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Abstract

The dissertation focuses on two problems applied to personal financial management for individ-

uals, either before or after retirement.

The first topic examines a lifetime ruin probability (LRP) model in which a jump-diffusion

process drives the investment return of the agent. The value of the LRP is important to an investor

who wants to find out the probability of running out of money, while maintaining a desired

standard of living for the rest of his life. Our model leads to a partial-integro-differential equation

(PIDE) which is solved by a numerical algorithm. Results are compared against diffusion-related

LRP values that do not assume jumps by using calibrated parameters.

Retirees are often exposed to large and unpredictable medical expenses due to health shocks.

The second topic examines the effect of health shocks and mortality risk on the optimal med-

ical insurance-consumption-allocation strategy. We also derived a solution for the optimal

retirement-triggering wealth in a life-cycle framework. As in the first problem, we investigated

model changes, for asset return rates which obey a jump-diffusion dynamics.
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1 Introduction

1.1 Introduction and Literature Review

1.1.1 Lifetime Ruin Probability

Over the last decade or so, a number of papers in the actuarial, insurance, and financial litera-

ture have dealt with the so-called lifetime ruin probability (LRP). The LRP value can be loosely

described as the probability that an investment portfolio subjected to exogenous withdrawals is

depleted while the individual making the withdrawals is still alive. Note that the value of one

minus the LRP (which is also between zero and one) is often referred to as the retirement sustain-

ability quotient (RSQ) byNorth American practitioners in the field of retirement income planning.

Algorithms, formulas and inequalities for ruin and survival probabilities have a lengthy history

in the insurance and actuarial literature, going back more than a century to Lundberg in the

1900s and Cramer in the 1930s. Shaked (1985) gives an early example of ruin probability being

directly calculated to evaluate financial viability of life insurers when assuming lognormal asset

returns. Ruin probability is also referred to as a risk measure used in regulating capital in banking

and insurance by Sherris (2006) or applied as a predetermined value in developing liquidation

strategies for insurance companies by Berry-Stolzle (2008). More recently, ruin probability
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was addressed in the context of defined-contribution pension plans where Emms and Haberman

2008 solve an optimal allocation problem by minimizing the pensioner’s expected loss over a

target time horizon. Within the much narrower context of retirement income planning, the ear-

liest scholarly paper on this topic was by Milevsky and Robinson (2000). They formulated the

canonical retirement income problem in the following way: Assume that an individual retires

with $1,000,000 in liquid investable wealth and they want to consume $100,000 every year for the

rest of their life. They have no exogenous pension income. Let us further assume that the initial

wealth is allocated to a portfolio experiencing stochastic returns and modeled in continuous time.

What is the probability that the portfolio will reach zero before the individual dies? Stated differ-

ently: What is the probability that the remaining lifetime (random variable) of the portfolio, 𝐓𝑤,

is less than the remaining lifetime (random variable) of the retiree, 𝐓𝑥? Since the original paper

by Milevsky and Robinson (2000), which formulated the problem using moment matching tech-

niques and a subsequent paper by Huang, Milevsky, and Wang (2004) which used more refined

partial differential equation(PDE)-based techniques, many related papers have been published

in the literature. The work of Huang, Milevsky, and Wang (2004) was essential in developing

the mathematical representation of the problem for the ruin probability quantities. The jump-

diffusion model details were developed through the theory of Hanson (2007), Kou (2002), and

Ramezani and Zeng (1998, 2006). Once the theory was developed, numerical methods were used

to solve the problem. A new moment matching technique was developed as well and the model

was tested through the artificially generated return data using Monte Carlo (MC) simulations.

A number of follow-up articles have re-calibrated, refined and extended the usage of the

LRP. For example, Albrecht and Maurer (2002) employed Monte Carlo simulation techniques
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to compute the probability that a systematic withdrawal plan (SWiP) can beat the life annuity

benchmark. Gerrard, Haberman, Hojgaard, et al. (2004) examined various SWiP strategies

to determine which ones have minimized a given loss function, while Orszag (2002) provided

an analytic result related to deterministic plans. Another group of related research initiated by

Young (2004), and then followed up by Milevsky, Moore, and Young (2005) derived strategies

that would minimize the LRP using techniques from dynamic programming and solving the as-

sociated Hamilton-Jacobi-Bellman equation. The optimal dynamic ruin-minimizing strategy was

then refined in a series of papers by Bayraktar and Young (2007), Wang and Young (2010)

as well as Bayraktar, Hu, and Young (2011). More recently co-monotonicity techniques have

been used very successfully by Weert, Dhaene, and Goovaerts (2011) to compute the LRP.

All in all, the LRP appears to be an interesting and popular area of research. In fact, the LRP

and related dynamic strategies that minimize this risk metric are of interest not only to schol-

ars in the insurance and actuarial community, but the LRP is becoming increasingly important

from a practitioner and policy perspective as well. Today, many consumers are formulating their

retirement income (drawdown scheme) plans in light of a LRP calculation. However, most of

the papers written on the LRP have assumed a rather primitive model for investment returns,

namely geometric Brownian motion (GBM). And yet, in the context of asset pricing, a number

of proposed alternatives to the GBM model have been listed in a survey by Kou (2007). A few of

these studies have discussed the possibility of using stochastic volatility and/or stochastic interest

rates (Duffie 2001; Heston 1993; Lewis 2000). The pre-eminent concern with these continuous

models is that they don’t capture discontinuities in the return-generating process. Indeed, after

the experience in financial markets during the 2007 to 2009 period, one should be quite wary
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of models that do not allow for these sudden breaks, otherwise known as jumps. Of course, the

crash of 1987 and the crises of 2008 did not introduce the world to jumps; which are not new to fi-

nancial economics. Merton (1976a, 1976b) was the first to introduce jump-diffusion models into

the option pricing and asset allocation literature. Since his foundational work, hundreds, if not

thousands, of econometric and statistical papers have been written on this topic. The objective

in this dissertation is to examine how the impact of jumps in the portfolio-generating process

might impact (or not) the lifetime ruin probability. There are two aspects to this question. First,

the author must actually derive an expression for the probability and describe an efficient and

robust solution algorithmmethodology. Then, results must be compared against diffusion-related

values that do not assume any jumps. Both are done in order to provide a concrete answer to

the question: Will jumps increase the lifetime ruin probability? As mentioned earlier, Merton

(1976b) tried to answer the question of the impact of jumps on option values. He arrived at a

volatility estimate and an option pricing formula that could be compared with the classic Black-

Scholes formula derived from the diffusion-only stock price process dynamics. The magnitude of

the percent error was used as a measure of comparison. The estimated variance of the logarithmic

return on the stock as well as the frequency of jumps and the observation time of the time series

data, all played a role in modifying the percentage error. However, the general pattern of this

difference was consistent even when the model was tested with different parameters. Specifi-

cally, prices for deep in-or-out of money options were higher for the jump-diffusion versus the

diffusion case but switched direction for a range close to at-the-money. While this suggests that

the option pricing literature is well aware that jumps may not necessarily increase the value of

an option relative to increasing volatility, it is not clear whether this is the case for the lifetime
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ruin probability. In this dissertation, evidence is provided that, consistent with the option pricing

literature, jumps can also reduce the LRP. At first glance one would expect the LRP to be low-

ered, as jumps effectively increase the dispesrsion and uncertainty of a stochastic process. Jumps

make hedging more difficult if not impossible, hence the general “fear” of jumps. But recall that

the LRP is not a derivative price or a hedging value, it is an estimate of a long-term probability.

Jumps can obviously work in both directions, possibly offsetting each other. Moreover, there are

other (equivalent) ways to increase dispersion within a continuous diffusion process, namely by

increasing the volatility. Either way, intuition is insufficient: ours is an empirical question that

must be addressed with caution. Of course, we want to ensure we are comparing apples to apples,

which is why we choose to use parameter values that lead to the same moments of the return

generating distribution. Once we actually have an expression for the LRP, we employ historical

data on (international) equity returns to calibrate two distinct models. The first is a standard

GBM and the second is a jump-diffusion model. We locate the best-fitting parameters to these

two models, and compare their respective LRP values. We find that except for very low initial

wealth levels, the LRP values of the jump-diffusion model with parameters derived by moment

matching techniques are actually lower, and we explain why in our work.

1.1.2 Optimal consumption-insurance-allocation portfolio problem

Many individuals plan for retirement and, in particular, are interested in strategies that result in

an optimal portfolio, given the unpredictable nature of their investments or exogenous health

risk. There is an increased demand for examining interactions among optimal retirement portfo-

lio choice and savings, as defined-contribution pension plans are growing in popularity. The field
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of optimal portfolio problems in continuous time has been initiated by the seminal work of Mer-

ton (1969, 1971) and Samuelson and Merton (1969). More than a decade later, this area of study

was further advanced by Cox and Huang (1989), Karatzas, Lehoczky, and Shreve (1987), and

Pliska (1986). Stochastic optimal control theory is the preferred method used in determining the

optimal asset allocation and consumption strategies for this problem. This literature’s common

setting is that of an investor with a deterministic initial wealth level, which he must then opti-

mally invest in either a complete or incomplete market in order to maximize the expected utility

of his wealth and/or consumption up to a predetermined time. Moreover, most of this literature

focuses on a market with assets with continuous sample paths, which follow a Brownian motion

(i.e. diffusions). This treatment lacks the sudden jumps in value of real financial instruments. As

mentioned in the first topic studied in this dissertation, Merton (1976a, 1976b, 1990) has noted

this deficiency and applied discontinuous sample path Poisson processes in combination with

Brownian motion processes (i.e. jump-diffusions) in order to improve the problem of pricing

options. Optimal portfolio problems which consider the jump-diffusion case, have been studied

more recently by Rishel (1999), who proposed a theoretical model dependent on both sched-

uled (deterministic) and unscheduled (stochastic) jump events. Hanson and Westman (2001)

built on this model by computationally solving an optimal portfolio and consumption problem

with scheduled (quasi-deterministic) jumps. In subsequent work, Hanson and Westman (2002)

revisited the problem, this time around not using quasi-deterministic processes and applying a

log-normal jump-amplitude distribution.

Motivated by the fact that individuals facedwithmore complex financial choices need tomake

progressively harder personal finance decisions when it comes to their retirement planning, we
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developed an optimal portfolio model under the framework of life-cycle models. In addition to

the usual investment risk and life expectancy uncertainty, a retiree is often faced with health de-

clines, which add the risk of health costs to their portfolio decisions. We assume that the option

of buying medical insurance is available to the retiree and that he aims to use that purchase to

cover unforeseen out-of-pocket health care costs. Moreover, as the agent also has the opportu-

nity to invest in a risky asset (stock market), we extend our optimal investment problem to the

jump-diffusion setting to investigate its effect.

The problem of the impact of health costs on optimal annuity demand and optimal consump-

tion/savings decisions was previously studied by Peijnenburg, Nijman, and Werker (2011a,

2011b, 2011c) and Sinclair and Smetters (2004). Turra and Mitchell (2008) studied the im-

pact of health status and out-of-pocket medical expenditures on annuity valuation. On the other

hand, our problem investigates the demand for optimal health insurance that could cover the

unforeseen health costs in retirement. Most of the literature in this direction focuses on vari-

ants of this problem but in a discrete setting, while our approach is time-continuous. Edwards

(2008), in a discrete case, investigates the role of future health risk on financial risk-taking post-

retirement. He concludes that health shocks prompt the investor to lower their exposure to finan-

cial risk by increasing the marginal utility of consumption. Yogo (2009) developed a life-cycle

model in which the investor makes an optimal portfolio choice in retirement by considering

stochastic health depreciation. Consumption, health costs and allocation of the financial capital

between bonds, stocks and housing are determined through a discrete model setup. Pang and

Warshawsky (2010) derive the optimal equity-bond-annuity asset portfolio for households in

the retirement phase, who face stochastic capital market returns and have different exposures to
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mortality and uninsured health expense risks. The problem, although uses a life-cycle model, is

developed in a discrete setting. French and Jones (2011) examine the importance of health in-

surance on retirement behavior through a discrete dynamic programming model that takes into

account savings and the risk of future medical expenses.

First, we propose the development of our optimal portfolio model by considering health

shocks and jump-diffusion asset return dynamics in the investor’s post-retirement phase. The

question we want to answer is whether, faced with these risks, a retiree should purchase health

insurance protection and what the optimal amount should be. Moreover, we are interested in the

optimal consumption and allocation between risky and risk-less assets. The wealth dynamics of

the investor can then be divided into two parts, one describing the pre-health-shock dynamics

while the other focuses on the post-health-shock process.

We further investigate how our optimal investment problem changes retirement planning

by combining labour income (human capital) and financial capital over the life-cycle of the in-

vestor, this time considering both health insurance and sudden jumps in stock market returns.

The problem without these considerations was investigated in the existing literature as follows.

Bodie, Merton, and Samuelson (1992), Duffie, Fleming, Soner, et al. (1997), Dybvig and Liu

(2005), Heaton and Lucas (2000), Koo (1998), and Viceira (2001) examined the optimal con-

sumption and investment problem by taking human capital into consideration. Bodie, Merton,

and Samuelson (1992) allow for the labour supply to be adjusted continuously and arrive at an

optimal consumption, labour effort, and financial investment strategy over the investor’s life cy-

cle. As these authors note, the opportunity of continuously varying the labour income is not

very realistic and therefore suggest that future research should look into the optimal portfolio

8



problem with less flexible labour-leisure choices.

Another strand of literature, including Fischer (1973), Hakansson (1969), and Yaari (1965)

has initiated the study of life insurance demand problems but without considering labour income

dynamics and human capital in a life-cycle framework. More recently, Kraft, Schendel, and

Steffensen (2014) investigated the optimal-insurance-investment portfolio choice problem in a

life-cycle setting, when the breadwinner of a family unit faces the risk of health shocks and hence

higher probability of death. In this context, the family tries to hedge this risk by purchasing life

insurance. Revisions to the insurance policy can only be made while the insured breadwinner is

in good health. The authors observe that, in the face of future income shocks and the subsequent

need to lower insurance coverage, the demand for life-insurance protection decreases at all age

levels.

In more recent portfolio choice literature, Huang, Milevsky, and Wang (2008) studied a

family unit’s life insurance and pension annuity demand, under constant relative risk aversion

(CRRA) preferences, by considering the breadwinner’s human capital. Moreover, in this life-cycle

framework, they arrived at a strategy for optimal allocation between risk-free and risky assets

both before and after retirement. This time-continuous problem was further extended by Huang

and Milevsky (2008) to the more general case where families have more rational preferences

specified through a hyperbolic absolute risk aversion (HARA) utility. Other authors like Bodie,

Detemple, Otruba, et al. (2004), Chen, Ibbotson, Milevsky, et al. (2006), and Pliska and Ye

(2007) developed more restrictive models for insurance demand and optimal retirement invest-

ment planning.

Farhi and Panageas (2007) extended the Bodie, Merton, and Samuelson (1992) model by
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considering limited flexibility in labour-leisure adjustments. In their paper, they develop an easily

tractable theoretical model that addresses the question of optimal portfolio choice and optimal

retirement time. The investor has a constant wage rate while still in the workforce. The labour-

supply choice was modeled as an optimal stopping problem in which the agent can work for a

fixed amount of time and earn a constant wage but also has the option of exiting the workforce

permanently (retire) at any time he chooses. This recent research answers the questions of opti-

mal consumption and savings in a continuous time set-up and arrives at the decision of when it

is optimal to retire. The time to quit the workforce comes from a discrete jump in leisure once the

agent retires. Themajor assumptions of the model are that the investor is not allowed to return to

the workforce when retired and that the agent cannot choose retirement past a pre-specified re-

tirement deadline. For developing a robust theoretical analysis, the authors also assume that the

agent receives a constant wage income. Karatzas andWang (2000) solved an optimal consump-

tion problem without labor income but with discretionary stopping. Another optimal stopping

problem which influenced the Farhi and Panageas (2007) model, was studied by Barone-Adesi

and Whaley (1987). More recently, Huang, Milevsky, and Salisbury (2014) have developed an

optimal control model in order to arrive at an optimal initiation region in an American option

framework, in the context of variable annuity policies with GLWB. This approach is similar to

the one we have taken in this dissertation.

We add a new model to previous literature by deriving an optimal portfolio problem which

results in a solution for an optimal retirement-triggering wealth level. A working investor would

find this information valuable and a guide on when to exit the workforce. We propose combining

the previously developed post-retirement investment strategy with a pre-retirement phase. Our
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PDE approach is derived in a life-cycle framework with infinite time horizon. Of interest to us

is to study how these solutions are modified in our case, when we choose a more realistic set-up

involving both health and mortality risk. We also propose an extension of our model for the case

of time-dependent force of mortality. The implementation of that case is left for future work on

the model.

1.2 Purpose of Dissertation and Outline

The proposed dissertation topics are applied to the personal finance management of individuals,

either before or after retirement. In the first topic, we develop a lifetime ruin probability (LRP)

model, by assuming that a jump-diffusion process drives the investment return of the agent. The

value of the LRP is important to an investor who wants to find out the probability of running out

of money, while maintaining a desired standard of living for the rest of his life. The problem of

the LRP has been studied before (as seen in the Literature Review), but our objective is to examine

the impact that jumps in the portfolio-generating process have on this popular risk-measure. To

our knowledge, our extension to the LRP theory and its modeling has not been studied before.

Its development adds value to investors as well as to practitioners and policy makers. The first

topic is discussed in Chapter 2.

The second topic is discussed in Chapter 3 and it focuses on the effect of health shocks (mod-

eled as jumps with known distribution) on optimal health insurance demand and consumption

decisions. Retirees are generally exposed to large and unpredictable medical expenses. They are

left with the dilemma of whether to purchase protection and what the optimal amount should be

in order to maximize their investments. To our knowledge, there is a deficiency in literature on
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the effect of health shocks and the health insurance demand on the optimal portfolio problem.

This problem is generally studied in a discrete time framework and our approach tries to fill this

gap by developing a model of investment in continuous time. It can be solved numerically but we

also use an explicit solution to assess the goodness of the numerical scheme for a case where the

jump in health is uniformly distributed. Moreover, in this chapter we also answer the question

of optimal health insurance-consumption-allocation when the risky asset returns follow jump-

diffusion dynamics. This part ties in with the numerical and calibration methods developed in

Chapter 2.

Once this optimal portfolio model was developed in a post-retirement setting, we applied

the same techniques to the pre-retirement period. This extension will not only help the agent

in making optimal decisions throughout his life, but will also predict an optimal wealth level

required for entering retirement. This optimal problem is discussed in Chapter 4.
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2 Lifetime Ruin Probability Problem for Retired

Individuals

2.1 Introduction

We derive an expression for the lifetime ruin probability (LRP) — defined as the probability a

fixed spending plan will deplete an investment portfolio prior to a retiree’s time of death — but

assuming the investment return driving the portfolio obeys a jump-diffusion process. Most of

the previous literature assumes a continuous diffusion process for underlying returns, and thus

ignores crashes and discontinuities. Our model leads to a partial-integro-differential equation

(PIDE) for the LRP and some related probabilities. We then compare our PIDE solution to prob-

abilities, which have been derived under a geometric Brownian motion (GBM) process using

moment matching techniques, and have been calibrated to historical equity returns. In addition

to the expression for the lifetime ruin probability (LRP), our main result is that despite the naïve

intuition that crashes (i.e. jumps) increase the LRP and reduce retirement sustainability, in the

context of retirement spending this is not necessarily the case. Under normal circumstances, our

LRP values are lower when moment-matched to historical returns. This result is reminiscent of

the option pricing literature in which jumps do not necessarily increase option values. On the

13



other hand, under very low initial wealth values — when ruin is quite likely — crashes are more

likely to ruin retirement. We will provide some further intuition in the body of this document.

Overall, we believe this work should be of interest to scholars as well as practitioners who are

concerned with sustainable income strategies for retirees.

2.2 Model Setup and Assumptions

The wealth process of our problem is governed by the following stochastic differential equation

(SDE):
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑑𝑊𝑡 = (𝜇𝑊𝑡 − 1)𝑑𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟
drift

+ 𝜎𝑊𝑡𝑑𝐵𝑡⏟⏟⏟
diffusion

+ ℎ(𝑡, 𝑊𝑡, 𝑞)𝑑𝑃𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
jump

= (𝜇𝑊𝑡 − 1)𝑑𝑡 + 𝜎𝑊𝑡𝑑𝐵𝑡 + ∫𝑄 ℎ(𝑡, 𝑊𝑡, 𝑞)𝒫 (𝑑𝑡, 𝑑𝑞),

𝑊0 = 𝑤,

(2.2.1)

where 𝜇 and 𝜎 are the constant drift and diffusion coefficient, 𝑄 is the Poisson mark space, 𝑑𝐵𝑡

is the Brownian motion driving the process, 𝑑𝑃𝑡 is the Poisson process driving the jump, ℎ is the

total change in wealth due to the jump and 𝒫 (𝑑𝑡, 𝑑𝑞) is the Poisson mark-time random measure.

The problem was scaled by assuming a constant consumption rate of 1 with the initial value of

wealth in our model being the ratio of wealth to consumption in practice.

For convenience, let the LRP and RP be denoted by 𝑃𝐿 and 𝑃𝑅 respectively. These two quan-

tities of interest are formally defined as follows:

𝑃𝑅(𝑡, 𝑤; 𝑇 , 𝑦) ∶= Pr [ inf
𝑡≤𝑠≤𝑇

𝑊𝑠 ≤ 𝑦|𝑊𝑡 = 𝑤] , (2.2.2)

𝑃𝐿(𝑡, 𝑤; 𝑦) ∶= Pr [ inf
𝑡≤𝑠≤𝐓𝑥

𝑊𝑠 ≤ 𝑦|𝑊𝑡 = 𝑤] . (2.2.3)

Throughout this dissertation, the above notations will be interchanged with a more convenient
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short-hand notation, 𝑃 (𝑡, 𝑤), for both probabilities when this practice will not result in confusion.

The random variable 𝐓𝑤 can be introduced, which will capture the amount of time it takes the

net wealth of the retiree to attain a wealth level of 𝑦. The remaining lifetime of the individual is

denoted by the random variable 𝐓𝑥 and allowed to have a Gompertz-Makeham distribution:

̂𝜆𝑥+𝑡 = 𝜃 + 1
𝑏

exp (
𝑥 + 𝑡 − 𝑚

𝑏 ) , (2.2.4)

where 𝑥 is the age of the individual, 𝑚 is the mode of the future lifetime and 𝑏 is a scale parameter

of 𝐓𝑥.

In this case, we think of the LRP as the probability that the net wealth amount reaches zero

before the remaining lifetime of the retiree:

𝑃𝐿(𝑡, 𝑤; 𝑦) = 𝑃 𝑟[𝐓𝑤 ≤ 𝐓𝑥]. (2.2.5)

On the other hand, we think of the RP as the probability that the net wealth reaches zero

before a deterministic time 𝑇 :

𝑃𝑅(𝑡, 𝑤; 𝑇 , 𝑦) = 𝑃 𝑟[𝐓𝑤 ≤ 𝑇 ]. (2.2.6)

In an original paper which focused on the GBM model, Huang, Milevsky, and Wang (2004)

have transformed the problem into an exercise in probability convolutions; one that computes

the cumulative density function of the new random variable 𝐓𝑤 − 𝐓𝑥.

In this case, we used the technique outlined in Hanson (2007) to arrive at the following PIDE

for 𝑃𝑅. By Itô’s lemma and applying expectations, we obtain:

𝜕𝑃
𝜕𝑡

+ (𝜇𝑤 − 1)𝜕𝑃
𝜕𝑤

+ 𝜎2𝑤2

2
𝜕2𝑃
𝜕𝑤2 + 𝜆 ∫𝑄

(𝑃 (𝑡, 𝑤 + ℎ(𝑡, 𝑤, 𝑞)) − 𝑃 (𝑡, 𝑤))𝜙(𝑞)𝑑𝑞 = 0, (2.2.7)
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with terminal and boundary conditions

𝑃 (𝑇 , 𝑤; 𝑇 , 𝑦) = 1 − 𝐻(𝑤 − 𝑦), 𝑃 (𝑡, 𝑦; 𝑇 , 𝑦) = 1, 𝑃 (𝑡, ∞; 𝑇 , 𝑦) = 0. (2.2.8)

Here 𝑃 represents 𝑃𝑅, 𝐻 is the Heaviside function, 𝜆 is the jump rate and 𝜙 is the density function

of the jump-marks.

By re-scaling the problem, we arrive at the following relationship:

𝑃𝐿(𝑡, 𝑤; 𝑦) = 1
1 − 𝐹𝑥(𝑡) ∫

∞

𝑡
𝑃𝑅(𝑡, 𝑤, 𝜏, 𝑦)𝑓𝑥(𝜏)𝑑𝜏. (2.2.9)

Here 𝑓𝑥(𝑡) is the probability density function, while 𝐹𝑥(𝑡) is the cumulative distribution function

of the 𝐓𝑥. Algebraic manipulations lead to the following backward PIDE for the LRP:

𝜕𝑃
𝜕𝑡

+ (𝜇𝑤 − 1)𝜕𝑃
𝜕𝑤

+ 𝜎2𝑤2

2
𝜕2𝑃
𝜕𝑤2 + 𝜆 ∫𝑄

(𝑃 (𝑡, 𝑤 + ℎ(𝑡, 𝑤, 𝑞)) − 𝑃 (𝑡, 𝑤))𝜙(𝑞)𝑑𝑞 = ̂𝜆𝑥+𝑡𝑃 , (2.2.10)

with terminal and boundary conditions

𝑃 (∞, 𝑤∞; ∞, 𝑦) = 1 − 𝐻(𝑤∞ − 𝑦), 𝑃 (𝑡, 𝑦; 𝑇 , 𝑦) = 1, 𝑃 (𝑡, ∞; 𝑇 , 𝑦) = 0. (2.2.11)

In the numerical computation of this quantity we truncate the infinite domain and apply equation

(2.2.11) for a sufficiently large 𝑇 . For both ruin probability quantities, we set 𝑦 = 0 which means

that ruin happens when the wealth is depleted.

2.2.1 The Jump-Diffusion Model

Merton (1976a, 1976b) was one of the first to try to capture realistic features of the log-stock

price distribution by introducing a compound Poisson jump process. Merton’s jump-diffusion

model assumes that the log-stock price jump-amplitudes follow a normal distribution. Since
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it was proposed, many authors (Duffie 2001; Hanson and Westman 2002; Merton 1990) fo-

cused on this jump-diffusion model where log-jump-amplitudes are normally distributed (NJD).

In recent years the double-exponential jump-diffusion (DEJD) model proposed by Kou (2002) has

gained popularity. Some desirable properties of this model include leptokurtic and asymmet-

ric implied returns, and the fit of implied volatility smiles. Furthermore, for certain exotic and

path-dependent options, the DEJD provides analytical tractability (Kou and Wang 2004). A re-

cent assessment of performance (Kou 2007; Ramezani and Zeng 2006) of the DEJD relative to

the NJD and the GBM suggests that it matches key features of index returns better than these

alternatives. This motivates our use of the DEJD model in this current problem.

Ramezani and Zeng (1998) proposed amodel where a distinction ismade between “good” (up-

ward jump) and “bad” (downward jump) events which are generated by two independent Poisson

processes. In their model, the jump-amplitudes are a mixture of Pareto-Beta distributions. The

DEJD model proposed by Kou (2002) has only one Poisson process of fixed intensity where the

jump-magnitudes are drawn from two independent exponential distributions. As shown below,

the Pareto-Beta and the DEJD model are equivalent due to the fact that the parameters of one

can be retrieved from the other. For a better control of the “up” and “down” jump intensities, we

choose to represent the Monte Carlo simulated data by the Pareto-Beta jump-diffusion formula-

tion (refer to the numerical results section).

