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Abstract 9 

 This short communication introduces the logic, demonstrates its use, and 10 

identifies the availability of a new tool that extends the traditional 2D morphological 11 

segmentation of binary raster data into the 3-dimensional realm of voxels. A 12 

combination of 3-dimensional array data and network graph theory are implemented to 13 

facilitate the logical parsing of identified 3-dimensional features into their mutually 14 

exclusive constituent morphological classes. All processing is performed in the R 15 

environment, providing the ability for anyone to perform the demonstrated analyses on 16 

their own data. The only input requirement is a binary (1 = feature of interest, 0 17 

otherwise) 3-dimensional array, where each voxel of interest is then classified into 18 

classes called outside, mass, skin, crumb, antenna, circuit, bond, and void that 19 

correspond their 2-dimensional equivalents of background, core, edge, islet, branch, 20 

loop, bridge, and perforation. An additional class called the void-volume identifies 21 

voxels belonging to the empty space within the object of interest. The work helps to 22 

bring pattern metrics into the 3-dimensional world, particularly given the reliance on 23 

adjacency and connectivity assessments. 24 

25 
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Extending morphological landscape pattern segmentation to 3D voxels 26 

 27 

Introduction 28 

This short communication describes the logic and implementation of a new tool 29 

that extends conventional two-dimensional (2D) morphological segmentation (Soille 30 

and Vogt 2009), from a grid of pixels, into a three-dimensional (3D) space represented 31 

by voxels. Voxels are pixels that have been extruded to have a volume (Popescu and 32 

Zhao 2008), which is achieved by extending a pixel’s footprint along a third axis. In this 33 

paper, to keep things simple, voxels will be used to refer to perfect cubes that are 34 

arranged in a regular fashion into a 3D array (imagine a Rubik’s cube), with each voxel 35 

representing a discrete volume of geographic space. In principle, each of the three 36 

dimensions of a voxel may differ. 37 

Spatial data, regardless of its thematic content, is regularly represented in 2D 38 

vector or raster formats that provide a representation for the distribution of one or more 39 

thematic classes within a geographic extent. These have traditionally been subjected to a 40 

variety of numeric and geometric assessments of pattern (Riitters et al. 1995; Uuemaa et 41 

al. 2009; Frazier and Kedron 2017). Much of the development has been for 2D data, 42 

though some 3D metrics have been developed; these tend to focus on composition 43 

rather than configuration, thus ignoring the importance of adjacency (Kedron et al. 44 

2019). Some 2D landscape concepts, such as porosity (Remmel, 2018) and 45 

fragmentation (Fahrig et al., 2019), could translate relatively easily into 3D (Petras et 46 

al., 2017), but overall implementation of 3D metrics has been slow, likely due to the 47 

complexity of measuring 3D adjacencies. Advances in the 3D domain have typically 48 

involved voxel analysis of lidar point clouds (Wu et al., 2013) or the inference of 3D 49 
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parameters through estimation or modelling (Liu et al. 2017), but not for morphological 50 

segmentation of existing feature representations. 51 

The increasing availability and access to lidar data (Szpakowski and Jensen 52 

2019) and the implementation of Structure from Motion (SfM) for the extraction of 3D 53 

point clouds from planar images (Guerra-Hernández et al. 2018), are helping to forge 54 

new landscape analytical directions among landscape ecologists and other users of 55 

spatial data. These data clouds and volumetric data further emphasize the importance 56 

and necessity of 3D analytical tools. The method presented in this short communication 57 

achieves the extension of morphological segmentation tools (Vogt et al. 2007; Soille 58 

and Vogt 2009) into the third dimension by focusing purely on the adjacency, 59 

connectivity, and relative positioning of voxels belonging to a common object. The 60 

presented tool segments voxel data into mutually exclusive 3D morphological element 61 

classes. 62 

Morphological spatial pattern segmentation (Vogt et al. 2007; Soille and Vogt 63 

2009) provides an intuitive and tangible alternative to landscape metrics. During 64 

morphological segmentation, pixels are assigned to mutually exclusive categories based 65 

on the structural role they play in relation to other pixels. The work presented here 66 

builds on the foundational work introduced with the Morphological Spatial Pattern 67 

Analysis (MSPA) generic image analysis framework that is described by living 68 

documents available from https://forest.jrc.ec.europa.eu/en/activities/lpa/mspa/. 69 

Morphological segmentations can be used to summarize spatial patterns (Ye et al. 2020) 70 

or feed further analyses with software environments such as the GuidosToolbox (Vogt 71 

and Riitters 2017). Morphological segmentation allows the consistent parsing of each 72 

cell’s contribution to the overall structure of an object and maintains consistency in the 73 

minimum mapping unit for analysis. Therefore, the challenges of deciding among 74 
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landscape metrics (Riitters et al. 1995; Cushman et al. 2008), identifying metric value 75 

expectations (Remmel and Csillag 2003; Neel et al. 2004), or the handling of challenges 76 

stemming from non-normal metric distributions to compare landscapes (Remmel and 77 

