very low frequencies (near 1 rad/s) due to the fact

that some remnants of the high pass filtering effects are still present that the lab

built signal conditioning circuit cannot completely correct for. A comparison of

the experimentally obtained bode plot is also shown against that of the identified

plant proving that the identification is accurate in the frequency domain. Finally,

Fig. 3.31 shows the comparison of the actual transfer function, to the identified

transfer function when subjected to a different input signal, albeit, still sinusoidal.
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Given the nature of the beam-piezo system, it is not very practical or meaningful

to use another signal type. For this test, the plant is subjected to a summation of

two sinusoidal signals of 1 V, one at 1 Hz and the other at 8 Hz.
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Fig. 3.30 Comparison of identified transfer function to actual transfer function

With respect to guaranteeing stability of the closed loop system for the experi-
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Fig. 3.31 Comparison of identified transfer function response to actual response

ment, the search space for the six control parameters can be defined as

ζf1 , ζf2 = (0, 1)
ωf1 = (0, 30) rad/s
ωf2 = (30, 100) rad/s
g1, g2 = (0, 0.4976)

(3.103)

Each individual candidate PPF transfer function is then constructed, and then

the closed loop H∞-norm of the system is evaluated. Due to the strong feedthrough,
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Fig. 3.32 Convergence of individual PPF controller parameters

the iterative implementation used for the system identification will be applied, with

the exact same parameters, to refine the choice of control parameters. In Fig. 3.32,

the convergence of the individual PPF controller parameters can be seen in 3D over

each iteration. It can be seen that after each iteration, the controller parameters
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have converged to a smaller region within the parameter space. At the end of the

search, the optimal control parameters are found to be: g1 = 0.2644, g2 = 0.0136,

ζf1 = 0.2529, ζf2=0.0170, ωf1=9.9167 rad/s, and ωf2=62.2707 rad/s. This results in

a reduction of the open loop H∞-norm from 6.3504 to 1.5234, or a reduction from

16.0561 dB to 3.6560 dB as can be seen in Fig. 3.33(a). Fig. 3.33(b) shows the bode

plot for the derived controller, where both controller frequencies chosen are near

the natural frequencies of the system and slightly smaller than their actual target

frequencies, which is as expected from the simulation results. The controller gains

also remain well within their stability bounds indicating the closed-loop system

should remain stable even if there is a siginificant error in the system identification.

Unfortunately, due to the very strong feedthrough, further reduction in the closed

loop system norm is unfeasible.

Finally, the designed controllers are applied to the experimental system for vi-

bration suppression in Fig. 3.34(a). The plant is subjected to the summation of

two 4.5 V sinusoidal inputs near its first two resonant frequencies for ten seconds

(not shown). After this point, the input signal is switched off and the PPF con-

trollers are turned on and suppress the vibrations effectively. Fig. 3.34(b) shows

the generated control signal (by the data acquisition card) which is well within the

actuation limits of the piezoelectric transducer and amplifier.
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4 Dynamics and Control of Piezoelectric

Actuators for Nanopositioning

Piezoelectric actuators form the basis for many high-precision positioning stages

and are finding use in many fields from nanomachining to atomic force microscopy.

Piezoelectric actuators operate via the converse piezoelectric effect whereby an ap-

plied electric field generates strain in the material. As piezolectric stack-actuators

are monolithic in nature, they exhibit no stiction or friction effects, and thus have

very precise positioning capabilities, typically only limited by the resolution and

noise level of the system electronics. While the total displacement exhibited by the

actuator is typically very small, they have a very large bandwidth, and are capable

of generating large forces making their application in micro-/nanopositioning stages

quite natural.

Piezoelectrics are typically represented by linear models, however, they have

two main nonlinearities associated with them, hysteresis and creep. These two ef-

fects can lead to a positioning error of as much as 10-15% in the operating range
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of a piezoelectric actuator. In general, hysteresis is modeled as a rate-independent

nonlinearity that depends upon the current and previous inputs to the actuator.

Typically, these nonlinearities are encapsulated through phenomenological model-

ing and many models have been proposed such as the Preisach, Prandtl-Ishlinskii,

Maxwell slip, and Bouc-Wen models among others [119]. The hysteresis effect

however, is frequently asymmetrical, and a modified Prandtl-Ishlinskii model that

includes saturation operators can be implemented [120]. The creep effect, on the

other hand, is characterized by a slow drift in the displacement of a piezoelectric

actuator over longer time scales. It is thought to manifest itself through the slow

switching of the remnant piezoelectric dipoles in the material that are not aligned

with the electric field. There are a few models of creep such as the logarithmic

model, fractional order model, and a model that consists of the weighted sum of a

finite set of differential equations [121].

For the control of piezoelectrics, a common approach is to try to develop precise

models of the hysteresis and creep effects, and then invert them for feedforward

control [122, 123]. An interesting method was provided in [124] whereby hysteresis

reduction is accomplished through use of a ‘phaser’, a unitary gain operator that

shifts a periodic signal by a phase angle. The problem with the feedforward control

method is that it is not robust to disturbances, or changes in the material itself or

its operating environment, as the thermal environment of the actuator can substan-
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tially change its behaviour. A further drawback of these methods is that a large set

of parameters must typically be identified. To overcome these limitations, a variety

of feedback controllers have been developed to control the motion of the actuator

including sliding mode [125], model reference adaptive control [126], and a back-

stepping controller [127]. In [128] ZVD input shapers are combined with PI control

to damp the resonance of the actuator and provide tracking control. In [129] the dy-

namics of the actuator are linearized using high-gain feedback control and then an

inverse model of the linear vibrational dynamics is used to formulate a feedforward

command. For large bandwidth operation three conventional vibration controllers

were compared and then combined with integral control for tracking [130]. For

precision positioning of instruments, such as a tunable 2-D Fabry-Perot interfer-

ometer, synchronization of multiple actuators is required. Synchronization control

has been widely applied to mechanical systems [131]. In [132] a simple yet powerful

strategy for synchronization was presented and then augmented to provide adaptive

compensation in [133]. For the positioning mechanism of a 2-D Fabry-Perot inter-

ferometer, it is desired to synchronize three piezoelectric actuators in parallel to

control the movement of the top plate, which sits on a large flexure hinge. For this,

in Section 4.3, a state feedback integral plus double integral controller is developed

to synchronize three actuators to form the basis of this mechanism.

A problem in the analysis of feedback control for piezoelectric actuators is how
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to account for the hysteresis effect in the stability analysis of the system. Com-

pounding this problem is the fact that these actuators all typically require some

type of integral control action in order to achieve their desired position, as a con-

stant voltage must be maintained for this to occur, and to counteract the creep

effect. The problem with integral control is that the analysis is complicated by the

presence of a simple pole at the origin, and hence, represents the critical case for

stability. In [134], an analysis similar to that of the circle criterion was developed

for a nonautonomous nonlinearity, with a possibly time-varying integral gain, for a

class of nonlinearities. In Section 4.4, it is shown that the hysteresis operator be-

longs to this class of nonlinearities, and then a simplified version of this criterion is

developed based on [134] for an LTI system, with an autonomous nonlinearity, and

a constant integral gain. Using this criteria, conditions are derived for the maximal

regulating gain such that the system is globally asymptotically stable. This analysis

is then extended to an integral synchronization controller for multiple piezoelectric

actuator systems in Section 4.5. Maximum gains are once again derived for the

controller, and then global asymptotic stability of the system is shown through a

Lyapunov analysis.

This chapter begins by outlining the experimental system in Section 4.1 and

its dynamic model in Section 4.2. In Section 4.3 the integral plus double integral

synchronization control strategy is developed. Asymptotic stability of the system is
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first investigated for tracking constant reference signals, and then bounded-input-

bounded-output (BIBO) stability of the system is discussed for tracking waveforms.

Two models of the system are developed, a linear transfer function model, and a

nonlinear phenomenological model, for HITL experiments. Next, in Section 4.4,

an output feedback integral control law is analyzed for systems with an input non-

linearity. For this, a different dynamic model is formulated that consists of the

hysteresis nonlinearity in series with the linear transfer function model. Maximum

gains are derived such that the system is globally asymptotically stable, and then

experiments are conducted to verify the analysis. Finally, in Section 4.5 an integral

synchronization controller is developed for two piezoelectric actuators. The analysis

of Section 4.4 is extended to the synchronization controller, and it is shown to be

globally asymptotically stable. Then, a HITL model is developed, and experiments

are conducted to verify the analysis, and show the effect of different synchronization

gains.

