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Abstract

We first construct the minimal and maximal operators of the Hermite operator.Then

we apply a classical reslult by Askey and Wainger, to prove that for 4/3 < p < 4. This

implies that the Hermite operator is essentially self-adjoint, which means that its minimal

and maximal operators coincide. Using the asymptotic behaviour of the Lp-norms of the

Hermite functions and essentially the same method as in the proof of 4/3 < p < 4, the

same results are true for 1 ≤ p ≤ ∞. We also compute the spectrum for the minimal and

the maximal operator for 4/3 < p < 4. Then we construct a fourth-order operator, called

the twisted bi-Laplacian, from the Laplacian on the Heisenberg group, namely, the twisted

Laplacian. Using spectral analysis, we obtain explicit formulas for the heat kernel and

Green function of the twisted bi-Laplacian. We also give results on the spectral theory

and number theory associated with it. We then consider all complex powers of the twisted

bi-Laplacian and compute their heat kernels and Green functions, and moreover, we obtain

Lp − Lp′ estimates for the solutions of the initial value problem for the heat equation and

the Poisson equation governed by complex powers of the twisted bi-Laplacian.
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1 Introduction

The Hermite operator plays an important role in both mathematics and physics. It is known

as the quantum harmonic oscillator, or the simple harmonic oscillator [25],[26], [30], and

is given by

H = −∆ + |x|2, x ∈ Rn,

where ∆ =
∑n

j=1
∂2

∂x2
j
, It maps the Schwartz space S into S. In quantum mechanics, an

arbitrary Schrödinger operator can be approximated locally by H, and one can compute

its eigenvalues and eigenfunctons from it. That H is called the Hermite operator is due to

the fact that Hermite functions are the eigenfunctions of H. See, for instance, Section 6.4

in [29]. We begin this dissertation by proving that the minimal and the maximal operators

of the Hermite operator agree with each other on Lp(Rn), 4/3 < p < 4. We denote the

minimal operator on Lp(Rn) by H0,p and the maximal operator by H1,p. The extension of

H from S to L2(Rn) has been well understood, and in fact, H0,2 = H1,2. This means that H
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is essentially self-adjoint. The spectrum Σ(H0,2) of H0,2 is given by

Σ(H0,2) = {2|α| + 1 : α ∈ Nn
0},

where Nn
0 is the set of all multi-indices. However, we are interested in knowing the spec-

trum of H0,p and H1,p for general p. In this thesis we show that the spectrum of the Hermite

operator is equal to that of its minimal (maximal) operator for 4/3 < p < 4. Moreover, the

two operators are the same for 4/3 < p < 4, or in other words, the Hermite operator is

essentially self-adjoint for p between 4/3 and 4.

In Section 2 of Chapter 3, by proving that the Hermite operator H is closable on Lp(Rn), 1 <

p < ∞, it follows that H0,p is the minimal operator, (i.e., the smallest closed extension) of

H on Lp(Rn). In order to prove our desired result, we first raise the Hermite operator to its

Nth power for some positive integer N, which enables us to compute explicitly the spec-

trum for 1 ≤ p < ∞. Secondly, we compute explicitly the spectrum of the minimal and

maximal operator of H on Lp(Rn), and finally via the functional calculus, we prove that

the two operators are the same on Lp(Rn), 1 ≤ p < ∞. In addition, we give an estimate for

the Lp norm of the solution to the initial value problem for the heat equation governed by

the minimal (maximal) operator for 1 ≤ p < ∞ . The result so far is correct and relys on

a classical result by Askey and Wainger in [2]. In the last section, we use the asymptotic

behaviour of the Lp norms of the Hermite functions to replace the Askey and Wainger’s

result to show that the same results hold for 1 ≤ p ≤ ∞.
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Related results of the heat equation associated with the Hermite operator can be found

in [6, 7, 11, 40, 41].

When n = 2 an important operator related to H is L, the twisted Laplacian L on R2,

L = −∆ +
1
4

(x2 + y2) − i
(
x
∂

∂y
− y

∂

∂x

)
, (1.1)

where

∆ =
∂2

∂x2 +
∂2

∂y2 .

Thus, the twisted Laplacian L is the Hermite operator

H = −∆ +
1
4

(x2 + y2)

perturbed by the partial differential operator −iN, where

N = x
∂

∂y
− y

∂

∂x

is the rotation operator.

N is the rotation operator because in polar coordinates,

N =
∂

∂θ
.

The twisted Laplacian, which has been studied extensivelyl, appears in harmonic anal-

ysis naturally in the context of Wigner transforms and Weyl transforms [13, 38], which we

will recall in Chapter 2. In the paper [10], it is shown that L is essentially self-adjoint, and
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the spectrum Σ(L0) of the closure L0 is given by a sequence of eigenvalues, which are odd

natural numbers, i.e.,

Σ(L0) = {2k + 1 : k = 0, 1, 2, . . . }.

It should be noted, however, that each eigenvalue has infinite multiplicity. And this is

a disadvantage in applications. So we introduce the twisted bi-Laplacian of which each

eigenvalue has finite multiplicity.

Renormalizing the twisted Laplacian L to the partial differential operator P given by

P =
1
2

(L + 1), (1.2)

we see that the eigenvalues of P are the natural numbers 1, 2, . . . , and each eigenvalue, as

in the case of L, has infinite multiplicity.

Now, the conjugate L of the twisted Laplacian L is given by

L = −∆ +
1
4

(x2 + y2) + i
(
x
∂

∂y
− y

∂

∂x

)
(1.3)

and after renormalization, we get the conjugate Q of P given by

Q =
1
2

(L + 1). (1.4)

One of the goals of the thesis is to analyze the heat kernels and Green functions of

complex powers of the twisted bi-Laplacian M defined by

M = QP = PQ =
1
4

(H − iN + 1)(H + iN + 1), (1.5)

4



where P and Q commute because it can be shown by easy computations that H and N

commute, i.e., HN f = NH f for all functions f in C∞(R2).

It is proved in [15] that M is essentially self-adjoint on L2(R2). The unique self-adjoint

extension of M on L2(R2) is again denoted by M. To see how the operator M arises, we

need to recall some analysis on H1, the Heisenberg group.

For the sake of simplifying the notation and making the thesis more clear, we have

chosen to work in the one-dimensional Heisenberg group only. However, the results in

this thesis are also valid for the n-dimensional Heisenberg group.

If we identify R2 with the complex plane C via the obvious identification

R2 3 (x, y)↔ z = x + iy ∈ C,

and we let

H1 = C × R,

then H1 becomes a noncommutative Lie group when equiped with the multiplication ·

given by

(z, t) · (w, s) =

(
z + w, t + s +

1
4

[z,w]
)
, (z, t), (w, s) ∈ H1,

where [z,w] is the symplectic form of z and w defined by

[z,w] = 2 Im(zw).

We call H1 the one-dimensional Heisenberg group.
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Let h be the Lie algebra of left-invariant vector fields on H1. Then a basis for h is given

by X, Y and T , where

X =
∂

∂x
+

1
2

y
∂

∂t
,

Y =
∂

∂y
−

1
2

x
∂

∂t
,

and

T =
∂

∂t
.

It is easy to check that

[X,Y] = −T

and all other commutators are zero. The sub-Laplacian L on H1 is defined by

L = −(X2 + Y2).

The connection between the sub-Laplacian on the Heisenber group and the Hermite opera-

tors can first be attributed to Greiner [14]. Based on this observation, the Laguerre calculus

has been constructed [3, 4, 5] and used by [36] to construct the heat kernel, wave kernel

and the Green function of the twisted Laplacian.

By a result of Hörmander in [22], L is hypoelliptic on H1. A simple computation gives

L = −∆ −
1
4

(x2 + y2)
∂2

∂t2 +

(
x
∂

∂y
− y

∂

∂x

)
∂

∂t
,

where

∆ =
∂2

∂x2 +
∂2

∂y2 .
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In Chapter 4, we will obtain explicit formulas for the heat kernel and Green function

of the fourth-order operator L+L− on

H1, where L+ = L and L− is defined by

L− = −∆ −
1
4

(x2 + y2)
∂2

∂t2 −

(
x
∂

∂y
− y

∂

∂x

)
∂

∂t
.

In fact,

L− = −(X2
− + Y2

−),

where

X− =
∂

∂x
−

1
2

y
∂

∂t
,

and

Y− =
∂

∂t
+

1
2

x
∂

∂t
.

Since

[X−,Y−] = T,

it follows from Hörmander’s result in [22] again that L− is also hypoelliptic on H1. Thus

the hypoellipticity of L+L− on H1 follows easily from the hypoellipticity on H1 of L+ and

L−. The heat kernel Kρ for ρ > 0 and the Green function G of L+L− are functions on H1

such that for all suitable functions f on H1,

e−ρ(L+L−) f = Kρ ∗H1 f (1.6)
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and

(L+L−)−1 f = G ∗H1 f , (1.7)

where the convolution f ∗H1 g of two functions f and g on H1 is given by

( f ∗H1 g)(z, t) =

∫ ∞

−∞

∫
C

f ((z, t) · (w, s)−1)g(w, s) dw ds (1.8)

for all (z, t) in H1.

We will first give a self-contained and detailed construction of the heat kernels and

Green functions of twisted bi-Laplacians obtained from the sub-Laplacian on the Heisen-

berg group. It is worth noting that the heat kernels can be expressed in terms of theta

functions [24]. The spectral theory and the number theory of the twisted Laplacian L1L−1

can be found in the works [16, 17].

In Chapter 5, we will show how to transformL+L− to a family of twisted bi-Laplacians

LτL−τ on C parametrized by τ ∈ R \ {0}. This has the advantage of reducing the number of

independent variables of the sub-Laplacian from three to two and can be seen as a method

of descent and the parameter τ can be seen as Planck’s constant. The τ-Fourier–Wigner

transforms of Hermite functions are developed, which can then be used to construct the

heat kernel of Lτ. The Green function of Lτ is constructed in Section 4 of chapter 4. The

heat kernel and Green function of LτL−τ for τ ∈ R\ {0} are given in, respectively, Section 6

and Section 7. The heat kernel and Green function of the fourth-order operator L+L− are

given in Section 8. A related fourth-order operator on the Heisenberg group has also been
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studied using Laguerre calculus in [9].

