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A new class ofheat engine is analyzed in which the working fluid operates in a dissipative process,
never in equilibrium. The conditions are found for stability and for the generation ofwork. Then
the optimal path is found for operating the general dissipative engine by means ofoptimal control
theory. The optimal cycle consists ofarcs ofconstant power and ofapproximately instantaneous
adiabats. If the heat flow is a function of temperature only, then the constant power arcs become
isotherms. An upper bound is found to the power output. Two examples are worked out in detail:
a light-driven dissipative engine whose absorption is a step function of temperature, and a light­
driven dissipative engine whose working fluid undergoes a chemical reaction (isomerization),
absorbing light in the isomeric form favored at high temperatures.
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FIG. I. The dissipative heat engine. The engine is continuously in contact
with a light source (high temperature reservoir) and the surroundings (Iow
temperature reservoir).

the formation of B is exothermic it is possible for the system
to exhibit multiple steady states when illuminated. Two of
these are stable. One ofthese is at a high temperature with a
large amount ofA. The light is strongly absorbed, thus main­
taining the high temperature. The other is at a low tempera­
ture with very little A and very little light absorption.

The system which we consider is shown in Fig. I. It is
essentially the same as the system of Nitzan and Ross except
for the free piston of mass m and the constant external pres­
sure, Po. In Sec. II we show that by allowing the volume to
vary we can obtain oscillations between the strongly and
weakly absorbing states. The conditions under which this
occurs have a simple physical explanation and indicate that
work can be extracted from such a system. At this stage of
the analysis no means ofextracting work, either by working
on some other system or through dissipation, is provided. As
a result the tendency for the system to behave like an engine
manifests itselfin more and more rapid motion ofthe piston.

In Sec. III we consider this system as an engine, Le., we
allow for the extraction ofwork. This is achieved by requir­
ing the piston to move along a specific path which is main­
tained by a high-inertia flywheel and determined by a lin­
kage which delivers work to the flywheel reservoir. For
example, a crank linkage could be used to convey work from
the piston to a rotating shaft which in turn is attached to the
flywheel. So long as the energy stored in the flywheel is large
compared to the work done in one cycle and either the aver­
age rate at which work is removed from the flywheel
matches the average power output of the engine or the en-

I. INTRODUCTION

Both heat engines and dissipative thermodynamic sys­
tems such as oscillating chemical reactions make use of a
flow across a drop in potential. The heat engine uses a flow of
heat across a temperature drop to produce work. In a purely
dissipative system the flow maintains instabilities or oscilla­
tions and all of the potential work is dissipated. In this paper
we consider a heat engine based on a dissipative system and
show how it is possible to produce work from the dissipative
system's tendency toward oscillations.

A conventional heat engine is periodically brought into
contact with its external reservoirs by means of some con­
trolling mechanism. In contrast, the unstable or oscillating
system is simultaneously coupled to both external reservoirs
in a manner that depends nonlinearly on the state of the
system. The heat engine considered here, like the dissipative
system, is simultaneously coupled to both reservoirs. Since it
cannot be in equilibrium with both reservoirs this engine
cannot be operated reversibly.

We make use of the method of finite time thermody­
namics to study this engine. In applying this approach we
consider only the most important irreversibilities, in this
case the heat flows between the engine and its reservoirs. The
results provide an upper limit to the efficiency of such an
engine. This limit is more realistic than the limit provided by
reversible thermodynamics. The results also serve as a guide
to more detailed engineering studies.

The dissipative system and the engine based on it,
which we consider here is similar to a dissipative system
studied by Nitzan and Ross. I They considered a chemical
reaction

A++B,

in which A absorbs light and rapidly relaxes. The heat re­
leased flows through the walls of the system into the sur­
roundings. The system is assumed to consist of a single, ho­
mogeneous phase which is always in chemical equilibrium
and kept at constant volume. Nitzan and Ross found that if

.1 Present address: Hydrocarbon Research Institute, University Park­
MC1661, University of Southern California. Los Angeles. California
90089.

light~ p

1heat

m ~



absorbed as appearing as heat at the temperature ofthe fluid.
Then the light absorption process itselfcan be considered to
be outside the boundaries of the system, and the transfer of
energy from light to heat is the passage of energy into the
system. The irreversibility associated with the heat flow out
is also external to the system. Engines of this sort have been
termed endoreversible.4

Consider the special case in which the heat flow h is zero
for all states of the system. Then any displacement of the
piston from equilibrium will initiate an adiabatic, reversible
process. The phase diagram for the resulting piston motion,
shown in Fig. 2(a), is qualitatively the same as that of the
harmonic oscillator. The trajectories consist ofconservative
oscillations; such motion is marginally stable. Ifthe slightest
damping term is added to the system, for example a heat flow
to the surroundings, the oscillations diminish and the system
will return to the steady state as shown in Fig. 2(b). If an
appropriate driving term is added we can get unstable oscil-

FIG. 2. Possible phase diagrams for the dissipative engine showing projec.
tions on the x. v plane of the three types ofoscillatory motion: (a) conserva­
tive oscillations.lb) damped oscillations. (c) unstable oscillations.

gine-plus-flywheel charge some reservoir of potential ener­
gy, e.g., by raising weights, then the shaft rotates at a con­
stant velocity. This is, of course, the usual model for an
engine. Under these conditions, the piston then undergoes a
periodic motion determined by the nature ofthe linkage. The
linkage and the flywheel determine the piston motion almost
completely so long as the flywheel has an inertia much
greater than that of the piston, and therefore acts as a work
reservoir. For such a system the piston mass is negligible.
Engines in which the piston mass is the major inertial com­
ponent have been examined by Fairen and Ross. 2 We restrict
our consideration here to the more usual system that oper­
ates with a flywheel. If the piston motion is governed by the
flywheel and linkage, then the effective external pressure on
the piston is also determined. The net force on the piston at
each instant is the difference between the force developed
inside the engine's cylinder and the external force fixed by
the linkage. It becomes natural to look upon the linkage as a
control variable, aIIowing one to optimize the time path of
the piston..'