Fortin 2013) can be avoided, and their misuses (Li and Wu 2004) minimized. 78 

 True 3D data from lidar and SfM are contributing to a growing data stockpile 79 

with x,y,z coordinates and are relatively easily represented as volumetric data with 80 

voxels as the base spatial unit. It is also possible to consider the z-axis as time rather 81 

than a vertical axis (x,y,t), and thus use a 3D morphological segmentation to facilitate 82 

temporal pattern analysis. This extends the potential of feature or phenomenon based 83 

change tracking with hyper-local measures of configuration (Remmel 2020), pattern-84 

based identification of landscape types with multi-thematic data (Nowosad and 85 

Stepinski 2021), or to extend forest disturbance recovery analyses (Pflugmacher et al. 86 

2014; White et al. 2017). 87 

The 2D segmentation of binary raster patterns into primary morphological 88 

elements (Soille and Vogt 2009) results in a minimum of seven foreground (core, edge, 89 

islet, branch, bridge, loop, and perforation) and three background classes (background, 90 

border-opening, and core-opening) which are described in the MSPA documentation. 91 

MSPA can return up to 25 classes, but this level of segmentation is not considered for 92 

implementation here currently. This type of segmentation allows secondary assessments 93 

of variable states and distributions within classes or comparisons among morphological 94 

elements, where the morphology acts as a structural factor, or grouping variable. The 95 

advancement presented in this short communication is the extension of this partitioning 96 

logic to 3D, resulting in nine corresponding volumetric morphological classes (Table 1). 97 

The new 3D classes extend the primary seven foreground classes and two of the 98 

background classes. 99 
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 100 

Table 1. A mapping of 2D morphological element terminology onto corresponding 3D 101 
classes. 102 
2D Morphological Element 3D Morphological Element 
Background Outside 
Core Mass 
Edge Skin 
Islet Crumb 
Branch Antenna 
Loop Circuit 
Bridge Bond 
Core-Opening Void-volume 
Perforation Void  

 103 

Methods 104 

Implementation of the 3D morphological segmentation is achieved by 105 

morph3d1, and associated functions written for R (R Core Team 2021) that also depend 106 

on critical helper functions imported from packages rgl (Adler and Murdoch 2021), 107 

reshape2 (Wickham 2007), stringr (Wickham 2019), and igraph (Csárdi and Nepusz 108 

2006). The only input required is a 3D binary array where 1 = voxels belonging to a 109 

feature, class, or phenomenon of interest; all other voxels must be coded as 0 (Figure 110 

1a). The features of interest can form any number of contiguous clusters of theoretically 111 

any number of voxels. Though in print, Figure 1 is static, all visualizations produced by 112 

morph3d are interactive 3D environments that can be rotated, zoomed, and examined 113 

from virtually any observation point, providing functionality that greatly improves the 114 

visualization and interpretation of 3D data. 115 

 116 

 

1 morph3d is a complete software tool and will be available via CRAN (Comprehensive R 
Archive Network) for free and open distribution in the package morph. A copy of the code 
can also be obtained from the author. 
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 118 

Figure 1. A volumetric spatial feature of interest shown in green (a) and its 119 
partitioning into discrete objects (b). Each voxel is tracked with a unique identification 120 
code and each discrete object in (b) is also coded with a separate unique object identifier 121 
and corresponding colour. 122 
 123 

The segmentation logic described here follows an algorithm that guarantees 124 

mutual exclusivity in the classification of each voxel into a morphological class. To 125 

initialize the process, each voxel is assigned a unique ID and then the complete volume 126 

is inset into a larger array (that has been expanded outward in each direction by 1 voxel 127 

and whose IDs are initialized with 0; this ensures that all feature voxels in the input data 128 

will have a proper edge identified in subsequent processing. To tabulate all pairs of 129 

adjacent voxels (six neighbours in 3D), the original array is shifted 1-voxel dimension 130 

in each of the 6 possible directions (up, down, left, right, forward, backward), each time 131 

recording the voxel ID pairs formed between the original shifted data and the larger 132 

array of unshifted data. Collectively this is summarized into a table containing a listing 133 

of all neighbours for each voxel. The table is reprocessed to produce a matrix having 134 

two columns, such that each row contains two voxel IDs (as column values) that form a 135 

single neighbour-pair of voxels that exist within the volume. All duplicate pairs are 136 

reduced to a single entry since the directionality of the neighbour structure is not 137 
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important (e.g., voxel neighbours 101—100 and 100—101 are identical). This matrix of 138 