The last part of the thesis describes the spectral properties of M precisely. Let us first

recall that the Fourier–Wigner transform V( f , g) of two functions f and g in the Schwartz

space S(R) on R is the function in the Schwartz space S(R2) on R2 given by

V( f , g)(q, p) = (2π)−1/2
∫ ∞

−∞

eiqy f
(
y +

p
2

)
g
(
y −

p
2

)
dy

for all q and p in R. For k = 0, 1, 2, . . . , the Hermite function ek of order k is defined on R

by

ek(x) =
1

(2kk!
√
π)1/2

e−x2/2Hk(x), x ∈ R, (1.9)

where Hk is the Hermite polynomial of degree k given by

Hk(x) = (−1)kex2

(
d
dx

)k

e−x2
, x ∈ R. (1.10)

Now, for j, k = 0, 1, 2, . . . , we define the function e j,k on R2 by

e j,k(x, y) = V(e j, ek)(x, y), x, y ∈ R. (1.11)

It can be shown that {e j,k : j, k = 0, 1, 2, . . . } forms an orthonormal basis for L2(R2). See,

for example, Theorem 21.2 in [38].

The following result is Theorem 1.1 in [15].

Theorem 1.0.1. The eigenvalues and the eigenfunctions of the twisted bi-Laplacian M

are, respectively, the natural numbers 1, 2, 3, . . . , and the functions e j,k, j, k = 0, 1, 2, . . . .

9



More precisely, for n = 1, 2, 3, . . . , the eigenfunctions corresponding to the eigenvalue n

are all the functions e j,k where j, k = 0, 1, 2, . . . , such that

( j + 1)(k + 1) = n.

By means of Theorem 1.0.1, we see that the multiplicity of each eigenvalue n of the

twisted bi-Laplacian is equal to the number d(n) of divisors of the positive integer n. We

give as Corollary 1.2 in [15] an estimate on the counting function N(λ) defined as the num-

ber of eigenvalues of M less than or equal to λ. In fact, we can see that the following re-

sult, which is Corollary 1.2 in [15], is the well-known result of asymptotic behavior of the

Dirichlet divisors in the perspective of the counting function of the twisted bi-Laplacian,

in which the multiplicity of each eigenvalue is taken into account.

Theorem 1.0.2. For all λ in [0,∞),

N(λ) =
∑
n≤λ

d(n) = λ ln λ + (2γ − 1)λ + E(λ), (1.12)

where γ is Euler’s constant and

E(λ) = O(
√
λ)

as λ→ ∞.

More precise results than Theorems 1.0.1 and 1.0.2 can be found in [17]. A complete

and classical proof of Theorem 1.0.2 can be based on Theorem 4.12 in [31] and the above-

mentioned connection between the Dirichlet divisors and the twisted bi-Laplacian. It is
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interesting to point out the connection with the divisor problem, which asks for the best

number µ such that

E(λ) = O(λµ)

as λ→ ∞. The conjecture is that µ = 1/4, but it is a result of Hardy [18] that µ = 1/4 does

not work. The best result to date due to Huxley [20] is that µ = 131
416 ,which is approximately

0.31490.

Theorem 1.0.2 is used to compute the trace of the heat semigroup of M in Chapter

4, Section 2 and the Dixmier trace of the inverse of M in Section 3. Another theme of

Chapter 4 is to compute the zeta function regularizations of the trace and the determinant

of the complex power Mα of M, where α ∈ C. To that end, we use the complex-valued

function ζMα defined formally by

ζMα(s) = tr((Mα)−s) = tr(M−αs), s ∈ C,

in Section 4 of Chapter 4 to compute the zeta function regularizations of the trace and de-

terminant of Mα, and give a formula for the zeta function regularization of the determinant

of the heat semigroup e−tMα
.

In the final chapter, using the results obtained in all previous chapters, we are able

to obtain the heat kernels and Green functions for all complex powers of the twisted bi-

Laplacian M. We prove that these class of operators are Hilbert-Schimidt, and are in the

trace class. Lastly, by applying Wong’s result on the estimates of the Lp norms of Hermite

11



functions, we give the range of p’s for the Lp − Lp′ estimates to the solutions of partial

differential equations governed by Mα, α ∈ C, are in Lp.
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2 Background

2.1 The Heisenberg Group and the Sub-Laplacian

In this section, we introduce the Heisenberg group H1, a non-commutative group with

underlying manifold R3. For the sake of transparency considering the type of problems

we are dealing with in this dissertation, we only look at the one-dimensional Heisenberg

group, and the extensions to higher dimensions are easy generalizations.

The Heisenberg group and its connections with quantum mechanics and other branches

of mathematics can be found in [12],[23], [29],[35].We begin with the definition of the

Heisenberg group. We identify points in R2 with points in C through the following law:

R2 3 (x, y)↔ z = x + iy ∈ C.

Let H1 = C × R. Then for all points (z, t), (w, s) ∈ H1, we define the group law by

(z, t) · (w, s) =

(
z + w, t + s +

1
4

[z,w]
)
,

13



where [z,w] is the symplectic form of z, w given by

[z,w] = 2Im(zw).

Thus, H1 is a noncommutative Lie group under this group law, with the identity element

(0, 0), and the inverse of the element (z, t) is simply (−z,−t). Moreover, the Heisenberg

group is unimodular, which means that the left Haar measure and the right Haar measure

agree, and equal to the Lebesgue measure on R3.

A Lie algebra is a real vector space g with a binary operation [·, ·] which is bilinear and

satisfies the Jacobi identity. The Jacobi identity states that

[g1, [g2, g3]] + [g2, [g1, g3]] + [g3, [g1, g2]] = 0

for all g1, g2 and g3 on g.

A vector field V on H1 is said to be left-invariant if

VL(w,s) = L(w,s)V

for all (w, s) ∈ H1, where L(w,s) is the left translation by (w, s) defined by

(L(w,s) f )(z, t) = f ((w, s) · (z, t)), (z, t) ∈ H1.

We now introduce a particular Lie algebra, namely the Lie algebra of left-invariant

vector fields on H1.

14



Theorem 2.1.1. [44] Let h1 be the set of all left-invariant vector fields on H1. Then h1 is a

Lie algebra in which the Lie bracket [·, ·] is the commutator given by

[X,Y] = XY − YX

for all X, Y ∈ h1.

Proof Linearity is obvious. Let X, Y ∈ h1, and we need to show firstly that [X,Y] ∈ h1.

We write

X = a1
∂

∂x
+ b1

∂

∂y
+ c1

∂

∂t

and

Y = a2
∂

∂x
+ b2

∂

∂y
+ b3

∂

∂t
,

where a1, b1, c1, a2, b2, c2 are C∞ functions on H1. Then one can easily check that

XY = a1a2
∂2

∂x2 + b1b2
∂2

∂y2 + c1c2
∂2

∂t2 + (a1b2 + a2b1)
∂2

∂x∂y
+ (b1c2 + b2c1)

∂2

∂y∂t

+(a1c2 + a2c1)
∂2

∂t∂x
+ V1,

where V1 is a vector field on H1. By switching subscripts in the second-order terms in XY,

we get

[X,Y] = XY − YX = V1 − V2,

where V2 is another vector field on H1. To see that [X,Y] is left-invariant, let (w, s) ∈ H1,

and we use the left-invariance of X, Y to check that

L(w,s)XY = XL(w,s)Y = XYL(w,s)

15



and

L(w,s)YX = YL(w,s)X = YXL(w,s).

Thus, we have

[X,Y]L(w,s) = L(w,s)[X,Y],

and therefore [X,Y] ∈ h1, as desired. Secondly, we prove Jacobi’s identity.

[X, [Y,Z]] = [X,YZ − ZY] = XYZ − XZY − YZX + ZYX,

[Y, [Z, X]] = [Y,ZX − XZ] = YXZ − YZX − ZXY + XZY,

[Z, [X,Y]] = [Z, XY − YX] = ZXY − ZYX − XYZ + YXZ.

Thus,

[X, [Y,Z]] + [Y, [Z, X]] + [Z, [X,Y]] = 0,

and therefore h1 is a Lie algebra.

Theorem 2.1.2. X, Y, T are vector fields on H1 defined as follows,

X =
∂

∂x
+

1
2

y
∂

∂t
,

Y =
∂

∂y
−

1
2

x
∂

∂t
,

T =
∂

∂t
.

Then X, Y, T form a basis for h1.
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Proof Firstly, we check that X, Y, T ∈ h1. i.e.,

XL(w,s) = L(w,s)X

for all (w, s) ∈ H1. To see this, we write w = (u, v), z = (x, y). Then

(L(w,s) f )(z, t) = f ((w, s) · (z, t)) = f
(
u + x, v + y, s + t +

1
2

(vx − uy)
)
,

where (z, t) ∈ h1. To simplify notation, we denote

(...) =

(
u + x, v + y, s + t +

1
2

(vx − uy)
)
.

Then, we have

(XL(w,s) f )(z, t)

=

((
∂

∂x
+

1
2

y
∂

∂t

)
(L(w,s) f )

)
(z, t)

=
∂ f
∂x

(...) +
1
2

v
∂ f
∂t

(...) +
1
2

y
∂ f
∂t

(...)

=
∂ f
∂x

(...) +
1
2

(v + y)
∂ f
∂t

(...).

On the other hand,

(L(w,s)X f )(z, t)

= (X f )(...)

=
∂ f
∂x

(...) +
1
2

(v + y)
∂ f
∂t

(...).
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Thus,

XL(w,s) = L(w,s)X.

So we have proved that X ∈ h1, and similar arguments show that Y, T are also elements of

h1.

Moreover, we know that the Lie algebra h1 is isomorphic to T(0,0,0)H
1, the tangent space

of the Heisenberg group at the origin, and a proof can be found in [44]. Since T(0,0,0)H
1 is

a three dimensional vector space, it remains to show that X, Y, T are linearly independent.

The see this, we consider, the equation

aX + bY + cT = 0,

where a, b, c are real numbers. for all f on H1, we must show that

(aX + bY + cT ) f = 0⇔ a, b, c = 0.

But this is clear if we pick

f (x, y, t) = x; f (x, y, t) = y; f (x, y, t) = t.

Therefore, X, Y, T is a basis for h1.

Lastly, we explain the choice of vector fields X, Y, T as a basis for h1.

Theorem 2.1.3. Let e1, e2, e3 be the coordinate axes and write them in their parameterized

form

e1(s) = (s, 0, 0), s ∈ R,

18



e2(s) = (0, s, 0), s ∈ R,

e3(s) = (0, 0, s), s ∈ R.

Then for all C∞ functions f on H1, we have

(X f )(z, t) =
d
ds
|s=0 f ((z, t) · e1(s)),

(Y f )(z, t) =
d
ds
|s=0 f ((z, t) · e2(s)),

(T f )(z, t) =
d
ds
|s=0 f ((z, t) · e3(s))

for all (z, t) ∈ H1.

Proof Since

d
ds
|s=0 f ((z, t) · e1(s))

=
d
ds
|s=0 f

(
x + s, y, t + s +

1
2

sy
)

=
∂ f
∂x

(x, y, t) +
1
2

y
∂

∂t
(x, y, t),

We get

X =
∂

∂x
+

1
2

y
∂

∂t
,

as asserted.