In Sec. III we determine what piston motion maximizes
the power obtained from an engine based on the dissipative
system discussed in Sec. 11. For this "dissipative" engine the
optimal cycle serves a purpose analogous to that of the Car­
not Cycle for a reversible engine. It provides a limit for the
efficiency of such an engine. Much of the analysis can be
carried out in a form so general that it is unnecessary to
specify either the working fluid or heat transfer relations.
The results provide a relatively easy way ofevaluating candi­
date systems.

In Sec. IV we apply the general results of Sec. III to a
specific engine in which the light absorption is a step func­
tion of the temperature. An analytic solution is obtained in
this case. In Sec. V we replace the discontinuous change in
absorption with one produced by a chemical reaction and
obtain numerical results for the average power. We then
compare the maximum power for this case with that ob­
tained by an engine with a simple, sinusoidal motion.

In Sec. VI we summarize the results and describe how
they could be ofuse in the development ofa practical dissipa­
tive engine.

11. STABILITY CONDITIONS FOR THE DISSIPATIVE
ENGINE

The equations of motion for the system shown in Fig. 1
are

dxldt = v, (I)

dvldt = [P(x,s) - Pol/m , (2)

dsldt = h (x,s)IT(x,s), (3)

where x is the displacement ofthe piston (proportional to the
volume), s is the entropy ofthe fluid, P and Tare the pressure
and temperature ofthe fluid (given by the equations ofstate),
and h is the net heat flow into the system; h depends parame­
trically on the external temperature. The form ofthat depen­
dence is not relevant here. The last equation is valid as long
as the fluid is homogeneous, is in chemical equilibrium and
has high rates ofdeexcitation for the states produced by the
absorption process. In this case we can regard the energy
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Ifall the stability conditions except (7) are satisfied this ratio
will be greater than one. Consequently, as the volume in­
creases the pressure will drop more rapidly along a curve for

(ap laX)hl(ap lax),
= [a(p,h )/a(x,s)](aslah lJ(ap lax)s

= I - (P,hx)/(Pxh s )'

Recall that this is to be evaluated at a steady state point, i.e.,
a point where h = 0. When this instability condition is satis­
fied heat will flow into the system at high temperature and
out at low temperature. This is, ofcourse, what happens in a
heat engine. It is necessary in order for a cyclic process to be
capable of providing work. For our system, the increase in
the concentration of the absorbing species with increased
temperature makes it possible for this to occur.

To understand in more detail just how the heat flow
drives the oscillations we consider the ratio ofpartial deriva­
tives

where either of these conditions is first violated the system
undergoes a bifurcation from stable to unstable behavior.
However, these two bifurcations are quite different.

When condition (6) is first violated one eigenvalue is
equal to zero. Beyond this point this root is positive and the
system moves exponentially away from the unstable steady
state. This conditions occurs only when there are multiple
steady states, at least two of which are stable.

To show this we may use Eq. (8) to obtain the following
equality:

(ahlaT)p = (J)[a(h'p)/a(s,x)] = (hxP, - h,Px)CvKTXIT.

We therefore see that Eq. (6) is not satisfied when

(ahlaT)p>O. (9)

Now consider a plot ofh vs T for constant P = Po. A steady
state will occur at any temperature where h = 0. If, at such a
point, Eq. (9) is satisfied then the curve will have a positive
slope at that point. However, we should require, on physical
grounds, that heat flows in at sufficiently low temperatures
and out at sufficiently high temperatures. This means that
we have h >°as T~ and h <OasT-+ 00. Thus, ifthere is an
unstable steady state at which (9) is satisfied there will be two
stable steady states at which it is not satisfied. A displace­
ment from the unstable state will presumably evolve to one
of the stable states.

It can be shown5 that when condition (7) is first violated
(i.e., P,hx = 0) there is a pair of pure imaginary eigenvalues.
As Pshx becomes positive these eigenvalues become complex
conjugates with positive real parts. Thus, this instability cor­
responds to a growing oscillation.

To see the physical interpretation of this condition note
that it is equivalent to saying that the steady state is unstable
when

(10)

hJP, <0.

Using the Maxwell relation

(ap las)x = - (aT lax)"

this becomes

(ah laT), > 0.

lations as shown in Fig. 2(c). In this section we determine the
conditions that the function h (x,s) must satisfy to produce
this unstable behavior.

The system we are considering has a steady state when­
ever v = h = °and P = Po. There may be more than one
such point. The stability ofa steady state point is determined
by the behavior of small perturbations from that state. We
can examine the behavior of these perturbations by lineariz­
ing the equations of motion about such a point to obtain

d4xldt=v,

dvldt = (Px4x + PAs)/m,

d4sldt = (hx4x + h,4s)/T.

Here 4s and4x represent the displacements from the steady
state values and Px ' etc., represent the partial derivatives
evaluated at the steady state.

We can now proceed to obtain the eigenvalues of this
linear system in the usual manner. The eigenvalues ,i are
given by the roots of the characteristic polynomial

O=,i 3 - (hJT)A 2 - (P,Jm)A + (Pxh, - P,hx )/mT.