4.1 Experimental System

The experimental system consists of a Physik Instrumente P-753.1CD inte-

grated piezoelectric actuator/stage equipped with a capacitive sensor with an ac-

curacy to within 0.05 nm. Power and signal conditioning is supplied by PI’s E-625

amplifier/servo-controller unit with a small delay of 100 µs. An xPC real-time tar-

148



get computer has been configured that can achieve greater than a 100 kHz sample

rate for simple A/D and D/A tasks with more advanced controllers able to run at

greater than 20 kHz in real-time. The target computer is connected to the piezo

system through a National Instruments PCI-6289 card with 16-bit outputs and 18-

bit inputs for positioning at the nanometer level. The experimental system can be

seen in Fig. 4.1.

Fig. 4.1 Piezoelectric nanopositioning stage with amplifier

4.2 Dynamic Modeling

The dynamic model of a piezoelectric actuator can be described by a linear

transfer function under small signal conditions. For larger signals, a phenomeno-
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logical model based on the modified Prandtl-Ishlinskii model of hysteresis can be

used. These models can be combined with a creep model, consisting of the sum of

a weighted set of first order differential equations, to model the full response of the

piezoelectric actuator.

4.2.1 Linear Model

The E-625 amplifier comes with a built-in notch filter that can be used to filter

out signals that may excite the nanopositioners first resonant frequency. A linear

transfer function model with the notch filter can be identified from a least squares

procedure as

G(s) =
kω2

s2 + 2ζωs+ ω2
=

6.8757× 106

s2 + (5.2516× 103)s+ 7.6396× 106
(4.1)

and the frequency response of the model versus the experimental system can be

seen in Fig. 4.2(a).

To obtain the full frequency response of the system, the notch filter must be

disabled via a jumper in the E-625 unit. The linear model order will rise as the com-

bined frequency response of the piezoelectric and the amplifier must be considered.

This is due to the fact that the piezoelectric actuator’s first resonant frequency is

at approximately 7042 Hz while the amplifiers rolloff is at approximately 1266 Hz.

The transfer function of the entire system can then be approximately described by
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the transfer function of the piezo in series with the amplifier transfer function as

G(s) =
kfω

2
f

s2 + 2ζfωfs+ ω2
f

×
kpω

2
p

s2 + 2ζpωps+ ω2
p

(4.2)

=
1.093× 1017

s4 + (2.29× 104)s3 + (2.134× 109)s2 + (3.107× 1013)s+ 1.239× 1017

This transfer function was found from a least squares procedure and the frequency

response of the actuator versus its model can be seen in Fig. 4.2(b).

(a) System with notch filter (b) Full system response

Fig. 4.2 Frequency response

4.2.2 Hysteresis Model

The basic block of the Prandtl-Ishlinskii operator can be given as

ψa(u,w) = max{u(t)− a,min{u(t) + a, w}} (4.3)
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where u(t) is the control input, and a is the control input threshold value (the

magnitude of backlash). The hysteresis operator can be defined recursively as [135]

Ψa[u](t) =

{
ψa(u(0), ε)
ψa(u(t),Ψa[u](ti)) for ti < t ≤ ti+1

(4.4)

where 0 = t0 < t1 < ... < tN−1 is a partition of R+ such that the function u

is monotone on each of the subintervals [ti, ti+1], and ε is the initial consistency

condition which represents the internal state of the piezoelectric actuator before

u(0) is applied at t = 0. It is usually, but not necessarily, initialized to zero,

representing that the actuator starts from a deenergized state1.

The generalized operator is given by the weighted summation of a finite number

of hysteresis operators as

ψ(u(t)) = wThΨ[u](t) (4.5)

where wTh = [ wh0 wh1 ... whm ] which denotes the slope (or gain) of each indi-

vidual backlash operator and Ψ = [ Ψa0 Ψa1 ... Ψam ]T . Each of the backlash

operators will have a threshold width of 2a beyond the initial loading curve with

0 = a0 < a1 < ... < am. As a0 = 0 it can be seen that the first operator will always

be used as it describes the general linear response of the actuator weighted by a

factor wh0 . The subsequent operators are only used when the control inputs are

greater than their respective threshold values ai.

1Here we have defined the hysteresis operator as Ψa[u], where it can possess an initial state.
It is more commonly written as in [135], with a non-zero initial condition as Ψa[u, ε] to denote its
dependence on its initial state.
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The standard Prandtl-Ishlinskii operator is symmetric about the center point of

its loop, but in experiment it can be observed that the loop is in fact asymmetric.

A saturation operator can be combined in series with the hysteresis operator to

yield this asymmetric behaviour [120]. The saturation operator can be taken as a

weighted linear superposition of linear-stop or one-sided dead zone operators. The

dead-zone operator is a nonconvex, asymmetrical, memory-free nonlinear operator

[120] that can be given by

Φd[ψ](t) =

{
max{ψ(t)− d, 0} if d > 0
ψ(t) if d = 0

(4.6)

and the full response of the hysteresis becomes

φ(u(t)) = wTs Φ[ψ](t) = wTs Φ[wThΨ[u]](t) (4.7)

where wTs = [ ws0 ws1 ... wsp ] is the weight vector, d = [ d0 d1 ... dp ]

where 0 = d0 < an < d1 < ... < dp is the saturation threshold and Φ =

[ Φd0 Φd1 ... Φdp ]T . In general, the threshold values for ai are chosen to be

evenly spaced across the input range, however, the threshold values for the sat-

uration operator need not be equally spaced. In fact, the threshold values of the

saturation operator are in general not equally spaced, and can be difficult to obtain.

153



4.2.3 Creep Model

A first order differential equation is used to represent the creep as

1

γ1
ẋc1(t) + xc1(t) = u(t) (4.8)

where u(t) is the input. In general, to get a good match, a weighted linear super-

position of multiple creep systems is taken as

ẋc = Acxc +Bcu (4.9)

yc = Cxc (4.10)

where γ = [ γ1 γ2 ... γq ]T , Ac = diag{γ}, Bc = γ and C = wTc , where wc is a

weight vector determined by a least squares fit to the experimental data. Here, the

γ are typically generated as γj = 1/(10j−4) where j = 1 ... q.

Eq. 4.8 possesses an explicit integral solution

xc1(t) = e−γ1txc1(0) + γ1

∫ t

0

eγ1(τ−t)u(τ)dτ (4.11)

where xc1(0) is the initial condition. If their are implementation issues due to the

continuous time representation (with high sample rates being unachievable for the

HITL experiments), the discrete time version of the creep operator can be taken

with a rectangular approximation to the integral as

xc1(t) = e−γ1Tsxc1(t− 1) + (1− e−γ1Ts)u(t− 1) (4.12)
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Once again, the creep operator may be written as a finite sum of creep operators

with weights wc as

yc(t) = wTc xc (4.13)

where the γ are typically generated as γj = 1/(10j−1Ts) with sample time Ts.

4.3 State Feedback Integral plus Double Integral Synchro-

nization Tracking Control

The linear dynamics of a three piezo parallel system can be described as

Mq̈ + Cq̇ +Kq = u(t) (4.14)

or written in full as m1 0 0
0 m2 0
0 0 m3

 q̈1
q̈2
q̈3

+

 c1 0 0
0 c2 0
0 0 c3

 q̇1
q̇2
q̇3

+

 k1 0 0
0 k2 0
0 0 k3

 q1
q2
q3

 = u(t)

The control for integral synchronization tracking control can be formulated as

u(t) = Ki

∫ t

0

e∗(τ)dτ (4.15)

with e∗(t) defined as [132]

e∗(t) = e(t) +BT TT

∫ t

0

e(τ)dτ (4.16)

where e(t) is defined as e(t) = qd − q where qd is the desired vector. Ki can be
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defined as

Ki =

 ki1 0 0
0 ki2 0
0 0 ki3

 (4.17)

and the synchronization gain matrix Ks may be defined as

Ks = KiBT
TT (4.18)

where B = diag{B1, B2, B3} and T is the coupling matrix that is chosen such that

T TT > 0 which may be taken for example as

T =

 1 −1 −1
−1 1 −1
−1 −1 1

 (4.19)

Hence u(t) may be given by

u(t) = Ki

∫ t

0

e(τ)dτ +Ks

∫ t

0

∫ τ

0

e(τ1)dτ1 (4.20)

which, with T taken as in Eq. 4.19, can be written in full as

u(t) =

 ki1 0 0
0 ki2 0
0 0 ki3

∫ t

0

 e1(τ)
e2(τ)
e3(τ)

 dτ
+

 3ki1B1 −ki1B1 −ki1B1

−ki2B2 3ki2B2 −ki2B2

−ki3B3 −ki3B3 3ki3B3

∫ t

0

∫ τ

0

 e1(τ1)
e2(τ1)
e3(τ1)

 dτ1 (4.21)

4.3.1 Tracking Reference Values

Assuming nominally linear dynamics of the piezoelectric actuator, each system

can be represented as

ẋi = Aixi +Biui (4.22)
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with output equation

yi = Cixi (4.23)

where xi = [ xi1 xi2 ]T and

Ai =

[
0 1
−ω2

i −2ζiωi

]
Bi =

[
0

giω
2
i

]
Ci =

[
1 0

]
(4.24)

and Ai are assumed to be Hurwitz.