Lastly, an observation can be made through the theorem below.

Theorem 2.1.4. [X,Y] = −T, and all other commutators among X, Y, T vanish.
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By Theorem 2.14, the vector fields X, Y, and their first-order commutator span the Lie

algebra h1 on the Heisenberg group. In fact, they are the so-called horizontal vector fields

on H1, and T is known as the missing direction.

Now, we develop the sub-Laplacian on H1, which will later give rise to a family of

linear operators known as the twisted Laplacians on R3. The sub-Laplacian L on H1 is

defined by

L = −(X2 + Y2).

More explicitly,

X2 =

(
∂

∂x
+

1
2

y
∂

∂t

) (
∂

∂x
+

1
2

y
∂

∂t

)
=

∂2

∂x2 + y
∂2

∂x∂t
+

1
4

y2 ∂
2

∂t2

and

Y2 =

(
∂

∂y
−

1
2

x
∂

∂t

) (
∂

∂x
−

1
2

y
∂

∂t

)
=

∂2

∂y2 − x
∂2

∂y∂t
+

1
4

x2 ∂
2

∂t2 .

Thus,

L = −∆ −
1
4

(x2 + y2)
∂2

∂t2 +

(
x
∂

∂y
− y

∂

∂x

)
∂

∂t
,

where

∆ =
∂2

∂x2 +
∂2

∂y2 .
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2.2 The Wigner Transforms and the Weyl Transforms

In this section, we introduce the Weyl transform and its properties. We begin with intro-

ducing the first related transform, the Fourier-Wigner transform.

Let p, q be in R. Define the function ρ(q, p) f on R by

(ρ(q, p) f )(x) = eiq·p+ 1
2 iqp f (x + p), x ∈ R.

The main properties used in the thesis are stated as follows.

Proposition 2.2.1. ρ(q, p) : L2(R)→ L2(R) is a unitary operator for all q, p in R.

The proof of the proposition is straight forward, and we omit it. Note that ρ(q, p)−1 =

ρ(−q,−p), q, p ∈ Rn. In fact, ρ is a projective representation, which is a unitary represen-

tation up to a phase factor, of the phase space R2 on L2(R).

Let f and g be Schwǎtz functions on R. Then we define the Fourier-Wigner transform

V( f , g) on L2(R2) by

V( f , g)(q, p) = (2π)−1/2 < ρ(q, p) f , g >, q, p ∈ R,

where <, > is the inner product in L2(R2).

Now, we give a working formula for the Fourier-Wigner transform.

Proposition 2.2.2. Let f and g be in S(R). Then,

V( f , g)(q, p) = (2π)−1/2
∫
Rn

eiq·y f
(
y +

p
2

)
g
(
y −

p
2

)
dy
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for all q and p in Rn.

Proof By definition, we write

V( f , g)(q, p) = (2π)−1/2 < ρ(q, p) f , g >

= (2π)−1/2
∫
R

eiqx+ 1
2 iqtp f (x + p)g(x)dx

for all q, p in R. If we let x = y − p
2 , in the last equality, we immediately get that the

Fourier-Wigner transform is a bilinear mapping.

Proposition 2.2.3. V : S(R) × S(R)→ S(R2) is a bilinear mapping.

To prove the propsition, we need a lemma as follows.

Lemma 2.2.4. Let φ ∈ S(R). Then the function Φ on R2n defined by

Φ(q, p) =

∫
R

eiqyφ(y, p)dy, q, p ∈ R,

is also in S(R2).

The proof of Lemma 2.2.4. is straight-forward computation, and we omit it here. Now we

give a proof of Proposition 2.2.3.

2Proof (Propositi 2.2.3) Note that for all f and g in R, the function φ on R2 defined by

φ(y, p) = f (y)g(p), y, p ∈ R,

is obviously in R2. Hence the function ψ on R2 defined by

ψ(y, p) = f
(
y +

p
2

)
g
(
y −

p
2

)
, y, p ∈ R.
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Therefore, by Lemma 2.2.4, V( f , g) ∈ S(R2).

In order to study the Weyl transform, it is necessary to introduce the Wigner transform

of two arbitrary L2 functions on R. The Wigner transform W( f ) of a function f on L2(R) is

a tool for studying the nonexisting joint probability distribution of position and momentum

in the state f . We will next introduce the Wigner transform as the Fourier transform of the

Fourier-Wigner transform, and some of its important properties.

Theorem 2.2.1. Let f and g be in S(R). Then

V( f , g)(̂x, ξ) = (2π)−1/2
∫
R

e−iξp f (x +
p
2

)g(x −
p
2

)dp, x, ξ ∈ R.

Proof For any positive number ε, we define the function Iε on R2 by

Iε(x, ξ) =

∫
R

∫
R

e
−ε2 |q|2

2 e−ixq−iξpV( f , g)(q, p)dqdp, x, ξ ∈ R.

Then, using Fubini’s theorem and the fact that the Fourier transform of the function φ

given by

φ(x) = e−
|x|2
2 , x ∈ R,

equals to φ, we get,

Iε(x, ξ)

= (2π)−1/2
∫
R

∫
R

e−
ε2 |q|2

2 e−ixq−iξp

{∫
R

eiqy f
(
y +

p
2

)
g
(
y −

p
2

)
dy

}
dp

= (2π)−1/2
∫
R

e−iξp
∫
R

(∫
R

e−i(x−y)qe−
ε2 |q|2

2 dq
)

f
(
y +

p
2

)
g
(
y −

p
2

)
dydp

=

∫
R

e−iξp

{∫
R

ε−1e−
|x−y|2

2ε2 f
(
y +

p
2

)
g
(
y −

p
2

)
dy

}
dp. (2.1)
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Now, for each p in R, we define the function Fp by

Fp(y) = f
(
y +

p
2

)
g
(
y −

p
2

)
, y ∈ R.

Then, by (2.1) and the definition of Fp we get

Iε(x, ξ) =

∫
R

e−iξp(Fp ∗ φε)(x)dp, x, ξ ∈ R,

where

φε(x) = ε−1φ
( x
ε

)
, x ∈ R.

Note that, for each fixed p in R, we have

Fp ∗ φε →

(∫
R

φ(x)dx
)

Fp = (2π)
1
2 Fp

uniformly on compact subsets of R as ε → 0. Now, let N be any positive integer. Then

there exists a positive constant CN such that

|(Fp ∗ φε)(x)| ≤ ||Fp||L∞(R)||φε ||L1(R)

= ||Fp||L∞(R)||φ||
1
L(R)

≤ (2π)n/2supy∈R

∥∥∥∥∥ f
(
y +

p
2

)
g
(
y −

p
2

)∥∥∥∥∥
≤ CN(1 + |p|2)−N , x, p ∈ Rn,
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for all positive numbers ε. So, by the Lebesgue dominated convergence theorem,

lim
ε→0

Iε(x, ξ) = (2π)n/2
∫
R

e−iξp f
(
x +

p
2

)
g
(
x −

p
2

)
dp

=

∫
R

∫
R

e−ixq−iξpV( f , g)(q, p)dqdp

= (2π)V( f , g)(̂x, ξ), x, ξ ∈ R,

and the theorem is proved.

We define the Wigner transform of two functions in S(R) as the Fourier transform of the

Fourier-Wigner transform of two functions, and we give a working formula for the Wigner

transform in the following theorem.

Theorem 2.2.2. For all Schwartz functions f and g on R,

W( f , g)(x, ξ) = (2π)−1/2
∫
R

e−iξp f
(
x +

p
2

)
g
(
x −

p
2

)
dp, x, ξ ∈ R.

Proof For all x, ξ ∈ R,

W( f , g)(x, ξ)

= (2π)−3/2
∫
R

∫
R

e−ixq−iξp

(∫
RN

eiqy f
(
y +

p
2

)
g
(
y −

p
2

)
dy

)
dqdp

= (2π)−3/2
∫
R

∫
R

(∫
R

e−iq(x−y)dq
)

e−iξp f
(
y +

p
2

)
g
(
y −

p
2

)
dydp

= (2π)−1/2
∫
R

e−iξp

(∫
R

δ(x − y) f
(
y +

p
2

)
g
(
y −

p
2

)
dy

)
dp

= (2π)−1/2
∫
R

e−iξp f
(
x +

p
2

)
g
(
x −

p
2

)
dp,

25



where

(2π)−1/2
∫
R

eiq(y−x)dq = δ(y − x) = δ(x − y)

and ∫
R

δ(x − y) f (y)dy = f (x).

Lemma 2.2.3. Let f , g be in L2(R). Then,

W( f , g) = W(g, f ).

Now we give the Moyal’s identity, which will be used in constructing explicit fomulas

for the heat kernels and Green functions.

Theorem 2.2.4. For all functions f1, f2 and g1, g2 in L2(R). Then

(W( f1, g1),W( f2, g2)) = ( f1, f2)(g1, g2).

Proof Using Plancherel’s theorem, we get

(W( f1, g1),W( f2, g2))

= (V( f1, g1)∧,V( f2, g2)∧)

= (V( f1, g1),V( f2, g2)

=

∫
R

∫
R

f1

(
x +

p
2

)
g1

(
x −

p
2

)
f2

(
x +

p
2

)
g2

(
x −

p
2

)
dxdp.

We make a change of variable u = x +
p
2 and v = x − p

2 , and get

dudv = dxdp
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Hence,

(W( f1, g1),W( f2, g2))

=

∫
Rn

∫
Rn

f1(u)g1(v) f2(u)g2(v)dudv

= ( f1, f2)(g1, g2).

Lemma 2.2.5. The Moyal identity is also true for the Fourier-Wigner transform V.

Lemma 2.2.6. W : S(R)→ S(R) can be extended uniquely to a bilinear operator

W : L2(R) × L2(R)→ L2(R)

such that

||W( f , g)||L2(R2) = || f ||L2(R)||g||L2(R)

for all f and g in L2(R).

Lemma 2.2.7. The preceding lemma is also true for the Fourier-Wigner transform.

Now we introduce the Weyl transform and its connection with the Wigner transform.

The role of the Weyl transform in quantization is given at the end of this section.

Suppose σ is a function in L2(R×R). Then for all functions f in L2(R), we define the Weyl

transform of f with symbol σ, denoted by Wσ f by

(Wσ f , g) = (2π)−n/2
∫
R

∫
R

σ(x, ξ)W( f , g)(x, ξ)dxdξ, g ∈ L2(R).
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By the adjoint formula for the Fourier transform, we get

(Wσ f , g)

= (2π)−1/2
∫
R

∫
R

σ(q, p)V( f , g)∧(q, p)dqdp

= (2π)−1/2
∫
R

∫
R

σ̂(q, p)V( f , g)(q, p)dqdp

= (2π)−1
∫
R

∫
R

σ̂(q, p)(ρ(q, p) f , g)dqd.