If the steady state is to be stable all of the coefficients in this
equation must be positive.5 Since m and T are positive this
requires that

~<~ ~

Px <0, (5)

P,hx - Pxhs <0. (6)

The Routh-Hurwitz determinant must also be positive.5 For
this system this condition is

I
-hJT I I

>0,
(Pxh, - Pshx)/mT - Pxlm

which reduces to

P,hx >0. (7)

Whenever any of these conditions are violated one of the
eigenvalues has a positive real part and the steady state is
unstable.

The first appearance of an instability always involves
violating either condition (6) or (7). To show this it is useful to
first note the Jacobian for the transformation from extensive
to intensive variables. This is given by6

J = a(s,x)/a(T,p) = (axf - CpKTXIT,

which is equivalent to

J = a(s,x)/a(T,p) = - CvKTXIT. (8)

Here KT = (- l!x)(aXlap)T is the isothermal compressibil­
ity, a = (l!x)(axlaT)p is the thermal expansion coefficient,
and Cp and Cv are heat capacities. Since we are considering
a single phase system these quantities are always positive and
finite.

Using this Jacobian we find that Eq. (5) becomes

Px = - yIKTX<O,

where y is the heat capacity ratio. This condition is always
satisfied. Also, we now see that Eqs. (6) and (7) are sufficient
to guarantee that Eq. (4) is satisfied. Thus, Eqs. (6) and (7) are
both necessary and sufficient for stability. At the point
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system of differential equations which describe the optimal
path as a function of time. However, in this particular prob­
lem, a constant of the motion determines the types of paths
in thermodynamic state space (such as adiabats and iso­
therms) which may form branches ofthe optimal cycle. Piec­
ing these branches together leads to a system of algebraic
equations, the roots of which describe the optimal cycle.

An interesting feature ofthe way the problem is formu­
lated here is that the only effect of the piston motion is to
control the state of the fluid and, thereby the heat flows. The
irreversibilities, available work, and net work done (in a cy­
clic process) depend only on the heat flows. Consequently it
is not necessary to specify the manner in which work is ex­
tracted from the engine. This general approach should be
useful in extending this treatment to systems, such as chemi­
cal oscillations, for which no mechanism for work extraction
has yet been devised.

The problem is stated mathematically as follows. We
seek the control function, x(t), which maximizes the average
power, il, delivered to a work reservoir:

which h = 0 than it will along an isentrope. This situation is
shown in Fig. 3.

Imagine that the piston is moving outward past a point
where h = 0 and P = Po. When the piston is moving rapidly
the state ofthe fluid changes in a more nearly adiabatic (isen­
tropic) manner than when the piston moves slowly. As the
fluid expands the pressure drops and the piston decelerates.
The path in the P,x plane describing the state of the fluid
drops toward the curve h = 0 as heat flows out ofthe system.
After the piston reverses its motion it accelerates inward
until it passes the equilibrium point. Now, as the piston
slows, heat flows in and the state of the fluid rises toward the
curve h = O. The net result of this is that the pressure is
higher on expansion than on compression so that work is
done by the fluid on the piston. This causes the piston to
move faster on each cycle. If the curve h = 0 were to drop
less steeply than the isentrope the opposite would be true and
the oscillations would be damped.

Ill. OPTIMAL CONTROL OF THE DISSIPATIVE ENGINE

We turn now to the problem offinding the piston trajec­
tory that produces the maximum average power and deter­
mining that power. We choose to maximize the average pow­
er because we envision an engine exposed to an essentially
constant flux ofenergy, e.g., as light. In this case maximizing
the power is equivalent to maximizing the fraction of the
light energy converted into work.

The solution to this problem can be obtained by optimal
control theory,7which is a form of the calculus ofvariations.
Solutions ofproblems ofthis type are usually in the form ofa

n = Q(tF)hi.tr),

subject to the constraints

dsldt = h (s,x)IT(s,x),

dQ Idt = h (s,x),

and

d1"ldt = I,

and the boundary conditions

s(O) = s(tF ),

and

Q(0) = 1'(0) =o.

(11)

(12)
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FIG. 3. Pressure-volume diagram for unstable oscillations. Due to heat
flow the state of the fluid evolves away from the isentropes and toward the
curve h = O. Ifthe curve h = 0 drops more steeply than the isentropes then
work is done on the piston.

Here tF is the final time, Qis the net heat flow into the engine,
h is the heat transfer function as in Sec. 11, and 1" is a dummy
variable that is introduced so that the system is formally
autonomous. As before s and x are the entropy and volume.
In the appendix we transform the variables to ones which
may be more useful in practical problems.

Equation (15) ensures cyclic operation of the engine. It
is not necessary to specify the initial and final volumes since
the control x is allowed to change discontinuously. Conse­
quently, the volume can be adjusted at the ends of the path
without affecting the objective function.

This is a variational problem in Mayer form, Le., the
quantity to be extremized is expressed as a function of the
final state of the system. This form is convenient for our
problem since the objective function is a ratio of two func­
tionals ofthe path. The final time tF is allowed to vary so that
we may find its optimal value.

We begin by constructing the Hamiltonian7 from the
right hand sides ofthe constraints, Eqs. (12H14), and a set of
Lagrange multipliers Aj to get

H=A(hIT+Azh +A3• (17)

It is a standard result ofoptimal control theory7 that a path
which maximizes the objective function satisfies the follow­
ing conditions:



(29)

(33)

8) =82 ,

f= T(T.hJTx - hs)/h 2.