The state equation for each system can be augmented with two integrators as

ẋi = Aixi +Biui
σ̇i = ei
η̇i = σi

(4.25)

where ei = Cixi− r and r is the constant reference, hence σi =
∫
ei and ηi =

∫ ∫
ei.

This equation can be rewritten in matrix form as ẋi
σ̇i
η̇i

 =

 Ai 0 0
Ci 0 0
0 1 0

 xi
σi
ηi

+

 Bi

0
0

ui +

 0
−1
0

 r (4.26)

or as

żi = Âizi + B̂iui + Êr (4.27)

with output equation yi = Ĉizi with Ĉi = [ Ci 0 0 ].

Clearly, in this case a linear state feedback can be designed as

ui = −Kxixi −Kσiσi −Kηiηi = −K̂izi (4.28)

where Kηi must be nonsingular.
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For the three-piezo system, the state equation can be assembled as z1
z2
z3

 =

 Â1 0 0

0 Â2 0

0 0 Â3

 z1
z2
z3

+

 B̂1 0 0

0 B̂2 0

0 0 B̂3

u+

 Ê 0 0

0 Ê 0

0 0 Ê

 r (4.29)

or

z = Ãz + B̃u+ Ẽr (4.30)

Clearly, the three piezo system is uncoupled with the current state feedback.

For the synchronization control, coupling takes place in the feedback gain matrix

as

K̃ =

 Kx1 Kσ1 Kη1 0 0 −Kc2 0 0 −Kc3

0 0 −Kc1 Kx2 Kσ2 Kη2 0 0 −Kc3

0 0 −Kc1 0 0 −Kc2 Kx1 Kσ1 Kη3

 (4.31)

where Kci are the cross-coupling terms for the synchronization control as defined

by Ks = KiBT
TT .

The equilibrium point of the system will satisfy

0 = Aixiss +Biuiss
0 = eiss = Cixiss − r
0 = σiss
uiss = −Kxixiss −Kηiηiss +Kcjηjss +Kckηkss

(4.32)

where the indices i 6= j 6= k represent the piezo number. By changing coordinates

with ξ = [ ξ1 ξ2 ξ3 ]T and ξi defined as

ξi = [zi − ziss ] =

 xi − xiss
σi − σiss
ηi − ηiss

 (4.33)

the closed loop system can be written as

ξ̇ = (Ã− B̃K̃)ξ (4.34)
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With Kηi nonsingular, K̃ can be designed such that Ã− B̃K̃ is Hurwitz [136].

Hence as t→∞ it can be seen that Cixiss = yi → r, e→ 0, σi =
∫
e→ 0 and uiss

will approach a constant determined by the double integrals of the errors. From

Eq. 4.16 it can also be seen that e∗(t) → 0 as t → ∞, hence synchronization of

the systems has occurred. This control will ensure asymptotic regulation under all

parameter perturbations that do not destroy the stability of the closed-loop system.

4.3.2 Tracking Waveforms: Bounded Input Bounded Output Stability

In this section, the stability of the synchronization controller will be considered

for tracking of continuous waveforms. To facilitate this, some variables from the

preceding section must be redefined. To start, the state vector zi remains the same,

except that the integral term must be redefined as σi =
∫
xi1. Hence, Eq. 4.30 is

rewritten as

z = Ãz + B̃u (4.35)

where Ã and B̃ remain defined in the same way as in Eq. 4.29. For the three

actuator system, z ∈ R3n×1, Ã ∈ R3n×3n, B̃ ∈ R3n×3, u ∈ R3×1, where n contains

the augmented states for the integral terms. The output equation can be written

as y = C̃z(t) with C̃ ∈ R3×3n, and y ∈ R3×1.

Once again, proceeding with the state feedback approach we have

u(t) = K̃(zd(t)− z(t)) (4.36)
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where K̃ ∈ R3×3n is the same as in Eq. 4.31 and contains the integral, synchroniza-

tion, and coupling gains. The desired state vector is written as zd ∈ R3n×1, allowing

the state error to be defined as

e(t) = zd(t)− z(t) (4.37)

This requires that the desired trajectory in each of the state variables be known

which implies that the reference trajectory must be sufficiently smooth for the

necessary number of derivatives to exist, and that they are known.

To show BIBO stability, we will change to state error coordinates. Starting from

Eq. 4.35 we have
ż(t) = Ãz(t) + B̃u(t)

= Ã(zd(t)− e(t)) + B̃K̃e(t)

= Ãzd(t)− Ãe(t) + B̃K̃e(t)

= Ãzd(t)− Āe(t)

(4.38)

where Ā = Ã − B̃K̃ and K̃ is once again chosen such that Ā is Hurwitz. With

ė(t) = żd(t)− ż(t), Eq. 4.38 can be rewritten as

ė(t) = Āe(t) + żd(t)− Ãzd(t) (4.39)

To prove stability, choose the Lyapunov function

V (t) = eTPe (4.40)

where P = P T > 0. Hence the derivative of the Lyapunov function will be

V̇ (t) = ėTPe+ eTP ė

= (Āe+ żd − Ãzd)TPe+ eTP (Āe+ żd − Ãzd)
= eT (ĀTP + PĀ)e+ 2eTP (żd − Ãzd)

(4.41)
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with ĀTP + PĀ = −Q as the solution of the Lyapunov equation. Defining ξ(t) =

żd − Ãzd as the difference between the derivative of the desired state vector and

that of the unforced system, we have

V̇ (t) = −eTQe+ 2eTPξ
= −eTQe+ 2ξTPe

(4.42)

To prove bounded-input-bounded-output stability of Eq. (4.42) consider the LTI,

strictly proper system given in Eqs. (4.35), where K̃ is chosen to stabilize the

system. Choosing the reference trajectory (hence zd(t) and żd(t)) such that ξ(t)

is bounded such that ||ξ(t)|| < ξ̄. Next, consider first that the term −eTQe in

Eq. (4.42) is both strictly negative and quadratic in e(t) and the term 2ξT (t)Pe(t)

is bounded and linear in e(t). For any ξ̄ there exists a finite ē ∈ R+ sufficiently

large to ensure that for all {e(t): ||e(t)|| > ē} we have that V̇ (t) < 0 [137].

4.3.3 Experimental Setup and Results

To conduct HITL simulations of the parallel three-axis positioning system, the

first axis is taken as the experimental piezoelectric actuator with the notch filter

disabled in the control unit. The second axis is taken as the linear model with the

notch filter enabled as in Fig. 4.2(a). The linear model with the notch filter is used

due to sample time constraints as both models are being run in real-time along with

the experimental system and the control law. The nonlinear model that is used for
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the third axis is given by the summation of the hysteresis and creep operators as

y(t) = φ(t) + yc(t) (4.43)

At a controlled system bias point, the nonlinear model can be identified by a

nonlinear least squares technique as shown in Fig. 4.3. However, for the HITL

simulations, a model identified at a different bias point (approximately 0.5 V

higher) will be used. The different bias point will give a different behaviour of

the piezoelectric as seen in Fig. 4.4. The parameters of this model are once again

found by a nonlinear least squares technique. Here, seven hysteresis operators

with threshold values ~r = [0 0.1285 0.2571 0.3857 0.5142 0.6428 0.7714]

and weights ~wh = [0.1280 0.0426 0.0595 0.0544 0.0602 0.0426 0.0282] are

used. Next, five creep operators are used with Ts = 0.001 seconds, and with weights

~wc = [0.6442 0.1902 0.0264 0.0560 0.0175] . Finally, three saturation opera-

tors are used with threshold values found as ~d = [0 0.2873 0.5370] with respec-

tive weights ~ws = [0.5574 0.2613 0.0617] .

The system is set up to run with a sample rate of 10 kHz withKi = diag{100, 100, 100},

B = diag{40, 40, 40} and T is chosen as in Eq. 4.19.