So,

Wσ f = (2π)
∫
R

∫
R

σ̂(q, p)ρ(q, p) f dqdp.

In classical mechanics, the phase space used to describe the motion of a particle mov-

ing in R is given by

R2 = {(x, ξ) : x, ξ ∈ R},

where the variable x and ξ are used to denote the position and momentum of the particle,

respectively.

The motivation for studying the Wely Transform comes from the quantization. The in

classical mechanics are given by real-valued tempered distributions on R2. The rules of

quantization, with Planck’s constant adjusted to 1, describes that a quantum-mechanical

model of the motion can be set up using the Hilbert space L2(R), for the phase space,

the multiplication operator on L2(R) by the funciton x j for the position variable x j, and the

differential operator D j for the momentum variable ξ j. Thus, the quantum-mechanical ana-
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logue of the classical mechanical observable σ(x, ξ) should be the linear operator σ(x,D)

by direct substitution, where D is the vector (D1,D2, ...,Dn). It can be proved that a good

choice for σ(x,D) is the weyl Transform Wσ.

Lastly, we introduce the product formula for Weyl transforms.

Lemma 2.2.8. Let z,w be points in R. Then,

ρ(z)ρ(w) = ρ(z + w)e
1
4 i[z,w],

where [·, ·] is the symplectic form of two complex points in C.

Proof We write z = q + ip and w = v + iu. Then for all x ∈ R and all f ∈ L2(R), we have

(ρ(z)ρ(w) f )(x)

= eiqx+ 1
2 iqp(ρ(w) f )(x + p)

= eiqx+ 1
2 qpeiv(x+p)+ 1

2 ivu f (x + p + u)

= eiqx+ 1
2 qp+ivx+ivp+ 1

2 ivu f (x + p + u)

On the other hand,

(ρ(z + w)e
1
4 i[z,w] f )(x)

= e
1
2 ipv− 1

2 iqu+i(q+v)x+ 1
2 i(q+v)(p+u) f (x + p + u)

= eipv+iqx+ivx+ 1
2 iqp+ 1

2 vu f (x + p + u)

The proof is complete.
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Theorem 2.2.9. Let σ, τ be in L2(R × R). Then we have

WσWτ = Wω,

where ω is given by

ω̂ = (2π)(σ̂ ∗1/4 τ̂).
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3 Spectral Theory of the Hermite Operator on Lp(Rn)

3.1 The Minimal Operator and the Maximal Operator

We first give the definition of a closable operator in general, which can be found in the

book [43]. Let A be a linear operator from a Banach space X into a Banach space Y with

dense domain D(A).

Definition 3.1.1. The operator A : X → Y is said to be closable if for any sequence {xk} in

D(A) such that xk → 0 in X and Axk → y in Y as k → ∞, then we have y = 0.

To see that the Hermite operator is closable, we let {φk} be a sequence in S such that

φk → 0 in Lp(Rn) and Hφk → f in Lp(Rn) as k → ∞. Then for all ψ ∈ S, we have

( f , ψ) = lim
k→∞

(Hφk, ψ) = lim
k→∞

(φk,Hψ) = 0,

where

(g, h) =

∫
Rn

g(x)h(x)dx, g ∈ Lp(Rn), h ∈ Lp′(Rn).

This implies that f = 0. Therefore H is closable in Lp(Rn).
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Now we introduce a proposition in book [43].

Proposition 3.1.2. A has a closed extension if and only if A is closable.

In view of the above proposition, having proved the fact that the Hermite operator is

closable, we can define the minimal operator H0,p of H on Lp(Rn) to be the smallest closed

extension, or the closure of H, on Lp(Rn). We end this section with the definition of the

maximal operator of the Hermite operator on Lp(Rn).

Definition 3.1.3. Let u and f be functions in Lp(Rn). We say that u ∈ D(H1,p) and H1,pu =

f if and only if (Hu, φ) = ( f , Hφ), φ ∈ S, and thatD(H1,p) = {u : H1,pu ∈ Lp(Rn)}. Then,

H1,pu = Hu, u ∈ D(H1,p).

3.2 The Spectrum of HN
0,p and HN

1,p, 4/3 < p < 4

In this section, we give the spectrum of the operator HN
1,p for some N ∈ N.

Proposition 3.2.1. For 4/3 < p < 4 and N large enough, the spectrum Σ(H1,p
1 ) of the

operator HN
1,p is given by

Σ(HN
1,p) = {(2|α| + 1)N : α ∈ Nn

0}.

Proof For each N ∈ N, let S N = {(2|α|+1)N : α ∈ Nn
0}.We now show that the resolvent set

of the operator HN
1,p is C− S N . In other words, the spectrum Σ(HN

1,p) is S N . For all complex
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numbers λ < S N , we claim that the operator HN
1,p−λ is bijective. Indeed, for injectivity, let

I be the identity operator on Lp(Rn) and suppose that (HN
1,p−λI)u = 0 for some u ∈ Lp(Rn).

Then

((HN
1,p − λI)u)(φ) = 0, φ ∈ S.

Treating u as a distribution, we have

((HN
1,p − λI)u)(φ) = u((HN − λI)φ) = 0, φ ∈ S.

On the other hand, let ψ ∈ S. Then we show that there exists φ ∈ S such that (HN −λI)φ =

ψ. Indeed, we define φ by

φ =
∑
α

1
(2|α| + 1)N − λ

(ψ, eα)eα,

where eα, α ∈ Nn
0 are the eigenvectors corresponding to the eighenvalue 2|α| + 1. Then it

is clear that φ ∈ S, and since

(HN − λI)φ = ψ,

we have

u(ψ) = 0, ψ ∈ S,

and u = 0, as desired. To see that HN
1,p − λI is surjective, let f ∈ Lp(Rn). Then we need to

prove that there exists u ∈ Lp(Rn) such that (HN
1,p − λI)u = f . By Minkowski’s inequality
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and Hölder’s inequality, we have

||u||p = ||(HN
1,p − λI)−1 f ||p ≤

∑
α

1
|(2|α| + 1)N − λ|

|( f , eα)| ||eα||p

≤
∑
α

1
|(2|α| + 1)N − λ|

|| f ||p||eα||p′ ||eα||p, (3.1)

where p′ is the conjugate index of p. And for N large enough (depending on p), by a result

from the paper [2], we have

||eα||p||eα||p′ = O(1), 4/3 < p < 4, (3.2)

or equivalently, this product is bounded for all α, which makes the right hand side of (3.1)

finite, given the range for p.

Remark 3.2.1. The range of p for which (3.2) holds is sharp according to the estimate in

the paper [2]

3.3 HN
0,p = HN

1,p, 4/3 < p < 4

Before proving the main result of this section, we need two lemmas.

Lemma 3.3.1. For each N ∈ N, HN
0,p ⊆ HN

1,p.

Proof We prove the lemma by induction. For N = 1, it is clearly true. Suppose it holds for

N. Let u ∈ D(HN+1
0,p ). Then H0,pu ∈ D(HN

0,p). Since H0,pu = H1,pu and D(HN
0,p) ⊆ D(HN

1,p),
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we have H1,pu ∈ D(HN
1,p), and it follows that u ∈ D(HN+1

1,p ). Furthermore, we have

HN+1
1,p u = HN

1,pH1,pu = HN
0,pH0,pu = HN+1

0,p u.

Thus, HN
0,p ⊆ HN

1,p.

Lemma 3.3.2. (HN
0,p)−1 = (HN

1,p)−1.

Proof By definition, HN = HN
1,p in distribution sense, and 0 < Σ(HN), so (HN

1,p)−1 exists.

By the spectral mapping theorem, the spectrum of the operator (HN
1,p)−1 is given by

Σ((HN
1,p)−1) =

{
1

(2|α| + 1)N : α ∈ Nn
0

}c

.

On the other hand, (HN
0,p)−1 clearly exists because 0 is not in the set of eigenvalues of

HN
0,p. Moreover, (HN

0,p)−1 and (HN
1,p)−1 are bounded linear operators on Lp(Rn). Now, let

v ∈ Lp(Rn). Suppose (HN
0,p)−1v = f and (HN

1,p)−1v = g for some f and g ∈ Lp(Rn). Then we

have HN
0,p f = v and HN

1,pg = v. But we have shown in the previous lemma that HN
0,p ⊆ HN

1,p,

so, in particular,

HN
0,p f = HN

1,p f = v.

Also, since HN
1,p is injective, we conclude that f = g. And it follows that (HN

0,p)−1 =

(HN
1,p)−1.

Now, we prove our main theorem of this section.

Theorem 3.3.3. HN
0,p = HN

1,p, 4/3 < p < 4.
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Proof Let u ∈ D(HN
1,p) and HN

1,pu = f for some f ∈ Lp(Rn). Then (HN
1,p)−1 f = u. But by

Lemma 4.2, (HN
0,p)−1 f = (HN

1,p)−1 f = u. Thus, u ∈ D(HN
0,p) and HN

0,pu = f . It follows that

HN
0,p = HN

1,p.

3.4 The Spectrum of H1,p, 4/3 < p < 4

The goal in this section is to show that Σ(H0,p) = Σ(H1,p), 4/3 < p < 4. To this end, we

use the following result of Taylor [32], [33].

Theorem 3.4.1. Let A be a closed linear operator and f be a holomorphic function on a

neighbourhood of Σ(A). Then the spectrum Σ( f (A)) of the operator f (A) is given by

Σ( f (A)) = { f (λ) : λ ∈ Σ(A)}.

In view of the theorem, we define a function f on C − (−∞, 0] by

f (λ) = λ1/N , N ∈ N, λ ∈ C − (−∞, 0],

where the principal branch is taken. Secondly, we let the operator A be given by

A = HN
0,p = HN

1,p.

Then we have

Σ(A) =
{
(2|α| + 1)N : α ∈ Nn

0

}c
.
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Lastly, since AN is closed, and f is holomorphic on a neighbourhood of the spectrum of A,

we apply Theorem 5.1 to the function f and operator A, and get

Σ( f (A)) = { f (λ) : λ ∈ Σ(A)}.

Therefore

Σ(H1,p) = Σ(H0,p)

=
{
λ1/N : λ = (2|α| + 1)N , α ∈ Nn

0

}c

=
{
2|α| + 1 : α ∈ Nn

0
}c .

Having computed explicitly the spectrum for H0,p and H1,p, we can apply Taylor’s theorem

to the two operators, and by functional calculus, we see easily that

H0,p = A1/N = H1,p, 4/3 < p < 4.