The only way for the system to move between two arcs
with different signs of h is for there to be a discontinuity in
the control variable, x. This change in volume, instantan­
eous in the idealized world, can be given a physical interpre­
tation as an arc which is completed in a time short compared
to the time scales associated with the flow of heat into and
out ofthe system. This is simply the definition ofan adiabat.9

Since we assume that the fluid is in internal equilibrium (i.e.,
the engine is endoreversible4

), these adiabats are also isen­
tropes. Adiabats of this type have been noted previously in
engine optimization problems.4.)O

We have now determined that the optimal cycle may
contain two types ofarcs; constant 0 arcs [described by Eq.
(26)] and (essentially) instantaneous adiabats. In order to
piece together a complete cycle we must determine the
points at which the adiabats occur and the constant 0 arcs
they connect. These points must satisfy the continuity condi­
tions onH, oHlox, and A;. The first two quantities are con­
tinuous since they are both zero on arcs ofconstant 0 [Eqs.
(17), (21), and (22)]. Obviously A2 and A3 are continuous by
virtue ofbeing constants [Eqs. (19) and (20)]. The continuity
ofA) implies that the r.h.s. ofEq. (25) is continuous. Dividing
Eq. (25) by (26) we obtain

A)/(A20) = g,

where

8 = (TIh )2(h"IT,,). (27)

The continuity of g and 0 then serve to satisfy the corner
conditions. In other words,

~=~ ~

and

where the subscripts indicate the endpoints of the adiabats
and 0 and g are given by Eqs. (26) and (27).

An adiabat may be completely described by three quan­
tities: for convenience, we take the entropy, which is con­
stant along the adiabat, and the volumes at the two end­
points. We can therefore think of Eqs. (28) and (29) as
defining a curve in the space of these three variables. Each
point on this curve represents an adiabat and has some value
of the power 0 associated with it. We are only interested in
those adiabats for which 0 has its largest possible value. To
find these adiabats we must maximize 0 with Eqs. (28) and
(29) as constraints. 11

In carrying out this process it is helpful to first obtain
some additional expressions. Eliminating (hxIT,,) between
Eqs. (26) and (27) we obtain

8 = T(lIh - 110). (30)

Taking derivatives with respect to x and s and making use of
Eq. (27) we get

g" = TOJ0 2 (31)

and

8s = TO';02 - f, (32)

where

(21)

dA2/dt = - oH10Q = 0,

dA-/dt= -oHloT=O.

(2) Since the final time is not specified,

H=O

(1) The Lagrange multipliers obey Hamilton's equa­
tions

dA)ldt = - oH los = - (A)IT +A2)hs +A)hTJT2,
(18)
(19)

(20)

for the entire path.
(3) The Pontryagin Maximum Principle must be satis-

fied. This principle requires that

o=oHlox =A)(Thx - hT,,)IT2+A2hx ' (22)

(4) The "natural" boundary conditions are

A)(O) = A)(tF ),

A2 = oOloQ, t = tF ,

A3 = 00lOT, t = tF'

These last two conditions become [note Eqs. (19) and (20)]

A2 = 1/TF (23)

and

A3 = - Q(tF )/(Tp)2 = - OA2• (24)

(5) As the fifth condition, H, oHlox, and theA; must be
continuous even at "corners," i.e., points where x is discon­
tinuous.

These equations provide the necessary conditions for an
extremal of the power. Ifmore than one solution with 0> 0
exists they must be examined to determine which is the abso­
lute maximum.

We now determine the types ofarcs that satisfy the con­
ditions given above. Then we piece these arcs together to
determine the full cycle and the maximum power.

Equations (17), (21), (22), and (24) provide us with three
linear homogeneous equations in the three A;'S; we wish to
find the nontrivial solution. Rearranging (22) we obtain

A)/A2=T2/[h(T"lh,,)-T]. (25)

Substituting (24) into (17), with H = 0, and rearranging we
get

A1/A2 = T(O - h )Ih.

Combining these and solving for 0 we obtain

0=h 2/[h- T(h"IT,,)]. (26)

This provides us with a constant of the motion which is nu­
mericallyequal to the average power.

Since this constant is a function of the thermodynamic
state variables only, it defines a family of curves in the s,x
plane which may be parts ofthe optimal cycle. From (26) we
see that ifh = 0 anywhere on one ofthese curves then 0 = 0
and h = 0 everywhere on the curve.8 Since h should remain
finite this means that on a given arc ofconstant0 the sign of
h does not change. However, from Eq. (12) we see thath must
change sign if the entropy is to return to its original value.
This means that the optimal cycle must contain at least two
separate arcs, each with the same value ofo but with differ­
ent signs ofh.
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FIG. 4. The entropy-temperature diagram for the optimal cycle when the
heat flow is a function of temperature alone. The arrows show the direction
of the cycle which produces positive power.

control mechanism used in this section, the piston mass has
no effect on the optimal motion. Consequently, there is no
need for the optimal frequency to be the same as the natural
frequency for some particular piston mass.

Among the cycles that produce the maximum power is
one limiting case that consists ofa single adiabat. This cycle
takes place in zero time and produces zero work per cycle
but has a power output equal to the maximum. Ifh is allowed
to depend on x as well as T we have no assurance that the
corner conditions will be satisfied by more than one adiabat.
When there is only one allowable adiabat the infinite fre­
quency solution is the only solution. This solutionprovidesan
upper bound to the power output 0/ the engine just as the
Camot cycle provides an upper bound to the efficiency 0/ a
conventional engine.