4.3.3.1 Step: 300nm

For the piezoelectric, it is desired to follow a stair-type waveform, with individual

steps of 300 nm. The response of the two models and the experimental system to
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(a) Input voltage command for identification (b) Actual displacement vs. model

Fig. 4.3 Experimental results

Fig. 4.4 Actual displacement vs. model for HITL simulation

the input can be seen in Fig. 4.5. The piezo, linear, and nonlinear model all exhibit

different responses for different reasons. For the linear model, it was identified

under small signal conditions, and for the nonlinear model, it was identified at a
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different operating bias point.

Fig. 4.5 Open loop experiments with 300 nm step

For comparison purposes, the response of the systems with individual integral

controllers is shown in Fig. 4.6(a) for the full waveform, Fig. 4.6(c) for the step re-

sponse, and Fig. 4.6(e) for the post-processed (analog Butterworth filtered) results.

It can be seen that while the integral control has fair step tracking performance,

the signals will all achieve different final values, which is undesirable. In Fig. 4.6(b)

synchronization control for the full waveform can be seen, while in Fig. 4.6(d) shows

the step response, and Fig. 4.6(f) shows the post-processed results. It can be seen

in this case that all three systems are closely coupled together and achieve the de-

sired reference value. Fig. 4.6(f) is further magnified in Fig. 4.7 where it can be
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seen that the three systems responses are quite tightly bound, even in the presence

of noise disturbances in the experimental system.

4.3.3.2 Step: 20nm

It is clearly desirable to have positioning capabilities smaller than the 300 nm

step shown in the previous case. In this section, it is desired for the system to

follow a waveform consisting of 20 nm steps. The open loop response of the system

can be seen in Fig. 4.8, and it is interesting to note how different the response of

the experimental system is from the larger 300 nm step size shown in Fig. 4.5.

Once again, for comparison purposes, the response of the systems with individ-

ual integral controllers is shown in Fig. 4.9(a) for the full waveform, Fig. 4.9(c) for

the step response, and Fig. 4.9(e) for the filtered step response. Synchronization

control for the full waveform can be seen in Fig. 4.9(b), while the step response can

be seen in Fig. 4.9(d), and Fig. 4.9(f) shows the filtered response. Once again, it

can be seen that the synchronization control holds the signals values together quite

well, even in the rather noisy environment. It is worth noting that the controller

itself is run without any filtering inside the loop as it depends entirely on integral

control, and hence is fairly robust to noise. With more advanced signal processing

techniques, it should be possible to reduce the achievable step size to the nanometer

level.
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4.3.3.3 Sine Wave Tracking

In this section, the controller is configured to track a sine wave with a peak-to-

peak displacement of 2 µm at frequencies of 1, 5, 10, and 20 Hz. For this, the gains

can be tuned much larger to make the region converged to smaller, as overshoot

is not a critical factor. However, the gains cannot be made larger indefinitely

before driving the closed loop system unstable. Here, the gains are chosen as Ki =

diag{1250, 1250, 1250}, B = diag{250, 250, 250} and T is chosen as in Eq. 4.19.

Fig. 4.10 shows the open loop response of the system to a sinusoidal input.

The uncontrolled response will always lag the input and has substantial errors

near the peaks and troughs of the waveform. In Fig. 4.11(a) the response of the

synchronization control can be seen for a 1 Hz sine wave, and its response at the

peak is magnified in Fig. 4.11(b). While the error is very small, the waveforms

aren’t particularly synchronized at this point, although they are on the ascending

and descending branches of the wave. Fig. 4.12–4.14 shows the response of the

controller to increasing frequency of the sinusoidal waveform, and in Fig. 4.15 the

max error (at the peak) versus frequency is shown. Clearly, as the frequency of

the waveform increases, the error also increases, although it is worth noting, the

actuators are all still relatively held together by the synchronization controller.
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(a) Integral control (b) Synchronization control

(c) Integral control step response (d) Synchronization control step response

(e) Integral control step response filtered
(f) Synchronization control step response

filtered

Fig. 4.6 Experimental results with 300 nm step
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Fig. 4.7 Magnification of Fig. 4.6(f)

Fig. 4.8 Open loop experiments with 20 nm step
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(a) Integral control (b) Synchronization control

(c) Integral control step response (d) Synchronization control step response

(e) Integral control step response filtered
(f) Synchronization control step response

filtered

Fig. 4.9 Experimental results with 20 nm step
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Fig. 4.10 Open loop response for a 1 Hz sine wave

(a) Synchronization control (b) Magnified

Fig. 4.11 Tracking of a sine wave at 1 Hz
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(a) Synchronization control (b) Magnified

Fig. 4.12 Tracking of a sine wave at 5 Hz

(a) Synchronization control (b) Magnified

Fig. 4.13 Tracking of a sine wave at 10 Hz

171



(a) Synchronization control (b) Magnified

Fig. 4.14 Tracking of a sine wave at 20 Hz

Fig. 4.15 Maximum error vs. waveform frequency
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4.4 Output Feedback Integral Control with Input Nonlin-

earities

The piezoelectric actuators dynamic model can be represented as a single-input-

single-output linear state space system, with its inherent nonlinearities considered

as a nonlinearity on the input. This can be written as

ẋ = Ax+Bφ(u) (4.44)

y = Cx+Dφ(u) (4.45)

where x ∈ Rn, A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R, and u, y ∈ R,

φ : R+ × R → R. With G(s) = C(sI − A)−1B + D, this can be represented

grapically as in Fig. 4.16. The input nonlinearity of the piezoelectric actuator can

be represented by the Prandtl-Ishlinskii phenomenological model of hysteresis as

presented in Section 4.2.2.

φ(u)
u

G(s)
y

Fig. 4.16 Plant block diagram
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4.4.1 Integral Control with Input Nonlinearities

The state space representation of a single-input-single-output system with input

nonlinearities is given in Eq. 4.44–4.45 where it is assumed that A is Hurwitz. In

transfer function form, G(s) = C(sI−A)−1B+D, and it is assumed that the static

gain G(0) = D − CA−1B > 0. With integral control, the feedback sytem can be

seen in Fig. 4.17 and the system of equations can be written as

ẋ = Ax+Bφ(u) (4.46)

y = Cx+Dφ(u) (4.47)

u̇ = k[r − y] (4.48)

where r ∈ R is the constant reference to be tracked.

The control system will be stable for any K∗ > 0 such that

1 +K∗Re

[
G(iw)

iw

]
≥ 0 (4.49)

and the maximal gain K ∈ R (K ¿ 0) can be defined as

inf
ω∈R, ω 6=0

Re

[
G(iw)

iw

]
= − 1

K
(4.50)

−

+
k
s

r
φ(u)

e
G(s)

u y

Fig. 4.17 System block diagram
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which is closely related to the circle criterion. In fact, finding K is most easily done

from a Nyquist plot of G(iw)/(iw) where the plot can touch, but otherwise must

lie to the right of the vertical line defined by − 1
K

. For heavily damped systems,

this may present a large reduction in the maximum gain possible, as the condition

is conservative in nature. Borrowing from the circle criterion, it can be seen that

essentially we are claiming that the maximum gain of the nonlinearity times that

of the integral controller will belong to the sector (0, K).

For the nonlinearity φ(), it will be imposed that it must be piecewise continu-

ously differentiable and non-decreasing, βφ(β) ≥ 0, and is globally Lipschitz with

Lipschitz continuity constant λ. Since φ is nondecreasing, hence φ∇(β) ≥ 0, where

φ∇(β) is defined as min{φ′−(β), φ′+(β)}, where φ′−(β) and φ′+(β) are the left and

right limits and φ∇(β) = φ′(β) whenever φ′ exists. Hence, we can take k∗ = K/λ,

then choose k, k∗ > 0, such that k < k∗ < k∗. Hence k∗ represents the maximum

gain of the integral controller (since the gain due to the input nonlinearity has

been removed) such that the system remains stable and k∗ such that the system is

asymptotically stable. It will be presumed that the initial value problem given by

Eq. 4.46–4.48 with x(0) = x0 and u(0) = u0 has a unique solution.
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4.4.1.1 Lyapunov Stability

To prove Lyapunov stability, a coordinate change will first be employed. Defin-

ing z(t) = x(t)+A−1Bφ(u), hence ż(t) = ẋ(t)+A−1Bφ∇(u)u̇ we have that Eq. 4.46

becomes

ż − A−1Bφ∇(u)u̇ = A(z − A−1Bφ(u)) +Bφ(u) (4.51)

ż = Az + A−1Bφ∇(u)u̇ (4.52)

Let v = φ(u)− φ(u∗), hence v̇ = φ∇(u)u̇, then

ż = Az + A−1Bv̇ (4.53)

Next, employing the coordinate transform on the output equation, it becomes

y = Cx+Dφ(u) (4.54)

= C(z − A−1Bφ(u)) +Dφ(u) (4.55)

= Cz + (D − CA−1B)φ(u) (4.56)

= Cz +G(0)(v + φ(u∗)) (4.57)

= Cz +G(0)v +G(0)φ(u∗) (4.58)

Defining w = y −G(0)φ(u∗) we have that

w = Cz +G(0)v (4.59)
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Now, the integral control equation will become, with η = φ∇(u)

v̇ = φ∇(u)u̇ (4.60)

= ηk[r − y] (4.61)

= η[kr − kCz − kG(0)v − kG(0)φ(u∗)] (4.62)

= η[−kCz − kG(0)v] (4.63)

= −kwη (4.64)

where the fact that r = G(0)φ(u∗) was used.