Let 𝑌𝑡 be the absolute jump-amplitude such that in a time increment 𝑑𝑡 the wealth process

jumps from 𝑊𝑡 to 𝑌𝑡𝑊𝑡. If we assume that “good” news (upward jump in wealth) and “bad”

news (downward jump in wealth) are the result of two independent Poisson processes, we draw

jump-amplitudes from the Pareto and Beta distributions. We take the up-jump-amplitude ( 𝑌 𝑢
𝑡 )
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to be Pareto distributed with a probability density function:

𝑓𝑌 𝑢(𝑦) =
𝜂1

𝑦𝜂1+1 where 𝑌 𝑢 ≥ 1, (2.2.12)

and the corresponding first two moments

𝐸(𝑌 𝑢) =
𝜂1

𝜂1 − 1
, (2.2.13)

𝑉 (𝑌 𝑢) =
𝜂1

(𝜂1 − 2)(𝜂1 − 1)2 . (2.2.14)

Similarly, the down-jump-amplitudes 𝑌 𝑑
𝑡 , are taken to be Beta distributed with the associated

density function:

𝑓𝑌 𝑑 (𝑦) = 𝜂2𝑦𝜂2−1 where 0 < 𝑌 𝑑 < 1 (2.2.15)

and moments

𝐸(𝑌 𝑑) =
𝜂2

𝜂2 + 1
, (2.2.16)

𝑉 (𝑌 𝑑) =
𝜂2

(𝜂2 + 2)(𝜂2 + 1)2 . (2.2.17)

Then, the mixture of the Pareto-Beta distributions has the density function:

𝑓𝑌 (𝑦) =
𝑢𝜂1

𝑦𝜂1+1 𝟏𝑦>1 + (1 − 𝑢)𝜂2𝑦𝜂2−1𝟏0<𝑦<1, (2.2.18)

where 𝜂1 > 1, 𝜂2 > 0 and 𝜆 = 𝜆𝑢 + 𝜆𝑑 is the jump intensity as a combination of the up (𝜆𝑢)-

and down (𝜆𝑑) intensities. The probabilities of an up and down jump are 𝑢 = 𝜆𝑢

𝜆
and 𝑑 = (1 − 𝑢)

respectively.

Then we know (Ramezani and Zeng 2006) that the log-jump-amplitude (jump-mark process)

𝑄 = ln(𝑌 ), is double-exponentially (Laplace) distributed:

𝑄 i.i.d.∼ DoubleExp
(

𝑢
𝜂1

− 1 − 𝑢
𝜂2

, 𝑢(1 − 𝑢) (
1
𝜂1

− 1
𝜂2 )

2

+
(

𝑢
𝜂2

1

+ 1 − 𝑢
𝜂2

2 ))
, (2.2.19)
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with a density function

𝜙(𝑞) = 𝑢𝜂1𝑒−𝜂1𝑞𝟏𝑞≥0 + (1 − 𝑢)𝜂2𝑒𝜂2𝑞𝟏𝑞<0, (2.2.20)

where 1
𝜂1

and 1
𝜂2

represent the expected values of an up-jump-mark and a down-jump-mark re-

spectively. This is equivalent to:

𝑄 =

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑄𝑢 = ln 𝑌 𝑢 ∼ exp(𝜂1) with probability 𝑢,

−𝑄𝑑 = − ln 𝑌 𝑑 ∼ exp(𝜂2) with probability 𝑑.

(2.2.21)

2.3 Numerical Results

This section describes the implementation process of the jump-diffusion model. It presents the

numerical scheme which was used, the moment-matching and calibration technique, as well as

a test that random return data generated synthetically results in a similarly observed pattern for

the ruin probabilities.

2.3.1 Numerical Scheme

In general, obtaining closed form solutions to problems (2.2.7) and (2.2.10) is impossible (Barles,

Buckdahn, and Pardoux 1997; Duffy 2004; Hanson 2007). Hence, we must approximate the

solution using numerical techniques. In this document, we solve these second order PIDEs by

applying the Crank-Nicolson scheme for the diffusion term and an explicit scheme for the integral

term. Stability criteria for this scheme have been developed by Cont andVoltchkova (2005). For
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the first order derivative 𝑃𝑤
1, we use an upwind scheme. The discretization of (2.2.10) becomes:

𝑃 𝑛+1
𝑗 − 𝑃 𝑛

𝑗

−Δ𝑡
=

(𝜇𝑤𝑗 − 1)
2 (

𝑃 𝑛+1
𝑗∗ − 𝑃 𝑛+1

𝑗∗−1

Δ𝑤
+

𝑃 𝑛
𝑗∗ − 𝑃 𝑛

𝑗∗−1

Δ𝑤 )

+
𝜎2𝑤2

𝑗

4 (

𝑃 𝑛+1
𝑗+1 − 2𝑃 𝑛+1

𝑗 + 𝑃 𝑛+1
𝑗−1

(Δ𝑤)2 +
𝑃 𝑛

𝑗+1 − 2𝑃 𝑛
𝑗 + 𝑃 𝑛

𝑗−1

(Δ𝑤)2 )

+ 𝜆(ℐ𝐽𝐷)𝑛+1
𝑗 − ̂𝜆𝑥+𝑡𝑛

(
𝑃 𝑛+1

𝑗 + 𝑃 𝑛
𝑗

2
), (2.3.1)

where 𝑗∗ = 𝑗 if the coefficient is negative and 𝑗∗ = 𝑗 + 1 if it is positive. Here the set

{𝑃 𝑛
𝑗 , 𝑃 𝑛

𝑗−1, 𝑃 𝑛
𝑗+1} contains the unknown quantities, and the indices 𝑗 = 1 ∶ 𝑁𝑤 and 𝑛 = 1 ∶ 𝑁𝑡

represent wealth and time respectively. The terminal condition is 𝑃 𝑁𝑡
𝑗 = 1 − 𝐻(𝑤𝑗), while the

boundary conditions are 𝑃 𝑛
0 = 1 and 𝑃 𝑛

𝑁𝑤
= 0. For equation (2.2.7) we apply the same method. To

approximate the integrals derived as a result of the Poisson noise in equations (2.2.7) and (2.2.10),

we let the post-jump amplitude be given by:

𝑎(𝑡𝑛, 𝑤𝑗 , 𝑞𝑖) = 𝑤𝑗 + (𝑒𝑞𝑖 − 1)𝑤𝑗 ≡ 𝑒𝑞𝑖𝑤𝑗 = 𝑤𝑗+𝑙𝑖
+ 𝜀𝑖Δ𝑤 (2.3.2)

where the floor integer is

𝑙𝑖 = ⌊
(𝑒𝑞𝑖 − 1)𝑤𝑗

Δ𝑤
⌋, (2.3.3)

and

𝜀𝑖 =
(𝑒𝑞𝑖 − 1)𝑤𝑗

Δ𝑤
− 𝑙𝑖. (2.3.4)

The post-jump integral term can be approximated by:

∫𝑄
𝑃 (𝑡𝑛, 𝑒𝑞𝑖𝑤𝑗)𝜙(𝑞𝑖) ≈

𝑁𝑞

∑
𝑖=1

𝛽𝑖𝑃 (𝑡𝑛, 𝑒𝑞𝑖𝑤𝑗), (2.3.5)

with 𝑁𝑞 points 𝑞𝑖 and 𝑁𝑞 weights 𝛽𝑖. This Gauss-statistics rule for the jump-integral is expected to

have a polynomial precision of 𝑛𝑞 = 𝑁𝑞 − 1. This approximation describes the global dependence

1. For convenience, we also use subscripts to denote the derivatives when this causes no confusion.
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of the jump integral term due to the Poisson noise, unlike the local second order partial derivatives

due to the Gaussian noise. We can also approximate the integral in a more simple way by using

a Riemann sum as shown in Appendix 2.B.

If we now consider 𝑂2(Δ𝑤) interpolation of the term 𝑃 (𝑡𝑛, 𝑒𝑞𝑖𝑤𝑗) we can write:

𝑃 (𝑡𝑛, 𝑒𝑞𝑖𝑤𝑗) ≡ 𝑃 (𝑡𝑛, 𝑤𝑗+𝑙𝑖
) +

(

𝑒𝑞𝑖𝑤𝑗 − 𝑤𝑗+𝑙𝑖

𝑤𝑗+1+𝑙𝑖
− 𝑤𝑗+𝑙𝑖

)
)

(𝑃 (𝑡𝑛, 𝑤𝑗+1+𝑙𝑖
) − 𝑃 (𝑡𝑛, 𝑤𝑗+𝑙𝑖

)). (2.3.6)

This can be further reduced to:

𝑃 (𝑡𝑛, 𝑒𝑞𝑖𝑤𝑗) ≈ (1 − 𝜀𝑖)𝑃 (𝑡𝑛, 𝑤𝑗+𝑙𝑖
) + 𝜀𝑖𝑃 (𝑡𝑛, 𝑤𝑗+1+𝑙𝑖

) ≡ (1 − 𝜀𝑖)𝑃 𝑛
𝑗+𝑙𝑖

+ 𝜀𝑖𝑃 𝑛
𝑗+1+𝑙𝑖

, (2.3.7)

for 𝑞𝑖 > 0. Similarly, for 𝑞𝑖 < 0:

𝑃 (𝑡𝑛, 𝑒𝑞𝑖𝑤𝑗) ≈ (1 + 𝜀𝑖)𝑃 𝑛
𝑗−𝑙𝑖

− 𝜀𝑖𝑃 𝑛
𝑗−1−𝑙𝑖

. (2.3.8)

Now, if we assume that most contributions to the integral approximation are from values of

𝑞𝑖 ∈ [𝑎, 𝑏], where 𝑎 is a small negative value and 𝑏 is a small positive value, we see that the global

dependence on the jump-integral reduces to a local dependence. We implement the case where

𝑙𝑖 ≈ 0 which also corresponds to 𝜀𝑖 ≡ 𝜀 = | (𝑒𝑞−1)𝑤𝑗

Δ𝑤
| ≤ 1. To satisfy this condition for the entire

state domain, we restrict the jump-marks to a finite domain:

ln(1 − 1
𝑁𝑤

) ≤ 𝑞 ≤ ln(1 + 1
𝑁𝑤

). (2.3.9)

In other words, we are not required to employ the Gauss-quadrature statistics since most jump-

mark contributions are from values close to zero.

As shown by Hanson (2007), for the case of smal jump-marks, we can approximate the jump-

21



term by using piece-wise linear interpolation:

(ℐ)𝑛+1
𝑗 = ∫

𝑏

0
[(1 − 𝜀)𝑃 𝑛+1

𝑗 + 𝜀𝑃 𝑛+1
𝑗+1 ]𝜙𝑑𝑞

+ ∫
0

𝑎
[(−𝜀)𝑃 𝑛+1

𝑗−1 + (1 + 𝜀)𝑃 𝑛+1
𝑗 ]𝜙𝑑𝑞 − ∫

𝑏

𝑎
𝑃 𝑛+1

𝑗 𝜙𝑑𝑞, (2.3.10)

where 𝜀 ≤ 1.

Using formula (2.2.20), the DEJD jump-term integral approximation becomes:

(ℐ𝐽𝐷)𝑛+1
𝑗 = 𝑃 𝑛+1

𝑗−1

𝑤𝑗(𝑢 − 1)𝜂2

Δ𝑤(1 + 𝜂2)
{1 − 𝑒𝑎(1+𝜂2)}

+ 𝑃 𝑛+1
𝑗

𝑤𝑗

Δ𝑤 {
(1 − 𝑢)𝜂2

1 + 𝜂2
(1 − 𝑒𝑎(1+𝜂2)) −

𝑢𝜂1

1 − 𝜂1
(𝑒𝑏(1−𝜂1) − 1)}

+ 𝑃 𝑛+1
𝑗+1

𝑤𝑗𝑢𝜂1

Δ𝑤(1 − 𝜂1)
{(𝑒𝑏(1−𝜂1) − 1)} (2.3.11)

With the restriction (2.3.9) on 𝑞, we can use the infinite domain to approximate the integral and

write:

(ℐ𝐽𝐷)𝑛+1
𝑗 = 𝑃 𝑛+1

𝑗−1 [∫
0

−∞
𝜀(𝑢 − 1)𝜂2𝑒𝜂2𝑞𝑑𝑞]

− 𝑃 𝑛+1
𝑗 [∫

∞

0
𝜀𝑢𝜂1𝑒−𝜂1𝑞𝑑𝑞 − ∫

0

−∞
𝜀(1 − 𝑢)𝜂2𝑒𝜂2𝑞𝑑𝑞] + 𝑃 𝑛+1

𝑗+1 [∫
∞

0
𝜀𝑢𝜂1𝑒−𝜂1𝑞𝑑𝑞] . (2.3.12)

In fact, assuming that jumps are centered around small values of the jump-marks results in

solving the original PIDE as a PDE. In Appendix 2.B we present a discussion on the difference

between the above local approximation and the global approximation over the infinite domain

of the jump-marks. The difference being small, we will use the integral approximation given

by equation (2.3.12) for all the numerical results. Moreover, as noted in Hanson (2007), for the

financial markets, the jump-marks are generally small, which supports our decision to implement

the local approximation for the integral in order to maintain a realistic viewpoint.
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2.3.2 Calibration of the Jump-Diffusion and Diffusion Process

In order to compare themodels effectively, we employmomentmatching techniques. This section

analyzes the results of our numerical computations.

2.3.2.1 Moments for the Jump-Diffusion Model

Let
⎧
⎪
⎨
⎪
⎩

𝑑𝑋𝑠 = 𝜇𝑋𝑠𝑑𝑠 + 𝜎𝑋𝑠𝑑𝐵𝑠 + ℎ(𝑠, 𝑋𝑠, 𝑞)𝑑𝑃𝑠,

𝑋𝑡 = 𝑥,
(2.3.13)

and let 𝜑(𝑋𝑠) be any function of 𝑋𝑠. By Itô’s lemma we have:

𝜑(𝑋𝑇 ) = 𝜑(𝑥) + ∫
𝑇

𝑡
𝐿𝜑(𝑋𝑠)𝑑𝑠 + ∫

𝑇

𝑡
𝜎𝑋𝑠𝜑′(𝑋𝑠)𝑑𝐵𝑠 + ∫

𝑇

𝑡
[𝜑](𝑠, 𝑋𝑠)𝑑𝑃𝑠, (2.3.14)

where𝐿𝜑(𝑥) = 𝜇𝑥𝜑′(𝑥)+ 1
2
𝜎2𝑥2𝜑′′(𝑥). Taking expectations (Hanson 2007) of the above equation

we obtain:

𝐸{𝜑(𝑋𝑇 )} = 𝜑(𝑥) + ∫
𝑇

𝑡
𝐸{𝐿𝜑(𝑋𝑠)}𝑑𝑠 + ∫

𝑇

𝑡
𝐸{[𝜑]}𝜆𝑑𝑠. (2.3.15)

Let 𝑝(𝑡, 𝑥; 𝑇 , 𝑦) be the transitional probability density function. From definition, we have:

𝐸[𝜑(𝑋𝑇 )] = ∫
∞

0
𝜑(𝑦)𝑝(𝑡, 𝑥; 𝑇 , 𝑦)𝑑𝑦. (2.3.16)

Thus, we write:

∫
∞

0
𝜑(𝑦)𝑝(𝑡, 𝑥; 𝑇 , 𝑦)𝑑𝑦 = 𝜑(𝑥) + ∫

𝑇

𝑡 ∫
∞

0
(𝐿𝜑(𝑦) + 𝐸{[𝜑]}𝜆)𝑝(𝑡, 𝑥; 𝑠, 𝑦)𝑑𝑦𝑑𝑠. (2.3.17)
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Taking time derivatives of equation (2.3.17) with respect to 𝑇 , we have:

∫
∞

0
𝜑(𝑦)

𝜕𝑝
𝜕𝑇

𝑑𝑦 = ∫
∞

0
{𝐿𝜑(𝑦) + 𝜆𝐸(𝜑(𝑦 + ℎ(𝑇 , 𝑦, 𝑞)) − 𝜑(𝑦))}𝑝𝑑𝑦

= ∫
∞

0
{𝜇𝑦𝜑′(𝑦) + 1

2
𝜎2𝑦2𝜑′′(𝑦) + 𝜆𝐸(𝜑(𝑦 + ℎ)𝑑𝑞 − 𝜑(𝑦))}𝑝𝑑𝑦

= ∫
∞

0
𝜑(𝑦)

{(
𝜎2𝑦2𝑝

2 )
𝑦𝑦

− (𝜇𝑦𝑝)𝑦}
𝑑𝑦 + 𝜆 ∫

∞

0
𝑝𝐸(𝜑(𝑦 + ℎ) − 𝜑(𝑦))𝑑𝑦

+ 𝜇𝑦𝜑𝑝|𝑦=∞
𝑦=0 +

𝜎2𝑦2

2
𝜑′𝑝|𝑦=∞

𝑦=0 − (
𝜎2𝑦2𝑝

2 )
𝑦

𝜑′|𝑦=∞
𝑦=0

= ∫
∞

0
𝜑(𝑦)

{(
𝜎2𝑦2𝑝

2 )
𝑦𝑦

− (𝜇𝑦𝑝)𝑦}
𝑑𝑦 + 𝜆 ∫

∞

0
𝑝𝐸(𝜑(𝑦 + ℎ) − 𝜑(𝑦))𝑑𝑦,

(2.3.18)

as the terms

𝜇𝑦𝜑𝑝|𝑦=∞
𝑦=0 ,

𝜎2𝑦2

2
𝜑′𝑝|𝑦=∞

𝑦=0 , (
𝜎2𝑦2𝑝

2 )
𝑦

𝜑′|𝑦=∞
𝑦=0 ,

will vanish.

Consider a special case of the jump process where ℎ(𝑠, 𝑋𝑠, 𝑞) = (𝜈(𝑞) − 1)𝑋𝑠 is the relative

jump-amplitude and ln 𝜈(𝑞) is the jump-mark process which is double-exponentially distributed.

Thus 𝜑(𝑦 + ℎ(𝑠, 𝑦, 𝑞)) = 𝜑(𝜈𝑦) and we can simplify:

∫
∞

0
𝑝𝐸(𝜑(𝑦 + ℎ) − 𝜑(𝑦))𝑑𝑦 = ∫

∞

0
𝑝𝐸(𝜑(𝜈𝑦) − 𝜑(𝑦))𝑑𝑦

= ∫
∞

0
𝑝 (∫

∞

−∞
𝜑(𝑒𝑞𝑦)𝜙(𝑞)𝑑𝑞) 𝑑𝑦 − ∫

∞

0
𝑝𝜑(𝑦)𝑑𝑦

= ∫
∞

−∞ (∫
∞

0
𝑝( ̃𝑦𝑒−𝑞)𝜑( ̃𝑦)𝑑 ̃𝑦) 𝑒−𝑞𝜙(𝑞)𝑑𝑞 − ∫

∞

0
𝑝𝜑(𝑦)𝑑𝑦

= ∫
∞

0
𝜑(𝑦) ∫

∞

−∞
𝑝(𝑦𝑒−𝑞)𝑒−𝑞𝜙(𝑞)𝑑𝑞𝑑𝑦 − ∫

∞

0
𝑝𝜑(𝑦)𝑑𝑦.

(2.3.19)

Here 𝜙 is the probability density function for the double-exponentially distributed jump-marks,
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given by equation (2.2.20). Then for any 𝜑 we obtain:

∫
∞

0
𝜑

𝜕𝑝
𝜕𝑇

𝑑𝑦 = ∫
∞

0
𝜑(𝑦)

{(
𝜎2𝑦2𝑝

2 )
𝑦𝑦

− (𝜇𝑦𝑝)𝑦 + 𝜆 (∫
∞

−∞
𝑒−𝑞𝜙(𝑞)𝑝(𝑦𝑒−𝑞)𝑑𝑞 − 𝑝)}

𝑑𝑦.

(2.3.20)

This results in the following forward PIDE:

𝜕𝑝
𝜕𝑇

= (
𝜎2𝑦2𝑝

2 )
𝑦𝑦

− (𝜇𝑦𝑝)𝑦 + 𝜆 (∫
∞

−∞
𝑒−𝑞𝜙(𝑞)𝑝(𝑦𝑒−𝑞)𝑑𝑞 − 𝑝) . (2.3.21)

After expansion we have:

𝜕𝑝
𝜕𝑇

+ (𝜇 + 𝜆 − 𝜎2)𝑝 + (𝜇 − 2𝜎2)𝑦
𝜕𝑝
𝜕𝑦

−
𝜎2𝑦2

2
𝜕2𝑝
𝜕𝑦2 − 𝜆 ∫

∞

−∞
𝑒−𝑞𝜙(𝑞)𝑝(𝑦𝑒−𝑞)𝑑𝑞 = 0. (2.3.22)

Note that:

∫
∞

0 {∫
∞

−∞
𝑒−𝑞𝜙(𝑞)𝑝(𝑒−𝑞𝑦)𝑑𝑞} 𝑦𝑛𝑑𝑦 = ∫

∞

−∞
𝑒−𝑞𝜙(𝑞) ∫

∞

0
𝑝(𝑒−𝑞𝑦)𝑦𝑛𝑑𝑦𝑑𝑞

= ∫
∞

−∞
𝑒𝑛𝑞𝜙(𝑞) ∫

∞

0
𝑝(𝑦)𝑦𝑛𝑑𝑦𝑑𝑞

= 𝐼𝑛 ∫
∞

−∞
𝑒𝑛𝑞𝜙(𝑞)𝑑𝑞

= 𝜉𝑛𝐼𝑛.

(2.3.23)

Using the relation:

∫
∞

−∞
𝑒−(𝑎𝑥2+𝑏𝑥+𝑐)𝑑𝑥 = √

𝜋
𝑎

𝑒
𝑏2−4𝑎𝑐

4𝑎 , (2.3.24)

we simplify 𝜉𝑛

𝜉𝑛 =
𝑢𝜂1

𝜂1 − 𝑛
+

(1 − 𝑢)𝜂2

𝜂2 + 𝑛
, (2.3.25)

if 𝜂1 > 𝑛.

By definition the 𝑛𝑡ℎ moment of the state variable is given by:

𝐼𝑛(𝑡, 𝑥; 𝑇 ) = ∫
∞

0
𝑝(𝑡, 𝑥; 𝑇 , 𝑦)𝑦𝑛𝑑𝑦.
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We multiply (2.3.22) by 𝑦𝑛 and integrate:

𝜕𝐼𝑛

𝜕𝑇
+ (𝜇 + 𝜆 − 𝜎2 − 𝜆𝜉𝑛)𝐼𝑛 + (𝜇 − 2𝜎2) ∫

∞

0
𝑦𝑛+1 𝜕𝑝

𝜕𝑦
𝑑𝑦 − 𝜎2

2 ∫
∞

0
𝑦𝑛+2 𝜕2𝑝

𝜕𝑦2 𝑑𝑦 = 0. (2.3.26)

Note that through integration by parts:

∫
∞

0
𝑦𝑛+1 𝜕𝑝

𝜕𝑦
𝑑𝑦 = 𝑦𝑛+1𝑝|∞

0 − ∫
∞

0
(𝑛 + 1)𝑦𝑛𝑝𝑑𝑦

= −(𝑛 + 1)𝐼𝑛, (2.3.27)

∫
∞

0
𝑦𝑛+2 𝜕2𝑝

𝜕𝑦2 𝑑𝑦 = 𝑦𝑛+2 𝜕𝑝
𝜕𝑦

|∞
0 − (𝑛 + 2)𝑦𝑛+1𝑝|∞

0 + (𝑛 + 2)(𝑛 + 1) ∫
∞

0
𝑦𝑛𝑝𝑑𝑦

= (𝑛 + 2)(𝑛 + 1)𝐼𝑛. (2.3.28)

Finally, we obtain the following ODE for 𝐼𝑛:

⎧
⎪
⎨
⎪
⎩

𝑑𝐼𝑛

𝑑𝑇
+ [(𝜇 + 𝜆 − 𝜎2 − 𝜆𝜉𝑛) − (𝑛 + 1)(𝜇 − 2𝜎2) − (𝑛+1)(𝑛+2)𝜎2

2
]𝐼𝑛 = 0,

𝐼𝑛(𝑡, 𝑥; 𝑇 ) = ∫∞
0 𝑦𝑛𝛿(𝑦 − 𝑥)𝑑𝑦 = 𝑥𝑛.

(2.3.29)

By solving (2.3.29) we find the 𝑛𝑡ℎ moment formula:

𝐼𝑛 = 𝑥𝑛𝑒∫𝑇
𝑡 𝛾𝑛(𝑠)𝑑𝑠, (2.3.30)

where

𝛾𝑛 = (𝑛 + 2)(𝑛 + 1)𝜎2

2
+ (𝑛 + 1)(𝜇 − 2𝜎2) + 𝜎2 − 𝜇 + 𝜆(𝜉𝑛 − 1). (2.3.31)

Remark 2.3.1. If 𝜆 = 0 the jump-diffusion model reduces to the pure diffusion model. In this case:

𝐼𝑛 = 𝑥𝑛𝑒∫𝑇
𝑡 𝛾𝑛(𝑠)𝑑𝑠

and

𝛾𝑛 = (𝑛 + 2)(𝑛 + 1)𝜎2

2
+ (𝑛 + 1)(𝜇 − 2𝜎2) + 𝜎2 − 𝜇.

Remark 2.3.2. For simplicity we have considered only the case where 𝜆 is constant. A deterministic

but time dependent 𝜆 can be handled in a similar way.
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2.3.2.2 Moment Matching

A distribution 𝐺 is well represented by a distribution 𝐹 , if their moments match. We estimate the

parameters of both the pure diffusion and the DEJD model by calibrating them to the historical

data.

Consider the diffusion SDE, linear in the state process 𝑋𝑠 with constant coefficients:

⎧
⎪
⎨
⎪
⎩

𝑑𝑋𝑠 = 𝜇𝑋𝑠𝑑𝑠 + 𝜎𝑋𝑠𝑑𝐵𝑠,

𝑋𝑡 = 𝑥,
(2.3.32)

where 𝜇 is called the drift or deterministic coefficient and 𝜎 is called the volatility or standard

deviation of the diffusion term. First, we estimate the parameters 𝜇 and 𝜎 of the diffusion model

by matching the first two moments of the GB model to the historical moments. Our data are the

monthly equity returns corresponding to S&P 500, MSCI EAFE, and S&P/TSX indices. We create

a new data set by using a combination of indices with equal weighting:

𝑅𝑀
𝑖 = 1

3
𝑅S&P 500

𝑖 + 1
3

𝑅MSCI EAFE
𝑖 + 1

3
𝑅S&P/TSX

𝑖 . (2.3.33)

The first two moments of the data 𝑋𝑖 = ln(1 + 𝑅𝑀
𝑖 ) were matched to the mean and variance of

the GBM:

𝐸[𝑋𝑖] = (𝜇 − 1
2

𝜎2)Δ𝑡, (2.3.34)

𝑉 [𝑋𝑖] = 𝜎2Δ𝑡. (2.3.35)

Using Δ𝑡 = 1
12

we obtain the annualized estimated parameters 𝜇 and 𝜎.

Next, we match the moments of the DEJD model to the moments obtained from the historical

data (January 1970 to January 2003). The 𝑛𝑡ℎ empirical moment for observations 𝑖 = 1, 2, ..., 𝑁
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and data series 𝑌𝑖 = 1 + 𝑅𝑀
𝑖 is given by:

𝐽𝑛 = 𝐸[(𝑌𝑖)𝑛] = 1
𝑁

𝑁=396

∑
𝑖=1

(𝑌𝑖)𝑛. (2.3.36)

By matching the theoretical moment formula (2.3.30) with the empirical moments (2.3.36) we

obtain:

𝐽𝑛 = 𝐼𝑛 ⇔
log(𝐸 [(𝑌𝑖)𝑛] 𝑥−𝑛)

Δ𝑡
= 𝛾𝑛, (2.3.37)

where 𝛾𝑛 is as in equation (2.3.31). Let

𝑀𝑛 =
log(𝐽𝑛𝑥−𝑛)

Δ𝑡
=

log(𝐸 [(𝑌𝑖)𝑛] 𝑥−𝑛)
Δ𝑡

. (2.3.38)

We want to obtain the six parameters (𝜇, 𝜎, 𝜆, 𝜂1, 𝜂2 and 𝑢) by matching the first six moments.

To this end we solve the following system of nonlinear equations, using 𝑥 = 1 and Δ𝑡 = 1
12
:

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝑀1 = 𝜇 + 𝜆(𝜉1 − 1),

𝑀2 = 2𝜇 + 𝜎2 + 𝜆(𝜉2 − 1),

𝑀3 = 3𝜇 + 3𝜎2 + 𝜆(𝜉3 − 1),

𝑀4 = 4𝜇 + 6𝜎2 + 𝜆(𝜉4 − 1),

𝑀5 = 5𝜇 + 10𝜎2 + 𝜆(𝜉5 − 1),

𝑀6 = 6𝜇 + 15𝜎2 + 𝜆(𝜉6 − 1).

(2.3.39)

The systemwas solved by aMATLAB nonlinear solver lsqnonlin and the results were summarized

in Table 2.1.