IV. DISSIPATIVE ENGINE WITH STEP FUNCTION
ABSORPTION

The analysis in this section is concerned with a heat
transfer function which depends on temperature alone. In
this case Eqs. (26) and (27) become

0= h 2/(h - Th T ), (35)

g = hT(T/h )2. (36)

In the type ofheat engine discussed above the amount of
light absorbed depends on the state of the working fluid. If
this dependence is strong enough it can overcome the heat
flow out of the engine and cause the net heat flow in to in­
crease as the temperature increases. In this section we con­
sider an idealized form of this behavior in which no light is
absorbed below a certain temperature To and all of the light
is absorbed above that temperature. The heat flow out is
assumed to be linear in the temperature. To simplify the
equations we choose units in which the incident light energy
flux and external temperature are both equal to one. This is
equivalent to regarding the net heat flow h, the temperature
T and the thermal conductivity k as being dimensionless
ratios of these quantities to the incident flux and external

Now we use Lagrange multipliers to adjoin the con­
straints of Eqs. (28) and (29) to the function (either 0 1 or O 2 )

that we are maximizing. This gives the augmented function

F=OI +A(01-02)+P(gI-g2)'

Setting the variation of F equal to zero and using Eqs. (31)
and (32) we obtain

0= 0/= (OJlx{l + A +pTI/Or~TI

- (02)x!A +pT2/0~~T2

+ [(01).(1 +A +pT/Oi)

- (02).(A +pT2/Oi) +P/h - /,.) JOs.

We may choose A and p so that the coefficients of 8TI and
oT2 are zero. Then the coefficient ofOs must also be zero, i.e.,

/t =J;. (34)

where/is given by Eq. (33). The roots ofEqs. (28), (29). and
(34) define the adiabats which may occur in the optimal cy­
cle.

These equations will not have a solution with positive
power unless the condition for an oscillatory instability, Eq.
(10). is satisfied. To see this we substitute Eq. (30) into (29)
and rearrange to obtain

h2(T2 - T I)= 0(T2 - T th2/h l ).

where 0 = 0 1 = O2, Now if0 is positive and h2 and hi have
opposite signs (as they must in a cyclic process) we have

h2(T2 - Td>O.

This can only be satisfied if heat flows in (h > 0) at a higher
temperature than it flows out. Therefore, as the system pro­
ceeds along an adiabat (isentrope) from T. to T2 there must
be an interval in which (ah faT). > O.

The special case where h is a function of T alone serves
to illuminate some features of the optimal cycle. In this case
both 0 and g are also functions of T alone. Thus, the curves
of constant 0 are isotherms and solving Eqs. (28) and (29)
provides the temperatures, T. and T2, of the allowable iso­
therms. In this case/is identically zero [see Eq. (A3) in the
appendix]. Consequently, Eq. (34) is satisfied for all adiabats
connecting the two isotherms. The optimal cycle is shown in
Fig. 4. It has the shape of a Carnot cycle but differs from the
Carnot engine in that it is not reversible: the processes trans­
ferring heat between the engine and the external world are
not reversible in this engine. In this regard, the engine de­
scribed here is similar to the Curzon-Ahlborn engine. 12

The average power is independent ofthe position of the
adiabats. This is because the work done per cycle is equal to
the area enclosed in the s, T plane (Fig. 4). This in turn is
proportional to the time spent on the isotherm since h, and
therefore ds/dt, is constant on the isotherms. Therefore, the
work per cycle is proportional to the period of the cycle and
the power from the optimized engine is independent of the
period.

This result may seen surprising in light ofthe results of
Sec. 11. We might expect that a resonance would occur at the
frequency of the spontaneous oscillations. However the fre­
quency of these oscillations is inversely proportional to the
piston mass and therefore can be altered by changing the
mass. Because of the nature of the assumptions about the

s

T1

T
T2



(44)

temperature. We have for the heat flow function

h =6(T- To) +k(l- T),

where () (T - To) indicates a step function. Since h depends
only on T the optimal path will contain adiabatic jumps
between isotherms at temperatures above and below To.

In an actual engine we might expect the conductivity to
be different on the two isotherms. For example, it might
depend on the area of the cylinder wall that is exposed to the
working fluid. Including such a volume dependence of k
would make the problem very complicated. However, we
can get an idea of the effect it would have by allowing differ­
ent conductivities on the two isotherms.

Letting P indicate the ratio of the conductivities we
have for the low T isotherm

hI =Pk(l- TI) (37)

and for the isotherm at high T

hz=1+ k (1 - Tz). (38)

Using Eqs. (35) and (36) we get the corner conditions

III = (h])ZIIPk) = (hz)Z/(k + 1) = llz' (39)

g] = -Pk(T]/h])2 = - k(T2Ihz)Z =gz. (40)

Eliminating hzlh l we find that

(k + 1)/Pk = (hzlhtlz= rrzIT])ZIP,

which reduces to

TzlTI = r = (1 + lIk )112. (41)

Thus, the temperature ratio depends only on the high tem­
perature conductivity. Since T] > 1this also provides a lower
bound to the high temperature achieved in the cycle.

To find the isotherm temperatures we substitute Eqs.
(37) and (38) into (39) to get

(T, - 1)(Pk )IIZ = [k (1 - Tz)+ 1]1(k + 1)IIZ,

which, after using Eq. (41), becomes

(T] - 1)flf = r - T].

From this we find

T] = (r +$)/(1 +$) , (42)

Tz = 1'(r +$)/(1 +$). (43)

From Eqs. (37) and (39) we obtain the average power

ll=ll] =Pk(l- Ttlz.

Using Eq. (42) we transform this to

ll=Pk [(r-l)/(1 +$)]2.
From Eq. (41) we have

k = 1I(r - 1)(r + I),

so we get for the power,

II = [p 1(1 +$)2](r -1)I(r + 1).

From this we see that the power is maximized by large values
ofPand r (small k ). Also, from Eqs. (42) and (43) we see that
increasing P with r fixed decreases T] and T2• In fact, as
fJ-+ co, Te...l and T2-r. Large values of r produce large
values ofboth high and low temperatures.