Assembling Eq.’s 4.53, 4.59, and 4.64 we have that

ż = Az + A−1Bv̇ (4.65)

w = Cz +G(0)v (4.66)

v̇ = −kwη (4.67)

which can be written in matrix form as[
ż
v̇

]
=

[
A 0
0 0

] [
z
v

]
+

[
A−1B

1

]
v̇ (4.68)

w =
[
C G(0)

] [ z
v

]
(4.69)

v̇ = −kwη (4.70)

which is equivalent to[
ż
v̇

]
=

[
A 0
0 0

] [
z
v

]
−
[
A−1B

1

]
kwη (4.71)

w =
[
C G(0)

] [ z
v

]
(4.72)
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Taking the Lyapunov function candidate as V = zTPz + G(0)v2, it’s time

derivative is given as

V̇ = żTPz + zTP ż + 2G(0)vv̇ (4.73)

= (Az + A−1Bv̇)TPz + zTP (Az + A−1Bv̇) + 2G(0)vv̇ (4.74)

= zTATPz + v̇(A−1B)TPz + zTPAz + zTPA−1Bv̇ + 2G(0)vv̇ (4.75)

= zT (ATP + PA)z + 2zTPA−1Bv̇ + 2G(0)vv̇ (4.76)

with G(0)v = w − Cz we have

V̇ = zT (ATP + PA)z + 2zTPA−1Bv̇ + 2(w − Cz)v̇ (4.77)

= zT (ATP + PA)z + 2zTPA−1Bv̇ + 2wv̇ − 2zTCT v̇ (4.78)

= zT (ATP + PA)z + 2zT (PA−1B − CT )v̇ + 2wv̇ (4.79)

=

[
z
v

] [
ATP + PA PA−1B − CT

(A−1B)TP − C −2∆

] [
z
v

]
+ 2∆v̇2 + 2wv̇ (4.80)

with v̇ = −kwη. There exists a Q < 0 (see [134]) such that

Q =

[
ATP + PA PA−1B − CT

(A−1B)TP − C −2∆

]
(4.81)

where P = P T > 0, P ∈ Rn×n, we then have

V̇ =

[
z
v

]
Q

[
z
v

]
+ 2∆k2w2η2 + 2w2kη (4.82)

=

[
z
v

]
Q

[
z
v

]
+ 2kw2η(∆kη − 1) (4.83)

=

[
z
v

]
Q

[
z
v

]
− 2kw2η(1−∆kη) (4.84)
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Here, k > 0, w2 ≥ 0, η = φ∇(u(t)) ≥ 0 since φ is non-decreasing. With ∆ = 1
k∗λ

we have that 1−∆kη = 1− kη
k∗λ

> 0 since k∗ > k and λ > η. Hence,

V̇ =

[
z
v

]
Q

[
z
v

]
− 2kw2η(1−∆kη) (4.85)

V̇ ≤
[
z
v

]
Q

[
z
v

]
(4.86)

V̇ < 0 (4.87)

4.4.1.2 Properties of the Hysteresis Nonlinearity

The Prandtl-Ishlinskii operator is piecewise monotonic which means that the

operator Ψa[u] is a monotone function of t in any time interval where the input

u is monotone with respect to t. If the operator is monotone, all local extrema

of the output Ψa[u] must correspond to local extrema of u, and no new ones can

be created. Ψa[u] is continuous at each t ∈ R+, t 6= ti and is both left and right

continuous at ti [135]. The play operator is Lipschitz continuous on the dense subset

Cpm(R+)×R of C(R+)×R [135]. Consequently, Ψa can be uniquely extended onto

C(R+)×R and is Lipschitz continuous [121,135]. Clearly, the same arguments can

be made for the saturation operator as were made for the play operator.

To see the global Lipschitz condition of the modified PI operator, take (in a

slight abuse of notation),

‖φ(u)− φ(v)‖ ≤ λ‖u− v‖ (4.88)
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‖wTs Φ[wThΨ[u]]− wTs Φ[wThΨ[v]]‖ ≤ λ‖u− v‖ (4.89)

‖wTs ‖‖Φ[wThΨ[u]]− Φ[wThΨ[v]]‖ ≤ λ‖u− v‖ (4.90)

Employing the fact that ‖Φ[u] − Φ[v]‖ ≤ ‖u − v‖ (ie. has a Lipschitz constant of

1), we then have that

‖wTs ‖‖wThΨ[u]− wThΨ[v]‖ ≤ λ‖u− v‖ (4.91)

‖wTs ‖‖wTh ‖‖Ψ[u]−Ψ[v]‖ ≤ λ‖u− v‖ (4.92)

and since ‖Ψ[u]− Ψ[v]‖ ≤ ‖u− v‖ (again, has a Lipschitz constant of 1), we have

that ‖wTs ‖‖wTh ‖ ≤ λ. Given that the weights wh and ws represent the slopes of each

operator, choosing the Taxicab norm (or 1-norm) places a bound on the maximum

slope of the hysteresis operator in its input-output space, hence ‖wTs ‖1‖wTh ‖1 ≤ λ.

4.4.1.3 A Simple Illustrative Example

As a simple example, consider the second order system given by

ẋ =

[
0 1
−ω2 −2ζω

]
+

[
0
gω2

]
φ(u) (4.93)

y =
[

1 0
]

(4.94)

with ω = 10, g = 0.9, and ζ = 0.2. From the Routh-Hurwitz condition, we can

easily find that for integral control, the gain range for stability is

0 < K∗RH ≤
2ζω

g
= 4.444 (4.95)
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and can set KRH = sup{K∗RH} while from Eq. 4.49 we can evaluate the Nyquist

plot of G(iω)
iω

(see Fig. 4.18) to find K = 4.2667.

Fig. 4.18 Nyquist plot of G(iω)
iω

For second order systems, as ζ → 0, K will tend towards KRH , hence the

condition of Eq. 4.49 is conservative, and will become more so for heavily damped

systems. As the threshold a increases, in general so could the maximum gain,

however, this would require exact knowledge of the thresholds and weights. As a

tends towards zero, it is apparent that the maximum allowable gain will approach

that of strictly the linear system scaled by ‖wTh ‖1. As a simple example, take the

first hystersis operator with a1 = 0.01, with weight wh1 = 1.2 = λ, and k = kN =

K − 0.001. With this gain k, the system will be unstable. In this case, taking
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k = kN/wh1 the system is stable as can be seen in Fig. 4.19.

Fig. 4.19 Integral control with k = kN/λ

Now, including the linear portion of the saturation operator as d0 = 0 with

ws0 = 0.9 and one saturation operator with d1 = 0.75 and ws1 = 1.4, the response

with k = kN/wh1 will again be unstable. Choosing k = kN/(wh1(ws0 +ws1)) results

in the stable response seen in Fig. 4.20

4.4.2 Application to the Piezoelectric Actuator

With the notch filter off, the linear portion of the actuator response can be

described very precisely by an eighth order transfer function as

G(s) =
β0

s8 + α7s7 + α6s6 + α5s5 + α4s4 + α3s3 + α2s2 + α1s+ α0

(4.96)
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Fig. 4.20 Integral control with k = kN/(wh1(ws0 + ws1))

This transfer function was found from a least squares fit in the frequency domain

and the frequency response of the actuator versus its model can be seen in Fig. 4.4.2

with its identified parameters found in Table 4.1. The transfer function represents

that of the actuator from input voltage to output displacement.