Remark 2.3.3. We have also matched moments up to order five by using a system of five nonlinear

equations (see Table 2.1). These estimated parameters were used to narrow the search domain of

equation (2.3.39).
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Fixed Parameter Estimated Parameters

𝜇 𝜎 𝜆 𝜂1 𝜂2 𝑢

DEJD Order 6

0.1174 0.1328 0.0091 6.9995 10.000 0.1059

0.1199 0.1263 0.0091 6.9417 3.9968 0.2966

0.1202 0.1226 0.0091 6.9423 3.0476 0.5105

0.1214 0.1164 0.0091 6.9478 2.9597 0.7511

𝑢 DEJD Order 5

0.10 0.1163 0.1359 0.0090 6.5912 13.338 X

0.30 0.1166 0.1344 0.0091 6.6221 2.5464 X

0.50 0.1168 0.1315 0.0098 6.4191 1.8874 X

0.75 0.1185 0.1223 0.0109 6.4553 1.7782 X

GBM

0.1176 0.1372 X X X X

Table 2.1: Estimated parameter values by matching the moments with historic data from Jan-
uary 1970 to January 2003.
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Remark 2.3.4. We had to impose constraints on the parameters of interest in order for them to be

representative of real data. For example all of them were chosen to be positive. Another example

considers 𝜂1 and 𝜂2 of the DEJD model. We have to take into consideration the fact that 𝜂1, 𝜂2 → ∞

reduces the jump-diffusion model to the pure diffusion model. In order to avoid such a case an upper

bound was selected for these parameters.

We considered a data series of monthly total returns calculated as a weighted sum of three

indices: S&P 500, MSCI EAFE, and S&P/TSX. The observation period is January 1970 to January

2003.

For the results presented here, we have used the estimated parameters listed in Table 2.1 when

moments were matched up to order six. Note that we have also included estimated parameters

obtained by matching moments up to order five. Once we found a solution (𝜇, 𝜎 , 𝜆, 𝜂1, 𝜂2),

we could more easily find the parameters from the sixth order moment match by narrowing the

solution search domain Ω for the six degrees of freedom system. For example, knowing that

𝜎 = 0.1359 was obtained for a fixed 𝑢 = 0.1, we set a new search domain for 𝜎 — of the six

degrees system — to Ω = (0.1, 0.4), thereby ensuring a faster convergence to the solution as seen

by a reduced number of iterations. For all of our computations, we also assumed that the wealth

level 𝑦 = 0 (see equations (2.2.7) and (2.2.10)), 𝑇 = 35 years, 𝑚 = 80, 𝑏 = 10, 𝜃 = 0 and 𝑥 = 50.

We observed that the ruin probabilities studied are lower in the jump-diffusion model (DEJD)

when compared to the GBM (Figure 2.1). Note that the estimate of the volatility of the GBM

model ( 𝜎 = 0.1372) is greater than the volatility under the jump-diffusion model (see Table 2.1).

For clarity, we have presented some values of LRP and RP in Table 2.2.

For example, if an individual retires with an actual initial wealth of $900,000 and desires to
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Figure 2.1: LRP and RP for 𝑢 = 0.5105 (up-jump probability) and 𝑤 = 20 (wealth level).
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𝑃𝐿 𝑃𝑅

𝑤 GBM DEJD GBM DEJD

8 0.5619 0.4318 0.6942 0.5514

9 0.4132 0.2714 0.5367 0.3664

10 0.2901 0.1602 0.3944 0.2272

11 0.1973 0.0908 0.2793 0.1346

12 0.1312 0.0503 0.1925 0.0775

13 0.0859 0.0275 0.1299 0.0438

14 0.0554 0.0149 0.0860 0.0244

15 0.0351 0.0080 0.0558 0.0135

Table 2.2: 𝑃𝐿 and 𝑃𝑅 for different initial wealth levels and fix up-jump probability (𝑢 =
0.5105).

spend $100,000 per year for the rest of his life, then 𝑤 corresponds to 9 units of wealth. Specifi-

cally, a 50-year-old individual has a 41.32% lifetime probability of ruin if he starts with an initial

wealth level of 𝑤 = 9 units and consumes 1 unit of wealth throughout his lifetime. If this wealth

process includes jumps, the same individual’s lifetime ruin probability is lowered: He now has a

27.14% chance of reaching financial insolvency within his lifetime. Similarly, within a time hori-

zon 𝑇 = 35 years, the probability of crossing a wealth level of zero decreases from 53.67% for

the pure diffusion case to 36.64% when jumps are introduced. Note that the actual initial wealth

is the product of the initial wealth unit 𝑤 and the desired consumption rate.

One explanation for this apparent decrease in the probability quantities involves taking a
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closer look at the estimated volatility. In Table 2.1 we establish that by solving the system with

six degrees of freedom (DEJD), we obtain a smaller volatility estimate as compared to the volatil-

ity of the system with two degrees of freedom (GBM). It appears that the relative value of the

estimated volatility has a substantial effect on the values LRP and RP. The introduction of jumps

has decreased volatility and in turn has lowered the probability quantities of interest.

Next, we wanted to examine what happens to the ruin probabilities as we allow only “up” or

only “down” jumps to be selected. In addition to the combination of both up and down jumps of

the DEJD model, we distinguished two additional jump-diffusion cases: one that allows sampling

of only up-jump-marks (up-jumps) and a second which includes only down-jump-marks (down-

jumps). When looking at these alternatives, we notice that a combination of both upward and

downward jumps is most effective in lowering the ruin probabilities (see Figure 2.2).

In Table 2.3, one can also see that both the LRP and RP are higher when 0.1 ≤ 𝑢 < 0.5 for the

up-jump case as opposed to the down-jump case. For 0.5 ≤ 𝑢 ≤ 0.75 the probabilities of interest

are lower for the up-jump cases and higher for the down-jump case. Lower 𝑢 corresponds to a

high probability of downward jumps 𝑑 = (1 − 𝑢). In Table 2.1 one can see that a large 𝑑 = 0.8941

(𝑢 = 0.1049) also corresponds to down-jump-marks which are quite small on average ( 1
𝜂2

∼ 0.1)

and vice versa. On the other hand, the average up-jump-marks remain approximately constant

( 1
𝜂1

∼ 0.14) as 𝑢 increases. A large probability of a down-jump does not guarantee an increase

of the probabilities, due probably to the fact that these downward jump-amplitudes are small.

However, as these downward jumps become large enough, the ruin probabilities are impacted by

increasing relative to the up-jump case (see Table 2.3).

Finally, we wanted to answer the question of whether the results observed above apply to
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Figure 2.2: LRP and RP for 𝑢 = 0.5105 (up-jump probability).
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𝑢 DEJD up-jump down-jump

𝑃𝐿

0.1059 0.3254 0.3957 0.3357

0.2988 0.2885 0.3373 0.3180

0.5105 0.2714 0.3032 0.3232

0.7511 0.2352 0.2509 0.3123

𝑃𝑅

0.1059 0.4301 0.5180 0.4432

0.2988 0.3865 0.4491 0.4246

0.5105 0.3664 0.4076 0.4335

0.7511 0.3222 0.3429 0.4235

Table 2.3: 𝑃𝐿 and 𝑃𝑅 for initial wealth 𝑤 = 9.

wealth ranges where ruin becomes very likely (small initial wealth levels) or very unlikely (high

initial wealth levels). The pattern remains unchanged for relatively large wealth levels, but can

switch direction for small initial wealth. It appears that for low investments the ruin probability

of the jump-diffusion case can exceed the one derived from the pure diffusion dynamics. For

example, we present one of these results in Figure 2.3.

All other parameters are the same as those used in producing Figure 2.1. Note how for very

low levels of wealth, the probabilities cross over and are actually higher in the jump-diffusion

case. However, the analysis presented in Appendix 2.B suggests that, when contributions from
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Figure 2.3: LRP and RP for 𝑢 = 0.5105 (up-jump probability) and 𝑤 = 5 (wealth level).

both large and small jump-marks are allowed, a reduction of the probability of ruin occurs even

for small wealth levels (see Figure 2.6). There is no ambiguity that jumps have a positive impact

on the investments when jump-marks can be of all sizes.

2.3.2.3 Monte Carlo Simulations

We analyzed the observed impact of the jumps on the LRP, this time using the MC simulated data

to estimate the model’s parameters. Our goal here was to establish whether the introduction of

error in our jump-diffusiom model changes the relationship between the ruin probabilities of the

GBM and DEJD models. We conclude that the ruin probabilities are once again lowered by the

introduction of jumps. One example of these computations is presented in Figure 2.4. Assuming

a jump-diffusion model, we generate a new set of returns by the Monte Carlo method, as follows.
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Let the underlying asset price follow the SDE:

⎧
⎪
⎨
⎪
⎩

𝑑𝑆𝑡 = 𝑆𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡 + 𝐽(𝑄)𝑑𝑁𝑡),

𝑆0 > 0.
(2.3.40)

Here 𝐵𝑡 is the Wiener process, 𝑁𝑡 is the standard Poisson jump counting process, 𝐽(𝑄) is the

jump amplitude and 𝑄 = ln(𝐽(𝑄) + 1) is the underlying jump-mark process. We solve equation

(2.3.40):

𝑑(ln 𝑆(𝑡)) = 1
𝑆

𝑑𝑆 − 1
2𝑆2 𝑑𝑆2

= (𝜇 − 𝜎2

2
)𝑑𝑡 + 𝜎𝑑𝐵(𝑡) +

𝑑𝑁(𝑡)

∑
𝑘=1

(𝑒𝑄𝑘 − 1)

= (𝜇 − 𝜎2

2
)𝑑𝑡 + 𝜎𝑑𝐵(𝑡) +

𝑑𝑁(𝑡)

∑
𝑘=1

(𝑄𝑘 + 1 − 1)

= (𝜇 − 𝜎2

2
)𝑑𝑡 + 𝜎𝑑𝐵(𝑡) + 𝑄𝑑𝑁(𝑡).

(2.3.41)

After integration and log-inversion:

ln 𝑆(𝑡) = (𝜇 − 𝜎2

2
)𝑡 + 𝜎𝐵(𝑡) + 𝑄𝑁(𝑡), (2.3.42)

where

𝑄𝑁(𝑡) =
⎧
⎪
⎨
⎪
⎩

∑𝑁(𝑡)
𝑘=1 𝑄𝑘,

0 if 𝑁(𝑡) = 0.
(2.3.43)

We get the solution:

𝑆(𝑡) = 𝑆0𝑒(𝜇− 𝜎2

2 )𝑡+𝜎𝐵(𝑡)𝑒∑𝑁(𝑡)
𝑘=1 𝑄𝑘

= 𝑆0𝑒(𝜇− 𝜎2

2 )𝑡+𝜎𝐵(𝑡)
𝑁(𝑡)

∏
𝑘=1

𝑒𝑄𝑘.
(2.3.44)
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Using solution 2.3.44, the returns can be approximated as follows:

𝑆(𝑡 + Δ𝑡) − 𝑆(𝑡)
𝑆(𝑡)

=
𝑆0𝑒(𝜇− 𝜎2

2 )(𝑡+Δ𝑡)+𝜎𝐵(𝑡+Δ𝑡)𝑒∑𝑁(𝑡+Δ𝑡)
𝑘=1 𝑄𝑘 − 𝑆0𝑒(𝜇− 𝜎2

2 )𝑡+𝜎𝐵(𝑡)𝑒∑𝑁(𝑡)
𝑘=1 𝑄𝑘

𝑆0𝑒(𝜇− 𝜎2
2 )𝑡+𝜎𝐵(𝑡)𝑒∑𝑁(𝑡)

𝑘=1 𝑄𝑘

≈ 𝜇Δ𝑡 + 𝜎𝑍√Δ𝑡 + 𝜆Δ𝑡𝑄𝑁(𝑡)+1

≈ 𝜇Δ𝑡 + 𝜎𝑍√Δ𝑡 + 𝜆𝑢Δ𝑡𝑄𝑢
𝑁𝑢(𝑡)+1 + 𝜆𝑑Δ𝑡𝑄𝑑

𝑁𝑑(𝑡)+1,

(2.3.45)

where 𝑍 is a random variable with normal distribution and Δ𝑡 = 1 month. The probability of an

upward jump is 𝑢 = 𝜆𝑢

𝜆
= 𝜆𝑢

𝜆𝑢+𝜆𝑑
.

We let the size of this artificial data set be 𝑁 = 2𝑚𝑛 with 𝑛 = 400 and 𝑚 = 1, ..., 8. The true

parameters p used to simulate 𝑁 data points were the result of the application of the moment

matching technique on the historical data set described in equation (2.3.33). In other words, these

are the JD model-specific parameters calibrated to real data. From this artificially generated data

we obtained a new set of parameter estimates p̂𝑗𝑑 and p̂𝑑 for the jump-diffusion and diffusion cases

respectively. This was done by matching the synthetic data moments to the theoretical moments.

One example of these estimates is presented in Table 2.4. The error between the artificial data

parameters and the JD model-parameters (true) is also presented in the table. This is presented as

an L-infinity norm of the parameter vector difference. These are also the values used to produce

Figure 2.4. The error in the true parameter values did not have an effect on the relationship

between the jump-diffusion and diffusion ruin probabilities. It is evident from this figure and our

testing that ruin probability values are always lower for the jump-diffusion case regardless of the

number of data set points (ranging here from 400 to 102,400) used.
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Figure 2.4: LRP and RP for given true parameters 𝜇 = 0.1210, 𝜎 = 0.1189, 𝜆 = 0.0135,
𝜂1 = 6.9905, 𝜂2 = 3.5896 and 𝑢 = 0.4994.
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N

p p̂𝑗𝑑 400 1,600 6,400 25,600 102,400

𝜇 0.1210 ̂𝜇 0.1301 0.1284 0.1242 0.1255 0.1253

𝜎 0.1189 𝜎̂ 0.1221 0.1061 0.1063 0.1067 0.1063

𝜆 0.0135 ̂𝜆 0.0091 0.0103 0.0099 0.0103 0.0103

𝜂1 6.9905 ̂𝜂1 6.9475 6.8543 6.8487 6.8801 6.8878

𝜂2 3.5896 ̂𝜂2 4.8500 2.1965 1.5300 2.5169 3.0912

𝑢 0.4994 ̂𝑢 0.5449 0.4117 0.4170 0.4035 0.3917

||p − p̂𝑗𝑑|| 1.2620 1.4026 2.0662 1.0827 0.5203

p̂𝑑

̂𝜇 0.1298 0.1253 0.1206 0.1230 0.1230

𝜎̂ 0.1201 0.1182 0.1136 0.1134 0.1134

Table 2.4: Estimated parameter values for different 𝑁 .

2.4 Conclusion

In this chapter we have explained how to derive an expression for the lifetime ruin probability

(LRP) — a risk metric that has been studied by numerous researchers in the retirement field —

assuming the portfolio returns obey a jump-diffusion process. This is in contrast to the exist-

ing literature that for the most part assumes geometric Brownian motion (GBM) dynamics, or

diffusions without jump terms. Consequently, an associated partial-integro-differential equation

(PIDE) was newly derrived for the LRP and the related ruin probability (RP).
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We then compared our values to GBM-based ruin probabilities and previous estimates in the

literature using moment matching techniques calibrated to historical equity returns. In the chap-

ter we provide more details on this process. Besides illustrating our method for computing the

LRP, our main qualitative result was that except for the case of low initial wealth, ruin probabil-

ities were lower than under GBM models when moments are the same. We speculate that the

reason for this result is that if the first and second moment of the data-fitting distribution must

be identical, then a jump — which increases the dispersion, all else being equal — must be com-

pensated by a suitable reduction in the volatility estimate. At the same time, diffusion volatility

has a greater impact on LRP values than jumps. Stated differently, the main cause of a relatively

high LRP is a poor sequence of investment returns early on in the path of the portfolio process.

Moreover, higher values of diffusion volatility are more likely to lead to early losses.

While our qualitative explanation may not be entirely satisfying — and our numerical results

indicate that there are exceptions to the above observation that jump-diffusion processes whose

moments match continuous processes lead to lower LRP values — our results do provide useful

insights. We should point out that similar results have been obtained in the long-dated option

pricing literature.

In summary, we believe that the most important take-away here is that practitioners who are

interested in computing LRP values in the real world, should focus their energies on modelling

the forward-looking equity risk premium (ERP) and its volatility, and perhaps worry less about

short-term stock price movements.
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2.A Appendix: Derivation of the Backward PIDE

The following is a brief outline of the derivation of the backward PIDE for the transition density

and the transition probability. Let

⎧
⎪
⎨
⎪
⎩

𝑑𝑊𝑠 = (𝜇𝑤𝑊𝑠 − 1)𝑑𝑠 + 𝜎𝑤𝑊𝑠𝑑𝐵𝑤
𝑠 + ℎ(𝑠, 𝑊𝑠, 𝑞)𝑑𝑃 𝑤

𝑠 ,

𝑊𝑡 = 𝑤.
(2.A.1)

Let 𝜑(𝑊𝑠) be any function of 𝑊𝑠. By Itô’s lemma we have:

𝑑𝜑(𝑊𝑠) = (𝑓𝜑𝑤(𝑊𝑠) +
𝑔2

2
𝜑𝑤𝑤(𝑊𝑠))𝑑𝑠 + 𝑔𝜑𝑤𝑑𝐵𝑤

𝑠 + [𝜑](𝑊𝑠)𝑑𝑃 𝑤
𝑠

= 𝐿𝜑(𝑊𝑠)𝑑𝑠 + 𝑔𝜑𝑤𝑑𝐵𝑤
𝑠 + [𝜑](𝑊𝑠)𝑑𝑃 𝑤

𝑠 , (2.A.2)

where 𝑓 = 𝜇𝑤𝑊𝑠 − 1, 𝑔 = 𝜎𝑤𝑊𝑠, and

[𝜑](𝑊𝑠)𝑑𝑃 𝑤
𝑠 = ∫𝑄

{𝜑(𝑊𝑠 + ℎ(𝑠, 𝑊𝑠, 𝑞)) − 𝜑(𝑊𝑠)}𝒫 (𝑑𝑠, 𝑑𝑞).

Here it was assumed that the Wiener process is independent of the Poisson processes and that

the quadratic differential Wiener processes can be replaced by their mean square value. We also

drop terms that are zero in the mean square. Then we write:

𝜑(𝑊𝑇 ) = 𝜑(𝑤) + ∫
𝑇

𝑡
(𝐿𝜑(𝑊𝑠)𝑑𝑠 + 𝑔𝜑𝑤𝑑𝐵𝑤

𝑠 + [𝜑](𝑊𝑠)𝑑𝑃 𝑤
𝑠 ). (2.A.3)

Taking expectations we obtain the Dynkin formula in integral form (Hanson 2007):

𝐸{𝜑(𝑊𝑇 )} = 𝜑(𝑤) + ∫
𝑇

𝑡
𝐸{(𝐿𝜑(𝑊𝑠)𝑑𝑠 + 𝑔𝜑𝑤𝑑𝐵𝑤

𝑠 + [𝜑](𝑊𝑠)𝑑𝑃 𝑤
𝑠 )}

= 𝜑(𝑤) + ∫
𝑇

𝑡
𝐸{(𝐿𝜑(𝑊𝑠) + 𝜆[𝜑])𝑑𝑠}

= 𝜑(𝑤) + ∫
𝑇

𝑡
(𝐿𝜑(𝑊𝑠) + 𝜆 ∫𝑄

{𝜑(𝑊𝑠 + ℎ(𝑠, 𝑊𝑠, 𝑞)) − 𝜑(𝑊𝑠)}𝜙𝑑𝑞)𝑑𝑠.

(2.A.4)
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This simplification follows from the independent increment property of Markov processes:

𝐸 [∫
𝑇

𝑡
𝐺(𝑋𝑠)𝑑𝐵𝑠] = 0, (2.A.5)

and the zero-mean jump process property

𝐸 [∫
𝑇

𝑡
𝐻(𝑋𝑠)𝒫 (𝑑𝑠, 𝑑𝑞)] = 𝜆𝐻(𝑋𝑠)𝜙(𝑞)𝑑𝑞𝑑𝑠. (2.A.6)

We conclude our derivation with the following theorem.

Theorem 2.A.1. Let 𝑢(𝑡, 𝑤) = 𝐸[𝜑(𝑊𝑇 )|𝑊𝑡 = 𝑤]. If the forward time is suppressed in favour of

the backward time 𝑡, then 𝑢(𝑤) satisfies the backward PIDE:

𝑢𝑡(𝑡, 𝑤) + ℬ𝑤[𝑢](𝑤) = 0, (2.A.7)

with final time condition

lim
𝑡→𝑇

𝑢(𝑡, 𝑤) = 𝜑(𝑤). (2.A.8)

The backward operator is:

ℬ𝑤[𝑢](𝑤) = (𝜇𝑤 − 1)𝑢𝑤 +
𝜎2

𝑤𝑤2

2
𝑢𝑤𝑤 + 𝜆 ∫𝑄

(𝑢(𝑡, 𝑤 + ℎ(𝑡, 𝑤, 𝑞)) − 𝑢(𝑡, 𝑤))𝜙(𝑞)𝑑𝑞. (2.A.9)

Let the transition probability have the following distribution:

𝑃 (𝑡, 𝑤; 𝑇 , 𝑊 ) = 𝑃 𝑟[𝑊𝑇 ≤ 𝑊 |𝑊𝑡 = 𝑤], (2.A.10)

with probability density

𝑝(𝑡, 𝑤; 𝑇 , 𝑊 ) = 𝑃 𝑟[𝑊𝑇 ≤ 𝑊 + 𝑑𝑊 |𝑊𝑡 = 𝑤] − 𝑃 𝑟[𝑊𝑇 ≤ 𝑊 |𝑊𝑡 = 𝑤]. (2.A.11)

In terms of the transition density, the conditional expectation can be rewritten such that:

𝑢(𝑡, 𝑤) = 𝐸[𝜑(𝑊 )|𝑊𝑡 = 𝑤]

= ∫
∞

−∞
𝜑(𝑊 )𝑝(𝑡, 𝑤; 𝑇 , 𝑊 )𝑑𝑊 . (2.A.12)
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Thus, if we let

𝜑(𝑊 ) = 𝛿(𝑊 − 𝜉1), (2.A.13)

then, by the definition of the Dirac delta function:

𝑢(𝑡, 𝑤) = 𝑝(𝑡, 𝑤; 𝑇 , 𝜉1). (2.A.14)

By Hanson (2007) and Björk (1998), the following corollaries follow:

Corollary 2.A.2. Let 𝑝(𝑡, 𝑤; 𝑇 , 𝑊 ) be the transition probability density. Then the backward PIDE:

𝑝𝑡(𝑡, 𝑤; 𝑇 , 𝑊 ) + ℬ𝑤[𝑝](𝑤) = 0, (2.A.15)

with the final time condition

lim
𝑡→𝑇

𝑝(𝑡, 𝑤; 𝑇 , 𝑊 ) = 𝛿(𝑤 − 𝑊 ). (2.A.16)

Corollary 2.A.3. Assume the probability measure 𝑃 (𝑡, 𝑤; 𝑇 , 𝑊 ) has a probability density

𝑝(𝑡, 𝑤; 𝑇 , 𝑊 ). Then we have the following PIDE:

𝑃𝑡(𝑡, 𝑤; 𝑇 , 𝑊 ) + ℬ𝑤[𝑃 ](𝑤) = 0, (2.A.17)

with final condition

𝑃 (𝑇 , 𝑤; 𝑇 , 𝑊 ) = 𝟏𝑊 (𝑤) = 1 − 𝐻(𝑊 − 𝑤). (2.A.18)

These results were applied in order to arrive at the backward equations (2.2.7) and (2.2.10).

2.B Appendix: Integral Approximation

In this section, we present a brief discussion of the comparison of the lifetime ruin probability for

two different integral approximations introduced in Section 2.3.1. For convenience, we call the
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solution ’local’ if the contribution to the solution is the result of small jumps, as is often the case

with the financial market (Hanson 2007). On the other handwe call ’global’ the solution obtained

by utilizing the infinite domain of the jump-marks. Under the ’global’ set-up, we discretize the

PIDE (2.2.10) as follows:

𝑃 𝑛
𝑗 − 𝑃 𝑛+1

𝑗

Δ𝑡
− 𝑇1(𝑃 𝑛

𝑗∗ − 𝑃 𝑛
𝑗∗) − 𝑇2(𝑃 𝑛

𝑗+1 − 2𝑃 𝑛
𝑗 + 𝑃 𝑛

𝑗−1) + 𝜆𝑃 𝑛
𝑗 + ̂𝜆𝑃 𝑛

𝑗 = 𝑆𝑛
𝑗 + 𝑆𝑛+1

𝑗 , (2.B.1)

where 𝑇1 = (𝜇𝑤𝑗−1)
Δ𝑤

, 𝑇2 = 𝜎2𝑤2
𝑗

2Δ𝑤2 and 𝑗∗ = 𝑗 if the coeffcient 𝑇1 < 0 and 𝑗∗ = 𝑗 + 1 if it is positive.

As before {𝑃 𝑛
𝑗−1, 𝑃 𝑛

𝑗 , 𝑃 𝑛
𝑗+1} contains the unknown quantities. The integral term is approximated

by 𝑆𝑛
𝑗 and 𝑆𝑛+1

𝑗 as follows:

𝑆𝑛+1
𝑗 = 𝜆 {∫

∞

𝑄𝑚𝑖𝑛

𝑃 𝑛+1(𝑒𝑞𝑤𝑗)𝜙𝑞>0𝑑𝑞 + ∫
−𝑄𝑚𝑖𝑛

−∞
𝑃 𝑛+1(𝑒𝑞𝑤𝑗)𝜙𝑞<0𝑑𝑞} ,

≈ 𝜆
𝑁𝑞

∑
𝑘=2

Δ𝑄𝑘𝑃 𝑛+1(𝑒𝑞𝑘𝑤𝑗)𝜙𝑞>0 + 𝜆
𝑘=−2

∑
−𝑁𝑞

Δ𝑄𝑘𝑃 𝑛+1(𝑒𝑞𝑘𝑤𝑗)𝜙𝑞<0, (2.B.2)

where Δ𝑄𝑘 = 𝑞𝑘+1 − 𝑞𝑘. Moreover, the approximation using known values is given by:

𝑆𝑛
𝑗 = 𝜆 {∫

𝑄𝑚𝑖𝑛

0
𝑃 𝑛(𝑒𝑞𝑤𝑗)𝜙𝑞>0𝑑𝑞 + ∫

0

−𝑄𝑚𝑖𝑛

𝑃 𝑛(𝑒𝑞𝑤𝑗)𝜙𝑞<0𝑑𝑞} ,

≈ 𝜆
1

∑
𝑘=0

Δ𝑄𝑘𝑃 𝑛(𝑒𝑞𝑘𝑤𝑗)𝜙𝑞>0 + 𝜆
0

∑
𝑘=−1

Δ𝑄𝑘𝑃 𝑛(𝑒𝑞𝑘𝑤𝑗)𝜙𝑞<0. (2.B.3)

The term 𝑃 (𝑒𝑞𝑤) is further approximated by linear interpolation as described in Section 2.3.1. For

small jump-mark values we have | (𝑒𝑞−1)𝑤
Δ𝑤

| ≤ 1. This results in the restriction 𝑄𝑚𝑖𝑛 = ln(1 + 1
𝑁𝑤

),

where 𝑁𝑤 are the maximum wealth discretization points.

We denote by 𝑃 𝑔 and 𝑃 𝑙, the ’global’ and ’local’ solutions to the PIDE respectively. Here 𝑃

can represent either the lifetime ruin probability (𝑃𝐿) or the ruin probability (𝑃𝑅). More pre-

cisely we calculated the Root-Mean-Squared-Error (RMSE) to assess the relative error of the two
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approximations:

𝐸2 = 1
√𝑁 ‖

𝑃 𝑔 − 𝑃 𝑙

𝑃 𝑔 ‖
2

. (2.B.4)

To measure the maximum relative error, we also calculated the 𝐿∞:

𝐸∞ = ‖
𝑃 𝑔 − 𝑃 𝑙

𝑃 𝑔 ‖
∞

. (2.B.5)

We performed the computation for an investor of age 𝑥 = 50 with parameters 𝜎 = 0.12, 𝜇 =

0.12, 𝜆 = 0.01, 𝜂1 = 7, 𝜂2 = 3, 𝑢 = 0.51 for the jump-diffusion (JD) case and 𝜎 = 0.11, 𝜇 = 0.12

for the pure diffusion case. The market parameters were calibrated to the real data as described

before. Moreover, we chose 𝑁𝑡 = 1000 and 𝑁𝑤 = 200, with a time horizon 𝑇 = 35 years and

𝑤 ∈ [0, 20]. As can be observed from Table 2.5, the RMSE is small and satisfies 𝐶 1
√𝑁

≤ 1
√𝑁

,

where 𝐶 < 10%.

𝑃𝐿(𝐽𝐷) 𝑃𝐿(𝐷)

𝐸2 𝐸∞ 𝐸2 𝐸∞

6.49% 16.4% 1.9𝑒−04% 3.0𝑒−04%

𝑃𝑅(𝐽𝐷) 𝑃𝑅(𝐷)

𝐸2 𝐸∞ 𝐸2 𝐸∞

5.22% 12.18% 1.8𝑒−04% 3.0𝑒−04%

Table 2.5: 𝑃𝐿 and 𝑃𝑅 relative error of the ’local’ solution relative to the ’global’ solution for
both the diffusion (D) and jump-diffusion case (JD).