In a practical engine the maximum temperature is like-

ly to be limited. From the above remarks we see that the
largest power, for a given value of Tz, will occur as P- co.
From Eqs. (44) and (43) we obtain for this limit

II = (r- 1)/(r+ I) = (Tz-1)I(T2+ I). (45)

Thus, the fraction of incident light converted to work is
smaller than the Carnot efficiency. This is due to heat leak­
age from the engine on the high T isotherm.

Another case ofinterest is P= I so that the conductiv­
ity is the same on both isotherms. In this case

II = (1I4)(r - 1)I(r + I), (46)

and, from Eq. (43),

r= (112)[ -1 + (I + 8T2)]/2].

Since r > 1[Eq. (41)] II is always less than 0.25. This is due to
both heat leak on the high T isotherm and finite time spent at
low T where no light is absorbed. Plots ofII vs T2 for these
two cases are shown in Fig. 5.

V. DISSIPATIVE ENGINE WITH CHEMICAL REACTION

In this section we replace the step function of the pre­
vious section with a function describing absorption due to a
chemical reaction. To keep h a function ofT alone we consid­
er a pure isomerization reaction and a constant thermal con­
ductivity, k. The isomerization reaction might be a ring
opening reaction of the type]3

where the species on the right is the absorbing, high tempera­
ture species.

For this engine the heat flow is given by

h = [(1- exp( - b/)] +k(l- T), (47)

where the fraction ofreacting material in the absorbing form
is given by

1= 11[1 + exp(a + €IT)].

Here b is the dimensionless product of the density, path
length, and absorption coefficient, a is the entropy change in
the reaction, and € is the heat of reaction. These are in units
in which the gas constant, ambient temperature and incident
energy flux all equal one.

As in the previous section k determines the upper bound
on the cycle temperatures; from Eq. (47) we see that all tem­
peratures for which h = 0 must lie in the range
1< T < 1+ 1Ik.b determinesthemaximumfractionoflight
absorbed; for efficient operation we should have b> 1. € de­
termines how sharp the transition between the absorbing
and nonabsorbing forms 1s and a determines the temperature
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Step function heating: n = 13.42. TH = 7.16

intersections. Then we must examine the effect ofthe param­
eters on the power.

Examination ofEqs. (35) and (36) indicates that hT <0
on both isothenns. The high temperature isothenn must
therefore lie between a temperature T] at which h is a maxi­
mum and the highest temperature root of h = 0, which we
designate as T4• Similarly, TL must lie between T) (the lowest
Tat which h = 0) and T2,atwhichh - Th T = O. Using these
conditions on T1 and T2 we find that, at a point of intersec­
tion, the ratio of the slopes of the curves Y = 0 and Z = 0 is

(iJTH/iJTdy/(iJTH/iJTLlz = TH/TL > 1.

Consequently, at any intersection the curve Y = 0 is des­
cending faster than the curve Z = O. Thus, there is at most
one intersection.

This intersection can be located by the following itera-
tive procedure:

(1) Let TH = (T) + T4 )/2.
(2l Find TL to satisfy Y = o.
(3) EvaluateZ(TH , Td.
(4) IfZ>O let T4 = TH.1f Z <0 let T] = TH.
(5) Return to step (1) and repeat until the interval T], T4

is sufficiently small.
The results of these calculations for various sets of pa­

rameters are tabulated in Table I and plotted in Fig. 1. All of
these results shown there are for b = la. As long as b is
greater than 5 it has little effect on the maximum power.

As can be seen from the figure, increasing E from 10
(about 6 kcallmole for an ambient temperature of 300 K) to

Step function heating: n = 7.58, TH= 2.69
k-O.4O €-10 €-17 E-25
1;, n rH II TH II TH

1.750 3.02 2.98 6.31 2.76 7.15 2.7\
1.875 4.20 2.87 6.80 2.74 7.40 2.70
2.000 4.45 2.82 6.91 2.75 7.47 270
2.125 3.98 2.80 6.75 2.80 7.42 2.73
2.250 2.47 2.78 6.03 2.87 7.17 2.79

Step function heating: II = 10.51, TH= 4.23

k =0.20 E= 10 E= 17 E= 25
1;, II TH n TH II TII

2.00 3.40 4.98 8.18 4.43
2.25 5.64 4.68 9.14 4.35 10.00 4.27
2.50 6.66 4.52 9.67 4.31 10.28 4.24
2.625 5.79 4.46 9.74 4.31 10.36 4.24
2.75 6.72 4.41 9.76 4.33 10.39 4.24
3.00 5.87 4.30 9.34 4.42 10.30 4.30
3.25 4.06 4.19 ... ... 9.92 4.43

TABLE I. Data for engine with chemical reaction.

kIT -I)

__ .__> < __ (I_e- bf )

2.50 5.07 8.62 10.52 7.60 12.07 7.36
3.00 7.51 8.01 11.69 7.41 12.77 7-25
3.50 8.32 7.61 12.22 7.35 13.13 7.20

T 4.00 8.03 7.20 12.12 7.38 13.22 7.22
4.50 6.88 6.77 11.24 7.44 12.92 7.36

FIG. 6. The intersections of the curves k (T - 1) and 1 - ellp( - hi) for the 5.00 5.12 6.34 9.37 7.49 11.99 7.61

increasing values of a.

Z(TH, TL)=g(TH) -g(TLl,

with TLand TH the low and high temperatures of the cycle.
We need a numerical procedure that will find all of these

and
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FIG. 5. Power as a function of the higher isotherm temperature for three
cases: (a) reversible (Carnotl engine, (b) dissipative engine with fJ-+~ [Eq.
(19)], (c) the case p= 1 (Eq. (20)]. The incident energy flUll and external
temperature are set to one.

To at which this transition takes place. For the purpose of
this discussion we define To as the temperature at which one
halfof the light is absorbed.