Table 4.1 Linear transfer function model parameters

Parameter β α

0 2.3390e+035 2.6321e+035
1 6.7826e+031
2 6.7762e+027
3 3.6852e+023
4 1.3854e+019
5 3.1715e+014
6 7.1636e+009
7 6.9612e+004
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Fig. 4.21 Frequency response

At a controlled system bias point, the nonlinear model can be identified by a

nonlinear least squares technique as shown in Fig. 4.22. Here, seven hysteresis op-

erators, and five saturation operators are identified and their values and respective

weights can be seen in Table 4.2. The choice of 10 Hz for identification was made

as it is much easier to identify the hysteresis parameters when creep is not present,

which is generally the case for sinusoids greater than 1 Hz. Creep was not consid-
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ered in the analysis of the stability problem, as the creep response is much slower

than that of the dynamics of the system.

Table 4.2 Identified parameters of the piezoelectric

Parameter 0 1 2 3 4 5 6

a 0 0.1667 0.3333 0.5 0.6667 0.8333 1
wh 1.0540 0.0546 0.0481 0.0445 0.0163 0.0642 0.2258
d 0 1.0001 1.1102 1.6517 1.9773
ws 1.028 0.0068 0.0050 0.0037 0.0035

(a) Hysteresis identification (b) Input-output

Fig. 4.22 Experiments and identified model for hysteresis

From the identified nonlinear parameters, we can calculate, ‖wTh ‖1 = 1.5078,

and ‖wTs ‖1 = 1.0481. From the Nyquist plots in Fig. 4.23 we can calculate K ≤

1
2.2898×104 = 4.3671 × 103. Hence, k∗ = K/λ = K

‖wT
h ‖1‖wT

s ‖1
= 2.7634 × 103. Hence,

defining k = 2.762× 103 ensures that k < k∗ < k∗, and global asymptotic stability

of the system.
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(b) Linear system with unity gain integral con-

trol (magnified)

Fig. 4.23 Nyquist plots

An experiment is set up to verify that this gain (k = 2.762×103) is indeed stable.

The xPC target machine is configured to run at 100 kHz, to move the piezoelectric

actuator from 0 to 2.4µm. The result can be seen in Fig. 4.24(a) which confirms that

the system is indeed asymptotically stable, and as expected, there is an overshoot,

with a fast settling time and no steady state error. The control signal generated

in volts can also be seen in Fig. 4.24(b). While this gain is quite large, much

higher integral gains could be chosen with the system remaining asymptotically

stable, however, this is due to the conservative nature of the condition, and the

lack of a dominant resonance mode in the system. For some piezoelectric actuators

with more dominant resonances at lower frequencies (or with amplifiers with larger

bandwidths), the condition will yield closer to the true maximum possible integral
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gain. It should also be noted that the fitted parameters of wh and ws depend on

a variety of conditions, including the accuracy of their identification, and should

be used with care in their definition of λ. The appropriateness of the choice of

gain will also depend on a variety of issues not considered in the analysis, including

sample rate, system noise, quantization effects, time delay, and other effects that

are always encountered in practice.
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Fig. 4.24 Experiment with maximum integral gain

4.5 Output Feedback Integral Synchronization Control with

Input Nonlinearities

It is desired to synchronize two systems described by linear, finite-dimensional,

state space systems subject to input nonlinearities. While the derivation is pre-
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sented for two systems, the extension to more systems is relatively straightforward.

For this, an integral synchronization control law is designed as

u(t) =

[
u1(t)
u2(t)

]
= K

∫ t

0

[r− y(τ)]dτ =

[
k −kc
−kc k

]∫ t

0

[
r − y1(τ)
r − y2(τ)

]
dτ (4.97)

where u ∈ R2, y ∈ R2, K ∈ R2×2 with K = KT > 0, and r ∈ R is the constant

reference to be tracked.

With integral control, the system of equations can be written as

ẋ1 = A1x1 +B1φ1(u1) (4.98)

y1 = C1x1 +D1φ1(u1) (4.99)

u̇1 = k[r − y1]− kc[r − y2] (4.100)

ẋ2 = A2x2 +B2φ2(u2) (4.101)

y2 = C2x2 +D2φ2(u2) (4.102)

u̇2 = k[r − y2]− kc[r − y1] (4.103)

where it is assumed that A1 and A2 are Hurwitz. In transfer function form, G1(s) =

C1(sI − A1)
−1B1 + D1, and it is assumed that the static gain G1(0) = D1 −

C1A
−1
1 B1 > 0 with the same assumptions on G2(s) and G2(0).

For the uncoupled systems, they will be stable for any K∗ > 0 such that I +

K∗G(iw)
iw

is positive real, where I is the identity matrix, and G(iw) is the 2×2
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transfer function matrix given by

G(iw) =

[
G1(iw) 0

0 G2(iw)

]
(4.104)

To find the maximal gain for each system, first from the complex frequency response

we can establish

inf
ω∈R, ω 6=0

Re

[
G1(iw)

iw

]
= − 1

k1∗
(4.105)

inf
ω∈R, ω 6=0

Re

[
G2(iw)

iw

]
= − 1

k2∗
(4.106)

Then, the maximum gain matrix can be defined as

K∗ =

[
k1∗ 0
0 k2∗

]
(4.107)

The Lipschitz constant for each nonlinearity given by λ1, λ2 gives rise to the defi-

nition of

Λ =

[
λ1 0
0 λ2

]
(4.108)

Hence, we can take K̄ = Λ−1K∗, then choose K, K̃ > 0, such that K < K̃ < K̄.

Hence K̄ represents the maximum gain of the integral control (since the gain due to

the input nonlinearity has been removed) such that the system remains stable and

K̃ such that the system is asymptotically stable. The synchronization gain matrix

K = KT > 0 with K < K̃ is defined as

K =

[
k −kc
−kc k

]
(4.109)

We can now also define for later use, ∆ = Λ−1K̃−1.
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4.5.1 Lyapunov Stability

To prove Lyapunov stability, a coordinate change will first be employed. Defin-

ing z1(t) = x1(t) + A−11 B1φ1(u1), hence ż1(t) = ẋ1(t) + A−11 B1φ
∇
1 (u1)u̇1 we have

that Eq. 4.98 becomes

ż1 − A−11 B1φ
∇
1 (u1)u̇1 = A1(z1 − A−11 B1φ1(u1)) +B1φ1(u1) (4.110)

ż1 = A1z1 + A−11 B1φ
∇
1 (u1)u̇1 (4.111)

Let v1 = φ1(u1)− φ1(u
∗
1), hence v̇1 = φ∇1 (u1)u̇1, then

ż1 = A1z1 + A−11 B1v̇1 (4.112)

and with a similar coordinate change and v2 = φ2(u2) − φ2(u
∗
2) on Eq. 4.101 it

becomes

ż2 = A2z2 + A−12 B2v̇2 (4.113)

Next, employing the coordinate transform on the output equation, it becomes

y1 = C1x1 +D1φ(u1) (4.114)

= C1(z1 − A−11 B1φ1(u1)) +D1φ(u1) (4.115)

= C1z1 + (D1 − C1A
−1
1 B1)φ1(u1) (4.116)

= C1z1 +G1(0)(v1 + φ1(u
∗
1)) (4.117)

= C1z1 +G1(0)v1 +G1(0)φ1(u
∗
1) (4.118)
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Defining w1 = y1 −G1(0)φ1(u
∗
1) we have that

w1 = C1z1 +G1(0)v1 (4.119)

where again employing a similar definition for the second system we have that

y2 = C2z2 +G2(0)v2 +G2(0)φ2(u
∗
2) (4.120)

w2 = y2 −G2(0)φ2(u
∗
2) (4.121)

w2 = C2z2 +G2(0)v2 (4.122)

Now, the integral control equation will become, with η1 = φ∇1 (u1)

v̇1 = φ∇1 (u1)u̇1 (4.123)

= η1(k[r − y]− kc[r − y2]) (4.124)

= η1(k[r − C1z1 −G1(0)v1 −G1(0)φ1(u
∗
1)]− kc[r − C2z2 −G2(0)v2 −G2(0)φ2(u

∗
2))

= η1(−k[C1z1 +G1(0)v1] + kc[C2z2 +G2(0)v2]) (4.125)

= −η1kw1 + η1kcw2 (4.126)

In the exact same fashion, the integral control equation can be redefined for the

second system as

v̇2 = −η2kw2 + η2kcw1 (4.127)
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Assembling Eq.’s 4.112, 4.113, 4.119, 4.122, 4.126 and 4.127 we have that