So, this means that the Hermite operator is essentially self-adjoint on Lp(Rn), for p between

4/3 and 4.

3.5 An Initial Value Problem

In this last section, we give the Lp-estimate of the solution to the initial value problem for

the heat eqation governed by H0,p, which is equal to that of H1,p, for p between 4/3 and 4,

i.e.,
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
∂u
∂t (x, t) = (−H0,pu)(x, t),

u(x, 0) = f (x),

(x, t) ∈ Rn × (0,∞),

x ∈ Rn, f ∈ Lp(Rn), 4/3 < p < 4.

We have

u(·, t) = e−H0,pt f , t > 0,

and therefore

u(·, t) =
∑
α

e−(2|α|+1)t( f , eα)eα, t > 0,

where the convergence is in the space S′ of tempered distributions [44]. So, for t > 0,

||u(·, t)||p ≤
∑
α

e−(2|α|+1)t|| f ||p||eα||p||eα||p′ .

Let Kp be defined by

Kp = sup
α∈Nn

0

‖eα‖p‖eα‖p′ .

Since

||eα||p||eα||p′ = O(1) ≤ K, 4/3 < p < 4,

where K is some positive constant, and

∑
α

e−(2|α|+1)t = e−t

 ∞∑
j=0

e−2 jt


n

=
e(n−1)t

2nsinhnt
,

we see that

u(·, t) ∈ Lp(Rn), 4/3 < p < 4,

38



and that

||u(·, t)||p ≤
Kpe(n−1)t

2nsinhnt
|| f ||p, t > 0, 4/3 < p < 4.

3.6 An Improvement

The starting point is the following set of asymptotics in [34] given by

||ek||p ∼ k
1

2p−
1
4 , 1 ≤ p ≤ 4,

||ek||p ∼ k−
1
8 lnk, p = 4,

||ek||p ∼ k−
1

6p−
1
12 , 4 < p ≤ ∞.

Then we have the following proposition.

Proposition 3.6.1. For 1 ≤ p ≤ ∞, there exists a positive number εp such that

||ek||p ∼ kεp , p→ ∞.

Then series (3.1) is convergent by the above proposition and the whole proof as for

4/3 < p < 4 goes through, and we have among others the following theorem.

Theorem 3.6.1. For 1 ≤ p ≤ ∞, H0,p = H1,p and

∑
(H0,p =

∑
(H1,p) = {2|α| + 1 : α ∈ Nn

0}.
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4 The Heat Kernel and Green Function of a

Fourth-Order Operator on the Heisenberg Group

4.1 The Twisted Bi-Laplacians

Let ∂
∂z and ∂

∂z be linear partial differential operators on R2 given by

∂

∂z
=

∂

∂x
− i

∂

∂y

and

∂

∂z
=

∂

∂x
+ i

∂

∂y
.

Let τ ∈ R \ {0}. Then we define the partial differential operators Zτ and Zτ by

Zτ =
∂

∂z
+

1
2
τz, z = x − iy,

and

Zτ =
∂

∂z
−

1
2
τz, z = x + iy.
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Let Lτ be the linear partial differential operator on R2 defined by

Lτ = −
1
2

(ZτZτ + ZτZτ).

Then Lτ is an elliptic partial differential operator on R2 given by

Lτ = −∆ +
1
4

(x2 + y2)τ2 − i
(
x
∂

∂y
− y

∂

∂x

)
τ.

Thus, Lτ is the ordinary Hermite operator −∆ + 1
4 (x2 + y2)τ2 perturbed by the partial dif-

ferential operator −iNτ, where

N = x
∂

∂y
− y

∂

∂x

is the rotation operator. As such, we call Lτ the twisted Laplacian. If τ = 1, then we

recover the twisted Laplacian studied in detail in [43].

To see the connection of the twisted Laplacian Lτ with the sub-Laplacian, we define

for all every function f in L1(H1), the function f τ on C by

f τ(z) = (2π)−1/2
∫ ∞

−∞

eitτ f (z, t) dt, z ∈ C,

provided that the integral exists. f τ(z) is in fact the inverse Fourier transform of f (z, t) with

respect to t evaluated at τ. It is to be noted that the Fourier transform F̂ of a function F in

L1(Rn) is defined by

F̂(ξ) = (2π)−n/2
∫
Rn

e−ix·ξF(x) dx, ξ ∈ Rn.
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Let τ ∈ R \ {0}. Then for all suitable functions f on H1, we get

(L f )τ = Lτ f τ (4.1)

and

(L+L− f )τ = LτL−τ f τ. (4.2)

4.2 Fourier–Wigner Transforms of Hermite Functions

Let f and g be functions in the Schwartz space S(R) on R. Then for τ in R \ {0}, the

τ-Fourier–Wigner transform Vτ( f , g) of f and g is defined by

Vτ( f , g)(q, p) = (2π)−1/2|τ|1/2
∫ ∞

−∞

eiτqy f
(
y +

p
2

)
g
(
y −

p
2

)
dy

for all q and p in R.

For τ ∈ R \ {0} and for k = 0, 1, 2, . . . , we define eτk to be the function on R by

eτk(x) = |τ|1/4ek(
√
|τ|x), x ∈ R.

For j, k = 0, 1, 2, . . . , we define eτj,k on R2 by

eτj,k = Vτ(eτj, e
τ
k).

The connection of {eτj,k : j, k = 0, 1, 2, . . . } with {e j,k : j, k = 0, 1, 2, . . . } studied in [43]

is given by the following formula.
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Theorem 4.2.1. For τ ∈ R \ {0} and for j, k = 0, 1, 2, . . . ,

eτj,k(q, p) = |τ|1/2e j,k

(
τ
√
|τ|

q,
√
|τ|p

)
, q, p ∈ R.

Proof For τ ∈ R \ {0} and for j, k = 0, 1, 2, . . . ,

eτj,k(q, p)

= Vτ(eτj, e
τ
k)(q, p)

= (2π)−1/2|τ|1/2
∫ ∞

−∞

eiτqyeτj
(
y +

p
2

)
eτk

(
y −

p
2

)
dy

= (2π)−1/2|τ|

∫ ∞

−∞

eiτqye j

( √
|τ|

(
y +

p
2

))
ek

( √
|τ|

(
y −

p
2

))
dy

= (2π)−1/2|τ|1/2
∫ ∞

−∞

eiτqy/
√
|τ|e j

(
y +

√
|τ|

p
2

)
ek

(
y −

√
|τ|

p
2

)
dy

= |τ|1/2e j,k

(
τ
√
|τ|

q,
√
|τ|p

)

for all q and p in R.

Theorem 4.2.2. {eτj,k : j, k = 0, 1, 2, . . . } forms an orthonormal basis for L2(R2).

Theorem 4.2.2 follows from Theorem 4.2.1 and Theorem 21.2 in [38] to the effect that

{e j,k : j, k = 0, 1, 2, . . . } is an orthonormal basis for L2(R2).

Theorem 4.2.3. For j, k = 0, 1, 2, . . . ,

Lτeτj,k = (2k + 1)|τ|eτj,k.
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Theorem 4.2.3 can be proved using Theorem 4.2.1 and Theorem 22.2 in [38] telling

us that for j, k = 0, 1, 2, . . . , e j,k is an eigenfunction of L1 corresponding to the eigenvalue

2k + 1.

We need the notion of a twisted convolution. Let λ ∈ R, and let f and g be measurable

functions on C. Then we define the twisted convolution f ∗λ g of f and g to be the function

on C by

( f ∗λ g)(z) =

∫
C

f (z − w)g(w)eiλ[z,w]dw, z ∈ C,

provided that the integral exists.

The following formula is the main tool for the construction of the heat kernel of Lτ.

Theorem 4.2.4. For τ ∈ R \ {0} and for nonnegative integers α, β, µ and ν,

eτα,β ∗τ/4 eτµ,ν = (2π)1/2|τ|−1/2δβ,µeτα,ν,

where δβ,µ is the Kronecker delta.

When τ = 1, the formula is the same as that in Theorem 4.1 in [43]. Theorem 4.2.4

can be proved using the formula for τ = 1 and Theorem 4.2.1.

4.3 The Heat Kernel of Lτ.

Using Theorem 4.2.3 and the spectral theorem, we get for all functions f in L2(R2),

e−ρLτ f =

∞∑
k=0

∞∑
j=0

e−(2k+1)|τ|ρ( f , eτj,k)e
τ
j,k, ρ > 0.
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where ( , ) is the inner product in L2(R2). So, for ρ > 0,

e−ρLτ f =

∞∑
k=0

e−(2k+1)|τ|ρ
∞∑
j=0

( f , eτj,k)e
τ
j,k

and our first task is to compute
∑∞

j=0( f , eτj,k)e
τ
j,k. To this end, we note that for k = 0, 1, 2, . . . ,

f ∗τ/4 eτk,k =

∞∑
j=0

∞∑
l=0

( f , eτj,l)e
τ
j,l ∗τ/4 eτk,k

=

∞∑
j=0

∞∑
l=0

( f , eτj,l)(2π)1/2|τ|−1/2δl,keτj,k

= (2π)1/2|τ|−1/2
∞∑
j=0

( f , eτj,k)e
τ
j,k.

Hence, for k = 0, 1, 2, . . . ,

∞∑
j=0

( f , eτj,k)e
τ
j,k = (2π)−1/2|τ|1/2( f ∗τ/4 eτk,k).

Therefore

e−ρLτ f = (2π)−1/2|τ|1/2
∞∑

k=0

e−(2k+1)|τ|ρeτk,k ∗−τ/4 f , ρ > 0. (4.1)

Now, using Theorem 4.2.1 and Mehler’s formula, we get for all z = (q, p) in C and for

ρ > 0,
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(2π)−1/2|τ|1/2
∞∑

k=0

e−(2k+1)|τ|ρeτk,k(q, p)

= (2π)−1/2|τ|e−|τ|ρ
∞∑

k=0

e−2k|τ|ρek,k

(
τ
√
|τ|

q,
√
|τ|p

)
= (2π)−1|τ|e−|τ|ρ

1
1 − e−2|τ|ρ e−|τ| |z|

2 1
4

1+e−2|τ|ρ

1−e−2|τ|ρ

=
1

4π
τ

sinh(τρ)
e−

1
4 |τ| |z|

2coth(τρ).

So, the heat kernel κτρ, ρ > 0, of Lτ is given by

κτρ(z,w) =
1

4π
τ

sinh(τρ)
e−

1
4 |τ| |z−w|2coth(τρ)e−i τ4 [z,w], z,w ∈ C.

Hence by (4.1), we have the following result.