The heat flow function given in Eq. (41) will satisfy the
instability conditions, Eq. (10), as long as there are multiple
roots to h = O. The middle root corresponds to the steady
state at which hT > O. Figure 6 shows a sketch of the two
terms comprising h for different values ofa. We see that ifthe
maximum slope is large enough (Le., E is large enough) there
should be a range of values of a for which h = 0 has three
roots. We assume that h has only one inflection point so that
there are at most three roots.

The analysis ofthis model requires two stages. First, for
a given set of parameters, we solve the corner conditions to
find the maximum power. This requires finding the intersec­
tions of the curves Y = 0 and Z = 0, where

Y(Tlf, TLl=ll(TH)-ll(Td
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FIG. 7. Power for the dissipative engine with chemical reaction plotted vs
TH as To is varied. The broken curve is for the step function heating. Data
are given in Table I.

the temperature dependence should dominate since it is ex­
ponential. Thus, we might expect this system to behave simi­
larly to the isomerization reaction but with the value of To
depending on the volume. To could be adjusted to a favorable
value by changing the density of N02• From the results of
the previous section we should expect that introducing a vol­
ume dependence in the heat flow out should enable us to
achieve much better efficiencies.

The trajectory needed to produce the maximum power
may be quite difficult to produce. We now consider the same
sort of engine as discussed previously but with the piston
required to move sinusoidally. Then the volume will be
specified as a function oftime. To find the temperature tra­
jectory and the power we need to use a specific equation of
state.

If the working fluid consisted entirely of the reacting
materials the compression ratio required would be prohibiti­
vely large. This is primarily because the compression would
have to provide the heat of reaction. Also, if the absorbing
species has a large number ofinternal degrees offreedom the
heat capacity ratio will be near one. These problems can be
circumvented by assuming that the absorbing species is di­
luted with a large amount of a buffer gas. The buffer gas
alone will then determine the equation of state.

If the buffer is an ideal gas the equations of motion for
this system are

dWIdt = Tv/x,

dT /dt = [h (T) - Tv/x]lCv '

v = (mI2)( I - xolsin(mt ),

x = Xo+ (I - xoJ[ 1 - cos(mt )]12,

where Wis the work done by the engine, h (T) is given by Eq.
(47), mis the frequency, X ois the maximum volume (compres­
sion ratio), Cv is the constant volume heat capacity, and the
gas constant and minimum volume are set equal to one.

These equations were integrated using a Runge-Kutta
routine. For a given period the compression ratio was varied
until the maximum power was obtained. This was repeated
for various values of the period and with heat capacities of
3R 12 and 5R 12. For the results presented here the param­
eters used in the heattransfer function, Eq. (47), were € = 25,
b = 10, k = 0.2, and To = 2.75.

The results ofthe calculations are presented in Table 11.
For comparison, the power and maximum temperature are
given for a step heating function with the same value ofk and
for the optimal solution with the same values of the param­
eters describing the chemical reaction.

From the table we see that the sinusoidal motion re­
quires a somewhat higher maximum temperature than the
optimal motion. With Cv = 3R 12 about 68% of the maxi­
mum power is produced, with Cv = 5R /2 this drops to
60%.

Varying the period over a range ofmore than six orders
ofmagnitUde does not change the power output. No calcula­
tions were done with periods ofless than 10-5• With periods
of 10 or above the optimal compression ratio begins to in­
crease and the maximum power begins to drop off'slightly.

The independence of the power output from the period
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25 (about 15 kcaVmole) increases the power from about 60%
to about 99% of that achieved with the step function. Larger
values of E have little effect. The value ofE has little effect on
the high temperature.

Decreasing k has the effect of increasing both the aver­
age power and the high temperature of the cycle. This is in
agreement with the effect that k has with the step function
heat input. With the chemical reaction the optimal maxi­
mum temperature is slightly higher than with the step func­
tion and the minimum temperature is slightly lower.

The value of To is quite important. Ifit is too small there
will be either significant absorption at the low temperature
or too small a heat flow out. In the latter case a dispropor­
tionate amount oftime will be spent at low T. IfTo is too high
there will be either unabsorbed light or too large a heat flow
out at high T. The best value of To turns out to be roughly the
geometric mean of the high and low temperatures.

Instead ofa pure isomerization reaction we might wish
to use a reaction that involves a change in the mole number.
An example would be the dimerization reaction

2N02~N204'

where N02 absorbs and is favored at high temperatures. For
such a reaction the equilibrium constant (in mole fractions)
depends on the volume as well as the temperature. However,



TABLE n. Results with sinusoidal piston motion.

Compression
Period ratio Tu Power

Step heating function 4.23 10.51
Optimum 4.24 10.39

IO-s 4.20 4.57 7.04
10- 3 4.20 4.57 7.04
0.1 4.20 4.57 7.04
1.0 4.20 4.57 7.04

10.0 4.50 4.51 7.03
20.0 5.75 4.60 7.00
30.0 7.75 4.60 6.92

1.0 3.00 3.70 6.04
1.0 4.00 4.39 7.00
1.0 4.20 4.57 7.04
1.0 4.50 4.84 6.98
1.0 5.00 5.33 6.62

a 8.50 4.53 6.21

'Period ranging from 10-4 to 1.0. with CulR = 2.5. For all other entries
CulR = 1.5.

is identical to the situation with the optimal trajectory. This
feature would be very desirable in a practical engine since it
would eliminate the need for a transmission in matching the
engine torque to the load. A working engine would presuma­
bly be designed to operate near the lowest frequency which
does not require an increased compression ratio. This would
minimize losses not considered here, such as those due to
friction and finite rates of reaction.