neighbouring pairs is then converted into an undirected network graph (Rahman 2017) 139 

with tools provided in the igraph package for R. Graph theory allows voxels to be 140 

considered neighbours with other voxels if they share a face. Mapping, maintaining, and 141 

assessing 3D connectivity is explicitly recorded within graphs that permit spatial 142 

associations to be easily tested and for morphology to be assessed. 143 

Morphological processing commences in a sequence of eight main steps. First, 144 

voxels with IDs of 0 are deleted from the graph which is subsequently decomposed to 145 

produce a sub-graph for each disconnected sub-object within the input data (e.g., for 146 

each object depicted in Figure 1b). Unique object IDs are assigned to the voxels of each 147 

separate object to allow counting of the individual objects within the dataset and to 148 

associate individual voxels with unique and discrete objects. The green feature in Figure 149 

1a is comprised of 2 discrete objects (Figure 1b) and are independently processed. The 150 

ability to view such data in an interactive 3D viewer allows occluded voxels to be 151 

viewed by rotating the view. 152 

The second step requires the identification of mass voxels. Since these represent 153 

the inner core of a 3D object, any mass voxel must be neighboured on all 6 sides by 154 

another feature voxel (Figure 2). For any voxel in the graph with degree = 6, a 155 

morphology code of 2 is assigned to the corresponding voxel. These morphology codes 156 

are recorded in a separate 3D array that will continue to be updated as each 157 

morphological class is processed, terminating only when each morphological class has 158 

been assessed and each voxel has been assigned one of the 9 possible morphological 159 

classes. The third step requires that each unclassified vertex that neighbours a mass be 160 

classified as skin (Figure 2) and given the morphology code of 3. Given the logic to 161 

identify mass voxels, these two morphological classes are straightforward to identify, 162 
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and no mass voxels will ever be without full enclosure by skin voxels. A flood-filling 163 

algorithm is used to distinguish skin voxels (external edges) from void voxels (internal 164 

edges). Computationally, the object of interest is immersed within a volume of -1 coded 165 

voxels that differentiates the empty spaces within the structure that remain coded as 0. 166 

Skin voxels that neighbour voxels coded with -1 remain as skin, while those that 167 

neighbour voxels coded with 0 become reclassified as voids. The voxels forming the 168 

hole are further labelled as void-volume to identify that they are holes within the object 169 

of interest, but not explicitly part of it. 170 

 171 

 172 

Figure 2. A simple 3D object (a) is comprised of 7 voxels. The green voxel is a mass 173 
since it is bounded on all 6 sides by semi-transparent black voxels. The same object is 174 
drawn in exploded form (b), more clearly showing the mass voxel at the center. 175 
 176 

The fourth step is to identify crumbs, those discrete objects that contain no mass 177 

voxels, and assign them the morphology code 4. Each discrete object is considered in 178 

turn and is tested for the presence of mass voxels and whether it makes any connections 179 

to skin voxels. Connections to skin voxels indicate that the object is a one of several 180 

possible types of connectors and not a crumb; these will be processed in the next set of 181 

steps. All remaining voxels that have not been classified into a morphological class by 182 

this point are assigned the generic morphology class 5, indicating that they are 183 

connectors that need to be further divided into antenna, bond, or circuit classes. 184 

a b
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 The fifth step is to identify antenna, or protrusions from a mass that connect to 185 

only a single point on a mass. A mass may have more than one antenna, and a discrete 186 

object may comprise more than a single mass; thus, identification of connected voxels 187 

that contain no mass, but connect to a skin only once, requires an iterative looping and 188 

decomposition of the graph and repeated tests of how many voxels in candidate 189 

antennae connect to skin. When the number of connections is one, then the 190 

corresponding connected voxels are given the morphology code 6. 191 

The sixth step is to identify circuit voxels as those connectors that connect a 192 

mass to itself along a connected set of voxels. Once circuit voxels are identified, the 193 

remaining connectors, are by definition, bond voxels – those connectors that join two or 194 

more discrete mass clusters within a single object. All neighbours to the skin voxels that 195 

are not mass, or antennae, are added to a list of possible circuit voxels and their 196 

adjacencies are tested to identify whether connected voxels are also candidates. If these 197 

contender voxels are connectors, they are coded as circuits and the remaining 198 

connectors are classified as bond morphology and given the code 7. The bond 199 

connectors identify those voxels that connect at least two masses within an object.  200 

The seventh step is to assign a morphology code of 1 to all remaining voxels to 201 

identify them as being on the outside of the feature of interest. The original input data, 202 

the corresponding network graph object, the final morphological segmentation, and 203 

maps of discrete object and voxel IDs are organized and packaged into a single list 204 

object along with summary statistics (Table1) and returned to the user. The summary 205 

statistics provide the number of voxels and their relative percentages that have been 206 

allocated to each of the morphological classes. Production of a final plot is optional for 207 

the interactive viewing the resulting morphological classification (Figure 3). Plots of 208 

each morphological element class are also available options. 209 
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 210 