Theorem 4.3.1. For ρ > 0 and τ ∈ R \ {0},

Kτ
ρ = (2π)−1/2kτρ,

where

kτρ(z) =
1

4π
τ

sinh(τρ)
e−

1
4 |τ| |z|

2coth(τρ), z ∈ C.

4.4 The Green Function of Lτ

We can obtain a formula for the Green function Gτ of the twisted Laplacian Lτ by integrat-

ing the heat kernel of Lτ from 0 to ∞ with respect to time ρ. Indeed, for all z and w in C,
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we get

Gτ(z,w) =
1

4π

(∫ ∞

0

τ

sinh(τρ)
e−

1
4 |τ| |z−w|2coth(τρ)dρ

)
e−i τ4 [z,w]

=
1

4π

(∫ ∞

0

1
(v2 − 1)1/2 e−

1
4 |τ| |z−w|2vdv

)
e−i τ4 [z,w]

=
1

4π
K0

(
1
4
|τ| |z − w|2

)
e−i τ4 [z,w],

where K0 is the modified Bessel function of order 0 given by

K0(x) =

∫ ∞

0
e−x cosh δdδ, x > 0.

4.5 Heat Kernels of Twisted Bi-Laplacians

Let τ ∈ R \ {0}. We are now interested in computing explicitly the heat kernel Wτ
ρ of the

twisted bi-Laplacian LτL−τ.

The starting point is the spectral analysis of Lτ given by Theorem 4.2.3. By the spectral

mapping theorem and the spectral theorem, we get for all suitable functions f on H1,

e−ρL2
τ f =

∞∑
k=0

∞∑
j=0

e−(2k+1)2τ2ρ( f , eτj,k)e
τ
j,k, ρ > 0.

By (4.1), we get for all suitable functions f on H1,

e−ρL2
τ f = (2π)−1/2|τ|1/2

∞∑
k=0

e−(2k+1)2τ2ρeτk,k ∗−τ/4 f , ρ > 0.

Now, for ρ > 0, we introduce the function Mτ
ρ defined by

Mτ
ρ(z) = (2π)−1/2|τ|1/2

∞∑
k=0

e−(2k+1)2τ2ρeτk,k(z), z ∈ C,
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which is some kind of a theta function. Then the heat kernel ωτ
ρ, ρ > 0, of L2

τ is given by

ωτ
ρ(z,w) = Mτ

ρ(z − w)e−i τ4 [z,w], z,w ∈ C. (4.1)

Similarly, the heat kernel ω−τρ , ρ > 0, of L2
−τ is given by

ω−τρ (z,w) = M−τ
ρ (z − w)ei τ4 [z,w], z,w ∈ C. (4.2)

We can now derive the heat kernel of the operator LτL−τ for τ ∈ R \ {0}. Since for

τ ∈ R \ {0},

Lτ − L−τ = −2iNτ,

it follows that

L2
τ + L2

−τ − 2LτL−τ = 4N2τ2.

Since L2
τ, L2

−τ and N2 commute, it follows that for ρ > 0,

e−ρLτL−τ = e−2ρN2τ2
e−

ρ
2 L2

τe−
ρ
2 L2
−τ .

Lemma 4.5.1. For all ρ > 0,

(e−ρN2
f )(reiθ) = ( fr ∗ Θρ)(θ), θ ∈ [−π, π],

where Θρ is the theta function given by

Θρ(θ) =
1

2π

∑
n∈Z

e−n2ρeinθ, θ ∈ [−π, π].
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Proof For all f in L2(C), we use polar coordinates and write

f (z) = f (reiθ) = fr(θ), r > 0, θ ∈ [−π, π].

For all n in Z, we define the function en on [−π, π] by

en(θ) = (2π)−1/2einθ, θ ∈ [−π, π].

Then {en : n ∈ Z} is an orthonormal basis for L2[−π, π] with respect to the inner product

( , ) given by

( f , g) =

∫ π

−π

f (θ)g(θ)dθ

for all f and g in L2[−π, π]. Using the fact that

N = x
∂

∂y
− y

∂

∂x
=

∂

∂θ

and the basics of Fourier series, we get for all ρ > 0,

(e−ρN2
f )(z) =

(
eρ

∂2

∂θ2 f
)

(z)

=
∑
n∈Z

e−ρn2
( fr, en)en(θ)

= ( fr ∗ Θρ)(θ), [−π, π],

where

( fr ∗ Θρ)(θ) =

∫ π

−π

fr(θ − φ)Θρ(φ) dφ.
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Theorem 4.5.2. Let z = reiθ and z′ = seiψ, where r, s ∈ (0,∞) and θ, ψ ∈ [−π, π]. Let Wτ
ρ

be the function defined on C × C by

Wτ
ρ(reiθ, seiψ) =

∫ π

−π

∫
C

Θ2ρτ2(φ − ψ)ωτ
ρ/2(z,w)ω−τρ/2(w, seiφ) dw dφ.

Then for ρ > 0,

(e−ρ(LτL−τ) f )(z) =

∫ π

−π

∫ ∞

0
Wτ

ρ(z, seiψ) f (seiψ)s ds dψ

for all suitable functions f on C.

Proof Let z = reiθ ∈ C. Then

(e−ρ(LτL−τ) f )(z) = (e−
ρ
2 L2

τe−
ρ
2 L2
−τg)(z),

where

g = e2ρN2τ2
f .

So,

(e−ρ(LτL−τ) f )(z) = (e−
ρ
2 L2

τe−
ρ
2 L2
−τg)(z)

=

∫
C

ωτ
ρ/2(z,w)(e−

ρ
2 L2
−τg)(w) dw

=

∫
C

ωτ
ρ/2(z,w)

(∫
C

ω−τρ/2(w, ζ)g(ζ) dζ
)

dw.

If we let ζ = seiφ, where s > 0 and φ ∈ [−π, π], then by Lemma 4.5.1,

g(ζ) = g(seiφ) = ( fs ∗ Θ2ρτ2)(φ).
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Thus,

(e−ρ(LτL−τ) f )(z)

=

∫
C

g(ζ)
(∫
C

ωτ
ρ/2(z,w)ω−τρ/2(w, ζ) dw

)
dζ

=

∫ π

−π

∫ ∞

0

(∫ π

−π

Θ2ρτ2(φ − ψ) fs(ψ) dψ
)
×

×

(∫
C

ωτ
ρ/2(z,w)ω−τρ/2(w, seiφ)dw

)
s ds dφ

=

∫ π

−π

∫ ∞

0
fs(ψ)Wτ

ρ(z, seiψ)s ds dψ,

where

Wτ
ρ(z, seiψ) =

∫ π

−π

∫
C

Θ2ρτ2(φ − ψ)ωτ
ρ/2(z,w)ω−τ−ρ/2(w, seiφ)dw dφ.

4.6 Green Functions of Twisted Bi-Laplacians

In contrast with the derivation of the heat kernels, the formulas for the Green functions of

twisted bi-Laplacians are much easier to obtain. Indeed, we get for all suitable functions

f on C,

((L−τLτ)−1 f )(z) = (L−1
τ L−τ−1 f )(z)

=

∫
C

Gτ(z, ζ)(L−τ−1 f )(ζ) dζ

=

∫
C

Gτ(z, ζ)
(∫
C

Gτ(ζ,w) f (w) dw
)

dζ

=

∫
C

(∫
C

Gτ(z, ζ)Gτ(ζ,w) dζ
)

f (w) dw
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for all z in C. Since for all z, w and ζ in C,

Gτ(z, ζ)Gτ(ζ,w) =
1

16π2 K0

(
1
4
|τ| |z − ζ |2

)
K0

(
1
4
|τ| |ζ − w|2

)
e−i τ4 [ζ,z+w],

it follows that for all suitable functions f on C,

((L−τLτ)−1 f )(z)

=
1

16π2

∫
C

(∫
C

K0

(
1
4
|τ| |z − ζ |2

)
K0

(
1
4
|τ| |ζ − w|2

)
e−i τ4 [ζ,z+w]dζ

)
×

× f (w) dw

for all z in C.

Therefore we have the following theorem.

Theorem 4.6.1. Let τ ∈ R \ {0}. Then the Green function Gb
τ of the twisted bi-Laplacian

LτL−τ is given by

Gb
τ(z,w) =

1
16π2

∫
C

K0

(
1
4
|τ| |z − ζ |2

)
K0

(
1
4
|τ| |ζ − w|2

)
ei τ4 [ζ,z+w]dζ

for all z and w in C.

4.7 The Heat Kernel and Green Function a Fourth-Order Operator

on the Heisenberg Group

We begin with the following result that relates the convolution on H1 to the twisted convo-

lution. A proof can be found in [42].
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Theorem 4.7.1. Let f and g be functions in L1(H1). Then

( f ∗H1 g)τ = (2π)1/2 f τ ∗τ/4 gτ.

By (4.1) and (4.2), we get the following results.

Theorem 4.7.2. Let τ ∈ R \ {0}. Then for all ρ > 0,

e−ρ(LτL−τ) f τ = (e−ρ(L+L−) f )τ = (Kρ ∗
1
H f )τ = (2π)1/2Kτ

ρ ∗τ/4 f τ.

Theorem 4.7.3. Let τ ∈ R \ {0}. Then

(LτL−τ) f τ = (L+L− f )τ = (G ∗1
H f )τ = (2π)1/2Gτ ∗τ/4 f τ.

By Theorem 4.5.2 and Theorem 4.7.2, we get for ρ > 0 and z in C, respectively,

(e−ρ(LτL−τ f )(z) =

∫
C

Wτ
ρ(z, z′) f (z′) dz′

for all suitable functions f on C and

e−ρ(LτL−τ) f τ = (2π)1/2
∫
C

Kτ
ρ(z − z′)ei τ4 [z,z′] f τ(z′)dz′

for all suitable functions f on H1. Thus, for all ρ > 0, τ ∈ R \ {0}, z and z′ in C,

Wτ
ρ(z, z′) = (2π)1/2Kτ

ρ(z − z′)ei τ4 [z,z′]

and hence by (4.1), (4.2) and Theorem 4.5.2,

(2π)1/2Kτ
ρ(z) = Wτ

ρ(z, 0)

=

∫ π

−π

∫
C

Θ2ρτ2(φ − ψ)Mτ
ρ/2(z − w)e−i τ4 [z,w]M−τ

ρ/2(w) dw dφ

=

(∫ π

−π

Θ2ρτ2(φ − ψ) dφ
)

(Mτ
ρ/2 ∗−τ/4 M−τ

ρ/2)(z).
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Since the function Θ2ρτ2 as defined in Lemma 4.5.1 is a 2π-periodic function, it follows

that ∫ π

−π

Θ2ρτ2(φ − ψ) dφ =

∫ π

−π

Θ2ρτ2(θ) dθ = 1.