Figure 2.5 is the graphical representation of the difference between our ’local’ and ’global’

LRP functions for both the jump-diffusion and pure diffusion case. One can see that the largest
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error occurs when wealth levels are small. A similar error pattern was observed for the ruin

probability.
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Figure 2.5: Difference between the ’local’ and ’global’ solutions for the jump-diffusion and
diffusion cases.

We also confirm that the reduction of the lifetime ruin probability occurs when introducing

jumps as seen in Figure 2.6. Moreover, the figure suggests that for small wealth levels, the prob-

ability of ruin of the ’global’ approximation case is further reduced due to the introduction of

jumps when compared to the ’local’ approximation. An individual with relatively small invest-

ment funds seems to benefit the most from the introduction of jumps in the asset return.
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Figure 2.6: Comparison of the jump-diffusion and diffusion lifetime ruin probability for the
’global’ and ’local’ approximations.
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3 Optimal Investment Problem Under Health Shocks for

Retired Investors

3.1 Introduction

In this chapter, we develop a model of optimal consumption-allocation-medical insurance strate-

gies for a retired individual. In addition to the usual investment risk and life expectancy uncer-

tainty, a retiree also has to find away to deal with out-of-pocket health care costs. We assume that

the option of buying medical insurance is available to the retiree. We want to answer the ques-

tion of whether he should purchase medical insurance protection and what the optimal amount

should be. Moreover, we want to determine the optimal consumption-allocation schedule for this

investor. We will set up the optimal control problem under the framework of life-cycle models.

3.2 Model Setup: General Notation and Assumptions

The general assumptions of the model are as follows:

• We focus only on out-of-pocket medical expenses. These are expenses not covered by Med-

icaid (US) or government health insurance (Canada).

• At the start of the investment period, the health status of the retiree is ‘good’.
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• For simplicity, we assume that the survival probabilities are dependent on health health

status, but not on gender. Future extensions to the model could take gender into consider-

ation.

• The instantaneous health status decline rate — the rate of transitioning from “healthy” to

“unhealthy” — of an individual increases exponentially with age. It therefore follows that,

the probability of maintaining good health decreases with age.

• The hazard rate is Gompertz Makeham and is health status dependent.

• Once the individual becomes sick, he remains in that state.

Assume a retiring individual currently aged 𝑥 invests a fraction 𝜋𝑡 of his wealth in a risky asset and

(1 − 𝜋𝑡) in a risk-less asset. The following describes the dynamics of the risky and risk-less assets.

Let 𝑆𝑡 be the stock price which follows a log-normal diffusion stochastic differential equation:

𝑑𝑆𝑡 = 𝑆𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡), 𝑆(0) = 𝑆0. (3.2.1)

Here, 𝜇 is the mean rate of return (constant drift coefficient), 𝜎 is the diffusive volatility and 𝐵𝑡 is

the continuous Brownian motion process. On the other hand, the risk-free asset is modelled as a

bond price, continuously compounded at a rate 𝑟:

𝑑𝑁𝑡 = 𝑟𝑁𝑡𝑑𝑡, 𝑁(0) = 𝑁0. (3.2.2)

A realistic problem is that of the investor starting in good health being suddenly faced with a

health shock. In anticipation of such an event he purchases medical insurance 𝐼𝑡 at the begin-

ning of his retirement, while still in optimal health. The goal of this purchase is to provide the

opportunity of offsetting future health shock expenses.

50



The individual’s health-contingent wealth dynamics can then be divided into two phases. In

particular, his portfolio wealth process at time 𝑡 follows the following SDE:

𝑑𝑊𝑡 =
⎧
⎪
⎨
⎪
⎩

𝜋𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡)𝑊𝑡 + (1 − 𝜋𝑡)𝑟𝑊𝑡𝑑𝑡 − 𝑐𝑡𝑑𝑡 − 𝐼𝑡𝑑𝑡; 𝜏𝑠 > 𝑡,

𝜋𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡)𝑊𝑡 + (1 − 𝜋𝑡)𝑟𝑊𝑡𝑑𝑡 − 𝑐𝑡𝑑𝑡; 𝜏𝑠 ≤ 𝑡,
(3.2.3)

where 𝜏𝑠 is the time the individual becomes ill, 𝑐𝑡 denotes the instantaneous consumption rate per

unit time, 𝐼𝑡 is the purchased health insurance at time 𝑡 < 𝜏𝑠. Here, 𝐵𝑡 is the Brownian motion

driving the wealth process. The wealth dynamics can be thought of as the sum of instantaneous

investment returns from the allocations to the risky (𝜋 𝑑𝑆𝑡

𝑆𝑡
) and risk-less ((1 − 𝜋)𝑑𝑁𝑡

𝑁𝑡
) assets, while

also subtracting the consumption (𝑐𝑡𝑑𝑡) and the health insurance amount (𝐼𝑡𝑑𝑡). As can be seen

in the above wealth process, the individual does not invest in insurance after becoming sick, but

continues to consume his wealth. At the instant the individual becomes sick, 𝑡 = 𝜏𝑠, there is

a jump in the wealth process due to a percentage of the premium paid to the health insurance

beneficiary as well as a downward jump in wealth due to the health costs. We will denote the

proportion of the insurance premium received at the time of the health shock by 𝛼. This health

insurance multiplier 𝛼 is a function of time. As mentioned before, we denote by 𝐼𝑡 the medical in-

surance premium payable per unit time. From the investor’s perspective, the insurance premium

consists of the actuarially fair premium. Similarly to life insurance, the medical insurance will

induce a health benefit (face value) once the consumer becomes sick. If he purchases 𝐼𝑡 dollars

in medical insurance, he will be entitled to 𝛼𝐼𝑡 = 𝐼𝑡

𝜂𝑥+𝑡
if he becomes sick at time 𝑡.

We denote the magnitude of the health costs by 𝜈. We assume that the distribution of this

jump is known. After the health decline we write the wealth process as follows:

𝑊𝜏+
𝑠

= 𝑊𝜏−
𝑠

+ 𝛼𝐼𝑡 − 𝜈. (3.2.4)
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The first jump of the Poisson process driving the jump in wealth due to the health costs and the

paid fraction of the health insurance occurs at the time the individual becomes sick. We also

assume that the Poisson process driving the health cost shock has an intensity 𝜂𝑥+𝑡, which can be

thought of as a deterministic function of time representing the rate at which the individual gets

sick.

3.2.1 Dynamic Programming Principle and the HJB

The object of the retiree is to choose a portfolio-consumption-health insurance strategy in such a

way as to maximize his conditional expected current value of the discounted utility of instanta-

neous consumption over an infinite time horizon. We formally state the consumer’s optimization

problem as follows. For an individual currently aged 𝑥 who is healthy and alive at time 𝑡, the op-

timal value function is defined as:

𝐽(𝑡, 𝑤) = max
{𝜋𝑠,𝑐𝑠,𝐼𝑠}

𝐸 [∫
T𝑥

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠)𝑑𝑠|𝑊𝑡 = 𝑤] , (3.2.5)

= max
{𝜋𝑠,𝑐𝑠,𝐼𝑠}

𝐸 [∫
∞

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠)1{𝐓𝑥>𝑠}𝑑𝑠|𝑊𝑡 = 𝑤] . (3.2.6)

where 𝐓𝑥 is a random variable representing the remaining lifetime for an individual aged 𝑥. We

also define the set on which the individual is alive by the following indicator function:

1{𝐓𝑥≥𝑡} =
⎧
⎪
⎨
⎪
⎩

1 when 𝐓𝑥 ≥ 𝑡,

0 when 𝐓𝑥 < 𝑡.
(3.2.7)

Assuming that there exists an optimal control law that satisfies the optimal value function (3.2.6)

and that the investor aged 𝑥 is healthy and alive at 𝑡, we divide the infinite time domain of the

52



optimization problem into [𝑡, 𝑡 + ℎ] and (𝑡 + ℎ, ∞) as follows:

𝐽(𝑡, 𝑤) = max
{𝜋𝑠,𝑐𝑠𝐼𝑠}

𝐸 [∫
𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠)1{𝐓𝑥>𝑠}𝑑𝑠|𝑊𝑡 = 𝑤]

+ max
{𝜋𝑠,𝑐𝑠,𝐼𝑠}

𝐸 [∫
∞

𝑡+ℎ
𝑒−𝜌𝑠𝑢(𝑐𝑠)1{𝐓𝑥>𝑠}𝑑𝑠|𝑊𝑡 = 𝑤] . (3.2.8)

Because wewish to introduce the health status risk into our problem, we define a random variable

𝐓ℎ𝑙
𝑥 which will represent the remaining healthy lifetime of an individual aged 𝑥. We assume that

the value function depends on the initial health status of the individual. We also define a health

shock as a jump in health status from ‘good’ (1) to ‘poor’ (0). Hence, taking the random health

status into consideration leads to the following optimization problem:

𝐽(𝑡, 𝑤) = max
{𝜋,𝑐𝑡,𝐼𝑡}

𝐸 [∫
𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠)1{𝐓ℎ𝑙

𝑥 >𝑠}𝑑𝑠|1{𝑡<𝐓ℎ𝑙
𝑥 <𝐓𝑥}] (3.2.9a)

+ max
{𝜋,𝑐𝑡,𝐼𝑡}

𝐸 [∫
𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠)1{𝐓ℎ𝑙

𝑥 <𝑠}𝑑𝑠|1{𝑡<𝐓ℎ𝑙
𝑥 <𝐓𝑥}] (3.2.9b)

+ max
{𝜋,𝑐𝑡,𝐼𝑡}

𝐸 [𝐸 [∫
∞

𝑡+ℎ
𝑒−𝜌𝑠𝑢(𝑐𝑠)1{𝐓ℎ𝑙

𝑥 >𝑠}𝑑𝑠|1{𝑡+ℎ<𝐓ℎ𝑙
𝑥 <𝐓𝑥}] |1{𝑡<𝐓ℎ𝑙

𝑥 <𝐓𝑥}] (3.2.9c)

+ max
{𝜋,𝑐𝑡,𝐼𝑡}

𝐸 [𝐸 [∫
∞

𝑡+ℎ
𝑒−𝜌𝑠𝑢(𝑐𝑠)1{𝐓ℎ𝑙

𝑥 <𝑠}𝑑𝑠|1{𝐓ℎ𝑙
𝑥 <𝑡+ℎ<𝐓𝑥}] |1{𝑡<𝐓ℎ

𝑥 <𝐓𝑥}] . (3.2.9d)

To explain the above components of our optimization problem, suppose that there is an agent

of age 𝑥. Equation (3.2.9a) represents the expectation that the individual is healthy and alive in

[𝑡, 𝑡 + ℎ) given he is healthy and alive at time 𝑡 (or equivalently at age 𝑥 + 𝑡). The term (3.2.9b)

shows the expectation that the individual is sick and alive in [𝑡, 𝑡+ℎ), given he is healthy and alive

at 𝑡. Term (3.2.9c) is the expectation that the individual remains healthy and alive in [𝑡 + ℎ, ∞)

given he is healthy and alive at 𝑡 and (𝑡 + ℎ). The term (3.2.9d) represents the expectation that the

individual remains sick and alive for the interval [𝑡 + ℎ, ∞) given he is sick and alive at (𝑡 + ℎ)

while healthy and alive at 𝑡.
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To model the value function with uncertain health status and the remaining lifetime of the

individual aged 𝑥, we also establish the following basic concepts and definitions. The conditional

probability of remaining healthy for 𝑡 more years provided he is healthy at age 𝑥 is:

𝑡𝑔𝑥 ∶= 𝑃 𝑟[𝐓ℎ𝑙
𝑥 > 𝑡] = 𝑒− ∫𝑡

0 𝜂𝑥+𝑢𝑑𝑢. (3.2.10)

The probability of remaining healthy is a decreasing function of time and 𝜂𝑥+𝑢 is the instantaneous

rate of getting sick at age 𝑥 + 𝑢. The conditional probability of getting sick before or at age 𝑥 + 𝑡

is represented by the cumulative density function (CDF) of 𝐓ℎ𝑙
𝑥 as follows:

𝐹𝑥(𝑡) ∶= 𝑃 𝑟[𝐓ℎ𝑙
𝑥 < 𝑡] = 1 − 𝑡𝑔𝑥 . (3.2.11)

Equivalently, the CDF can be written as:

𝐹𝑥(𝑡) = ∫
𝑡

0
𝑓𝑥(𝑢)𝑑𝑢, (3.2.12)

where 𝑓𝑥(𝑡) is the probability density function (PDF) of the random variable 𝐓ℎ𝑙
𝑥 . With the above

definitions, we can write:

𝑓𝑥(𝑡) = 𝜕
𝜕𝑡

(1 − 𝑡𝑔𝑥 ) = 𝜂𝑥+𝑡( 𝑡𝑔𝑥 ). (3.2.13)

Similarly, we present the definitions used for modelling the uncertain lifetime of a sick individual

and a healthy investor aged 𝑥. The following are the survival probabilities if the individual is in

poor health and in good health respectively:

𝑡𝑝
(0)
𝑥 = 𝑃 𝑟[𝐓0,𝑥 > 𝑡] = 𝑒− ∫𝑡

0 𝜆(0)
𝑥+𝑢𝑑𝑢, (3.2.14)

𝑡𝑝
(1)
𝑥 = 𝑃 𝑟[𝐓1,𝑥 > 𝑡] = 𝑒− ∫𝑡

0 𝜆(1)
𝑥+𝑢𝑑𝑢, (3.2.15)

where 𝐓0,𝑥 and 𝐓1,𝑥 are the random remaining lifetime of a sick and healthy individual aged 𝑥

respectively. Moreover, the instantaneous rates of death (hazard rates) for a sick and a healthy

individual aged 𝑥 + 𝑢 are 𝜆(0)
𝑥+𝑢 and 𝜆(1)

𝑥+𝑢 respectively.
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We note that the rate of becoming sick and the hazard rates of an individual aged 𝑥 + 𝑡 are

increasing functions of time. To simplify the computations, we will assume the following rela-

tionship between these rates. It is intuitive that a healthier investor has a higher probability of

survival than a sick investor. There are two possible extreme cases for selecting the rate of be-

coming sick. One case is such that it is the same or smaller than the rate of dying of a healthy

investor. On the other extreme, there is the case where the rate of becoming ill is in fact larger

or equal to the hazard rate of a sick individual. The relationship can be summarized as follows:

𝜂𝑥+𝑡 ≤ 𝜆(1)
𝑥+𝑡 ≤ 𝜆(0)

𝑥+𝑡, (3.2.16)

or

𝜆(1)
𝑥+𝑡 ≤ 𝜆(0)

𝑥+𝑡 ≤ 𝜂𝑥+𝑡. (3.2.17)

In our numerical results discussion, we will refer to (3.2.16) as case 1 and to (3.2.17) as case 2.

Another assumption is that 𝐓ℎ𝑙
𝑥 , 𝐓0,𝑥 and 𝐓1,𝑥 are continuous random variables which follow a

Gompertz-Makeham (GM) distribution. For the remainder of the chapter, we will assume for case

1 that 𝜂 = ̂𝛽𝜆(0), 𝜆(1) = 𝛽1𝜆(0), 𝜆(0) = 𝛽0𝜆(0), and ̂𝛽 + 𝛽1 = 𝛽0 = 1. For case 2 we have 𝜆(0) = 𝛽0𝜂,

𝜆(1) = 𝛽1𝜂, 𝜂 = ̂𝛽𝜂, where 𝛽0 + 𝛽1 = ̂𝛽 = 1. Here we dropped the subscript 𝑥 + 𝑡 to simplify the

notation.

Moreover, we assume that the hazard rate is associated with the Gompertz-Makeham (GM)

distribution. For a healthy individual we can write:

𝜆(1)
𝑥+𝑡 = 𝜃 + 𝐴1𝑒𝐵𝑡. (3.2.18)

Here, 𝐴1 = 1
𝑏
𝑒

𝑥−𝑚
𝑏 , 𝐵 = 1

𝑏
, 𝑚 is the median life span, 𝑥 is age, 𝑏 is the dispersion coefficient and

𝜃 is the component of death attributable to accidents. In our numerical computations, we ignore
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𝜃. One can see that the rate of health status decline is an increasing function of time causing the

previously defined health insurance multiplier 𝛼 to decrease with age.

For convenience of notation we will replace the conditional expectation 𝐸[⋅|𝑊𝑡 = 𝑤] by

𝐸𝑡,𝑤[⋅]. We can now arrive at our main problem’s value function using the dynamic programming

principle. First, after applying expectations to the indicator functions in equations (3.2.9a) to

(3.2.9d), we obtain the following probabilistic expression:

𝐽(𝑡, 𝑤) ≥ ∫
𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠) (∫

𝑠

𝑡
𝑃 𝑟(𝐓0,𝑥 > 𝑠 − 𝑣)𝑃 𝑟(𝐓1,𝑥 > 𝑣 − 𝑡)𝜂𝑥+𝑣𝑃 𝑟(𝐓ℎ𝑙

𝑥 > 𝑣)𝑑𝑣) 𝑑𝑠

(3.2.19a)

+ ∫
𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠)𝑃 𝑟(𝐓1,𝑥 > 𝑠 − 𝑡)𝑃 𝑟(𝐓ℎ𝑙

𝑥 > 𝑠 − 𝑡)𝑑𝑠 (3.2.19b)

+𝐸𝑡,𝑤 [∫
∞

𝑡+ℎ
𝑒−𝜌𝑠𝑢(𝑐𝑠)𝑃 𝑟(𝐓1,𝑥 > ℎ)𝑃 𝑟(𝐓ℎ𝑙

𝑥 > ℎ)𝑑𝑠] (3.2.19c)

+𝐸𝑡,𝑤 [∫
∞

𝑡+ℎ
𝑒−𝜌𝑠𝑢(𝑐𝑠) (∫

𝑡+ℎ

𝑡
𝑃 𝑟(𝐓0,𝑥 > 𝑡 + ℎ − 𝑣)𝑃 𝑟(𝐓1,𝑥 > 𝑣 − 𝑡)𝜂𝑥+𝑣𝑃 𝑟(𝐓ℎ𝑙

𝑥 > 𝑣)𝑑𝑣) 𝑑𝑠] .

(3.2.19d)

Equation (3.2.19a) describes that the individual has survived (𝑣−𝑡) while healthy and (𝑠−𝑣) while

sick with a transitional probability from healthy to sick given by the probability density function

of the remaining healthy lifetime random variable 𝑓𝑥(𝑣) = 𝜂𝑥+𝑣(1 − 𝐹𝑥(𝑣)). Mathematically we

write:

∫
𝑠

𝑡
𝑃 𝑟(𝐓0,𝑥 > 𝑠 − 𝑣)𝑃 𝑟(𝐓1,𝑥 > 𝑣 − 𝑡)𝜂𝑥+𝑣𝑃 𝑟(𝐓ℎ𝑙

𝑥 > 𝑣)𝑑𝑣 (3.2.20)

= ∫
𝑠

𝑡
(𝑒− ∫𝑠−𝑣

0 𝜆(0)
𝑥+𝑡+𝑢𝑑𝑢)(𝑒− ∫𝑣−𝑡

0 𝜆(1)
𝑥+𝑡+𝑢𝑑𝑢)𝑓𝑥(𝑣)𝑑𝑣. (3.2.21)

Equation (3.2.19b) says that the investor remains healthy and alive throughout the interval [𝑡, 𝑡 +
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ℎ):

∫
𝑠

𝑡
𝑃 𝑟(𝐓1,𝑥 > 𝑣 − 𝑡)𝑃 𝑟(𝐓ℎ𝑙

𝑥 > 𝑣 − 𝑡)𝑑𝑣 = 𝑃 𝑟(𝐓1,𝑥 > 𝑠 − 𝑡)𝑃 𝑟(𝐓ℎ𝑙
𝑥 > 𝑠 − 𝑡) (3.2.22)

= (𝑒− ∫𝑠−𝑡
0 𝜆(1)

𝑥+𝑡+𝑢𝑑𝑢)(𝑒− ∫𝑠−𝑡
0 𝜂𝑥+𝑡+𝑢𝑑𝑢). (3.2.23)

Equations (3.2.19c) and (3.2.19d) describe the states of the individual as it enters the time interval

[𝑡 + ℎ, ∞) which is conditional on his state in the previous interval [𝑡, 𝑡 + ℎ). We then summarize

the problem as follows:

𝐽(𝑡, 𝑤) ≥ ∫
𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠) (∫

𝑠

𝑡
𝜂𝑣+𝑥(𝑣−𝑡𝑔𝑥+𝑡 )(𝑣−𝑡𝑝

(1)
𝑥+𝑡 )( 𝑠−𝑣𝑝(0)

𝑥+𝑡 )𝑑𝑣) 𝑑𝑠 (3.2.24a)

+ ∫
𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠)( 𝑠−𝑡𝑔𝑥+𝑡 )( 𝑠−𝑡𝑝

(1)
𝑥+𝑡 )𝑑𝑠 (3.2.24b)

+ 𝐸𝑡,𝑤 [∫
∞

𝑡+ℎ
𝑒−𝜌𝑠𝑢(𝑐𝑠)(ℎ𝑔𝑥+𝑡 )(ℎ𝑝(1)

𝑥+𝑡 )𝑑𝑠] (3.2.24c)

+ 𝐸𝑡,𝑤 [∫
∞

𝑡+ℎ
𝑒−𝜌𝑠𝑢(𝑐𝑠) (∫

𝑡+ℎ

𝑡
𝜂𝑣+𝑥(𝑣−𝑡𝑔𝑥+𝑡 )(𝑣−𝑡𝑝

(1)
𝑥+𝑡 )( 𝑡+ℎ−𝑣𝑝(0)

𝑥+𝑡 )𝑑𝑣) 𝑑𝑠] . (3.2.24d)

In the above inequality the following states are described. The term (3.2.24a) reflects that the

individual is healthy and alive at time 𝑡, becomes sick but remains alive between (𝑡, 𝑠) and remains

sick during the time interval [𝑠, 𝑡 + ℎ]. The term (3.2.24b) describes the case when the individual

is healthy and alive at time 𝑡 and remains in that state throughout the interval [𝑡, 𝑡 + ℎ). The term

(3.2.24c) states that the individual is healthy and alive between [𝑡, 𝑡 + ℎ) and remains that way

for the remaining time [𝑡 + ℎ, ∞). Finally, expression (3.2.24d) is the case of a healthy and alive

individual at 𝑡, becoming sick between [𝑡, 𝑡 + ℎ) and remaining sick but alive for the remaining

time interval [𝑡 + ℎ, ∞]. Both expressions (3.2.24a) and (3.2.24d) use the PDF of the remaining

healthy lifetime defined in equation (3.2.13).

We see that the expected utility at time (𝑡+ℎ) is given by 𝐸𝑡,𝑤[𝐽 (0)(𝑡+ℎ, 𝑊̂𝑡+ℎ)] and 𝐸𝑡,𝑤[𝐽 (𝑡+

ℎ, 𝑊𝑡+ℎ)] if the individual is in poor and good health respectively. If the retiree starts out in poor
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health (superscript (0)), we assume that he does not jump back to a better health status. The

optimization for this case is:

𝐽 (0)(𝑡, 𝑊𝑡) = max
{𝜋,𝑐𝑡,𝐼𝑡}

𝐸 [∫
∞

𝑡
𝑒− ∫𝑣

0 (𝜆(0)
𝑥+𝑠+𝜌)𝑑𝑠𝑢(𝑐𝑣)𝑑𝑣| 𝑊𝑡 = 𝑤] . (3.2.25)

We see that the value function must satisfy:

𝐽(𝑡, 𝑤) ≥ ∫
𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠) (∫

𝑠

𝑡
𝜂𝑣+𝑥(𝑣−𝑡𝑔𝑥+𝑡 )(𝑣−𝑡𝑝

(1)
𝑥+𝑡 )( 𝑠−𝑣𝑝(0)

𝑥+𝑡 )𝑑𝑣) 𝑑𝑠

+ ∫
𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠)( 𝑠−𝑡𝑔𝑥+𝑡 )( 𝑠−𝑡𝑝

(1)
𝑥+𝑡 )𝑑𝑠

+ 𝐸𝑡,𝑤 [𝐽(𝑡 + ℎ, 𝑊𝑡+ℎ)(ℎ𝑔𝑥+𝑡 )(ℎ𝑝(1)
𝑥+𝑡 )]

+ 𝐸𝑡,𝑤 [𝐽 (0)(𝑡 + ℎ, 𝑊̂𝑡+ℎ) (∫
𝑡+ℎ

𝑡
𝜂𝑣+𝑥(𝑣−𝑡𝑔𝑥+𝑡 )(𝑣−𝑡𝑝

(1)
𝑥+𝑡 )( 𝑡+ℎ−𝑣𝑝(0)

𝑥+𝑡 )𝑑𝑣)] . (3.2.26)

Applying Itô’s Lemma and rearranging 3.2.26:

𝐽(𝑡, 𝑤)(1 − (ℎ𝑔𝑥+𝑡 )(ℎ𝑝(1)
𝑥+𝑡 )) ≥

∫
𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠) (∫

𝑠

𝑡
𝜂𝑣+𝑥+𝑡(𝑣−𝑡𝑔𝑥+𝑡 )(𝑣−𝑡𝑝

(1)
𝑥+𝑡 )( 𝑠−𝑣𝑝(0)

𝑥+𝑡 )𝑑𝑣) 𝑑𝑠

+ ∫
𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠)( 𝑠−𝑡𝑔𝑥+𝑡 )( 𝑠−𝑡𝑝

(1)
𝑥+𝑡 )𝑑𝑠

+ 𝐸𝑡,𝑤 [(ℎ𝑔𝑥+𝑡 )(ℎ𝑝(1)
𝑥+𝑡 ) ∫

𝑡+ℎ

𝑡
(ℒ𝐽𝑠)𝑑𝑠]

+ 𝐸𝑡,𝑤 [𝐽 (0)(𝑡 + ℎ, 𝑊̂𝑡+ℎ) (∫
𝑡+ℎ

𝑡
𝜂𝑣+𝑥+𝑡(𝑣−𝑡𝑔𝑥+𝑡 )(𝑣−𝑡𝑝

(1)
𝑥+𝑡 )( 𝑡+ℎ−𝑣𝑝(0)

𝑥+𝑡 )𝑑𝑣)] , (3.2.27)

where

ℒ𝐽𝑠 = 𝜕𝑠𝐽 + 𝜕𝑤𝐽[𝜋𝑤(𝜇 − 𝑟) + 𝑟𝑤 − 𝑐 − 𝐼] + (𝜋𝜎𝑤)2

2
𝜕2

𝑤𝐽 .

Next, we divide both sides of equation (3.2.27) by ℎ and take the limit as ℎ → 0. The following

approximations limℎ→0 ℎ𝑔𝑥+𝑡 → 1 and limℎ→0 ℎ𝑝𝑥+𝑡 → 1 are obtained at the leading term. The
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Fundamental Theorem of Calculus, limℎ→0
1
ℎ

∫𝑡+ℎ
𝑡 𝑓(𝑠)𝑑𝑠 = 𝑓(𝑡), is also applied. As a result, the

following limits as ℎ → 0 are obtained:

1 − (ℎ𝑔𝑥+𝑡 )(ℎ𝑝(1)
𝑥+𝑡 )

ℎ
→ 𝜆(1)

𝑥+𝑡 + 𝜂𝑥+𝑡, (3.2.28a)

1
ℎ ∫

𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠)( 𝑠−𝑡𝑔𝑥+𝑡 )( 𝑠−𝑡𝑝

(1)
𝑥+𝑡 )𝑑𝑠 → 𝑒−𝜌𝑡𝑢(𝑐𝑡), (3.2.28b)

1
ℎ ∫

𝑡+ℎ

𝑡
𝑒−𝜌𝑠𝑢(𝑐𝑠) (∫

𝑠

𝑡
𝜂𝑣+𝑥(𝑣−𝑡𝑔𝑥+𝑡 )(𝑣−𝑡𝑝

(1)
𝑥+𝑡 )( 𝑠−𝑣𝑝(0)

𝑥+𝑡 )𝑑𝑣) 𝑑𝑠 → 0, (3.2.28c)

1
ℎ ∫

𝑡+ℎ

𝑡
𝜂𝑣+𝑥(𝑣−𝑡𝑔𝑥+𝑡 )(𝑣−𝑡𝑝

(1)
𝑥+𝑡 )( 𝑡+ℎ−𝑣𝑝(0)

𝑥+𝑡 )𝑑𝑣 → 𝜂𝑥+𝑡, (3.2.28d)

(ℎ𝑔𝑥+𝑡 )(ℎ𝑝(1)
𝑥+𝑡 )

1
ℎ ∫

𝑡+ℎ

𝑡
(ℒ𝐽𝑠)𝑑𝑠 → ℒ𝐽𝑡. (3.2.28e)

We note that 𝑊̂𝑡+0 denotes the wealth level after the jump, which is assumed to be random, as

the cost of health care related to the jump in health status is uncertain. However, after the jump,

the wealth follows the same diffusion process.