Table 1. Output summary statistics stemming from the morphological segmentation of 211 
the feature presented in Figure 1a. 212 
 213 

Code Description NVoxels Percentage 
1 Outside 758 75.8 
2 Mass 69 6.9 
3 Skin 130 13.0 
4 Crumb 2 0.2 
5 Circuit 18 1.8 
6 Antenna 7 0.7 
7 Bond 4 0.4 
8 Void-volume 2 0.2 
9 Void 10 1.0 
 214 
 215 

 216 

Figure 3. The final 3D morphological segmentation of the data in Figure 1a, shown 217 
from two different perspectives (a, b). The void and void-volume classes are not directly 218 
visible because they are contained within the green upper mass cluster. 219 
  220 

 Each discrete object is stored as a sub-graph with unique voxels identified by 221 

unique IDs. Orthogonal connectivity among feature voxels is maintained as undirected 222 

neighbours that connect adjacent voxel IDs (Figure 4). This paired representation 223 

permits efficient 3D visualization with the shaded voxels across the entire input data 224 

while also facilitating rapid adjacency and connectivity testing with existing graph 225 

theory tools. The graph theory tools for assessing adjacency for answering questions 226 
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such as “is this voxel connected to that voxel?” or “which are this voxel’s spatial 227 

neighbours?” are particularly powerful in this context. Graph theory also allows objects 228 

with multiple mass cores to be quickly assessed together for connector classes that 229 

extend outwards from skin voxels. 230 

 231 

     232 

Figure 4. An example of a discrete object is shown here enlarged (left), with its 233 
corresponding graph (right). The numbers represent the unique voxel IDs, and while the 234 
two views are rotated relative to each other, the topological relationships are 235 
maintained.  236 
 237 

From Figure 4, it is evident that the mass voxel is 772, and that from the graph 238 

representation, its skin neighbours must be 773, 771, 782, 762, 672, and 872 (which can 239 

be discerned from the block figure but with greater difficulty). The network does not 240 

connect to the outside voxels, which were coded as zeros (0) initially and deleted from 241 

the overall network graph that contained all sub-objects. This simplicity also allows the 242 

number of discrete objects to be counted and processed separately. Figure 5 shows the 243 

individual morphological elements for the feature of interest in Figure 1, such that the 244 

individual components are visible without being occluded by the simultaneous display 245 

of all elements simultaneously. 246 



12 
 

 247 

 248 

Figure 5. Individual plots for the morphological elements: (a) mass, (b) skin, (c) crumb, 249 

(d) expanded mass cores – used for distinguishing circuits from bonds, (e) antenna, (f) 250 

circuit, (g) bond, (h) void, and (i) void-volume. 251 

 252 

Discussion 253 

Any spatial feature that can be represented as a 3D binary array of voxels can 254 

now be automatically segmented into its constituent morphological elements with this 255 

tool, thereby extending the capability previously available only for 2D data. The 256 

algorithm will assign each voxel of interest to one of 9 mutually exclusive 257 

morphological elements (outside, mass, skin, crumb, antenna, circuit, bond, void-258 

a) b) c) 

d) e) f) 

g) h) i) 
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volume, or void). The implementation of this segmentation allows 3D data to be 259 

partitioned into categories analogous to their 2D counterparts. These structural classes 260 

can be used to describe the relative contributions to shapes, objects, or features, but also 261 

be used to partition further analysis within and among these classifications. Examples of 262 

ecologically-relevant analyses include comparing species richness between mass and 263 

skin classes, testing whether mass habitat is connected to other mass habitat, or 264 

comparing mass-to-skin ratios among objects. 265 

Implementation of the 3D morphological segmentation procedure is in an open 266 

and free software environment and the code is being made publicly available via CRAN 267 

(https://cran.r-project.org/) and is available from the author. While variations exist on 268 

how the segmentation functionality is applied and displayed, most users will be able to 269 

perform the segmentation by providing the one required binary 3D array of feature 270 

voxels (e.g., incube) and making a single function call:   271 

 272 

outobj <- morph3d(DATACUBE=incube, FINALPLOT=TRUE) 273 

 274 

The output object, outobj in this case, is a list object that contains the input data 275 

cube, the network graph object, 3D array objects for unique voxel IDs and discrete 276 

object IDs, the morphological segmentation as an array of 3D voxels, and a data frame 277 

containing the summary statistics of the segmentation among other state variables. The 278 

output ensures that related data remain together and connected, allowing for context and 279 

simplicity in further analyses, while ensuring an organized workspace. 280 

 281 
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