Therefore

Kτ
ρ(z) = (2π)−1/2(Mτ

ρ ∗−τ/4 M−τ
ρ/2)(z), z ∈ C.

Similarly, by Theorem 4.6.1, and Theorem 4.7.3,

Gτ(z) =
(2π)−1/2

16π2 (K0,τ ∗−τ/4 K0,τ)(z), z ∈ C,

where

K0,τ(z) = K0

(
1
4
|τ| |z|2

)
, z ∈ C.

Thus, we have the following formulas for the heat kernel Kρ and Green function G of the

fourth-order operator L+L−.

Theorem 4.7.4. Let ρ > 0. Then

Kρ(z, t) =
1

2π

∫ ∞

−∞

e−itτ(Mτ
ρ/2 ∗−τ/4 M−τ

ρ/2)(z)dτ

for all (z, t) in H1.

Theorem 4.7.5. The Green function G of L+L− is given by

G(z, t) =
1

32π3

∫ ∞

−∞

e−itτ(K0,τ ∗−τ/4 K0,τ)(z) dτ

for all (z, t) inH1.
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5 The Dirichlet Divisor Problem, Traces and

Determinants for Complex Powers of the Twisted

Bi-Laplacian

5.1 The Trace of the Heat Semigroup

Theorem 5.1.1. For t > 0,

tr(e−tM) = (γ − ln t)t−1 + O(tµ),

where µ > 1
4 .

Proof Since

tr(e−tM) =

∫ ∞

0
e−tλdN(λ),

it follows from an integration by parts that for t > 0,

tr(e−tM) = e−tλN(λ)
∣∣∣∞
0

+ t
∫ ∞

0
e−tλN(λ)dλ = t

∫ ∞

0
e−tλN(λ) dλ. (5.1)
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So, using the formula for N(λ) in Section 1 and (5.1), we get for t > 0,

tr(e−tM) = t
∫ ∞

0
e−tλ(λ ln λ + (2γ − 1)λ + O(λµ)) dλ

= t
∫ ∞

0
e−tλλ ln λ dλ + (2γ − 1)t−1 + O(tµ). (5.2)

Since

∫ ∞

0
e−tλλ ln λ dλ = −

d
dt

∫ ∞

0
e−tλln λ dλ =

d
dt

[
1
t
(γ + ln t)

]
= (1 − γ − ln t)t−2, (5.3)

it follows from (5.2) and (5.3) that for t > 0,

tr(e−tM) = (γ − ln t)t−1 + O(tµ),

as required.

We first begin with a version of the Dixmier trace that is tailored for the inverse of

the twisted bi-Laplacian M. The book [21] is a comprehensive account of Dixmier traces

and related topics. In particular, Chapter 1 of the book [21] contains motivational and

background material on Dixmier traces.

Let A be a positive and compact operator on a complex and separable Hilbert space X.

Let

λ1(A) ≥ λ2(A) ≥ · · ·

be the eigenvalues of A arranged in decreasing order with multiplicities counted. For a
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positive integer k, we say that A is in the kth Dixmier trace class if 1
lnkN

N∑
j=1

λ j(A)


∞

N=2

∈ l∞.

If A is in the kth Dixmier trace class such that limN→∞
1

lnkN

∑N
j=1 λ j(A) exists, then the kth

Dixmier trace trk(A) of A is given by

trk(A) = lim
N→∞

1
lnkN

N∑
j=1

λ j(A).

Using Theorem 1.0.2, we get the following theorem for the Dixmier trace of M−1.

Theorem 5.1.2. M−1 is in the second Dixmier trace class and

tr2(M−1) =
1
2
.

Proof Let us compute
∑

n≤x
d(n)

n for large and positive integers x, say, for x > 2. To do

this, we use the partial summation formula to the effect that

∑
n≤x

an f (n) = S (x − 1) f (x) −
∫ x

1
S (t) f ′(t) dt, (5.4)

where {an}
∞
n=1 is a sequence with positive terms, f is a positive and differentiable function

on (0,∞), and S is the function on [1,∞) given by

S (t) =
∑
n≤t

an, t ≥ 1. (5.5)
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Indeed,

∫ x

1
S (t) f ′(t) dt =

x−1∑
n=1

∫ n+1

n
S (t) f ′(t) dt

=

x−1∑
n=1

∫ n+1

n

 n∑
k=1

ak

 f ′(t) dt

=

x−1∑
n=1

n∑
k=1

ak( f (n + 1) − f (n)).

Interchanging the order of summation, we get

∫ x

1
S (t) f ′(t) dt =

x−1∑
k=1

x−1∑
n=k

ak( f (n + 1) − f (n))

=

x−1∑
k=1

ak( f (x) − f (k)).

Therefore

S (x − 1) f (x) −
∫ x

1
S (t) f ′(t) dt =

x∑
n=1

an f (n),

which is (5.4). Applying (5.4) and (5.5) with an = d(n) and f (n) = 1
n , and using the

asymptotic formula for the function S as given by the Dirichlet divisor problem, we get

∑
n≤x

d(n)
n

= S (x − 1) f (x) −
∫ x

1
S (t) f ′(t) dt

=
1
x

((x − 1) ln (x − 1) + (2γ − 1)(x − 1) + O(
√

x))

+

∫ x

1

(
ln t
t

+ (2γ − 1)t−1 + O(t−3/2)
)

dt. (5.6)

Since

(x − 1)ln (x − 1) = x ln x + x + O(
√

x) (5.7)
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as x→ ∞, and ∫ x

1

ln t
t

dt =
1
2

ln2x. (5.8)

it follows from (5.6)–(5.8) that

∑
n≤x

d(n)
n

=
1
x

(x ln x + (2γ − 1)x + O(
√

x))

+
1
2

ln2x + (2γ − 1)ln x + O(x−1/2)

=
1
2

ln2x + 2γ ln x + (2γ − 1) + O(x−1/2)

as x→ ∞. This completes the proof.

5.2 Zeta Function Regularizations

We begin with the following easy observation.

Lemma 5.2.1. Let α ∈ C. Then for all s with Re (αs) > 1,

ζMα(s) = ζ2(αs).

Proof Let s ∈ C be such that Re (αs) > 1. Then using the eigenvalues ofM, the eigenval-

ues of M−αs are n−αs, n = 1, 2, . . . , and the multiplicity of n−αs is equal to the number d(n)

of Dirichlet divisors of n. Therefore

ζMα(s) =

∞∑
n=1

d(n)
nαs .
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So, a straightforward computation gives

ζ2(αs) =

∞∑
µ=1

1
µαs

∞∑
ν=1

1
ναs =

∞∑
n=1

1
nαs

∑
µν=n

1 =

∞∑
n=1

d(n)
nαs .

The zeta function regularizations of the trace and the determinant of Mα, denoted by

trR(Mα) and detR(Mα) respectively, are defined by

trR(Mα) = ζMα(−1)

and

detR(Mα) = e−ζ
′
Mα

(0).

The physical meanings of these quantities can be found in, e.g., the paper [19].

Theorem 5.2.2. Let α ∈ C \ {−1}. Then

trR(Mα) = ζ2(−α).

Proof By Lemma 4.1 and the analytic continuation of the Riemann zeta function to a

meromorphic function on C with only a simple pole at s = 1, we see that

trR(Mα) = ζMα(−1) = ζ2(−α).

Remark 5.2.3. It is well-known from, say, [37] that

ζ(−1) = −
1

12
.

Hence

trR(M) =
1

144
.
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Remark 5.2.4. In the case when α = −1, the zeta function regularization of the inverse

M−1 is equal to infinity. The Dixmier trace instead of the trace of the inverse M−1 is a finite

number.

Theorem 5.2.5. Let α ∈ C. Then

detR(Mα) = (2π)−α/2.

Proof As in Theorem 5.2.2,

detR(Mα) = e−ζ
′
Mα (0) = e−2αζ(0)ζ′(0).

It can be found in [37] again that ζ(0) = −1
2 and ζ′(0) = −1

2 ln(2π). So,

detR(Mα) = (2π)−α/2.

As an application, we can give a formula for the determinants of the heat semigroups

of complex powers of the twisted bi-Laplacian.

Theorem 5.2.6. Let α ∈ C \ {−1}. Then for t > 0,

detR(e−tMα

) = e−tζ2(−α).

Proof By Theorem 1.1, the eigenvalues of e(−tMα)−s
are etnαs, n = 1, 2, . . . , and the multi-

plicity of the eigenvalue etnαs is d(n). Therefore

ζe−tMα (s) = tr((e−tMα

)−s) =

∞∑
n=1

d(n)etnαs, s ∈ C.
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So,

ζ′e−tMα (0) = t
∞∑

n=1

d(n)nα = tζ2(−α).

Thus,

detR(e−tMα

) = e−ζ
′

e−tMα (0)
= e−tζ2(−α),

and this completes the proof.

Remark 5.2.7. By Theorems 5.2.2 and 5.2.6, we see that for α ∈ C \ {−1},

detR(e−tMα

) = e−ttrR(Mα), t > 0,

which is in conformity with the well-known relationship between the determinant and the

trace of a square matrix A given by

det (eA) = etr (A).
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6 Heat Kernels and Green Functions for Complex

Powers of the Twisted Bi-Laplacian and their

Lp-Estimates

6.1 The Heat Kernel and Green Function of Mα

Now, we consider the operator Mα, where α is any complex number. We are interested in

finding the heat kernel and Green function of Mα, as well as the asymptotic expansions of

its counting function.

Firstly, by the spectral mapping theorem, the eigenvalues of Mα are 1α, 2α..., and the eigen-

functions of each nα is given by e j,k such that ( j + 1)(k + 1) = n.

Then we see immediately that the asymptotic expansion of the counting function can be

obtaind for Mα from that of the operator M by a direct change of variable. We define N(λ)
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to be the number of eigenvalues of Mα less or equal to λ, then

N(λ) =
∑

nRe(α)≤λ

d(n)

=
∑

n≤λ
1

Re(α)

d(n) = (1/α)λ
1

Re(α) lnλ + (2γ − 1)λ
1

Re(α) + O(λ
1

2Re(α) )

Secondly, using the spectral theory, we can obtain the heat kernel for the operator Mα,

for α ∈ C, Re(α) > 1. Given f ∈ L2(C), we can write

e−tMα

f =

∞∑
n=1

e−tnα
∑

( j+1)(k+1)=n

( f , e j,k)e j,k,

where we need the product of the indices in the second sum to start from 1, simply because

n starts from 1. And it follows that

e−tMα

f =

∞∑
n=1

e−tnα
∫
C

f (w)
∑

(k+1)( j+1)=n

e j,k(w)e j,k(z)dw, z ∈ C.