VI. SUMMARY

A dissipative engine of the sort considered here cannot
be operated reversibly. Consequently, its theoretical effi­
ciency will always be less than the reversible efficiency of a
conventional engine. However, for this very reason, we ex­
pect that a real dissipative engine would come closer to
achieving its theoretical efficiency than a conventional en­
gine would. This is because as soon as we begin to operate the
conventional engine at a finite rate we introduce losses due to
heat transfer effects. These losses are already included in the
idealized model of the dissipative engine.

The dissipative engine would be mechanically simple. It
requires no mechanisms, such as valves or shutters, to con­
nect it to its reservoirs. This job is carried out by the chemical
reaction in the working fluid. This mechanical simplicity
should be especially valuable for a solar engine since, in that
case, the fuel is free. As a result, the dominant costs will be
those due to building and maintaining the engine.

There are a number ofquestions that must be answered
if we are to build an engine that operates on this principle.
First ofall we would need to choose the working fluid. Then
we would have to design the mechanical features of the en­
gine such as the dimensions of the cylinder, amount ofinsu­
lation, and details of the piston motion. A traditional engi­
neering approach to designing such an engine would have to
rely initially on intuition to make these choices. With exper­
ience the choices would be improved but changes would still
have to be made on a largely trial and error basis. A great

deal of effort would be required before we would have a rea­
sonably clear idea of what the prospects for success are.

The results presented here provide a means of stream­
lining this process. We can carry out these analyses without
knowing all the details of the engine. All that is required is a
knowledge of the heat transfer function and the equation of
state ofthe fluid. Given that information we can determine if
there is a range of temperatures for which, at a steady state,
the net heat flow inward increases with increasing tempera­
ture. Any candidate system for which this condition is not
satisfied at reasonable temperatures can be eliminated.

Next the results ofSec. III can be used to determine the
maximum power. This requires the solution of a set of alge­
braic equations which also provide the extreme tempera­
tures of the cycle. These results can be used to choose the
most promising candidates for future development. As that
development is carried out, the maximum power will pro­
vide a standard for comparison.

From the results of Sec. IV and V we see that, with a
heat transfer function that depends on temperature alone,
the optimal cycle is a Carnot cycle with an arbitrary period.
We have a limiting efficiency of 25% and with reasonable
operating temperatures an efficiency of about 10%. These
figures are comparable to the limiting and actual efficiencies
of solar cells. An actual engine with such a heat transfer
function would not do this well. For example, sinusoidal
piston motion reduces the efficiency to about two-thirds of
the optimum. Other losses, such as friction and reflective
losses, would cause further reductions in efficiency. On the
other hand, introducing a volume dependence in the heat
transfer has the potential to produce large improvements in
the efficiency.

Finally, we note a possible application ofthese results to
chemically sustained oscillations. The basic reason that any
heat engine operates periodically is so that the temperature
of the working fluid is higher when heat flows in than it is
when heat flows out. This reduces the potential difference
between the high T source and the engine and between the
engine and the Iow Tsink. This reduction in the irreversible
losses becomes part of the potential difference available to
produce work.

A similar situation might be expected to occur in a
chemical system. The heat reservoirs could be replaced by
large reservoirs of reactants and products. The overall reac­
tion could proceed by means of intermediate species which
could also react with a different system to drive a reaction
against a chemical potential gradient. It may well be advan­
tageous for the concentrations of the intermediates to oscil­
late, thus periodically reducing the chemical potential differ­
ences between the intermediates and the reactants and
products reservoirs. We might speculate that biochemical
oscillations occur for reasons of this sort.

After this manuscript had been submitted, we learned
from Dr. John Wheatley ofanother proposal14 for an engine
that "depends intrinsically for its operation on irreversible
processes" and is therefore an engine based on a dissipative
process. Wheatley et al. have constructed an engine of this
type, based on a thermoacoustic effect in a gas (4He) con­
tained in a chamber with parallel plates, subjected to a ther-



Using these expressions we obtain

n = h 2/[h + (C.Krla)(ah lax)r - T(ah laT),,] (AI)

g = T [T(ah laT)" - (C.KTla)(ah lax)r ]/h 2, (A2)

f = - (TKTlh 2a)(ah lax)r. (A3)

Since the entropy does not appear explicitly in these
expressions we must add to the conditions (28), (29), and (34)
the condition
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RH" remains nonzero when h =0 then AllA2 must diverge. This implies
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mal gradient. While their work and ours take altogether dif­
ferent approaches to the analysis of the problem, and the
physico-chemical model used to illustrate our approach
looks altogether different from a thermoacoustic engine, the
two lines of work have clearly converged onto the common
idea of extracting work from a system capable of spontane­
ous oscillations.
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APPENDIX: CHANGE OF VARIABLES

Throughout this paper the heat flow and temperature
are assumed to be known as functions ofsand x. In practice,
we are more likely to have h given as a function of T and x.
Also, the equation ofstate is more likely to be known in the
form of the standard partial derivatives: the heat capacity
(C.), compressibility (KT)' and thermal expansion coefficient
(a). Here we convert the expressions for n [Eq. (26)], g [Eq.
(27)] and! [Eq. (33)] into this form.

First we must note some partial derivative relations6
:

T. = (aT last, = TIC.,

h, = (ah las)" = (TICu)(ah laT)" ,

alKT = (ap laT)" = (aSlaX)T'

T" = (aTlax). = - (aT las)" (aSlaX)T = - TaIC.KT,

h"IT" = (ah laT). = (ah laT)" + (ah laX)T(axlaT)"

hJT" = (ah laT)" - (C.KTITa)(ah laX)T'

s(x" T,) = s(X2' T2). (A4)