We assume that the distribution of the health cost 𝜈 is known, with PDF denoted by 𝜙𝜈 . In

this case we have:

𝐸𝑡,𝑤 [𝐽 (0)(𝑡, 𝑊̂𝑡+0)] = ∫𝜈
𝐽 (0)(𝑡, 𝑤 − 𝜈 + 𝛼𝐼)𝜙𝜈𝑑𝜈. (3.2.29)

With the above approximations, equation (3.2.27) becomes:

(𝜆(1)
𝑥+𝑡 + 𝜂𝑥+𝑡)𝐽 ≥ 𝑒−𝜌𝑡𝑢(𝑐) + ℒ𝐽𝑡 + 𝜂𝑥+𝑡 ∫𝜈

𝐽 (0)(𝑡, 𝑤 − 𝜈 + 𝛼𝐼)𝜙𝜈𝑑𝜈, (3.2.30)

where

ℒ𝐽𝑡 = 𝜕𝑡𝐽 + 𝜕𝑤𝐽[𝜋𝑤(𝜇 − 𝑟) + 𝑟𝑤 − 𝑐 − 𝐼] + (𝜋𝜎𝑤)2

2
𝜕2

𝑤𝐽 . (3.2.31)

The equality holds when we take the optimal control:

(𝜆(1)
𝑥+𝑡 + 𝜂𝑥+𝑡)𝐽 = max

{𝑐,𝜋,𝐼,} {𝑒−𝜌𝑡𝑢(𝑐) + ℒ𝐽𝑡 + 𝜂𝑥+𝑡 ∫𝜈
𝐽 (0)(𝑡, 𝑤 − 𝜈 + 𝛼𝐼)𝜙𝜈𝑑𝜈} . (3.2.32)
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As we can see, the solution 𝐽 of equation (3.2.32) depends on the solution 𝐽 (0), the value function

corresponding to ‘poor’ health. The HJB for 𝐽 (0) can be derived in a similar fashion as:

𝜆(0)
𝑥+𝑡𝐽 (0) = max

{𝑐,𝜋} {𝑒−𝜌𝑡𝑢(𝑐) + ℒ𝐽 (0)
𝑡 } , (3.2.33)

where

ℒ𝐽 (0)
𝑡 = 𝜕𝑡𝐽 (0) + 𝜕𝑤𝐽 (0)[𝜋𝑤(𝜇 − 𝑟) + 𝑟𝑤 − 𝑐] + (𝜋𝜎𝑤)2

2
𝜕2

𝑤𝐽 (0). (3.2.34)

The optimal consumption rate 𝑐∗ and asset allocation 𝜋∗ are given by the first-order condi-

tions:

𝑒−𝜌𝑡𝑢′(𝑐∗) − 𝐽𝑤 = 0, (3.2.35)

𝜋∗𝜎2𝑤2𝐽𝑤𝑤 + (𝜇 − 𝑟)𝑤𝐽𝑤 = 0. (3.2.36)

which are applicable to both 𝐽 (0) and 𝐽 . From this point on, we will use a Constant Relative

Risk-Aversion (CRRA) utility, 𝑢(𝑐) = 𝑐1−𝛾 /(1 − 𝛾). When substituting the expressions for 𝑐∗ and

𝜋∗ into the HJB (3.2.33), we obtain the following highly nonlinear partial differential equation

(PDE):

𝜆(0)
𝑥+𝑡𝐽 (0) = 𝜕𝑡𝐽 (0) + 𝑟𝑤𝜕𝑤𝐽 (0) +

𝛾
1 − 𝛾

𝑒− 𝜌𝑡
𝛾 (𝜕𝑤𝐽 (0))1− 1

𝛾 −
(𝜇 − 𝑟)2

2𝜎2

(𝜕𝑤𝐽 (0))2

𝜕2
𝑤𝐽 (0)

, (3.2.37)

which has a terminal condition 𝐽 (0)(𝑇 , 𝑇 ) = 0. To find the optimal insurance 𝐼∗ from equation

(3.2.32), the following first order condition needs to be satisfied:

𝛼𝜂𝑥+𝑡 ∫𝜈
𝐽 (0)

𝑤 (𝑡, 𝑤 − 𝜈 + 𝛼𝐼∗)𝜙𝜈𝑑𝜈 − 𝐽𝑤(𝑡, 𝑤) = 0. (3.2.38)

The optimal consumption and asset allocation conditions are standard. The condition for optimal

insurance, on the other hand, is quite different. It is an implicit equation which involves both
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differentiation and integration. In general, we anticipate that the solution has to be obtained

numerically. Before we develop numerical algorithms to solve the optimal control problem, the

distribution of health care cost needs to be modelled.

3.2.2 Solution Methodology for 𝐽 (0)(𝑡, 𝑤)

Under CRRA utility, we can obtain 𝐽 (0)(𝑡, 𝑤) of equation (3.2.33) explicitly. In particular, we

assume it has the following form:

𝐽 (0)(𝑡, 𝑤) = ℎ(𝑡; 𝑇 ) 𝑤1−𝛾

1 − 𝛾
, (3.2.39)

where ℎ(𝑡; 𝑇 ) will satisfy the following ordinary differential equation (ODE):

ℎ′

ℎ
+ 𝛾(𝑒𝜌𝑡ℎ)

−1
𝛾 + 𝐶 − 𝜆(0)

𝑥+𝑡 = 0, (3.2.40)

where

𝐶 =
(𝜇 − 𝑟)2(1 − 𝛾)

2𝜎2𝛾
+ 𝑟(1 − 𝛾), (3.2.41)

𝜆(0)
𝑥+𝑡 = 𝜃 + 𝐴𝑒𝐵𝑡. (3.2.42)

As previously described, the hazard rate is associated with the Gompertz-Makeham (GM) dis-

tribution and 𝐴 = 𝛽0

𝑏
𝑒

𝑥−𝑚
𝑏 , 𝐵 = 1

𝑏
, where 𝑚 is the median life span, 𝑥 is age, 𝑏 is the dispersion

coefficient and 𝜃 is the component of death attributable to accidents. The factor 𝛽0 is the weight

in case 1 (3.2.16) or case 2 (3.2.17).

We aim to find the solution of equation (3.2.40) with terminal condition ℎ(𝑇 ; 𝑇 ) = 0. We let

ℎ = 𝑧−𝛾 . Then with the substitution ℎ′ = −𝛾𝑧−𝛾−1𝑧 equation (3.2.40) reduces to:

𝑧′ − 𝑒− 𝜌𝑡
𝛾 𝑧2 + (

−𝐶 + 𝜆(0)
𝑥+𝑡

𝛾
)𝑧 = 0. (3.2.43)
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Then we let 𝜓 = 𝑧−1 and equation (3.2.43) becomes:

𝜓 ′ − 𝑓(𝑡)𝜓 + 𝑔(𝑡) = 0, (3.2.44)

where

𝑔(𝑡) = 𝑒− 𝜌𝑡
𝛾 , (3.2.45)

𝑓(𝑡) =
−𝐶 + 𝜆(0)

𝑥+𝑡

𝛾
. (3.2.46)

We multiply both sides of equation (3.2.44) by the integrating factor 𝜁 = 𝑒∫ −𝑓(𝑡)𝑑𝑡 = 𝑒
𝐶𝑡
𝛾 − 𝐴𝑒𝐵𝑡

𝐵𝛾 . We

follow this operation by integrating both sides from time 𝑡 to terminal time 𝑇 :

∫
𝑇

𝑡
𝑑(𝜓(𝑠)𝑒

𝐶𝑠
𝛾 − 𝐴𝑒𝐵𝑠

𝐵𝛾 ) = − ∫
𝑇

𝑡
𝑒

𝐶−𝜌
𝛾 𝑠− 𝐴𝑒𝐵𝑠

𝐵𝛾 𝑑𝑠. (3.2.47)

Using the terminal condition 𝜓(𝑇 ; 𝑇 ) = 0, we obtain an explicit solution of equation (3.2.44):

𝜓(𝑡; 𝑇 ) = (∫
𝑇

𝑡
𝑒

𝐶−𝜌
𝛾 𝑠− 𝐴𝑒𝐵𝑠

𝐵𝛾 𝑑𝑠) 𝑒− 𝐶𝑡
𝛾 + 𝐴𝑒𝐵𝑡

𝐵𝛾 . (3.2.48)

We obtain the solution of the ODE (3.2.40) through the substitution ℎ(𝑡; 𝑇 ) = (𝜓(𝑡; 𝑇 ))𝛾 :

ℎ(𝑡; 𝑇 ) = (∫
𝑇

𝑡
𝑒

𝐶−𝜌
𝛾 𝑠− 𝐴𝑒𝐵𝑠

𝐵𝛾 𝑑𝑠)

𝛾

𝑒−𝐶𝑡+ 𝐴𝑒𝐵𝑡

𝐵 . (3.2.49)

Proof. We show that the solution of the ODE (3.2.40) is given by (3.2.49). It can be easily verified

that by applying the Leibniz Rule we obtain:

𝑑
𝑑𝑡 (∫

𝑇

𝑡
𝑒

𝐶−𝜌
𝛾 𝑠− 𝐴𝑒𝐵𝑠

𝐵𝛾 𝑑𝑠) = −𝑒
𝐶−𝜌

𝛾 𝑡− 𝐴𝑒𝐵𝑡

𝐵𝛾 . (3.2.50)

After some algebraic manipulations, we also obtain:

ℎ′

ℎ
=

−𝛾𝑒
𝐶−𝜌

𝛾 𝑡− 𝐴𝑒𝐵𝑡

𝐵𝛾

(∫𝑇
𝑡 𝑒

𝐶−𝜌
𝛾 𝑠− 𝐴𝑒𝐵𝑠

𝐵𝛾 𝑑𝑠)

+ 𝐴𝑒𝐵𝑡 − 𝐶. (3.2.51)
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Moreover,

𝛾𝑒− 𝜌𝑡
𝛾 ℎ− 1

𝛾 = 𝛾𝑒− 𝜌𝑡
𝛾

(∫
𝑇

𝑡
𝑒

𝐶−𝜌
𝛾 𝑠− 𝐴𝑒𝐵𝑠

𝐵𝛾 𝑑𝑠)

−1

𝑒
𝐶𝑡
𝛾 − 𝐴𝑒𝐵𝑡

𝐵𝛾 . (3.2.52)

Substituting (3.2.51) and (3.2.52) into the ODE (3.2.40), we obtain the desired conclusion that

equation (3.2.49) is indeed the correct solution.

Since equation (3.2.49) contains a non-elementary integral, wewill approximate it numerically

by Simpson’s Rule. This we do by using the MATLAB defined function quad which approximates

the integral function within an error of 10−6 by applying a recursive adaptive Simpson quadrature

algorithm.

We can write the solution (3.2.49) in terms of the incomplete gamma function. A series

of mathematical manipulations with a change of variable give the desired form. We write the

nonelementary integral function as:

∫
𝑇

𝑡
𝑒

𝐶−𝜌
𝛾 𝑠− 𝐴𝑒𝐵𝑠

𝐵𝛾 𝑑𝑠 = ∫
∞

𝑡
𝑒

𝐶−𝜌
𝛾 𝑠− 𝐴𝑒𝐵𝑠

𝐵𝛾 𝑑𝑠 − ∫
∞

𝑇
𝑒

𝐶−𝜌
𝛾 𝑠− 𝐴𝑒𝐵𝑠

𝐵𝛾 𝑑𝑠 (3.2.53)

= ∫
∞

𝑡
𝑒− ̂𝑎𝑠− ̂𝑏𝑒𝐵𝑠

𝑑𝑠 − ∫
∞

𝑇
𝑒− ̂𝑎𝑠− ̂𝑏𝑒𝐵𝑠

𝑑𝑠 (3.2.54)

= 1

𝐵( ̂𝑏)
− ̂𝑎
𝐵

(∫
∞

̂𝑏𝑒𝐵𝑡
𝑤− ̂𝑎

𝐵 −1𝑒−𝑤𝑑𝑤 − ∫
∞

̂𝑏𝑒𝐵𝑇
𝑤− ̂𝑎

𝐵 −1𝑒−𝑤𝑑𝑤) (3.2.55)

= 𝐵−1
(

𝐴
𝐵𝛾 )

𝜌−𝐶
𝐵𝛾

(Γ (
𝜌 − 𝐶

𝐵𝛾
, 𝐴𝑒𝐵𝑡

𝐵𝛾 ) − Γ (
𝜌 − 𝐶

𝐵𝛾
, 𝐴𝑒𝐵𝑇

𝐵𝛾 )) ,

(3.2.56)

where ̂𝑎 = 𝜌−𝐶
𝛾

and ̂𝑏 = 𝐴
𝐵𝛾

. Moreover, we also used the change of variable 𝑤 = ̂𝑏𝑒𝐵𝑠 and

the incomplete gamma function Γ(𝑛, 𝑐) = ∫∞
𝑐 𝑒−𝑡𝑡−𝑛−1𝑑𝑡. Using expression (3.2.56), we rewrite

63



(3.2.49):

ℎ(𝑡; 𝑇 ) = (𝑒−𝐶𝑡+ 𝐴𝑒𝐵𝑡

𝐵
) ⋅ 𝐵−𝛾

(
𝐴

𝐵𝛾 )

𝜌−𝐶
𝐵

(Γ (
𝜌 − 𝐶

𝐵𝛾
, 𝐴𝑒𝐵𝑡

𝐵𝛾 ) − Γ (
𝜌 − 𝐶

𝐵𝛾
, 𝐴𝑒𝐵𝑇

𝐵𝛾 ))

𝛾

. (3.2.57)

As an additional check for our calculations, we solve the following transformed ODE (3.2.40)

numerically as well, with a first order backward time discretization:

𝑢′ + 𝐶 − 𝐴𝑒𝐵𝑡

𝛾
𝑢 + 𝑒− 𝜌𝑡

𝛾 = 0; 𝑢(𝑇 ; 𝑇 ) = 0, (3.2.58)

where ℎ = 𝑢𝛾 . We expect the numerical scheme solution to converge to the explicit solution

(3.2.49). The results are discussed in Section 3.4.3.

Note that if we ignore the instantaneous force of mortality, equation (3.2.49) reduces to the

result observed by Huang and Milevsky (2008):

ℎ(𝑡; 𝑇 ) = 𝑒−𝜌𝑡(𝑒𝜉(𝑇 −𝑡) − 1)𝛾

𝜉𝛾 , (3.2.59)

where 𝜉 = 𝐶−𝜌
𝛾

. This result will provide a benchmark for our solutions with or without mortality

risk considerations.

Finally, the value function 𝐽 (0) is given by:

𝐽 (0)(𝑡, 𝑤) = (𝑒−𝐶𝑡+ 𝐴𝑒𝐵𝑡

𝐵
) ⋅ 𝐵−𝛾

(
𝐴

𝐵𝛾 )

𝜌−𝐶
𝐵

⋅ (Γ (
𝜌 − 𝐶

𝐵𝛾
, 𝐴𝑒𝐵𝑡

𝐵𝛾 ) − Γ (
𝜌 − 𝐶

𝐵𝛾
, 𝐴𝑒𝐵𝑇

𝐵𝛾 ))

𝛾 𝑤1−𝛾

1 − 𝛾
. (3.2.60)

In the numerical results section, we compare our numerical scheme for solving equation (3.2.58)

with the approximation of the explicit solution (3.2.60).

3.2.3 Solution Methodology for 𝐽(𝑡, 𝑤)

In this section, we examine a special case, where the health cost amplitude is uniformly dis-

tributed. We also make the assumption that the optimal insurance is proportional to the wealth.
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To illustrate how the first order condition for the health insurance can be utilized, we consider

a special case where the health cost 𝜈 has uniform distribution within the interval [0, 𝜈𝑚]. The

probability density function (PDF) of the amplitude is 𝜙𝜈 = 1
𝜈𝑚
. We also assume that the health

cost is capped by the wealth 𝑤, the first order condition for the optimal insurance premium 𝐼∗

can be written:
𝛼𝜂𝑥+𝑡

𝜈𝑚 ∫
𝑤

0
𝐽 (0)

𝑤 (𝑡, 𝑤 − 𝜈 + 𝛼𝐼∗)𝑑𝜈 = 𝐽𝑤(𝑡, 𝑤), (3.2.61)

which can be simplified as

𝛼𝜂𝑥+𝑡

𝜈𝑚
(𝐽 (0)(𝑡, 𝑤 + 𝛼𝐼∗) − 𝐽 (0)(𝑡, 𝛼𝐼∗)) = 𝐽𝑤(𝑡, 𝑤). (3.2.62)

This is still an implicit equation of 𝐼∗ as a function of 𝑤 but is much simpler than the general

condition. For other health cost distributions, however, numerical integration will be required to

find 𝐼∗.

Next, we show that when 𝜈𝑚 = 𝑤, a closed form solution for 𝐽(𝑡, 𝑤) can also be obtained. To

this end, for CRRA utility, we assume the analytic form:

𝐽(𝑡, 𝑤) = 𝑘(𝑡; 𝑇 ) 𝑤1−𝛾

1 − 𝛾
. (3.2.63)

Then we have 𝜕𝑤𝐽 = 𝑘𝑤−𝛾 , 𝜕2
𝑤𝐽 = −𝛾𝑘𝑤−𝛾−1 and 𝜕𝑡𝐽 = 𝑘′ 𝑤1−𝛾

1−𝛾
. We also assume that the optimal

insurance premium is proportional to the wealth. We can write 𝐼∗ = 𝑝∗(𝑡)𝑤, where 𝑝∗(𝑡) is a

function of time only, satisfying the first order condition:

𝛼𝜂𝑥+𝑡

𝜈𝑚
(𝐽 (0)(𝑡, 𝑤 + 𝛼𝑝𝑤) − 𝐽 (0)(𝑡, 𝛼𝑝𝑤)) = 𝐽𝑤(𝑡, 𝑤). (3.2.64)

Substituting 𝐽 (0)(𝑡, 𝑤) = ℎ(𝑡; 𝑇 )𝑤1−𝛾

1−𝛾
in equation (3.2.64) we obtain an implicit equation for 𝑝(𝑡):

(1 + 𝛼𝑝)1−𝛾 − (𝛼𝑝)1−𝛾 =
𝑘(𝑡; 𝑇 )(1 − 𝛾)
𝛼𝜂𝑥+𝑡ℎ(𝑡; 𝑇 )

. (3.2.65)
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We substitute the controls 𝑐∗ = 𝑒− 𝜌𝑡
𝛾 𝑘− 1

𝛾 𝑤, 𝜋∗ = 𝜇−𝑟
𝜎2𝛾

and 𝐼∗ = 𝑝∗(𝑡)𝑤 into equation (3.2.32)

and obtain:

(𝜆(1)
𝑥+𝑡 + 𝜂𝑥+𝑡)𝐽 = 𝑒−𝜌𝑡𝑢(𝑐∗) + ℒ∗𝐽𝑡 + 𝜂𝑥+𝑡 ∫𝜈

𝐽 (0)(𝑡, 𝑤 − 𝜈 + 𝛼𝐼∗)𝜙𝜈𝑑𝜈, (3.2.66)

where

ℒ∗𝐽𝑡 = 𝜕𝑡𝐽 + 𝜕𝑤𝐽[𝜋∗𝑤(𝜇 − 𝑟) + 𝑟𝑤 − 𝑐∗ − 𝐼∗] + (𝜋∗𝜎𝑤)2

2
𝜕2

𝑤𝐽 . (3.2.67)

Making use of 𝐽(𝑡, 𝑤) = 𝑘(𝑡; 𝑇 )𝑤1−𝛾

1−𝛾
, equation (3.2.66) becomes:

𝜆(1)
𝑥+𝑡 + 𝜂𝑥+𝑡 = 𝑘′

𝑘
+ 𝛾𝑒− 𝜌𝑡

𝛾 𝑘− 1
𝛾 +

(𝜇 − 𝑟)2(1 − 𝛾)
2𝜎2𝛾

+ (𝑟 − 𝑝)(1 − 𝛾)

+
𝜂𝑥+𝑡ℎ(𝑡; 𝑇 )

(2 − 𝛾)𝑘(𝑡; 𝑇 )
[(1 + 𝛼𝑝)2−𝛾 − (𝛼𝑝)2−𝛾]. (3.2.68)

Equations (3.2.65) and (3.2.68) form a system of coupled differential-algebraic equations (DAEs),

which can be solved numerically for the two unknowns 𝑘(𝑡; 𝑇 ) and 𝑝(𝑡). By letting 𝑘 = 𝑣𝛾 and

using the optimal controls, we rewrite the DAE system as follows:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(𝜇 − 𝑟) − 𝛾𝜋∗𝜎2 = 0,

(1 + 𝛼𝑝∗)1−𝛾 − (𝛼𝑝∗)1−𝛾 =
𝑣𝛾(1 − 𝛾)

𝛼ℎ𝜂𝑥+𝑡
,

𝑣′ + 𝑣
𝐶1(𝑝∗, 𝜋∗) + 𝐷(𝑝∗) − 𝜆(1)

𝑥+𝑡 − 𝜂𝑥+𝑡

𝛾
+ 𝑒− 𝜌𝑡

𝛾 = 0, 𝑣(𝑇 ; 𝑇 ) = 0,

(3.2.69)

where:

𝐷(𝑝∗) =
((1 + 𝛼𝑝∗)2−𝛾 − (𝛼𝑝∗)2−𝛾)(1 − 𝛾)

𝛼((1 + 𝛼𝑝∗)1−𝛾 − (𝛼𝑝∗)1−𝛾)(2 − 𝛾)
, (3.2.70)

𝐶1(𝑝∗, 𝜋∗) = (𝜋∗(𝜇 − 𝑟) + 𝑟 −
𝛾(𝜎𝜋∗)2

2
− 𝑝∗)(1 − 𝛾). (3.2.71)
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3.3 A Jump-Diffusion Investment Model under Health Shocks

Let 𝑆𝑡 be the stock price which follows a log-normal jump-diffusion SDE:

𝑑𝑆𝑡 = 𝑆𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡 + 𝜈1𝑑𝑃𝑡), 𝑆(0) = 𝑆0. (3.3.1)

Here, 𝜇 is the mean return rate (constant drift coefficient), 𝜎 is the diffusive volatility and 𝐵𝑡

is the continuous Brownian motion process. The only difference between equation (3.3.1) and

the simple diffusion stock price dynamics considered previously, is the random jump-amplitude

𝜈1(𝑞) and the discontinuous one dimensional Poisson process 𝑃𝑡 with a constant jump-rate 𝜆𝐽 .

We assume that the random jump-amplitude 𝜈1(𝑞) depends on the distribution of the jump-mark

variable 𝑞 which is assumed to be normally distributed with mean 𝜇𝑞 and variance 𝜎2
𝑞 . Before

discussing our choice of mark distribution we will transform the stock price SDE to an SDE of

log-returns:

𝑑(ln 𝑆𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡 + 𝜈1𝑑𝑃𝑡. (3.3.2)

By letting 𝐹 (𝑆𝑡) = ln 𝑆𝑡 and assuming that it is twice differentiable in 𝑆𝑡, we apply the following

Itô stochastic chain rule for jump-diffusion processes:

𝑑𝐹 (𝑆𝑡) = (𝑆𝑡𝜇𝜕𝑠𝐹 (𝑆𝑡) + 1
2

𝜎2𝑆2
𝑡 𝜕2

𝑠 𝐹 (𝑆𝑡))𝑑𝑡 + (𝑆𝑡𝜎𝜕𝑠𝐹 (𝑆𝑡))𝑑𝐵𝑡

+ (𝐹 (𝑆𝑡 + 𝜈1𝑆𝑡) − 𝐹 (𝑆𝑡))𝑑𝑃𝑡. (3.3.3)

Since 𝜕𝑠𝐹 (𝑆𝑡) = 1
𝑆𝑡

and 𝜕2
𝑠 𝐹 (𝑆𝑡) = − 1

𝑆2
𝑡
, we obtain:

𝑑𝐹 (𝑆𝑡) = (𝜇 − 𝜎2

2
)𝑑𝑡 + 𝜎𝑑𝐵𝑡 + ln(1 + 𝜈1(𝑞)). (3.3.4)

The log-return jump-amplitude is then the logarithm of the relative post-jump amplitude given

by 𝑞 = ln(1 + 𝜈1(𝑞)). The inverse is given by 𝜈1(𝑞) = 𝑒𝑞 − 1. The probability density function for
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the jump-marks 𝑞 is then given by:

𝜙𝑞 = 𝑒
−(𝑞−𝜇𝑞)2

2𝜎2
𝑞

√2𝜋𝜎2
𝑞

. (3.3.5)

The retiree also invests in the risk-free asset which is modelled as before:

𝑑𝑁𝑡 = 𝑟𝑁𝑡𝑑𝑡, 𝑁(0) = 𝑁0. (3.3.6)

In turn, the wealth dynamics is given by:

𝑑𝑊𝑡 =
⎧
⎪
⎨
⎪
⎩

𝜋𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡)𝑊𝑡 + (1 − 𝜋𝑡)𝑟𝑊𝑡𝑑𝑡 + 𝜈1𝑊𝑡𝑑𝑃𝑡 − 𝑐𝑡𝑑𝑡 − 𝐼𝑡𝑑𝑡; 𝜏𝑠 > 𝑡,

𝜋𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡)𝑊𝑡 + (1 − 𝜋𝑡)𝑟𝑊𝑡𝑑𝑡 + 𝜈1𝑊𝑡𝑑𝑃𝑡 − 𝑐𝑡𝑑𝑡; 𝜏𝑠 ≤ 𝑡,
(3.3.7)

Moreover, if 𝜈2 is the wealth jump-amplitude due to the health shock, we recall that the change

in wealth is given by:

𝑊𝜏+
𝑠

= 𝑊𝜏−
𝑠

+ 𝛼𝐼𝑡 − 𝜈2. (3.3.8)

Deriving the HJB equation for this problem is done as in Section 2.2 with the exception that we

now apply the Itô stochastic chain rule as in Hanson (2007). We obtain the following:

(𝜆(1)
𝑥+𝑡 + 𝜂𝑥+𝑡)𝐽 = 𝑒−𝜌𝑡𝑢(𝑐∗) + 𝒜 ∗𝐽𝑡 + 𝜂𝑥+𝑡 ∫𝜈2

𝐽 (0)(𝑡, 𝑤 − 𝜈2 + 𝛼𝐼∗)𝜙𝜈2
𝑑𝜈2, (3.3.9)

where

𝒜 ∗𝐽𝑡 = 𝜕𝑡𝐽 + 𝜕𝑤𝐽[𝜋∗𝑤(𝜇 − 𝑟) + 𝑟𝑤 − 𝑐∗ − 𝐼∗] + (𝜋∗𝜎𝑤)2

2
𝜕2

𝑤𝐽

+ 𝜆𝐽 ∫
∞

−∞
{𝐽(𝑡, (1 + 𝜈1𝜋∗)𝑤) − 𝐽(𝑡, 𝑤)}𝜙𝑞𝑑𝑞. (3.3.10)

As before, the solution to equation (3.3.9) depends on the value function of the sick individual

given by:

(𝜆(0)
𝑥+𝑡)𝐽 (0) = 𝑒−𝜌𝑡𝑢(𝑐∗) + 𝒜 ∗

0 𝐽 (0)
𝑡 , (3.3.11)
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where

𝒜 ∗
0 𝐽 (0)

𝑡 = 𝜕𝑡𝐽 (0) + 𝜕𝑤𝐽 (0)[𝜋∗𝑤(𝜇 − 𝑟) + 𝑟𝑤 − 𝑐∗] + (𝜋∗𝜎𝑤)2

2
𝜕2

𝑤𝐽 (0)

+ 𝜆𝐽 ∫
∞

−∞
{𝐽 (0)(𝑡, (1 + 𝜈1𝜋∗)𝑤) − 𝐽 (0)(𝑡, 𝑤)}𝜙𝑞𝑑𝑞. (3.3.12)

We require that the wealth 𝑤 > 0, which means that for 0 < 𝜋 < 1, the jump-amplitude is

1 + 𝜈1 ≥ 0. We will choose −1 < 𝜈1 < ∞ such that a jump does not cause the underlying

to vanish. Since 𝜈1 > −1 we can let the jump-mark process be the log-return jump-amplitude

𝑞 = ln(1 + 𝜈1(𝑞)). We proceed in solving the value function of the sick individual as follows in

the next section.