ż1 = A1z1 + A−11 B1v̇1 (4.128)

ż2 = A2z2 + A−12 B2v̇2 (4.129)

w1 = C1z1 +G1(0)v1 (4.130)

w2 = C2z2 +G2(0)v2 (4.131)

v̇1 = −η1kw1 + η1kcw2 (4.132)

v̇2 = −η2kw2 + η2kcw1 (4.133)

which can be written in matrix form as
ż1
ż2
v̇1
v̇2

 =


A1 0 0 0
0 A2 0 0
0 0 0 0
0 0 0 0



z1
z2
v1
v2

+


A−11 B1 0

0 A−12 B2

1 0
0 1

[ v̇1v̇2
]
(4.134)

[
w1

w2

]
=

[
C1 0
0 C2

] [
z1
z2

]
+

[
G1(0) 0

0 G2(0)

] [
v1
v2

]
(4.135)[

v̇1
v̇2

]
= −

[
η1 0
0 η2

] [
k −kc
−kc k

] [
w1

w2

]
(4.136)

which is equivalent to
ż1
ż2
v̇1
v̇2

 =


A1 0 0 0
0 A2 0 0
0 0 0 0
0 0 0 0



z1
z2
v1
v2

 (4.137)

−


A−11 B1 0

0 A−12 B2

1 0
0 1

[ η1 0
0 η2

] [
k1 −kc
−kc k2

] [
w1

w2

]
[
w1

w2

]
=

[
C1 0
0 C2

] [
z1
z2

]
+

[
G1(0) 0

0 G2(0)

] [
v1
v2

]
(4.138)
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In a simpler form, we have that[
ż
v̇

]
=

[
A 0
0 0

]
−
[
A−1B
I

]
ηKw (4.139)

w = Cz +Gv (4.140)

where the obvious definitions have been made.

Taking the Lyapunov function candidate as V = zTPz+vTGv, it’s time deriva-

tive is given as

V̇ = żTPz + zTP ż + v̇TGv + vTGv̇ (4.141)

= (Az + A−1Bv̇)TPz + zTP (Az + A−1Bv̇) + 2v̇TGv (4.142)

= zTATPz + v̇(A−1B)TPz + zTPAz + zTPA−1Bv̇ + 2v̇TGv (4.143)

= zT (ATP + PA)z + 2zTPA−1Bv̇ + 2v̇TGv (4.144)

with Gv = w − Cz we have

V̇ = zT (ATP + PA)z + 2zTPA−1Bv̇ + 2v̇T (w − Cz) (4.145)

= zT (ATP + PA)z + 2zTPA−1Bv̇ + 2v̇Tw − 2v̇TCz (4.146)

= zT (ATP + PA)z + 2zT (PA−1B − CT )v̇ + 2v̇Tw (4.147)

=

[
z
v

] [
ATP + PA PA−1B − CT

(A−1B)TP − C −2∆

] [
z
v

]
+ 2v̇T∆v̇ + 2v̇Tw

with v̇ = −ηKw. There exists a Q < 0 (see [134]) such that

Q =

[
ATP + PA PA−1B − CT

(A−1B)TP − C −2∆

]
(4.148)
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where

P = P T =

[
P1 0
0 P2

]
> 0 (4.149)

And we can now write

V̇ =

[
z
v

]
Q

[
z
v

]
+ 2v̇T∆v̇ + 2v̇Tw (4.150)

V̇ =

[
z
v

]
Q

[
z
v

]
+ 2wTKTηT∆ηKw − 2wTKTηTw (4.151)

=

[
z
v

]
Q

[
z
v

]
+ 2wTKTηT (∆ηK − I)w (4.152)

=

[
z
v

]
Q

[
z
v

]
− 2wTKTηT (I −∆ηK)w (4.153)

Here, K = KT > 0, η = ηT ≥ 0 since η is non-decreasing, and ∆ = ∆T > 0.

However, in the general case, the matrices η and K do not commute (ie. ηK 6= Kη),

and positive semi-definiteness of the quadratic form cannot be easily shown due to

the asymmetry of the term Γ = KTηT (I − ∆ηK). In general, in synchronization

control, it is assumed that the dynamical systems are identical [138–140]. In this

case, if the systems are identical, the proof is much simpler. This condition now

holds for properly chosen k and kc, with

ξ = I −∆ηK =

[
1− ηk

k̃λ

ηkc
k̃λ

ηkc
k̃λ

1− ηk

k̃λ

]
> 0 (4.154)

where ξ = ξT > 0, and employing the fact that K = KT > 0 and η = ηT ≥ 0 yields

that Γ = ΓT ≥ 0 since both the nonlinearities contained in η are equivalent.

However, assuming the nonlinearities of two real physical systems are equivalent

is a rather large assumption. In the general case, we have that η1 6= η2, hence
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Γ 6= ΓT . In this case, the quadratic form given by 2wTKTηT (I−∆ηK)w is positive

semidefinite if and only if the symmetric part of Γ given by Γsym = 1
2
(Γ + ΓT ) is

positive semidefinite. This condition is difficult to verify analytically, and typically

must be solved numerically. For proper choices of k and kc, it can be shown that

Γsym is positive semidefinite, hence

V̇ =

[
z
v

]
Q

[
z
v

]
− 2wTKTηT (I −∆ηK)w (4.155)

V̇ ≤
[
z
v

]
Q

[
z
v

]
(4.156)

V̇ < 0 (4.157)

4.5.2 Output Feedback Synchronization Experiments

To run the HITL simulations, an appropriate model must first be constructed.

As such, the frequency response of the piezoelectric actuator is obtained and then

approximated by a fourth order transfer function as

GH(s) =
β0

s4 + α3s3 + α2s2 + α1s+ α0

(4.158)

The static gain of the transfer function is then decreased, and the resonance of

the actuators portion of the response is shifted to approximately 5272 Hz. The

rolloff of the amplifier is then also modified slightly to 1000 Hz simply so that the

response of the model is not the same as that of the actuator. A nonlinear model

was identified from experimental data, with the identification structure as shown
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in Fig. 4.26. This model includes the creep, or slow drift of the actuator, in the

system identification problem. Creep was not considered in the analysis of the

stability problem, as the creep response is much slower than that of the dynamical

model. The nonlinear model was then perturbed from its nominal values such that

the nonlinearity has a different response than that of the experimental system.

Table 4.3 Linear and nonlinear parameters of simulation model

Parameter 0 1 2 3 4 5

a 0 0.1667 0.3333 0.5 0.6667 0.8333
wh 0.9442 0.0207 0.0404 0.0229 0.0601 0.0535
d 0 1.56 1.75 1.89 1.95
ws 0.9136 0.0002 0.0027 0.0036 0.0209
wc 0.1655 0.1020 0.0477 0.0237 0.1159
α 4.333e+16 1.4084e+13 1.2297e+9 1.9941e+4
β 3.466e+16
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Fig. 4.25 Comparison of HITL simulation model to experimental system

With the HITL simulation model established, the HITL experiments can now
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Hysteresis, φ(u)
u

Linear +
+

y

Creep

Fig. 4.26 Structure for system identification

be conducted. In open loop, the response of the actuator and the HITL model to

a desired constant reference is shown in Fig. 4.27. The maximal regulating gains

gain now be calculated from Eq. 4.105 and 4.106 as k1∗ = 1
2.5989×10−4 = 3.8478×103

and k2∗ = 1
2.2898×10−4 = 4.3671 × 103. We can then calculate λ1 = 1.0745, and

λ2 = 1.5803. From this, we can define

K̄ = Λ−1K∗ =

[
3.5810× 103 0

0 2.7634× 103

]
(4.159)

For selection of the synchronization gain matrix, K < K̃ < K̄, it should be noted

that when λmin(K) is small (where λmin denotes the smallest eigenvalue of K, hence

large kc for fixed k), numerical issues can be encountered in implementation.