Assuming for now the interchange of the integral and the summation is justified, we can

write one more step to get

e−tMα

f =

∫
C

f (z)

 ∞∑
n=1

e−tnα
∑

(k+1)( j+1)=n

e j,k(z)e j,k(w)

 dw, z ∈ C.

And the last equation gives us the heat kernel of Mα in terms of a series.

The next step is to find the Green function, which can be obtained by integrating the

heat kernel with respect to t, as we now show,
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G(z,w) =

∫ ∞

0

∞∑
n=1

e−tnα
∑

(k+1)( j+1)=n

e j,k(z)e j,k(w)dt

=

∞∑
n=1

1
nα

∑
( j+1)(k+1)=n

e j,k(z)e j,k(w)

We are also interested in the trace of the operator M−α. To obtain the trace, we use

Plancherel’s theorem and Moyal’s identity for Fourier-Wigner transforms, and get

tr(M−α) =

∫
C

G(z, z)dz

=

∞∑
n=1

1
nα

∑
(k+1)( j+1)=n

∫
C

e j,k(z)e j,k(z)dz

=

∞∑
n=1

1
nα

∑
( j+1)(k+1)=n

(e j,k, e j,k)

=

∞∑
n=1

1
nα

∑
( j+1)(k+1)=n

(V(e j, ek),V(e j, ek))

=

∞∑
n=1

1
nα

∑
( j+1)(k+1)=n

(W(e j, ek),W(e j, ek))

=

∞∑
n=1

1
nα

∑
( j+1)(k+1)=n

(e j, e j)(ek, ek)

=

∞∑
n=1

d(n)
nα

,

where W(e j, ek) is the Wigner transform of the Hermite functions e j and ek, and d(n) is the

number of divisors of n. From this formula, we see that M−α is a trace class operator for

complex α such that Reα > 1.
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6.2 Lp − Lp′-Estimates for Mα

In the following section, for 1 ≤ p ≤ 2, we give an estimate of the Lp′-norm of the solution

to the heat equation governed by the operator Mα with Re(α) > 0. i.e.
∂u
∂t (x, t) = (−Mαu)(x, t), Re(α) > 0,

u(x, 0) = f (x),

(x, t) ∈ Rn × (0,∞),

x ∈ Rn, f ∈ Lp(Rn), 1 < p < 2.

We have

u(·, t) = e−Mαt f , t > 0,

and therefore

u(·, t) =

∫
C

f (w)
∞∑

n=1

1
nα

∑
( j+1)(k+1)=n

e j,k(w)e j,k(z)dw t > 0.

To begin with, we explore the possible Lp′-estimate for the solution u in terms of || f ||p. Let

f ∈ Lp(C). Then by Minkowski’s inequality, we have

||u(·, t)||p′ =

∫
C

∣∣∣∣∣∣∣
∫
C

f (w)
∞∑

n=1

e−tnα
∑

( j+1)(k+1)=n

e j,k(w)e j,k(z)dw

∣∣∣∣∣∣∣
p′

dz


1
p′

≤

∫
C

| f (w)|

∫
C

∣∣∣∣∣∣∣
∞∑

n=1

e−tnα
∑

( j+1)(k+1)=n

e j,k(w)e j,k(z)

∣∣∣∣∣∣∣
p′

dz


1
p′

dw

≤ || f ||p||g||p′ ,

where

g(w) =

(∫
C

∣∣∣∣∑ e−tnα
∑

e j,k(w)e j,k(z)
∣∣∣∣p′ dz

) 1
p′

.
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Now, we compute ||g||p′ and give conditions on p such that it is finite. Using Minkowski’s

inequality, we get

||g||p′ =

∫
C

∫
C

∣∣∣∣∣∣∣
∞∑

n=1

e−tnα
∑

( j+1)(k+1)=n

e j,k(w)e j,k(z)

∣∣∣∣∣∣∣
p′

dzdw


1
p′

≤

∞∑
n=1

e−tnReα
∑

( j+1)(k+1)=n

(∫
C

∫
C

|e j,k(z)e j,k(w)|p
′

dzdw
) 1

p′

=

∞∑
n=1

e−tnReα
∑

( j+1)(k+1)=n

||e j,k||
2
p′

We need to explore the conditions on p such that the ||e j,k||p′’s are uniformly bounded

for all j, k. Through Wong’s result we can obtain the desired results for 1 ≤ p ≤ 2, as

we now show. We first prove a theorem which is analogous to the breaking of symmetry

obtained by [39]

Theorem 6.2.1. Let {e j,k}, j, k = 0, 1, 2, ..., be the Fourier-Wigner transform of the Her-

mite functions e j and ek.Then for 1 ≤ p ≤ 2, there exists some positive constant Cp such

that

||e j,k||p′ ≤ Cp||e j||p||ek||p′ .

Proof. We first rewrite the Fourier-Wigner transform of the Hermite functions e j and

ek as follows. Recall that

e j,k(q, p) =

∫
Rn

eiq·ye j(y +
p
2

)ek(y −
p
2

)dy,
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Let z = y +
p
2 , we can write

e j,k(q, p) = e−iq·p/2F −1(e jT−pek)(q),

where F−1 is the inverse Fourier transform. Now, for 1 ≤ p ≤ 2, using the Hausdorff-

Young inequality and Minkowski’s inequality we get

||e j,k||p′ =

(∫
R

(∣∣∣e−iq·p/2F −1(e jT−pek)
∣∣∣p′ dq

)
dp

) 1
p′

≤ Cp

∫
R

(∫
R

|e j(x)(T−pek)(x)|pdx
) p′

p

dp


1
p′

= Cp

(∫
R

(
|e j(x)(T−pek)(x)|pdx

) p′
p dp

) p
p′


1
p

≤ Cp

∫
R

(∫
R

|e j(x)|p|(T−pek)(x)|p
′

dp
) p

p′

dx


1
r

= Cp

∫
R

(∫
R

|e j(x)|p|ek(p − x)|p
′

dp
) p

p′

dx


1
r

= Cp

∫
R

(∫
R

|e j(x)|p|ek(y)|p
′

dy
) p

p′

dx


1
r

= Cp

(∫
R

|e j(x)|p||ek||
p
p′dx

) 1
p

= Cp||e j||p||ek||p′ ,

as desired.

Lemma 6.2.2. For j, k = 0, 1, 2, ... and 1 ≤ p ≤ 2, we have

||e j,k||
2
p′ ≤ C2

p(||e j||p||e j||p′)(||ek||p||ek||p′).
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Proof. Let z = −y. We have

e j,k(q, p) =

∫
R

eiq·ye j(y +
p
2

)ek(y −
p
2

)dy

=

∫
R

e−iqzek(−(z +
p
2

))e j(−(z −
p
2

))dz

= V(ẽk, ẽ j)(−q, p).

By the result in Theorem 6.2.1, we immediately get

||e j,k||p′ = ||V(ẽk, ẽ j)||p′ ≤ Cp||ẽk||p||ẽ j||p′ = Cp||ek||p||e j||p′ .

Thus, by the last inequality, we get

||e j,k||
2
p′ ≤ C2

p(||e j||p||e j||p′)(||ek||p||ek||p′) = O(n2εp),

where ( j + 1)(k + 1) = n, and εp is the bound for ||e j||p||e j||p′ for all j.

Finally, by Wong’s result and the preceding lemma, we immediately get for p ∈ [1, 2],

||e j,k||p′ = O(n2εp),

where ( j + 1)(k + 1) = n.

Now, for 1 ≤ p ≤ 2 and Reα > 0, we can give the Lp′-estimate of the solution u to the

heat equation for Mα in terms of the Lp-norm of f . Indeed,

||u(·, t)||p′ ≤ || f ||p||g||p′ ≤ || f ||p
∞∑

n=1

e−tnReα
d(n)Cp||e j,k||p′ ,
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which is clearly convergent because the Lp′-norms of all the e j,k’s are bounded by n2εp , and

that d(n) = O(nε), ∀ε > 0.

Moreover, we can give a separete estimate for the L∞-norm of the solution to the heat

equation for Mα in terms of the L1-norm of the function f .

Let f ∈ L1(C). Then we can write

||u(·, t)||∞ ≤
∫
C

| f (w)|
∞∑

n=0

∣∣∣e−tnα
∣∣∣ ∑

( j+1)(k+1)=n

|e j,k(z)e j,k(w)|dw.

But it is easy to show that the |e j,k| are uniformly bounded by (2π)−1/2 for all integers j, k.

We have

||u(·, t)||∞ ≤ (2π)−1
∞∑

n=1

e−tnReα
d(n),

which is clearly convergent for all α with Reα > 0, as d(n) = O(nε) for all ε > 0.

Now, it is possible to give the Lp′ estimate with 1 ≤ p ≤ 2, for the Green function of the

operator Mα with Reα > 0. The Green function is the kernel of the integral representation

of the solution to the Poisson equation

Mαu = f

on R2 for suitable functions f . Recall that the Green function of Mα is given by

G(z,w) =

∞∑
n=1

1
nα

∑
( j+1)(n+1)=n

e j,k(z)e j,k(w), z,w ∈ C.
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Thus, by Minkowski’s inequality, we get

||G(z,w)||p′ =

∫
C

∫
C


∣∣∣∣∣∣∣
∞∑

n=1

1
nα

∑
( j+1)(n+1)=n

e j,k(z)e j,k(w)

∣∣∣∣∣∣∣
p′

dwdz


1
p′

≤

∞∑
n=1

1
nReα

∑
( j+1)(k+1)=n

(∫
C

∫
C

∣∣∣e j,k(z)e j,k(w)
∣∣∣p′ dzdw

) 1
p

=

∞∑
n=1

1
nReα

∑
( j+1)(k+1)=n

||e j,k||
2
p

Using the preceding results that for 1 ≤ p ≤ 2,

||e j,k||p′ ≤ Cp||e j||p||ek||p′ = O(n2εp),

for some constant εp and the fact that d(n) = O(nε), ∀ε > 0, we conclude that for 2 ≤ p ≤

∞,

||G(z,w)||p′ ≤ K
∞∑

n=1

1
nReαd(n) < ∞,

whenever Reα > 1. Finally, we can give the Lp − Lp′ estimate of the solution u to the

Poisson equation governed by Mα.

||u||p′ =

(∫
C

∣∣∣∣∣∫
C

G(z,w) f (w)dw
∣∣∣∣∣p′ dz

) 1
p′

≤

∫
C

(∫
C

|G(z,w)|p
′

| f (w)|p
′

dz
) 1

p′

dw

=

∫
C

||G(·, w)||p′ | f (w)|dw

≤ || f ||p||G||p′ .
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