3.3.1 Solution Methodology for 𝐽 (0)(𝑡, 𝑤): Jump-Diffusion Setup

We assume as before that 𝐽 (0) = ℎ(𝑡; 𝑇 )𝑤1−𝛾

1−𝛾
, which leads to the following optimal controls:

𝑐∗ = 𝑒− 𝜌𝑡
𝛾 ℎ− 1

𝛾 𝑤, (3.3.13)

𝛾𝜋∗𝜎2 − 𝜆𝐽 ∫
∞

−∞
𝜈1(1 + 𝜈1𝜋∗)−𝛾𝜙𝑞𝑑𝑞 = (𝜇 − 𝑟). (3.3.14)

As we showed, the optimal insurance allocation fraction 𝜋∗ is the solution of an implicit integro-

algebraic equation (3.3.14). To find the value function we now need to solve the following system

of coupled integro-differential-algebraic equations (IDAEs):

⎧⎪
⎪
⎨
⎪
⎪⎩

(𝜇 − 𝑟) − 𝛾𝜋∗𝜎2 + 𝜆𝐽 ∫
∞

−∞
𝜈1(1 + 𝜈1𝜋∗)−𝛾𝜙𝑞𝑑𝑞 = 0,

ℎ′

ℎ
+ 𝛾𝑒− 𝜌𝑡

𝛾 ℎ− 1
𝛾 + 𝜁(𝜋∗) + 𝜆𝐽 ∫

∞

−∞
[(1 + 𝜈1𝜋∗)1−𝛾 − 1]𝜙𝑞𝑑𝑞 − 𝜆(0)

𝑥+𝑡 = 0,
(3.3.15)

where

𝜁(𝜋∗) = [𝜋∗(𝜇 − 𝑟) + 𝑟](1 − 𝛾) −
𝛾(1 − 𝛾)𝜎2(𝜋∗)2

2
. (3.3.16)
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First, we apply the following change of variable 𝑧 = 𝑞−𝜇𝑞

√2𝜎𝑞
in the integrals. We rewrite them

as follows:

𝐼1(𝜋∗) = ∫
∞

−∞
𝜈1(1 + 𝜈1𝜋∗)−𝛾𝜙𝑞𝑑𝑞 (3.3.17)

= 1
√𝜋 ∫

∞

−∞
𝑓(𝑧, 𝜋∗)𝑒−𝑧2

𝑑𝑧, (3.3.18)

where 𝑓(𝑧, 𝜋∗) = [(1−𝜋∗)+𝜋∗𝑒𝜇𝑞+𝜎𝑞√2𝑧]−𝛾(𝑒𝜇𝑞+𝜎𝑞√2𝑧 −1). It is to be noted here that in this section

𝜋 in equation (3.3.18) should not be confused with the allocation ratio 𝜋∗. We also write:

𝐼2(𝜋∗) = ∫
∞

−∞
[(1 + 𝜈1𝜋∗)1−𝛾 − 1]𝜙𝑞𝑑𝑞 (3.3.19)

= 1
√𝜋 ∫

∞

−∞
𝑔(𝑧, 𝜋∗)𝑒−𝑧2

𝑑𝑧, (3.3.20)

where 𝑔(𝑧, 𝜋∗) = [(1 − 𝜋∗) + 𝜋∗𝑒𝜇𝑞+𝜎𝑞√2𝑧]1−𝛾 − 1.

The new integral forms allow us to apply a variation of the Gauss-Hermite quadrature with

three nodes {𝑧1, 𝑧2, 𝑧3} = {−√3, 0, √3} and weights {𝑤1, 𝑤2, 𝑤3} = { 1
6
, 2

3
, 1

6
}. In Hanson and

Westman (2002) it was observed that this choice of nodes and weights results in a fifth degree

polynomial precision. The final integral approximations are:

𝐼1(𝜋∗) ≈
3

∑
𝑖

𝑤𝑖𝑓(𝑧𝑖, 𝜋∗), (3.3.21)

𝐼2(𝜋∗) ≈
3

∑
𝑖

𝑤𝑖𝑔(𝑧𝑖, 𝜋∗). (3.3.22)

After applying the three point Gauss-Hermite quadrature we reduce the system (3.3.15) to:

⎧⎪
⎪
⎨
⎪
⎪⎩

(𝜇 − 𝑟) − 𝛾𝜋∗𝜎2 +
𝜆𝐽

√𝜋
{1

6
𝑓(−√3, 𝜋∗) + 2

3
𝑓(0, 𝜋∗) + 1

6
𝑓(√3, 𝜋∗)} = 0,

ℎ′

ℎ
+ 𝛾𝑒− 𝜌𝑡

𝛾 ℎ− 1
𝛾 + 𝜁(𝜋∗) +

𝜆𝐽

√𝜋
{1

6
𝑔(−√3, 𝜋∗) + 2

3
𝑔(0, 𝜋∗) + 1

6
𝑔(√3, 𝜋∗)} − 𝜆(0)

𝑥+𝑡 = 0.

(3.3.23)

70



A further transformation ℎ = 𝑢𝛾 takes us to the following system, which was then implemented

numerically with a first order forward discretization of time:

⎧⎪
⎪
⎨
⎪
⎪⎩

(𝜇 − 𝑟) − 𝛾𝜋∗𝜎2 +
𝜆𝐽

√𝜋
𝐹 (𝜋∗) = 0,

𝑢′ + 𝑢𝑅(𝜋∗, 𝑡) + 𝑒− 𝜌𝑡
𝛾 = 0, 𝑢(𝑇 ; 𝑇 ) = 0,

(3.3.24)

where

𝐹 (𝜋∗) = 1
6

𝑓(−√3, 𝜋∗) + 2
3

𝑓(0, 𝜋∗) + 1
6

𝑓(√3, 𝜋∗), (3.3.25)

𝑅(𝜋∗, 𝑡) =
𝜁(𝜋∗) + 𝜆𝐽

√𝜋
{ 1

6
𝑔(−√3, 𝜋∗) + 2

3
𝑔(0, 𝜋∗) + 1

6
𝑔(√3, 𝜋∗)} − 𝜆(0)

𝑥+𝑡

𝛾
. (3.3.26)

We note that the optimal risky asset allocation does not depend on the health status, mortality

or health risk of the investor. We solved the optimal allocation for a sick individual by both the

Gauss-Hermite approximation (𝜋∗) of the integral and by the MATLAB function quadgk, which

is an adaptive Gauss-Kronrod quadrature approximation (𝜋∗
𝑔𝑘) . The results are comparable and

are summarized in Table 3.1. We notice that the pattern of investment is maintained i.e. the

more risk-averse an individual is, the smaller the risky asset allocation. For a more risk-tolerant

investor it is always optimal to invest all the wealth in the risky asset (𝜋∗ = 𝜋∗
𝑔𝑘 = 1). For

comparison purposes, we also included 𝜋∗
𝑑 , which is the allocation fraction when the returns

follow a GBM process. Subscript 𝑑 denotes diffusion. Here we took 𝜆𝐽 = 0.006 (𝜆𝐽 = 0 for the

pure diffusion case) and fixed 𝜇 = 0.07, 𝜎 = 0.2 and 𝑟 = 0.03.

3.3.2 Solution Methodology for 𝐽(𝑡, 𝑤): Jump-Diffusion Setup

In a similar fashion as the derivation of the value function of a sick individual, we can derive

a system of IDAEs for a healthy investor. The only difference is due to the additional implicit
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𝛾 8 5 3 1.5 0.5 0.2

𝜋∗ 0.1580 0.2500 0.4180 0.8380 1.0000 1.0000

𝜋∗
𝑔𝑘 0.1575 0.2520 0.4200 0.8396 0.9991 1.0000

𝜋∗
𝑑 0.1562 0.2500 0.4167 0.8328 0.9990 1.0000

Table 3.1: Comparison of optimal allocation for the Gauss-Hermite and Gauss-Kronrod meth-
ods.

equation for the optimal health insurance. The optimal consumption is standard:

𝑐∗ ≡ 𝑐∗(𝑡, 𝑤) = 𝑒− 𝜌𝑡
𝛾 𝑘− 1

𝛾 𝑤. (3.3.27)

The system of IDAEs is more complex due to the introduction of the medical health insurance

into the algebraic equation:

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(𝜇 − 𝑟) − 𝛾𝜋∗𝜎2 + 𝜆𝐽 ∫∞
−∞ 𝜈1(1 + 𝜈1𝜋∗)−𝛾𝜙𝑞𝑑𝑞 = 0,

(1 + 𝛼𝑝∗)1−𝛾 − (𝛼𝑝∗)1−𝛾 = 𝑘(1−𝛾)
ℎ𝛼𝜂𝑥+𝑡

,

𝑘′

𝑘
+ 𝛾𝑒− 𝜌𝑡

𝛾 𝑘− 1
𝛾 + 𝜒(𝜋∗, 𝑝∗) + 𝜆𝐽 ∫∞

−∞[(1 + 𝜈1𝜋∗)1−𝛾 − 1]𝜙𝑞𝑑𝑞 − 𝜆(1)
𝑥+𝑡 − 𝜂𝑥+𝑡 = 0,

(3.3.28)

where

𝜒(𝜋∗, 𝑝∗) = [𝜋∗(𝜇 − 𝑟) + 𝑟 −
𝛾𝜎2(𝜋∗)2

2
− 𝑝∗](1 − 𝛾) +

𝜂𝑥+𝑡ℎ
(2 − 𝛾)𝑘

[(1 + 𝛼𝑝∗)2−𝛾 − (𝛼𝑝∗)2−𝛾]. (3.3.29)

Furthermore, we make the substitution 𝑘 = 𝑣𝛾 and use the Gauss-Hermite approximation of the

integrals, to arrive at a more manageable form which we later implement numerically:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

(𝜇 − 𝑟) − 𝛾𝜋∗𝜎2 + 𝜆𝐽

√𝜋
𝐹 (𝜋∗) = 0,

𝐶3(𝑝∗) = 𝑣𝛾 (1−𝛾)
𝛼ℎ𝜂𝑥+𝑡

,

𝑣′ + 𝑣
(

𝐶1(𝑝∗,𝜋∗)+ 𝐶2(𝑝∗)(1−𝛾)
𝐶3(𝑝∗)𝛼(2−𝛾) −𝜆(1)

𝑥+𝑡−𝜂𝑥+𝑡

𝛾 )
+ 𝑒− 𝜌𝑡

𝛾 = 0, 𝑣(𝑇 ; 𝑇 ) = 0,

(3.3.30)
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where

𝐹 (𝜋∗) = 1
6

𝑓(−√3, 𝜋∗) + 2
3

𝑓(0, 𝜋∗) + 1
6

𝑓(√3, 𝜋∗), (3.3.31)

𝐶1(𝑝∗, 𝜋∗) = [𝜋∗(𝜇 − 𝑟) + 𝑟 −
𝛾𝜎2(𝜋∗)2

2
− 𝑝∗](1 − 𝛾)

+
𝜆𝐽

√𝜋
{1

6
𝑔(−√3, 𝜋∗) + 2

3
𝑔(0, 𝜋∗) + 1

6
𝑔(√3, 𝜋∗)}, (3.3.32)

𝐶2(𝑝∗) = (1 + 𝛼𝑝∗)2−𝛾 − (𝛼𝑝∗)2−𝛾 , (3.3.33)

𝐶3(𝑝∗) = (1 + 𝛼𝑝∗)1−𝛾 − (𝛼𝑝∗)1−𝛾 . (3.3.34)

We solve for the optimal control variables numerically as shown in the following section.

3.4 Numerical Results

This section describes the numerical schemes applied in order to assess the solution of equation

(3.2.60). We also describe the numerical methodology for finding the optimal insurance alloca-

tion proportion in the DAE (3.2.69), as well as the optimal consumption and allocation to risky

investments.Moreover, we include the calibration method used to determine parameters for the

case where the asset returns follow a GBM or a jump-diffusion process.

3.4.1 Numerical Scheme

In this subsection we assess the accuracy of our numerical schemes and other related results.

We start by presenting the case for a sick investor with GMmortality risk and the convergence

of the time-dependent solution of the value function to the desired explicit solution. For the time

domain [0, 𝑇 ], where 𝑇 = 120 − 𝑥, we calculate the time step Δ𝑡 = 𝑇
𝑁
, where 𝑁 is an arbitrarily

large number. For the following numerical computations we chose 𝑁 = 1000.
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Equation (3.2.58) is an ODE which we solve with a semi-implicit discretization scheme for

𝑛 = 1, ..., 𝑁 :

𝑢𝑛 = 𝑢𝑛+1
⎛
⎜
⎜
⎝

1
Δ𝑡

+ 𝐶−𝐴𝑒𝐵𝑡(𝑛+1)

2𝛾

1
Δ𝑡

+ 𝐶−𝐴𝑒𝐵𝑡(𝑛+1)

2𝛾

⎞
⎟
⎟
⎠

+
⎛
⎜
⎜
⎝

1
1

Δ𝑡
+ 𝐶−𝐴𝑒𝐵𝑡(𝑛+1)

2𝛾

𝑒− 𝜌𝑡(𝑛+1)
𝛾

⎞
⎟
⎟
⎠

, (3.4.1)

where 𝑢 = 𝑢𝑛+1+𝑢𝑛

2
. We approximated the time derivative by a first order accurate backward finite

difference numerical scheme. The unknown 𝑢𝑛 is calculated from the known values 𝑢𝑛+1. The

time-dependent function (3.2.49) is obtained by ℎ𝑛 = (𝑢𝑛)𝛾 . To verify the numerical scheme , we

compare the accuracy and convergence of the numerical result to the analytical solution. The

error is computed as 𝐸𝑟𝑟𝑜𝑟 = ||ℎ𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 − ℎ𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐||∞ = max |ℎ𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 − ℎ𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐|. We observed that

the numerical solution converged as we decreased the time step size by increasing 𝑁 . We fixed

the market parameters to typically observed values 𝜇 = 0.07, 𝜎 = 0.2 , 𝑟 = 0.01. The mortality

risk constants were taken to be 𝑚 = 86.3, 𝑏 = 9.5, 𝛽0 = 1.2. The subjective discount rate was

chosen to be 𝜌 = 0.02. We only displayed one case for a risk preference of 𝛾 = 3, but similar

results were observed for other degrees of risk aversion. Results are summarized in Table 3.2.

𝑁 𝐸𝑟𝑟𝑜𝑟

10,000 0.1458

100,000 0.0147

200,000 0.0073

Table 3.2: Comparison between the numerical and analytic results.

Next, we turn our focus to the solution of the problem for a healthy investor with both mor-

tality and health decline risk. We obtained numerical results for the optimal medical insurance
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allocation proportion 𝑝∗ by solving the DAE system (3.2.69). First, we changed the time variable

to 𝜏 = 𝑇 − 𝑡. The desired solution of the ODE is 𝑣𝑛+1 for 𝑣𝑛 given. Finally, one can obtain the

time-dependent function 𝑘(𝑡, 𝑇 ) by applying the transformation 𝑘𝑛+1 = (𝑣𝑛+1)𝛾 .

Bymaking the above change of variable, we have transformed the backward ODE to a forward

ODE. The semi-implicit numerical scheme can be summarized as follows:

𝑣𝑛+1 − 𝑣𝑛

𝑑𝜏
= 𝑣𝑛+1 ̃𝐴(𝑇 − 𝜏(𝑛)) + ̃𝐵(𝑇 − 𝜏(𝑛)), (3.4.2)

where 𝜏 ∈ [𝜏(𝑛), 𝜏(𝑛 + 1] for 𝑛 = 1, ..., 𝑁 . We initialized the optimum insurance allocation

𝑝∗(1) = 𝜖 1
𝛼(𝑇 −𝜏(1))

(for 𝜖 < 1) and solved the discretized equation for 𝑛 = 2, ..., 𝑁 . The functions ̃𝐴

and ̃𝐵 are discretized functions of 𝑝(𝑛)∗ and 𝑇 − 𝜏(𝑛) appearing in the ODE. At time-nodes 𝑛 > 1,

we solved for 𝑝∗(𝑛 + 1) of the DAE by applying the MATLAB function fzero:

(1 + 𝛼(𝑛 + 1)𝑝∗(𝑛 + 1))1−𝛾 − (𝛼(𝑛 + 1)𝑝∗(𝑛 + 1))1−𝛾 −
(𝑣𝑛+1)𝛾(1 − 𝛾)

ℎ𝑛+1 = 0, (3.4.3)

where ℎ𝑛+1 is the time-dependent component of the sick investor’s value function and was com-

puted as described above.

For the results presented in the following analysis, the consumer was currently of age 𝑥 = 65.

We applied case 1 (3.2.16) and chose the force of mortality for the healthy investor to be 𝜆(1) =

0.8𝜆(0) and the rate of becoming sick to be 𝜂 = 0.2𝜆(0). In other words, we are saying that the

healthy consumer has a slower rate of dying and has a lower rate of becoming sick as compared

to the rate of dying of a sick investor.

To examine the validity of our numerical solution, we chose to look at a case where 𝛼𝑝 is

fixed as a constant smaller than the initial value 𝛼𝑝(1) = 1. The time-dependent solution 𝑘 for

this choice is expected to be different from the optimal solution. As can be seen in Table 3.3, for
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an initial choice of 𝛼𝑝 = 0.3, the solution is smaller as compared to the optimal value for 𝛾 < 1,

and larger than the optimal solution for 𝛾 > 1. We display only one result of this observation.

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑛𝑜𝑛 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙

𝛾 = 0.8 9.086 9.084

𝛾 = 5 1.18𝑒7 1.57𝑒7

Table 3.3: Assessment of the numerical optimal solution 𝑘(𝑡, 𝑇 ).

To be consistent with how insurance is discussed by industry practitioners, we chose to dis-

play (see Table 3.4) the actual face value proportion of the medical insurance 𝛼𝑝∗ relative to

wealth. We present the results for different ages of the investor and two degrees of risk aversion.

𝜎 = 0.20, 𝜇 = 0.07, 𝜌 = 0.02, 𝑟 = 0.03

𝐴𝑔𝑒 65 75 85 95

𝛾 = 0.5

𝛼𝑝∗ 0.4658 0.4578 0.4500 0.4440

𝛾 = 5

𝛼𝑝∗ 0.5946 0.5597 0.5220 0.4787

Table 3.4: Comparison of optimal medical insurance benefit proportion (𝛼𝑝∗) for 𝛾 = 0.5 and
𝛾 = 5.
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3.4.2 Calibration of the Jump-Diffusion Process

We fit the jump-diffusion model to historical data by using the moment matching methodology

developed in the previous chapter and unless otherwise specified, we keep the notation consis-

tent.

As described in Section 3.3 , the jump-mark variable 𝑞 is normally distributed, which differs

from the distribution assumed in Chapter 2. Recall that the 𝑛𝑡ℎ moment formula is given by:

𝐼𝑛 = 𝑦𝑛𝑒∫𝑇
𝑡 𝛾𝑛(𝑠)𝑑𝑠, (3.4.4)

where

𝛾𝑛 = (𝑛 + 2)(𝑛 + 1)𝜎2

2
+ (𝑛 + 1)(𝜇 − 2𝜎2) + 𝜎2 − 𝜇 + 𝜆(𝜉𝑛 − 1). (3.4.5)

Since we have assumed that the jump-marks are normally distributed, we have:

𝜉𝑛 = ∫
∞

−∞
𝑒𝑛𝑞𝜙𝑞𝑑𝑞 (3.4.6)

= 𝑒
𝑛2𝜎2

𝑞
2 +𝑛𝜇𝑞 , (3.4.7)

where 𝜙𝑞 = 𝑒

−(𝑞−𝜇𝑞)2

2𝜎2
𝑞

√2𝜋𝜎2
𝑞

. Without loss of generality we let 𝑦 = 1.

We considered a data series of daily S&P 500 stock index prices from Bloomberg. We have

chosen this more recent data set in order to capture the financial crash of 2007–2008. The obser-

vation period is December 2007 to February 2014 (1618 data points). We calibrate the GBM (pure

diffusion process) as follows. We let 𝑋𝑖 = ln{𝑆𝑃𝑖+1

𝑆𝑃𝑖
}, where 𝑆𝑃𝑖 denotes the daily index price. We

know that:

𝐸[𝑋𝑖] = (
𝜇 − 𝜎2

2 ) Δ𝑡, (3.4.8)

𝑉 [𝑋𝑖] = 𝜎2Δ𝑡. (3.4.9)
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In order to obtain annualized GBM parameters 𝜇 and 𝜎, we consider 252 days per year and Δ𝑡 =

1
252

. This number is typically the average number of trading days in one year. Next, we match the

moments of the normally distributed jump-marks to the moments obtained from our historical

data, by applying the moment formula for jump-diffusion processes given in equation (3.4.4). We

let 𝑌𝑖 = {𝑆𝑃𝑖+1

𝑆𝑃𝑖
}, where 𝑖 = 1, ..., 𝑁 . We obtain the desired parameters {𝜎, 𝜇, 𝜎𝑞, 𝜇𝑞, 𝜆𝐽 } by solving

for:

𝑀𝑛 = 𝛾𝑛, for 𝑛 = 1, ..., 5, (3.4.10)

where 𝑀𝑛 = ln 𝐸[(𝑌𝑖)𝑛]
Δ𝑡

. This leads to solving the following system of five nonlinear equations:

⎧⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

𝑀1 = 𝜇 + 𝜆(𝑒
𝜎2

𝑞
2 +𝜇𝑞 − 1),

𝑀2 = 2𝜇 + 𝜎2 + 𝜆(𝑒2𝜎2
𝑞 +2𝜇𝑞 − 1),

𝑀3 = 3𝜇 + 3𝜎2 + 𝜆(𝑒
9𝜎2

𝑞
2 +3𝜇𝑞 − 1),

𝑀4 = 4𝜇 + 6𝜎2 + 𝜆(𝑒8𝜎2
𝑞 +4𝜇𝑞 − 1),

𝑀5 = 5𝜇 + 10𝜎2 + 𝜆(𝑒
25𝜎2

𝑞
2 +5𝜇𝑞 − 1).

(3.4.11)

The empirical moments from the historical data are:

𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5 = −0.0080, 0.0410, 0.1473, 0.3115, 0.5343

The results of the calibration are summarized in Table 3.5.

3.4.3 Numerical Results and Discussion

In this subsection we present numerical results derived from the theoretical methodology de-

scribed in the chapter. We discuss results related to the control variables for the sick and healthy

investors. We examined the behaviour of the following control variables: the optimal health in-

surance premium proportion 𝑝∗ = 𝐼∗

𝑤
, the optimal consumption proportion 𝑐∗

𝑤
and the optimal
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Estimated Parameters

𝜇 𝜎 𝜆 𝜎𝑞 𝜇𝑞

JD: Normal Distribution

0.0100 0.2164 0.1000 0.001 0.001

GBM

0.0100 0.1449 X X X

Table 3.5: Estimated parameter values by matching the moments with the historical data.

risky asset allocation 𝜋∗. We do not present numerical results for the impact of jumps in the

risky asset returns on the control variables 𝑐∗

𝑤
and 𝐼∗

𝑤
. This part was developed theoretically in

the chapter and can be easily implemented in the future. In Table 3.1, we already examined the

impact of jumps in asset returns on the risky asset allocation.

The first case we analyzed was that of the optimal solution for the sick or healthy investors

with or without mortality risk. The relationship between the GM hazard rates was assumed to

be 𝜆(1) = 0.8𝜆(0). Our main focus in this part, was the optimal consumption to wealth ratio ( 𝑐∗

𝑤
).

Figure 3.2, Figure 3.3 and Figure 3.4, do not include health decline risk. For clarity of the results,

we display log( 𝑐∗

𝑤
). Figure 3.2 shows the benchmark case, for an investor of undefined health

status with no mortality risk. One can see that it is optimal for a risk-averse investor to allocate

a larger proportion to consumption for 𝛾 < 1 when compared to the risk-tolerant consumer. A

switch in the consumption strategy occurs for a degree of risk aversion 𝛾 > 1. This pattern is

also evident by studying Figure 3.3 of a sick, young investor with mortality risk or Figure 3.4 of
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a healthy, young investor with mortality risk. However, at a more advanced age, we noticed a

reversal of the trend observed for the case without mortality (𝛾 < 1). This result is explained by

the fact that older investors have a stronger force of mortality than at a younger age. At a young

age, the consumer has a larger probability of survival, similar to the case without mortality force,

which explains the observed match in trends for 𝛾 < 1. However, as the mortality pull increases

with age, there is a cross-over between the consumption strategy curves, causing the opposite

effect in the consumption proportion. A similar switch of the result for risk aversion degrees

smaller than one can be obtained if the constant discount rate 𝜌 is increased in the case without

mortality. This test was done to further support these results but is not displayed here. A common

trend in the above figures is that the consumption proportion spikes at the terminal time, since

the investor has no bequest motives and aims at consuming all of his wealth as he approaches

the terminal time.

Next, we turned our focus to analyzing the case of a healthy investor who is allowed to ex-

perience both health-decline and mortality risks. For this agent the rate of becoming sick was

𝜂 = 0.2𝜆(0) (see case 1 (3.2.16)). An investor who started out in good health but became sick,

receives a lump-sum fraction 𝛼𝑝∗ from the insurance provider. The medical insurance multiplier

decreases with age as seen in Figure 3.1. The following figures applied the same parameters

as the ones used to produce solutions for Table 3.4. Results are displayed for the optimal con-

sumption ( 𝑐∗

𝑤
) and medical insurance face value (𝛼𝑝∗) proportions for 𝛾 = 0.5 and 𝛾 = 5. In

Figure 3.5 we displayed the optimal health insurance benefit proportion. We observed that risk-

averse (𝛾 = 5) retirees purchases more insurance premium than the risk-tolerant investor. The

result is intuitive, as these investors are expected to avoid the risk of health-decline-related ex-
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penses by investing in medical insurance. On the other hand, it is evident from Figure 3.6 that

risk tolerant agents (𝛾 = 0.5) are more likely to consume a larger portion of their wealth when

compared to risk-averse (𝛾 = 5) retirees. In Figure 3.7 and Figure 3.8 we displayed results for the

optimal consumption and insurance benefit proportions for case 2 (𝜂 > 𝜆(0) > 𝜆(1)). In particular,

we chose 𝜆(1) = 0.2𝜂 and 𝜆(0) = 0.8𝜂. The results show the same trend as observed for case 1.

However, the control parameters values are smaller than for case 1, suggesting that the hazard

rate of the sick individual has a stronger impact on the amount allocated to health insurance than

the rate of becoming sick.

Table 3.6 summarizes and compares the control variables of a risk-averse investor (𝛾 = 5) for

𝑥 = 65. Moreover, we choose a rate of becoming sick of 𝜂 = 0.2𝐴𝑒𝐵𝑡 and hazard rates 𝜆(1) = 𝜆(0) =

0 for the case without mortality. We wanted to quantify the effect of mortality on the demand

for health insurance and consumption. It’s evident from the results that including both mortality

and health risk increases the demand for health insurance and the consumption proportion of

the agent. Our results are intuitive, since in the case without mortality, the individual has a

probability of survival of one and is expected to consume less than the consumer with higher

probability of dying. Similarly, the retiree with higher probability of survival will allocate a

smaller proportion to health insurance.
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Medical Insurance, Consumption and Stock Allocation

Age 65

with mortality risk no mortality risk

Risk Aversion 𝐼∗

𝑤
𝛼𝐼∗

𝑤
𝑐∗

𝑤
𝜋∗ 𝐼∗

𝑤
𝛼𝐼∗

𝑤
𝑐∗

𝑤
𝜋∗

𝛾 = 5.0 0.0013 0.5946 0.0375 0.299 0.0009 0.4250 0.0287 0.299

Table 3.6: Comparison of control variables with and without mortality risk.
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Figure 3.1: Health insurance benefit multiplier (𝛼) as a function of time for age 𝑥 = 65 and
𝜂 = 0.2𝜆(0).
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Figure 3.2: 𝑐∗

𝑤 for an investor without GM mortality or health decline risk.
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Figure 3.3: 𝑐∗

𝑤 for a sick investor with GM mortality and without health decline risk.
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Figure 3.4: 𝑐∗

𝑤 for a healthy investor with GM mortality and without health decline risk.

85



60 70 80 90 100 110 120
0.4

0.5

0.6

0.7

0.8

0.9

1

Age

p
* α

Healthy (GM Mortality), γ = 0.5

(a)

60 70 80 90 100 110 120
0.4

0.5

0.6

0.7

0.8

0.9

1

Age

p
* α

Healthy (GM Mortality), γ = 5

(b)

Figure 3.5: Optimal health benefit proportion 𝛼𝑝∗ for risk-tolerant (a) and risk-averse (b) in-
vestors for 𝜂 < 𝜆(1) < 𝜆(0).
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Figure 3.6: Optimal consumption proportion 𝑐∗

𝑤 for risk-tolerant (a) and risk-averse (b) in-
vestors for 𝜂 < 𝜆(1) < 𝜆(0).
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Figure 3.7: Optimal health benefit proportion 𝛼𝑝∗ for risk-tolerant (a) and risk-averse (b) in-
vestors for 𝜂 > 𝜆(0) > 𝜆(1).
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Figure 3.8: Optimal consumption proportion 𝑐∗

𝑤 for risk-tolerant (a) and risk-averse (b) in-
vestors for 𝜂 > 𝜆(0) > 𝜆(1).
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3.5 Conclusion

In this chapter we have derived an optimal investment strategy for a retiree who in addition to

mortality risk, experiences a health decline risk. This model predicted the optimal medical insur-

ance and consumption proportions, as well as the optimal allocation proportion to risky-assets.