To perform the HITL experiments, three gain configurations are chosen for

comparison in tracking a 2µm constant reference value: (a) k=1000, kc = 250, (b)

k=1000, kc = 500, and (c) k=1000, kc = 750. It can be seen that these gains

are all well within the maximum stability limits of the uncoupled systems, and

can be shown to satisfy Γsym ≥ 0. Case (a) is shown in Fig. 4.28(a) and 4.28(b),
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Fig. 4.27 Open loop response of experimental system and HITL model

where it can be seen that the actuators move together to the reference, with a

large overshoot, and are tied together by the synchronization control, albeit not

very tightly during the overshoot portion of their response. In Case (b), seen in

Fig. 4.28(c) and 4.28(d), the synchronization gain is increased, which has the effect

of reducing the overshoot, although slowing the system response, while more tightly

synchronizing the actuators together. Case (c), shown in Fig. 4.28(e) and 4.28(f),

once again uses a higher coupling gain, and once again, the overshoot is reduced,

and the actuators are more closely held together, although at the expense of a slower

convergence rate. This is due to the effect of the synchronization slowing down the

speed of response of the system as it can be seen that in Case (c), the effective gain

for u̇1 and u̇2 will be smaller due to the stronger synchronization of the systems

caused by the larger coupling gains kc. As the coupling gain kc is increased, it can
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also be seen that the noise becomes coupled across the systems. This is desirable

if a high enough sample rate can be used, and the response can be filtered in the

loop, such that any disturbances can be coupled across the systems such that they

move together, with a very small phase lag, even in the presence of disturbances.
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(a) k = 1000, kc = 250
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(b) k = 1000, kc = 250, magnified
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(c) k = 1000, kc = 500
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(d) k = 1000, kc = 500, magnified
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(e) k = 1000, kc = 750
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(f) k = 1000, kc = 750, magnified

Fig. 4.28 HITL synchronization control results
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5 Conclusions and Future Work

In this work, the use of smart materials for three applications was considered:

flatness control of a membrane structure via boundary tensions supplied by shape

memory alloys, piezoelectric actuators for vibration control, and control of a piezo-

electric actuator/stage for nanopositioning of instrumentation.

In Chapter 2, the control of membrane structures by shape memory alloys lo-

cated along the boundary of the membrane was studied. First, a genetic algo-

rithm controller was developed and tested experimentally for minimization of the

flatness of the membrane structure with the primary objective being to remove

thermally-induced wrinkles. The proposed new genetic algorithm controller with

online objective reweighting was then combined with two previously developed ge-

netic algorithms, the standard and adaptive genetic algorithm. The consideration

of optimal tension combinations was introduced when convergence in the membrane

flatness was judged to be occurring, as their appears to be a rather broad plateau

in the solution space. This was achieved by reweighting the objective function to
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preferentially keep small tension combinations that produce very similar flatness

values, hence the power required to actuate the SMAs can be reduced. The new

controllers both performed well in reducing the membrane flatness and the total

tension required. In the following section, the SMA controllers were revised to be

pulse width modulated, proportional integral controllers, with duty cycling. This

design was implemented to allow higher currents to the actuators, and hence faster

simultaneous control of all twenty actuators while ensuring their safety. Three

different types of PWM were implemented with duty cycling for the proportional

integral controller and shown to perform quite well for simultaneous control of all

twenty actuators. The revised SMA controllers were then used for maintaining

the membrane shape under time-varying thermal loading by use of a simple PI

controller.

Then, in Chapter 3, the dynamic modeling of a flexible manipulator was per-

formed using the finite element method to include the effect of the piezoelectric

sensor/actuator pair through Euler-Bernoulli beam theory. Input shaping was then

used in combination with a proportional-derivative controller to slew the flexible

beam in order to minimize the induced vibration during the maneuver. The residual

vibration due to parameter uncertainty was then suppressed by the PZT actuator

with the proposed multi-mode adaptive positive position feedback. An adapta-

tion law based on the recursive least squares method was developed to update the
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system’s first two natural frequencies, which were then used by the multi-mode

positive position feedback controller to suppress the residual vibrations. Simula-

tions and several experimental scenarios were then run to show the effectiveness

of the combination of input shaping and multi-mode adaptive positive position

feedback control. This method offers advantages in vibration suppression over ei-

ther of these control methods alone, particularly for systems where there are large

frequency uncertainties. Then, as an alternative to the adaptive PPF, an offline

system identification technique and controller optimization method were developed.

First, the dynamic model of the flexible manipulator was augmented to include the

effect of the feedthrough in the system due to the collocated nature of the sen-

sor/actuator pair. Then, a system identification process, based upon an iterative

genetic algorithm that condenses its search space at each iteration, was outlined for

identifying a resonant system with feedthrough. This system identification tech-

nique was shown to accurately identify the transfer function of a flexible manip-

ulator from both simulated and experimental data. A two-mode positive position

feedback controller was then designed to suppress the first two modes of vibration

of the flexible manipulator. To this end, the same genetic algorithm was used to

minimize the H∞-norm of the closed loop system and choose the PPF control pa-

rameters that guaranteed stability while resulting in optimal vibration suppression.

Simulations and experiments were run through which the parameters chosen by the
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genetic algorithm optimization were shown to result in very good suppression of

the vibrations in the manipulator.

Finally, in Chapter 4, the use of piezoelectric actuators for nanopositioning of

instrumentation was discussed. A linear transfer function model and a nonlin-

ear phenomenological model based upon the modified Prandtl-Ishlinskii operator

were developed for the system. To start, a state feedback integral plus double

integral synchronization controller was developed for HITL simulations of a paral-

lel three-axis positioning platform. Under nominally linear behaviour, the control

was shown to be asymptotically stable for tracking of step inputs, and bounded-

input-bounded-output stable for tracking of a class of waveforms. Next, an output

feedback integral control law was examined for the piezoelectric actuator with ex-

plicit characterization of its hysteresis as an input nonlinearity to a linear state

space system. From experiments, the piezoelectric actuator was identified and

modeled as a series connection of the hysteresis nonlinearity and the linear dy-

namical model. From this, conditions on the maximum integral gain are derived

such that the system is asymptotically stable. Finally, this work was extended to

the case of output feedback integral synchronization control for systems with in-

put nonlinearities. Global asymptotic stability conditions were derived, and then

applied for HITL simulations of the controller. For this, a perturbed model of the

piezoelectric actuator is used along with the actual system for the experiments, and
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good performance of the synchronization law is shown.

5.1 Future Work

For the membrane, there is still a great deal of work to be done. To start,

new finite elements allow much faster analysis of membrane structures than the

S4R5 elements permit. This would be particularly useful for optimization of the

membrane structure, in particular the size and depth of the elliptical boundary

cuts. While the membrane must remain rectangular in nature for a SAR antenna,

a more symmetrical design would be useful, while still giving respect to the required

redundancy of the boundary control elements. One of the biggest steps forward for

membrane technologies would be the capability to infer the state of the membrane

from the state of its actuators. While quite difficult analytically, this would allow

the actuators along the boundary to detect and correct the surface deviations of the

membrane, as clearly the current vision based technique is not applicable in space.

This would require extremely accurate models of the SMAs themselves in order

to allow changes in the membrane to be uniquely detected from the SMA state.

Clearly, these large membrane structures will also require deployment mechanisms,

and more advanced support structures (as opposed to the current aluminum frame).

Among these, the advances in inflatable structures, and shape memory polymer

composites appear to be promising for the application of membrane technologies in
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space.

A great deal of research has already been conducted on the single-link flexible

manipulator and on flexible manipulators in general. With regards to manipulators

with piezoelectric sensors and actuators, system level designs are still required to

be performed such that the advantages of these systems make them truly desirable

in space applications. For the flexible manipulator, a possible future research direc-

tion is in the consideration of the effect of hysteresis in the piezoelectric actuators

for vibration control. An inverted model of the hysteresis could be used for open

loop tracking of the applied control signal. This would ensure that the actuator

follows the desired vibration control signal very closely. An alternative would be to

implement a closed loop control method for tracking of the actuator directly, while

the vibration control scheme runs in an outer control loop. One of the most inter-

esting future areas of application are in composite structures, where piezoelectric

fibres are being implanted into the structure to create strong and stiff structures

with a large control authority.

The piezoelectric stack actuator has a number of future applications in nanopo-

sitioning. The work conducted here gives a framework for more complex controllers,

and the first step is to integrate an integral resonant controller to the current in-

tegral controller. The resonant control would allow much higher integral control

gains to be used as it will suppress the resonant mode of the actuator that becomes
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excited due to the integral control action alone. This can then be extended to more

complex nonlinear integral controllers. It also appears as though a less conservative

condition for the stability of integral control for systems with hysteresis could be

derived through a Popov-type argument. A future application of interest for the

piezoelectric actuators is in the simultaneous nanopositioning and vibration con-

trol of six degree-of-freedom Stewart platforms (where they are already used for

vibration control). The integral type synchronization control could be extended to

this platform such that all six actuators motions remain coupled even in the pres-

ence of vibration disturbances. This would also allow a steering of instrumentation

mounted on the top of the platform through a very fine range of motion.
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