The investor was assumed healthy and was able to choose to purchase out-of-pocket insurance

to hedge the potential health costs. Results were obtained for the case where the health cost

distribution is uniformly distributed and the utility function is of CRRA form. Results for the

optimal health insurance allocation were presented in Figure 3.5 for degrees of risk aversion

smaller and larger than one. The model-derived optimal strategy suggests that it is optimal for

more risk-averse consumers to allocate a larger proportion to health insurance, thereby hedging

the health-decline risk. Knowing that risk-averse agents avoid the risk of high health-related

costs in the eventuality of a health shock, this result is as expected. The results for the optimal

consumption proportion were displayed in Figures 3.6 and 3.8. The results are again intuitive, as

they show that risk-averse retirees are more likely to consume a smaller portion of their wealth.

When we assessed the cases with and without mortality risk, we found that the increased

probability of dying before the terminal time, increases the demand for medical insurance and

also raises the optimal consumption levels . Meanwhile, the absence of force of mortality results

in a lower demand for health insurance or motivation to consume wealth before the imposed

terminal time.

Finally, jumps were introduced in the asset returns in the theoretical part of the chapter but

were not implemented numerically for the health insurance and consumption values. On the

other hand, jumps in the asset return process were shown to have a positive impact on the risky
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asset allocation 𝜋∗, which does not depend on health or mortality risk and could be easily studied.

The impact was measured for data calibrated to historical data from 2007 to 2008. An increase in

the fraction of wealth allocated to risky assets was observed. We attribute this observation to the

fact, that although jumps add risk to the investment model, they can also provide the opportunity

for higher financial gains. From the calibrated data we observed that jump-marks have small

mean and volatilities and by our jump-term approximation will contribute in a positive manner

to the risky-asset allocation fraction. As in the case without jumps, we observed that the more

risk averse the investor, the less he allocates to stocks, which is an intuitive result. Further tests

can be performed in the future to measure the impact of the jumps in the risky asset on other

optimal control values.
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4 Optimal Control Problem in the Life-cycle Framework

4.1 Introduction

The objective of this chapter is to derive an optimal strategy over the lifecycle of an investor cur-

rently of age 𝑥. In this framework we consider both the pre-retirement and the post-retirement

phases of the investor’s life-cycle. The investor will retire when a critical retirement-triggering

wealth is reached. Hence, the methodology of finding when it is optimal to retire requires investi-

gating the optimal retirement-triggering wealth. Some notation and assumptions of this chapter

are motivated by the tractability of the Farhi and Panageas (2007) model as well as the theory

developed by Huang and Milevsky (2008). Other authors, such as Huang, Milevsky, and Sal-

isbury (2014), have more recently retrieved an optimal initiation region in an American option

framework, in the context of variable annuity policies with GLWB.

Two general assumptions of our model, are that the investor is not allowed to reverse the

process of retirement and that throughout his working years his income is deterministic. Once

we develop the model, we will maintain both assumptions and those introduced in the previous

chapter. When introducing health risk and out-of-pocket health insurance, we assume that the

health shock is uniformly distributed as in the post-retirement treatment of Chapter 3. We de-

velop the optimal control problem in stages. First we provide the background on the assumptions
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and notation by following the model developed by Farhi and Panageas (2007). Their model ig-

nores risk factors such as mortality and health and follows an option-valuation approach. In our

model, we are able to consider special cases with constant mortality and health-decline rates as

well as the case when asset rates of return follow a jump-diffusion process.

The chapter is divided as follows. Section 4.2 will introduce the general notation and as-

sumptions. In Section 4.3 we introduce a new approach for solving for the optimal retirement-

triggering wealth. For a large part of this model we applied a similar methodology as that in

Chapter 3.

4.2 General Notation and Assumptions

The general notation and assumptions used by the Farhi and Panageas (2007) model are sum-

marized in this section. This will allow for a better comparison between the different approaches

and these authors’ work in future work. In the framework of the current chapter, the working

years of the agent are included. We assume that the agent receives deterministic wages. The

income rate is chosen to be constant. We write:

𝑦0 = 𝑦( ̄ℓ − ℓ1) > 0, (4.2.1)

where 𝑦 is the constant wage rate of the working agent and is chosen so that the above inequality

is satisfied. We also assume that the consumer is endowed with ̄ℓ units of leisure in retirement

and ℓ1 units if he is working. We assume as in Farhi and Panageas (2007) that the utility function

is of the form:

𝑢(ℓ𝑡, 𝑐𝑡) =
(ℓ1−𝜖

𝑡 𝑐𝜖
𝑡 )1−𝛾∗

𝜖(1 − 𝛾∗)
; 0 < 𝜖 < 1, 𝛾∗ > 0, (4.2.2)
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and normalize the leisure such that:

ℓ𝑡 =
⎧
⎪
⎨
⎪
⎩

ℓ1 = 1; while working,

̄ℓ > 1; while retired.
(4.2.3)

After making the change of variable 𝛾 = 1 − 𝜖(1 − 𝛾∗) , we obtain a variant of the CRRA utility

function which is used in the remainder of this chapter:

𝑢(ℓ, 𝑐) =

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑢1(1, 𝑐) = 𝑐1−𝛾

1 − 𝛾
; while working,

𝑢2( ̄𝑙, 𝑐) = 𝑐1−𝛾

1 − 𝛾
( ̄ℓ)(1−𝜖)(1−𝛾∗); while retired.

(4.2.4)

Note that the change of variable implies the following equivalent relations:

𝛾∗ > 1 ⇔ 𝛾 > 1, (4.2.5)

0 < 𝛾∗ < 1 ⇔ 0 < 𝛾 < 1. (4.2.6)

To simplify the notation, we let ℓ = ( ̄ℓ)(1−𝜖)(1−𝛾∗). One can see that for ̄ℓ > 1, we have ℓ < 1 for

𝛾 > 1 and ℓ > 1 for 𝛾 < 1.

4.3 Optimal Retirement Control Problem

In this section we focus on presenting the theory of an optimal consumption-allocation problem

for an investor still in the working phase. We are interested in deriving a critical wealth level

that would make exiting the workforce possible. A similar problem was developed by Farhi

and Panageas (2007) in a complete market setting by using a stochastic discount factor. Our

methodology differs from the Farhi and Panageas (2007) option-valuation approach. The opti-

mal control problem will result in an explicit value for the optimal-retirement wealth levels for

the case of constant force of mortality.
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4.3.1 Model Setup

Let the problem’s value function be formally represented by:

̂𝐽 (𝑡, 𝑤) = max
{𝑐𝑡,𝜋𝑡,𝜏}

𝐸 [∫
𝜏

𝑡
𝐷𝑡(𝑠)𝑢1(𝑐𝑠)𝑑𝑠 + ∫

∞

𝜏
𝐷𝑡(𝑠)𝑢2(𝑐𝑠)𝑑𝑠|𝑊𝑡 = 𝑤] , (4.3.1)

where 𝑢1 and 𝑢2 are the utility function for the working and retirement phases, respectively. The

discount factor is:

𝐷𝑡(𝑠) = 𝑒− ∫𝑠
𝑡 (𝜌+𝜆𝑥+𝑣)𝑑𝑣, (4.3.2)

where 𝜌 is the discount rate and 𝜆𝑥+𝑡 is the mortality rate for an individual of age 𝑥 at 𝑡 = 0.

The budget constraint of the investor is:

𝑑𝑊𝑡 =
⎧
⎪
⎨
⎪
⎩

𝜋𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡)𝑊𝑡 + (1 − 𝜋𝑡)𝑟𝑊𝑡𝑑𝑡 − 𝑐𝑡𝑑𝑡 + 𝑑𝑀𝑡; for 𝜏 > 𝑡,

𝜋𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡)𝑊𝑡 + (1 − 𝜋𝑡)𝑟𝑊𝑡𝑑𝑡 − 𝑐𝑡𝑑𝑡; for 𝜏 ≤ 𝑡,
(4.3.3)

where the instantaneous deterministic income stream is 𝑑𝑀𝑡 = 𝑦0𝑑𝑡, 𝜋𝑡 is the portion of the

wealth invested in the risky asset, 𝜇 and 𝜎 are the drift and volatility of the risky asset respectively,

𝑐𝑡 is the consumption rate, 𝑦0 is the wage income for 𝑡 < 𝜏 and 𝑦0 = 0 when 𝑡 > 𝜏 and 𝜏 is the

retirement time. To follow Farhi and Panageas (2007) , we assume that the income stream is

constant, defined above as 𝑦0 and dependent on a constant wage rate 𝑦.

Remark 4.3.1. It is more realistic to choose a time-dependent income stream, as wages often increase

with time. That case would involve using 𝑑𝑀𝑡 = 𝑀0𝑒𝑦0𝑡𝑑𝑡.

The consumer is allowed to invest in themoneymarket, where he receives a fixed, strictly pos-

itive interest rate 𝑟 > 0. Then, during the working years until a terminal time 𝑇 , the discounted

cash flow generated by the human wage process (the value of the human capital) is given by:

𝐻𝐶(𝑡; 𝑇 ) = ∫
𝑇

𝑡
𝑦0𝑒−𝑟(𝑠−𝑡)𝑑𝑠 =

𝑦0

𝑟
(1 − 𝑒−𝑟(𝑇 −𝑡)). (4.3.4)
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Remark 4.3.2. If the investor is allowed to work for an infinite amount of years, the value of the

human capital asymptotically approaches 𝑦0

𝑟
.

Remark 4.3.3. If the income stream is time-dependent, the human capital is 𝐻𝐶(𝑡; 𝑇 ) =

𝑀0

𝑦0−𝑟
(𝑒(𝑦0−𝑟)(𝑇 −𝑡) − 1), where 𝑀0 is the income earned in the first year of working.

As the relationships

̂𝐽 (𝑡, 𝑤) ≥ Φ(𝑡, 𝑤) ∶= max
{𝑐𝑡,𝜋𝑡}

𝐸 [∫
∞

𝑡
𝐷𝑡(𝑠)𝑢2(𝑐𝑠)𝑑𝑠|𝑊𝑡 = 𝑤] , (4.3.5)

and

̂𝐽 (𝑡, 𝑤) ≥ max
{𝑐𝑡,𝜋𝑡}

𝐸 [∫
𝜏

𝑡
𝐷𝑡(𝑠)𝑢1(𝑐𝑠)𝑑𝑠 + ∫

∞

𝜏
𝐷𝑡(𝑠)𝑢2(𝑐𝑠)𝑑𝑠|𝑊𝑡 = 𝑤] (4.3.6)

are true, we can rewrite (4.3.1) as follows:

̂𝐽 (𝑡, 𝑤) = max { max
{𝑐𝑡,𝜋𝑡,𝜏}

𝐸 [∫
𝜏

𝑡
𝐷𝑡(𝑠)𝑢1(𝑐𝑠)𝑑𝑠 + ∫

∞

𝜏
𝐷𝑡(𝑠)𝑢2(𝑐𝑠)𝑑𝑠|𝑊𝑡 = 𝑤] , Φ(𝑡, 𝑤)} . (4.3.7)

4.3.2 Solution Methodology

For the post-retirement phase 𝑡 > 𝜏 , Φ(𝑡, 𝑤) is simply the solution of an HJB equation:

𝜕Φ
𝜕𝑡

+ max
{𝑐𝑡,𝜋𝑡} {𝑢2(𝑐𝑡) + [(𝜋𝑡(𝜇 − 𝑟) + 𝑟)𝑤 − 𝑐𝑡]

𝜕Φ
𝜕𝑤

+
(𝜋𝑡𝑤𝜎)2

2
𝜕2Φ
𝜕𝑤2 } = (𝜌 + 𝜆𝑥+𝑡)Φ. (4.3.8)

The solution can be worked out as Φ(𝑡, 𝑤) = 𝑢2(𝑤)ℎ(𝑡) and ℎ(𝑡) satisfies an ODE with ℎ(∞) = 0.

For the pre-retirement phase, we find the value function in three stages.

1. We solve the following HJB:

𝜕𝐽
𝜕𝑡

+ max
{𝑐𝑡,𝜋𝑡} {𝑢1(𝑐𝑡) + [(𝜋𝑡(𝜇 − 𝑟) + 𝑟)𝑤 + 𝑦0 − 𝑐𝑡]

𝜕𝐽
𝜕𝑤

+
(𝜋𝑡𝑤𝜎)2

2
𝜕2𝐽
𝜕𝑤2 } = (𝜌 + 𝜆𝑥+𝑡)𝐽 . (4.3.9)
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2. The individual retires when 𝐽(𝑡, 𝑤) ≤ Φ(𝑡, 𝑤). The critical wealth 𝑤̄(𝑡) is given by

𝐽(𝑡, 𝑤̄) = Φ(𝑡, 𝑤̄). The individual stays working when 𝐽(𝑡, 𝑤) > Φ(𝑡, 𝑤). The critical

retirement-triggering wealth 𝑤̄(𝑡) is a free-boundary that separates the retirement and

working regions.

3. Finally, we update the objective function by taking themaximum of the two value functions

as follows:

̂𝐽 (𝑡, 𝑤) = max{Φ(𝑡, 𝑤), 𝐽 (𝑡, 𝑤)}. We note that this step is applied for every 𝑡 and 𝑤.

Remark 4.3.4. Unlike for Φ, in general we will not be able to find a separable form for 𝐽(𝑡, 𝑤) since

the critical wealth is time dependent. Therefore, we will solve the HJB for 𝐽(𝑡, 𝑤) numerically. In

this case we will truncate the time domain such that 𝑡 ≤ 𝑇 , while 𝑥 + 𝑇 = 120, and we will assume

that it is optimal to retire at 𝑡 = 𝜏 . We can solve the HJB backwards to find Φ(𝑡, 𝑤) and 𝐽(𝑡, 𝑤)

by following the three steps outlined above. The solution of this problem is left for future work. In

this dissertation we have focused on the more analytically tractable case with constant mortality and

income stream.

4.3.3 Constant Force of Mortality

In this dissertation we consider a special case with a constant hazard rate, 𝜆𝑥+𝑡 = 𝜆. In this

case, the solutions of the HJBs are independent of time. As a result, the critical wage for optimal

retirement is also independent of time, which can be worked out explicitly. As mentioned before,

we let the leisure be represented by ℓ = ( ̄ℓ)(1−𝜖)(1−𝛾∗), where ̄ℓ > 1 while retired.
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4.3.3.1 Post-retirement phase

For the post-retirement phase, the optimal consumption rate and asset allocation strategy are

given by the first-order conditions:

𝑐∗
𝑡 = Φ

− 1
𝛾

𝑤 ℓ
1
𝛾 ; 𝜋∗

𝑡 = −
𝜇 − 𝑟
𝑤𝜎2

Φ𝑤

Φ𝑤𝑤
. (4.3.10)

Using Φ = 𝑢2(𝑤)𝑘(𝑡) with CRRA utility:

𝑢2(𝑐) = ℓ𝑐1−𝛾

1 − 𝛾
, (4.3.11)

we have

𝑐∗
𝑡 = 𝑤𝑘− 1

𝛾 ; 𝜋∗
𝑡 =

(𝜇 − 𝑟)
𝛾𝜎2 , (4.3.12)

where 𝑘(𝑡) satisfies the equation

1
𝛾

𝑑𝑘
𝑑𝑡

+ 𝑘1− 1
𝛾 − Θ𝑘 = 0 (4.3.13)

with

Θ =
𝜌 + 𝜆 − (1 − 𝛾) (𝑟 + (𝜇−𝑟)2

2𝛾𝜎2 )
𝛾

. (4.3.14)

Since all the coefficients are constants and we are solving the problem on an infinite time horizon,

𝑘 is independent of time, and we have:

𝑘 = Θ−𝛾 . (4.3.15)

The value function is given by Φ(𝑤) = 𝑤1−𝛾

1−𝛾
Θ−𝛾ℓ.

Remark 4.3.5. For a normalized leisure value (ℓ = 1) we have already seen a similar equation to

4.3.15 in Chapter 3 for the case with constant mortality risk, including the case of 𝜆 = 0. We also
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know that for a terminal time 𝑇 we can obtain the closed form time-dependent component of the

value function as in Huang and Milevsky (2008):

𝑓(𝑡; 𝑇 ) = 𝑒−𝜌𝑡(𝑒𝜉(𝑇 −𝑡) − 1)𝛾

𝜉𝛾 ,

where 𝜉 = 𝐶−𝜌−𝜆
𝛾

and 𝐶 = (1 − 𝛾) (𝑟 + (𝜇−𝑟)2

2𝛾𝜎2 ). As in the Farhi and Panageas (2007) model, which

allows the agent to live and work for an infinite number of years, we fix the time 𝑡 = 0 and take the

limit as 𝑇 → ∞:

𝑓(0; ∞) = lim
𝑇 →∞

{(𝑒𝜉(𝑇 ) − 1)𝛾

𝜉𝛾 } (4.3.16)

= (
1
Θ)

𝛾
, (4.3.17)

where 𝜉 = −Θ. For consistency of the value function we also require that Θ = [(𝑟 + (𝜇−𝑟)2

2𝜎2𝛾
) (𝛾−1)

𝛾
+

𝜌+𝜆
𝛾

] > 0.

Remark 4.3.6. We would like to point out that in our current approach we solve the objective func-

tion on an infinite time horizon. However, by including a non-zero force of mortality and survival

probabilities in the model, this means that the investor is not alive for the entirety of the infinite

horizon time domain.

We can write the value function as Φ(𝑤) = Ω𝑤1−𝛾

1−𝛾
. Then, as we see that Ω = ( ̄ℓ)(1−𝜖)(1−𝛾∗)

(
1
Θ)

𝛾

and observe that for ̄ℓ > 1, we have the following relations:

Ω
1
𝛾 > 1

Θ
for 𝛾 < 1, (4.3.18)

Ω
1
𝛾 < 1

Θ
for 𝛾 > 1. (4.3.19)

We can define the consumption jump experienced by the investor when he enters retirement. We

write:
𝑐+

𝜏

𝑐−
𝜏

= ℓ
1
𝛾 = Ω

1
𝛾 Θ. (4.3.20)
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It is obvious that 𝑐+
𝜏

𝑐−
𝜏

> 1 for 𝛾 < 1 and 𝑐+
𝜏

𝑐−
𝜏

< 1 for 𝛾 > 1. To put it into words, consumption is

expected to experience a down-jump for 𝛾 > 1 and an up-jump for 𝛾 < 1 at the optimal retirement

time.

4.3.3.2 Pre-retirement phase

For the pre-retirement phase, the optimal consumption rate and asset allocation strategy are given

by the first-order conditions:

𝑐∗
𝑡 = 𝐽

− 1
𝛾

𝑤 ; 𝜋∗
𝑡 = −

𝜇 − 𝑟
𝑤𝜎2

𝐽𝑤

𝐽𝑤𝑤
. (4.3.21)

Using 𝐽 = 𝑢1(𝑤̂)ℎ(𝑡) with 𝑤̂ = 𝑤 + 𝛽(𝑡) and the CRRA utility

𝑢1(𝑐) = 𝑐1−𝛾

1 − 𝛾
, (4.3.22)

we have 𝐽𝑡 = 𝑤̂1−𝛾

1−𝛾
𝑑ℎ
𝑑𝑡

+ 𝑤̂−𝛾 𝑑𝛽
𝑑𝑡

ℎ, 𝐽𝑤 = 𝑤̂−𝛾ℎ and 𝐽𝑤𝑤 = −𝛾𝑤̂−𝛾−1ℎ. The first-order conditions can

then be written as:

𝑐∗
𝑡 = 𝐽

− 1
𝛾

𝑤 = 𝑤̂ℎ− 1
𝛾 ; 𝜋∗

𝑡 = −
(𝜇 − 𝑟)

𝑤𝜎2

𝐽𝑤

𝐽𝑤𝑤
=

(𝜇 − 𝑟)
𝛾𝜎2

𝑤̂
𝑤

. (4.3.23)

After substituting the optimal controls into the HJB (4.3.9) we obtain:

𝑤̂1−𝛾

1 − 𝛾
ℎ′ + 𝛾𝑤̂1−𝛾ℎ1− 1

𝛾 + {
(𝜇 − 𝑟)2𝑤̂1−𝛾

2𝛾𝜎2 + 𝑟(𝑤̂ − 𝛽)𝑤̂−𝛾 + 𝑦0𝑤̂−𝛾}ℎ + 𝑤̂−𝛾𝛽′ℎ = 0. (4.3.24)

We can see that ℎ(𝑡) and 𝛽 will satisfy the following equations:

1
𝛾

𝑑ℎ
𝑑𝑡

+ ℎ1− 1
𝛾 − Θℎ = 0 (4.3.25)

and

𝑑𝛽
𝑑𝑡

− 𝑟𝛽 + 𝑦0 = 0, (4.3.26)
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with Θ as defined earlier. In economic terms, 𝛽 represents the human capital generated by the

constant wages. Since all the coefficients are constants, both ℎ and 𝛽 are independent of time on

an infinite time horizon. Therefore, we obtain:

ℎ = Θ−𝛾 ; 𝛽 =
𝑦0

𝑟
. (4.3.27)

4.3.3.3 Critical retirement-triggering wealth

The critical wealth and regions for the working and retirement periods can be obtained by com-

paring the value functions 𝐽 and Φ for the pre- and post-retirement phases, which are given

by:

𝐽 =
(𝑤 + 𝛽)1−𝛾Θ−𝛾

1 − 𝛾
, (4.3.28)

Φ = 𝑤1−𝛾Θ−𝛾ℓ
1 − 𝛾

. (4.3.29)

This approach results in an approximate critical wealth. Since the problem is time independent,

this means that we only need to solve the time independent version of the HJBs for Φ and 𝐽 , both

of which are dependent on wealth. The exact solution is given by joining the two solutions by

applying the smooth pasting condition at the critical wealth level. However, for simplicity, we

will only consider the approximate solution.

With the notation established in Section 4.2 we can obtain the critical retirement-triggering

wealth for both 𝛾 > 1 and 𝛾 < 1. We note that for 𝛾 > 1 both 𝐽 and Φ are negative, while for

0 < 𝛾 < 1 both 𝐽 and Φ are positive. We expect 𝐽 < Φ for 𝑤 > 𝑤̄ and 𝐽 > Φ for 𝑤 < 𝑤̄, where

the critical retirement-triggering wealth is given by 𝐽 = Φ. The explicit solution is given by:

𝑤̄ =
𝛽

ℓ
1

1−𝛾 − 1
. (4.3.30)
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It is optimal to retire when 𝑤 > 𝑤̄. We recall that ℓ < 1 for 𝛾 > 1 and that ℓ > 1 for 𝛾 < 1.

Therefore, the critical wealth 𝑤̄ > 0.

Remark 4.3.7. Note that if we scale the critical wealth by the human capital 𝑤̄
𝛽
, and apply the

leisure function defined previously in terms of ̄ℓ, we obtain an expression independent of other risk

parameters and the degree of risk aversion. This is probably due to the fact that our critical wealth

is an approximate value as remarked earlier.

We can explore the effects of leisure on the critical wealth. Larger consumption jump-ratios

correspond to larger leisure values. In this case, we expect the critical wealth to decrease. This is

intuitive, since investors who value leisure more, are expected to enter retirement sooner due to

lower critical wealth levels.

4.3.4 Extension 1: Retirement-triggering Wealth under a Jump-diffusion Investment

Setup

In the previous subsection we developed a methodology for finding the critical retirement wealth

by assuming that the asset rates of return follow a simple GBM diffusion process. In the current

subsection, we are interested in the more complex case, in which the risky asset returns are in

fact the result of a jump-diffusion process similar to the one explored in the previous chapter.

The critical retirement-triggering wealth is derived by following the technique in the previous

subsection. The main difference in the results will be due to the introduction of jumps and the

integral term associated with them.
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The budget constraint of the investor has now changed and it is:

𝑑𝑊𝑡 =
⎧
⎪
⎨
⎪
⎩

𝜋𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡)𝑊𝑡 + (1 − 𝜋𝑡)𝑟𝑊𝑡𝑑𝑡 + 𝜈1𝑊𝑡𝑃𝑡 − 𝑐𝑡𝑑𝑡 + 𝑑𝑀𝑡; for 𝜏 > 𝑡,

𝜋𝑡(𝜇𝑑𝑡 + 𝜎𝑑𝐵𝑡)𝑊𝑡 + (1 − 𝜋𝑡)𝑟𝑊𝑡𝑑𝑡 + 𝜈1𝑊𝑡𝑑𝑃𝑡 − 𝑐𝑡𝑑𝑡; for 𝜏 ≤ 𝑡,
(4.3.31)

where 𝜈1 is the random wealth jump-amplitude and 𝑃𝑡 is the Poisson process.

4.3.4.1 Post-retirement phase

By following a similar approach to that taken in Chapter 3, we can derive the HJB for the case

with jumps in the asset rate of return process. For this post-retirement period 𝑡 > 𝜏 , Φ(𝑡, 𝑤)

satisfies:

𝜕Φ
𝜕𝑡

+ max
{𝑐𝑡,𝜋𝑡} {𝑢2(𝑐𝑡) + [(𝜋𝑡(𝜇 − 𝑟) + 𝑟)𝑤 − 𝑐𝑡]

𝜕Φ
𝜕𝑤

+
(𝜋𝑡𝑤𝜎)2

2
𝜕2Φ
𝜕𝑤2

+𝜆𝐽 ∫
∞

−∞
{Φ(𝑡, (1 + 𝜈1𝜋)𝑤) − Φ(𝑡, 𝑤)}𝜙𝑞𝑑𝑞} = (𝜌 + 𝜆𝑥+𝑡)Φ. (4.3.32)

The solution can be worked out for Φ(𝑡, 𝑤) = 𝑢2(𝑤)ℎ(𝑡), where ℎ(𝑡) satisfies an ODEwith ℎ(∞) =

0.

The first-order optimality conditions are:

𝑐∗
𝑡 = Φ

− 1
𝛾

𝑤 ℓ
1
𝛾 , (4.3.33)

(𝜇 − 𝑟)𝑤Φ𝑤 +
(𝜋∗

𝑡 𝑤𝜎)2

2
Φ𝑤𝑤 + 𝜆𝐽 ∫

∞

−∞
{Φ(𝑡, (1 + 𝜈1𝜋∗

𝑡 )𝑤) − Φ(𝑡, 𝑤)}𝜙𝑞𝑑𝑞 = 0. (4.3.34)

Substituting the optimal control 𝑐∗
𝑡 into theHJB and assumingwe have constant instantaneous

force of mortality 𝜆𝑥+𝑡 = 𝜆, we know that ℎ will satisfy the following ODE:

ℎ′

ℎ
+ 𝛾ℎ− 1

𝛾 + (1 − 𝛾){
𝜋∗

𝑡 (𝜇 − 𝑟)
2

−
𝜋∗

𝑡 𝜆𝐽

2 ∫
∞

−∞
𝜈1(1 + 𝜈1𝜋∗)−𝛾𝜙𝑞𝑑𝑞 + 𝑟} − 𝜆 − 𝜌

+ 𝜆𝐽 ∫
∞

−∞
[(1 + 𝜈1𝜋∗)1−𝛾 − 1]𝜙𝑞𝑑𝑞 = 0. (4.3.35)
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Since all the coefficients of the ODE are constants and we work on an infinite time horizon,

we know that solution ℎ is time independent and that it satisfies:

ℎ− 1
𝛾 = 1

𝛾 {𝜆 + 𝜌 − (1 − 𝛾) (
𝜋∗

𝑡 (𝜇 − 𝑟)
2

+ 𝑟)

−𝜆𝐽 ∫
∞

−∞
[(1 + 𝜈1𝜋∗

𝑡 )−𝛾
(1 + (1 + 𝛾)

𝜋∗
𝑡 𝜈1

2 ) − 1]𝜙𝑞𝑑𝑞} . (4.3.36)

The resulting value function of this case is Φ(𝑤) = 𝑤1−𝛾

1−𝛾
ℎℓ.

4.3.4.2 Pre-retirement phase

Similarly, for the pre-retirement period 𝑡 < 𝜏 , the value function 𝐽(𝑡, 𝑤) satisfies:

𝜕𝐽
𝜕𝑡

+ max
{𝑐𝑡,𝜋𝑡} {𝑢1(𝑐𝑡) + [(𝜋𝑡(𝜇 − 𝑟) + 𝑟)𝑤 − 𝑐𝑡 + 𝑦0]

𝜕𝐽
𝜕𝑤

+
(𝜋𝑡𝑤𝜎)2

2
𝜕2𝐽
𝜕𝑤2

+𝜆𝐽 ∫
∞

−∞
{𝐽(𝑡, (1 + 𝜈1𝜋)𝑤) − 𝐽(𝑡, 𝑤)}𝜙𝑞𝑑𝑞} = (𝜌 + 𝜆𝑥+𝑡)𝐽 . (4.3.37)

As in the previous subsection, we assume that 𝐽(𝑡, 𝑤) = 𝑢1(𝑤̂)𝑘(𝑡) and 𝑤̂ = 𝑤 + 𝛽(𝑡). Since

we only analyze the constant mortality case, we can write equivalently 𝐽(𝑤) = (𝑤+𝛽)1−𝛾

1−𝛾
𝑘. Then

𝐽𝑤 = 𝑤̂−𝛾𝑘 and 𝐽𝑤𝑤 = −𝛾𝑤̂−𝛾−1𝑘. The first-order optimality condition for consumption,

𝑐∗
𝑡 = 𝑤̂𝑘− 1

𝛾 , (4.3.38)

is the same as calculated in the pure diffusion setup. The optimal allocation fraction is dependent

on the jump in the value function. For this calculation, we denote 𝑤̃ = (1 + 𝜈1𝜋𝑡)𝑤 + 𝛽. The

first-order condition is given by:

(𝜇 − 𝑟)𝜋𝑡𝑤𝐽𝑤 + 𝜋∗
𝑡 𝜎2𝑤2𝐽𝑤𝑤 + 𝜆𝐽 ∫

∞

−∞

𝜕𝐽
𝜕𝑤̃

𝜕𝑤̃
𝜕𝜋𝑡

= 0. (4.3.39)
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After some algebraic manipulation, the optimal allocation fraction should satisfy:

𝑤(𝜇 − 𝑟)𝑤̂−𝛾𝑘 − 𝛾𝜋∗
𝑡 𝜎2𝑤2𝑤̂−𝛾−1𝑘 + ∫

∞

−∞
((1 + 𝜈1𝜋∗

𝑡 )𝑤 + 𝛽)−𝛾𝜈1𝑤𝑘𝜙𝑞𝑑𝑞 = 0. (4.3.40)

We let 𝜋∗
𝑡 𝑤 = ̂𝜋∗

𝑡 and obtain:

(𝜇 − 𝑟) −
𝛾𝜎2 ̂𝜋∗

𝑡

𝑤̂
+ 𝜆𝐽 ∫

∞

−∞ (
1 +

𝜈1
̂𝜋∗

𝑡

𝑤̂ )

−𝛾

𝜈1𝜙𝑞𝑑𝑞 = 0. (4.3.41)

With the change of variable ̃𝜋∗
𝑡 = ̂𝜋∗

𝑡

𝑤+𝛽
, we arrive at:

(𝜇 − 𝑟) − 𝛾𝜎2 ̃𝜋∗
𝑡 + 𝜆𝐽 ∫

∞

−∞
(1 + 𝜈1 ̃𝜋∗

𝑡 )−𝛾𝜈1𝜙𝑞𝑑𝑞 = 0. (4.3.42)

We can see that ̃𝜋∗
𝑡 is equivalent to the optimal asset allocation proportion in the post-retirement

period and that it is independent of the wealth level.

For a constant force of mortality, we rewrite the HJB:

𝑢1(𝑐∗
𝑡 ) − 𝑐∗

𝑡 𝐽𝑤 + (
̃𝜋∗
𝑡 (𝜇 − 𝑟)

2
+ 𝑟𝑤 + 𝑦0)𝐽𝑤

+ 𝜆𝐽 ∫
∞

−∞
[𝐽 (𝑤 + 𝜈1 ̃𝜋∗

𝑡 ) − 𝐽(𝑤) − 𝐽𝑤𝜈1𝑤]𝜙𝑞𝑑𝑞 = (𝜆 + 𝜌)𝐽 . (4.3.43)

By further simplification we obtain:

(𝜆 + 𝜌) 𝑤̂1−𝛾

1 − 𝛾
=

𝛾
1 − 𝛾

𝑤̂1−𝛾𝑘− 1
𝛾 + ̂𝜋∗

𝑡 (𝜇 − 𝑟)𝑤̂−𝛾 + 𝑟𝑤𝑤̂−𝛾 + 𝑦0𝑤̂−𝛾

−
𝛾( ̂𝜋∗

𝑡 𝜎)2𝑤̂−𝛾−1

2
+

𝜆𝐽

1 − 𝛾 ∫
∞

−∞
[(𝑤 + 𝜈1 ̂𝜋∗

𝑡 + 𝛽)1−𝛾 − 𝑤̂1−𝛾]𝜙𝑞𝑑𝑞.

(4.3.44)

By the change of variable ̂𝜋∗
𝑡 = ̃𝜋∗

𝑡 𝑤̂ and simplification, we obtain:

(𝜆 + 𝜌)𝑤̂1−𝛾 = 𝛾𝑤̂1−𝛾𝑘− 1
𝛾 + ̃𝜋∗

𝑡 (𝜇 − 𝑟)𝑤̂1−𝛾(1 − 𝛾) + 𝑟(1 − 𝛾)𝑤̂1−𝛾 + (1 − 𝛾) {𝑦0𝑤̂−𝛾 − 𝑟𝛽𝑤̂−𝛾}

−
𝛾(1 − 𝛾)( ̃𝜋∗

𝑡 𝜎2)𝑤̂1−𝛾

2
+ 𝜆𝐽 𝑤̂1−𝛾

∫
∞

−∞
[(1 + 𝜈1 ̃𝜋∗

𝑡 )1−𝛾 − 1]𝜙𝑞𝑑𝑞.

(4.3.45)
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As seen before, the human capital is 𝛽 = 𝑦0

𝑟
. By using the first-order condition for the risky-asset

optimal allocation fraction, we obtain the final equation for the solution:

𝑘− 1
𝛾 = 1

𝛾 {𝜆 + 𝜌 − (1 − 𝛾) (
̃𝜋∗
𝑡 (𝜇 − 𝑟)

2
+ 𝑟)

−𝜆𝐽 ∫
∞

−∞
[(1 + 𝜈1 ̃𝜋)−𝛾

(
̃𝜋∗
𝑡 𝜈1

2
(1 + 𝛾) + 1) − 1]𝜙𝑞𝑑𝑞} . (4.3.46)

We note here that solutions (4.3.36) and (4.3.46) are the same. Therefore ℎ = 𝑘, 𝐽(𝑤) = 𝑤̂1−𝛾

1−𝛾
ℎ

and Φ(𝑤) = 𝑤1−𝛾

1−𝛾
ℓℎ. It follows that the critical wealth for the pure diffusion setup is the same as

represented in equation (4.3.30) .

4.3.5 Extension 2: Retirement-triggering Wealth under Health Shock Setup

In this subsection we further extend our model to include health-cost-related shocks in the wealth

process. This is a realistic case analyzed previously in Chapter 3 for an investor in the post-

retirement phase. The problem is as follows. The individual is currently in good health, but can

face a health shock both before and after retirement is triggered. We are still interested in de-

riving an expression for the critical retirement-triggering wealth. Mathematical details for the

derivation of the HJB with health shocks were presented in Chapter 3 and can be referred to.

As before, we can divide the problem into two phases as follows. We let Φ(𝑡, 𝑤) and Φ(0)(𝑡, 𝑤)

be the post-retirement value functions for a healthy and sick investor respectively. For the general

case with time-dependent force of mortality, the value functions for the post-retirement period
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will satisfy:

(𝜆(0)
𝑥+𝑡 + 𝜌)Φ(0) = 𝜕Φ(0)

𝜕𝑡
+ max

{𝑐𝑡,𝜋𝑡}
{𝑢2(𝑐𝑡) − 𝑐𝑡

𝜕Φ(0)

𝜕𝑤
}

+ max
{𝑐𝑡,𝜋𝑡}

{(𝜋𝑡(𝜇 − 𝑟) + 𝑟)𝑤𝜕Φ(0)

𝜕𝑤
+

(𝜋𝑡𝜎𝑤)2

2
𝜕2Φ(0)

𝜕𝑤2 }; 𝑡 > 𝜏𝑠

(4.3.47)

and

(𝜆(1)
𝑥+𝑡 + 𝜌)Φ = 𝜕Φ

𝜕𝑡
+ max

{𝐼𝑡,𝑐𝑡,𝜋𝑡}
{𝑢2(𝑐𝑡) − 𝑐𝑡

𝜕Φ
𝜕𝑤

}

+ max
{𝐼𝑡,𝑐𝑡,𝜋𝑡}

{[(𝜋𝑡(𝜇 − 𝑟) + 𝑟)𝑤 − 𝐼𝑡]
𝜕Φ
𝜕𝑤

+
(𝜋𝑡𝜎𝑤)2

2
𝜕2Φ
𝜕𝑤2

+ 𝜂𝑥+𝑡 ∫𝜈
Φ(𝑡, 𝑤 − 𝜈 + 𝛼𝐼𝑡)𝜙𝑠𝑑𝜈}; 𝑡 < 𝜏𝑠,

(4.3.48)

where, as in the previous chapter, 𝜏𝑠 is the time when the individual becomes sick, 𝜈 is the mag-

nitude of the health cost, 𝜙𝑠 is the distribution of the health jump and 𝛼𝐼𝑡 is the health benefit

received at the time the investor becomes sick.

For the pre-retirement period of the investor’s life-cycle we formulate the problem as follows.

We let 𝐽(𝑡, 𝑤) and 𝐽 (0)(𝑡, 𝑤) be the value functions for the pre-retirement period associated with

a healthy and sick state respectively. The value functions for this case will satisfy:

(𝜆(0)
𝑥+𝑡 + 𝜌)𝐽 (0) = 𝜕𝐽 (0)

𝜕𝑡
+ max

{𝑐𝑡,𝜋𝑡}
{𝑢1(𝑐𝑡) + (𝑦0 − 𝑐𝑡)

𝜕𝐽 (0)

𝜕𝑤
}

+ max
{𝑐𝑡,𝜋𝑡}

{(𝜋𝑡(𝜇 − 𝑟) + 𝑟)𝑤𝜕𝐽 (0)

𝜕𝑤
+

(𝜋𝑡𝜎𝑤)2

2
𝜕2𝐽 (0)

𝜕𝑤2 }; 𝑡 > 𝜏𝑠

(4.3.49)
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and

(𝜆(1)
𝑥+𝑡 + 𝜌)𝐽 = 𝜕𝐽

𝜕𝑡
+ max

{𝐼𝑡,𝑐𝑡,𝜋𝑡}
{𝑢1(𝑐𝑡) + (𝑦0 − 𝑐𝑡)

𝜕𝐽
𝜕𝑤

}

+ max
{𝐼𝑡,𝑐𝑡,𝜋𝑡}

{[(𝜋𝑡(𝜇 − 𝑟) + 𝑟)𝑤 − 𝐼𝑡]
𝜕𝐽
𝜕𝑤

+
(𝜋𝑡𝜎𝑤)2

2
𝜕2𝐽
𝜕𝑤2

+ 𝜂𝑥+𝑡 ∫𝜈
𝐽(𝑡, 𝑤 − 𝜈 + 𝛼𝐼𝑡)𝜙𝑠𝑑𝜈}; 𝑡 < 𝜏𝑠.

(4.3.50)

As described in Section 4.3.2, 𝐽(𝑡, 𝑤) = max{𝐽(𝑡, 𝑤), Φ(𝑡, 𝑤)} at any (𝑡, 𝑤) and the critical

retirement-triggering wealth is obtained from the equality 𝐽(𝑡, 𝑤̄(𝑡)) = Φ(𝑡, 𝑤̄(𝑡)). This is the

general setup and the wealth would have to be solved numerically.

In the following, we only consider the case in which the forces of mortality are constants:

𝜆(0)
𝑥+𝑡 = 𝜆(0) and 𝜆(1)

𝑥+𝑡 = 𝜆(1). We also choose a constant rate of becoming sick 𝜂𝑥+𝑡 = 𝜂. In this case,

the solution we seek is time-independent on an infinite time horizon. The solution methodology

is decribed in the section below.

4.3.5.1 Post-retirement phase

For the sick individual the solution is taken asΦ(0)(𝑤) = 𝑤1−𝛾

1−𝛾
ℓℎ, where bothℎ andℓ are constants.

The utility function is 𝑢2(𝑐) = 𝑐1−𝛾

1−𝛾
ℓ. This results in the optimal control variables:

𝑐∗
𝑡 = 𝑤ℎ− 1

𝛾 ; 𝜋∗
𝑡 =

𝜇 − 𝑟
𝛾𝜎2 . (4.3.51)

Following the pure diffusion methodology as before, we obtain:

ℎ− 1
𝛾 = 1

𝛾 {𝜆(0) + 𝜌 − (1 − 𝛾)[
(𝜇 − 𝑟)2

2𝛾𝜎2 + 𝑟]} . (4.3.52)
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For the healthy investor the procedure is similar, with the difference being that we have to

consider the health shock. We let Φ(𝑤) = 𝑤1−𝛾ℓ
1−𝛾

𝑘 and write:

𝑐∗
𝑡 = 𝑤𝑘− 1

𝛾 ; 𝜋∗
𝑡 =

𝜇 − 𝑟
𝛾𝜎2 ; 𝐼∗

𝑡 = 𝑝∗𝑤. (4.3.53)

The following system of implicit algebraic equations needs to be satisfied:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝛼𝜂ℎ{(1 + 𝛼𝑝∗)1−𝛾 − (𝛼𝑝∗)1−𝛾} = (1 − 𝛾)𝑘,

𝑘− 1
𝛾 = 1

𝛾
{𝜆(1) + 𝜌 − (1 − 𝛾) (

(𝜇 − 𝑟)2

2𝛾𝜎2 + 𝑟 − 𝛼𝑝∗
)

−
𝜂ℎ

(2 − 𝛾)𝑘
[(1 + 𝛼𝑝∗)2−𝛾 − (𝛼𝑝∗)2−𝛾]}.

(4.3.54)

Note that one can also find the solution when 𝐼𝑡 is not optimized by choosing 𝛼𝑝 as a constant.

Next, we will show that for the pre-retirement phase 𝐽 (0)(𝑤) = (𝑤+𝛽)1−𝛾

1−𝛾
ℎ𝑤 and 𝐽(𝑤) = (𝑤+𝛽)1−𝛾

1−𝛾
𝑘𝑤,

where 𝑘𝑤 = 𝑘 and ℎ𝑤 = 𝑤 for 𝛽 = 𝑦0

𝑟
. The subscript of ℎ𝑤 and 𝑘𝑤 should not be confused with the

partial derivative notation. The solution ℎ𝑤 = ℎ has been derived earlier and will not be repeated

here. We will concentrate on the methodology for finding 𝑘𝑤 and the value function 𝐽(𝑤). We

know that 𝜕𝐽
𝜕𝑤

= 𝑤̂−𝛾𝑘𝑤 and 𝜕2𝐽
𝜕𝑤2 = −𝛾𝑤̂−𝛾−1𝑘𝑤 for 𝑤̂ = 𝑤 + 𝛽. The optimal control variables are:

𝑐∗
𝑡 = 𝑤̂𝑘

− 1
𝛾

𝑤 (4.3.55)

and

̂𝜋∗
𝑡 = 𝜋∗

𝑡 𝑤 = −
𝜇 − 𝑟

𝜎2

𝜕𝐽
𝜕𝑤
𝜕2𝐽
𝜕𝑤2

=
𝜇 − 𝑟
𝛾𝜎2 𝑤̂. (4.3.56)

It is easy to see that

𝜋∗
𝑡 𝑤(𝜇 − 𝑟) 𝜕𝐽

𝜕𝑤
+

(𝑤𝜋∗
𝑡 𝜎)2

2
𝜕2𝐽
𝜕𝑤2 =

̂𝜋∗
𝑡 (𝜇 − 𝑟)

2
𝜕𝐽
𝜕𝑤

=
(𝜇 − 𝑟)2

2𝛾𝜎2 𝑤̂1−𝛾𝑘𝑤. (4.3.57)
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Next, we present the derivation of the health insurance control variable. We let 𝐼∗
𝑡 = 𝑝∗𝑤̂. We

assume that the health-shock-cost amplitude, 𝜈, is uniformly distributed on [0, 𝑤̂] with density

1
𝑤̂
similar to the case analyzed in the previous chapter. As before, 𝜕𝐽 (0)

𝜕𝑤
= 𝑤̂−𝛾ℎ𝑘 and we evaluate

the jump-term as follows:

𝜂 ∫𝜈

𝜕𝐽 (0)

𝜕𝑤
(𝑤 − 𝜈 + 𝑝∗𝛼𝑤̂)𝜙𝜈𝑑𝜈 =

𝜂
𝑤̂

[𝐽 (0)(𝑤 + 𝛼𝑝∗𝑤̂) − 𝐽 (0)(𝛼𝑝∗𝑤̂ − 𝛽)] (4.3.58)

=
𝜂ℎ𝑤

𝑤̂(1 − 𝛾)
[(1 + 𝛼𝑝∗𝑤̂)1−𝛾 − (𝛼𝑝∗𝑤̂)1−𝛾]. (4.3.59)

The optimal insurance control variable will satisfy the first-order condition

𝜂 ∫𝜈

𝜕𝐽 (0)

𝜕𝑤
(𝑤 − 𝜈 + 𝛼𝑝∗𝑤̂)𝜙𝜈𝑑𝜈 = 𝜕𝐽

𝜕𝑤
. (4.3.60)

This is further reduced to:

𝜂
1 − 𝛾

[(1 + 𝛼𝑝∗)1−𝛾 − (𝛼𝑝∗)1−𝛾] =
𝑘𝑤

ℎ𝑤
. (4.3.61)

The HJB for the healthy individual in the pre-retirement phase can be reduced to:

(𝑘𝑤)− 1
𝛾 = 1

𝛾
{𝜆(1) + 𝜌 − (1 − 𝛾)[

(𝜇 − 𝑟)2

2𝛾𝜎2 + 𝑟 − 𝛼𝑝∗] −
𝜂ℎ𝑤

2 − 𝛾
[(1 + 𝛼𝑝∗)2−𝛾 − (𝛼𝑝∗)2−𝛾]}. (4.3.62)

Note that equations (4.3.61) and (4.3.62) are identical to equation (4.3.54). Since ℎ = ℎ𝑤, we

conclude that 𝑝∗ and 𝑘𝑤 are identical to 𝑝∗ and 𝑘 in the post-retirement case. Therefore, we have:

Φ = 𝑤1−𝛾

1 − 𝛾
𝑘ℓ, (4.3.63)

𝐽 =
(𝑤 + 𝛽)1−𝛾

1 − 𝛾
𝑘. (4.3.64)

The critical retirement-triggering wealth is given by 𝑤̄1−𝛾ℓ = (𝑤̄ + 𝛽)1−𝛾 . We can see that we

obtain the same solution as in the previous setups, 𝑤̄ = 𝛽

ℓ
1

1−𝛾 −1
.
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4.3.6 Extension 3: Retirement-triggeringWealth for Time-dependent Force of Mortal-

ity

For the general case with time-varying mortality rate 𝜆𝑥+𝑡, we need to solve for 𝐽 and 𝑤̄ nu-

merically. In this case, we briefly propose a numerical methodology for solving the problem

considering a time-dependent force of mortality. In what follows, we present a semi-discrete nu-

merical scheme where time is discretized by intervals 𝑡𝑖. Within the time interval [𝑡𝑖, 𝑡𝑖+1], we can

solve the HJB as follows:

𝐽 𝑖+1 − 𝐽 𝑖

𝑡𝑖+1 − 𝑡𝑖
+𝑢1(𝑐∗

𝑡 )+[(𝜋(𝜇 − 𝑟) + 𝑟)𝑤 + 𝑦0 − 𝑐∗
𝑡 ]

𝜕𝐽 𝑖+1

𝜕𝑤
+

(𝜋∗
𝑡 𝑤𝜎)2

2
𝜕2𝐽 𝑖+1

𝜕𝑤2 = (𝜌+𝜆𝑥+𝑡)𝐽 𝑖, (4.3.65)

for the intermediate value of 𝐽 𝑖 = 𝐽(𝑡𝑖, 𝑤), with 𝐽 𝑖+1 = 𝐽(𝑡𝑖+1, 𝑤) given. When we carry out

the computation, we also need to discretize in 𝑤 and approximate the derivatives in 𝑤 numeri-

cally. We also need to compute the optimal consumption rate and asset allocation 𝑐∗
𝑡 and 𝜋∗

𝑡 by

approximating the following expressions numerically:

𝑐∗
𝑡 = (𝐽 𝑖+1)

− 1
𝛾

𝑤 ; 𝜋∗
𝑡 = −

𝜇 − 𝑟
𝜎2

𝐽 𝑖+1
𝑤

𝐽 𝑖+1
𝑤𝑤

. (4.3.66)

Note that we have used a mixed implicit-explicit formula. In the second step, we pick the final

value of 𝐽 𝑖 by:

𝐽 𝑖 = max{𝐽 𝑖, Φ𝑖}. (4.3.67)

The implementation of the numerical scheme for the case of time-dependent force of mortality is

left for future work.
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4.4 Conclusion

Using analytical and numerical techniques developed in Chapter 3 for the post-retirement phase,

we have developed a new optimal portfolio model which can provide a working investor with

valuable investment and consumption strategies in the pre-retirement period. Our approach for

finding the critical retirement-triggering wealth is an extension of the study provided in Chapter

3. In addition to the theory shown in the previous chapter, we aimed at setting up a model where

the investor is still working. The solutionwill give this individual knowledge of the critical wealth

required to enter retirement. Previously, Farhi and Panageas (2007) have developed a similar

model, but using an option-valuation approach and convex duality theory. Our study differs from

these authors’ study by introducing health and mortality risk, as well as considering asset rates

of returns which follow a jump-diffusion process. As was observed in the derivation, our critical

wealth approximation for both constant mortality and constant rate of becoming sick, as well

as for asset returns with jumps, all resulted in the same explicit critical wealth formula. Our

formulation provides only an approximate value for the retirement-triggering wealth. To obtain

an exact solution, one would have to apply the smooth pasting condition as used by Farhi and

Panageas (2007) to our formulation, which is a matter for future work. Our approximate solution

is the result of a direct and analytically tractable approach. It can provide a quick guide for an

investor interested in the possibility of retiring, by using the approximate critical wealth level

information.

An immediate future extension of our method would be to explore how the model behaves

under the introduction of a time-dependent force of mortality and a rate of becoming sick. One

could follow themethodology proposed in this chapter in order to arrive at the numerical solution
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for this case. In addition, we expect this extended formulation to produce an exact solution for

the critical wealth when one applies the smooth pasting condition as in Farhi and Panageas

(2007) and is likewise a matter for future work.

An additional extension to our model could be derived by relaxing the assumption of a con-

stant income stream throught the introduction of the more realistic time-varying or stochastic

cases. Further, the model can be calibrated to historical health and mortality rates in order to

capture trends observed in real-world data.
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5 Conclusion

The subject matter studied in this dissertation is related to the personal finance management of

individuals, either before or after retirement. The questions we are trying to answer through

this work play an important role for an individual wishing to make the optimal retirement and

investment decisions, as the worldwide retirement system offers more freedom to the investors.

The first topic is introduced in Chapter 2. Here, we developed a lifetime ruin probability (LRP)

model, by assuming that a jump-diffusion process drives the investment return of the agent. Our

objective was to investigate the impact that jumps in the portfolio-generating process have on

this popular risk-measure. The value of the LRP is important to an investor who wants to find

out the probability of running out of money, while maintaining a desired standard of living for

the rest of his life. Today, many consumers are formulating their retirement income plans in light

of the LRP calculation. The solution methodology adopted in this chapter is based on the theory

developed by Huang, Milevsky, and Wang (2004). In our case, we derived an expression for the

LRP under the jump-diffusion setup. Employing tools from stochastic control, we arrived at a

partial-integro-differential equation for the LRP and related risk measures. We implemented the

model with the help of an efficient and robust solution algorithm methodology. We tested our

solutions with historical equity return data, by developing a calibration methodology through a

moment-matching technique. Results were then compared against diffusion-related LRP values
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that do not assume jumps. Contrary to common intuition, our main result indicated that the LRP

and some related probabilities are in fact lower when we introduced jumps. We speculated that

this result was caused by the reduction in the volatility estimate obtained through our calibration

method. In other word, we associate the cause of relatively low ruin probability values to the

suitable reduction in the diffusion volatility triggered by jumps. Higher values of this parameter

are more likely to lead to early losses, thereby increasing the diffusion process probabilities. Our

main take-away here, is that practitioners interested in measuring the impact of asset return

jumps on investments, can compute the probability riskmeasure under GBMdynamics and create

the effect of jumps through an increase in the associated volatility. The result is not general, as

under lower initial investment values, when ruin is more likely, the GBM-related probabilities are

lower than those induced by jumps. One could further investigate this model by developing other

calibration techniques. To add realism to this model this work could be extended to investigate

the effect of more complicated stochastic processes for the volatility and consumption.

The second topic was developed in Chapter 3 and further utilized to develop Chapter 4. The

results of that chapter provide optimal investment strategies for an investor in both the post- and

pre-retirement phases under more realistic conditions than the ones in the existing literature. Re-

tirees, being generally older investors, are often exposed to large and often unpredictable medical

expenses due to health-related shocks. In order to hedge this risk, the retired agent was allowed

to purchase out-of-pocket medical insurance. We modeled this health shock as jumps with a

known distribution. This facilitated the derivation of solutions for the optimal consumption, in-

vestment and medical insurance proportions under some necessary conditions and assumptions.

In addition, we considered that the investor also experiences mortality risk. The problem was

formulated mathematically as an optimization question and solved through the application of
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the dynamic programming principle and stochastic calculus theory. We developed a solution

methodology, which allowed us to arrive at analytical solutions for the optimal consumption-

allocation to risky assets proportions in the case of a sick investor. For a healthy agent, results

for the optimal medical insurance were retrieved by solving a system of differential-algebraic

equations. The solutions were further confirmed through a comparison between the analytical

result and a finite difference numerical scheme. Another objective was to arrive at an optimal in-

vestment strategy when the underlying risky asset return follows a jump-diffusion dynamics. For

this case, we arrived at a differential-integro-algebraic system. Further implementation of this

methodology is left for future work. The proposed methodology for asset returns with jumps ties

in with the numerical and calibration methods developed in Chapter 2. We detailed our findings

in the conclusion section of this chapter. Themain take-away of our results is finding that it is op-

timal for more risk-averse consumers to allocate a larger proportion to health insurance, thereby

hedging the health-decline risk. Moreover, we showed that risk-averse retirees are more likely

to consume a smaller portion of their wealth. We also assessed the cases with and without mor-

tality risk, and found that the increased probability of dying before the terminal time, increases

the demand for medical insurance and also raises the optimal consumption levels . Meanwhile,

the absence of force of mortality results in a lower demand for health insurance or motivation to

consume wealth before the imposed terminal time.

A first extension to this model would be to include other distributions for the health cost and

to find suitable calibration techniques to the existing health cost data. Other future work on this

model, could involve relaxing the assumption that the health status is irreversible. Further, one

could investigate the effects of other utility functions, such as Hyperbolic Absolute Risk Aversion

(HARA).
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These days, voluntary retirement plays an important role in making personal finance deci-

sions. Individuals are often concerned with the best investment strategy that can ensure financial

stability throughout their lives. In Chapter 4, we extended the second topic in order to arrive at

the best investment choices that provide security both pre- and post-retirement. In considering

the option of optimal voluntary retirement time, we formulated the problem by taking an optimal

control approach in the life-cycle framework. We arrived at the optimal portfolio choice strategy

in the pre-retirement phase and linked it to the answer of when it is optimal to enter retirement.

Our model for finding the optimal retirement-triggering wealth opened up the possibility of rich

interactions between different risk factors and the optimal consumption-allocation-retirement

time strategy. This represents an important financial value for the investor who is interested in

exiting the work-force while ensuring that he will be financially secure if he does so. We have ob-

served that, by introducing both health andmortality risks, the trend of the retirement-triggering-

wealth levels was maintained. In addition, the wealth level is sensitive to leisure. Small leisure

values raise the critical wealth level. Many more interesting extensions are possible. An imme-

diate extension of this model can be developed by considering a time-dependent or a stochastic

force of mortality or rate of becoming sick. Moreover, cases for other utility functions more con-

sistent with the real world can also be explored. Other future work, in the context of this model,

could involve relaxing the assumption that the health shock is irreversible. Another immediate

extension could consider deterministic time-dependent or stochastic income streams.
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